WO2018181685A1 - 水蒸気処理製品の製造方法および製造装置 - Google Patents

水蒸気処理製品の製造方法および製造装置 Download PDF

Info

Publication number
WO2018181685A1
WO2018181685A1 PCT/JP2018/013171 JP2018013171W WO2018181685A1 WO 2018181685 A1 WO2018181685 A1 WO 2018181685A1 JP 2018013171 W JP2018013171 W JP 2018013171W WO 2018181685 A1 WO2018181685 A1 WO 2018181685A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
sealed container
steam
water vapor
cooling
Prior art date
Application number
PCT/JP2018/013171
Other languages
English (en)
French (fr)
Inventor
山本 正樹
栗栖 義信
佐藤 敏明
豊治 安田
一郎 ▲高▼橋
中溝 浩行
中野 忠
辻 浩和
隆秀 林田
義孝 湯倉
勉 太田
真一 梶本
匠 内山
鈴木 昇
雅彦 土山
村井 裕輔
Original Assignee
日新製鋼株式会社
黒崎播磨株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018058868A external-priority patent/JP6886936B2/ja
Priority to RU2019130770A priority Critical patent/RU2019130770A/ru
Priority to BR112019020509A priority patent/BR112019020509A2/pt
Priority to CN201880013082.XA priority patent/CN110325661A/zh
Priority to AU2018246441A priority patent/AU2018246441B2/en
Priority to MX2019011159A priority patent/MX2019011159A/es
Application filed by 日新製鋼株式会社, 黒崎播磨株式会社 filed Critical 日新製鋼株式会社
Priority to US16/492,613 priority patent/US11326223B2/en
Priority to KR1020197025778A priority patent/KR102463338B1/ko
Priority to EP18776691.0A priority patent/EP3608437A4/en
Priority to CA3058594A priority patent/CA3058594A1/en
Publication of WO2018181685A1 publication Critical patent/WO2018181685A1/ja
Priority to PH12019502242A priority patent/PH12019502242A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/767Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material with forced gas circulation; Reheating thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/16Arrangements of air or gas supply devices
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent

Definitions

  • Patent Document 1 discloses a method for manufacturing a black-plated steel sheet.
  • the method for producing a black-plated steel sheet described in Patent Document 1 includes the step of bringing the water vapor into contact with the plated steel sheet in a sealed container to blacken the surface of the plating layer, and introducing a gas such as air into the sealed container. And a step of cooling the blackened plated steel sheet.
  • the present invention provides a method and an apparatus for producing a steam-treated product that can shorten the production time of a steam-treated product such as a black-plated steel sheet by rapidly cooling the workpiece subjected to the steam treatment.
  • a steam-treated product such as a black-plated steel sheet
  • a steam treatment product manufacturing method comprising: a treatment object cooling step for cooling a treatment object, wherein the treatment object cooling step introduces a cooling gas into the sealed container, A process for producing a steam-treated product, which is a step of bringing the cooling gas into contact with an object to be treated and discharging the introduced cooling gas from the sealed container.
  • the cooling gas in the workpiece cooling step, the cooling gas is brought into contact with the workpiece whose temperature has been increased by the steam treatment, and the cooling gas whose temperature has been increased by heat exchange associated with the contact is performed. Drain from sealed container.
  • the object to be processed after the steam treatment can be cooled quickly (in a short time), such as a black-plated steel plate
  • the manufacturing time of the steam-treated product can be shortened.
  • the heat of the object to be processed is sufficiently removed from the cooling gas, and in the cooling gas discharge process, the temperature rises due to heat removal from the object to be processed.
  • the cooled cooling gas can be positively discharged to the outside by an exhaust pump.
  • the steam-treated object can be cooled more rapidly than in the case of (2), and the manufacturing time of the steam-treated product such as black-plated steel sheet is further shortened. be able to.
  • the cooling gas in the sealed container is agitated and circulated by a fan provided in the sealed container in the process object cooling step.
  • the steam-treated object can be cooled quickly (in a short time), and the steam-treated product such as a black-plated steel sheet can be cooled. Manufacturing time can be shortened.
  • the molten Al and Mg-containing Zn-plated steel sheet may be simply referred to as “plated steel sheet”.
  • the molten Al / Mg-containing Zn plating layer of the molten Al / Mg-containing Zn-plated steel sheet may be simply referred to as a “plating layer”.
  • the “atmospheric gas” means a gas existing inside the sealed container, and is a general term for the atmosphere, water vapor, nitrogen gas and the like described in the present specification.
  • “kPa” in this specification means a pressure in absolute pressure.
  • the black-plated steel sheet manufacturing apparatus further circulates an atmospheric pressure release valve (not shown) for returning the pressure inside the sealed container 10 to atmospheric pressure, and an atmospheric gas inside the sealed container 10 with stirring.
  • a stirring unit 70 such as a fan 71.
  • the black-plated steel plate manufacturing apparatus further includes a temperature measuring unit 60 that measures the temperature of the plated steel plate 1, a pressure measuring unit 61 that measures the pressure in the sealed container 10, and a gas temperature measuring unit 62 that measures the temperature of the atmospheric gas. You may do it. Furthermore, you may have heating apparatuses 24, such as the ceiling part temperature adjustment mechanism 21 which heats (or cools) the inside of the airtight container 10, the vertical wall part temperature adjustment mechanism 20, and a sheath heater. Further, the black-plated steel sheet manufacturing apparatus includes an introduction water vapor adjustment mechanism 40, a gas introduction unit 50, an exhaust adjustment mechanism 30, a stirring unit 70, temperature adjustment mechanisms 21 and 20, a heating device 24 such as a sheath heater, and the opening and closing of each valve device.
  • a control part (not shown) which controls operation
  • FIG. when it has the drain piping 35 and the drain valve 36, a control part may control operation
  • the sealed container 10 has a bottom frame 8 and an upper cover 9.
  • the bottom frame 8 includes an arrangement portion 12 on which the plated steel plate 1 is arranged.
  • the upper cover 9 has an upper cover ceiling portion 13 whose ceiling surface is formed in a dome shape, and an upper cover vertical wall portion 14 whose side surface is formed in a circular cylindrical shape.
  • the upper cover 9 is configured by a shape in which the lower part is opened.
  • the ceiling part temperature adjustment mechanism 21 and the vertical wall part temperature adjustment mechanism 20 which can heat and cool the inside of the sealed container 10 by flowing a fluid are separately provided on the outer wall of the sealed container 10. It has been.
  • the airtight container 10 takes either a sealed state in which inflow of gas from the outside to the inside is substantially impossible or an open state in which the plated steel sheet 1 can be carried from the outside to the inside. Is configured to be possible.
  • the sealed container 10 has a strength capable of withstanding a decrease in internal gas pressure due to exhaust of atmospheric gas, an increase in internal pressure due to the introduction of water vapor, heating, cooling, and the like in a sealed state.
  • the bottom frame 8 is connected to a water vapor supply pipe 41 for introducing water vapor from a water vapor supply source, an exhaust pipe 31 for discharging atmospheric gas, water vapor, and the like in the sealed container 10, and a drain pipe 35.
  • a gas introduction pipe 51 is connected to the middle part of the exhaust pipe 31.
  • the plated steel plate 1 is disposed on the disposition portion 12 provided on the bottom frame 8.
  • the plated steel sheet 1 may be laminated by the spacer 2.
  • the arrangement part 12 includes an inlet 12 ⁇ / b> A for allowing atmospheric gas flowing from the upper part of the plated steel sheet 1 to the lower part of the plated steel sheet 1 to be sucked into the circulation fan 71.
  • the discharge port 12B for discharging the atmospheric gas sucked into the circulation fan 71 to the internal space of the sealed container 10 is provided.
  • the exhaust pipe 31 has a predetermined section (branch) from the upstream end in the exhaust direction in order to adjust the amount of water vapor in the sealed container 10 during the steam treatment.
  • the pipe branches into three pipes 332, 334, and 336 having different nominal diameters.
  • Exhaust valves 322, 324, and 326 are provided in the pipe 332, the pipe 334, and the pipe 336, respectively.
  • exhaust pipes 372, 374, and 376 are provided in the pipe 332, the pipe 334, and the pipe 336, respectively.
  • the exhaust pumps 372, 374, and 376 are located downstream of the exhaust valves 322, 324, and 326 in the exhaust direction, respectively.
  • the drain pipe 35 is a pipe provided through the bottom frame 8 so as to communicate the inside of the sealed container 10 and the outside of the sealed container 10.
  • the liquid (condensed water or the like) inside the sealed container 10 is discharged to the outside through the drain pipe 35.
  • the introduced water vapor adjusting mechanism 40 has a water vapor supply pipe 41 and a water vapor supply valve 42, and adjusts the amount of water vapor supplied into the sealed container 10 with the water vapor supply valve 42.
  • the “steam supply valve 42” is a general term for steam supply valves 422, 424, and 426 described later.
  • a pipe having a nominal diameter of 20 A is used for the pipe 432
  • a pipe having a nominal diameter of 25 A is used for the pipe 434
  • a pipe having a nominal diameter of 80 A is used for the pipe 436.
  • the water vapor supply valve 42 is controlled to be opened and closed so that the amount of introduced water vapor can be finely and accurately adjusted.
  • the present invention is not limited to this embodiment, and the nominal diameter and the number of the water vapor supply pipes 41 can be set as necessary.
  • the gas introduction unit 50 includes a gas introduction pipe 51 and a gas introduction valve 52 provided in the gas introduction pipe 51.
  • the downstream end B of the gas introduction pipe 51 in the gas flow direction is connected to a portion (one pipe) upstream of the branch point A in the exhaust pipe 31 in the exhaust flow direction. That is, the gas introduction pipe 51 communicates with the inside of the sealed container 10 via the exhaust pipe 31.
  • the upstream end of the gas introduction pipe 51 communicates with a gas supply source (not shown).
  • This gas introduction part 50 can be used, for example, in order to introduce a low water vapor gas into the sealed container 10 in a first step (S110) and a fifth step (S150) described later.
  • the pressure measuring unit 61 is a pressure gauge for measuring the pressure inside the sealed container 10. This pressure gauge measures the pressure through all of the first step (S110), second step (S120), third step (S130), fourth step (S140), and fifth step (S150) described later. It is a possible pressure gauge.
  • the gas temperature measuring unit 62 is a temperature sensor for measuring the temperature of the atmospheric gas inside the sealed container 10, and for example, a thermocouple can be used.
  • the temperature sensor is not provided at only one place, but may be provided at a plurality of places inside the sealed container 10 and switched appropriately.
  • the stirring unit 70 includes a circulation fan 71 disposed on the bottom frame 8 and a drive motor 72 that rotationally drives the circulation fan 71.
  • the drive motor 72 rotates the circulation fan 71, the atmospheric gas that has passed through the inner diameter portion of the plated steel sheet 1 is drawn into the suction port 12 ⁇ / b> A provided in the upper portion of the arrangement portion 12, as indicated by the arrow in FIG. 2.
  • the discharge port 12B provided in the outer peripheral portion of the arrangement portion 12, passes between the inner wall of the sealed container 10 and the outer peripheral surface of the coil 1, and from the upper portion of the plated steel plate 1 to the plated steel plate 1 It flows into the gap.
  • the stirring unit 70 is not used only during the steam treatment (a third step (S130) described later), but a heating step (a first step (S110) described later) or a cooling step (a first step described later). 5 steps (S150)).
  • the method for producing a black-plated steel sheet uses the above-described black-plated steel sheet production apparatus to bring a molten Al- and Mg-containing Zn-plated steel sheet 1 into contact with water vapor in a sealed container 10 to produce a black-plated steel sheet. It is a manufacturing method.
  • the plated steel plate 1 has a base steel plate and a molten Al, Mg-containing Zn plating layer formed on the surface of the base steel plate.
  • the molten Al and Mg-containing Zn plating layer only needs to have a composition that is blackened by contact with water vapor.
  • a plating layer having a composition in which Al is 0.1% by mass or more and 60% by mass or less, Mg is 0.01% by mass or more and 10% by mass or less, and Zn is the balance should be suitably blackened by contact with water vapor. Can do.
  • the shape of the plated steel sheet 1 is not particularly limited as long as the plating layer in the region to be blackened can come into contact with water vapor.
  • the shape of the plated steel plate 1 may be a flat shape (for example, a flat plate shape) or a bent shape (for example, a coil shape).
  • the plated steel sheet 1 is heated in the presence of a gas (low steam gas) whose dew point is always lower than the temperature of the plated steel sheet.
  • the atmospheric gas present inside the sealed container 10 is a low water vapor gas.
  • the low water vapor gas may be air, but may be replaced with an inert gas such as nitrogen as long as the plated steel sheet 1 can be blackened.
  • the atmosphere may be replaced with an atmosphere having a lower dew point than the atmosphere.
  • the low water vapor gas can be introduced into the sealed container 10 from the gas introduction unit 50 connected to the sealed container 10.
  • the heating of the plated steel sheet 1 in the first step (S110) is performed until the surface temperature of the plating layer reaches a temperature at which the plating layer is blackened by contact with water vapor (hereinafter also referred to as “black processing temperature”). .
  • black processing temperature a temperature at which the plating layer is blackened by contact with water vapor
  • the surface temperature of the plated steel sheet 1 installed in the sealed container 10 may be heated until the temperature exceeds the black processing temperature while being measured by the temperature measuring unit 60.
  • the black processing temperature can be arbitrarily set according to the composition of the plating layer (for example, the contents of Al and Mg in the plating layer) or thickness, or the required brightness.
  • the method for heating the plated steel sheet 1 is not particularly limited as long as the surface of the plating layer can be brought to the black processing temperature.
  • the plated steel sheet 1 may be heated by providing a heating device 24 such as a sheath heater in the sealed container 10 and heating the atmospheric gas in the sealed container 10.
  • the atmospheric temperature in the sealed container 10 during the steam treatment is preferably 105 ° C. or higher.
  • the atmospheric temperature is referred to as “atmospheric temperature”.
  • the ambient temperature can be measured by a gas temperature measuring unit 62 provided inside the sealed container.
  • the atmospheric gas inside the sealed container 10 is removed after the introduction of water vapor into the sealed container 10 or during the blackening process during the introduction. Stirring may be performed by the stirring unit 70.
  • the atmospheric gas inside the sealed container 10 is exhausted to reduce the gas pressure inside the sealed container 10 to 70 kPa or less.
  • the atmospheric pressure inside the sealed container 10 can be performed by opening an atmospheric pressure release valve (not shown) provided in the sealed container.
  • the exhaust pump 37 installed outside the sealed container 10 is used, and the atmospheric gas in the sealed container 10 is exhausted through the exhaust pipe 31 to be sealed. The pressure in the container 10 can be lowered.
  • a gas (low steam gas) whose dew point is always lower than the temperature of the plated steel sheet is introduced into the sealed container 10 from the gas introduction pipe 51, and the low steam gas is brought into contact with the plated steel sheet 1.
  • the fifth step (S150) is included in the “processed object cooling step” of the present invention.
  • the “low steam gas” is included in the “cooling gas” of the present invention.
  • transduced at a 5th process (S150) is not heated, it may be heated to low temperature rather than the atmospheric temperature in the airtight container 10 as needed.
  • the low water vapor gas introduced in the fifth step (S150) can be, for example, air, nitrogen gas, or inert gas, and it is preferable to introduce air in consideration of workability.
  • FIG. 3 is a flowchart showing details of the fifth step (S150) in FIG.
  • the atmospheric gas discharge step are alternately repeated twice.
  • the atmospheric pressure inside the sealed container 10 is released by opening an atmospheric pressure release valve (not shown) (S250).
  • steam gas introduction process and an atmospheric gas discharge process is not specifically limited, You may repeat 3 times or more. Moreover, you may perform once each, without repeating a low water vapor
  • FIG. 4 shows (a) change in pressure (pressure measured by the pressure measuring unit 61) in the closed container 10 and (b) gas in the fifth step (S150) from the end of the previous fourth step (S140). Timing indicating the relationship between the opening / closing timing of the introduction valve 52, (c) the opening / closing timing of the exhaust valve 32, (d) the on / off timing of the exhaust pump 37, and (e) the opening / closing timing of the atmospheric pressure release valve. It is a chart. Hereinafter, the final stage of the fourth step and the fifth step will be described in more detail.
  • a low water vapor gas is introduced into the hermetic container 10 and the introduced low water vapor gas is once confined in the hermetic container 10 so that the low water vapor gas is sufficiently brought into contact with the plated steel sheet 1 and plating is performed by heat exchange accompanying this contact. The heat of the steel plate 1 is sufficiently removed to low steam gas.
  • the gas pressure in the sealed container 10 is lowered to a pressure less than half of the pressure P2.
  • the atmospheric gas is discharged, the low water vapor gas is discharged from the sealed container 10. Note that it is only necessary to exhaust air from at least one of the three pipes 332, 334, and 336. Therefore, it is not always necessary to turn on all the exhaust pumps 37 and open all the exhaust valves 32. The same applies to the subsequent atmospheric gas discharge step (S240).
  • the low water vapor gas introduction step (S230) is entered.
  • all the exhaust valves 32 are closed (see the state c3 in (c)), all the exhaust pumps 37 are turned off (see the state d3 in (d)), and the gas introduction valves 52 are opened (in (b)). (See state b3).
  • the off operation of the exhaust pump 37 and the valve opening / closing operation of the valves the low steam gas is introduced into the sealed container 10, the introduced low steam gas is once confined in the sealed container 10, and the gas pressure in the sealed container 10 is Is increased to pressure P2 (see state a3 in (a)). Thereby, the heat
  • the exhaust valve 37 if the exhaust valve 37 is closed to prevent exhaust, the exhaust pump 37 does not necessarily have to be turned off (it may remain on).
  • the atmospheric gas discharge step (S240) is entered.
  • the gas introduction valve 52 is closed (see state b4 in (b))
  • the exhaust pump 37 is turned on (see state d4 in (d))
  • the exhaust valve 32 is opened (see state c4 in (c)).
  • the ON state of the exhaust pump 37 and the valve open / close state of the valves are maintained until the gas pressure in the hermetic container 10 drops to a pressure P1 that is not more than half of the pressure P2 (see state a4 in (a)).
  • the gas pressure in the sealed container 10 is lowered to a pressure less than half of the pressure P2.
  • the atmospheric gas is discharged, the low water vapor gas is discharged from the sealed container 10.
  • the atmospheric pressure releasing step (S250) is entered.
  • all the exhaust valves 32 are closed (see the state c5 in (c)), all the exhaust pumps 37 are turned off (see the state d5 in (d)), and the atmospheric pressure release valve (not shown) is opened (( (See state e1 in e)).
  • the outside operation of the exhaust pump 37 and the valve opening / closing operation of the valves the inside of the sealed container 10 is opened to atmospheric pressure (see state a5 in (a)).
  • the low steam gas is introduced into the sealed container 10, the low steam gas is brought into contact with the plated steel sheet 1, and the plated steel sheet 1 is subjected to heat exchange accompanying this contact. The heat is removed to low steam gas. Then, the low water vapor gas whose temperature has risen due to heat removal from the plated steel sheet 1 is discharged from the sealed container 10.
  • the plated steel sheet 1 after the steam treatment can be quickly cooled (in a short time), and the black plated steel sheet The manufacturing time can be shortened.
  • the heat of the plated steel sheet 1 is sufficiently removed from the low water vapor gas.
  • the cooling rate of the steamed plated steel sheet 1 can be effectively increased by positively discharging the low steam gas whose temperature has been raised by heat removal from the plated steel sheet 1 to the outside by the exhaust pump 37.
  • the manufacturing time of the black plated steel sheet can be greatly shortened.
  • the introduction and confinement of the low water vapor gas and the discharge of the introduced low water vapor gas are alternately repeated. Can be effectively increased.
  • the atmospheric gas including the low steam gas
  • the stirring device 70 such as the circulation fan 71 provided in the sealed container 10
  • the gas introduction pipe 51 is connected to the exhaust pipe 31, but instead, as shown in FIG. 5, the gas introduction pipe 51 is connected to the inside of the sealed container 10 and the sealed container 10.
  • the bottom frame 8 may be provided so as to communicate with the outside.
  • the gas introduction pipe 51 and the exhaust pipe 31 are independent from each other. For this reason, a 5th process (S150) can be performed as follows, for example.
  • the gas introduction valve 52 is opened and the exhaust valve 32 is opened. Accordingly, the introduced low steam gas is introduced into the sealed container 10 through the exhaust pipe 31 in parallel with introducing the low steam gas into the sealed container 10 through the gas introducing pipe 51 and bringing the low steam gas into contact with the plated steel sheet 1. To discharge from.
  • the exhaust pipe 31 that is branched in the middle (branch point A) is used, but a pipe that is not branched may be used.
  • one exhaust pump and one exhaust valve may be provided in the exhaust pipe.
  • a gas introduction unit 90 (see FIG. 6) is provided instead of the gas introduction unit 50 of the second embodiment, and an exhaust adjustment mechanism 80 is provided.
  • the same mechanism as the introduced water vapor adjusting mechanism 40 and the exhaust adjusting mechanism 30 of the second embodiment is provided, but in FIG. 6, the illustration thereof is omitted for convenience. ing.
  • the gas introduction unit 90 includes a gas introduction pipe 91, a gas introduction valve 92 provided in the gas introduction pipe 91, and a pushing blower 93 provided in the gas introduction pipe 91.
  • the gas introduction pipe 91 is a pipe provided through the bottom frame 8 so as to communicate the inside of the sealed container 10 and the outside of the sealed container 10.
  • the upstream end of the gas introduction pipe 91 in the flow direction of the introduced low steam gas communicates with a gas supply source (not shown).
  • the gas introduction unit 90 can be used, for example, to introduce a low water vapor gas into the sealed container 10 in the first step (S110) described above and the fifth step (S300) described later.
  • the low water vapor gas introduced in the fifth step can be, for example, air, nitrogen gas, or inert gas, and it is preferable to introduce air in consideration of workability.
  • the fifth step in the modification of the second embodiment will be described.
  • a gas low steam gas
  • a gas low steam gas whose dew point is always lower than the temperature of the plated steel sheet
  • the low steam gas is brought into contact with the plated steel sheet 1 and introduced.
  • the plated steel sheet 1 is cooled by discharging the steam gas from the sealed container 10.
  • the fifth step after the low water vapor gas introduction step of introducing the low water vapor gas into the closed vessel 10 until the gas pressure in the closed vessel 10 becomes atmospheric pressure, the gas inside the closed vessel 10 is maintained at atmospheric pressure so that the gas pressure in the closed vessel 10 is maintained at atmospheric pressure.
  • FIG. 7 shows (A) change in pressure (pressure measured by the pressure measuring unit 61) in the closed vessel 10 and (B) gas in the fifth step (S300) from the end of the previous fourth step (S140). (C) The opening / closing timing of the exhaust valve 82, (D) The on / off timing of the push-in blower 93, (E) The on / off timing of the suction blower 83, (F) 6 is a timing chart showing a relationship with the on / off timing of the circulation fan 71.
  • the final stage of the fourth step and the fifth step will be described in more detail.
  • the low steam gas introduction process (S310) of the fifth process (S300) is entered.
  • the exhaust valve 82 is closed (see state C1 in (C)), and the gas introduction valve 92 is opened (see state B1 in (B)).
  • the circulation fan 71 may be turned on (see the state F1 in (F)).
  • the push-in blower 93 may be turned on at this time (see the state D1 in (D)) or may be maintained in the off state (see the state D3 in (D)).
  • the low steam gas introduction / atmosphere gas discharge step (S320) is entered.
  • the exhaust valve 82 is opened (see state C2 in (B)), and the suction blower 83 is turned on (see state E1 in (E)).
  • the pushing blower 93 is maintained in the off state in the previous low steam gas introducing step (S310)
  • the pushing blower 93 is turned on in the low steam gas introducing / atmospheric gas discharging step (S320).
  • the gas pressure in the sealed container 10 is maintained at the atmospheric pressure by the ON state of the suction blower 830 and the push-in blower 93 and the valve open / close state of the valves (see the state A1 in (A)). That is, the introduction of the low steam gas into the sealed container 10 and the discharge of the atmospheric gas (including the low steam gas) from the sealed container 10 are performed in parallel, and the gas pressure in the sealed container 10 is maintained at atmospheric pressure. Is done.
  • the atmospheric gas in the sealed container 10 is discharged by the suction blower 83 in parallel with the pushing of the low steam gas into the sealed container 10 by the pushing blower 93.
  • the suction blower 83 By increasing the flow rate of the low water vapor gas entering and exiting, the heat removal effect can be further enhanced, and the plated steel sheet 1 can be cooled more rapidly.
  • stirring the atmospheric gas (including the low water vapor gas) by the circulation fan 71 the plated steel sheet 1 can be cooled more efficiently and in a short time without unevenness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Coating With Molten Metal (AREA)

Abstract

水蒸気処理後の被処理物を速やかに冷却することにより、黒色めっき鋼板等の水蒸気処理製品の製造時間を短縮すること。被処理物1が内部に配置された密閉容器10内に水蒸気を導入し、当該水蒸気と、被処理物1とを接触させる水蒸気処理工程と、水蒸気処理工程において水蒸気処理がなされた被処理物1を冷却する被処理物冷却工程と、を備える水蒸気処理製品の製造方法であって、被処理物冷却工程は、密閉容器10内に冷却用ガスを導入して当該冷却用ガスを被処理物1に接触させ、導入した冷却用ガスを密閉容器10から排出する工程であることを特徴とする。

Description

水蒸気処理製品の製造方法および製造装置
 本発明は、黒色めっき鋼板等の水蒸気処理製品を製造する方法および製造する装置に関する。
 建築物の屋根材や外装材、家電製品、自動車などの分野では、意匠性などの観点から例えば黒色の外観を有する鋼板のニーズが高まっている。例えば、特許文献1には、黒色めっき鋼板の製造方法が開示されている。
 特許文献1に記載の黒色めっき鋼板の製造方法は、密閉容器内でめっき鋼板に水蒸気を接触させてめっき層の表面を黒色化させる工程と、密閉容器内に大気等のガスを導入することにより、黒色化しためっき鋼板を冷却する工程とを備えている。
 なお、以下の説明では、めっき鋼板等の被処理物のめっき層を黒色化するために、密閉容器の内部で上記被処理物に水蒸気を接触させることを、単に「水蒸気処理」ともいう。
特許第6072952号公報
 しかしながら、特許文献1におけるめっき鋼板の冷却工程は冷却速度が十分ではなく、そのことが黒色めっき鋼板の製造に長時間を要する一因となっている。
 そこで、本願発明では、水蒸気処理された被処理物を速やかに冷却することにより、黒色めっき鋼板等の水蒸気処理製品の製造時間を短縮することができる水蒸気処理製品の製造方法および製造装置を提供することを目的とする。
(1)被処理物が内部に配置された密閉容器内に水蒸気を導入し、当該水蒸気と、前記被処理物とを接触させる水蒸気処理工程と、前記水蒸気処理工程において水蒸気処理がなされた前記被処理物を冷却する被処理物冷却工程と、を備える水蒸気処理製品の製造方法であって、前記被処理物冷却工程は、前記密閉容器内に冷却用ガスを導入して当該冷却用ガスを前記被処理物に接触させ、導入した冷却用ガスを前記密閉容器から排出する工程であることを特徴とする水蒸気処理製品の製造方法。
 上記(1)の構成によれば、被処理物冷却工程において、水蒸気処理により温度が上昇した被処理物に冷却用ガスを接触させ、その接触に伴う熱交換により温度が上昇した冷却用ガスを密閉容器から排出する。このように、被処理物の熱を抜熱した冷却用ガスを密閉容器から排出することにより、水蒸気処理後の被処理物を速やかに(短時間で)冷却することができ、黒色めっき鋼板等の水蒸気処理製品の製造時間を短縮することができる。
(2)前記被処理物冷却工程は、前記密閉容器内に冷却用ガスを導入し、導入した冷却用ガスを前記密閉容器内に一旦閉じ込める冷却用ガス導入工程と、当該冷却用ガス導入工程の後に、前記密閉容器内の気体圧力が大気圧未満となるように排気ポンプを用いて前記密閉容器から前記冷却用ガスを排出する冷却用ガス排出工程と、を含むことを特徴とする(1)に記載の水蒸気処理製品の製造方法。
 上記(2)の構成によれば、冷却用ガス導入工程において、冷却用ガスに被処理物の熱を十分に抜熱させ、冷却用ガス排出工程において、被処理物からの抜熱により温度上昇した冷却用ガスを排気ポンプによって積極的に外部に排出することができる。これにより、水蒸気処理後の被処理物をより一層速やかに冷却することができ、黒色めっき鋼板等の水蒸気処理製品の製造時間をさらに短縮することができる。
(3)前記被処理物冷却工程は、前記冷却用ガス導入工程と前記冷却用ガス排出工程とを交互に繰り返す工程であることを特徴とする(2)に記載の水蒸気処理製品の製造方法。
 上記(3)の構成によれば、水蒸気処理された被処理物を上記(2)の場合よりも一層速やかに冷却することができ、黒色めっき鋼板等の水蒸気処理製品の製造時間をさらに短縮することができる。
(4)前記被処理物冷却工程は、前記密閉容器内に冷却用ガスを導入して当該冷却用ガスを前記被処理物に接触させることと並行して、導入した冷却用ガスを前記密閉容器から排出する工程であることを特徴とする(1)に記載の水蒸気処理製品の製造方法。
 上記(4)の構成によれば、密閉容器への冷却用ガスの導入と、導入した冷却用ガスの排出とが並行して行われるので、被処理物からの抜熱により温度上昇した冷却用ガスを、抜熱前の比較的低温の冷却用ガスにスムーズに入れ替えることができる。これにより、水蒸気処理された被処理物をより一層速やかに冷却することができ、黒色めっき鋼板等の水蒸気処理製品の製造時間をさらに短縮することができる。
(5)前記被処理物冷却工程において、前記密閉容器内に設けられたファンにより、前記密閉容器内の冷却用ガスを攪拌および循環させることを特徴とする(1)乃至(4)のいずれか1つに記載の水蒸気処理製品の製造方法。
 上記(5)の構成によれば、密閉容器内で冷却用ガスが攪拌されつつ循環するので、被処理物に冷却用ガスを均一に接触させることができる。これにより、被処理物をより短時間でムラ無く冷却することができる。
(6)内部に被処理物を配置可能な密閉容器と、前記密閉容器内に水蒸気を導入し、前記密閉容器内に配置された前記被処理物に水蒸気を接触させる水蒸気導入手段と、前記水蒸気との接触により水蒸気処理がなされた前記被処理物が配置された前記密閉容器内に冷却用ガスを導入する冷却用ガス導入手段と、前記密閉容器内に導入された冷却用ガスを前記密閉容器から排出する冷却用ガス排出手段と、を備える水蒸気処理製品の製造装置。
 上記(6)の構成によれば、上記(1)の場合と同様に、水蒸気処理された被処理物を速やかに(短時間で)冷却することができ、黒色めっき鋼板等の水蒸気処理製品の製造時間を短縮することができる。
 本願発明によれば、水蒸気処理された被処理物を速やかに冷却することにより、黒色めっき鋼板等の水蒸気処理製品の製造時間を短縮することができる。
本願発明の第1実施形態に係る黒色めっき鋼板を製造する方法のフローチャートである。 本願発明の第1実施形態に係る黒色めっき鋼板を製造する装置の模式図である。 第1実施形態におけるめっき鋼板の冷却工程を示すフローチャートである。 第1実施形態のめっき鋼板の冷却工程における、(a)密閉容器内の圧力変化と、(b)ガス導入弁の開閉タイミングと、(c)排気弁の開閉タイミングと、(d)排気ポンプのオン・オフタイミングと、(e)大気圧開放弁の開閉タイミングと、の関係を示すタイミングチャートである。 本願発明の第2実施形態に係る黒色めっき鋼板を製造する装置の模式図である。 本願発明の第2実施形態の変形例に係る黒色めっき鋼板を製造する装置の模式図である。 第2実施形態の変形例における、(A)密閉容器内の圧力の変化と、(B)ガス導入弁の開閉タイミングと、(C)排気弁の開閉タイミングと、(D)押込みブロワのオン・オフのタイミングと、(E)吸出しブロワのオン・オフのタイミングと、(F)循環ファンのオン・オフのタイミングとの関係を示すタイミングチャートである。
 以下、本発明に係る水蒸気処理製品の製造方法を黒色めっき鋼板の製造方法に適用する場合について説明するとともに、その製造方法を実現可能な黒色めっき鋼板の製造装置について説明する。
 なお、この明細書では、溶融Al、Mg含有Znめっき鋼板を、単に「めっき鋼板」とも言うことがある。また、溶融Al、Mg含有Znめっき鋼板の溶融Al、Mg含有Znめっき層を、単に「めっき層」ということがある。また、「雰囲気ガス」とは、密閉容器の内部に存在するガスを意味し、本願明細書に記載された大気、水蒸気、窒素ガスなどの総称である。また、この明細書における「kPa」は、絶対圧での圧力を意味する。
(第1実施形態)
 第1実施形態に係る水蒸気処理製品の製造方法は、概略的には、図1に示されるように、めっき鋼板を水蒸気処理により黒色化させる工程(S130)と、黒色化しためっき鋼板を冷却する工程(S150)とを備えており、その冷却工程(S150)に最大の特徴を有している。以下、その冷却工程(S150)を詳しく説明する前に、当該冷却工程(S150)を実現するための構成を備える黒色めっき鋼板の製造装置について説明する。
[黒色めっき鋼板の製造装置]
 (装置の構成)
 本実施形態に係る黒色めっき鋼板の製造装置(以下、「黒色めっき鋼板製造装置」ともいう。)は、その一例を示す模式断面図である図2に示されているように、めっき鋼板1を取り出し可能に配置できる配置部12を有する密閉容器10と、密閉容器10の内部に水蒸気を導入する導入水蒸気調整機構40と、密閉容器10の内部に露点がめっき鋼板1の温度未満であるガス(低水蒸気ガス)を導入するガス導入部50と、密閉容器10の内部の雰囲気ガスを排気する排気調整機構30とを有する。導入水蒸気調整機構40は、本発明の「水蒸気導入手段」に含まれる。ガス導入部50は、本発明の「冷却用ガス導入手段」に含まれる。また、排気調整機構30は、本発明の「冷却用ガス排出手段」に含まれる。
 黒色めっき鋼板製造装置は、さらに、密閉容器10の内部の圧力を大気圧に戻すための大気圧開放弁(図示せず。)と、密閉容器10の内部の雰囲気ガスを撹拌しつつ循環させる循環ファン71などの撹拌部70とを有している。
 黒色めっき鋼板製造装置は、さらに、めっき鋼板1の温度を測定する温度計測部60や密閉容器10内の圧力を測定する圧力計測部61、雰囲気ガスの温度を計測するガス温度計測部62を有していてもよい。さらに、密閉容器10の内部を加熱(または冷却)する天井部温度調整機構21、縦壁部温度調整機構20、シースヒータ等の加熱装置24を有していてもよい。また、黒色めっき鋼板製造装置は、導入水蒸気調整機構40、ガス導入部50、排気調整機構30、撹拌部70、温度調整機構21、20、シースヒータ等の加熱装置24の他、各弁装置の開閉動作を制御して、黒色めっき鋼板1を製造させる制御部(図示せず)を有していてもよい。また、ドレン配管35およびドレン弁36を有しているとき、制御部はドレン弁36の動作を制御して、装置内部から外部へ水を排出させてもよい。
 以下に、図2を参照して、黒色めっき鋼板製造装置の例示的な態様について詳しく説明する。
 密閉容器10は、底部フレーム8と、上部カバー9とを有している。底部フレーム8は、めっき鋼板1が配置される配置部12を備えている。また、上部カバー9は、天井面がドーム状に形成された上部カバー天井部13と、側面が円形筒状に形成された上部カバー縦壁部14とを有している。上部カバー9は、下部が開放される形状によって構成されている。また、密閉容器10の外壁には、流体を流すことによって密閉容器10内を加熱したり冷却したりすることができる天井部温度調整機構21と、縦壁部温度調整機構20とが別々に設けられている。また、密閉容器10は、その外部から内部への気体の流入が実質的に不可能な密閉状態と、外部から内部へのめっき鋼板1の搬入が可能な開放状態との、いずれをもとることが可能に構成されている。密閉容器10は、密閉状態において、雰囲気ガスの排気による内部の気体の圧力の低下や、水蒸気導入による内部圧力の上昇、加熱、冷却などに耐えうる強度を有している。
 底部フレーム8には、水蒸気供給源から水蒸気を導入する水蒸気供給配管41と、密閉容器10内の雰囲気ガスや水蒸気などを排出するための排気配管31、ドレン配管35が接続されている。また、排気配管31の中途部には、ガス導入配管51が接続されている。これらの配管41、31、35、51に設けられた開閉弁を閉じることで、密閉容器10の内部を密閉状態にできる。
 底部フレーム8に設けられた配置部12には、めっき鋼板1が配置される。めっき鋼板1は、スペーサー2によって積層されてもよい。また、図2に示されているように、配置部12は、めっき鋼板1の上部からめっき鋼板1の下部に流れてきた雰囲気ガスが循環ファン71に吸い込まれるようにするための吸込口12Aと、循環ファン71に吸い込まれた雰囲気ガスを密閉容器10の内部空間へ吐き出すための吐出口12Bとを有している。このような構成によって、密閉容器10の内部の気体がめっき鋼板1の隙間を通って循環するため、より均一に雰囲気ガスをめっき鋼板1に接触させることができる。
 排気調整機構30は、排気配管31、排気弁32および排気ポンプ37を有している。排気ポンプ37は、例えば真空ポンプである。なお、「排気弁32」は、後述の排気弁322、324、326の総称である。また、「排気ポンプ37」は、後述の排気ポンプ372、374、376の総称である。排気配管31は、密閉容器10の内部と密閉容器10の外部とを連通するように底部フレーム8を貫通して設けられた配管である。例えば、密閉容器10の内部の雰囲気ガスは、排気配管31を通って排気ポンプ37の吸引力によって外部に排気される。
 なお、本実施形態では、図2に示されているとおり、水蒸気処理中の密閉容器10内の水蒸気量を調整するために、排気配管31は、排気方向の上流端部から所定の区間(分岐点Aまでの区間)では1つの配管とされ、上記所定の区間より下流側では、呼び径が互いに異なる3つの配管332、配管334及び配管336に分岐している。配管332、配管334及び配管336のそれぞれには、排気弁322、324、326が設けられている。また、配管332、配管334及び配管336には、それぞれ、排気ポンプ372,374,376が設けられている。排気ポンプ372、374、376は、それぞれ、排気弁322、324、326よりも排気方向の下流側に位置する。
 ここで、例えば、配管332には呼び径20Aの配管を、配管334には呼び径25Aの配管を、配管336には呼び径80Aの配管を、それぞれ用いることにより、必要な密閉容器内の水蒸気量にもとづき、制御部によって排気弁32の開閉制御を行い、細かく正確な排気量調整が可能に構成されている。もちろん、本実施形態に限定されるものではなく、配管332、334、336の呼び径や数は必要に応じて設定可能である。また、後述の第2工程および第4工程において、排気調整機構30は、排気ポンプ372、374、376を用いて雰囲気ガスを排気することによって密閉容器10内の気体の圧力を70kPa以下にできるように構成されている。
 ドレン配管35は、密閉容器10の内部と密閉容器10の外部とを連通するように底部フレーム8を貫通して設けられた配管である。密閉容器10の内部の液体(結露水など)は、ドレン配管35を通って外部に排出される。
 導入水蒸気調整機構40は、水蒸気供給配管41および水蒸気供給弁42を有しており、密閉容器10内に供給する水蒸気量を、水蒸気供給弁42で調整するものである。なお、「水蒸気供給弁42」は、後述の水蒸気供給弁422、424、426の総称である。密閉容器10内に水蒸気の供給をしないときは、水蒸気供給弁42は閉じられて、水蒸気供給配管41を通じた密閉容器10内への水蒸気の供給は遮断される。
 なお、本実施形態の黒色めっき鋼板製造装置では、図2に示されているとおり、水蒸気処理中の密閉容器10内への水蒸気量を調整するために、水蒸気供給配管41は、密閉容器10との接続部から上流側への所定の区間では1つの配管とされ、上記所定の区間より上流側では、呼び径が互いに異なる3つの配管432、434、436に分岐している。配管432、434、436には、それぞれ、水蒸気供給弁422、424、426が設けられている。
 ここで、例えば、配管432には呼び径20Aの配管を、配管434には呼び径25Aの配管を、配管436には呼び径80Aの配管を、それぞれ用いることにより、必要な密閉容器10内の水蒸気量にもとづき、水蒸気供給弁42の開閉制御を行い、細かく正確な導入水蒸気量の調整が可能に構成されている。もちろん、本実施形態に限定されるものではなく、水蒸気供給配管41の呼び径や数は必要に応じて設定可能である。
 ガス導入部50は、ガス導入配管51と、このガス導入配管51に設けられるガス導入弁52とを有している。本実施形態では、ガス導入配管51におけるガスの流れ方向の下流端部Bは、排気配管31における分岐点Aよりも排気流れ方向の上流側の部分(1つの配管)に接続されている。つまり、ガス導入配管51は、排気配管31を介して密閉容器10の内部と連通している。また、ガス導入配管51の上流端部は、不図示のガス供給源と連通している。このガス導入部50は、例えば、後述の第1工程(S110)や第5工程(S150)において、密閉容器10の内部に低水蒸気ガスを導入するために用いることができる。
 温度計測部60は、めっき鋼板1の表面のうちそれぞれ異なる領域に当接して設置された複数の温度センサーであり、例えば、熱電対を用いてめっき鋼板1の温度を測定する。なお、めっき鋼板1をコイル状にした場合、コイルの板間に熱電対を挿入してもよい。
 圧力計測部61は、密閉容器10の内部の圧力を測定するための圧力計である。この圧力計は、後述の第1工程(S110)、第2工程(S120)、第3工程(S130)、第4工程(S140)、および第5工程(S150)の全ての工程を通じて圧力を測定可能な圧力計である。
 ガス温度計測部62は、密閉容器10の内部の雰囲気ガスの温度を測定するための温度センサーであり、例えば熱電対を用いることができる。また、この温度センサーは1箇所のみ設けるのでなく、密閉容器10の内部の複数個所に設けて、適宜切り替えて用いてもよい。
 撹拌部70は、底部フレーム8に配置された循環ファン71と、循環ファン71を回転駆動する駆動モーター72とを有している。駆動モーター72が循環ファン71を回転させると、図2において矢印で示されているように、めっき鋼板1の内径部分を抜けてきた雰囲気ガスが、配置部12の上部に設けられた吸込口12Aから吸い込まれるとともに、配置部12の外周部に設けられた吐出口12Bから流出して、密閉容器10の内壁とコイル1の外周面の間を通過し、めっき鋼板1の上部からめっき鋼板1の隙間に流入する。そして、再びめっき鋼板1の下部から配置部12の上部に設けられた吸込口12Aから雰囲気ガスが循環ファン71吸い込まれて上記のように密閉容器10内を循環する。このようにして、水蒸気処理中の密閉容器10の内部の雰囲気ガスは撹拌されるとともに、めっき鋼板1の隅々まで雰囲気ガスを行き渡らせることができる。もちろん、撹拌部70は水蒸気処理中(後述の第3工程(S130))だけ使用されるものではなく、めっき鋼板1の加熱工程(後述の第1工程(S110))や冷却工程(後述の第5工程(S150))において使用してもよい。
[黒色めっき鋼板を製造する方法]
 黒色めっき鋼板の製造方法は、上記の黒色めっき鋼板製造装置を用いて、AlおよびMgを含有する溶融Al、Mg含有Znめっき鋼板1を密閉容器10の内部で水蒸気に接触させて黒色めっき鋼板を製造する方法である。
 本実施形態の黒色めっき鋼板の製造方法では、図1のフローチャートに示されているように、密閉容器10(図2参照)の内部に配置した(積み込んだ)溶融Al、Mg含有Znめっき鋼板1を加熱する第1工程(S110)と、密閉容器10の内部の雰囲気ガスを排気して、密閉容器10内部の気体圧力を70kPa以下にする第2工程(S120)と、密閉容器10の内部に水蒸気を導入して水蒸気処理を行う第3工程(S130)と、第3工程(S130)の後に密閉容器10の内部の圧力をいったん大気圧に戻した後に、密閉容器10内部の気体圧力を再び70kPa以下にする第4工程(S140)と、密閉容器10内部のめっき鋼板1を冷却する第5工程(S150)とを、この順番で行う。なお、以下の説明では、加熱装置24、温度調整機構20、21、撹拌装置70、各弁32、42、52、排気ポンプ37等は、図外の制御部からの制御信号によってそれぞれの動作が制御されるものとする。
 以下、各工程についてより詳しく説明する。
 (第1工程)
 第1工程(S110)では、密閉容器10の内部に配置しためっき鋼板1を加熱する。
 めっき鋼板1は、基材鋼板と、基材鋼板の表面に形成された溶融Al、Mg含有Znめっき層とを有する。
 基材鋼板の種類は特に限定されないが、例えば、低炭素鋼、中炭素鋼、高炭素鋼、および合金鋼などからなる鋼板を使用することができる。良好なプレス成形性が必要とされる場合は、低炭素Ti添加鋼および低炭素Nb添加鋼などの深絞り用鋼板が基材鋼板として好ましい。また、P、Si、Mnなどを添加した高強度鋼板を用いてもよい。
 溶融Al、Mg含有Znめっき層は、水蒸気との接触により黒色化する組成を有していればよい。例えば、Alが0.1質量%以上60質量%以下、Mgが0.01質量%以上10質量%以下、Znが残部の組成を有するめっき層は、水蒸気との接触によって好適に黒色化することができる。
 めっき鋼板1の形状は、黒色化すべき領域のめっき層が水蒸気と接触することができるのであれば、特に限定されない。例えば、めっき鋼板1の形状は、めっき層が平坦な形状(例えば、平板状)でもよいし、屈曲した形状(例えば、コイル状)であってもよい。
 また、第1工程(S110)において、めっき鋼板1は、露点が常にめっき鋼板温度未満であるガス(低水蒸気ガス)の存在下で加熱される。つまり、密閉容器10の内部に存在する雰囲気ガスは低水蒸気ガスである。めっき鋼板1の加熱作業を容易にする観点から、低水蒸気ガスは大気であってもよいが、めっき鋼板1の黒色化が可能な限りにおいて、窒素などの不活性ガスに置換してもよい。その他、大気よりも低露点の雰囲気に置換してもよい。なお、低水蒸気ガスは、密閉容器10に接続されたガス導入部50から密閉容器10内へ導入することができる。
 第1工程(S110)におけるめっき鋼板1の加熱は、めっき層の表面温度が水蒸気との接触によってめっき層が黒色化される温度(以下、「黒色処理温度」ともいう。)に達するまで行われる。例えば、密閉容器10内に設置しためっき鋼板1の表面温度を温度計測部60で測定しながら黒色処理温度を超えるまで加熱を行うようにするとよい。
 黒色処理温度は、めっき層の組成(例えば、めっき層中のAlおよびMgの含有量)もしくは厚み、または必要とする明度などに応じて任意に設定することができる。
 めっき鋼板1の加熱方法は、めっき層の表面を黒色処理温度にすることができればよく、特に限定されるものではない。例えば、密閉容器10内にシースヒータ等の加熱装置24を設けて、密閉容器10内の雰囲気ガスを加熱してめっき鋼板1を加熱してもよい。
 なお、密閉容器内の雰囲気ガスを加熱する際に、密閉容器10内に設けた循環ファン71などの撹拌装置70で雰囲気ガスを撹拌すると、効率よく短時間でムラ無く、めっき鋼板1を加熱することが可能である。
 (第2工程)
 第2工程(S120)では、密閉容器10内の雰囲気ガスを、排気配管31を通じて排気し、密閉容器10内の気体の圧力を70kPa以下にする。例えば、密閉容器10外に設置した排気ポンプ37で、密閉容器10の中の雰囲気ガスを排出することで、密閉容器10内の気体の圧力を上記範囲にすることができる。第2工程(S120)においては、雰囲気ガスの排気を1回のみ行ってもよいし、密閉容器10内に残存する水蒸気以外の気体成分の量をより少なくするため、雰囲気ガスの排気と、ガス導入配管51からの低水蒸気ガスの導入を繰り返し行ってもよい。
 第2工程(S120)で密閉容器10内の雰囲気ガスを排気して密閉容器10内の気体圧力を低くすることによって、後述する第3工程(S130)で導入される水蒸気を、めっき鋼板1の間の隙間にまで十分に行き渡らせることができる。これにより、黒色化すべきめっき層全体をより均一に水蒸気処理することができ、黒色化のムラを発生しにくくすることができる。このような観点から、第2工程(S120)では、密閉容器10内の気体圧力を70kPa以下にすることが好ましく、さらに50kPa以下にすることがより好ましい。
 (第3工程)
 第3工程(S130)では、密閉容器10内に水蒸気を導入してめっき鋼板1のめっき層を黒色化する。すなわち、第3工程(S130)では、めっき鋼板1に対して、水蒸気処理を行う。第3工程(S130)は、本発明の「水蒸気処理工程」に含まれる。
 第3工程(S130)では、水蒸気処理中の密閉容器10内の雰囲気温度が105℃以上であることが好ましい。雰囲気温度を105℃以上とすることで、黒色化をより短時間に行うことができる。なお、この明細書では、密閉容器の内部の雰囲気ガスの温度を「雰囲気温度」と称する。雰囲気温度は、密閉容器の内部に設けられたガス温度計測部62により計測することができる。
 第3工程(S130)では、めっき鋼板1の黒色化のムラを防ぐため、密閉容器10の内部に水蒸気を導入した後または導入中の黒色化処理中に、密閉容器10の内部の雰囲気ガスを撹拌部70によって撹拌してもよい。
 また、水蒸気処理の処理時間は、めっき層の組成(たとえば、めっき層中のAlおよびMgの含有量)もしくは厚み、ならびに必要とする明度などに応じて任意に設定することができるが、水蒸気処理は24時間程度行うのが好ましい。
 (第4工程)
 第4工程(S140)では、密閉容器10の内部の圧力をいったん大気圧に戻した後に、密閉容器10の内部の雰囲気ガスを排気して、密閉容器10の内部の気体圧力を70kPa以下にする。例えば、密閉容器10の内部の圧力をいったん大気圧に戻すためには、密閉容器に設けた大気圧開放弁(図示せず。)を開くことで行うことができる。また、密閉容器10内の気体圧力を70kPa以下とするためには、密閉容器10外に設置した排気ポンプ37を使用し、密閉容器10内の雰囲気ガスを、排気配管31を通じて排出することで密閉容器10内の圧力を低くすることができる。
 (第5工程)
 第5工程(S150)では、密閉容器10の内部に露点が常にめっき鋼板温度未満であるガス(低水蒸気ガス)をガス導入管51から導入してこの低水蒸気ガスをめっき鋼板1に接触させ、導入した低水蒸気ガスを密閉容器10から排出することにより、めっき鋼板1を冷却する。第5工程(S150)は、本発明の「被処理物冷却工程」に含まれる。また、上記「低水蒸気ガス」は、本発明の「冷却用ガス」に含まれる。なお、第5工程(S150)で導入されるガスは、加熱されていないことが好ましいが、必要に応じて、密閉容器10内の雰囲気温度よりも低温に加熱されていてもよい。
 第5工程(S150)で導入される低水蒸気ガスは、例えば、大気、窒素ガス、または不活性ガスとすることができ、作業性を考慮すると、大気を導入することが好ましい。
 第5工程(S150)は、密閉容器10内に低水蒸気ガスを導入し、導入した低水蒸気ガスを密閉容器10内に閉じ込める低水蒸気ガス導入工程と、当該低水蒸気ガス導入工程の後に、密閉容器10内の気体圧力が大気圧未満となるように排気ポンプ37を用いて密閉容器10内の雰囲気ガス(導入した低水蒸気ガスを含む)を外部へ排出する雰囲気ガス排出工程と、を含む。上記「低水蒸気ガス導入工程」は、本発明の「冷却用ガス導入工程」に含まれ、上記「雰囲気ガス排出工程」は、本発明の「冷却用ガス排出工程」に含まれる。なお、上記低水蒸気ガス導入工程と上記雰囲気ガス排出工程とは、冷却速度向上のために、交互に繰り返して行うことが好ましい。
 図3は、図1における第5工程(S150)の詳細を示すフローチャートである。図3に示される例では、低水蒸気ガス導入工程(S210)→雰囲気ガス排出工程(S220)→低水蒸気ガス導入工程(S230)→雰囲気ガス排出工程(S240)、の順に、低水蒸気ガス導入工程と、雰囲気ガス排出工程とを、交互に2回繰り返して行っている。そして、最後の雰囲気ガス排出工程(S240)の後に、図外の大気圧開放弁を開くことにより、密閉容器10内を大気圧開放している(S250)。なお、低水蒸気ガス導入工程と雰囲気ガス排出工程とを繰り返す回数は、特に限定されるものではなく、3回以上繰り返してもよい。また、低水蒸気ガス導入工程と、雰囲気ガス排出工程とを繰り返さずに、各々1回ずつ行ってもよい。
 図4は、先の第4工程(S140)の終盤から第5工程(S150)における、(a)密閉容器10内の圧力(圧力計測部61で測定した圧力)の変化と、(b)ガス導入弁52の開閉タイミングと、(c)排気弁32の開閉タイミングと、(d)排気ポンプ37のオン・オフのタイミングと、(e)大気圧開放弁の開閉タイミングと、の関係を示すタイミングチャートである。以下、第4工程の終盤および第5工程についてさらに詳しく説明する。
 (第4工程の終盤)
 図4に示される例では、先の第4工程(S140)において密閉容器10内の気体圧力を70kPa以下の圧力((a)の圧力P0、状態a0参照)まで減圧させる際に、ガス導入弁52を閉じ((b)の状態b0参照)、排気ポンプ37をオンにし((d)の状態d0参照)、排気弁32を開く((c)の状態c0参照)。なお、大気圧開放弁は閉じた状態にある((e)の状態e0参照)。また、3つの配管332、配管334及び配管336のうち、少なくとも1つの配管から排気できればよいため、必ずしも全ての排気ポンプ37をオンにし、全ての排気弁32を開く必要はない。
 (低水蒸気ガス導入工程)
 次に、第5工程(S150)の低水蒸気ガス導入工程(S210)に入る。図4に示される例では、全ての排気弁32を閉じ((c)の状態c1参照)、全ての排気ポンプ37をオフにし((d)の状態d1参照)、ガス導入弁52を開く((b)の状態b1参照)。この排気ポンプ37のオフ動作および弁類の弁開閉動作により、密閉容器10内に低水蒸気ガスを導入し、導入した低水蒸気ガスを密閉容器10内に一旦閉じ込めて、密閉容器10内の気体圧力を大気圧P2まで上昇させる((a)の状態a1参照)。密閉容器10内に低水蒸気ガスを導入して、導入した低水蒸気ガスを密閉容器10内に一旦閉じ込めることにより、めっき鋼板1に低水蒸気ガスを十分に接触させ、この接触に伴う熱交換によりめっき鋼板1の熱を低水蒸気ガスに十分に抜熱させる。
 (雰囲気ガス排出工程)
 次に、雰囲気ガス排出工程(S220)に入る。この工程では、ガス導入弁52を閉じ((b)の状態b2参照)、排気ポンプ37をオンにし((d)の状態d2参照)、排気弁32を開く((c)の状態c2参照)。この排気ポンプ37のオン状態および弁類の弁開閉状態は、密閉容器10内の気体圧力が圧力P2の半分以下の圧力P1に低下するまで維持される((a)の状態a2参照)。つまり、密閉容器10内の気体(低水蒸気ガスを含む雰囲気ガス)を半分以上排出させる。図4の(a)に示される例では、密閉容器10内の気体圧力を圧力P2の半分未満の圧力まで低下させる。雰囲気ガスの排出に伴い、低水蒸気ガスが密閉容器10から排出される。なお、3つの配管332、配管334及び配管336のうち、少なくとも1つの配管から排気できればよいため、必ずしも全ての排気ポンプ37をオンにし、全ての排気弁32を開く必要はない。後の雰囲気ガス排出工程(S240)においても同様である。
 (低水蒸気ガス導入工程)
 次に、低水蒸気ガス導入工程(S230)に入る。この工程では、全ての排気弁32を閉じ((c)の状態c3参照)、全ての排気ポンプ37をオフにし((d)の状態d3参照)、ガス導入弁52を開く((b)の状態b3参照)。この排気ポンプ37のオフ動作および弁類の弁開閉動作により、密閉容器10内に低水蒸気ガスを導入し、導入した低水蒸気ガスを密閉容器10内に一旦閉じ込めて、密閉容器10内の気体圧力を圧力P2まで上昇させる((a)の状態a3参照)。これにより、めっき鋼板1の熱を低水蒸気ガスに十分に抜熱させる。なお、この工程では、排気バルブ37を閉じて排気できないようにすれば、排気ポンプ37を必ずしもオフにしなくてもよい(オンのままでもよい)。
 (雰囲気ガス排出工程)
 次に、雰囲気ガス排出工程(S240)に入る。この工程では、ガス導入弁52を閉じ((b)の状態b4参照)、排気ポンプ37をオンにし((d)の状態d4参照)、排気弁32を開く((c)の状態c4参照)。この排気ポンプ37のオン状態および弁類の弁開閉状態は、密閉容器10内の気体圧力が圧力P2の半分以下の圧力P1に低下するまで維持される((a)の状態a4参照)。図4の(a)に示される例では、密閉容器10内の気体圧力を圧力P2の半分未満の圧力まで低下させる。雰囲気ガスの排出に伴い、低水蒸気ガスが密閉容器10から排出される。
 (大気圧開放工程)
 次に、大気圧開放工程(S250)に入る。この工程では、全ての排気弁32を閉じ((c)の状態c5参照)、全ての排気ポンプ37をオフにし((d)の状態d5参照)、図外の大気圧開放弁を開く((e)の状態e1参照)。この排気ポンプ37のオフ動作および弁類の弁開閉動作により、密閉容器10内を大気圧開放する((a)の状態a5参照)。
 (第1実施形態の効果)
 第1実施形態によれば、第5工程(S150)において、密閉容器10内に低水蒸気ガスを導入して、めっき鋼板1に低水蒸気ガスを接触させ、この接触に伴う熱交換によりめっき鋼板1の熱を低水蒸気ガスに抜熱させる。そして、めっき鋼板1からの抜熱により温度が上昇した低水蒸気ガスを、密閉容器10から排出する。このように、めっき鋼板1の熱を抜熱した低水蒸気ガスを密閉容器10から排出することによって、水蒸気処理後のめっき鋼板1を速やかに(短時間で)冷却することができ、黒色めっき鋼板の製造時間を短縮することができる。
 また、密閉容器10内に導入した低水蒸気ガスを密閉容器10内に一旦閉じ込めることにより、低水蒸気ガスにめっき鋼板1の熱を十分に抜熱させる。そして、めっき鋼板1からの抜熱により温度が上昇した低水蒸気ガスを排気ポンプ37によって積極的に外部に排出することにより、水蒸気処理されためっき鋼板1の冷却速度を効果的に高めることができ、黒色めっき鋼板の製造時間を大幅に短縮することができる。
 また、本実施形態では、図3、4に示されるように、低水蒸気ガスの導入および閉じ込めと、導入した低水蒸気ガスの排出とを交互に繰り返し行っているので、めっき鋼板1の冷却速度を効果的に高めることができる。
 なお、本実施形態においては、第5工程(S150)において、密閉容器10内に設けた循環ファン71などの撹拌装置70によって雰囲気ガス(低水蒸気ガスを含む)を撹拌すると、さらに効率よく短時間でムラ無く、めっき鋼板1を冷却することができる。
(第2実施形態)
 第1実施形態では、ガス導入配管51を排気配管31に接続しているが、これに代えて、図5に示されるように、ガス導入配管51を、密閉容器10の内部と密閉容器10の外部とを連通するように底部フレーム8を貫通して設けてもよい。この場合、ガス導入配管51と排気配管31とは互いに独立したものとなる。このため、例えば以下のように、第5工程(S150)を行うことができる。
 具体的には、ガス導入弁52を開くとともに排気弁32を開く。これにより、ガス導入配管51を通じて密閉容器10内に低水蒸気ガスを導入して当該低水蒸気ガスをめっき鋼板1に接触させることと並行して、導入した低水蒸気ガスを排気配管31を通じて密閉容器10から排出する。
 (第2実施形態の効果)
 第2実施形態によれば、密閉容器10において、低水蒸気ガスの導入と、導入した低水蒸気ガスの排出とが並行して行われるので、密閉容器10内でめっき鋼板1からの抜熱により温度が上昇した低水蒸気ガスを、抜熱前の比較的低温の低水蒸気ガスにスムーズに入れ替えることができる。これにより、水蒸気処理後のめっき鋼板1をより速やかに冷却することができ、黒色めっき鋼板の製造時間を短縮することができる。
 また、図5に示されるように、配管332、配管334及び配管336を、排気弁322、324、326よりも下流側で集合させてもよい。図5に示される例では、排気配管31は、配管332、配管334及び配管336の集合点Cよりも下流側では1つの配管337とされている。この1つの配管337には、1つの排気ポンプ377が設けられている。つまり、3つの配管(3系統の配管)332、334、336に対して、ポンプ377を1台で共通化してもよい。なお、図5の排気配管31内における破線の矢印は、排気弁322、324を閉じ、排気弁326を開いた場合の雰囲気ガスの流れ(排気の流れ)を示している。もちろん、排気弁326だけでなく、排気弁322、324、326のうちの任意の排気弁を開いて、排気配管31からの排気速度を制御することが可能である。
 なお、第1および第2実施形態では、排気配管31として、途中(分岐点A)で分岐したものを用いているが、分岐していないものを用いてもよい。この場合、排気配管に排気ポンプおよび排気弁を1つずつ設ければよい。
(第2実施形態の変形例)
 上記の第2実施形態では、密閉容器10において、低水蒸気ガスの導入と、導入した低水蒸気ガスの排出とを並行して行っている。第2実施形態の変形例においても、このような特徴を有するが、低水蒸気ガスを導入するための構造、および、雰囲気ガスを排出するための構造が第2実施形態とは異なっている。第2実施形態の変形例について、図6および図7を参照しつつ説明する。
 第2実施形態の変形例では、第2実施形態のガス導入部50に代えてガス導入部90(図6参照)が設けられており、また、排気調整機構80が設けられている。なお、第2実施形態の変形例においても、第2実施形態の導入水蒸気調整機構40および排気調整機構30と同様の機構が設けられているが、図6においては、便宜上、その図示を省略している。
 ガス導入部90は、ガス導入配管91と、このガス導入配管91に設けられるガス導入弁92と、ガス導入配管91に設けられる押込みブロワ93とを有している。ガス導入配管91は、密閉容器10の内部と密閉容器10の外部とを連通するように底部フレーム8を貫通して設けられた配管である。導入される低水蒸気ガスの流れ方向におけるガス導入配管91の上流端部は、不図示のガス供給源と連通している。ガス導入部90は、例えば、前述の第1工程(S110)や後述の第5工程(S300)において、密閉容器10の内部に低水蒸気ガスを導入するために用いることができる。
 なお、第5工程で導入される低水蒸気ガスは、例えば、大気、窒素ガス、または不活性ガスとすることができ、作業性を考慮すると、大気を導入することが好ましい。
 排気調整機構80は、排気配管81と、排気弁82と、吸出しブロワ83とを備えている。排気配管81は、密閉容器10の内部と密閉容器10の外部とを連通するように底部フレーム8を貫通して設けられた配管である。例えば、密閉容器10の内部の雰囲気ガスは、排気配管81を通って吸出しブロワ83の吸引力によって外部に排気される。排気調整機構80は、例えば、後述の第5工程(S300)において、密閉容器10内の雰囲気ガスを外部に排出するために用いることができる。
 第2実施形態の変形例における第5工程について説明する。第5工程では、密閉容器10の内部に露点が常にめっき鋼板温度未満であるガス(低水蒸気ガス)をガス導入管91から導入してこの低水蒸気ガスをめっき鋼板1に接触させ、導入した低水蒸気ガスを密閉容器10から排出することにより、めっき鋼板1を冷却する。
 第5工程は、密閉容器10内に低水蒸気ガスを導入してこの低水蒸気ガスをめっき鋼板1に接触させることと並行して、導入した低水蒸気ガスを密閉容器10から排出する工程である。
 具体的には、第5工程は、密閉容器10内の気体圧力が大気圧となるまで密閉容器10内に低水蒸気ガスを導入する低水蒸気ガス導入工程と、この低水蒸気ガス導入工程の後に、密閉容器10内に低水蒸気ガスを引き続き導入してこの低水蒸気ガスをめっき鋼板1に接触させることと並行して、密閉容器10内の気体圧力が大気圧を維持するように密閉容器10内の雰囲気ガス(導入した低水蒸気ガスを含む)を外部へ排出する低水蒸気ガス導入・雰囲気ガス排出工程と、密閉容器10内の気体圧力を大気圧に維持しつつ、第5工程を終了する終了工程とを含む。
 図7は、先の第4工程(S140)の終盤から第5工程(S300)における、(A)密閉容器10内の圧力(圧力計測部61で測定した圧力)の変化と、(B)ガス導入弁92の開閉タイミングと、(C)排気弁82の開閉タイミングと、(D)押込みブロワ93のオン・オフのタイミングと、(E)吸出しブロワ83のオン・オフのタイミングと、(F)循環ファン71のオン・オフのタイミングとの関係を示すタイミングチャートである。以下、第4工程の終盤および第5工程についてさらに詳しく説明する。
 (第4工程の終盤)
 図7に示される例では、先の第4工程(S140)において密閉容器10内の気体圧力を70kPa以下の圧力((A)の圧力P0、状態A0参照)まで減圧させる際に、ガス導入弁92を閉じ((B)の状態B0参照)、排気弁82を開く((C)の状態C0参照)。押込みブロワ93、吸出しブロワ83、循環ファン71は使用しないので、それぞれオフの状態である((D)の状態D0参照、(E)の状態E0参照、(F)の状態F0参照)。また、大気圧開放弁(図示せず。)は閉じた状態にある。
 (第5工程)
 (低水蒸気ガス導入工程)
 次に、第5工程(S300)の低水蒸気ガス導入工程(S310)に入る。図7に示される例では、排気弁82を閉じ((C)の状態C1参照)、ガス導入弁92を開く((B)の状態B1参照)。このとき、また、循環ファン71をオンにしてもよい((F)の状態F1参照)。押込みブロワ93は、このときオンにしてもよい((D)の状態D1参照)し、オフ状態に維持してもよい((D)の状態D3参照)。この弁類の弁開閉動作により、密閉容器10内に低水蒸気ガスを導入し、導入した低水蒸気ガスを密閉容器10内に一旦閉じ込めて、密閉容器10内の気体圧力を大気圧P2まで上昇させる((A)の状態A1参照)。密閉容器10内に低水蒸気ガスを導入して、導入した低水蒸気ガスを密閉容器10内に一旦閉じ込めることにより、めっき鋼板1に低水蒸気ガスを十分に接触させ、この接触に伴う熱交換によりめっき鋼板1の熱を低水蒸気ガスに十分に抜熱させる。密閉容器10内の気体圧力が大気圧P2まで上昇したら、大気圧開放弁(図示せず。)を開く。
 (低水蒸気ガス導入・雰囲気ガス排出工程)
 次に、低水蒸気ガス導入・雰囲気ガス排出工程(S320)に入る。この工程では、排気弁82を開き((B)の状態C2参照)、吸出しブロワ83をオンにする((E)の状態E1参照)。また、先の低水蒸気ガス導入工程(S310)において押込みブロワ93をオフ状態に維持していた場合には、低水蒸気ガス導入・雰囲気ガス排出工程(S320)において押込みブロワ93をオンにする。この吸出しブロワ830および押込みブロワ93のオン状態および弁類の弁開閉状態により、密閉容器10内の気体圧力は大気圧に維持される((A)の状態A1参照)。つまり、密閉容器10内への低水蒸気ガスの導入と密閉容器10からの雰囲気ガス(低水蒸気ガスを含む)の排出が並行して行われて、密閉容器10内の気体圧力は大気圧に維持される。
 (終了工程)
 次に、終了工程(S330)に入る。この工程では、ガス導入弁92および排気弁82を閉じ((B)の状態B2、(C)の状態C3参照)、押込みブロワ93、吸出しブロワ83、および循環ファン71をオフにする((D)の状態D2、(E)の状態E2、(F)の状態F2参照)。密閉容器10内が大気圧開放となった状態で第5工程を終了する(A)の状態A1参照)。
 (第2実施形態の変形例の効果)
 第2実施形態の変形例によれば、押込みブロワ93により低水蒸気ガスを密閉容器10内に押し込むことと並行して、吸出しブロワ83により密閉容器10内の雰囲気ガスを排出するので、密閉容器10内に出入りする低水蒸気ガスの流量を増加させて、抜熱効果をより一層高めることができ、めっき鋼板1の冷却をより一層速やかに行うことができる。また、循環ファン71によって雰囲気ガス(低水蒸気ガスを含む)を撹拌することで、さらに効率よく短時間でムラ無く、めっき鋼板1を冷却することができる。
 なお、冷却効率を高める点では、押込みブロワ93および吸出しブロワ83の両方を設けることが望ましいが、押込みブロワ93および吸出しブロワ83のうち、いずれか一方のみを設けるようにしてもよい。
 また、上記各実施形態では、黒色めっき鋼板を製造する場合について説明したが、黒色めっき鋼板以外の水蒸気処理製品を製造する場合に本発明を適用することも可能である。
 本願発明の方法は、黒色めっき鋼板等の水蒸気処理製品の製造時間を短縮することができるため、黒色めっき鋼板等の水蒸気処理製品のより一層の普及に貢献することが期待される。
 1  めっき鋼板
 10 密閉容器
 30、80 排気調整機構(冷却用ガス排出手段)
 37 排気ポンプ
 40 導入水蒸気調整機構(水蒸気導入手段)
 50、90 ガス導入部(冷却用ガス導入手段)
 70 攪拌部
 71 循環ファン
 83 吸出しブロワ
 93 押込みブロワ

Claims (6)

  1.  被処理物が内部に配置された密閉容器内に水蒸気を導入し、当該水蒸気と、前記被処理物とを接触させる水蒸気処理工程と、
     前記水蒸気処理工程において水蒸気処理がなされた前記被処理物を冷却する被処理物冷却工程と、
     を備える水蒸気処理製品の製造方法であって、
     前記被処理物冷却工程は、前記密閉容器内に冷却用ガスを導入して当該冷却用ガスを前記被処理物に接触させ、導入した冷却用ガスを前記密閉容器から排出する工程である
     ことを特徴とする水蒸気処理製品の製造方法。
  2.  前記被処理物冷却工程は、前記密閉容器内に冷却用ガスを導入し、導入した冷却用ガスを前記密閉容器内に一旦閉じ込める冷却用ガス導入工程と、当該冷却用ガス導入工程の後に、前記密閉容器内の気圧が大気圧未満となるように排気ポンプを用いて前記密閉容器から前記冷却用ガスを排出する冷却用ガス排出工程と、を含む
     ことを特徴とする請求項1に記載の水蒸気処理製品の製造方法。
  3.  前記被処理物冷却工程は、前記冷却用ガス導入工程と前記冷却用ガス排出工程とを交互に繰り返す工程である
     ことを特徴とする請求項2に記載の水蒸気処理製品の製造方法。
  4.  前記被処理物冷却工程は、前記密閉容器内に冷却用ガスを導入して当該冷却用ガスを前記被処理物に接触させることと並行して、導入した冷却用ガスを前記密閉容器から排出する工程である
     ことを特徴とする請求項1に記載の水蒸気処理製品の製造方法。
  5.  前記被処理物冷却工程において、前記密閉容器内に設けられたファンにより、前記密閉容器内の冷却用ガスを攪拌および循環させる
     ことを特徴とする請求項1乃至4のいずれか一項に記載の水蒸気処理製品の製造方法。
  6.  内部に被処理物を配置可能な密閉容器と、
     前記密閉容器内に水蒸気を導入し、前記密閉容器内に配置された前記被処理物に水蒸気を接触させる水蒸気導入手段と、
     前記水蒸気との接触により水蒸気処理がなされた前記被処理物が配置された前記密閉容器内に冷却用ガスを導入する冷却用ガス導入手段と、
     前記密閉容器内に導入された冷却用ガスを前記密閉容器から排出する冷却用ガス排出手段と、
     を備える水蒸気処理製品の製造装置。
PCT/JP2018/013171 2017-03-31 2018-03-29 水蒸気処理製品の製造方法および製造装置 WO2018181685A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CA3058594A CA3058594A1 (en) 2017-03-31 2018-03-29 Method and device for manufacturing steam-treated product
BR112019020509A BR112019020509A2 (pt) 2017-03-31 2018-03-29 método e dispositivo para fabricação de produtos tratados com vapor
CN201880013082.XA CN110325661A (zh) 2017-03-31 2018-03-29 水蒸气处理制品的制造方法及制造装置
AU2018246441A AU2018246441B2 (en) 2017-03-31 2018-03-29 Method and device for manufacturing steam-treated product
MX2019011159A MX2019011159A (es) 2017-03-31 2018-03-29 Metodo y dispositivo para manufacturar productos tratados con vapor.
RU2019130770A RU2019130770A (ru) 2017-03-31 2018-03-29 Способ и устройство для изготовления обработанного паром продукта
US16/492,613 US11326223B2 (en) 2017-03-31 2018-03-29 Method and device for manufacturing steam-treated products
KR1020197025778A KR102463338B1 (ko) 2017-03-31 2018-03-29 수증기 처리 제품의 제조 방법 및 제조 장치
EP18776691.0A EP3608437A4 (en) 2017-03-31 2018-03-29 PROCESS AND DEVICE FOR MANUFACTURING A STEAM TREATED PRODUCT
PH12019502242A PH12019502242A1 (en) 2017-03-31 2019-09-27 Method and device for manufacturing steam-treated product

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017072636 2017-03-31
JP2017-072636 2017-03-31
JP2018058868A JP6886936B2 (ja) 2017-03-31 2018-03-26 水蒸気処理製品の製造方法および製造装置
JP2018-058868 2018-03-26

Publications (1)

Publication Number Publication Date
WO2018181685A1 true WO2018181685A1 (ja) 2018-10-04

Family

ID=63676070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013171 WO2018181685A1 (ja) 2017-03-31 2018-03-29 水蒸気処理製品の製造方法および製造装置

Country Status (3)

Country Link
US (1) US11326223B2 (ja)
TW (1) TWI793112B (ja)
WO (1) WO2018181685A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6669692B2 (ja) * 2016-06-30 2020-03-18 花王株式会社 泡吐出容器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337867A (ja) * 1995-06-08 1996-12-24 Hitachi Zosen Corp ステンレス鋼部材の表面処理方法
JP2012132061A (ja) * 2010-12-21 2012-07-12 Nisshin Steel Co Ltd ブルーイング金属帯の製造方法
JP6072952B1 (ja) 2016-03-01 2017-02-01 日新製鋼株式会社 黒色めっき鋼板を製造する方法、黒色めっき鋼板を製造する装置および黒色めっき鋼板を製造するシステム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2590182B2 (ja) 1987-03-07 1997-03-12 株式会社東芝 黒化炉およびこの黒化炉を使用したシャドウマスクの製造方法
GB2208658B (en) 1987-07-17 1992-02-19 Lucas Ind Plc Manufacture of corrosion resistant steel components
JPH11241123A (ja) 1998-02-27 1999-09-07 Nisshin Steel Co Ltd 鋼帯の脱炭またはブルーイング焼鈍の制御装置
US8820098B2 (en) * 2011-05-17 2014-09-02 Air Products And Chemicals, Inc. Method and apparatus for quenching of materials in vacuum furnace
KR102124030B1 (ko) * 2015-11-11 2020-06-17 닛산 지도우샤 가부시키가이샤 가스 ??칭 방법
JP6676555B2 (ja) 2017-01-18 2020-04-08 日鉄日新製鋼株式会社 黒色めっき鋼板の製造方法およびその製造装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337867A (ja) * 1995-06-08 1996-12-24 Hitachi Zosen Corp ステンレス鋼部材の表面処理方法
JP2012132061A (ja) * 2010-12-21 2012-07-12 Nisshin Steel Co Ltd ブルーイング金属帯の製造方法
JP6072952B1 (ja) 2016-03-01 2017-02-01 日新製鋼株式会社 黒色めっき鋼板を製造する方法、黒色めっき鋼板を製造する装置および黒色めっき鋼板を製造するシステム

Also Published As

Publication number Publication date
TW201842209A (zh) 2018-12-01
TWI793112B (zh) 2023-02-21
US20200048728A1 (en) 2020-02-13
US11326223B2 (en) 2022-05-10

Similar Documents

Publication Publication Date Title
CN100457349C (zh) 气体保护加热钎焊炉
CN101676414A (zh) 连续式热处理炉
JP2008291284A (ja) 多段式加熱装置
JP2010181042A (ja) 冷却装置および冷却方法
KR100727736B1 (ko) 상자소둔 열처리를 위한 모사장치 및 시험방법
WO2018181685A1 (ja) 水蒸気処理製品の製造方法および製造装置
WO2018135518A1 (ja) 黒色めっき鋼板の製造方法およびその製造装置
CN112921252A (zh) 一种Ti-6Al-4V钛合金铸件真空退火快速冷却工艺
JP2012132061A (ja) ブルーイング金属帯の製造方法
CN202626256U (zh) 新型硬质合金顶锤时效处理炉
JP2019056171A (ja) 水蒸気処理製品の製造方法および製造装置
JP2018172745A (ja) 黒色めっき鋼板の製造装置および製造システム
CN1114248A (zh) 烧结热等静压装置及其冷却方法
JP6796929B2 (ja) アルミニウム材のフラックスレスろう付け方法及びろう付け用処理装置
RU2456370C2 (ru) Способ паротермического оксидирования стальных изделий и печь для его осуществления
RU2367689C1 (ru) Способ термической безокислительной обработки изделий из сталей и сплавов и шахтная печь сопротивления для его реализации
US9191999B2 (en) Method and apparatus for venting a cooking device
JP6854673B2 (ja) 水蒸気処理用の密閉容器
WO2011024244A1 (ja) 脱亜鉛装置および脱亜鉛方法
CN205473907U (zh) 一种轧辊退火装置
JP6905375B2 (ja) 水蒸気処理方法および水蒸気処理装置
JP2020016372A (ja) 連続式雰囲気熱処理炉
JP6905358B2 (ja) 水蒸気処理用の密閉容器
JPH093533A (ja) 熱処理用加熱室冷却装置
JP2018172746A (ja) 水蒸気処理方法および水蒸気処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776691

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197025778

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3058594

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019020509

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2018776691

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018776691

Country of ref document: EP

Effective date: 20191031

ENP Entry into the national phase

Ref document number: 2018246441

Country of ref document: AU

Date of ref document: 20180329

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019020509

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190930