WO2018181457A1 - バリア性積層フィルム - Google Patents
バリア性積層フィルム Download PDFInfo
- Publication number
- WO2018181457A1 WO2018181457A1 PCT/JP2018/012707 JP2018012707W WO2018181457A1 WO 2018181457 A1 WO2018181457 A1 WO 2018181457A1 JP 2018012707 W JP2018012707 W JP 2018012707W WO 2018181457 A1 WO2018181457 A1 WO 2018181457A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laminate film
- barrier
- barrier laminate
- layer
- less
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/042—Coating with two or more layers, where at least one layer of a composition contains a polymer binder
- C08J7/0423—Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/048—Forming gas barrier coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/14—Layered products comprising a layer of synthetic resin next to a particulate layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/16—Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
- B32B27/281—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
- B32B27/283—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/302—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/304—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/306—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/308—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/34—Layered products comprising a layer of synthetic resin comprising polyamides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/38—Layered products comprising a layer of synthetic resin comprising epoxy resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/40—Layered products comprising a layer of synthetic resin comprising polyurethanes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/42—Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/14—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
- B32B37/24—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
- B32B9/005—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D65/00—Wrappers or flexible covers; Packaging materials of special type or form
- B65D65/38—Packaging materials of special type or form
- B65D65/40—Applications of laminates for particular packaging purposes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D81/00—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
- B65D81/24—Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
- B65D81/30—Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants by excluding light or other outside radiation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/043—Improving the adhesiveness of the coatings per se, e.g. forming primers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D177/00—Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
- C09D177/06—Polyamides derived from polyamines and polycarboxylic acids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/14—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
- B32B37/24—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
- B32B2037/246—Vapour deposition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/02—2 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/04—4 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/10—Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/20—Inorganic coating
- B32B2255/205—Metallic coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/26—Polymeric coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/28—Multiple coating on one surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/102—Oxide or hydroxide
- B32B2264/1021—Silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/102—Oxide or hydroxide
- B32B2264/1023—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/105—Metal
- B32B2264/1052—Aluminum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/107—Ceramic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/12—Mixture of at least two particles made of different materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2270/00—Resin or rubber layer containing a blend of at least two different polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/306—Resistant to heat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/31—Heat sealable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/412—Transparent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/514—Oriented
- B32B2307/518—Oriented bi-axially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
- B32B2307/7244—Oxygen barrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
- B32B2307/7246—Water vapor barrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/748—Releasability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
- B32B2439/40—Closed containers
- B32B2439/46—Bags
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
- B32B2439/70—Food packaging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
- B32B2439/80—Medical packaging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/12—Photovoltaic modules
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2433/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2433/02—Homopolymers or copolymers of acids; Metal or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2475/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2475/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2475/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2475/04—Polyurethanes
- C08J2475/06—Polyurethanes from polyesters
Definitions
- the present invention relates to a barrier laminate film.
- a barrier laminated film in which an inorganic layer as a barrier layer is provided on a base material layer is known.
- this inorganic layer is weak against friction and the like, and such a barrier laminated film has a barrier that causes cracks in the inorganic layer due to rubbing or elongation during post-processing printing, lamination, or filling of contents. May decrease. Therefore, a barrier laminate film in which an organic layer as a barrier layer is further laminated on the inorganic layer is also used.
- a barrier laminated film including a barrier resin layer formed of a mixture containing polycarboxylic acid and polyamine is known.
- Examples of techniques relating to such a barrier laminate film include those described in Patent Document 1 (Japanese Patent Laid-Open No. 2005-225940) and Patent Document 2 (Japanese Patent Laid-Open No. 2014-184678).
- Patent Document 1 discloses a gas barrier film having a gas barrier layer formed from a polycarboxylic acid and a polyamine and / or polyol, and having a degree of crosslinking of the polycarboxylic acid of 40% or more.
- polyamine / polycarboxylic acid is 12.5 / 87.5 to 27.5 / 72.5 and (polyamine + polycarboxylic acid) / flake on at least one surface of a substrate made of a plastic film.
- a gas barrier film formed from a mixture obtained by mixing the fibrous inorganic substance so as to be 100/5 to 50 is disclosed.
- a barrier laminate film comprising a barrier resin layer formed from a mixture containing a polycarboxylic acid and a polyamine has excellent barrier properties due to an amide cross-linked structure formed by a polyamine and a polycarboxylic acid, but has a more stable performance. From the viewpoint of securing, further improvement in water vapor barrier property and oxygen barrier property after retort processing is required. Furthermore, the barrier laminate film having a barrier resin layer formed of a mixture containing polycarboxylic acid and polyamine further improves the followability to external deformation from the viewpoint of ensuring stable performance after retorting. Is required.
- the present invention has been made in view of the above circumstances, and is excellent in barrier properties, particularly water vapor barrier properties and oxygen barrier properties before and after retort treatment, and also in adhesiveness between the base material layer and the barrier resin layer.
- An excellent barrier laminated film is provided.
- the present inventors diligently studied to solve the above problems. As a result, by providing a stress relaxation layer containing a polyurethane-based resin having an aromatic ring structure in the main chain between the base material layer and the inorganic material layer, the barrier property before and after the retort treatment in the obtained barrier film It has been found that both the adhesion between the base material layer and the barrier resin layer can be improved in a balanced manner.
- the following barrier laminate film and retort food packaging are provided.
- a barrier laminate film comprising a base material layer, a stress relaxation layer, an inorganic layer, and a barrier resin layer in this order,
- the barrier resin layer contains an amide cross-linked product of polycarboxylic acid and polyamine
- 180 ° peel strength P between the base material layer and the barrier resin layer measured at 25 ° C. and a tensile speed of 300 mm / min after the barrier laminate film is retorted at 130 ° C. for 30 minutes.
- the ratio of the maximum peak A 0 at the maximum peak A range of absorption band 715 cm -1 or more 745cm -1 with respect to 1 in the region of the absorption band 1705 cm -1 or 1735 cm -1 or less (A 0 / A 1 ) is a barrier laminate film having a value of 0.20 or more and 0.90 or less.
- a barrier laminate film in which the polyurethane resin includes an aromatic polyester skeleton is a barrier laminate film having a value of 0.20 or more and 0.90 or less.
- the barrier laminate film according to any one of the above [1] to [9] In the barrier laminate film according to any one of the above [1] to [9], In the infrared absorption spectrum of the barrier resin layer, The total peak area in the range of absorption band 1493 cm ⁇ 1 to 1780 cm ⁇ 1 is A, When the total peak area in the range of the absorption band 1598cm -1 or 1690 cm -1 and is B, A barrier laminate film having an area ratio of amide bonds represented by B / A of 0.370 or more.
- barrier laminate film according to any one of the above [1] to [10] A barrier laminate film having a water vapor transmission rate of 4.0 g / (m 2 ⁇ 24 h) or less at 40 ° C. and 90% RH after retorting the barrier laminate film at 130 ° C. for 30 minutes.
- the present invention it is possible to provide a barrier laminate film having excellent barrier properties, particularly barrier properties before and after retorting, and excellent adhesion between the base material layer and the barrier resin layer.
- FIG. 1 is a cross-sectional view schematically showing an example of the structure of a barrier laminate film 100 according to an embodiment of the present invention.
- the barrier laminate film 100 according to this embodiment includes a base layer 101, a stress relaxation layer 102, an inorganic layer 103, and a barrier resin layer 104 in this order.
- the barrier resin layer 104 includes an amide cross-linked product of polycarboxylic acid and polyamine, and the stress relaxation layer 102 includes a polyurethane resin having an aromatic ring structure in the main chain.
- the stress relaxation layer 102 including the polyurethane-based resin having an aromatic ring structure in the main chain between the base material layer 101 and the inorganic material layer 103 obtained. Both the barrier property before and after the retort treatment and the adhesion between the base material layer 101 and the barrier resin layer 104 can be improved in a balanced manner. That is, in the barrier laminate film 100 according to the present embodiment, the retort is provided by including the stress relaxation layer 102 including a polyurethane-based resin having an aromatic ring structure in the main chain between the base material layer 101 and the inorganic layer 103.
- the barrier property before and after the treatment and the adhesion between the base material layer 101 and the barrier resin layer 104 can be effectively improved.
- the barrier laminate film 100 after being retorted at 130 ° C. for 30 minutes.
- the 180 ° peel strength between the base material layer 101 and the barrier resin layer 104 measured at 25 ° C. and a tensile speed of 300 mm / min is P [N / 15 mm]
- the thickness of the stress relaxation layer 102 is T
- P / T is preferably 2.0 or more and 15.0 or less, more preferably 2.0 or more and 13.0 or less.
- P / T can be achieved, for example, by adjusting the constituent material and thickness of the stress relaxation layer 102, the constituent material and thickness of the inorganic layer 103, the constituent material and thickness of the barrier resin layer 104, and the like.
- the water vapor permeability measured under the conditions of a temperature of 40 ° C. and a humidity of 90% RH is 4.0 g / (m 2 ⁇ 24 h) or less. Is preferably 3.5 g / (m 2 ⁇ 24 h) or less, more preferably 3.0 g / (m 2 ⁇ 24 h) or less, and 2.5 g / (m 2 ⁇ 24 h) or less. It is even more preferable that it is 2.0 g / (m 2 ⁇ 24 h) or less.
- Such water vapor permeability can be achieved, for example, by adjusting the constituent material and thickness of the inorganic layer 103, the constituent material and thickness of the barrier resin layer 104, and the like.
- the oxygen permeability measured under conditions of a temperature of 20 ° C. and a humidity of 90% RH is 10.0 ml / (m 2 ⁇ 24 h ⁇ MPa) or less.
- it is 5.0 ml / (m 2 ⁇ 24 h ⁇ MPa) or less, more preferably 3.0 ml / (m 2 ⁇ 24 h ⁇ MPa) or less, and 1.5 ml / (m m 2 ⁇ 24 h ⁇ MPa) or less, and more preferably 1.0 ml / (m 2 ⁇ 24 h ⁇ MPa) or less.
- Such oxygen permeability can be achieved, for example, by adjusting the constituent material and thickness of the inorganic layer 103, the constituent material and thickness of the barrier resin layer 104, and the like.
- the oxygen permeability is measured under the conditions of a temperature of 20 ° C. and a humidity of 90% RH according to JIS K7126.
- the water vapor permeability at 40 ° C. and 90% RH after the barrier laminate film 100 is retorted at 130 ° C. for 30 minutes. It is preferably 4.0 g / (m 2 ⁇ 24 h) or less, more preferably 3.5 g / (m 2 ⁇ 24 h) or less, and 3.0 g / (m 2 ⁇ 24 h) or less. More preferably, it is preferably 2.5 g / (m 2 ⁇ 24 h) or less, and particularly preferably 2.0 g / (m 2 ⁇ 24 h) or less.
- the water vapor permeability of the barrier laminate film 100 after such retorting is, for example, the constituent material and thickness of the stress relaxation layer 102, the constituent material and thickness of the inorganic layer 103, the constituent material and thickness of the barrier resin layer 104, and the like. This can be achieved by adjusting.
- the barrier laminate film 100 from the viewpoint of further improving the oxygen barrier property after the retort treatment, the barrier laminate film is measured under the conditions of a temperature of 20 ° C. and a humidity of 90% RH after the barrier laminate film is retorted at 130 ° C. for 30 minutes.
- the oxygen permeability is preferably 10.0 ml / (m 2 ⁇ 24 h ⁇ MPa) or less, more preferably 5.0 ml / (m 2 ⁇ 24 h ⁇ MPa) or less, 3.0 ml / (M 2 ⁇ 24h ⁇ MPa) or less, more preferably 1.5 ml / (m 2 ⁇ 24h ⁇ MPa) or less, and even more preferably 1.0 ml / (m 2 ⁇ 24h ⁇ MPa) or less.
- the oxygen permeability of the barrier laminate film 100 after such a retort treatment includes, for example, the constituent material and thickness of the stress relaxation layer 102, the constituent material and thickness of the inorganic layer 103, the constituent material and thickness of the barrier resin layer 104, and the like. This can be achieved by adjusting.
- the oxygen permeability is measured under the conditions of a temperature of 20 ° C. and a humidity of 90% RH according to JIS K7126.
- the barrier laminate film 100 is excellent in adhesiveness between the base material layer 101 and the barrier resin layer 104 even after retorting.
- the barrier laminate film 100 after being retorted at 130 ° C. for 30 minutes.
- the 180 ° peel strength P between the base material layer 101 and the barrier resin layer 104 measured at 25 ° C.
- a tensile speed of 300 mm / min is preferably 0.5 N / 15 mm or more, and 0.7 N / 15 mm or more, more preferably 1.0 N / 15 mm or more, even more preferably 1.5 N / 15 mm or more, and particularly preferably 1.8 N / 15 mm or more.
- the 180 ° peel strength P between the base material layer 101 and the barrier resin layer 104 is, for example, the constituent material and thickness of the stress relaxation layer 102, the constituent material and thickness of the inorganic layer 103, and the barrier resin layer 104. This can be achieved by adjusting the constituent material, thickness, and the like.
- the barrier resin layer 104 includes an amide cross-linked product of polycarboxylic acid and polyamine, and can be formed, for example, by heating and curing a mixture including polycarboxylic acid and polyamine.
- the total peak area in the range of the absorption band 1493cm -1 or 1780 cm -1 is A
- the area ratio of the amide bond represented by B / A is preferably 0.370 or more, more preferably 0.400 or more, still more preferably 0.420 or more, and particularly preferably 0. 0 from the viewpoint of barrier properties. 430 or more.
- the upper limit of the area ratio of the amide bond represented by B / A is preferably 0.700 or less, more preferably 0.680 or less, particularly from the viewpoint of further improving the balance of appearance, dimensional stability, and productivity. Preferably it is 0.650 or less.
- the barrier resin layer 104 in which the B / A is equal to or higher than the lower limit value is a mixture containing polycarboxylic acid and polyamine in a specific ratio (hereinafter also referred to as a barrier coating material) under specific heating conditions. It can be obtained by heating.
- the absorption based on ⁇ C ⁇ O of the unreacted carboxylic acid in the infrared absorption spectrum is observed in the vicinity of 1700 cm ⁇ 1 , and the absorption based on ⁇ C ⁇ O of the amide bond which is a crosslinked structure is 1630 to 1685 cm ⁇ 1.
- the total peak area A in the 1780 cm -1 or less in the range absorption band 1493cm -1 or more in the infrared absorption spectrum represent an indication of the total amount of carboxylic acid amide bond with a carboxylic acid salt
- the absorption band 1598cm total peak area B in the range of -1 to 1690 cm -1 or less represents an indication of the presence of the amide bond
- the total peak area C in the following ranges absorption band 1690 cm -1 or more 1780 cm -1, which will be described later unreacted carboxylic acid represents an indication of the abundance
- the total peak area D in the range of less absorption band 1493cm -1 or 1598cm -1 to be described later represents a carboxylate, i.e., an indication of the presence of ionic crosslinking of the carboxyl group and amino group it is
- the total peak areas A to D can be measured by the following procedure. First, a 1 cm ⁇ 3 cm measurement sample is cut out from the barrier resin layer 104. Next, an infrared absorption spectrum of the surface of the barrier resin layer 104 is obtained by infrared total reflection measurement (ATR method). The total peak areas A to D are calculated from the obtained infrared absorption spectrum by the following procedures (1) to (4). (1) 1780 cm connected by -1 and the linear absorbance 1493cm -1 (N), the area surrounded by the absorption spectra and N of the absorption band 1493Cm -1 or 1780 cm -1 or less in the range that the total peak area A.
- a straight line (O) is dropped vertically from the absorbance (Q) at 1690 cm ⁇ 1 , the intersection of N and O is taken as P, and a straight line (S) is dropped vertically from the absorbance (R) at 1598 cm ⁇ 1.
- the intersection S is T, the absorption spectrum and the straight line S of the absorption band 1598cm -1 or 1690 cm -1 or less in the range, the point T, the straight line N, the point P, the straight line O, absorbance Q, the total peak area surrounded by absorbance R It is assumed that area B.
- the measurement of the infrared absorption spectrum of this embodiment is performed using, for example, an IRT-5200 apparatus manufactured by JASCO Corporation, and a PKM-GE-S (Germanium) crystal attached thereto.
- the measurement can be performed under the conditions of 45 degrees, room temperature, resolution of 4 cm ⁇ 1 , and accumulation count of 100 times.
- the barrier resin layer 104 formed of a mixture containing polycarboxylic acid and polyamine has two types of cross-linked structures, ionic cross-linking and amide cross-linking, and the existence ratio of these cross-linked structures is important in terms of improving barrier performance. It is.
- the ionic crosslinking is generated by causing an acid-base reaction between a carboxyl group contained in polycarboxylic acid and an amino group contained in polyamine, and the amide crosslinking is contained in polycarboxylic acid. It is formed by causing a dehydration condensation reaction between a carboxyl group and an amino group contained in the polyamine.
- the scale of the area ratio of the amide bond represented by B / A can be applied.
- the area ratio of the amide bond represented by B / A of the barrier resin layer 104 By controlling the production conditions, it becomes possible to adjust the area ratio of the amide bond represented by B / A of the barrier resin layer 104 to a specific value or more, and the barrier resin layer 104 having such characteristics can be obtained. Barrier properties under both high humidity and after retorting are more effectively exhibited, and the balance of appearance, dimensional stability and productivity is also excellent.
- barrier resin layer 104 in which the area ratio of the amide bond represented by B / A is equal to or higher than the lower limit, oxygen barrier properties under both high humidity and after retort treatment, water vapor A barrier laminate film 100 having an excellent balance of appearance, dimensional stability, and productivity can be obtained while being more excellent in barrier properties.
- barrier resin layer 104 in which the area ratio of amide bonds represented by B / A is within the above range is the above-described ion This is probably because the two types of cross-linking structures, cross-linking and amide cross-linking, form a dense structure with a good balance. That is, if the area ratio of the amide bond represented by B / A is within the above range, it is considered that the two types of cross-linked structures, ionic cross-linking and amide cross-linking, are formed in a well-balanced manner. .
- the area of carboxylic acids ratio represented by C / A is preferably 0.040 or more, more preferably 0.060 or more, and particularly preferably 0.080 or more.
- the upper limit of the area ratio of the carboxylic acid represented by C / A is preferably from the viewpoint of further improving oxygen barrier properties and water vapor barrier properties under both high humidity and after retort treatment. It is 0.500 or less, more preferably 0.450 or less, and particularly preferably 0.400 or less.
- the area of the carboxylate represented by D / A is preferably 0.100 or more, more preferably 0.150 or more, from the viewpoint of further improving the oxygen barrier property and the water vapor barrier property under both conditions of high humidity and after retorting.
- the upper limit of the area ratio of the carboxylate represented by D / A is preferably 0.450 or less, more preferably 0.420 or less, from the viewpoint of further improving the balance of appearance, dimensional stability, and productivity. Especially preferably, it is 0.400 or less.
- the area ratio of the amide bond indicated by B / A, the area ratio of carboxylic acid indicated by C / A, and the area ratio of carboxylate indicated by D / A of the barrier resin layer 104 are It is possible to control by appropriately adjusting the manufacturing conditions.
- the amide bond represented by the above B / A is, in particular, the blending ratio of polycarboxylic acid and polyamine, the method of preparing the barrier coating material, the method of heating treatment of the barrier coating material, the temperature and the time.
- the area ratio of the carboxylic acid represented by C / A and the area ratio of the carboxylic acid salt represented by D / A can be mentioned as factors.
- the barrier resin layer 104 in which the B / A is not less than the lower limit the blending ratio of the polycarboxylic acid and the polyamine, the method for preparing the barrier coating material, the method for the heat treatment of the barrier coating material, It is important to highly control manufacturing conditions such as temperature and time. That is, the barrier resin layer 104 in which the B / A is equal to or higher than the lower limit can be obtained for the first time by a manufacturing method that highly controls various factors relating to the following three conditions.
- (1) Mixing ratio of polycarboxylic acid and polyamine (2) Preparation method of barrier coating material (3) Heat treatment method / temperature / time of barrier coating material
- (the number of moles of —COO— groups contained in the polycarboxylic acid in the barrier coating material) / (the number of moles of amino groups contained in the polyamine in the barrier coating material) is preferably 100 / More than 22, more preferably 100/25 or more, particularly preferably 100/29 or more.
- (the number of moles of —COO— groups contained in the polycarboxylic acid in the barrier coating material) / (the number of moles of amino groups contained in the polyamine in the barrier coating material) is preferably 100/99 or less, more preferably 100/86 or less, and particularly preferably 100/75 or less.
- the barrier resin layer 104 (the number of moles of —COO— groups contained in the polycarboxylic acid in the barrier coating material) / (amino contained in the polyamine in the barrier coating material) It is preferable to adjust the blending ratio of the polycarboxylic acid and the polyamine in the barrier coating material so that the number of moles of the group falls within the above range.
- the polycarboxylic acid according to this embodiment has two or more carboxy groups in the molecule. Specifically, homopolymers of ⁇ , ⁇ -unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, crotonic acid, cinnamic acid, 3-hexenoic acid, 3-hexenedioic acid, or the like A copolymer is mentioned. Further, it may be a copolymer of the above ⁇ , ⁇ -unsaturated carboxylic acid with esters such as ethyl ester, olefins such as ethylene, and the like.
- a homopolymer of acrylic acid, methacrylic acid, itaconic acid, fumaric acid, crotonic acid, cinnamic acid or a copolymer thereof is preferable, and polyacrylic acid, polymethacrylic acid, a copolymer of acrylic acid and methacrylic acid is preferable. More preferably, it is one or two or more polymers selected from polymers, more preferably at least one polymer selected from polyacrylic acid and polymethacrylic acid, and a homopolymer of acrylic acid Particularly preferred is at least one polymer selected from homopolymers of methacrylic acid.
- polyacrylic acid includes both a homopolymer of acrylic acid and a copolymer of acrylic acid and other monomers.
- polyacrylic acid has a structural unit derived from acrylic acid in 100% by mass of the polymer, usually 90% by mass or more, preferably 95% by mass or more. Preferably it contains 99 mass% or more.
- polymethacrylic acid includes both a homopolymer of methacrylic acid and a copolymer of methacrylic acid and other monomers.
- polymethacrylic acid has a structural unit derived from methacrylic acid, usually 90% by mass or more, preferably 95% by mass or more, in 100% by mass of the polymer. Preferably it contains 99 mass% or more.
- the polycarboxylic acid according to this embodiment is a polymer obtained by polymerizing carboxylic acid monomers, and the molecular weight of the polycarboxylic acid is preferably 500 to 2,000,000 from the viewpoint of excellent balance between barrier properties and handleability. 500 to 1,000,000 is more preferable. Further, 5,000 to 500,000 is preferable, and 10,000 to 100,000 is particularly preferable.
- the molecular weight of the polycarboxylic acid is a weight average molecular weight in terms of polyethylene oxide, and can be measured using gel permeation chromatography (GPC).
- the polyamine according to this embodiment is a polymer having two or more amino groups in the main chain, side chain, or terminal.
- Specific examples include aliphatic polyamines such as polyallylamine, polyvinylamine, polyethyleneimine, and poly (trimethyleneimine); polyamides having an amino group in the side chain such as polylysine and polyarginine; and the like.
- the polyamine which modified some amino groups may be sufficient. From the viewpoint of obtaining good barrier properties, polyethyleneimine is more preferable.
- the weight average molecular weight of the polyamine according to the present embodiment is preferably from 50 to 5,000,000, more preferably from 100 to 2,000,000, and from 1,500 to 1 from the viewpoint of excellent balance between barrier properties and handleability. 1,000,000 is more preferable, 1,500 to 500,000 is still more preferable, and 1,500 to 100,000 is particularly preferable.
- the molecular weight of the polyamine can be measured using a boiling point increase method or a viscosity method.
- the barrier coating material can be produced as follows.
- the carboxy group of the polycarboxylic acid is completely or partially neutralized by adding a base to the polycarboxylic acid.
- the polyamine is then added to the polycarboxylic acid in which the carboxy group has been completely or partially neutralized.
- the formation of aggregates of polycarboxylic acid and polyamine can be suppressed, and a uniform barrier coating material can be obtained. Thereby, the dehydration condensation reaction between the —COO— group contained in the polycarboxylic acid and the amino group contained in the polyamine can be promoted more effectively.
- the polycarboxylic acid By neutralizing the polycarboxylic acid with the base according to the present embodiment, gelation can be suppressed when the polyamine and the polycarboxylic acid are mixed. Therefore, in the polycarboxylic acid, it is preferable to use a partially neutralized product or a completely neutralized product of the carboxy group with a base from the viewpoint of preventing gelation.
- the neutralized product can be obtained by partially or completely neutralizing the carboxy group of the polycarboxylic acid with a base (that is, partially or completely converting the carboxy group of the polycarboxylic acid into a carboxylate). . Thereby, when adding a polyamine, gelatinization can be prevented.
- the partially neutralized product is prepared by adding a base to an aqueous solution of a polycarboxylic acid, but a desired degree of neutralization can be achieved by adjusting the amount ratio of the polycarboxylic acid and the base.
- the degree of neutralization of the polycarboxylic acid with the base is preferably 30 to 100 equivalent%, and preferably 40 to 100 equivalent, from the viewpoint of sufficiently suppressing gelation due to the neutralization reaction with the amino group of the polyamine. %, More preferably 50 to 100 equivalent%.
- any water-soluble base can be used as the base.
- Either or both of volatile base and non-volatile base can be used as the water-soluble base, but it is volatile so that it can be easily removed during drying and curing from the viewpoint of suppressing the deterioration of barrier properties due to the remaining free base.
- a base is preferred.
- the volatile base include ammonia, morpholine, alkylamine, 2-dimethylaminoethanol, N-methylmonophorin, tertiary amines such as ethylenediamine and triethylamine, aqueous solutions thereof, and mixtures thereof. From the viewpoint of obtaining good barrier properties, an aqueous ammonia solution is preferred.
- the non-volatile base include sodium hydroxide, lithium hydroxide, potassium hydroxide, an aqueous solution thereof, or a mixture thereof.
- the solid content concentration of the barrier coating material is preferably set to 0.5 to 15% by mass, more preferably 1 to 10% by mass from the viewpoint of improving the coating property.
- the barrier coating material it is preferable to further add a surfactant to the barrier coating material from the viewpoint of preventing the occurrence of repelling during coating.
- the addition amount of the surfactant is preferably 0.01 to 3% by mass, more preferably 0.01 to 1% by mass, when the total solid content of the barrier coating material is 100% by mass.
- surfactant according to this embodiment examples include an anionic surfactant, a nonionic surfactant, a cationic surfactant, an amphoteric surfactant, and the like, from the viewpoint of obtaining good coatability. Therefore, nonionic surfactants are preferable, and polyoxyethylene alkyl ethers are more preferable.
- nonionic surfactants include polyoxyalkylene alkyl aryl ethers, polyoxyalkylene alkyl ethers, polyoxyalkylene fatty acid esters, sorbitan fatty acid esters, silicone surfactants, and acetylene alcohol surfactants. And fluorine-containing surfactants.
- polyoxyalkylene alkylaryl ethers examples include polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene dodecyl phenyl ether, and the like.
- polyoxyalkylene alkyl ethers examples include polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether and polyoxyethylene lauryl ether.
- polyoxyalkylene fatty acid esters include polyoxyethylene oleate, polyoxyethylene laurate, polyoxyethylene distearate, and the like.
- sorbitan fatty acid esters examples include sorbitan laurate, sorbitan monostearate, sorbitan monooleate, sorbitan sesquioleate, polyoxyethylene monooleate, polyoxyethylene stearate and the like.
- silicone surfactants include dimethylpolysiloxane.
- acetylene alcohol surfactants include 2,4,7,9-tetramethyl-5-decyne-4,7-diol, 3,6-dimethyl-4-octyne-3,6-diol, 3, 5-dimethyl-1-hexyn-3-ol and the like can be mentioned.
- fluorine-containing surfactant examples include a fluorine alkyl ester.
- the barrier coating material according to this embodiment may contain other additives as long as the object of the present invention is not impaired.
- various additives such as a lubricant, slip agent, anti-blocking agent, antistatic agent, antifogging agent, pigment, dye, inorganic or organic filler, and polyvalent metal compound may be added.
- the barrier coating material according to the present embodiment is applied to the inorganic layer 103 so that the wet thickness is 0.05 to 300 ⁇ m. It heats and dries with the apparatus used for heat processing.
- the method of drying and heat-treating is not particularly limited as long as the object of the present invention can be achieved, and any method can be used as long as it can cure the barrier coating material or heat the cured barrier coating material.
- convective heat transfer such as oven, dryer, etc.
- due to conductive heat transfer such as heating rolls
- due to radiant heat transfer using electromagnetic waves such as infrared, far infrared or near infrared heaters
- due to internal heat generation such as microwaves Is mentioned.
- an apparatus used for drying and heat treatment an apparatus capable of both drying and heat treatment is preferable from the viewpoint of production efficiency.
- a hot air oven from the viewpoint that it can be used for various purposes such as drying, heating, annealing, etc.
- a heating roll is used from the viewpoint of excellent heat conduction efficiency to the film.
- a hot-air oven and a heating roll may be used in combination. For example, if the barrier coating material is dried with a hot-air oven and then heat-treated with a heating roll, the heat-treatment process is shortened, which is preferable from the viewpoint of production efficiency.
- the heat treatment temperature is 160 to 250 ° C.
- the heat treatment time is 1 second to 30 minutes, preferably the heat treatment temperature is 180 to 240 ° C., and the heat treatment time is 5 Second to 20 minutes, more preferably the heat treatment temperature is 200 ° C. to 230 ° C.
- the heat treatment time is 10 seconds to 15 minutes, more preferably the heat treatment temperature is 200 ° C. to 220 ° C., and the heat treatment time is 15 seconds to 10 minutes.
- the heat treatment can be performed in a short time by using the heating roll in combination.
- the heat treatment temperature and the heat treatment time depend on the wet thickness of the barrier coating material. It is important to adjust.
- the method for applying the barrier coating material according to the present embodiment to the substrate is not particularly limited, and a normal method can be used.
- reverse rolls such as Meyer bar coater, air knife coater, direct gravure coater, gravure offset, arc gravure coater, gravure reverse and jet nozzle type gravure coater, top feed reverse coater, bottom feed reverse coater and nozzle feed reverse coater
- the coating method include a coater, a five-roll coater, a lip coater, a bar coater, a bar reverse coater, a die coater, and an applicator.
- the coating amount (wet thickness) is preferably 0.05 to 300 ⁇ m, more preferably 1 to 200 ⁇ m, and even more preferably 1 to 100 ⁇ m. It can suppress that the barriering laminated film 100 obtained curls that the coating amount is below the said upper limit. Further, when the coating amount is not more than the above upper limit value, the dehydration condensation reaction between the —COO— group contained in the polycarboxylic acid and the amino group contained in the polyamine can be promoted more effectively. Moreover, the barrier performance of the barriering laminated film 100 obtained as a coating amount is more than the said lower limit can be made more favorable.
- the thickness of the barrier resin layer 104 after drying and curing is preferably 0.01 ⁇ m or more and 15 ⁇ m or less, more preferably 0.05 ⁇ m or more and 5.0 ⁇ m or less, more preferably 0.10 ⁇ m or more and 1.0 ⁇ m or less, and 0.10 ⁇ m or more. 0.50 ⁇ m or less is particularly preferable.
- the thickness of the barrier resin layer 104 is not less than the above lower limit, the barrier property can be further improved. Further, when the thickness of the barrier resin layer 104 is not more than the above upper limit value, the followability to an external deformation force becomes better, and the adhesiveness with the base material layer 101 can be made better.
- the thickness of the barrier resin layer 104 within the above range, it is possible to impart better followability to the barrier resin layer 104, and as a result, external deformation is applied to the barrier laminate film 100. However, it becomes more difficult to peel off between the barrier resin layer 104 and the base material layer 101.
- Drying and heat treatment may be performed after drying, or may be performed at the same time.
- the method of drying and heat treatment is not particularly limited as long as the object of the present invention can be achieved, but an oven method is preferable from the viewpoint that it can be used for various purposes such as drying, heating, and annealing.
- a method using a heating roll is particularly preferred from the viewpoint of excellent heat conduction efficiency to the film.
- the barrier resin layer 104 according to the present embodiment is formed by the above-described barrier coating material. After the barrier coating material is applied to the inorganic layer 103, drying and heat treatment are performed, and the barrier coating material is applied. It is obtained by curing.
- Examples of the inorganic substance constituting the inorganic layer 103 include metals, metal oxides, metal nitrides, metal fluorides, and metal oxynitrides that can form a thin film having a barrier property.
- Examples of inorganic substances constituting the inorganic layer 103 include periodic table 2A elements such as beryllium, magnesium, calcium, strontium, and barium; periodic table transition elements such as titanium, zirconium, ruthenium, hafnium, and tantalum; and a periodic table such as zinc.
- Period table 3A element such as aluminum, gallium, indium, thallium
- periodic table 4A element such as silicon, germanium, tin
- simple substance such as 6A group element of periodic table such as selenium, tellurium, oxide, nitriding 1 type, or 2 or more types selected from the thing, fluoride, oxynitride, etc. can be mentioned.
- the family name of the periodic table is shown by the old CAS formula.
- one or two or more kinds of inorganic substances selected from the group consisting of silicon oxide, silicon oxynitride, silicon nitride, aluminum oxide, and aluminum are excellent because of their excellent balance of barrier properties and costs. Is preferred.
- silicon oxide may contain silicon monoxide and silicon suboxide.
- aluminum oxide is particularly preferable because it is excellent in water resistance by retort treatment.
- the inorganic layer 103 is made of the above inorganic material.
- the inorganic layer 103 may be composed of a single inorganic layer or may be composed of a plurality of inorganic layers. Further, when the inorganic layer 103 is composed of a plurality of inorganic layers, it may be composed of the same kind of inorganic layer or may be composed of different kinds of inorganic layers.
- the thickness of the inorganic layer 103 is usually 1 nm or more and 1000 nm or less, preferably 1 nm or more and 500 nm or less, more preferably 1 nm or more and 100 nm or less, and further preferably 1 nm or more and 50 nm from the viewpoint of the balance of barrier properties, adhesion, handling properties, and the like. Hereinafter, it is particularly preferably 1 nm or more and 20 nm or less.
- the thickness of the inorganic layer 103 can be obtained from an observation image obtained by a transmission electron microscope or a scanning electron microscope.
- the formation method of the inorganic layer 103 is not particularly limited, and for example, vacuum deposition, ion plating, sputtering, chemical vapor deposition, physical vapor deposition, chemical vapor deposition (CVD), plasma CVD
- the inorganic layer 103 can be formed on the surface of the stress relaxation layer 102 by a method, a sol-gel method, or the like.
- film formation under reduced pressure such as sputtering, ion plating, chemical vapor deposition (CVD), physical vapor deposition (PVD), and plasma CVD is desirable.
- the chemically active molecular species containing silicon such as silicon nitride and silicon oxynitride can quickly react to improve the surface smoothness of the inorganic layer 103 and reduce the number of holes. It is expected to be. In order to perform these bonding reactions quickly, it is desirable that the inorganic atom or compound is a chemically active molecular species or atomic species.
- the base material layer 101 is made of an organic material such as a thermosetting resin, a thermoplastic resin, or paper, and preferably includes at least one resin selected from a thermosetting resin and a thermoplastic resin.
- thermosetting resin examples include known thermosetting resins such as epoxy resins, unsaturated polyester resins, phenol resins, urea / melamine resins, polyurethane resins, silicone resins, and polyimides.
- thermoplastic resin examples include polyolefin (polyethylene, polypropylene, poly (4-methyl-1-pentene), poly (1-butene), etc.), polyester (polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc.), polyamide (Nylon-6, nylon-66, polymetaxylene adipamide, etc.), polyvinyl chloride, polyvinylidene chloride, polyimide, ethylene vinyl acetate copolymer or saponified product thereof, polyvinyl alcohol, polyacrylonitrile, polycarbonate, polystyrene, ionomer , Known thermoplastic resins such as fluororesin or a mixture thereof.
- the base material layer 101 made of a thermoplastic resin may be a single layer or two or more layers depending on the application of the barrier laminate film 100.
- a film made of at least one resin selected from thermosetting resins and thermoplastic resins may be stretched in at least one direction, preferably biaxially, to form the base material layer 101.
- thermoplastic resins selected from polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyamide, and polyimide are used from the viewpoint of excellent transparency, rigidity, and heat resistance.
- a biaxially stretched film composed of at least one thermoplastic resin selected from polyethylene terephthalate and polyethylene naphthalate is more preferred.
- the base material layer 101 may be subjected to a surface treatment in order to improve adhesion with the stress relaxation layer 102.
- a surface treatment such as corona treatment, flame treatment, plasma treatment, primer coating treatment, ozone treatment, etc. may be performed.
- the thickness of the base material layer 101 is preferably 1 ⁇ m or more and 1000 ⁇ m or less, more preferably 1 ⁇ m or more and 500 ⁇ m or less, and further preferably 1 ⁇ m or more and 300 ⁇ m or less from the viewpoint of obtaining good film properties.
- the shape of the base material layer 101 is not particularly limited, and examples thereof include a sheet, a film, a tray, a cup, and a hollow body.
- the stress relaxation layer 102 is provided on the base material layer 101 from the viewpoint of improving the barrier property after the retort treatment and the adhesion between the base material layer 101 and the inorganic material layer 103. .
- the stress relaxation layer 102 is made of a polyurethane resin having an aromatic ring structure in the main chain.
- the polyurethane-based resin having an aromatic ring structure in the main chain used for the stress relaxation layer 102 can be obtained, for example, as a water-dispersed polyurethane resin by a reaction of a polyol, an organic polyisocyanate, and a chain extender.
- the polyurethane resin according to the present embodiment uses a compound having an aromatic ring structure as at least one of a polyol, an organic polyisocyanate, and a chain extender. Thereby, an aromatic ring structure can be introduced into the main chain of the polyurethane resin.
- the polyurethane resin according to this embodiment has silanol groups. It is preferably a polyurethane-based resin having an aromatic polyester skeleton.
- the aromatic polyester skeleton can be introduced into the main chain of the polyurethane resin by using the aromatic polyester polyol as the polyol.
- polystyrene resin examples include a polymer diol.
- polymer diol examples include polycarbonate diol, polyester diol, polycaprolactone diol, polyether diol, silicone diol, and fluorine diol. A copolymer combining these may be used, or one or two or more may be used in combination. Among these, polyester-based diols are preferable, and aromatic polyester polyols using an aromatic dicarboxylic acid component are more preferable.
- the aromatic dicarboxylic acid component used in the aromatic polyester polyol is not particularly limited, but terephthalic acid and isophthalic acid are preferable, and the alcohol component is not particularly limited, but ethylene glycol, diethylene glycol, and polyethylene glycol are preferable.
- the polyol in addition to the polymer diol, a low molecular weight polyol can be used in combination with the polymer diol.
- low molecular weight polyol examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,4-butanediol, and 2,2-dimethyl-1,3-propane.
- 1,4-dimethanol, trimethylolpropane and glycerin can be used.
- addition products obtained by adding various alkylene oxides to bisphenol A can also be used.
- organic polyisocyanates include isomers of toluylene diisocyanate, aromatic diisocyanates such as 4,4-diphenylmethane diisocyanate, aromatic aliphatic diisocyanates such as xylylene diisocyanate, isophorone diisocyanate, 4,4-dicyclohexylmethane, and the like.
- alicyclic diisocyanates such as diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, aliphatic diisocyanates such as hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, or the above polyisocyanate monomers
- polyisocyanates such as dimers, trimers, biurets, allophanates, etc., which may be used in combination.
- chain extender for example, a known polyamine is used.
- polyamines include ethylenediamine, 1,2-propanediamine, 1,6-hexamethylenediamine, piperazine, 2,5-dimethylpiperazine, isophoronediamine, 4,4'-dicyclohexylmethanediamine, 3,3'-dimethyl- Diamines such as 4,4′-dicyclohexylmethanediamine and 1,4-cyclohexanediamine, polyamines such as diethylenetriamine, dipropylenetriamine, triethylenetetramine, tetraethylenepentamine, hydroxyethylhydrazine, hydroxyethyldiethylenetriamine, 2- [ (2-aminoethyl) amino] ethanol, compounds having an amino group and a hydroxyl group, such as 3-aminopropanediol, hydrazines, acid hydrazides, and further, alcohols as amine chain extenders. It may also be mentioned si
- the alkoxysilyl group-containing amine chain extender is a compound containing at least two active hydrogen groups and an alkoxysilyl group in one molecule.
- Chain extenders can be used alone or in combination.
- the polyurethane resin having an aromatic ring structure in the main chain used for the stress relaxation layer 102 preferably has a hydrophilic group in the molecular structure.
- a hydrophilic group in the molecular structure By having a hydrophilic group in the molecular structure, the dispersion / stability of the water-dispersible polyurethane resin can be improved.
- hydrophilic groups include cationic hydrophilic groups such as quaternary amine salts, anionic hydrophilic groups such as sulfonates and carboxylates, nonionic hydrophilic groups such as polyethylene glycol, and cationic hydrophilic groups. Any hydrophilic group of a combination of a nonionic hydrophilic group and a combination of an anionic hydrophilic group and a nonionic hydrophilic group can be employed.
- a polyol compound having a carboxyl group such as dimethylolpropionic acid or dimethylolbutanoic acid is used as a copolymer component.
- a salt forming agent include trialkylamines such as ammonia, trimethylamine, triethylamine, triisopropylamine, tri-n-propylamine and tri-n-butylamine; N such as N-methylmorpholine and N-ethylmorpholine.
- a water-dispersed polyurethane resin for example, a one-shot method or a prepolymer method is used, and a prepolymer method is preferably used.
- an isocyanate group-terminated prepolymer is obtained by reacting a polyol and an organic polyisocyanate.
- a solvent and a catalyst may be used as appropriate.
- an emulsifier (external emulsifier) is added, and then an appropriate solvent is added and blended. Then, water is added to disperse the isocyanate group-terminated prepolymer in water.
- an isocyanate group-terminated prepolymer may be added to water and dispersed in water.
- a chain extender is added to cause a chain extension reaction. The chain extender can be divided and blended. Thereafter, the solvent is distilled off.
- the water-dispersed polyurethane resin can be obtained as a polyurethane resin aqueous dispersion in which the water-dispersed polyurethane resin is dispersed in water.
- a crosslinking agent may be used in combination for the purpose of improving heat resistance, water resistance, hydrolysis resistance and the like.
- the cross-linking agent may be an external cross-linking agent added as a third component to the water-dispersible polyurethane resin, or an internal cross-linking agent that introduces a reaction point that becomes a cross-linked structure in advance in the molecular structure of the water-dispersible polyurethane resin. But you can.
- the crosslinking agent a compound having an isocyanate group, an oxazoline group, a carbodiimide group, an epoxy group, a melamine resin, a silanol group, or the like can be preferably used, and a compound having a carbodiimide group is more preferable.
- the amount of the compound having a carbodiimide group is preferably 0.1 to 3.0 mol of a carbodiimide group with respect to 1.0 mol of a carboxyl group in the polyurethane resin. The amount is more preferably 0.2 to 2.0 mol, particularly preferably 0.3 to 1.0 mol.
- the absorption band 1705 cm From the viewpoint of improving the barrier property of the barrier laminate film 100 after the retort treatment and the adhesion between the base material layer 101 and the barrier resin layer 104 in the infrared absorption spectrum of the stress relaxation layer 102, the absorption band 1705 cm.
- a 0 / A 1 represents an index of the aromatic ring concentration contained in the polyurethane resin. If the aromatic ring concentration contained in such a polyurethane-based resin is in the above range, it is preferable from the viewpoint of oxygen barrier properties and water vapor barrier properties before and after retorting, and delamination strength before and after retorting.
- the thickness of the stress relaxation layer 102 is 0.05 ⁇ m or more from the viewpoint of improving the barrier property of the barrier laminate film 100 after retorting and the adhesion between the base material layer 101 and the barrier resin layer 104. It is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, and preferably 1.0 ⁇ m or less from the viewpoint of economy, and 0.6 ⁇ m or less. It is more preferable.
- the barrier laminate film 100 may be provided with a heat-sealing layer on at least one surface in order to impart heat sealability.
- the heat fusion layer include homopolymers or copolymers of ⁇ -olefins such as ethylene, propylene, butene-1, hexene-1, 4-methyl-pentene-1, and octene-1; Polyethylene; Linear low density polyethylene (so-called LLDPE); High density polyethylene; Polypropylene; Polypropylene random copolymer; Low crystalline or amorphous ethylene / propylene random copolymer; Ethylene / butene-1 random copolymer; Propylene / butene-1 random copolymer; a layer composed of a resin composition containing one or more polyolefins selected from, etc .; composed of a resin composition containing an ethylene / vinyl acetate copolymer (EVA)
- the barrier laminate film 100 is, for example, a packaging film for packaging foods, pharmaceuticals, daily miscellaneous goods, etc .; a film for vacuum heat insulation panels; a sealing film for sealing electroluminescent elements, solar cells, etc .; Etc. can be suitably used. Since the barrier laminate film 100 is excellent in barrier properties after retorting and adhesion between the base material layer 101 and the barrier resin layer 104, it can be particularly suitably used as a retort food packaging material. .
- the barrier laminate film 100 can also be suitably used as a film constituting the package.
- the package according to the present embodiment is, for example, a packaging bag used for the purpose of filling contents or a bag filled with contents.
- the packaging bag according to the present embodiment may use the barrier laminate film 100 for a part of the packaging bag, or may use the barrier laminate film 100 for the entire packaging bag. Since the package including the barrier laminate film 100 according to this embodiment is excellent in barrier properties after retorting and adhesion between the base material layer 101 and the barrier resin layer 104, the package for retort foods It can be particularly suitably used as a body.
- a nonionic surfactant polyoxyethylene lauryl ether, manufactured by Kao Corporation
- Example 1 A 12- ⁇ m thick biaxially stretched polyethylene terephthalate film (PET12, manufactured by Unitika Co., Ltd.) is used as a base material, and a resin composition having the following composition is applied to one side with a Mayer bar and dried. A 10 ⁇ m stress relaxation layer was formed.
- PET12 biaxially stretched polyethylene terephthalate film
- composition Main agent: Polyurethane resin aqueous dispersion (Mitsui Chemicals, product name: Takelac WS-4032, aromatic polyester type polyurethane resin)
- Crosslinking agent Compound having carbodiimide group (manufactured by Nisshinbo Chemical Co., Ltd., product name: Carbodilite SV-02)
- Blending ratio A crosslinking agent was blended with the main agent so that the carbodiimide group in the crosslinking agent was 0.4 mol with respect to 1.0 mol of the carboxyl group of the polyurethane resin in the main agent.
- the solution (V) is applied to the vapor deposition surface of the aluminum oxide vapor-deposited PET film so that the thickness of the barrier resin layer after drying with an applicator is 0.30 ⁇ m, and the temperature is set using a hot air dryer; Drying was carried out at a temperature of 30 ° C. for 30 seconds, and further heat treatment was performed at a temperature of 215 ° C. for a time of 10 minutes to obtain a barrier laminate film.
- Example 2 A barrier laminate film was obtained in the same manner as in Example 1 except that the thickness of the stress relaxation layer after drying was 0.20 ⁇ m.
- Example 3 A barrier laminate film was obtained in the same manner as in Example 1 except that the thickness after drying of the stress relaxation layer was 0.40 ⁇ m.
- Example 4 A barrier laminate film was obtained in the same manner as in Example 1 except that the product name Takelac WS-4031 (aromatic polyester type polyurethane resin) manufactured by Mitsui Chemicals, Inc. was used as the polyurethane resin aqueous dispersion for forming the stress relaxation layer. It was.
- the product name Takelac WS-4031 aromatic polyester type polyurethane resin manufactured by Mitsui Chemicals, Inc.
- Example 5 A barrier laminate film was obtained in the same manner as in Example 4 except that the thickness of the stress relaxation layer after drying was 0.20 ⁇ m.
- Example 6 A barrier laminate film was obtained in the same manner as in Example 4 except that the thickness of the stress relaxation layer after drying was 0.40 ⁇ m.
- the aluminum oxide vapor-deposited PET film was coated on the vapor-deposited surface with an applicator so that the thickness of the barrier resin layer after drying was 0.30 ⁇ m, and using a hot air dryer, temperature: 100 ° C., time: 30 seconds The film was further dried at a temperature of 215 ° C. for a time of 10 minutes to obtain a barrier laminated film.
- a barrier laminated film was prepared in the same manner as in Example 1 except that the resin composition having the following composition was used and the thickness of the stress relaxation layer after drying was 0.05 ⁇ m. Obtained.
- composition Main agent: polyurethane resin aqueous dispersion (Mitsui Chemicals, product name: Takelac WS-4022, aliphatic polyester polyurethane resin)
- Crosslinking agent Isocyanate compound (Mitsui Chemicals, product name: WD-725)
- Blending ratio The crosslinking agent was blended with the main agent so that the isocyanate group in the crosslinking agent was 1.0 mol with respect to 1.0 mol of the hydroxyl group of the polyurethane resin in the main agent.
- Comparative Example 4 A barrier laminated film was obtained in the same manner as in Comparative Example 3 except that acrylic polyol (product name: Cotax LH-635, manufactured by Toray Fine Chemical Co., Ltd.) was used as the main component of the resin composition when forming the stress relaxation layer. .
- acrylic polyol product name: Cotax LH-635, manufactured by Toray Fine Chemical Co., Ltd.
- Non-stretched polyethylene film with a thickness of 50 ⁇ m product name: TUX FCS
- ester adhesive polyester adhesive (Mitsui Chemical Polyurethane Co., Ltd., product) Name: Takelac A310): 12 parts by mass, an isocyanate curing agent (trade name: Takenate A3 manufactured by Mitsui Chemicals Polyurethanes Co., Ltd .: 1 part by mass and 7 parts by mass of ethyl acetate) were applied. After drying, bonding with the amide crosslinked film surface (dry lamination) and a multilayer film (sample for measuring physical properties before retort) were obtained.
- Oxygen permeability [ml / (m 2 ⁇ 24 h ⁇ MPa)]
- the multilayer film obtained by the above method was measured under the conditions of a temperature of 20 ° C. and a humidity of 90% RH according to JIS K7126 using OX-TRAN2 / 21 manufactured by Mocon.
- the obtained multilayer film is overlapped so that the unstretched polypropylene film becomes the inner surface, the barrier laminate film is folded back, heat-sealed in three directions, formed into a bag, and then put calcium chloride as the contents, and the other one
- a bag was prepared by heat sealing so that the surface area was 0.01 m 2, and left for 300 hours under the conditions of 40 ° C. and 90% RH, and the water vapor permeability was measured by the weight difference.
- IR area ratio of barrier resin layer Infrared absorption spectrum measurement (infrared total reflection measurement: ATR method) was performed using an IRT-5200 apparatus manufactured by JASCO Corporation, and a PKM-GE-S (Germanium) crystal was mounted. The measurement was performed under the conditions of an incident angle of 45 degrees, room temperature, resolution of 4 cm ⁇ 1 , and integration count of 100 times. The obtained absorption spectrum was analyzed by the method described above, and the total peak areas A to D were calculated. Then, the area ratios B / A, C / A, and D / A were determined from the total peak areas A to D.
- IR peak height ratio of stress relaxation layer (A 0 / A 1 )
- a polyurethane resin aqueous dispersion is applied to the aluminum oxide deposition surface of a 12 ⁇ m thick PET film on which aluminum oxide has been deposited with a bar coater so that the dry thickness is about 2 ⁇ m, and then heated for 1 minute in a 110 ° C. drier.
- the polyurethane resin aqueous dispersion was dried to form a stress relaxation layer. Subsequently, the infrared absorption spectrum of the stress relaxation layer surface was measured by infrared total reflection measurement (ATR method).
- the peak height from the base line of the maximum peak in the range of the absorption band 1705 cm -1 or 1735 cm -1 to (absorbance) and A 1, of the maximum peak in the range of the absorption band 715 cm -1 or more 745Cm -1 peak height from the base line (absorbance) and a 0, was calculated a 0 / a 1.
- the barrier laminate films obtained in the examples were compared with the laminate films obtained in the comparative examples, the oxygen barrier property before and after the retort treatment, the water vapor barrier property, and the substrate layer and the barrier resin layer before and after the retort treatment. Excellent balance of adhesion between layers.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Food Science & Technology (AREA)
- Ceramic Engineering (AREA)
- Laminated Bodies (AREA)
- Wrappers (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
Description
しかしながら、この無機物層は摩擦等に対して弱く、このようなバリア性積層フィルムは、後加工の印刷時、ラミネート時または内容物の充填時等に、擦れや伸びにより無機物層にクラックが入りバリア性が低下することがある。
そのため、無機物層上にさらにバリア層である有機物層を積層したバリア性積層フィルムも用いられている。
このようなバリア性積層フィルムに関する技術としては、例えば、特許文献1(特開2005-225940号公報)および特許文献2(特開2014-184678号公報)に記載のものが挙げられる。
ポリカルボン酸およびポリアミンを含む混合物により形成されたバリア性樹脂層を備えるバリア性積層フィルムは、ポリアミンとポリカルボン酸によって形成されたアミド架橋構造により優れたバリア性を有するものの、より安定した性能の確保の観点から特にレトルト処理後における水蒸気バリア性や酸素バリア性のさらなる向上が求められている。
さらに、ポリカルボン酸およびポリアミンを含む混合物により形成されたバリア性樹脂層を備えるバリア性積層フィルムは、レトルト処理後において、安定的な性能の確保の観点から外的な変形に対する追従性のさらなる向上が求められている。
基材層と、応力緩和層と、無機物層と、バリア性樹脂層と、をこの順番に備えるバリア性積層フィルムであって、
上記バリア性樹脂層がポリカルボン酸とポリアミンとのアミド架橋物を含み、
上記応力緩和層が芳香族環構造を主鎖に有するポリウレタン系樹脂を含むバリア性積層フィルム。
[2]
上記[1]に記載のバリア性積層フィルムにおいて、
当該バリア性積層フィルムを130℃で30分間レトルト処理した後の、25℃、引張速度300mm/分の条件で測定される上記基材層と上記バリア性樹脂層との間の180°剥離強度Pが0.5N/15mm以上であるバリア性積層フィルム。
[3]
上記[1]または[2]に記載のバリア性積層フィルムにおいて、
当該バリア性積層フィルムを130℃で30分間レトルト処理した後の、25℃、引張速度300mm/分の条件で測定される上記基材層と上記バリア性樹脂層との間の180°剥離強度をP[N/15mm]とし、
上記応力緩和層の厚みをT[μm]としたとき、
P/Tが2.0以上15.0以下であるバリア性積層フィルム。
[4]
上記[1]乃至[3]のいずれか一つに記載のバリア性積層フィルムにおいて、
上記応力緩和層の厚みが0.05μm以上1.0μm以下であるバリア性積層フィルム。
[5]
上記[1]乃至[4]のいずれか一つに記載のバリア性積層フィルムにおいて、
40℃、90%RHでの水蒸気透過度が4.0g/(m2・24h)以下であるバリア性積層フィルム。
[6]
上記[1]乃至[5]のいずれか一つに記載のバリア性積層フィルムにおいて、
20℃、90%RHでの酸素透過度が10.0ml/(m2・24h・MPa)以下であるバリア性積層フィルム。
[7]
上記[1]乃至[6]のいずれか一つに記載のバリア性積層フィルムにおいて、
上記応力緩和層の赤外線吸収スペクトルにおいて、吸収帯1705cm-1以上1735cm-1以下の範囲における最大ピークA1に対する吸収帯715cm-1以上745cm-1以下の範囲における最大ピークA0の比(A0/A1)が0.20以上0.90以下であるバリア性積層フィルム。
[8]
上記[1]乃至[7]のいずれか一つに記載のバリア性積層フィルムにおいて、
上記ポリウレタン系樹脂が芳香族ポリエステル骨格を含むバリア性積層フィルム。
[9]
上記[1]乃至[8]のいずれか一つに記載のバリア性積層フィルムにおいて、
上記無機物層が、酸化ケイ素、酸化窒化ケイ素、窒化ケイ素、酸化アルミニウムおよびアルミニウムからなる群から選択される一種または二種以上の無機物を含むバリア性積層フィルム。
[10]
上記[1]乃至[9]のいずれか一つに記載のバリア性積層フィルムにおいて、
上記バリア性樹脂層の赤外線吸収スペクトルにおいて、
吸収帯1493cm-1以上1780cm-1以下の範囲における全ピーク面積をAとし、
吸収帯1598cm-1以上1690cm-1以下の範囲における全ピーク面積をBとしたとき、
B/Aで示されるアミド結合の面積比率が0.370以上であるバリア性積層フィルム。
[11]
上記[1]乃至[10]のいずれか一つに記載のバリア性積層フィルムにおいて、
当該バリア性積層フィルムを130℃で30分間レトルト処理した後の、40℃、90%RHでの水蒸気透過度が4.0g/(m2・24h)以下であるバリア性積層フィルム。
[12]
上記[1]乃至[11]のいずれか一つに記載のバリア性積層フィルムにおいて、
上記バリア性樹脂層の厚みが0.01μm以上15μm以下であるバリア性積層フィルム。
[13]
上記[1]乃至[12]のいずれか一つに記載のバリア性積層フィルムにおいて、
当該バリア性積層フィルムを130℃で30分間レトルト処理した後の、20℃、90%RHでの酸素透過度が、10.0ml/(m2・24h・MPa)以下であるバリア性積層フィルム。
[14]
上記[1]乃至[13]のいずれか一つに記載のバリア性積層フィルムにおいて、
レトルト食品用包装材に用いられるバリア性積層フィルム。
図1は、本発明に係る実施形態のバリア性積層フィルム100の構造の一例を模式的に示した断面図である。
本実施形態に係るバリア性積層フィルム100は、基材層101と、応力緩和層102と、無機物層103と、バリア性樹脂層104と、をこの順番に備える。そして、バリア性樹脂層104がポリカルボン酸とポリアミンとのアミド架橋物を含み、応力緩和層102には芳香族環構造を主鎖に有するポリウレタン系樹脂を含む。
すなわち、本実施形態に係るバリア性積層フィルム100において、基材層101と無機物層103との間に芳香族環構造を主鎖に有するポリウレタン系樹脂を含む応力緩和層102を備えることにより、レトルト処理前後におけるバリア性および基材層101とバリア性樹脂層104との層間の接着性を効果的に向上させることができる。
以上から、本実施形態によれば、レトルト処理後におけるバリア性に優れながら、基材層とバリア性樹脂層との層間の接着性にも優れたバリア性積層フィルム100を実現することができる。
このようなP/Tは、例えば、応力緩和層102の構成材料や厚み、無機物層103の構成材料や厚み、バリア性樹脂層104の構成材料や厚み等を調整することにより達成できる。
このような水蒸気透過度は、例えば、無機物層103の構成材料や厚み、バリア性樹脂層104の構成材料や厚み等を調整することにより達成できる。
このような酸素透過度は、例えば、無機物層103の構成材料や厚み、バリア性樹脂層104の構成材料や厚み等を調整することにより達成できる。
なお、酸素透過度は、JIS K7126に準じ、温度20℃、湿度90%RHの条件で測定する。
このようなレトルト処理後におけるバリア性積層フィルム100の水蒸気透過度は、例えば、応力緩和層102の構成材料や厚み、無機物層103の構成材料や厚み、バリア性樹脂層104の構成材料や厚み等を調整することにより達成できる。
このようなレトルト処理後におけるバリア性積層フィルム100の酸素透過度は、例えば、応力緩和層102の構成材料や厚み、無機物層103の構成材料や厚み、バリア性樹脂層104の構成材料や厚み等を調整することにより達成できる。なお、酸素透過度は、JIS K7126に準じ、温度20℃、湿度90%RHの条件で測定する。
このような基材層101とバリア性樹脂層104との間の180°剥離強度Pは、例えば、応力緩和層102の構成材料や厚み、無機物層103の構成材料や厚み、バリア性樹脂層104の構成材料や厚み等を調整することにより達成できる。
本実施形態に係るバリア性樹脂層104はポリカルボン酸とポリアミンとのアミド架橋物を含み、例えばポリカルボン酸およびポリアミンを含む混合物を加熱して硬化させることにより形成することができる。
バリア性樹脂層104は赤外線吸収スペクトルにおける未反応のカルボン酸のνC=Oに基づく吸収が1700cm-1付近にみられ、架橋構造であるアミド結合のνC=Oに基づく吸収が1630~1685cm-1付近にみられ、カルボン酸塩のνC=Oに基づく吸収が1540~1560cm-1付近にみられる。
すなわち、本実施形態において、赤外線吸収スペクトルにおける吸収帯1493cm-1以上1780cm-1以下の範囲における全ピーク面積Aは、カルボン酸とアミド結合とカルボン酸塩の合計量の指標を表し、吸収帯1598cm-1以上1690cm-1以下の範囲における全ピーク面積Bはアミド結合の存在量の指標を表し、後述する吸収帯1690cm-1以上1780cm-1以下の範囲における全ピーク面積Cは未反応のカルボン酸の存在量の指標を表し、後述する吸収帯1493cm-1以上1598cm-1以下の範囲における全ピーク面積Dはカルボン酸塩、すなわちカルボキシル基とアミノ基のイオン架橋の存在量の指標を表していると考えられる。
まず、バリア性樹脂層104から1cm×3cmの測定用サンプルを切り出す。次いで、そのバリア性樹脂層104の表面の赤外線吸収スペクトルを赤外線全反射測定(ATR法)により得る。得られた赤外線吸収スペクトルから、以下の手順(1)~(4)で上記全ピーク面積A~Dを算出する。
(1)1780cm-1と1493cm-1の吸光度を直線(N)で結び、吸収帯1493cm-1以上1780cm-1以下の範囲の吸光スペクトルとNで囲まれる面積を全ピーク面積Aとする。
(2)1690cm-1の吸光度(Q)から垂直に直線(O)を下ろし、NとOの交差点をPとし、1598cm-1の吸光度(R)から垂直に直線(S)を下ろし、NとSの交差点をTとし、吸収帯1598cm-1以上1690cm-1以下の範囲の吸収スペクトルと直線S、点T、直線N、点P、直線O、吸光度Q、吸光度Rで囲まれる面積を全ピーク面積Bとする。
(3)吸収帯1690cm-1以上1780cm-1以下の範囲の吸収スペクトルと吸光度Q、直線O,点P、直線Nで囲まれる面積を全ピーク面積Cとする。
(4)吸収帯1493cm-1以上1598cm-1以下の範囲の吸収スペクトルと吸光度R、直線S、点T、直線Nで囲まれる面積を全ピーク面積Dとする。
次いで、上記の方法で求めた面積から面積比B/A、C/A、D/Aを求める。
なお、本実施形態の赤外線吸収スペクトルの測定(赤外線全反射測定:ATR法)は、例えば、日本分光社製IRT-5200装置を用い、PKM-GE-S(Germanium)結晶を装着して入射角度45度、室温、分解能4cm-1、積算回数100回の条件で行うことができる。
そこで、高湿度下およびレトルト処理後での双方の条件下での酸素バリア性、水蒸気バリア性等のバリア性能を向上させつつ、外観、寸法安定性、生産性の性能バランスを向上させるための設計指針として、上記B/Aで示されるアミド結合の面積比率という尺度を適用できる。製造条件を制御することにより、バリア性樹脂層104の上記B/Aで示されるアミド結合の面積比率を特定値以上に調整することが可能となり、このような特性を有するバリア性樹脂層104は高湿度下およびレトルト処理後での双方の条件下でのバリア性がより効果的に発現し、さらに外観、寸法安定性、生産性のバランスにも優れている。
すなわち、B/Aで示されるアミド結合の面積比率が上記下限値以上であるバリア性樹脂層104を用いることにより、高湿度下およびレトルト処理後での双方の条件下での酸素バリア性、水蒸気バリア性により一層優れながら、外観、寸法安定性、生産性のバランスにも優れるバリア性積層フィルム100を得ることができる。
すなわち、上記B/Aで示されるアミド結合の面積比率が上記範囲内であることは、イオン架橋とアミド架橋という2種類の架橋構造がバランス良く形成していることを意味していると考えられる。
また、上記C/Aで示されるカルボン酸の面積比率の上限は、高湿度下およびレトルト処理後での双方の条件下での酸素バリア性、水蒸気バリア性をより一層向上させる観点から、好ましくは0.500以下、より好ましくは0.450以下、特に好ましくは0.400以下である。
また、上記D/Aで示されるカルボン酸塩の面積比率の上限は、外観、寸法安定性、生産性のバランスをより向上させる観点から、好ましくは0.450以下、より好ましくは0.420以下、特に好ましくは0.400以下である。
(1)ポリカルボン酸およびポリアミンの配合比率
(2)バリア用塗材の調製方法
(3)バリア用塗材の加熱処理の方法・温度・時間
まず、(1)ポリカルボン酸およびポリアミンの配合比率について説明する。
本実施形態において、(バリア用塗材中のポリカルボン酸に含まれる-COO-基のモル数)/(バリア用塗材中のポリアミンに含まれるアミノ基のモル数)は、好ましくは100/22超、より好ましくは100/25以上、特に好ましくは100/29以上である。
一方、本実施形態において、(バリア用塗材中のポリカルボン酸に含まれる-COO-基のモル数)/(バリア用塗材中のポリアミンに含まれるアミノ基のモル数)は、好ましくは100/99以下、より好ましくは100/86以下、特に好ましくは100/75以下である。本実施形態に係るバリア性樹脂層104を得るためには、(バリア用塗材中のポリカルボン酸に含まれる-COO-基のモル数)/(バリア用塗材中のポリアミンに含まれるアミノ基のモル数)が上記範囲内になるように、バリア用塗材中のポリカルボン酸およびポリアミンの配合比率を調整することが好ましい。
本実施形態に係るポリカルボン酸は、分子内に2個以上のカルボキシ基を有するものである。具体的には、アクリル酸、メタクリル酸、イタコン酸、フマル酸、クロトン酸、桂皮酸、3-ヘキセン酸、3-ヘキセン二酸等のα,β-不飽和カルボン酸の単独重合体またはこれらの共重合体が挙げられる。また、上記α,β-不飽和カルボン酸と、エチルエステル等のエステル類、エチレン等のオレフィン類等との共重合体であってもよい。
これらの中でも、アクリル酸、メタクリル酸、イタコン酸、フマル酸、クロトン酸、桂皮酸の単独重合体またはこれらの共重合体が好ましく、ポリアクリル酸、ポリメタクリル酸、アクリル酸とメタクリル酸との共重合体から選択される一種または二種以上の重合体であることがより好ましく、ポリアクリル酸、ポリメタクリル酸から選択される少なくとも一種の重合体であることがさらに好ましく、アクリル酸の単独重合体、メタクリル酸の単独重合体から選択される少なくとも一種の重合体であることが特に好ましい。
ここで、本実施形態において、ポリアクリル酸とは、アクリル酸の単独重合体、アクリル酸と他のモノマーとの共重合体の両方を含む。アクリル酸と他のモノマーとの共重合体の場合、ポリアクリル酸は、重合体100質量%中に、アクリル酸由来の構成単位を、通常は90質量%以上、好ましくは95質量%以上、より好ましくは99質量%以上含む。
また、本実施形態において、ポリメタクリル酸とは、メタクリル酸の単独重合体、メタクリル酸と他のモノマーとの共重合体の両方を含む。メタクリル酸と他のモノマーとの共重合体の場合、ポリメタクリル酸は、重合体100質量%中に、メタクリル酸由来の構成単位を、通常は90質量%以上、好ましくは95質量%以上、より好ましくは99質量%以上含む。
ここで、本実施形態において、ポリカルボン酸の分子量はポリエチレンオキサイド換算の重量平均分子量であり、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定することができる。
本実施形態に係るポリアミンは、主鎖あるいは側鎖あるいは末端にアミノ基を2つ以上有するポリマーである。具体的には、ポリアリルアミン、ポリビニルアミン、ポリエチレンイミン、ポリ(トリメチレンイミン)等の脂肪族系ポリアミン類;ポリリジン、ポリアルギニンのように側鎖にアミノ基を有するポリアミド類;等が挙げられる。また、アミノ基の一部を変性したポリアミンでもよい。良好なバリア性を得る観点から、ポリエチレンイミンがより好ましい。
ここで、本実施形態において、ポリアミンの分子量は沸点上昇法や粘度法を用いて測定することができる。
部分中和物は、ポリカルボン酸の水溶液に塩基を添加することにより調製するが、ポリカルボン酸と塩基の量比を調節することにより、所望の中和度とすることができる。本実施形態においてはポリカルボン酸の塩基による中和度は、ポリアミンのアミノ基との中和反応に起因するゲル化を十分に抑制する観点から、30~100当量%が好ましく、40~100当量%、さらには50~100当量%がより好ましい。
揮発性塩基としては、例えば、アンモニア、モルホリン、アルキルアミン、2-ジメチルアミノエタノール、N-メチルモノホリン、エチレンジアミン、トリエチルアミン等の三級アミンまたはこれらの水溶液、あるいはこれらの混合物が挙げられる。良好なバリア性を得る観点から、アンモニア水溶液が好ましい。
不揮発性塩基としては、例えば、水酸化ナトリウム、水酸化リチウム、水酸化カリウムまたはこれらの水溶液、あるいはこれらの混合物が挙げられる。
ポリオキシアルキレンアルキルエーテル類としては、例えば、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンラウリルエーテル等のポリオキシエチレンアルキルエーテル類を挙げることができる。
ポリオキシアルキレン脂肪酸エステル類としては、例えば、ポリオキシエチレンオレイン酸エステル、ポリオキシエチレンラウリン酸エステル、ポリオキシエチレンジステアリン酸エステル等を挙げることができる。
ソルビタン脂肪酸エステル類としては、例えば、ソルビタンラウレート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタンセスキオレート、ポリオキシエチレンモノオレエート、ポリオキシエチレンステアレート等を挙げることができる。
シリコーン系界面活性剤としては、例えば、ジメチルポリシロキサン等を挙げることができる。
アセチレンアルコール系界面活性剤としては、例えば、2,4,7,9-テトラメチル-5-デシン-4,7-ジオール、3,6-ジメチル-4-オクチン-3,6-ジオール、3,5-ジメチル-1-ヘキシン-3オール等を挙げることができる。
含フッ素系界面活性剤としては、例えば、フッ素アルキルエステル等を挙げることができる。
本実施形態に係るバリア性樹脂層104を得るためには、ポリカルボン酸に含まれる-COO-基とポリアミンに含まれるアミノ基との脱水縮合反応を効果的に進めることが可能な、バリア用塗材の加熱処理の方法・温度・時間を採用することが好ましい。具体的には、バリア用塗材の塗工量、加熱処理に使用する装置の種類、加熱処理温度、加熱処理時間等の各因子を高度に制御して組み合わせることが重要となる。本実施形態に係るバリア性樹脂層104を製造するためには、例えば、本実施形態に係るバリア用塗材を無機物層103にウエット厚みが0.05~300μmになるように塗布し、公知の加熱処理に使用する装置により、加熱して乾燥する。
乾燥、加熱処理する方法は、本発明の目的を達することができる限り特に限定されないが、バリア用塗材を硬化させられるもの、硬化したバリア用塗材を加熱できる方法であればよい。例えば、オーブン、ドライヤー等の対流伝熱によるもの、加熱ロール等の伝導伝熱によるもの、赤外線、遠赤外線・近赤外線のヒーター等の電磁波を用いる輻射伝熱によるもの、マイクロ波等内部発熱によるものが挙げられる。乾燥、加熱処理に使用する装置としては製造効率の観点から乾燥と加熱処理の双方を行える装置が好ましい。その中でも具体的には乾燥、加熱、アニーリング等の種々の目的に利用できるという観点から熱風オーブンを用いることが好ましく、また、フィルムへの熱伝導効率に優れているという観点から加熱ロールを用いることが好ましい。
また、乾燥、加熱処理に使用する方法を適宜組み合わせてもよい。熱風オーブンと加熱ロールを併用してもよく例えば、熱風オ―ブンでバリア用塗材を乾燥後、加熱ロールで加熱処理を行えば加熱処理工程が短時間となり製造効率の観点から好ましい。また、熱風オーブンのみで乾燥と加熱処理を行うことが好ましい。熱風オーブンを用いて、バリア用塗材を乾燥させる場合、加熱処理温度は160~250℃、加熱処理時間は1秒~30分、好ましくは加熱処理温度が180~240℃、加熱処理時間が5秒~20分、より好ましく加熱処理温度が200℃~230℃、加熱処理時間が10秒~15分、さらに好ましくは加熱処理温度が200℃~220℃、加熱処理時間が15秒~10分の条件で加熱処理をおこなうことが望ましい。
さらに上述したように加熱ロールを併用することで短時間での加熱処理が可能となる。なお、ポリカルボン酸に含まれる-COO-基とポリアミンに含まれるアミノ基との脱水縮合反応を効果的に進める観点から、加熱処理温度および加熱処理時間はバリア用塗材のウエット厚みに応じて調整することが重要である。
塗工量が上記上限値以下であると、得られるバリア性積層フィルム100がカールすることを抑制できる。また、塗工量が上記上限値以下であると、ポリカルボン酸に含まれる-COO-基とポリアミンに含まれるアミノ基との脱水縮合反応をより効果的に進めることが可能となる。
また、塗工量が上記下限値以上であると、得られるバリア性積層フィルム100のバリア性能をより良好なものとすることができる。
バリア性樹脂層104の厚さが上記下限値以上であるとバリア性をより良好にすることができる。また、バリア性樹脂層104の厚さが上記上限値以下であると、外的な変形力に対する追従性がより良好になり、基材層101との接着性をより良好にすることができる。すなわち、バリア性樹脂層104の厚さを上記範囲内とすることにより、バリア性樹脂層104により良好な追従性を付与することができ、結果としてバリア性積層フィルム100に外的な変形を加えてもバリア性樹脂層104と基材層101との層間でより剥離しにくくなる。
無機物層103を構成する無機物は、例えば、バリア性を有する薄膜を形成できる金属、金属酸化物、金属窒化物、金属弗化物、金属酸窒化物等が挙げられる。
無機物層103を構成する無機物としては、例えば、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等の周期表2A族元素;チタン、ジルコニウム、ルテニウム、ハフニウム、タンタル等の周期表遷移元素;亜鉛等の周期表2B族元素;アルミニウム、ガリウム、インジウム、タリウム等の周期表3A族元素;ケイ素、ゲルマニウム、錫等の周期表4A族元素;セレン、テルル等の周期表6A族元素等の単体、酸化物、窒化物、弗化物、または酸窒化物等から選択される一種または二種以上を挙げることができる。
なお、本実施形態では、周期表の族名は旧CAS式で示している。
なお、酸化ケイ素には、二酸化ケイ素の他、一酸化ケイ素、亜酸化ケイ素が含有されていてもよい。
上記無機物の中でも、酸化アルミニウムはレトルト処理による耐水性にも優れることから特に好ましい。酸化アルミニウムは、アルミニウム(Al)と酸素(O)の存在比(モル比)は、Al:O=1:1.5~1:2.0であることが好ましい。
本実施形態において、無機物層103の厚さは、透過型電子顕微鏡や走査型電子顕微鏡による観察画像により求めることができる。
これらの結合反応を迅速に行うには、その無機原子や化合物が化学的に活性な分子種もしくは原子種であることが望ましい。
基材層101は、例えば、熱硬化性樹脂、熱可塑性樹脂、紙等の有機質材料により形成されており、熱硬化性樹脂および熱可塑性樹脂から選択される少なくとも一種の樹脂を含むことが好ましい。
これらの中でも、透明性を良好にする観点から、ポリプロピレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、およびポリイミドから選択される一種または二種以上が好ましく、ポリエチレンテレフタレートおよびポリエチレンナフタレートから選択される少なくとも一種がより好ましい。
また、熱可塑性樹脂により構成された基材層101は、バリア性積層フィルム100の用途に応じて、単層であっても、二層以上であってもよい。
バリア性積層フィルム100において、レトルト処理後におけるバリア性および基材層101と無機物層103との間の接着性を良好にする観点から、基材層101上に応力緩和層102が設けられている。基材層101と無機物層103との間に応力緩和層102を設けることによりバリア性樹脂層104の追従性がさらに向上し外的な変形が加えられてもバリア性積層フィルム100においてバリア性樹脂層104はより安定的な接着状態を保つことができる。
応力緩和層102は芳香族環構造を主鎖に有するポリウレタン系樹脂により構成されている。
また、上記ポリウレタン系樹脂にシラノール基を導入することが、耐水性、耐熱性、密着性等の観点からさらに好ましい。
本実施形態に係るポリウレタン系樹脂は、レトルト処理後におけるバリア性積層フィルム100のバリア性および基材層101とバリア性樹脂層104との層間の接着性をより良好にする観点から、シラノール基を有するポリウレタン系樹脂であることが好ましく、芳香族ポリエステル骨格を含むことがさらに好ましい。
ここで、芳香族ポリエステル骨格は、ポリオールとして芳香族ポリエステルポリオールを用いることにより、ポリウレタン系樹脂の主鎖に導入することができる。
芳香族ポリエステルポリオールに使用する芳香族ジカルボン酸成分は特に限定されないが、テレフタル酸やイソフタル酸が好ましく、アルコール成分も特に限定されないが、エチレングリコールやジエチレングリコール、ポリエチレングリコールが好ましい。
また、ポリオールとしては、ポリマージオール以外に、低分子量ポリオールをポリマージオールと併用することができる。
その後、鎖伸長剤を配合して、鎖伸長反応させる。なお、鎖伸長剤は、分割して配合することもできる。
その後、溶媒を留去させる。
これにより、水分散型ポリウレタン系樹脂を、水分散型ポリウレタン系樹脂が水分散されたポリウレタン樹脂水分散液として得ることができる。
ここで、A0/A1はポリウレタン系樹脂に含まれる芳香環濃度の指標を表している。かかるポリウレタン系樹脂に含まれる芳香環濃度が上記の範囲であればレトルト処理前後の酸素バリア性および水蒸気バリア性、ならびにレトルト処理前後の層間剥離強度の観点から好ましい。
本実施形態に係るバリア性積層フィルム100は、ヒートシール性を付与するために、少なくとも片面に熱融着層を設けてもよい。
熱融着層としては、例えば、エチレン、プロピレン、ブテン-1、ヘキセン-1、4-メチル-ペンテン-1、オクテン-1等のα-オレフィンの単独重合体若しくは共重合体;高圧法低密度ポリエチレン;線状低密度ポリエチレン(所謂LLDPE);高密度ポリエチレン;ポリプロピレン;ポリプロピレンランダム共重合体;低結晶性あるいは非晶性のエチレン・プロピレンランダム共重合体;エチレン・ブテン-1ランダム共重合体;プロピレン・ブテン-1ランダム共重合体;等から選択される一種または二種以上のポリオレフィンを含む樹脂組成物により構成される層;エチレン・酢酸ビニル共重合体(EVA)を含む樹脂組成物により構成される層;EVAおよびポリオレフィンを含む樹脂組成物により構成される層等が挙げられる。
バリア性積層フィルム100は、例えば、食品、医薬品、日常雑貨等を包装するための包装用フィルム;真空断熱パネル用フィルム;エレクトロルミネセンス素子、太陽電池等を封止するための封止用フィルム;等として好適に使用することができる。バリア性積層フィルム100は、レトルト処理後におけるバリア性および基材層101とバリア性樹脂層104との層間の接着性に優れていることから、レトルト食品用包装材として特に好適に用いることができる。
本実施形態に係るバリア性積層フィルム100を含む包装体は、レトルト処理後におけるバリア性および基材層101とバリア性樹脂層104との層間の接着性に優れていることから、レトルト食品用包装体として特に好適に用いることができる。
ポリアクリル酸アンモニウム(東亜合成株式会社製、製品名:アロンA-30、30質量%水溶液、分子量:100,000)の混合物に精製水を添加して10質量%溶液にしたポリアクリル酸アンモニウム水溶液を得た。
<溶液(Y)の調製>
ポリエチレンイミン(和光純薬工業株式会社製、製品名:ポリエチレンイミン、平均分子量:約10,000)に精製水を添加して10質量%溶液にしたポリエチレンイミン水溶液を得た。
<溶液(V)の調製>
上記溶液(Z)79gと上記溶液(Y)21gを混合・撹拌して混合液を調製した。
さらに上記混合液の固形分濃度が2.5質量%になるように精製水を添加し、均一溶液になるまで撹拌したのちに、非イオン性界面活性剤(ポリオキシエチレンラウリルエーテル、花王社製、商品名:エマルゲン120)を混合液の固形分に対して0.3質量%となるように混合し、溶液(V)を調製した。
[実施例1]
厚さ12μmの二軸延伸ポリエチレンテレフタレートフィルム(ユニチカ社製、PET12)を基材とし、この片面に下記組成の樹脂組成物をメイヤーバーにて塗布して乾燥することにより、乾燥後の厚みが0.10μmの応力緩和層を形成した。
主剤:ポリウレタン樹脂水分散液(三井化学社製、製品名:タケラックWS-4032、芳香族ポリエステル型ポリウレタン樹脂)
架橋剤:カルボジイミド基を有する化合物(日清紡ケミカル社製、製品名:カルボジライトSV-02)
配合比:主剤中のポリウレタン樹脂のカルボキシル基1.0molに対し、架橋剤中のカルボジイミド基が0.4molとなるように、主剤に架橋剤を配合した。
次いで、上記溶液(V)を酸化アルミニウム蒸着PETフィルムの蒸着面に、アプリケーターで乾燥後のバリア性樹脂層の厚みが0.30μmになるように塗布し、熱風乾燥器を使用して温度;100℃、時間;30秒の条件で乾燥し、さらに温度;215℃、時間;10分熱処理をして、バリア性積層フィルムを得た。
応力緩和層の乾燥後の厚みを0.20μmとした以外は実施例1と同様にしてバリア性積層フィルムを得た。
応力緩和層の乾燥後の厚みを0.40μmとした以外は実施例1と同様にしてバリア性積層フィルムを得た。
応力緩和層を形成する際のポリウレタン樹脂水分散液として、三井化学社製の製品名タケラックWS-4031(芳香族ポリエステル型ポリウレタン樹脂)を用いる以外は実施例1と同様にしてバリア積層フィルムを得た。
応力緩和層の乾燥後の厚みを0.20μmとした以外は実施例4と同様にしてバリア性積層フィルムを得た。
応力緩和層の乾燥後の厚みを0.40μmとした以外は実施例4と同様にしてバリア性積層フィルムを得た。
厚さ12μmの二軸延伸ポリエチレンテレフタレートフィルム(ユニチカ社製、PET12)を基材とし、そのコロナ処理された面に、高周波誘導加熱方式により、アルミニウムを加熱蒸発させ、酸素を導入しながら蒸着することで、厚さ8nmの酸化アルミニウム膜を形成させた。これにより酸化アルミニウム蒸着PETフィルムを得た。この酸化アルミニウム蒸着PETフィルムの水蒸気透過度は1.5g/(m2・24h)であった。この酸化アルミニウム蒸着PETフィルムの蒸着面に、アプリケーターにて乾燥後のバリア性樹脂層の厚みが0.30μmになるように塗布し、熱風乾燥器を使用して温度;100℃、時間;30秒の条件で乾燥し、さらに温度;215℃、時間;10分熱処理をして、バリア積層フィルムを得た。
応力緩和層を形成する際の樹脂組成物として、下記組成の樹脂組成物を使用し、乾燥後の応力緩和層の厚みを0.05μmにした以外は実施例1と同様にしてバリア積層フィルムを得た。
(組成)
主剤:ポリウレタン樹脂水分散液(三井化学社製、製品名:タケラックWS-4022、脂肪族ポリエステル型ポリウレタン樹脂)
架橋剤:イソシアネート系化合物(三井化学社製、製品名:WD-725)
配合比:主剤中のポリウレタン樹脂のヒドロキシル基1.0molに対し、架橋剤中のイソシアネート基が1.0molとなるように、主剤に架橋剤を配合した。
応力緩和層を形成する際の樹脂組成物の主剤にアクリルポリオール(東レ・ファインケミカル社製、製品名:コータックスLH-681)を用い、架橋剤にイソシアネート系化合物(三井化学社製、製品名:タケラックA-10)を用いた以外は比較例2と同様にしてバリア積層フィルムを得た。
応力緩和層を形成する際の樹脂組成物の主剤にアクリルポリオール(東レ・ファインケミカル社製、製品名:コータックスLH-635)を用いた以外は比較例3と同様にしてバリア積層フィルムを得た。
応力緩和層を形成する際の樹脂組成物として、オキサゾリン基含有水性ポリマー(A)(日本触媒社製「エポクロスWS-300J(固形分濃度10質量%)」)、水性アクリル系樹脂(B)(東亜合成社製「ジュリマーET-410J(固形分濃度30質量%)」)、水性ポリエステル系樹脂(C)(日本合成化学工業社製「ポリエスターWR-961J(固形分濃度30質量%)」)を固形分比(質量比)で(A)/(B)/(C)=23.7/57.2/19.1となるように調製した組成物を使用し、乾燥後の厚みを0.06μmとし、バリア性樹脂層の厚みを0.30μmとした以外は比較例2と同様にしてバリア性積層フィルムを得た。
(1)厚さ50μmの無延伸ポリエチレンフィルム(三井化学東セロ社製、商品名:T.U.X.FCS)の片面に、エステル系接着剤(ポリエステル系接着剤(三井化学ポリウレタン社製、商品名:タケラックA310):12質量部、イソシアネート系硬化剤(三井化学ポリウレタン社製 商品名:タケネートA3):1質量部および酢酸エチル:7質量部)を塗布した。乾燥後、アミド架橋膜面と貼り合わせ(ドライラミネート)、多層フィルム(レトルト前の物性測定用試料)を得た。
上記(2)で得られた多層フィルムを無延伸ポリプロピレンフィルムが内面になるように折り返し、2方をヒートシールして袋状にした後、内容物として水を70cc入れ、もう1方をヒートシールにより袋を作成し、これを高温高圧レトルト殺菌装置で130℃、30分間の条件でレトルト処理を行った。レトルト処理後、内容物の水を抜き、レトルト処理後の多層フィルムを得た。
上記方法で得られたレトルト処理前後の多層フィルムを15mm幅に採取した後、バリア性積層フィルムの剥離のきっかけを作るために試料の角における無延伸ポリエチレンフィルム層または無延伸ポリプロピレンフィルム層とバリア性積層フィルムとの間を部分的に剥離し、その後300(mm/分)の剥離速度で、180度ラミネート剥離強度を測定した。レトルト処理後の試料は濡れた状態で測定した。
上記方法で得られた多層フィルムを、モコン社製OX-TRAN2/21を用いて、JIS K7126に準じ、温度20℃、湿度90%RHの条件で測定した。
厚さ50μmの無延伸ポリプロピレンフィルム(三井化学東セロ社製 商品名:T.U.X. FCS)の片面に、エステル系接着剤(ポリエステル系接着剤(三井化学ポリウレタン社製 商品名:タケラックA310):12質量部、イソシアネート系硬化剤(三井化学ポリウレタン社製 商品名:タケネートA3):1質量部および酢酸エチル:7質量部)を塗布し乾燥後、比較例、実施例で得られたバリア性積層フィルムのバリア面と貼り合わせ(ドライラミネート)、多層フィルムを得た。得られた多層フィルムを無延伸ポリプロピレンフィルムが内面になるように重ねてバリア性積層フィルムを折り返し、3方をヒートシールし、袋状にした後、内容物として塩化カルシウムを入れ、もう1方をヒートシールにより、表面積が0.01m2になるように袋を作成し、40℃、90%RHの条件で300時間放置し、その重量差で水蒸気透過度を測定した。
赤外線吸収スペクトルの測定(赤外線全反射測定:ATR法)は日本分光社製IRT-5200装置を用い、PKM-GE-S(Germanium)結晶を装着して入射角度45度、室温、分解能4cm-1、積算回数100回の条件で測定した。得られた吸収スペクトを前述した方法で解析し、全ピーク面積A~Dを算出した。そして、全ピーク面積A~Dから面積比B/A、C/A、D/Aを求めた。
酸化アルミニウムが蒸着された厚み12μmのPETフィルムの酸化アルミニウムの蒸着面に、乾燥厚みが約2μmになるようポリウレタン樹脂水分散液をバーコーターで塗布し、その後、110℃の乾燥機で1分間加熱しポリウレタン樹脂水分散液を乾燥して応力緩和層を形成した。
次いで、赤外線全反射測定(ATR法)により、応力緩和層表面の赤外線吸収スペクトルを測定した。ここで、吸収帯1705cm-1以上1735cm-1以下の範囲における最大ピークのベースラインからのピーク高さ(吸光度)をA1とし、吸収帯715cm-1以上745cm-1以下の範囲における最大ピークのベースラインからのピーク高さ(吸光度)をA0とし、A0/A1を算出した。
Claims (14)
- 基材層と、応力緩和層と、無機物層と、バリア性樹脂層と、をこの順番に備えるバリア性積層フィルムであって、
前記バリア性樹脂層がポリカルボン酸とポリアミンとのアミド架橋物を含み、
前記応力緩和層が芳香族環構造を主鎖に有するポリウレタン系樹脂を含むバリア性積層フィルム。 - 請求項1に記載のバリア性積層フィルムにおいて、
当該バリア性積層フィルムを130℃で30分間レトルト処理した後の、25℃、引張速度300mm/分の条件で測定される前記基材層と前記バリア性樹脂層との間の180°剥離強度Pが0.5N/15mm以上であるバリア性積層フィルム。 - 請求項1または2に記載のバリア性積層フィルムにおいて、
当該バリア性積層フィルムを130℃で30分間レトルト処理した後の、25℃、引張速度300mm/分の条件で測定される前記基材層と前記バリア性樹脂層との間の180°剥離強度をP[N/15mm]とし、
前記応力緩和層の厚みをT[μm]としたとき、
P/Tが2.0以上15.0以下であるバリア性積層フィルム。 - 請求項1乃至3のいずれか一項に記載のバリア性積層フィルムにおいて、
前記応力緩和層の厚みが0.05μm以上1.0μm以下であるバリア性積層フィルム。 - 請求項1乃至4のいずれか一項に記載のバリア性積層フィルムにおいて、
40℃、90%RHでの水蒸気透過度が4.0g/(m2・24h)以下であるバリア性積層フィルム。 - 請求項1乃至5のいずれか一項に記載のバリア性積層フィルムにおいて、
20℃、90%RHでの酸素透過度が10.0ml/(m2・24h・MPa)以下であるバリア性積層フィルム。 - 請求項1乃至6のいずれか一項に記載のバリア性積層フィルムにおいて、
前記応力緩和層の赤外線吸収スペクトルにおいて、吸収帯1705cm-1以上1735cm-1以下の範囲における最大ピークA1に対する吸収帯715cm-1以上745cm-1以下の範囲における最大ピークA0の比(A0/A1)が0.20以上0.90以下であるバリア性積層フィルム。 - 請求項1乃至7のいずれか一項に記載のバリア性積層フィルムにおいて、
前記ポリウレタン系樹脂が芳香族ポリエステル骨格を含むバリア性積層フィルム。 - 請求項1乃至8のいずれか一項に記載のバリア性積層フィルムにおいて、
前記無機物層が、酸化ケイ素、酸化窒化ケイ素、窒化ケイ素、酸化アルミニウムおよびアルミニウムからなる群から選択される一種または二種以上の無機物を含むバリア性積層フィルム。 - 請求項1乃至9のいずれか一項に記載のバリア性積層フィルムにおいて、
前記バリア性樹脂層の赤外線吸収スペクトルにおいて、
吸収帯1493cm-1以上1780cm-1以下の範囲における全ピーク面積をAとし、
吸収帯1598cm-1以上1690cm-1以下の範囲における全ピーク面積をBとしたとき、
B/Aで示されるアミド結合の面積比率が0.370以上であるバリア性積層フィルム。 - 請求項1乃至10のいずれか一項に記載のバリア性積層フィルムにおいて、
当該バリア性積層フィルムを130℃で30分間レトルト処理した後の、40℃、90%RHでの水蒸気透過度が4.0g/(m2・24h)以下であるバリア性積層フィルム。 - 請求項1乃至11のいずれか一項に記載のバリア性積層フィルムにおいて、
前記バリア性樹脂層の厚みが0.01μm以上15μm以下であるバリア性積層フィルム。 - 請求項1乃至12のいずれか一項に記載のバリア性積層フィルムにおいて、
当該バリア性積層フィルムを130℃で30分間レトルト処理した後の、20℃、90%RHでの酸素透過度が、10.0ml/(m2・24h・MPa)以下であるバリア性積層フィルム。 - 請求項1乃至13のいずれか一項に記載のバリア性積層フィルムにおいて、
レトルト食品用包装材に用いられるバリア性積層フィルム。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MYPI2019005654A MY201489A (en) | 2017-03-31 | 2018-03-28 | Barrier laminate film |
US16/499,403 US11179922B2 (en) | 2017-03-31 | 2018-03-28 | Barrier laminate film |
KR1020197028710A KR102351380B1 (ko) | 2017-03-31 | 2018-03-28 | 배리어성 적층 필름 |
CN201880021193.5A CN110461590B (zh) | 2017-03-31 | 2018-03-28 | 阻隔性层叠膜 |
EP18776134.1A EP3603953A4 (en) | 2017-03-31 | 2018-03-28 | MULTI-LAYER BARRIER FILM |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017072765A JP6935219B2 (ja) | 2017-03-31 | 2017-03-31 | バリア性積層フィルム |
JP2017-072765 | 2017-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018181457A1 true WO2018181457A1 (ja) | 2018-10-04 |
Family
ID=63676194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/012707 WO2018181457A1 (ja) | 2017-03-31 | 2018-03-28 | バリア性積層フィルム |
Country Status (8)
Country | Link |
---|---|
US (1) | US11179922B2 (ja) |
EP (1) | EP3603953A4 (ja) |
JP (1) | JP6935219B2 (ja) |
KR (1) | KR102351380B1 (ja) |
CN (1) | CN110461590B (ja) |
MY (1) | MY201489A (ja) |
TW (1) | TWI778040B (ja) |
WO (1) | WO2018181457A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102526277B1 (ko) * | 2020-08-07 | 2023-04-28 | 한국과학기술연구원 | 주름을 구비한 신축성 가스 배리어 적층 구조체 및 그 제조 방법 |
CN116635230A (zh) * | 2020-12-10 | 2023-08-22 | Dic株式会社 | 涂布剂、层叠体、包装材料 |
TWI789893B (zh) * | 2021-09-03 | 2023-01-11 | 國立臺北科技大學 | 阻障材及其製備方法 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005225940A (ja) | 2004-02-12 | 2005-08-25 | Toray Ind Inc | ガスバリア性フィルム |
JP2008132761A (ja) * | 2006-10-25 | 2008-06-12 | Toppan Printing Co Ltd | ガスバリア性フィルム、包装材料、及び包装体 |
JP2013100399A (ja) * | 2011-11-08 | 2013-05-23 | Dic Corp | アンカーコーティング剤 |
JP2014184678A (ja) | 2013-03-25 | 2014-10-02 | Kohjin Film & Chemicals Co Ltd | ガスバリア性フィルム及び製造方法 |
JP2014189567A (ja) * | 2013-03-26 | 2014-10-06 | Dic Corp | 水性樹脂組成物、プライマー、それを用いて得られる積層体及び包装材料 |
JP2015218267A (ja) * | 2014-05-19 | 2015-12-07 | Dic株式会社 | 水性樹脂組成物、それを用いた積層体及び物品 |
WO2016052123A1 (ja) * | 2014-09-30 | 2016-04-07 | 東レ株式会社 | ガスバリア性フィルム、それを用いた電子デバイス、およびガスバリア性フィルムの製造方法 |
JP2016064650A (ja) * | 2014-09-16 | 2016-04-28 | 東レ株式会社 | ガスバリア性フィルム |
WO2016088534A1 (ja) * | 2014-12-04 | 2016-06-09 | 三井化学東セロ株式会社 | ガスバリア性重合体、ガスバリア性フィルムおよびガスバリア性積層体 |
JP2016120460A (ja) * | 2014-12-25 | 2016-07-07 | 東レ株式会社 | ガスバリア性フィルムの製造方法 |
WO2016186074A1 (ja) * | 2015-05-18 | 2016-11-24 | 三井化学東セロ株式会社 | ガスバリア性積層体 |
JP2017014307A (ja) * | 2015-06-26 | 2017-01-19 | Dic株式会社 | 水性樹脂組成物、それを用いた積層体及び物品 |
JP2017072765A (ja) | 2015-10-08 | 2017-04-13 | 株式会社リコー | 定着装置、画像形成装置、及び摺動部材 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100395104C (zh) * | 2002-02-28 | 2008-06-18 | 三菱树脂株式会社 | 阻气性基材 |
US10829643B2 (en) * | 2013-01-11 | 2020-11-10 | Toray Industries, Inc. | Gas barrier film |
CN104194614B (zh) | 2014-08-18 | 2016-12-07 | 张家港康得新光电材料有限公司 | 水性底涂剂及其制备方法和应用 |
JP6631098B2 (ja) * | 2014-08-28 | 2020-01-15 | 東洋紡株式会社 | 積層フィルム |
CN107249887A (zh) | 2015-02-24 | 2017-10-13 | 东洋纺株式会社 | 层叠薄膜 |
-
2017
- 2017-03-31 JP JP2017072765A patent/JP6935219B2/ja active Active
-
2018
- 2018-03-28 WO PCT/JP2018/012707 patent/WO2018181457A1/ja active Application Filing
- 2018-03-28 EP EP18776134.1A patent/EP3603953A4/en active Pending
- 2018-03-28 CN CN201880021193.5A patent/CN110461590B/zh active Active
- 2018-03-28 KR KR1020197028710A patent/KR102351380B1/ko active IP Right Grant
- 2018-03-28 MY MYPI2019005654A patent/MY201489A/en unknown
- 2018-03-28 US US16/499,403 patent/US11179922B2/en active Active
- 2018-03-30 TW TW107111165A patent/TWI778040B/zh active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005225940A (ja) | 2004-02-12 | 2005-08-25 | Toray Ind Inc | ガスバリア性フィルム |
JP2008132761A (ja) * | 2006-10-25 | 2008-06-12 | Toppan Printing Co Ltd | ガスバリア性フィルム、包装材料、及び包装体 |
JP2013100399A (ja) * | 2011-11-08 | 2013-05-23 | Dic Corp | アンカーコーティング剤 |
JP2014184678A (ja) | 2013-03-25 | 2014-10-02 | Kohjin Film & Chemicals Co Ltd | ガスバリア性フィルム及び製造方法 |
JP2014189567A (ja) * | 2013-03-26 | 2014-10-06 | Dic Corp | 水性樹脂組成物、プライマー、それを用いて得られる積層体及び包装材料 |
JP2015218267A (ja) * | 2014-05-19 | 2015-12-07 | Dic株式会社 | 水性樹脂組成物、それを用いた積層体及び物品 |
JP2016064650A (ja) * | 2014-09-16 | 2016-04-28 | 東レ株式会社 | ガスバリア性フィルム |
WO2016052123A1 (ja) * | 2014-09-30 | 2016-04-07 | 東レ株式会社 | ガスバリア性フィルム、それを用いた電子デバイス、およびガスバリア性フィルムの製造方法 |
WO2016088534A1 (ja) * | 2014-12-04 | 2016-06-09 | 三井化学東セロ株式会社 | ガスバリア性重合体、ガスバリア性フィルムおよびガスバリア性積層体 |
JP2016120460A (ja) * | 2014-12-25 | 2016-07-07 | 東レ株式会社 | ガスバリア性フィルムの製造方法 |
WO2016186074A1 (ja) * | 2015-05-18 | 2016-11-24 | 三井化学東セロ株式会社 | ガスバリア性積層体 |
JP2017014307A (ja) * | 2015-06-26 | 2017-01-19 | Dic株式会社 | 水性樹脂組成物、それを用いた積層体及び物品 |
JP2017072765A (ja) | 2015-10-08 | 2017-04-13 | 株式会社リコー | 定着装置、画像形成装置、及び摺動部材 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3603953A4 |
Also Published As
Publication number | Publication date |
---|---|
EP3603953A4 (en) | 2020-12-23 |
KR102351380B1 (ko) | 2022-01-13 |
CN110461590B (zh) | 2022-03-18 |
US11179922B2 (en) | 2021-11-23 |
US20210107264A1 (en) | 2021-04-15 |
JP2018171827A (ja) | 2018-11-08 |
JP6935219B2 (ja) | 2021-09-15 |
KR20190125388A (ko) | 2019-11-06 |
TW201836855A (zh) | 2018-10-16 |
TWI778040B (zh) | 2022-09-21 |
MY201489A (en) | 2024-02-27 |
CN110461590A (zh) | 2019-11-15 |
EP3603953A1 (en) | 2020-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6271759B2 (ja) | ガスバリア性重合体、ガスバリア性フィルムおよびガスバリア性積層体 | |
JP6560346B2 (ja) | ガスバリア性積層体 | |
WO2018181457A1 (ja) | バリア性積層フィルム | |
JP7519181B2 (ja) | ガスバリア性フィルムおよびガスバリア性積層体 | |
JP7269261B2 (ja) | ガスバリア性積層体 | |
JP6983599B2 (ja) | ガスバリア性積層体および包装体 | |
JP6983598B2 (ja) | 輸液バッグ用ガスバリア性積層体および輸液バッグ用包装体 | |
JP2022090976A (ja) | ガスバリア性積層体 | |
WO2016186075A1 (ja) | ガスバリア性積層体の製造方法 | |
JP2022090977A (ja) | ガスバリア性積層体 | |
JP6956563B2 (ja) | ガスバリア性積層体およびその製造方法ならびに包装体 | |
JP7389645B2 (ja) | ガスバリア用塗材、ガスバリア性フィルム、ガスバリア性積層体およびガスバリア性積層体の製造方法 | |
JP7372147B2 (ja) | ガスバリア性フィルムおよびガスバリア性積層体 | |
CN114901477B (zh) | 气体阻隔用涂布材料、气体阻隔性膜、气体阻隔性层叠体及气体阻隔性层叠体的制造方法 | |
JP2012214035A (ja) | 積層フィルム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18776134 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197028710 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018776134 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2018776134 Country of ref document: EP Effective date: 20191031 |