WO2018181697A1 - 電極形成用樹脂組成物並びにチップ型電子部品及びその製造方法 - Google Patents

電極形成用樹脂組成物並びにチップ型電子部品及びその製造方法 Download PDF

Info

Publication number
WO2018181697A1
WO2018181697A1 PCT/JP2018/013203 JP2018013203W WO2018181697A1 WO 2018181697 A1 WO2018181697 A1 WO 2018181697A1 JP 2018013203 W JP2018013203 W JP 2018013203W WO 2018181697 A1 WO2018181697 A1 WO 2018181697A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
resin composition
electronic component
chip
type electronic
Prior art date
Application number
PCT/JP2018/013203
Other languages
English (en)
French (fr)
Inventor
翔 ▲高▼橋
一慶 櫻井
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2019510116A priority Critical patent/JP7075397B2/ja
Priority to CN201880021269.4A priority patent/CN110462752B/zh
Publication of WO2018181697A1 publication Critical patent/WO2018181697A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/08Epoxidised polymerised polyenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/142Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals or tapping points being coated on the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present disclosure relates to an electrode-forming resin composition, a chip-type electronic component in which an electrode is formed using the electrode-forming resin composition, and a manufacturing method thereof.
  • the present disclosure particularly relates to an electrode forming resin composition for forming an external electrode of a chip electronic component for surface mounting, a chip electronic component using the same, and a method for manufacturing the same.
  • Chip-type electronic components such as chip inductors, chip resistors, chip-type multilayer ceramic capacitors, and chip thermistors are electrically connected to a chip-shaped body made of a ceramic sintered body, an internal electrode provided therein, and the internal electrode.
  • a chip-shaped body made of a ceramic sintered body, an internal electrode provided therein, and the internal electrode.
  • the internal electrode is mainly composed of external electrodes provided on both end faces of the chip-like element body, and is mounted by soldering the external electrodes to the substrate.
  • the external electrode is formed by applying a resin paste to the surface of a chip molded with a sealing resin, and then curing to form a base electrode, followed by plating.
  • the external electrode is formed by applying a resin paste to the part where the electrode is formed at the first end by a dip method and predrying. Next, the external electrode is formed by applying a resin paste to the portion where the second electrode is to be formed by dipping and predrying.
  • the external shape of the external electrode is formed by starting the sintering of the low-temperature active silver fine particles by the preliminary drying. Thereafter, by further heating, the thermosetting resin component is cured to form an external electrode serving as a base for the plating process.
  • the external electrode is used to connect the chip-type electronic component and an electric circuit on the substrate. Therefore, the quality of the product depends on the electrical characteristics, reliability, mechanical characteristics, etc. of the product. Has a major impact on
  • Patent Document 1 discloses a method of forming a base electrode by sintering metal powder in a resin paste obtained by kneading a metal powder such as Ag, an inorganic binder such as glass frit, and an organic vehicle.
  • Patent Document 2 discloses a method of forming a base electrode using a resin paste in which a thermosetting resin such as an epoxy resin and metal particles such as Ag are dispersed.
  • Patent Document 1 since the method of Patent Document 1 requires heat treatment at a high temperature of 600 ° C. or higher, the resin in the sealing material or the self-bonding film of the conductive wire may be deteriorated.
  • Patent Document 2 when the moisture resistance test is performed, the adhesive strength between the element body and the external electrode deteriorates, and the external electrode may be peeled off.
  • Patent Document 3 a method of firing at a low temperature of 250 ° C. or lower using a resin paste containing metal fine particles having a sintering temperature of 250 ° C. or lower is disclosed.
  • a resin paste containing metal fine particles not only has a high volume resistance value, but also has a high required level in a moisture absorption resistance test and a high temperature resistance test (for example, the rate of change in resistance value is within 10%). There is a risk that sufficient reliability cannot be obtained.
  • the present disclosure provides a low-temperature sintered electrode-forming resin composition excellent in adhesiveness, moisture resistance, stability of electric resistance after heat treatment, and the like.
  • This electrode-forming resin composition can also be applied to in-vehicle level environmental resistance (super moisture resistance, super heat resistance).
  • the present disclosure finds that the resin used for the electrode-forming resin composition as a thermosetting resin is a combination of specific resins, thereby satisfying the on-board level environmental resistance performance, and is completed. It has come.
  • one embodiment of the electrode forming resin composition of the present disclosure includes (A) a thermosetting resin, (B) a radical initiator, (C) silver fine particles having a thickness or minor axis of 1 to 200 nm, (D) A resin composition for forming an electrode comprising silver powder having an average particle diameter of 2 to 20 ⁇ m other than the component (C),
  • the (A) thermosetting resin is (A1) a hydroxyl group-containing (meth) acrylic acid ester compound or (meth) acrylamide compound, (A2) liquid at normal temperature, bismaleimide resin, (A3) epoxidation Polybutadiene.
  • the 1% weight loss temperature may be 280 ° C. or higher and 400 ° C. or lower, the lower limit may be 320 ° C. or higher, and the lower limit is 340 ° C. or higher. The lower limit may be 350 ° C. or higher.
  • the 1% weight reduction temperature can be controlled, for example, by adjusting the type and blending ratio of the components contained in the electrode forming resin composition. In this embodiment, for example, 10 mg of the electrode-forming resin composition is cured at 200 ° C.
  • TG / DTA thermogravimetric / differential thermal analysis
  • chip-type electronic component of the present disclosure is a chip-type electronic component having a rectangular parallelepiped chip-type electronic component body made of a ceramic sintered body. Furthermore, at least one of the internal electrode formed inside the chip-type electronic component element body and the external electrode formed on the end surface of the chip-type electronic component element body is a sintered body of the electrode-forming resin composition. is there.
  • a predetermined electrode pattern layer is formed on the surface of the ceramic layer by printing using the electrode forming resin composition.
  • another ceramic layer is placed on the electrode pattern layer, and the electrode forming resin composition is used on the surface of the other ceramic layer.
  • the operation of forming the predetermined electrode pattern layer by printing is repeated to alternately laminate the ceramic layers and the electrode pattern layers.
  • the final step of the manufacturing method of the chip-type electronic component according to the present disclosure is to sinter the obtained laminated body to obtain a chip-type electronic component body having an internal electrode formed by the electrode pattern. External electrodes are formed on the end face of the electronic component element body.
  • One aspect of a method for producing a chip-type electronic component according to the present disclosure is such that the electrode-forming resin composition is applied to the end face of a chip-type electronic component body by printing or dipping, and the electrode-forming resin composition is applied.
  • the external electrode is formed by sintering.
  • the electrode forming resin composition of the present disclosure has a small resistance change rate in a moisture absorption resistance test and a high temperature resistance test. Furthermore, since silver fine particles are blended, sintering at a low temperature is possible, and the obtained sintered body is suitable for forming an electrode of an electronic component.
  • the electrode is formed using the electrode-forming resin composition, the strength of fixing to the element body is high even in a high humidity and high heat environment. A chip-type electronic component having an electrode is obtained, and the product is highly reliable.
  • resin composition for electrode formation of the present disclosure has the above-described configuration, and this disclosure will be described below with reference to the resin composition for electrode formation which is an embodiment.
  • thermosetting resin used in this embodiment is a combination of a plurality of types of predetermined thermosetting resins.
  • resin used for the thermosetting resin (A) (A1) a (meth) acrylic acid ester compound or (meth) acrylamide compound having a hydroxyl group, (A2) liquid at normal temperature, and a fat in the main chain Bismaleimide resin having a group hydrocarbon group and (A3) polybutadiene resin.
  • the (meth) acrylic acid ester compound or (meth) acrylamide compound having a hydroxyl group (A1) used in this embodiment is a (meth) acrylate having one or more (meth) acryl groups in one molecule, respectively. It is (meth) acrylamide and contains a hydroxyl group.
  • the (meth) acrylate having a hydroxyl group can be obtained by reacting a polyol compound with (meth) acrylic acid or a derivative thereof.
  • a known chemical reaction can be used for this reaction.
  • the (meth) acrylate having a hydroxyl group usually uses 0.5 to 5 moles of acrylic acid ester or acrylic acid with respect to the polyol compound.
  • (meth) acrylamide having a hydroxyl group can be obtained by reacting an amine compound having a hydroxyl group with (meth) acrylic acid or a derivative thereof.
  • the method of producing (meth) acrylamides by reacting (meth) acrylic acid esters with amine compounds is highly reactive with double bonds of (meth) acrylic acid esters, such as amines, cyclopentadiene, alcohols, etc. Is generally added to the double bond as a protecting group, and after completion of the amidation, the protecting group is removed by heating.
  • the hydroxyl group here is an alcoholic group in which a hydrogen atom of an aliphatic hydrocarbon group is substituted.
  • the hydroxyl group content may be 1 to 50 in one molecule. When the hydroxyl group content is within this range, the sintering property is not hindered by excessive curing, and the sinterability is promoted. it can.
  • Examples of the (A1) hydroxyl group-containing (meth) acrylic acid ester compound or (meth) acrylamide compound include compounds represented by the following general formulas (1) to (4).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a divalent aliphatic hydrocarbon group having 1 to 100 carbon atoms or an aliphatic hydrocarbon group having a cyclic structure.
  • R 1 represents the same as above, and n represents an integer of 1 to 50.
  • the compounds shown in the general formulas (1) to (4) may be used alone or in combination of two or more. Can do.
  • the carbon number of R 2 may be 1 to 100 or 1 to 36. When the carbon number of R 2 is in such a range, the sinterability due to excessive curing is not inhibited.
  • the bismaleimide resin (A2) used in the present embodiment is liquid at room temperature and has an aliphatic hydrocarbon group in the main chain, and has an aliphatic hydrocarbon group having 1 or more carbon atoms in the main chain.
  • a chain is formed by connecting two maleimide groups.
  • the aliphatic hydrocarbon group may be any of linear, branched, and cyclic forms, may have 6 or more carbon atoms, may have 12 or more carbon atoms, The number may be 24 or more.
  • the aliphatic hydrocarbon group can be directly or indirectly bonded to the maleimide group, but may be directly bonded to the maleimide group.
  • the maleimide resin of component (A2) is a compound represented by the following general formula (5) (In the formula, Q represents a divalent linear, branched or cyclic aliphatic hydrocarbon group having 6 or more carbon atoms, and P represents O, CO, COO, CH 2 , C (CH 3 ) 2. , C (CF 3 ) 2 , S, S 2 , SO and SO 2 or a divalent atom or organic group, or an organic group containing at least one of these atoms or organic groups, and m is 1 to Represents an integer of 10.) is preferably used.
  • Q represents a divalent linear, branched or cyclic aliphatic hydrocarbon group having 6 or more carbon atoms
  • P represents O, CO, COO, CH 2 , C (CH 3 ) 2. , C (CF 3 ) 2 , S, S 2 , SO and SO 2 or a divalent atom or organic group, or an organic group containing at least one of these atoms or organic groups, and
  • examples of the divalent atom represented by P include O and S
  • examples of the divalent organic group include CO, COO, CH 2 , C (CH 3 ) 2 , C (CF 3 ) 2 , S 2 , SO, SO 2 and the like, and organic groups containing at least one or more of these atoms or organic groups are exemplified.
  • examples of the organic group including an atom or an organic group described above include those having a hydrocarbon group having 1 to 3 carbon atoms, a benzene ring, a cyclo ring, a urethane bond, etc. as a structure other than the above. Examples include groups represented by the following chemical formula.
  • the bismaleimide resin of the component (A2) using a bismaleimide resin having an aliphatic hydrocarbon group in the main chain is excellent in heat resistance and has a low stress and a hot adhesive strength after moisture absorption. This is one of the requirements for obtaining a good electrode-forming resin composition. In order to effectively obtain this characteristic, it is preferable to use a bismaleimide resin that is imide-extended with an aliphatic hydrocarbon group represented by the above general formula (5) and is liquid at room temperature as the component (A2).
  • the number average molecular weight of the (A2) component bismaleimide resin may be 500 or more and 10,000 or less, and may be 500 or more and 5,000 or less. When the number average molecular weight is less than 500, flexibility is lowered and heat resistance is also lowered. When the number average molecular weight exceeds 10,000, the workability during preparation of the composition and the workability during use tend to be lowered.
  • the (A3) epoxidized polybutadiene used in the present embodiment is a compound obtained by epoxy-modifying polybutadiene, and may be an epoxidized polybutadiene having an epoxy equivalent of 50 to 500 (g / eq).
  • the epoxy equivalent is less than 50, the viscosity increases and the workability of the resin composition tends to be lowered.
  • it exceeds 500 the adhesive strength during heating tends to be lowered.
  • the epoxy equivalent is determined by the perchloric acid method. As this epoxidized polybutadiene, one having a hydroxyl group in the molecule may be used.
  • the resin composition for electrode formation can improve the adhesiveness of the electrode with respect to a chip component terminal.
  • This (A3) epoxidized polybutadiene may have a number average molecular weight of 500 to 10,000. When the molecular weight is within this range, the adhesiveness is good and the workability is good because it can be controlled to an appropriate viscosity.
  • the number average molecular weight is a value measured by gel permeation chromatography using a standard polystyrene calibration curve (hereinafter referred to as GPC method).
  • the components (A1) to (A3) described above may be used as (A) thermosetting resin by blending predetermined amounts as follows. That is, the (A) thermosetting resin used in this embodiment is a (meth) acrylic acid ester compound or (meta) having a hydroxyl group when (A) the thermosetting resin is 100% by mass.
  • the (A1) hydroxyl group-containing (meth) acrylic acid ester compound or (meth) acrylamide compound may be 0 to 50% by mass.
  • (A1) the hydroxyl group-containing (meth) acrylic acid ester compound or (meth) acrylamide compound may be 0% by mass.
  • (A1) hydroxyl group-containing (meth) acrylic acid ester compound or (meth) acrylamide compound is 0% by mass
  • (A3) with respect to the blended amount of (A3) epoxidized polybutadiene is liquid at room temperature, and the main chain
  • the ratio [(A2) / (A3)] of the bismaleimide resin having an aliphatic hydrocarbon group may be 1 or more.
  • the electrode forming resin composition When the blending amount of the component (A1) is more than 75% by mass, the electrode forming resin composition may be inferior in heat resistance and moisture resistance. When the amount of the component (A2) is less than 10% by mass, the heat resistance and moisture resistance of the electrode forming resin composition are inferior, and when it is more than 90% by mass, the adhesive strength of the electrode forming resin composition is inferior. There is a fear. Further, when the blending amount of the component (A3) is less than 10% by mass, the adhesive strength of the electrode forming resin composition is inferior, and when it is more than 90% by mass, unreacted components of the electrode forming resin composition are likely to remain. Adhesive strength may be inferior.
  • thermosetting resins other than the above components (A1) to (A3) can be used.
  • thermosetting resins that can be used here include an epoxy resin. , Bismaleimide resin, polybutadiene resin, phenol resin and the like.
  • the thermosetting resin other than the components (A1) to (A3) may be 20% by mass or less when the (A) thermosetting resin is 100% by mass, and may be 10% by mass or less. Also good.
  • the (B) radical initiator used in the present embodiment can be used without particular limitation as long as it is a polymerization catalyst usually used for radical polymerization.
  • This (B) radical initiator has a decomposition start temperature of 40 to 140 ° C. in a rapid heating test (measurement test of decomposition start temperature when 1 g of a sample is placed on an electric heating plate and heated at 4 ° C./min). It may be. If the decomposition start temperature is less than 40 ° C, the adhesive thermosetting resin composition may have poor storage stability at room temperature, and if it exceeds 140 ° C, the curing time may become extremely long.
  • the decomposition start temperature is defined as the temperature at the time of 1% mass reduction with respect to the mass of the sample before heating.
  • radical initiator satisfying this condition examples include 1,1-bis (t-butylperoxy) -2-methylcyclohexane, t-butylperoxyneodecanoate, dicumyl peroxide and the like. It is done. These may be used alone or in combination of two or more in order to control curability.
  • the blending amount of the (B) radical initiator may be 0.1 to 10 parts by mass with respect to 100 parts by mass of the (A) thermosetting resin. If this blending amount exceeds 10 parts by mass, the change in viscosity of the resin composition with time may increase and workability may decrease, and if it is less than 0.1 part by mass, curability may be remarkably reduced.
  • the (C) silver fine particles used in the present embodiment can be used without particular limitation as long as the fine particles have a thickness or minor axis of 1 to 200 nm.
  • Examples of the shape of the silver fine particles (C) include plate shapes, dendritic shapes, rod shapes, wire shapes, and spherical shapes.
  • the thickness of the plate type, and the shortest diameter in the cross-sectional diameter of the dendritic shape, the rod shape, the wire shape, and the spherical shape only need to satisfy the above range.
  • the (C) silver fine particles may be plate-type silver fine particles. Since these plate-type silver fine particles tend to be stacked in the minor axis direction, when the electrode-forming resin composition is formed on both ends of the electronic component by dip coating, there is an advantage that a smooth electrode surface with less irregularities on the surface can be obtained. There is.
  • the plate-type silver fine particles may have a center particle diameter of 0.3 to 15 ⁇ m.
  • One embodiment of the present disclosure can improve the dispersibility in the resin component by setting the center particle diameter of the plate-type silver fine particles within this range.
  • the central particle size refers to a 50% integrated value (50% particle size) in a volume-based particle size distribution curve obtained by measurement with a laser diffraction particle size distribution measuring device.
  • the thickness is 10 to 200 nm, and may be 10 to 100 nm. This thickness is measured by data processing of an observation image acquired by a transmission electron microscope (TEM) or a scanning electron microscope (SEM). Further, the average thickness may be within the above range. This average thickness is calculated as the number average thickness as follows.
  • the division in this case is an equal division on a logarithmic scale.
  • the representative thickness in each thickness section based on a logarithmic scale is represented by the following formula.
  • is a numerical value on a logarithmic scale and does not have a unit as a thickness
  • 10 ⁇ that is, a power of 10 ⁇ is calculated.
  • This 10 ⁇ m is the number average thickness.
  • the long side in the direction perpendicular to the thickness direction may be in the range of 8 to 150 times the thickness, or may be 10 to 50 times. Further, the short side in the direction perpendicular to the thickness direction may be in the range of 1 to 100 times the thickness, or may be 3 to 50 times.
  • This plate-type silver fine particle can be self-sintered at 100 to 250 ° C.
  • the flowability of the silver fine particles is improved at the time of thermosetting.
  • the number of contacts between the silver fine particles is increased and the contact area is increased. Becomes larger and the conductivity is remarkably improved.
  • the sintering temperature of the plate-type silver fine particles may be 100 to 200 ° C.
  • being capable of self-sintering means sintering by heating at a temperature lower than the melting point without adding pressure or additives.
  • Examples of such (C) plate-type silver fine particles include M612 (trade name; center particle diameter 6 to 12 ⁇ m, particle thickness 60 to 100 nm, melting point 250 ° C.), M27 (trade name; center) manufactured by Toxen Industries, Ltd. Particle size 2 to 7 ⁇ m, particle thickness 60 to 100 nm, melting point 200 ° C.), M13 (trade name; center particle size 1 to 3 ⁇ m, particle thickness 40 to 60 nm, melting point 200 ° C.), N300 (trade name; center particle size 0. 3 to 0.6 ⁇ m, a particle thickness of 50 nm or less, and a melting point of 150 ° C.). These plate-type silver fine particles may be used alone or in combination.
  • the plate-type silver fine particles are used, for example, by combining relatively large silver fine particles such as M27 and M13 among the above-mentioned plate-type silver fine particles with a small particle size such as N300. May be.
  • the plate-type silver fine particles preferably have a particle thickness of 200 nm or less, a tap density (TD) of 3.0 to 7.0 g / cm 3 , and a specific surface area (BET) of 2.0 to 6.0 m 2 / g.
  • TD tap density
  • BET specific surface area
  • Silver powder used for this embodiment is silver powder other than (C) component.
  • the silver powder has an average particle diameter of 0.2 to 20 ⁇ m and may be silver powder as an inorganic filler added to impart conductivity to the resin adhesive.
  • the tap density of (D) silver powder may be 2.0 to 7.0 g / cm 3 .
  • the bonding strength between the terminal of the chip component and the electrode can be further improved.
  • a shape of the silver particle used here flake shape, resin shape, rod shape, wire shape, spherical shape, plate shape etc. are mentioned, for example.
  • the average particle size of the silver powder of component (D) indicates a 50% integrated value (50% particle size) in a volume-based particle size distribution curve obtained by measurement with a laser diffraction particle size distribution measuring device.
  • the ratio of the component (C) and the component (D) may be such that the mass ratio of the component (C) to the component (D) is 10:90 to 50:50.
  • the ratio of the component (C) to the component (D) is too small, the sinterability decreases, so that the resistance value increases. There is a risk of damage.
  • the electrode-forming resin composition of the present embodiment comprises the components (A) to (D) described above in an amount of 1 to 15% by mass of (A) thermosetting resin in the electrode-forming resin composition, (B ) Radical initiator (A) 0.1 to 10 parts by mass with respect to 100 parts by mass of thermosetting resin, (C) 5 to 40% by mass of silver fine particles, (D) 50 to 90% by mass of silver powder, You may make it contain so that it may become. By setting it as such a mixing
  • the resin composition for electrode formation of the present embodiment includes the components (A) to (D), but in addition to these, the curing acceleration generally blended in this type of resin composition as necessary.
  • Additives such as agents, rubber, silicone and other low stress agents, coupling agents, adhesion promoters, titanate coupling agents, pigments, dyes, antifoaming agents, surfactants, diluents and the like can be appropriately blended. .
  • the components (A) to (D) described above, additives such as coupling agents blended as necessary, solvents and the like are sufficiently mixed.
  • the resin composition for electrode formation of this embodiment knead
  • the electrode-forming resin composition of the present embodiment can be prepared by defoaming the kneaded resin composition.
  • the electrode-forming resin composition thus obtained can be used for applications such as forming electrodes of electric / electronic parts, and has a thixo ratio (ratio of viscosity of 2 rpm and viscosity of 20 rpm at 25 ° C.) of 1.1. It may be ⁇ 4.5. If the thixo ratio is less than 1.1, there is a risk of inviting a decrease in workability due to stringing during dip coating when manufacturing electronic components. If the thixo ratio exceeds 4.5, the outside of the electrical / electronic component may be exposed during dip coating. When used as an electrode, cornering occurs and dimensional stability is poor, and in any case, the yield as an electronic component deteriorates.
  • the film thickness of the cured product of the electrode forming resin composition formed as the external electrode of the electronic component may be 5 to 100 ⁇ m. If the film thickness is less than 5 ⁇ m, the coating property to the intended part is poor and the coating film uniformity is poor and pinholes are generated. If it exceeds 100 ⁇ m, sagging occurs during curing, which may affect the coating film uniformity.
  • the surface of the dip tank is flattened by a squeegee when the electrode forming resin composition is applied by dip coating.
  • the viscosity change rate (increase of the electrode forming resin composition is increased for the efficiency of continuous operation. (Viscosity) is required to be 200% or less.
  • the resin composition for electrode formation of this embodiment obtained in this way has a cured product excellent in environmental resistance performance (super moisture resistance, super heat resistance), high thermal conductivity, and heat dissipation at the on-vehicle component level. It becomes. Therefore, when the internal electrode or external electrode of an electronic component is formed using this electrode forming resin composition, a remarkable improvement in characteristics is observed. For example, when used as an external electrode of an inductor, it can be directly metal-bonded to the coil and can exhibit a high bonding force due to the resin adhesive strength with the element body other than the coil. It is possible to contribute to the improvement in reliability.
  • the chip-type electronic component of this embodiment is a chip-type electronic component having a rectangular parallelepiped chip-type electronic component body made of a ceramic sintered body, and includes an internal electrode formed inside the chip-type electronic component body, At least one of the external electrodes formed on the end face of the chip-type electronic component element body is a sintered body of the electrode forming resin composition of the above embodiment.
  • the volume resistivity of the sintered body obtained at this time is preferably 1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less. Furthermore, since the characteristic as an electronic component is improved as the volume resistivity is lower, the volume resistivity may be 1 ⁇ 10 ⁇ 5 ⁇ ⁇ cm or less. If the volume resistivity exceeds 1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, the product is not sufficiently sintered, and the product reliability may be deteriorated.
  • an external electrode is formed on the end face of the chip type electronic component element body to obtain the chip type electronic component.
  • the formation of the external electrode can be performed by a known resin composition for forming an electrode, but the electrode forming resin composition of the present embodiment may be used.
  • the electrode-forming resin composition of this embodiment is applied to the end surface of the chip-type electronic component body by printing or dipping, and the applied electrode-forming resin composition is applied.
  • An external electrode is formed by sintering the resin composition to obtain a chip-type electronic component.
  • the electrode-forming resin composition can be sintered by heating as usual, and even if it is sintered at 100 to 300 ° C., sufficient conductivity can be secured.
  • this electrode-forming resin composition has good continuous workability during dip coating, and can perform electrode formation efficiently.
  • Radical initiator Dicumyl peroxide (manufactured by NOF Corporation, trade name: Park Mill D; decomposition temperature in rapid heating test: 126 ° C.)
  • Component (C) Plate-type silver fine particles (manufactured by Toxen Industry Co., Ltd., trade name: M13; center particle diameter: 2 ⁇ m, thickness: 50 nm or less)
  • (C ′) component Spherical silver fine particles (manufactured by DOWA Electronics Co., Ltd., trade name: Ag nano powder-1; average particle diameter: 20 nm)
  • Silver powder A shape: flake shape, average particle size: 4.0 ⁇ m, thickness: 0.3 ⁇ m or more, tap density: 5.5 g / cm 3
  • Silver powder B shape: flake shape, average particle size: 3.0 ⁇ m, thickness: 0.3 ⁇ m or more, tap density: 3.8 g / cm 3
  • Silver powder C shape: spherical, average particle size: 2.4 ⁇ m, tap density: 5.0 g / cm 3
  • the electrode-forming resin composition was applied to a glass substrate (thickness 1 mm) by screen printing to a size of 5 mm ⁇ 50 mm and a thickness of 30 ⁇ m, and cured at 200 ° C. for 60 minutes.
  • the product name “MCP-T600” manufactured by Mitsubishi Chemical Corporation
  • the electrical resistance of the obtained wiring was measured by the 4-terminal method.
  • the electrode-forming resin composition was formed on both ends of the chip-type electronic component body by dip coating, and heat-cured at 200 ° C. for 60 minutes to obtain an electronic component.
  • those in which dimensional stability could not be obtained due to the level difference of the electrode-forming resin composition were determined as NG. Judgment of whether or not dimensional stability can be obtained by observing the cross section of the electrode with a microscope, the surface unevenness difference is less than 50 ⁇ m “good”, the surface unevenness difference is 50-100 ⁇ m “good”, 100 ⁇ m Those exceeding were judged as “bad”.
  • the electrode-forming resin composition was formed on both ends of the chip-type electronic component body by dip coating, and heat-cured at 200 ° C. for 60 minutes. This was plated with Ni and Sn and mounted on a substrate with solder to produce an electronic component. The shear strength was measured by laterally pushing this electronic component at 20 mm / min, and the load when it was broken was defined as the fixing strength (N).
  • the electrode-forming resin composition was formed on both ends of the chip-type electronic component body by dip coating, and heat-cured at 200 ° C. for 60 minutes. This was plated with Ni and Sn and mounted on a substrate with solder to produce an electronic component. The electronic component is placed in a thermostatic chamber (temperature: 150 ° C.), and an energization test (1A) is performed in this state. After 500 hours, 1000 hours, 2000 hours, and 3000 hours relative to the initial value The value was calculated.
  • the electrode-forming resin composition was formed on both ends of the chip-type electronic component body by dip coating, and heat-cured at 200 ° C. for 60 minutes. This was plated with Ni and Sn and mounted on a substrate with solder to produce an electronic component.
  • thermo-hygrostat temperature 85 ° C., humidity 85%
  • energization test (1A) is performed in this state. After 500 hours, 1000 hours, 2000 hours, 3000 hours The relative value to the later initial value was calculated.
  • an electronic component using the electrode forming resin composition of the present embodiment can provide a highly reliable electronic component having good characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Thermistors And Varistors (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Ceramic Capacitors (AREA)

Abstract

接着性や耐湿、耐熱処理後の電気抵抗の安定性などに優れた低温焼結型の電極形成用樹脂組成物を提供する。(A)熱硬化性樹脂と、(B)ラジカル開始剤と、(C)厚さ又は短径が1~200nmの銀微粒子と、(D)(C)成分以外の平均粒径が2~20μmの銀粉と、を必須成分とし、(A)熱硬化性樹脂が、(A1)ヒドロキシル基を有する、(メタ)アクリル酸エステル化合物又は(メタ)アクリルアミド化合物、(A2)常温で液状であり、ビスマレイミド樹脂、(A3)エポキシ化ポリブタジエン、を含む電極形成用樹脂組成物。

Description

電極形成用樹脂組成物並びにチップ型電子部品及びその製造方法
 本開示は、電極形成用樹脂組成物並びに該電極形成用樹脂組成物を用いて電極形成したチップ型電子部品及びその製造方法に関する。
 本開示は、特に、表面実装用チップ型電子部品の外部電極を形成する電極形成用樹脂組成物、それを用いたチップ型電子部品及びその製造方法に関する。
 チップインダクタ、チップ抵抗、チップ型積層セラミックコンデンサ、チップサーミスタ等のチップ型電子部品は、セラミックス焼結体からなるチップ状素体と、その内部に設けられた内部電極と、この内部電極に導通するように、チップ状素体の両端面に設けられた外部電極とで主に構成され、この外部電極を基板にはんだ付けすることにより実装される。
 一般に、外部電極は、封止樹脂で成形したチップの表面に樹脂ペーストを塗布した後、硬化させて下地電極を形成し、さらにめっき処理を行って形成している。
 外部電極の形成は、第一の端部の電極形成する部分に樹脂ペーストをディップ法で塗布し、予備乾燥する。次に、外部電極の形成は、第二の電極形成する部分をディップ法で樹脂ペーストを塗布して予備乾燥する。予備乾燥により低温活性の銀微粒子が焼結を開始することにより外部電極の外形形状が形成される。その後、さらに加熱することによって熱硬化樹脂成分を硬化させてメッキ処理のベースとなる外部電極を形成している。
 このようなチップ型電子部品において、外部電極は、チップ型電子部品と基板上の電気回路とを接続するためのものであるため、その良否が製品の電気的特性、信頼性、機械的特性等に大きな影響を及ぼす。
 昨今、様々な製品の電子化が進む中、車載製品にも多くのチップ型電子部品が搭載されるようになってきており、これら電子部品にもこれまで以上の耐環境性能及び高い信頼性が求められるようになってきた。具体的には、耐環境性試験において抵抗値の変化率が小さく安定している電子部品が要求されている。
 このため、電極形成用の樹脂ペーストにおいても、接着性、耐湿処理後の電気抵抗の安定性に優れたペーストが要求されてきている。
 例えば、特許文献1には、Agなどの金属粉末とガラスフリットなどの無機結合材と有機ビヒクルを混練した樹脂ペースト中の金属粉末を焼結させて下地電極を形成する方法が開示されている。特許文献2には、エポキシ樹脂などの熱硬化性樹脂とAgなどの金属粒子を分散させた樹脂ペーストを用いて下地電極を形成する方法が開示されている。
 ところが、特許文献1の方法では600℃以上の高温での熱処理を行う必要があるため封止材中の樹脂又は導線の自己融着性の被膜などが劣化してしまうおそれがあった。特許文献2の方法では耐湿試験を行うと素体と外部電極の接着強度が劣化し、外部電極が剥離するおそれがあった。
 そこで、焼結温度が250℃以下の金属微粒子を含む樹脂ペーストを用いて、250℃以下の低温で焼成する方法が開示されている(特許文献3)。
特開平10-284343号公報 特開2005-116708号公報 特開2014-225590号公報
 しかしながら、単に金属微粒子を含む樹脂ペーストを用いただけでは、体積抵抗値が高いだけではなく、耐吸湿性試験、耐高温放置試験において高い要求レベル(例えば、抵抗値の変化率が10%以内であること等)に対して十分な信頼性が得られないおそれがあった。
 そこで、本開示は、接着性、耐湿、耐熱処理後の電気抵抗の安定性などに優れた低温焼結型の電極形成用樹脂組成物を提供する。この電極形成用樹脂組成物は、車載レベルの耐環境性能(超耐湿性、超耐熱性)にも適用可能である。
 本開示は、熱硬化性樹脂として、電極形成用樹脂組成物に使用する樹脂を、特定の樹脂を組み合わせたものとすることで、車載レベルの耐環境性能を満足することを見出し、完成するに至ったものである。
 すなわち、本開示の電極形成用樹脂組成物の一態様は、(A)熱硬化性樹脂と、(B)ラジカル開始剤と、(C)厚さ又は短径が1~200nmの銀微粒子と、(D)前記(C)成分以外の平均粒径が2~20μmの銀粉と、を含む電極形成用樹脂組成物であって、
 前記(A)熱硬化性樹脂が、(A1)ヒドロキシル基を有する、(メタ)アクリル酸エステル化合物又は(メタ)アクリルアミド化合物、(A2)常温で液状であり、ビスマレイミド樹脂、(A3)エポキシ化ポリブタジエン、を含むことを特徴とする。
 また、本開示の一態様は、硬化後生成物に対して1%重量減少温度が280℃以上400℃以下であってもよく、下限が320℃以上であってもよく、下限が340℃以上であってもよく、下限が350℃以上であってもよい。
 1%重量減少温度がこの範囲にあると、耐吸湿性試験、耐高温放置試験において抵抗値の変化率が小さく安定した電極形成用樹脂組成物が得られる。
 1%重量減少温度は、たとえば電極形成用樹脂組成物中に含まれる成分の種類、配合割合を調整することによって制御することが可能である。
 本実施形態においては、たとえば電極形成用樹脂組成物10mgを200℃で1時間硬化した後、窒素雰囲気または空気雰囲気、昇温速度10℃/分の条件でTG/DTA(熱重量/示差熱分析)測定を行うことにより、電極形成用樹脂組成物の1%重量減少温度を測定することができる。
 本開示のチップ型電子部品の一態様は、セラミックス焼結体よりなる直方体形状のチップ型電子部品素体を有するチップ型電子部品である。さらに、前記チップ型電子部品素体の内部に形成された内部電極及び前記チップ型電子部品素体の端面に形成された外部電極の少なくとも1つが、上記電極形成用樹脂組成物の焼結体である。
 本開示のチップ型電子部品の製造方法の一態様は、セラミック層の表面に、上記電極形成用樹脂組成物を用いて所定の電極パターン層を印刷により形成する。本開示のチップ型電子部品の製造方法の次の工程は、該電極パターン層の上に他のセラミック層を載置し、該他のセラミック層の表面に、上記電極形成用樹脂組成物を用いて所定の電極パターン層を印刷により形成する操作を繰り返して、セラミック層と電極パターン層とを交互に積層する。本開示のチップ型電子部品の製造方法の最後の工程は、得られた積層体を焼結することで、前記電極パターンにより形成された内部電極を有するチップ型電子部品素体とし、該チップ型電子部品素体の端面に外部電極を形成する。
 本開示のチップ型電子部品の製造方法の一態様は、チップ型電子部品素体の端面に、上記電極形成用樹脂組成物を印刷又は浸漬により塗布し、塗布された該電極形成用樹脂組成物を焼結することにより外部電極を形成する。
 本開示の電極形成用樹脂組成物は、耐吸湿性試験、耐高温放置試験において抵抗値の変化率が小さい。さらに、銀微粒子を配合しているため、低温での焼結が可能であり、得られた焼結体は電子部品の電極形成に適したものである。
 また、本開示のチップ型電子部品及びその製造方法によれば、電極を上記電極形成用樹脂組成物を用いて形成しているため、高湿及び高熱環境下でも素体への固着強度が強い電極を有するチップ型電子部品が得られ、信頼性の高い製品となる。
 本開示の電極形成用樹脂組成物の一態様は、上記の構成からなり、この開示について一実施形態である電極形成用樹脂組成物を参照しながら、以下、説明する。
 本実施形態で使用する(A)熱硬化性樹脂は、複数種の所定の熱硬化性樹脂を組み合わせて使用したものである。この(A)熱硬化性樹脂に使用する樹脂としては、(A1)ヒドロキシル基を有する、(メタ)アクリル酸エステル化合物又は(メタ)アクリルアミド化合物、(A2)常温で液状であり、主鎖に脂肪族炭化水素基を有するビスマレイミド樹脂、及び(A3)ポリブタジエン樹脂、を含んでいる。
 本実施形態で使用する(A1)ヒドロキシル基を有する、(メタ)アクリル酸エステル化合物又は(メタ)アクリルアミド化合物は、それぞれ1分子中に1個以上の(メタ)アクリル基を有する(メタ)アクリレート又は(メタ)アクリルアミドであり、かつ、ヒドロキシル基を含有するものである。
 ここで、ヒドロキシル基を有する(メタ)アクリレートは、ポリオール化合物と(メタ)アクリル酸又はその誘導体とを反応させることで得ることが可能である。この反応は、公知の化学反応を使用できる。ヒドロキシル基を有する(メタ)アクリレートは、ポリオール化合物に対し、通常0.5~5倍モルのアクリル酸エステル又はアクリル酸を使用する。
 また、ヒドロキシル基を有する(メタ)アクリルアミドは、ヒドロキシル基を有するアミン化合物と(メタ)アクリル酸又はその誘導体とを反応させることで得ることが可能である。(メタ)アクリル酸エステルとアミン化合物とを反応させて(メタ)アクリルアミド類を製造する方法は、(メタ)アクリル酸エステルの二重結合が極めて反応性に富むために、アミン、シクロペンタジエン、アルコール等を予め二重結合に保護基として付加させ、アミド化終了後加熱して保護基を脱離させるのが一般的である。
 そして、この(メタ)アクリル酸エステル化合物又は(メタ)アクリルアミド化合物にヒドロキシル基を含有させることにより、電極形成時において、還元効果による焼結性が促進されると共に、接着性が向上する。
 また、ここでいうヒドロキシル基は脂肪族炭化水素基の水素原子が置換されたアルコール性の基である。このヒドロキシル基の含有量は、1分子中に1から50個であってもよく、ヒドロキシル基の含有量がこの範囲にあると、硬化過多による焼結性の阻害がなく、焼結性を促進できる。
 このような(A1)ヒドロキシル基を有する、(メタ)アクリル酸エステル化合物又は(メタ)アクリルアミド化合物としては、例えば、次の一般式(1)~(4)で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000006
(式中、Rは水素原子又はメチル基を表し、Rは炭素数1~100の2価の脂肪族炭化水素基又は環状構造を持つ脂肪族炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000007
(式中、R及びRはそれぞれ上記と同じものを表す。)
Figure JPOXMLDOC01-appb-C000008
(式中、Rは上記と同じものを表し、nは1~50の整数を表す。)
Figure JPOXMLDOC01-appb-C000009
(式中、R及びnはそれぞれ上記と同じものを表す。)
 この(A1)成分の(メタ)アクリル酸エステル化合物又は(メタ)アクリルアミド化合物としては、上記した一般式(1)~(4)に示した化合物を単独で又は2種以上を組み合わせて使用することができる。なお、一般式(1)及び(2)におけるRの炭素数は、1~100であってもよく、1~36であってもよい。Rの炭素数がこのような範囲にあると硬化過多による焼結性が阻害されない。
 本実施形態で使用する(A2)常温で液状であり、主鎖に脂肪族炭化水素基を有するビスマレイミド樹脂は、主鎖に炭素数が1以上の脂肪族炭化水素基を有し、この主鎖が2つのマレイミド基を連結して構成されるものである。ここで、脂肪族炭化水素基は、直鎖状、分枝鎖状及び環状のいずれの形態でもよく、炭素数が6以上であってもよく、炭素数が12以上であってもよく、炭素数が24以上であってもよい。また、この脂肪族炭化水素基は、マレイミド基に直接又は間接に結合できるが、マレイミド基に直接結合してもよい。
 この(A2)成分のマレイミド樹脂は、次の一般式(5)で表される化合物
Figure JPOXMLDOC01-appb-C000010
(式中、Qは炭素数6以上の2価の直鎖状、分枝鎖状又は環状の脂肪族炭化水素基を示し、PはO、CO、COO、CH、C(CH、C(CF、S、S、SO及びSOから選ばれる2価の原子又は有機基、或いは、これら原子又は有機基を少なくとも1つ以上含む有機基であり、mは1~10の整数を表す。)が好ましく用いられる。
 ここで、Pで表される2価の原子は、O、S等が挙げられ、2価の有機基は、CO、COO、CH、C(CH、C(CF、S、SO、SO等、また、これらの原子又は有機基を少なくとも1つ以上含む有機基が挙げられる。上記した原子又は有機基を含む有機基としては、上記以外の構造として、炭素数1~3の炭化水素基、ベンゼン環、シクロ環、ウレタン結合等を有するものが挙げられ、その場合のPとして次の化学式で表される基が例示できる。
Figure JPOXMLDOC01-appb-C000011
 本実施形態において、(A2)成分のビスマレイミド樹脂として、主鎖に脂肪族炭化水素基を有するビスマレイミド樹脂を用いることが、耐熱性に優れるとともに、低応力で吸湿後の熱時接着強度の良好な電極形成用樹脂組成物が得られる要件の1つである。この特性を有効に得るために、(A2)成分として上記一般式(5)で表されるような脂肪族炭化水素基でイミド延長され、室温で液状のビスマレイミド樹脂を用いることが好ましい。
 この(A2)成分のビスマレイミド樹脂は、ポリスチレン換算による数平均分子量が500以上10000以下であってもよく、500以上5000以下であってもよい。数平均分子量が500未満では、可撓性が低下し、また、耐熱性も低下する。数平均分子量が10000を超えると、組成物調製時の作業性、使用時の作業性が低下する傾向にある。
 本実施形態で使用される(A3)エポキシ化ポリブタジエンは、ポリブタジエンをエポキシ変性した化合物であり、エポキシ当量が50~500(g/eq)のエポキシ化ポリブタジエンであってもよい。エポキシ当量が50未満では粘度が増大し、樹脂組成物の作業性が低下する傾向があり、500を超えると熱時の接着強度が低下する傾向がある。なお、エポキシ当量は過塩素酸法により求めたものである。このエポキシ化ポリブタジエンとしては、分子内に水酸基を持つものを使用してもよい。
 エポキシ化ポリブタジエンとしては、例えば、株式会社ダイセルより市販されているエポリードPB4700及びGT401(いずれも商品名)、日本曹達株式会社より市販されているJP-100及びJP-200(いずれも商品名)、を使用することができる。この(A3)エポキシ化ポリブタジエンを含むことにより、電極形成用樹脂組成物は、チップ部品端子に対する電極の接着性を向上させることができる。
 この(A3)エポキシ化ポリブタジエンは、その数平均分子量が500~10000のものであってもよい。分子量がこの範囲にあると、接着性が良好であり、適正な粘度に制御できることから作業性が良好となる。数平均分子量は、ゲルパーミエーションクロマトグラフィーにより標準ポリスチレンの検量線を利用して測定(以下、GPC法という)した値である。そして、上記説明した(A1)~(A3)の各成分は、以下のように所定の量を配合するようにして(A)熱硬化性樹脂とすることがあってもよい。
 すなわち、本実施形態で使用する(A)熱硬化性樹脂は、(A)熱硬化性樹脂を100質量%としたとき、(A1)ヒドロキシル基を有する、(メタ)アクリル酸エステル化合物又は(メタ)アクリルアミド化合物を0~75質量%、(A2)常温で液状であり、主鎖に脂肪族炭化水素基を有するビスマレイミド樹脂を10~90質量%、(A3)エポキシ化ポリブタジエンを10~90質量%であってもよい。
 さらに、(A1)ヒドロキシル基を有する、(メタ)アクリル酸エステル化合物又は(メタ)アクリルアミド化合物は0~50質量%であってもよい。
 さらに、(A1)ヒドロキシル基を有する、(メタ)アクリル酸エステル化合物又は(メタ)アクリルアミド化合物が0質量%であってもよい。(A1)ヒドロキシル基を有する、(メタ)アクリル酸エステル化合物又は(メタ)アクリルアミド化合物が0質量%の場合は、(A3)エポキシ化ポリブタジエンの配合量に対する(A2)常温で液状であり、主鎖に脂肪族炭化水素基を有するビスマレイミド樹脂の配合量の比[(A2)/(A3)]が1以上であってもよい。
 (A1)~(A3)の各成分がこの範囲内にあると、耐熱性、耐湿性及び接着性の良好であり、特に耐環境性の要求レベルが高い車載用途に用いることができる。
 (A1)成分の配合量が75質量%より多いと、電極形成用樹脂組成物の耐熱性・耐湿性に劣ってしまうおそれがある。(A2)成分の配合量が10質量%より少ないと、電極形成用樹脂組成物の耐熱性、耐湿性に劣り、90質量%より多いと、電極形成用樹脂組成物の接着強度が劣ってしまうおそれがある。また、(A3)成分の配合量が10質量%より少ないと、電極形成用樹脂組成物の接着強度が劣り、90質量%より多いと、電極形成用樹脂組成物の未反応成分が残り易くなり接着強度が劣ってしまうおそれがある。
 なお、この(A)熱硬化性樹脂としては、上記(A1)~(A3)成分以外の熱硬化性樹脂を用いることもでき、ここで用いることができる熱硬化性樹脂は、例えば、エポキシ樹脂、ビスマレイミド樹脂、ポリブタジエン樹脂、フェノール樹脂等が挙げられる。ただし、(A1)~(A3)成分以外の熱硬化性樹脂は、(A)熱硬化性樹脂を100質量%としたとき、20質量%以下であってもよく、10質量%以下であってもよい。
 本実施形態に用いられる(B)ラジカル開始剤は、通常、ラジカル重合に用いられている重合触媒であれば特に限定されずに用いることができる。
 この(B)ラジカル開始剤としては、急速加熱試験(試料1gを電熱板の上に乗せ、4℃/分で昇温したときの分解開始温度の測定試験)における分解開始温度が40~140℃となるものであってもよい。分解開始温度が40℃未満であると、接着性熱硬化型樹脂組成物の常温における保存性が不良となるおそれがあり、140℃を超えると硬化時間が極端に長くなる可能性がある。なお、前記分解開始温度は、試料の加熱前の質量に対する1%質量減少時の温度を分解開始温度とする。
 この条件を満たすラジカル開始剤の具体例としては、例えば、1,1-ビス(t-ブチルパーオキシ)-2-メチルシクロヘキサン、t-ブチルパーオキシネオデカノエート、ジクミルパーオキサイド等が挙げられる。これらは単独で使用しても、硬化性を制御するために2種類以上を混合して使用してもよい。
 この(B)ラジカル開始剤の配合量は、上記(A)熱硬化性樹脂 100質量部に対して、0.1~10質量部であってもよい。この配合量が10質量部を超えると、樹脂組成物の粘度の経時変化が大きくなり作業性が低下するおそれがあり、0.1質量部未満では、硬化性が著しく低下する可能性がある。
 本実施形態で用いられる(C)銀微粒子は、その厚さ又は短径が1~200nmの銀微粒子であれば特に限定されずに用いることができる。この(C)銀微粒子の形状は、プレート型、樹枝状、ロッド状、ワイヤー状、球状等が挙げられる。ここで、プレート型ではその厚さが、また樹枝状、ロッド状、ワイヤー状、球状では、その断面直径における最も短い径が上記範囲を満たしていればよい。
 前記(C)銀微粒子は、プレート型銀微粒子を用いてもよい。このプレート型銀微粒子は、短径方向に積み重なる傾向にあるため、電極形成用樹脂組成物をディップ塗布により電子部品の両端に成膜した際、表面に凹凸が少なく平滑な電極面が得られる利点がある。
 このプレート型銀微粒子は、中心粒子径が0.3~15μmであってもよい。本開示の一実施形態は、プレート型銀微粒子の中心粒子径をこの範囲とすることで、樹脂成分への分散性を向上できる。ここで、中心粒子径とは、レーザー回折式粒度分布測定装置で測定して得られた体積基準の粒度分布曲線における50%積算値(50%粒子径)を指す。
 また、厚さは10~200nmであり、さらに10~100nmであってもよい。この厚さは、透過型電子顕微鏡(TEM)又は走査型電子顕微鏡(SEM)により取得された観察画像をデータ処理することで測定されるものである。さらに、この厚さの平均厚さが上記範囲内であってもよい。この平均厚さは、下記のようにして個数平均厚さとして算出される。
 プレート型銀微粒子の[n+1]個(n+1は、例えば、50から100程度)の観察画像から計測した厚さを厚い方から薄い方へ順番に並べ、その範囲(最大厚さ:x、最小厚さ:xn+1)をn分割し、それぞれの厚さの区間を、[x、xj+1](j=1,2,・・・・,n)とする。この場合の分割は対数スケール上での等分割となる。また、対数スケールに基づいてそれぞれの厚さ区間での代表厚さは、下記式で表される。
Figure JPOXMLDOC01-appb-M000012
 さらにr(j=1,2,・・・・,n)を、区間[x、xj+1]に対応する相対量(差分%)とし、全区間の合計を100%とすると、対数スケール上での平均値μは下記式で計算できる。
Figure JPOXMLDOC01-appb-M000013
 このμは、対数スケール上の数値であり、厚さとしての単位を持たないので、厚さの単位に戻すために10μすなわち10のμ乗を計算する。この10μが個数平均厚さである。
 また、厚み方向に垂直な方向の長辺が厚みの8~150倍の範囲内であってもよく、10~50倍であってもよい。さらに、厚み方向に垂直な方向の短辺が厚みの1~100倍の範囲内であってもよく、3~50倍であってもよい。
 このプレート型銀微粒子は100~250℃で自己焼結可能である。このように100~250℃で自己焼結する銀微粒子を含有することで、熱硬化時に銀微粒子の流動性が向上し、その結果、銀微粒子同士の接点がより多くなる上に、接点の面積が大きくなり、導電性が格段に向上する。自己焼結温度が低いほど焼結性が良好であるため、プレート型銀微粒子の焼結温度は、100~200℃であってもよい。なお、ここで自己焼結可能であるとは加圧又は添加剤等を加えなくても、融点よりも低い温度での加熱で焼結することをいう。
 このような(C)プレート型銀微粒子としては、例えば、トクセン工業株式会社製のM612(商品名;中心粒子径6~12μm、粒子厚み60~100nm、融点250℃)、M27(商品名;中心粒子径2~7μm、粒子厚み60~100nm、融点200℃)、M13(商品名;中心粒子径1~3μm、粒子厚み40~60nm、融点200℃)、N300(商品名;中心粒子径0.3~0.6μm、粒子厚み50nm以下、融点150℃)などが挙げられる。これらのプレート型銀微粒子は、単独で用いてもよく、組み合わせて用いてもよい。特に、充填率を向上するために、プレート型銀微粒子は、例えば上述のプレート型銀微粒子のうち、M27、M13などの比較的大きな銀微粒子に、N300などの粒径の小さなものを組み合わせて用いてもよい。
 (C)プレート型銀微粒子は、粒子厚み200nm以下、タップ密度(TD)3.0~7.0g/cm、かつ比表面積(BET)2.0~6.0m/gが好ましい。
 本実施形態に用いられる(D)銀粉は、(C)成分以外の銀粉である。
 (D)銀粉は、平均粒子径が0.2~20μmであり、樹脂接着剤中に導電性を付与するために添加される無機充填材としての銀粉であればよい。本実施形態において(D)銀粉のタップ密度は2.0~7.0g/cmであってもよい。
 このような(D)成分の銀粉を、上記の(C)成分の銀微粒子に加えて添加することで、チップ部品の端子と電極との接合強度をより向上させることができる。また、ここで用いられる銀粒子の形状としては、例えば、フレーク状、樹脂状、ロッド状、ワイヤー状、球状、プレート状等が挙げられる。なお、この(D)成分の銀粉の平均粒子径は、レーザー回折粒度分布測定装置で測定して得られた体積基準の粒度分布曲線における50%積算値(50%粒子径)を指す。
 なお、これら(C)成分と(D)成分の割合は、(C)成分:(D)成分の質量比が10:90~50:50であってもよい。(D)成分に対して(C)成分の割合が、少なすぎると焼結性が低下することにより、抵抗値が増加し、多すぎると粘度が大幅に増加し、電子部品への塗布性が損なわれるおそれがある。
 本実施形態の電極形成用樹脂組成物は、上記した(A)~(D)成分を、この電極形成用樹脂組成物中に、(A)熱硬化性樹脂を1~15質量%、(B)ラジカル開始剤を(A)熱硬化性樹脂を100質量部に対して0.1~10質量部、(C)銀微粒子を5~40質量%、(D)銀粉を50~90質量%、となるように含有させてもよい。このような配合とすることで、耐熱性、耐湿性、接着性、及び環境耐性が良好となる。
 本実施形態の電極形成用樹脂組成物は、上記(A)~(D)の各成分を含むが、それら以外にも必要に応じて、この種の樹脂組成物に一般に配合される、硬化促進剤、ゴム、シリコーン等の低応力化剤、カップリング剤、密着付与剤、チタネートカップリング剤、顔料、染料、消泡剤、界面活性剤、希釈剤等の添加剤を適宜配合することができる。
 本実施形態の電極形成用樹脂組成物は、上記(A)~(D)の各成分、及び必要に応じて配合されるカップリング剤等の添加剤、溶剤等を十分に混合する。
 次に、本実施形態の電極形成用樹脂組成物は、混合した樹脂組成物をディスパース、ニーダー、3本ロールミル等により混練処理を行う。最後に、本実施形態の電極形成用樹脂組成物は、混練した樹脂組成物を脱泡することにより、調製することができる。
 このように得られる電極形成用樹脂組成物は、電気・電子部品の電極等を形成する用途に使用でき、そのチクソ比(25℃における、2rpmの粘度と20rpmの粘度の比率)が1.1~4.5であってもよい。チクソ比が1.1未満であると電子部品製造時のディップ塗布時に糸引きによる作業性の低下を誘引するおそれがあり、チクソ比が4.5を超えるとディップ塗布時に電気・電子部品の外部電極として用いた場合、角立ちが発生し寸法安定性が悪く、いずれの場合も電子部品としての歩留まりが悪化する。
 また、電子部品の外部電極として形成される電極形成用樹脂組成物の硬化物の膜厚は5~100μmであってもよい。膜厚が5μm未満では、意図した部分への塗布性が悪く塗膜均一性に欠けピンホールが発生し、100μm超では硬化時に垂れが発生し、塗膜均一性にかけるおそれがある。
 電子部品の製造工程において、電極形成用樹脂組成物を浸漬塗布する際にスキージによりディップ槽の表面が平坦化されるが、連続作業の効率上、電極形成用樹脂組成物の粘度変化率(増粘率)が200%以下であることが必要とされる。
 このようにして得られる本実施形態の電極形成用樹脂組成物は、その硬化物が車載部品レベルの耐環境性能(超耐湿性、超耐熱性)及び高熱伝導性、熱放散性に優れたものとなる。そのため、この電極形成用樹脂組成物を用いて電子部品の内部電極又は外部電極を形成した場合、著しい特性の向上が見られる。例えば、インダクタの外部電極として使用した場合、コイルと直接金属結合をし、かつコイル以外の素体とは樹脂接着力により高い接合力を発現することが可能なため、抵抗値の低減及び車載グレードでの信頼性の向上に寄与することができる。
 次に、本実施形態のチップ型電子部品及びその製造方法について説明する。
 本実施形態のチップ型電子部品は、セラミックス焼結体よりなる直方体形状のチップ型電子部品素体を有するチップ型電子部品であって、チップ型電子部品素体の内部に形成された内部電極及びチップ型電子部品素体の端面に形成された外部電極の少なくとも1つが、上記実施形態の電極形成用樹脂組成物の焼結体である。このとき得られる焼結体の体積抵抗率は1×10-4Ω・cm以下であることが好ましい。さらに、体積抵抗率が低いほど電子部品としての特性が上がるため、この体積抵抗率が1×10-5Ω・cm以下であってもよい。体積抵抗率が1×10-4Ω・cmを超えると、十分に焼結されておらず、製品信頼性の悪化を招くおそれがある。
 本実施形態のチップ型電子部品の製造にあたっては、セラミック層の表面に、本実施形態の電極形成用樹脂組成物を用いて所定の電極パターン層を印刷により形成する。
 本実施形態のチップ型電子部品の製造方法の次の工程は、該電極パターン層の上に他のセラミック層を載置し、該他のセラミック層の表面に、本実施形態の電極形成用樹脂組成物を用いて所定の電極パターン層を印刷により形成する操作を繰り返して、セラミック層と電極パターン層とを交互に積層する。
 本実施形態のチップ型電子部品の製造方法の次の工程は、得られた積層体を焼結することで、電極パターンにより形成された内部電極を有するチップ型電子部品素体とする。
 本実施形態のチップ型電子部品の製造方法の最後の工程は、該チップ型電子部品素体の端面に外部電極を形成し、チップ型電子部品を得る。このとき、外部電極の形成は、公知の電極形成用の樹脂組成物により実施できるが、本実施形態の電極形成用樹脂組成物を用いてもよい。
 本実施形態の他のチップ型電子部品の製造にあたっては、チップ型電子部品素体の端面に、本実施形態の電極形成用樹脂組成物を印刷又は浸漬により塗布し、塗布された該電極形成用樹脂組成物を焼結することにより外部電極を形成し、チップ型電子部品を得る。
 このとき、本実施形態において、上記電極形成用樹脂組成物は、従来通りの加熱により焼結でき、さらに、100~300℃で焼結させても、十分に導電性を確保できる。また、この電極形成用樹脂組成物は、浸漬塗布時の連続作業性が良好で、電極形成を効率的に行うことができる。
 次に、本実施形態を実施例によりさらに詳細に説明するが、本実施形態はこれらの実施例に何ら限定されるものではない。
(実施例1~12、比較例1~3)
 表1~3の記載の配合に従って各成分を混合し、ロールで混練し、電極形成用樹脂組成物を得た。得られた樹脂組成物を以下の方法で評価した。その結果を表1~3に併せて示す。なお、実施例及び比較例で用いた材料は、下記の特性を有するものを使用した。
[(A)成分]
 (A1)アクリル樹脂:ヒドロキシルエチルアクリルアミド((株)興人製、商品名:HEAA)
 (A2)イミド拡張型ビスマレイミド(デジグナーモレキュールズ社製、商品名:BMI-1500;数平均分子量 1500)
 (A3)エポキシ化ポリブタジエン樹脂((株)日本曹達製、商品名:JP-200)
[(A´)成分]
 エポキシ樹脂:ビスフェノールF型液状エポキシ樹脂(三菱化学(株)製、商品名:YL983U)
 フェノール樹脂:ビスフェノールF(本州化学工業(株)製、商品名:ビスフェノールF)
[(B)成分]
 ラジカル開始剤:ジクミルパーオキサイド(日本油脂(株)製、商品名:パークミルD;急速加熱試験における分解温度:126℃)
[(C)成分]
 プレート型銀微粒子(トクセン工業(株)製、商品名:M13;中心粒子径:2μm、厚み:50nm以下)
[(C´)成分]
 球状銀微粒子(DOWAエレクトロニクス(株)製、商品名:Ag nano powder-1;平均粒径:20nm)
[(D)成分]
 銀粉A(形状:フレーク状、平均粒径:4.0μm、厚さ:0.3μm以上、タップ密度:5.5g/cm
 銀粉B(形状:フレーク状、平均粒径:3.0μm、厚さ:0.3μm以上、タップ密度:3.8g/cm
 銀粉C(形状:球状、平均粒径:2.4μm、タップ密度:5.0g/cm
[その他の成分]
 希釈溶剤:ブチルカルビトール(東京化成工業(株)製)
 硬化促進剤:1-ベンジル-2-フェニルイミダゾール(四国化成工業(株)製、商品名:1B2PZ)
 添加剤:シランカップリング剤(信越化学工業(株)製、商品名:KBM-503)
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
<評価方法>
[粘度]
 E型粘度計(3°コーン)を用いて、25℃、2rpmでの値を測定した。
[チクソ比]
 E型粘度計(3°コーン)を用いて、25℃で、2rpm及び20rpmでの粘度を測定し、2rpmに対する20rpmの粘度の比(2rpmの粘度/20rpmの粘度)をチクソ比とした。
[体積抵抗率]
 電極形成用樹脂組成物を、ガラス基板(厚み1mm)にスクリーン印刷法により5mm×50mm、厚み30μmに塗布し、200℃、60分で硬化した。得られた配線を製品名「MCP-T600」(三菱化学(株)製)を用い4端子法にて電気抵抗を測定した。
[塗布外観]
 電極形成用樹脂組成物を、ディップ塗布により、チップ型電子部品素体の両端に成膜し、200℃、60分の加熱硬化を行い、電子部品とした。このとき得られた電子部品で電極形成用樹脂組成物の段差などにより寸法安定性の得られないものをNGとした。寸法安定性が得られるか否かの判断は、電極断面を顕微鏡で観察し、面の凹凸の差が50μm未満を「良」、表面の凹凸の差が50~100μmを「可」、100μmを超えるものを「不良」と判定した。
[1%重量減少温度]
 各実施例及び各比較例で得られた電極形成用樹脂組成物10mgを200℃で1時間硬化した後、測定装置としてTG/DTA7200熱重量分析装置(エスアイアイ・ナノテクノロジー株式会社製)を使用して、圧縮空気を流しながら、室温(25℃)から600℃の範囲で10℃/分の条件で加熱して、用いた試料の重量が1%減少する温度を測定することにより求めた。
[硬化物吸水率]
 膜厚が200μm、大きさが500mm角の硬化物を用いて、初期重量を基準として85℃、85%高温恒湿槽に168時間放置した後の重量を測定することにより求めた。
[固着強度]
 電極形成用樹脂組成物を、ディップ塗布により、チップ型電子部品素体の両端に成膜し、200℃、60分の加熱硬化を行った。これにNi及びSnメッキを施し、半田により基板に実装し、電子部品を作成した。この電子部品を20mm/分で横押しでせん断強度を測定し、破壊したときの荷重を固着強度(N)とした。
[耐熱通電試験後の抵抗値変化率]
 電極形成用樹脂組成物を、ディップ塗布により、チップ型電子部品素体の両端に成膜し、200℃、60分の加熱硬化を行った。これにNi及びSnメッキを施し、半田により基板に実装し、電子部品を作成した。
 当該電子部品を恒温槽(温度150℃)に入れ、この状態で通電試験(1A)を実施し、500時間経過後、1000時間経過後、2000時間経過後、3000時間経過後の初期値に対する相対値を算出した。
[耐湿通電試験後の抵抗値変化率]
 電極形成用樹脂組成物を、ディップ塗布により、チップ型電子部品素体の両端に成膜し、200℃、60分の加熱硬化を行った。これにNi及びSnメッキを施し、半田により基板に実装し、電子部品を作成した。
 当該電子部品を恒温恒湿槽(温度85℃、湿度85%)に入れ、この状態で通電試験(1A)を実施し、500時間経過後、1000時間経過後、2000時間経過後、3000時間経過後の初期値に対する相対値を算出した。
 以上の結果より、本実施形態の電極形成用樹脂組成物を使用した電子部品は、いずれの特性も良好で高信頼性の電子部品が得られることがわかった。

Claims (10)

  1.  (A)熱硬化性樹脂と、(B)ラジカル開始剤と、(C)厚さ又は短径が1~200nmの銀微粒子と、(D)前記(C)成分以外の平均粒径が2~20μmの銀粉と、を含む電極形成用樹脂組成物であって、
     前記(A)熱硬化性樹脂が、(A1)ヒドロキシル基を有する、(メタ)アクリル酸エステル化合物又は(メタ)アクリルアミド化合物、(A2)常温で液状であり、ビスマレイミド樹脂、(A3)エポキシ化ポリブタジエン、を含むことを特徴とする電極形成用樹脂組成物。
  2.  前記(A)熱硬化性樹脂が、前記(A1)ヒドロキシル基を有する、(メタ)アクリル酸エステル化合物又は(メタ)アクリルアミド化合物を0~75質量%、前記(A2)ビスマレイミド樹脂を10~90質量%、前記(A3)エポキシ化ポリブタジエンを10~90質量%、の比率で配合してなることを特徴とする請求項1記載の電極形成用樹脂組成物。
  3.  前記(A1)(メタ)アクリル酸エステル化合物又は(メタ)アクリルアミド化合物が、次の一般式(1)~(4)から選ばれる化合物
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは水素原子又はメチル基を表し、Rは炭素数1~100の2価の脂肪族炭化水素基又は環状構造を持つ脂肪族炭化水素基を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R及びRはそれぞれ上記と同じものを表す。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは上記と同じものを表し、nは1~50の整数を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (式中、R及びnはそれぞれ上記と同じものを表す。)
    の少なくとも1種を含有するアクリル樹脂であることを特徴とする請求項2又は3記載の電極形成用樹脂組成物。
  4.  前記(A2)ビスマレイミド樹脂が、次の一般式(5)で表される化合物
    Figure JPOXMLDOC01-appb-C000005
    (式中、Qは炭素数6以上の2価の直鎖状、分枝鎖状又は環状の脂肪族炭化水素基を示し、PはO、CO、COO、CH、C(CH、C(CF、S、S、SO及びSOから選ばれる2価の原子又は有機基、或いは、これら原子又は有機基を少なくとも1つ以上含む有機基であり、mは1~10の整数を表す。)であることを特徴とする請求項2又は3記載の電極形成用樹脂組成物。
  5.  前記(A)熱硬化性樹脂を1~15質量%、前記(B)ラジカル開始剤を前記(A)熱硬化性樹脂を100質量部に対して、0.1~10質量部、前記(C)銀微粒子を5~40質量%、前記(D)銀粉を50~90質量%、含有することを特徴とする請求項2~4のいずれか1項記載の電極形成用樹脂組成物。
  6.  前記電極形成用樹脂組成物を200℃で1時間硬化して得られた硬化物の1%重量減少温度が、280℃以上400℃以下であることを特徴とする請求項1~5のいずれか1項に電極形成用樹脂組成物。
  7.  セラミックス焼結体よりなる直方体形状のチップ型電子部品素体を有するチップ型電子部品の内部に位置する内部電極及び前記チップ型電子部品素体の端面に位置する外部電極の少なくとも1つが、請求項1~6のいずれか1項記載の電極形成用樹脂組成物の焼結体であることを特徴とするチップ型電子部品。
  8.  セラミック層の表面に、請求項1~6のいずれか1項記載の電極形成用樹脂組成物を用いて所定の電極パターン層を印刷し、
     さらに、該電極パターン層の上に他のセラミック層を載置し、該他のセラミック層の表面に、請求項1~6のいずれか1項記載の電極形成用樹脂組成物を用いて所定の電極パターン層を印刷する操作を繰り返して、セラミック層と電極パターン層とを交互に積層させ、
     得られた積層体を焼結することで、前記電極パターンにより形成された内部電極を有するチップ型電子部品素体とし、
     該チップ型電子部品素体の端面に外部電極を形成する、ことを特徴とするチップ型電子部品の製造方法。
  9.  前記外部電極の形成が、請求項1~6のいずれか1項記載の電極形成用樹脂組成物を、前記チップ型電子部品素体の端面に、印刷または浸漬により塗布し、塗布された該電極形成用樹脂組成物を焼結して行われることを特徴とする請求項8記載のチップ型電子部品の製造方法。
  10.  チップ型電子部品素体の端面に、請求項1~6のいずれか1項記載の電極形成用樹脂組成物を印刷又は浸漬により塗布し、
     塗布された該電極形成用樹脂組成物を焼結することにより外部電極を形成する、ことを特徴とするチップ型電子部品の製造方法。
PCT/JP2018/013203 2017-03-29 2018-03-29 電極形成用樹脂組成物並びにチップ型電子部品及びその製造方法 WO2018181697A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019510116A JP7075397B2 (ja) 2017-03-29 2018-03-29 電極形成用樹脂組成物並びにチップ型電子部品及びその製造方法
CN201880021269.4A CN110462752B (zh) 2017-03-29 2018-03-29 电极形成用树脂组合物以及芯片型电子部件及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017064825 2017-03-29
JP2017-064825 2017-03-29

Publications (1)

Publication Number Publication Date
WO2018181697A1 true WO2018181697A1 (ja) 2018-10-04

Family

ID=63676185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013203 WO2018181697A1 (ja) 2017-03-29 2018-03-29 電極形成用樹脂組成物並びにチップ型電子部品及びその製造方法

Country Status (4)

Country Link
JP (1) JP7075397B2 (ja)
CN (1) CN110462752B (ja)
TW (1) TWI664223B (ja)
WO (1) WO2018181697A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019197767A (ja) * 2018-05-08 2019-11-14 Tdk株式会社 電子部品
JP2020055912A (ja) * 2018-09-28 2020-04-09 京セラ株式会社 電極形成用樹脂組成物並びにチップ型電子部品及びその製造方法
WO2020196070A1 (ja) * 2019-03-22 2020-10-01 リンテック株式会社 樹脂シート
CN112442272A (zh) * 2019-09-03 2021-03-05 信越化学工业株式会社 马来酰亚胺树脂膜和马来酰亚胺树脂膜用组合物
US20210217561A1 (en) * 2020-01-14 2021-07-15 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component
JP2021107476A (ja) * 2019-12-27 2021-07-29 京セラ株式会社 ペースト組成物
JP2021107475A (ja) * 2019-12-27 2021-07-29 京セラ株式会社 ペースト組成物、及び電子部品装置の製造方法
CN115247038A (zh) * 2021-04-26 2022-10-28 翌骅实业股份有限公司 粘着复合物及其使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052915A (ja) * 1991-06-25 1993-01-08 Toshiba Chem Corp 半導体装置
JP2011187194A (ja) * 2010-03-05 2011-09-22 Sumitomo Bakelite Co Ltd 導電性ペースト
JP2014145011A (ja) * 2013-01-28 2014-08-14 Hitachi Chemical Co Ltd 樹脂ペースト組成物
JP2015162392A (ja) * 2014-02-27 2015-09-07 京セラケミカル株式会社 導電性ペースト、電気・電子部品及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101860378B1 (ko) * 2014-04-04 2018-05-23 쿄세라 코포레이션 열경화성 수지 조성물, 반도체 장치 및 전기·전자 부품

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052915A (ja) * 1991-06-25 1993-01-08 Toshiba Chem Corp 半導体装置
JP2011187194A (ja) * 2010-03-05 2011-09-22 Sumitomo Bakelite Co Ltd 導電性ペースト
JP2014145011A (ja) * 2013-01-28 2014-08-14 Hitachi Chemical Co Ltd 樹脂ペースト組成物
JP2015162392A (ja) * 2014-02-27 2015-09-07 京セラケミカル株式会社 導電性ペースト、電気・電子部品及びその製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019197767A (ja) * 2018-05-08 2019-11-14 Tdk株式会社 電子部品
JP7139677B2 (ja) 2018-05-08 2022-09-21 Tdk株式会社 電子部品
JP2020055912A (ja) * 2018-09-28 2020-04-09 京セラ株式会社 電極形成用樹脂組成物並びにチップ型電子部品及びその製造方法
JP7213050B2 (ja) 2018-09-28 2023-01-26 京セラ株式会社 電極形成用樹脂組成物並びにチップ型電子部品及びその製造方法
WO2020196070A1 (ja) * 2019-03-22 2020-10-01 リンテック株式会社 樹脂シート
CN112442272A (zh) * 2019-09-03 2021-03-05 信越化学工业株式会社 马来酰亚胺树脂膜和马来酰亚胺树脂膜用组合物
JP2021107476A (ja) * 2019-12-27 2021-07-29 京セラ株式会社 ペースト組成物
JP2021107475A (ja) * 2019-12-27 2021-07-29 京セラ株式会社 ペースト組成物、及び電子部品装置の製造方法
JP7369031B2 (ja) 2019-12-27 2023-10-25 京セラ株式会社 ペースト組成物、及び電子部品装置の製造方法
US20210217561A1 (en) * 2020-01-14 2021-07-15 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component
US11776755B2 (en) * 2020-01-14 2023-10-03 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component
CN115247038A (zh) * 2021-04-26 2022-10-28 翌骅实业股份有限公司 粘着复合物及其使用方法

Also Published As

Publication number Publication date
CN110462752A (zh) 2019-11-15
TWI664223B (zh) 2019-07-01
JP7075397B2 (ja) 2022-05-25
JPWO2018181697A1 (ja) 2020-02-06
TW201840693A (zh) 2018-11-16
CN110462752B (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
JP7075397B2 (ja) 電極形成用樹脂組成物並びにチップ型電子部品及びその製造方法
JP4935592B2 (ja) 熱硬化型導電性ペースト
JP5400801B2 (ja) 外部電極用導電性ペースト、それを用いて形成した外部電極を有する積層セラミック電子部品及び積層セラミック電子部品の製造方法
US20110140162A1 (en) Conductive adhesive and led substrate using the same
KR100678533B1 (ko) 도전성 분말 및 그 제조 방법
JP4855077B2 (ja) 低温焼成用導電性ペースト組成物及びそのペースト組成物を用いた配線パターンの形成方法
JP5488059B2 (ja) 導電性ペースト
JP2013114837A (ja) 加熱硬化型導電性ペースト組成物
JP2015011899A (ja) 導電性ペースト
CN108137930A (zh) 树脂组合物、接合体及半导体装置
JP2009138155A (ja) 無溶剤型導電性接着剤
KR100616368B1 (ko) 도전성 수지조성물 및 이것을 사용한 전자부품
JP3879749B2 (ja) 導電粉及びその製造方法
JP7369031B2 (ja) ペースト組成物、及び電子部品装置の製造方法
JP5458862B2 (ja) 加熱硬化型銀ペーストおよびこれを用いて形成した導体膜
JP7213050B2 (ja) 電極形成用樹脂組成物並びにチップ型電子部品及びその製造方法
JP2021099912A (ja) 導電性ペースト
JP4273399B2 (ja) 導電ペースト及びその製造方法
JP6852846B2 (ja) 電極用ペーストおよび積層セラミック電子部品
JP2021107476A (ja) ペースト組成物
TW201510015A (zh) 導電性膏及附導電膜之基材
JP2021143226A (ja) 金属ペースト及び端面形成用電極ペースト
JP2019206615A (ja) 金属ペーストおよび端面形成用電極ペースト
JP2018106907A (ja) 電極用ペーストおよび積層セラミック電子部品
JP2006086143A (ja) 導電ペースト組成物及びそれを用いた厚膜チップ抵抗器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777460

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510116

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777460

Country of ref document: EP

Kind code of ref document: A1