WO2018181433A1 - 遮熱断熱基板 - Google Patents

遮熱断熱基板 Download PDF

Info

Publication number
WO2018181433A1
WO2018181433A1 PCT/JP2018/012658 JP2018012658W WO2018181433A1 WO 2018181433 A1 WO2018181433 A1 WO 2018181433A1 JP 2018012658 W JP2018012658 W JP 2018012658W WO 2018181433 A1 WO2018181433 A1 WO 2018181433A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
heat
insulating
gpa
protective topcoat
Prior art date
Application number
PCT/JP2018/012658
Other languages
English (en)
French (fr)
Inventor
聖彦 渡邊
雄太 島▲崎▼
浩史 別府
祐輔 山本
友広 紺谷
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018059420A external-priority patent/JP7171211B2/ja
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2018181433A1 publication Critical patent/WO2018181433A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties

Definitions

  • the present invention relates to a heat insulating and heat insulating substrate.
  • the heat insulating and heat insulating substrate is a substrate having both a heat insulating function and a heat insulating function.
  • the infrared reflection function allows the inflow of solar heat (near infrared light) from the outside to the room and the heating heat (far away from the room to the outside). Infrared) can be suppressed, and indoor comfort and energy saving effect can be improved throughout the year.
  • the infrared reflecting layer has, for example, a configuration including a metal oxide layer on both sides of the metal layer, and can achieve both improved heat shielding by reflection of near infrared rays and improved heat insulation by reflection of far infrared rays.
  • the heat-insulating and heat-insulating substrate has high crack resistance that does not cause cracks when bent during handling or storage, and repeats with weak force during wiping operations during cleaning. High scratch resistance that suppresses scratching due to rubbing is required.
  • An object of the present invention is to provide a heat insulating and heat insulating substrate excellent in scratch resistance. Furthermore, when a board
  • the heat insulating and heat insulating substrate of the present invention is A heat insulating and heat insulating substrate including a transparent substrate layer and an infrared reflective layer, An undercoat layer is provided between the transparent substrate layer and the infrared reflective layer, A protective topcoat layer is provided on the opposite side of the infrared reflective layer to the transparent substrate layer, The thickness of the undercoat layer is 0.01 ⁇ m to 5 ⁇ m; The protective topcoat layer has a thickness of 5 nm to 500 nm; The undercoat layer has a hardness of 0.50 GPa or more; The protective topcoat layer has a hardness of 0.50 GPa or more.
  • the contact angle of the protective topcoat layer is 90 degrees or more.
  • the protective topcoat layer includes a coordination bond type material.
  • the protective topcoat layer does not have a softening temperature in the range of 30 ° C to 75 ° C.
  • the visible light transmittance of the transparent substrate layer is 10% or more.
  • a topcoat layer is disposed between the protective topcoat layer and the infrared reflective layer.
  • the protective topcoat layer is a resin layer formed from a resin composition containing an organic resin.
  • the organic resin is an acrylic resin.
  • the undercoat layer is a resin layer formed from a resin composition containing an organic resin.
  • the organic resin is an acrylic resin.
  • the elastic modulus of the undercoat layer is 8.25 GPa or less.
  • the elastic modulus of the protective topcoat layer is 10.0 GPa or less.
  • the present invention it is possible to provide a heat insulating and heat insulating substrate excellent in scratch resistance. Furthermore, when the substrate is in the form of a film, it is possible to provide a heat insulating and heat insulating substrate that is excellent in scratch resistance and crack resistance.
  • FIG. 1 It is a schematic sectional drawing which shows one embodiment of the thermal insulation heat insulation board
  • the heat-insulating and heat-insulating substrate of the present invention includes a transparent substrate layer and an infrared reflective layer, and includes an undercoat layer between the transparent substrate layer and the infrared reflective layer, and the infrared reflective layer is opposite to the transparent substrate layer.
  • a protective topcoat layer is provided on the side.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of a heat insulating and heat insulating substrate of the present invention.
  • the heat insulating and heat insulating substrate 100 includes a transparent substrate layer 10, an undercoat layer 60, an infrared reflective layer 20, and a protective topcoat layer 40.
  • the heat-insulating and heat-insulating substrate of the present invention includes a transparent substrate layer opposite to the undercoat layer, between the transparent substrate layer and the undercoat layer, between the undercoat layer and the infrared reflective layer, and an infrared reflective layer and a protective top coat.
  • Any appropriate other layer may be provided between the layers and on the opposite side of the protective top coat layer from the infrared reflective layer, if necessary.
  • Such other layers may be one layer or two or more layers.
  • such other layers may be only 1 type, and may be 2 or more types.
  • FIG. 2 is a schematic cross-sectional view showing one embodiment of the heat insulating and heat insulating substrate of the present invention.
  • the heat insulating and heat insulating substrate 100 includes a transparent substrate layer 10, an undercoat layer 60, an infrared reflective layer 20, a protective topcoat layer 40, and a protective film 70.
  • the infrared reflective layer 20 is composed of three layers, a first metal oxide layer 22a, a metal layer 21, and a second metal oxide layer 22b.
  • the heat insulating and heat insulating substrate of the present invention may include a top coat layer.
  • the topcoat layer is a layer formed by a dry process
  • the protective topcoat layer is a layer formed by coating.
  • the top coat layer may be arranged between the infrared reflective layer and the protective top coat layer, or the protective top coat layer is disposed between the infrared reflective layer and the top coat layer. May be arranged.
  • the heat-insulating and heat-insulating substrate of the present invention may include an adhesive layer on the side of the transparent substrate layer opposite to the infrared reflective layer. Furthermore, a separator film may be provided on the surface of such an adhesive layer.
  • the visible light transmittance of the heat insulating and heat insulating substrate of the present invention is preferably 30% or more, more preferably 30% to 85%, further preferably 45% to 80%, and particularly preferably 55% to 80%, most preferably 55% to 75%.
  • the visible light transmittance is measured according to JIS-A5759-2008 (film for architectural window glass).
  • the hardness of the undercoat layer is 0.50 GPa or more and the hardness of the protective topcoat layer is 0.50 GPa or more.
  • substrate of this invention can be excellent in abrasion resistance by satisfy
  • the hardness of the undercoat layer is preferably 0.50 GPa or more, more preferably 0.50 GPa to 1.00 GPa, and further preferably 0.50 GPa to 0.90 GPa. Particularly preferred is 0.50 GPa to 0.80 GPa, and most preferred is 0.50 GPa to 0.70 GPa.
  • the heat-insulating and heat-insulating substrate of the present invention may be damaged by repeated rubbing with a weak force in wiping work during cleaning.
  • the elastic modulus of the undercoat layer is preferably 8.25 GPa or less, more preferably 4.00 GPa to 8.25 GPa, and still more preferably 5.00 GPa to 8.25 GPa. Yes, particularly preferably 5.50 GPa to 8.25 GPa, and most preferably 6.00 GPa to 8.25 GPa.
  • the heat-insulating and heat-insulating substrate of the present invention may crack when it is bent during handling or storage.
  • the hardness of the protective topcoat layer is preferably 0.50 GPa or more, more preferably 0.50 GPa to 1.40 GPa, and further preferably 0.50 GPa to 1.30 GPa. Particularly preferably 0.50 GPa to 1.20 GPa, and most preferably 0.50 GPa to 1.00 GPa.
  • the heat-insulating and heat-insulating substrate of the present invention may be damaged by repeated rubbing with a weak force in wiping work or the like during cleaning.
  • the elastic modulus of the protective topcoat layer is preferably 10.0 GPa or less, more preferably 4.00 GPa to 10.0 GPa, and even more preferably 5.00 GPa to 10.0 GPa. Particularly preferred is 5.50 GPa to 10.0 GPa, and most preferred is 6.00 GPa to 10.0 GPa. If the elastic modulus of the protective topcoat layer exceeds 10.0 GPa, the heat-insulating and heat-insulating substrate of the present invention may crack when it is bent during handling or storage.
  • the transparent substrate layer is preferably a transparent plate member, a transparent film, or a composite thereof.
  • the transparent plate member include glass, an acrylic plate, and a polycarbonate plate.
  • the transparent film is preferably a flexible transparent film.
  • the visible light transmittance of the transparent substrate layer is preferably 10% or more, more preferably 80% or more, still more preferably 85% or more, particularly preferably 88% or more, and most preferably 90%. That's it.
  • the visible light transmittance is measured according to JIS-A5759-2008 (film for architectural window glass).
  • the thickness of the transparent substrate layer is preferably 0.2 mm to 40 mm, more preferably 0.5 mm to 30 mm, still more preferably 1 mm to 24 mm, and particularly preferably. Is from 1.5 mm to 18 mm, most preferably from 2 mm to 12 mm.
  • the thickness of the transparent substrate layer is preferably 5 ⁇ m to 500 ⁇ m, more preferably 10 ⁇ m to 300 ⁇ m, still more preferably 20 ⁇ m to 200 ⁇ m, and particularly preferably 30 ⁇ m to 100 ⁇ m. .
  • the transparent substrate layer is a film
  • examples of the material constituting the transparent substrate layer include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyetheretherketone (PEEK), and polycarbonate (PC). From the standpoint of excellent heat resistance, polyethylene terephthalate (PET) is preferable.
  • Undercoat layer An undercoat layer is provided between the transparent substrate layer and the infrared reflective layer. Preferably, the undercoat layer is directly laminated with the transparent substrate layer.
  • the hardness of the undercoat layer is preferably 0.50 GPa or more, more preferably 0.50 GPa to 1.00 GPa, still more preferably 0.50 GPa to 0.90 GPa, and particularly preferably. It is 0.50 GPa to 0.80 GPa, and most preferably 0.50 GPa to 0.70 GPa.
  • the heat-insulating and heat-insulating substrate of the present invention may be damaged by repeated rubbing with a weak force in wiping work during cleaning.
  • the elastic modulus of the undercoat layer is preferably 8.25 GPa or less, more preferably 4.00 GPa to 8.25 GPa, even more preferably 5.00 GPa to 8.25 GPa, and particularly preferably. Is 5.50 GPa to 8.25 GPa, and most preferably 6.00 GPa to 8.25 GPa.
  • the heat-insulating and heat-insulating substrate of the present invention may crack when it is bent during handling or storage.
  • the thickness of the undercoat layer is preferably 0.01 ⁇ m to 5 ⁇ m, more preferably 0.2 ⁇ m to 5 ⁇ m, still more preferably 0.2 ⁇ m to 3 ⁇ m, and particularly preferably 0.5 ⁇ m to 3 ⁇ m. Most preferably, it is 1 ⁇ m to 2 ⁇ m. If the thickness of the undercoat layer is within the above range, the mechanical strength of the heat-insulating and heat-insulating substrate of the present invention can be increased, and the scratch resistance of the heat-insulating and heat-insulating substrate of the present invention can be further improved.
  • the undercoat layer is preferably a cured film of a curable resin, and can be formed, for example, by a method in which a suitable cured film of an ultraviolet curable resin is provided on the transparent substrate layer.
  • Surface modification treatment such as treatment by the above may be performed.
  • the undercoat layer has a hardness of 0.50 GPa or more, more preferably, the undercoat layer has a modulus of elasticity of 8.25 GPa or less. Any appropriate material can be adopted as long as the effects of the invention are not impaired. Examples of such materials include the following.
  • the undercoat layer is preferably a resin layer formed from a resin composition containing an organic resin, and examples of the organic resin include an ultraviolet curable resin.
  • the ultraviolet curable resin as the organic resin include acrylic resins, silicone resins, polyester resins, urethane resins, amide resins, epoxy resins, oxetane resins, and the like. If a resin composition containing such an ultraviolet curable resin is used for forming the undercoat layer, an undercoat layer that can effectively exhibit excellent scratch resistance can be obtained. From the viewpoint of scratch resistance, handling property, and the like, the ultraviolet curable resin as the organic resin is particularly preferably an acrylic resin.
  • any appropriate acrylic resin can be adopted as the acrylic resin as long as it is a resin having repeating units derived from various monofunctional or polyfunctional (meth) acrylates.
  • the monofunctional (meth) acrylate include isobornyl acrylate, tetrahydrofurfuryl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, butoxyethyl acrylate, lauryl acrylate, stearyl acrylate, benzyl acrylate, hexyl diglycol acrylate, Examples thereof include 2-hydroxyethyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, phenoxyethyl acrylate, dicyclopentadiene acrylate, polyethylene glycol acrylate, polypropylene glycol acrylate, and nonylphenoxyethyl cellosolve acrylate.
  • polyfunctional (meth) acrylates examples include polyfunctional (meth) acrylates such as polyethylene glycol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, and pentaerythritol triacrylate; oligourethane (meth) acrylate and oligoester And polyfunctional (meth) acrylate oligomers such as (meth) acrylate; These monofunctional or polyfunctional various (meth) acrylates may be one kind or two or more kinds.
  • the undercoat layer may contain any appropriate additive as required.
  • additives include photopolymerization initiators, silane coupling agents, mold release agents, curing agents, curing accelerators, diluents, anti-aging agents, denaturing agents, surfactants, dyes, pigments, Inorganic particles, discoloration inhibitors, ultraviolet absorbers, softeners, stabilizers, plasticizers, antifoaming agents and the like can be mentioned.
  • the kind, number, and amount of additives contained in the resin composition can be appropriately set depending on the purpose.
  • Antireflection layer may be provided between the undercoat layer and the infrared reflective layer. By providing the antireflection layer, the transparency of the heat insulating and heat insulating substrate of the present invention can be improved.
  • the thickness of the antireflection layer is preferably 30 nm or less, more preferably 1 nm to 30 nm, still more preferably 1 nm to 20 nm, and particularly preferably 1 nm to 15 nm.
  • any appropriate method can be adopted as a method for forming the antireflection layer.
  • a film forming method include a film forming method by a dry process such as a sputtering method, a vacuum evaporation method, a CVD method, and an electron beam evaporation method.
  • a film forming method of the antireflection layer a film forming method by a direct current sputtering method is preferable.
  • Infrared reflective layer any appropriate layer can be adopted as long as it is a layer that can achieve both a heat shield improvement by reflection of near infrared rays and a heat insulation improvement by reflection of far infrared rays.
  • the infrared reflective layer includes a first metal oxide layer, a metal layer, and a second metal oxide layer in this order, and the first metal oxide layer and the second metal oxide layer are directly laminated on the metal layer. Being done.
  • the infrared reflecting layer is preferably composed of three layers, a first metal oxide layer, a metal layer, and a second metal oxide layer, and the first metal oxide layer, the metal layer, and the second metal oxide layer. The material layers are provided in this order.
  • One embodiment of such an infrared reflecting layer can use, for example, embodiments described in JP-A-2016-93892 and JP-A-2016-94012.
  • the metal layer has a central role of infrared reflection.
  • the metal layer is preferably a silver alloy layer mainly composed of silver or a gold alloy layer mainly composed of gold.
  • silver has a high free electron density, it is possible to realize a high reflectance of near infrared rays and far infrared rays. Therefore, even when the number of layers constituting the infrared reflection layer is small, it is possible to achieve both improvement in heat shielding by reflection of near infrared rays and improvement of heat insulation by reflection of far infrared rays.
  • the silver content in the metal layer is preferably 85% by weight to 99.9% by weight, more preferably 90% by weight to 99.8%. % By weight, more preferably 95% by weight to 99.7% by weight, and particularly preferably 97% by weight to 99.6% by weight.
  • the metal layer is preferably a silver alloy layer containing a metal other than silver for the purpose of enhancing durability. Specifically, as described above, the silver content in the metal layer is 99. It is preferable that it is 9 weight% or less.
  • the metal layer When the metal layer is a silver alloy layer containing silver as a main component, the metal layer preferably contains a metal other than silver for the purpose of enhancing durability as described above.
  • the content of the metal other than silver in the metal layer is preferably 0.1% by weight to 15% by weight, more preferably 0.2% by weight to 10% by weight, and further preferably 0.3% by weight. It is ⁇ 5% by weight, particularly preferably 0.4% by weight to 3% by weight.
  • metals other than silver include palladium (Pd), gold (Au), copper (Cu), bismuth (Bi), germanium (Ge), gallium (Ga), and the like, which can impart high durability. From the above, palladium (Pd) is preferable.
  • the metal oxide layer controls the amount of visible light reflection at the interface with the metal layer to achieve both high visible light transmittance and high infrared reflectance. It is provided for the purpose.
  • the metal oxide layer can also function as a protective layer for preventing deterioration of the metal layer. From the viewpoint of enhancing the wavelength selectivity of reflection and transmission in the infrared reflection layer, the refractive index of the metal oxide layer with respect to visible light is preferably 1.5 or more, more preferably 1.6 or more, and still more preferably. 1.7 or more.
  • the metal oxide layers are preferably oxides of metals such as Ti, Zr, Hf, Nb, Zn, Al, Ga, In, Tl, Sn, Alternatively, a composite oxide of these metals is included. More preferably, the metal oxide layer includes a composite metal oxide containing zinc oxide. The metal oxide layer is preferably amorphous. When the metal oxide layer is an amorphous layer containing zinc oxide, the durability of the metal oxide layer itself is enhanced and the function as a protective layer for the metal layer is increased, so that the deterioration of the metal layer is suppressed. Can be done.
  • the metal oxide layer is particularly preferably a composite metal oxide containing zinc oxide.
  • the content of zinc oxide in the metal oxide layer is preferably 3 weights with respect to a total of 100 parts by weight of the metal oxide. Part or more, more preferably 5 parts by weight or more, and still more preferably 7 parts by weight or more. If the content ratio of zinc oxide is within the above range, the metal oxide layer tends to be an amorphous layer, and the durability tends to be improved. On the other hand, if the content ratio of zinc oxide is excessively large, the durability may be reduced, or the visible light transmittance may be reduced. Therefore, the content ratio of zinc oxide in the metal oxide layer is preferably 60 parts by weight or less, more preferably 50 parts by weight or less, and still more preferably 40 parts by weight with respect to 100 parts by weight of the metal oxide. Or less.
  • indium-zinc composite oxide (IZO) and zinc-tin composite oxide (ZTO) are used from the viewpoint of satisfying all visible light transmittance, refractive index, and durability.
  • Indium-tin-zinc composite oxide (ITZO) is preferable.
  • These composite oxides may further contain metals such as Al and Ga, and oxides of these metals.
  • the thickness of the metal layer and the metal oxide layer is such that the infrared reflecting layer transmits the visible light and selectively reflects the near infrared light. It can be set appropriately considering the rate and the like.
  • the thickness of the metal layer is preferably 5 nm to 50 nm, more preferably 5 nm to 25 nm, and still more preferably 10 nm to 18 nm.
  • the thickness of the metal oxide layer (the thickness of each of the first metal oxide layer and the second metal oxide layer) is preferably 1 nm to 80 nm, more preferably 1 nm to 50 nm, and even more preferably 1 nm to 30 nm. It is particularly preferably 2 nm to 10 nm.
  • the thickness of the metal oxide layer (the thickness of each of the first metal oxide layer and the second metal oxide layer) is higher than that of the conventional product Can also be made thinner.
  • any appropriate method can be adopted as a method for forming the metal layer and the metal oxide layer.
  • a film forming method include a film forming method by a dry process such as a sputtering method, a vacuum evaporation method, a CVD method, and an electron beam evaporation method.
  • the method for forming the metal layer and the metal oxide layer is preferably a film forming method by a direct current sputtering method. In the case of adopting a film forming method by a direct current sputtering method, it is possible to form these plural layers in one pass by using a winding type sputtering apparatus provided with a plurality of film forming chambers.
  • a target to be DC sputtered may be added with a conductive impurity in order to impart conductivity, and a part thereof may be reducible.
  • the impurities may be mixed in the antireflection layer to be formed, or the composition of the layer may be different from the stoichiometric composition, but there is no problem as long as the effect of the present invention is exhibited.
  • an embodiment of a base material layer described in JP-A-2014-30910 can be used.
  • Protective topcoat layer >> A protective topcoat layer is provided on the opposite side of the infrared reflective layer to the transparent substrate layer. Preferably, the protective topcoat layer is directly laminated with a topcoat layer described later.
  • the hardness of the protective topcoat layer is preferably 0.50 GPa or more, more preferably 0.50 GPa to 1.40 GPa, still more preferably 0.50 GPa to 1.30 GPa, and particularly preferably. Is 0.50 GPa to 1.20 GPa, and most preferably 0.50 GPa to 1.00 GPa.
  • the heat-insulating and heat-insulating substrate of the present invention may be damaged by repeated rubbing with a weak force in wiping work or the like during cleaning.
  • the elastic modulus of the protective topcoat layer is preferably 10.0 GPa or less, more preferably 4.00 GPa to 10.0 GPa, even more preferably 5.00 GPa to 10.0 GPa. It is preferably 5.50 GPa to 10.0 GPa, and most preferably 6.00 GPa to 10.0 GPa. If the elastic modulus of the protective topcoat layer exceeds 10.0 GPa, the heat-insulating and heat-insulating substrate of the present invention may crack when it is bent during handling or storage.
  • the contact angle of the protective topcoat layer is preferably 90 ° or more, more preferably 90 ° to 160 °, still more preferably 90 ° to 140 °, particularly preferably 90 ° to 120 °, Most preferably, it is 100 to 120 degrees.
  • the contact angle of the protective topcoat layer is within the above range, a heat-insulating and heat-insulating substrate that is superior in both antifouling properties and scratch resistance can be provided.
  • the protective topcoat layer is preferably a layer formed by coating.
  • the protective topcoat layer is formed by coating, for example, by dissolving a material as described below in a solvent to prepare a solution, applying this solution on the infrared reflective layer, drying the solvent, and then applying ultraviolet rays or electron beams. The formation by making it harden
  • the heat-insulating and heat-insulating substrate of the present invention is provided with such a protective topcoat layer, for example, the adhesion between the topcoat layer and the protective topcoat layer described later is enhanced, and the heat-insulating and heat-insulating substrate of the present invention is scratch resistant This improves the durability of the infrared reflective layer.
  • the protective topcoat layer preferably has a high visible light transmittance.
  • the protective top coat layer preferably has little absorption of far infrared rays. If the far-infrared absorption in the protective topcoat layer is small, the far-infrared rays in the room are reflected into the room by the infrared-reflecting layer, so that the heat insulation effect can be enhanced. Examples of a method for reducing the far-infrared absorption amount by the protective topcoat layer include a method using a material having a low far-infrared absorptivity as a material for the protective topcoat layer, a method for reducing the thickness of the protective topcoat layer, and the like.
  • the far-infrared absorption in the protective topcoat layer is large, the far-infrared rays in the room are absorbed by the protective topcoat layer, and are not reflected by the infrared reflective layer, but are radiated to the outside by heat conduction. May decrease.
  • the far-infrared absorption can be kept small even when the thickness of the protective topcoat layer is large, and the protective effect on the infrared reflective layer is enhanced. Can do.
  • a material for the protective topcoat layer having a small far-infrared absorption a compound having a small content such as a C ⁇ C bond, a C ⁇ O bond, a C—O bond or an aromatic ring is preferably used. Examples of such compounds include polyolefins such as polyethylene and polypropylene, alicyclic polymers such as cycloolefin polymers, and rubber polymers.
  • the thickness of the protective topcoat layer is preferably 500 nm or less, more preferably 300 nm or less, still more preferably 200 nm or less, and even more preferably 150 nm or less, from the viewpoint of reducing far-infrared absorption. Particularly preferably, it is 120 nm or less, and most preferably 100 nm or less.
  • the optical film thickness (product of refractive index and physical film thickness) of the protective topcoat layer overlaps the visible light wavelength range, the surface of the heat-insulating and heat-insulating substrate of the present invention is rainbow-patterned due to multiple reflection interference at the interface. "Iris phenomenon" may appear. Since the refractive index of a general resin is about 1.5, the thickness of the protective topcoat layer is more preferably 200 nm or less from the viewpoint of suppressing the iris phenomenon.
  • the thickness of the protective topcoat layer is preferably 5 nm or more, more preferably 15 nm or more from the viewpoint of imparting mechanical strength and chemical strength to the protective topcoat layer and enhancing the durability of the heat-insulating and heat-insulating substrate of the present invention. More preferably, it is 30 nm or more, and particularly preferably 50 nm or more.
  • the thickness of the protective topcoat layer is within the above range, the reflectance of visible light is reduced due to multiple reflection interference between the reflected light on the surface side of the protective topcoat layer and the reflected light on the infrared reflective layer side interface. be able to. Therefore, in addition to the reflectance lowering effect due to the light absorption of the infrared reflecting layer, the antireflection effect by the protective topcoat layer can be obtained, and the visibility of the heat insulating and heat insulating substrate of the present invention can be further enhanced.
  • the material for the protective topcoat layer is preferably a curable composition containing a polyfunctional (meth) acrylic monomer. 1 type may be sufficient as a polyfunctional (meth) acrylic-type monomer, and 2 or more types may be sufficient as it.
  • the protective topcoat layer is formed, for example, by curing a curable composition containing a polyfunctional (meth) acrylic monomer. Examples of the curing method include photocuring and heat curing, and photocuring is preferable.
  • the content ratio of the polyfunctional (meth) acrylic monomer in the curable composition containing the polyfunctional (meth) acrylic monomer is such that the solid content 1 excluding the solvent and the like can be expressed more in the effect of the present invention.
  • it is 100% by weight, it is preferably 10% to 70% by weight, more preferably 20% to 60% by weight, still more preferably 25% to 55% by weight, particularly preferably. Is 30% to 50% by weight.
  • polyfunctional (meth) acrylic monomer examples include monomers having a plurality of (meth) acrylic groups in the molecule and capable of photocuring or thermosetting.
  • examples of such a monomer include polyfunctional (meth) acrylate, urethane (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, and the like, and polyfunctional (meth) acrylate is preferable.
  • polyfunctional (meth) acrylate examples include hexanediol di (meth) acrylate, octanediol di (meth) acrylate, decanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, and ethylene glycol di (meth).
  • the polyfunctional (meth) acrylate is preferably dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tris (2- (meth) acrylic acid) from the viewpoint that the effects of the present invention can be further exhibited.
  • Roxyethyl) isocyanurate polyurethane poly (meth) acrylate having a radically polymerizable unsaturated double bond such as at least 5 (meth) acrylic groups in one molecule, at least 5 (meth) acrylic in one molecule
  • polyester poly (meth) acrylate having a radically polymerizable unsaturated double bond such as a group, more preferably dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and more preferably Dipentaerythritol penta Meth) acrylate.
  • the curable composition containing a polyfunctional (meth) acrylic monomer may contain inorganic particles or inorganic particles modified with an organic group (organic-inorganic hybrid particles).
  • organic / inorganic hybrid particles include hydrolyzate / condensate of (meth) acryloyloxyalkoxysilane, organic / inorganic hybrid obtained by hydrolytic condensation of colloidal silica and (meth) acryloyloxyalkoxysilane ( And (meth) acrylate.
  • organic / inorganic hybrid particles include, for example, vinyltrimethoxysilane, vinyltriethoxysilane, p-styryltrimethoxysilane, 3- (meth) acryloxypropylmethyldimethoxysilane, and 3- (meth) acryloxy.
  • the content ratio of the inorganic particles or the organic-inorganic hybrid particles in the curable composition containing the polyfunctional (meth) acrylic monomer is such that the solid content 1 excluding the solvent and the like can be expressed more effectively.
  • it is preferably 5% by weight to 150% by weight, more preferably 10% by weight to 100% by weight, still more preferably 15% by weight to 60% by weight, and particularly preferably 20% by weight.
  • % By weight to 50% by weight.
  • Only one type of organic-inorganic hybrid particles may be used, or two or more types may be used.
  • the curable composition containing a polyfunctional (meth) acrylic monomer preferably contains a polymerization initiator.
  • a polymerization initiator a photoinitiator and a thermal polymerization initiator are mentioned, for example, Preferably, it is a photoinitiator. Any appropriate polymerization initiator can be adopted as the polymerization initiator as long as the effects of the present invention are not impaired. Only one polymerization initiator may be used, or two or more polymerization initiators may be used.
  • the content of the polymerization initiator in the curable composition containing the polyfunctional (meth) acrylic monomer is such that the solid content 1 excluding the solvent and the like is 100% by weight in that the effect of the present invention can be expressed more.
  • it is preferably 1% to 35% by weight, more preferably 2% to 30% by weight, still more preferably 3% to 25% by weight, and particularly preferably 4% to 25% by weight. % By weight.
  • the curable composition containing a polyfunctional (meth) acrylic monomer may contain a solvent for the purpose of adjusting the viscosity.
  • the solvent include aqueous solvents, organic solvents, and mixed solvents thereof.
  • the solvent include aromatic hydrocarbons such as toluene and xylene; aliphatic esters such as ethyl acetate, butyl acetate and isobutyl acetate; alicyclic hydrocarbons such as cyclohexane; and aliphatic carbonization such as hexane and pentane.
  • Examples thereof include: hydrogens; aliphatic ketones such as methyl ethyl ketone and methyl isobutyl ketone; and alcohols such as isopropanol and 1-butanol.
  • One type of solvent may be sufficient and 2 or more types may be sufficient as it.
  • the curable composition containing a polyfunctional (meth) acrylic monomer may contain any appropriate other component as long as it does not impair the effects of the present invention.
  • Other components include, for example, ultraviolet absorbers, antifouling agents, water repellents, leveling agents, colorants, pigments, antioxidants, yellowing inhibitors, bluing agents, antifoaming agents, thickeners, and sedimentation. Examples thereof include an inhibitor, an antistatic agent, a surfactant, an adhesion promoter, an infrared absorber, a light stabilizer, a curing catalyst, and metal oxide fine particles.
  • Other components may be only one type or two or more types.
  • an organic resin, an inorganic material, an organic-inorganic hybrid material in which an organic component and an inorganic component are chemically bonded, or the like may be used. Only one type of organic resin may be used, or two or more types may be used. Only one type of inorganic material may be used, or two or more types may be used. Only one type of organic-inorganic hybrid material may be used, or two or more types may be used.
  • the organic resin examples include an actinic ray curable or thermosetting organic resin. Specifically, for example, a fluorine resin, an acrylic resin, a urethane resin, an ester resin, an epoxy resin, a silicone Based resins and the like.
  • the organic resin is preferably an acrylic resin from the viewpoint that the effects of the present invention can be further exhibited.
  • the inorganic material examples include silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, titanium oxide, zirconium oxide, and sialon (SiAlON).
  • the protective topcoat layer preferably includes a resin layer formed from a resin composition containing an organic resin, and a resin layer formed from a composition containing an organic-inorganic hybrid material, and more preferably contains an organic resin.
  • a resin layer formed from the resin composition may be mentioned.
  • the protective topcoat layer preferably contains a coordination bond type material.
  • the coordination bond type material any appropriate coordination bond type material can be adopted as long as it can form a coordination bond with another compound as long as the effects of the present invention are not impaired.
  • the coordination bond type material may be only one kind or two or more kinds.
  • the protective topcoat layer includes a coordination bond type material, for example, when the infrared reflective layer is directly laminated with the protective topcoat layer, the coordination bond strength between these two layers is May develop and adhesion may be improved.
  • the infrared reflective layer contains a metal oxide
  • the acidic group in the protective topcoat layer can express an affinity having a high coordination bond with the metal oxide in the infrared reflective layer.
  • the adhesiveness of an infrared reflective layer and a protective topcoat layer improves, the intensity
  • the coordination bond material is preferably a compound having a group having a lone electron pair.
  • the group having a lone electron pair include coordination of a phosphorus atom, a sulfur atom, an oxygen atom, a nitrogen atom, and the like.
  • examples thereof include groups having atoms, and specific examples include a phosphoric acid group, a sulfuric acid group, a thiol group, a carboxyl group, and an amino group.
  • the coordination bond type material can preferably increase the adhesion by the action of metal ions.
  • the coordination bond type material may have a reactive group in order to enhance the adhesion with other resin materials and the like.
  • Preferred examples of the coordinate bond material include ester compounds having an acidic group and a polymerizable functional group in the same molecule.
  • ester compounds having an acidic group and a polymerizable functional group in the same molecule include polyvalent acids such as phosphoric acid, sulfuric acid, oxalic acid, succinic acid, phthalic acid, fumaric acid, maleic acid, and ethylenically unsaturated compounds. And an ester of a compound having a polymerizable functional group such as a group, silanol group or epoxy group and a hydroxyl group in the molecule.
  • Such an ester compound may be a polyester such as a diester or triester, but it is preferable that at least one acidic group of the polyvalent acid is not esterified.
  • the ester compound having an acidic group and a polymerizable functional group in the same molecule may contain a (meth) acryloyl group as the polymerizable functional group. preferable.
  • the ester compound having an acidic group and a polymerizable functional group in the same molecule may have a plurality of polymerizable functional groups in the molecule.
  • the ester compound having an acidic group and a polymerizable functional group in the same molecule is preferably a phosphoric monoester compound or a phosphoric diester compound represented by the general formula (A).
  • phosphoric acid monoester and phosphoric acid diester can also be used together.
  • the phosphoric acid monoester compound or phosphoric acid diester compound represented by the general formula (A) is employed as the ester compound having an acidic group and a polymerizable functional group in the same molecule, the phosphoric acid hydroxy group is converted into a metal oxide.
  • the top coat layer is directly laminated with the protective top coat layer and the top coat layer contains a metal oxide, the adhesion between these two layers is excellent. It can be improved.
  • X represents a hydrogen atom or a methyl group
  • (Y) represents an —OCO (CH 2 ) 5 — group.
  • n is 0 or 1
  • p is 1 or 2.
  • the content of the coordination bond type material in the protective topcoat layer is preferably 1% by weight to 20% by weight, more preferably 1.5% by weight to 17.5% by weight, and further preferably 2% by weight. % To 15% by weight, particularly preferably 2.5% to 12.5% by weight. If the content of the coordination bond type material in the protective topcoat layer is too small, the effect of improving strength and adhesion may not be sufficiently obtained. If the content of the coordination bond type material in the protective topcoat layer is excessively large, the curing rate at the time of forming the protective topcoat layer may decrease and the hardness may decrease, or the surface of the protective topcoat layer may slip. May decrease and scratch resistance may decrease.
  • the protective topcoat layer preferably does not have a softening temperature in the range of 30 ° C to 75 ° C. More preferably, the protective topcoat layer does not have a softening temperature in the range of 25 ° C. to 75 ° C., more preferably does not have a softening temperature in the range of 20 ° C. to 80 ° C., and particularly preferably, It does not have a softening temperature within the range of 15 ° C to 85 ° C, and most preferably does not have a softening temperature within the range of 10 ° C to 90 ° C.
  • the protective topcoat layer does not have a softening temperature within the above temperature range, the physical properties of the protective topcoat layer hardly change in an actual use environment, and stable scratch resistance and dent resistance can be obtained. An effect can be expressed. A method for measuring the softening temperature will be described later.
  • a crosslinked structure be introduced.
  • the mechanical strength and chemical strength of the protective topcoat layer are increased, and the protective function for the infrared reflective layer is increased.
  • a crosslinked structure derived from an ester compound having an acidic group and a polymerizable functional group in the same molecule is preferably introduced.
  • Protective topcoat layer materials include silane coupling agents, coupling agents such as titanium coupling agents, leveling agents, UV absorbers, antioxidants, thermal stabilizers, lubricants, plasticizers, anti-coloring agents, flame retardants
  • additives such as an antistatic agent may be contained. As content of these additives, arbitrary appropriate content can be employ
  • topcoat layer >> In the heat-insulating and heat-insulating substrate of the present invention, a top coat layer may be provided on the opposite side of the infrared reflective layer to the transparent substrate layer.
  • the topcoat layer is preferably an oxide or nitride, oxynitride, or non-oxynitride mainly composed of one or more members of Group 13 or Group 14 of the Periodic Table. Contains one or more of Group 4 components. More preferably, the topcoat layer is an oxide or nitride, oxynitride, non-nitride, or non-oxide mainly composed of one or more members of Group 14, and Group 3 or Group 4 of the periodic table. Of one or more ingredients.
  • the topcoat layer is more preferably at least one selected from an oxide or oxynitride containing Si and Zr, an oxide or oxynitride containing Si and Y, and an oxide or oxynitride containing Si and Ti. including.
  • the topcoat layer particularly preferably contains at least one selected from an oxide containing Si and Zr, an oxide containing Si and Y, and an oxide containing Si and Ti.
  • the group 14 element is difficult to be an ion because it has four outermost electrons.
  • Group 13 elements are less likely to become anions due to three outermost electrons. Therefore, it is considered that the hardness of nitride, oxynitride, non-nitride, or non-oxide increases.
  • Addition of elements of Group 3 or Group 4 of the periodic table increases strength, improves corrosion resistance, and heat resistance by densifying the main component elements and densifying the molecular structure.
  • the amount of the Group 3 or Group 4 element added is preferably from 0.01 atm% to 49.9 atm%, more preferably from 0.05 atm% to the point where the effects of the present invention can be more manifested. It is 40.0 atm%, more preferably 0.1 atm% to 40.0 atm%, particularly preferably 0.5 atm% to 35.0 atm%.
  • the addition amount of the Group 3 or Group 4 element is small, the element is not uniformly inserted into the entire matrix, and thus the effects of the present invention may not be exhibited.
  • the amount of the Group 3 or Group 4 element added is too large, the compatibility with the main component is deteriorated and the effects of the present invention may not be exhibited. The compatibility can be confirmed by a phase diagram.
  • the thickness of the top coat layer is preferably 0.5 nm to 30 nm, more preferably 1 nm to 25 nm, still more preferably 2 nm to 20 nm, and particularly preferably 3 nm to 15 nm. If the thickness of the topcoat layer is within the above range, the heat-insulating and heat-insulating substrate of the present invention can exhibit more excellent scratch resistance.
  • any appropriate method can be adopted as a method for forming the topcoat layer.
  • a film forming method include a film forming method by a dry process such as a sputtering method, a vacuum evaporation method, a CVD method, and an electron beam evaporation method.
  • the film formation method for the top coat layer is preferably a film formation method by direct current sputtering.
  • a film forming method by a direct current sputtering method it is possible to form these plural layers in one pass by using a winding type sputtering apparatus provided with a plurality of film forming chambers. For this reason, not only the productivity of the topcoat layer can be greatly improved, but also the productivity of the heat-insulating and heat-insulating substrate of the present invention can be greatly improved.
  • a protective film may be provided on the side of the protective topcoat layer opposite to the infrared reflective layer.
  • the thickness of the protective film is preferably 10 ⁇ m to 150 ⁇ m, more preferably 25 ⁇ m to 100 ⁇ m, still more preferably 30 ⁇ m to 75 ⁇ m, particularly preferably 35 ⁇ m to 65 ⁇ m, and most preferably 35 ⁇ m to 50 ⁇ m.
  • An adhesive layer may be provided on the side of the transparent substrate layer opposite to the infrared reflective layer.
  • An adhesive bond layer can be used for bonding with a window glass etc., for example.
  • the adhesive layer those having a high visible light transmittance and a small refractive index difference from the transparent substrate layer are preferable.
  • a material for the adhesive layer any appropriate material can be adopted as long as the effects of the present invention are not impaired.
  • An example of such a material is an acrylic pressure-sensitive adhesive (acrylic pressure-sensitive adhesive).
  • Acrylic pressure-sensitive adhesive (acrylic pressure-sensitive adhesive) has excellent optical transparency, moderate wettability, cohesiveness and adhesion, and excellent weather resistance and heat resistance. It is suitable as.
  • the adhesive layer preferably has a high visible light transmittance and a low ultraviolet transmittance.
  • the adhesive layer By reducing the ultraviolet transmittance of the adhesive layer, it is possible to suppress deterioration of the infrared reflective layer due to ultraviolet rays such as sunlight.
  • the adhesive layer preferably contains an ultraviolet absorber.
  • degradation of the infrared reflective layer resulting from the ultraviolet rays from the outdoors can also be suppressed by using a transparent substrate layer containing an ultraviolet absorber.
  • the exposed surface of the adhesive layer is preferably covered with a separator temporarily for the purpose of preventing contamination of the exposed surface until the heat-insulating and heat-insulating substrate of the present invention is put to practical use.
  • a separator can prevent contamination due to contact with the outside of the exposed surface of the adhesive layer in a usual handling state.
  • the heat-insulating and heat-insulating substrate of the present invention can be used for windows such as buildings and vehicles, transparent cases for storing plants, frozen and refrigerated showcases, etc., and has the effect of improving the heating and cooling effect and preventing sudden temperature changes. Can do.
  • FIG. 3 is a cross-sectional view schematically showing an example of a usage pattern of the heat-insulating and heat-insulating substrate of the present invention.
  • the heat-insulating and heat-insulating substrate 100 of the present invention is disposed by bonding the transparent substrate layer 10 side to the indoor side of a window 1000 of a building or an automobile via any appropriate adhesive layer 80.
  • the heat-insulating and heat-insulating substrate 100 of the present invention transmits visible light (VIS) from the outside and introduces it into the room, and transmits near-infrared light (NIR) from the outside to the infrared reflection layer. Reflected at 20.
  • VIS visible light
  • NIR near-infrared light
  • the near-infrared reflection suppresses the inflow of heat from the outside into the room due to sunlight or the like (a heat shielding effect is exhibited), so that, for example, the cooling efficiency in summer can be increased. Furthermore, since the infrared reflective layer 20 reflects indoor far infrared rays (FIR) radiated from the heating appliance 90, a heat insulating effect is exhibited, and heating efficiency in winter can be enhanced. Moreover, since the thermal insulation heat insulation board
  • FIR far infrared rays
  • the heat-insulating and heat-insulating substrate of the present invention can be used by being fitted into a frame or the like as disclosed in, for example, Japanese Patent Application Laid-Open No. 2013-61370.
  • a material having a low content of functional groups such as C ⁇ C bond, C ⁇ O bond, C—O bond, and aromatic ring (for example, cyclic polyolefin) is used as the transparent substrate layer.
  • Far infrared rays from the substrate layer side can be reflected by the infrared reflective layer, and heat insulation can be imparted to both sides of the heat-insulating and heat-insulating substrate of the present invention.
  • Such a configuration is particularly useful, for example, in a refrigerated showcase or a frozen showcase.
  • the transparent substrate layer is, for example, a transparent plate member (for example, glass, acrylic plate, polycarbonate plate, etc.) or a composite of the transparent plate member and a transparent film, For example, it can be applied to a building or a car window as it is.
  • a transparent plate member for example, glass, acrylic plate, polycarbonate plate, etc.
  • a composite of the transparent plate member and a transparent film For example, it can be applied to a building or a car window as it is.
  • test and evaluation method in an Example etc. are as follows. Note that “parts” means “parts by weight” unless otherwise noted, and “%” means “% by weight” unless otherwise noted.
  • the film thickness of the metal oxide layer and the metal layer is measured by a focused ion beam (FIB) method using a focused ion beam processing observation apparatus (manufactured by Hitachi, product name “FB-2100”). Was obtained by observing with a field emission transmission electron microscope (product name “HF-2000”, manufactured by Hitachi, Ltd.).
  • the film thickness of the protective topcoat layer and undercoat layer is an interference pattern of the reflectance of visible light when light is incident from the measurement target side using an instantaneous multi-photometry system (product name “MCPD3000” manufactured by Otsuka Electronics). From the above, it was calculated.
  • ⁇ Emissivity> The measurement thermal insulation board is left at room temperature for 24 hours, and the surface of the thermal insulation board on the transparent substrate layer side is coated with an adhesive layer with a thickness of 25 ⁇ m (product name “HJ-9150W” manufactured by Nitto Denko Corporation).
  • an adhesive layer with a thickness of 25 ⁇ m (product name “HJ-9150W” manufactured by Nitto Denko Corporation).
  • ⁇ : Emissivity is 0.20 or more and less than 0.40.
  • ⁇ Cotton scratch resistance test> The measurement thermal insulation board is left at room temperature for 24 hours, and the surface of the thermal insulation board on the transparent substrate layer side is coated with an adhesive layer with a thickness of 25 ⁇ m (product name “HJ-9150W” manufactured by Nitto Denko Corporation). A sample bonded to an aluminum plate was used as a sample. Using the Gakushin Abrasion Tester, applying the load of 500g with a test cotton cloth (gold width 3), the outermost surface of the thermal insulation board on the aluminum plate opposite to the transparent substrate layer of the infrared reflective layer 1000 rubbing. The sample after the test was visually evaluated for scratches and peeling, and evaluated according to the following evaluation criteria.
  • the actual measured values of temperature and humidity during the actual test were a temperature of 23 ° C. and a humidity of 50% RH.
  • the hardness and elastic modulus of the constituent members of the heat insulating and heat insulating substrate can be measured as follows.
  • the hardness and elastic modulus here are obtained by a nanoindentation test using a “Triboindenter” manufactured by Nanoindenter HYSITRON.
  • the nano-indentation test is a process in which a Berkovich indenter (triangular pyramid diamond indenter) is gradually pushed into the test material until a predetermined maximum load Pmax is obtained by applying a load P, and a process in which the maximum load Pmax is maintained for a certain period of time.
  • the indentation depth h means the distance between the tip of the indenter and the surface of the test material in the initial state (the surface of the test material before the indenter is pushed in), and is based on the position where the indenter first contacts the surface of the test material. This corresponds to the displacement of the indenter.
  • the hardness and elastic modulus of the undercoat layer were calculated by the following formulas (1) and (2) based on the relationship between the indenter load P obtained by the nanoindentation test and the indentation depth h.
  • H the hardness
  • Er the elastic modulus
  • a constant determined by the shape of the indenter
  • 1.034 is used in the case of a Barkovic indenter
  • S the contact rigidity
  • the circumference
  • A the contact projection area between the indenter and the surface of the test material.
  • the hardness and elastic modulus of the constituent members of the heat insulating and heat insulating substrate can be measured as follows.
  • the hardness and elastic modulus here are obtained by a nanoindentation test using “Triboindenter” manufactured by Nanoindenter HYSITRON.
  • the nano-indentation test is a process in which a Berkovich indenter (triangular pyramid diamond indenter) is gradually pushed into the test material until a predetermined maximum load Pmax is obtained by applying a load P, and a process in which the maximum load Pmax is maintained for a certain period of time.
  • the indentation depth h means the distance between the tip of the indenter and the surface of the test material in the initial state (the surface of the test material before the indenter is pushed in), and is based on the position where the indenter first contacts the surface of the test material. This corresponds to the displacement of the indenter.
  • the hardness and elastic modulus of the protective topcoat layer were calculated by the following equations (1) and (2) based on the relationship between the indenter load P obtained by the nanoindentation test and the indentation depth h.
  • the indentation depth was 20 nm from the surface on the protective topcoat layer side.
  • H is the hardness
  • Er is the elastic modulus
  • is a constant determined by the shape of the indenter
  • 1.034 is used in the case of a Barkovic indenter.
  • S represents the contact rigidity
  • represents the circumference
  • A represents the contact projection area between the indenter and the surface of the test material.
  • H P / A (1)
  • Er 1 / ⁇ ⁇ S / 2 ⁇ ( ⁇ / A) 1/2 (2)
  • the softening temperature was measured by scanning 10 ⁇ m while changing the temperature of the cantilever from 10 ° C. to 300 ° C. in contact mode using AFM5300E / NanoNavi2 / Nano-TA2 manufactured by Hitachi High-Tech Science.
  • the softening temperature is the inflection point of the curve obtained by this measurement, and the inflection point was obtained as the intersection of the tangent lines of the curve before and after the inflection point.
  • Example 1 (Formation of undercoat layer on transparent substrate layer) An acrylic UV curable hard coat layer (JSR, Z7543) is 2 ⁇ m thick on one side of a 50 ⁇ m thick polyethylene terephthalate film substrate (trade name “Lumirror U48” manufactured by Toray, 93% visible light transmittance 93%). Formed with. Specifically, the hard coat layer solution is applied with a gravure coater, dried at 80 ° C., then irradiated with ultraviolet light with an integrated light amount of 300 mJ / cm 2 with an ultra-high pressure mercury lamp, cured, and undercoated onto the transparent substrate layer. A coat layer was formed.
  • a zinc-tin composite oxide (ZTO) layer having a film thickness of 10 nm and an Ag film having a film thickness of 16 nm are formed on the undercoat layer formed on the transparent substrate layer by a direct current magnetron sputtering method using a winding type sputtering apparatus.
  • a -Pd alloy layer and a zinc-tin composite oxide (ZTO) layer having a thickness of 10 nm are sequentially formed.
  • a first metal oxide layer, a metal layer, and a second metal oxide layer are formed in this order. Formed.
  • a metal target containing silver: palladium in a weight ratio of 96.4: 3.6 was used.
  • a protective topcoat layer made of an acrylic ultraviolet curable resin having a coordination bond material was formed to a thickness of 60 nm.
  • silica particles manufactured by Nissan Chemical Co., Ltd., trade name “PGM-AC-2140Y”
  • PGM-AC-2140Y trade name “PGM-AC-2140Y”
  • a phosphoric acid ester compound Nippon Kayaku, trade name “KAYAMER PM-21”
  • a fluorine-based additive trade name “OPTOOL DAC-HP”, made by Daikin Industries
  • the softening temperature was 95 ° C. (Thermal insulation board) As described above, transparent substrate layer (thickness 3 mm) / undercoat layer (thickness 2 ⁇ m) / first metal oxide layer (thickness 10 nm) / metal layer (thickness 16 nm) / second metal oxide layer (thickness 10 nm) / The thermal-insulation board
  • Example 2 Except having changed the quantity of the silica particle (A) used for formation of a protective topcoat layer into 50 parts, it carried out similarly to Example 1 and obtained the heat insulation heat insulation board
  • Example 3 Except having changed the quantity of the silica particle (A) used for formation of a protective topcoat layer into 10 parts, it carried out similarly to Example 1 and obtained the heat insulation heat insulation board
  • Example 4 Except not using silica particle (A) for formation of a protection topcoat layer, it carried out similarly to Example 1 and obtained the heat insulation thermal insulation board
  • Example 5 Except having changed 150 parts of silica particles (A) used for formation of a protection topcoat layer into 50 parts of silica particles (B), it carried out like Example 1 and obtained a heat insulation thermal insulation board (5).
  • the silica particles (B) are trade names “PMA-ST” manufactured by Nissan Chemical. The results are shown in Table 1.
  • Example 6 Except having formed the protective topcoat layer as follows, it carried out similarly to Example 1 and obtained the heat insulation thermal insulation board
  • a phosphoric acid ester compound (product name “KAYAMER PM-21”, manufactured by Nippon Kayaku Co., Ltd.) 5 parts per 100 parts by weight of the solid content of the acrylic hard coat resin solution (product name “Z7543” manufactured by JSR)
  • a solution containing 10 parts by weight of a fluorine-based additive (manufactured by Daikin Industries, trade name “OPTOOL DAC-HP”) was added using a spin coater, dried at 100 ° C. for 1 minute, and then a nitrogen atmosphere Under the super high pressure mercury lamp, ultraviolet rays with an integrated light quantity of 400 mJ / cm 2 were irradiated to cure.
  • the refractive index of the protective topcoat layer after curing was 1.5.
  • Example 7 In the formation of the undercoat layer, the acrylic UV curable hard coat layer (manufactured by JSR, Z7543) was changed to an acrylic UV curable hard coat layer (DIC, ERS219 (70 parts) + V6841 (30 parts)). Was carried out in the same manner as in Example 5 to obtain a heat insulating and heat insulating substrate (7). The results are shown in Table 1.
  • Example 8 In the formation of the undercoat layer, an acrylic ultraviolet curable hard coat layer (DIC, ERS219 (70 parts) + V6841 (30 parts)) was replaced with an acrylic ultraviolet curable hardcoat layer (DIC, ERS219 (50 parts) + V6841 ( Except for changing to 50 parts)), the same procedure as in Example 7 was performed to obtain a heat insulating and heat insulating substrate (8). The results are shown in Table 1.
  • Example 9 In the formation of the undercoat layer, an acrylic ultraviolet curable hard coat layer (DIC, ERS219 (70 parts) + V6841 (30 parts)) was replaced with an acrylic ultraviolet curable hardcoat layer (DIC, ERS219 (60 parts) + V6841 ( 40 parts)) except that the heat insulation board (9) was obtained in the same manner as in Example 7. The results are shown in Table 1.
  • Example 10 In the formation of the undercoat layer, an acrylic ultraviolet curable hard coat layer (DIC, ERS219 (70 parts) + V6841 (30 parts)) is replaced with an acrylic ultraviolet curable hard coat layer (JSR, Z7537 (90 parts) + DIC. Except for changing to EPS1113 (10 parts)), the same procedure as in Example 5 was performed to obtain a heat insulating and heat insulating substrate (10). The results are shown in Table 1.
  • Example 11 In the formation of the undercoat layer, an acrylic UV curable hard coat layer (JSR, Z7537 (90 parts) + DIC, EPS1113 (10 parts)) was replaced with an acrylic UV curable hard coat layer (JSR, Z7537 (80 parts). ) + DIC manufactured, EPS1113 (20 parts)), except that the heat insulation board (11) was obtained in the same manner as in Example 10. The results are shown in Table 1.
  • Example 12 In the formation of the undercoat layer, the acrylic UV curable hard coat layer (JSR, Z7537 (90 parts) + DIC, EPS1113 (10 parts)) is changed to an acrylic UV curable hard coat layer (JSR, Z7537). Otherwise, the same procedure as in Example 10 was carried out to obtain a heat insulating and heat insulating substrate (12). The results are shown in Table 1.
  • Example 13 Except that the protective topcoat layer was formed as described below, the same procedure as in Example 1 was performed to obtain a heat insulating and heat insulating substrate (13). The results are shown in Table 1.
  • the protective topcoat layer which consists of an acrylic type ultraviolet curable resin which has a coordination bond type material was formed with a film thickness of 60 nm. Specifically, a phosphoric acid ester compound (manufactured by Nippon Kayaku Co., Ltd., trade name “KAYAMER PM-21”) was added to 100 parts by weight of the solid content of the acrylic hard coat resin solution (JSR, trade name “Z7537”).
  • a solution containing 10 parts by weight of a fluorine-based additive (manufactured by Daikin Industries, trade name “OPTOOL DAC-HP”) was added using a spin coater, dried at 100 ° C. for 1 minute, and then a nitrogen atmosphere Under the super high pressure mercury lamp, ultraviolet rays with an integrated light quantity of 400 mJ / cm 2 were irradiated to cure.
  • the refractive index of the protective topcoat layer after curing was 1.5.
  • Example 14 In the formation of the undercoat layer, the acrylic UV curable hard coat layer (manufactured by JSR, Z7543) was changed to an acrylic UV curable hard coat layer (DIC, ERS219 (70 parts) + V6841 (30 parts)). Was carried out in the same manner as in Example 13 to obtain a heat insulating and heat insulating substrate (14). The results are shown in Table 1.
  • Example 15 In the formation of the undercoat layer, an acrylic ultraviolet curable hard coat layer (DIC, ERS219 (70 parts) + V6841 (30 parts)) was replaced with an acrylic ultraviolet curable hardcoat layer (DIC, ERS219 (50 parts) + V6841 ( Except for changing to 50 parts)), the same procedure as in Example 14 was carried out to obtain a heat insulating and heat insulating substrate (15). The results are shown in Table 1.
  • Example 16 In the formation of the undercoat layer, an acrylic ultraviolet curable hard coat layer (DIC, ERS219 (70 parts) + V6841 (30 parts)) was replaced with an acrylic ultraviolet curable hardcoat layer (DIC, ERS219 (60 parts) + V6841 ( 40 parts)) except that the thermal insulation board (16) was obtained in the same manner as in Example 14. The results are shown in Table 1.
  • Example 17 Except having changed the quantity of the silica particle (B) used for formation of a protective topcoat layer into 100 parts, it carried out similarly to Example 7 and obtained the heat-shielding heat insulation board
  • Example 18 Instead of a 50 ⁇ m thick polyethylene terephthalate film substrate (trade name “Lumirror U48”, visible light transmittance 93%) as a transparent substrate layer, a 3 mm thick float plate glass (manufactured by Matsunami Glass, visible light transmittance 91) %) was carried out in the same manner as in Example 1 to obtain a heat insulating and heat insulating substrate (18). The results are shown in Table 1.
  • Example 19 Instead of a 50 ⁇ m thick polyethylene terephthalate film substrate (trade name “Lumirror U48”, visible light transmittance 93%) as a transparent substrate layer, a 3 mm thick float plate glass (manufactured by Matsunami Glass, visible light transmittance 91) %) was carried out in the same manner as in Example 2 to obtain a heat insulating and heat insulating substrate (19). The results are shown in Table 1.
  • Example 20 Instead of a 50 ⁇ m thick polyethylene terephthalate film substrate (trade name “Lumirror U48”, visible light transmittance 93%) as a transparent substrate layer, a 3 mm thick float plate glass (manufactured by Matsunami Glass, visible light transmittance 91) %) was carried out in the same manner as in Example 3 to obtain a heat insulating and heat insulating substrate (20). The results are shown in Table 1.
  • Example 21 Instead of a 50 ⁇ m thick polyethylene terephthalate film substrate (trade name “Lumirror U48”, visible light transmittance 93%) as a transparent substrate layer, a 3 mm thick float plate glass (manufactured by Matsunami Glass, visible light transmittance 91) %) was carried out in the same manner as in Example 4 to obtain a heat insulating and heat insulating substrate (21). The results are shown in Table 1.
  • Example 22 Instead of a 50 ⁇ m thick polyethylene terephthalate film substrate (trade name “Lumirror U48”, visible light transmittance 93%) as a transparent substrate layer, a 3 mm thick float plate glass (manufactured by Matsunami Glass, visible light transmittance 91) %) was carried out in the same manner as in Example 5 to obtain a heat insulating and heat insulating substrate (22). The results are shown in Table 1.
  • Example 23 Instead of a 50 ⁇ m thick polyethylene terephthalate film substrate (trade name “Lumirror U48”, visible light transmittance 93%) as a transparent substrate layer, a 3 mm thick float plate glass (manufactured by Matsunami Glass, visible light transmittance 91) %) was carried out in the same manner as in Example 6 to obtain a heat insulating and heat insulating substrate (23). The results are shown in Table 1.
  • Example 24 Instead of a 50 ⁇ m thick polyethylene terephthalate film substrate (trade name “Lumirror U48”, visible light transmittance 93%) as a transparent substrate layer, a 3 mm thick float plate glass (manufactured by Matsunami Glass, visible light transmittance 91) %) was carried out in the same manner as in Example 7 to obtain a heat insulating and heat insulating substrate (24). The results are shown in Table 1.
  • Example 25 Instead of a 50 ⁇ m thick polyethylene terephthalate film substrate (trade name “Lumirror U48”, visible light transmittance 93%) as a transparent substrate layer, a 3 mm thick float plate glass (manufactured by Matsunami Glass, visible light transmittance 91) %) was carried out in the same manner as in Example 8 to obtain a heat insulating and heat insulating substrate (25). The results are shown in Table 1.
  • Example 26 Instead of a 50 ⁇ m thick polyethylene terephthalate film substrate (trade name “Lumirror U48”, visible light transmittance 93%) as a transparent substrate layer, a 3 mm thick float plate glass (manufactured by Matsunami Glass, visible light transmittance 91) %) was carried out in the same manner as in Example 9 to obtain a heat insulating and heat insulating substrate (26). The results are shown in Table 1.
  • Example 27 In the formation of the protective topcoat layer, the same procedure as in Example 5 was performed except that the amount of fluorine-based additive (manufactured by Daikin Industries, trade name “OPTOOL DAC-HP”) was changed to 2 parts by weight. 27) was obtained. The results are shown in Table 1.
  • Example 28 As a coordination bond material contained in the protective topcoat layer, dipentaerythritol pentaacrylate-succinic acid modified product (Kyoeisha Chemical Co., Ltd.) instead of the phosphate ester compound (product name “KAYAMER PM-21” manufactured by Nippon Kayaku Co., Ltd.) The product was manufactured in the same manner as in Example 5 except that the product name “Light Acrylate DPE-6A-MS” was used to obtain a heat-insulating and heat-insulating substrate (28). The results are shown in Table 1.
  • Example 29 A heat-insulating and heat-insulating substrate (29) was obtained in the same manner as in Example 5 except that the ultra-high pressure mercury lamp was irradiated with ultraviolet rays having an integrated light amount of 100 mJ / cm 2 and cured. The results are shown in Table 1.
  • Example 3 Except that the protective topcoat layer was formed as described below, the same procedure as in Example 1 was performed to obtain a heat insulating and heat insulating substrate (C3). The results are shown in Table 2.
  • the protective topcoat layer which consists of an acrylic type ultraviolet curable resin which has a coordination bond type material was formed with a film thickness of 60 nm. Specifically, 5 phosphoric acid ester compounds (trade name “KAYAMER PM-21” manufactured by Nippon Kayaku Co., Ltd.) are added to 100 parts by weight of the solid content of the acrylic hard coat resin solution (trade name “V6850” manufactured by DIC).
  • a solution containing 10 parts by weight of a fluorine-based additive (manufactured by Daikin Industries, trade name “OPTOOL DAC-HP”) was added using a spin coater, dried at 100 ° C. for 1 minute, and then a nitrogen atmosphere Under the super high pressure mercury lamp, ultraviolet rays with an integrated light quantity of 400 mJ / cm 2 were irradiated to cure.
  • the refractive index of the protective topcoat layer after curing was 1.5.
  • the heat-insulating and heat-insulating substrate of the present invention can be used for, for example, windows for buildings and vehicles, transparent cases for storing plants, frozen or refrigerated showcases, and the like.

Abstract

耐擦傷性に優れた遮熱断熱基板を提供する。 本発明の遮熱断熱基板は、透明基板層と赤外線反射層を含む遮熱断熱基板であって、該透明基板層と該赤外線反射層との間にアンダーコート層を備え、該赤外線反射層の該透明基板層と反対の側に保護トップコート層を備え、該アンダーコート層の厚みが0.01μm~5μmであり、該保護トップコート層の厚みが5nm~500nmであり、該アンダーコート層の硬度が0.50GPa以上であり、該保護トップコート層の硬度が0.50GPa以上である。

Description

遮熱断熱基板
 本発明は遮熱断熱基板に関する。
 遮熱断熱基板は、遮熱機能と断熱機能を兼ね備えた基板である。このような遮熱断熱基板は、例えば、窓ガラスに貼着された場合、赤外線反射機能によって、室外から室内への日射熱(近赤外線)の流入、および、室内から室外への暖房熱(遠赤外線)の流出を抑制することができ、年間を通じての室内の快適性の向上と省エネルギー効果の向上を実現することができる。
 このような遮熱断熱基板として、近年、透明基板層と赤外線反射層を含む遮熱断熱基板が提案されている(特許文献1、2)。赤外線反射層は、例えば、金属層の両側に金属酸化物層を備える構成を有し、近赤外線の反射による遮熱性向上と遠赤外線の反射による断熱性向上を両立させることができる。
 遮熱断熱基板には、赤外線反射機能に加えて、取り扱い時や保管時などに屈曲状態になった場合にクラックが生じない高い耐クラック性、清掃時の拭き作業などにおける弱い力での繰り返しの擦りによる傷つきを抑制する高い耐擦傷性が求められる。
特開2016-93892号公報 特開2016-94012号公報
 本発明の課題は、耐擦傷性に優れた遮熱断熱基板を提供することにある。さらに基板がフィルム形状の場合には、耐擦傷性とともに耐クラック性にも優れた遮熱断熱基板を提供することである。
 本発明の遮熱断熱基板は、
 透明基板層と赤外線反射層を含む遮熱断熱基板であって、
 該透明基板層と該赤外線反射層との間にアンダーコート層を備え、
 該赤外線反射層の該透明基板層と反対の側に保護トップコート層を備え、
 該アンダーコート層の厚みが0.01μm~5μmであり、
 該保護トップコート層の厚みが5nm~500nmであり、
 該アンダーコート層の硬度が0.50GPa以上であり、
 該保護トップコート層の硬度が0.50GPa以上である。
 一つの実施形態においては、上記保護トップコート層の接触角が90度以上である。
 一つの実施形態においては、上記保護トップコート層が配位結合型材料を含む。
 一つの実施形態においては、上記保護トップコート層が、30℃~75℃の範囲内に軟化温度を有さない。
 一つの実施形態においては、上記透明基板層の可視光線透過率が10%以上である。
 一つの実施形態においては、上記保護トップコート層と上記赤外線反射層との間にトップコート層が配置されている。
 一つの実施形態においては、上記保護トップコート層が、有機樹脂を含む樹脂組成物から形成される樹脂層である。
 一つの実施形態においては、上記有機樹脂がアクリル系樹脂である。
 一つの実施形態においては、上記アンダーコート層が、有機樹脂を含む樹脂組成物から形成される樹脂層である。
 一つの実施形態においては、上記有機樹脂がアクリル系樹脂である。
 一つの実施形態においては、上記アンダーコート層の弾性率が8.25GPa以下である。
 一つの実施形態においては、上記保護トップコート層の弾性率が10.0GPa以下である。
 本発明によれば、耐擦傷性に優れた遮熱断熱基板を提供することができる。さらに基板がフィルム形状の場合には、耐擦傷性とともに耐クラック性にも優れた遮熱断熱基板を提供することができる。
本発明の遮熱断熱基板の一つの実施形態を示す概略断面図である。 本発明の遮熱断熱基板の一つの実施形態を示す概略断面図である。 本発明の遮熱断熱基板の使用形態の一例を模式的に表す断面図である。 実施例1において得られた保護トップコート層の軟化温度の測定結果を示す図である。
≪1.遮熱断熱基板の概要≫
 本発明の遮熱断熱基板は、透明基板層と赤外線反射層を含み、該透明基板層と該赤外線反射層との間にアンダーコート層を備え、該赤外線反射層の該透明基板層と反対の側に保護トップコート層を備える。
 図1は、本発明の遮熱断熱基板の一つの実施形態を示す概略断面図である。図1において、遮熱断熱基板100は、透明基板層10とアンダーコート層60と赤外線反射層20と保護トップコート層40とを備える。
 本発明の遮熱断熱基板は、透明基板層のアンダーコート層と反対の側、透明基板層とアンダーコート層との間、アンダーコート層と赤外線反射層との間、赤外線反射層と保護トップコート層との間、保護トップコート層の赤外線反射層と反対の側、のそれぞれに、必要に応じて、任意の適切な他の層を備えていてもよい。このような他の層は1層でもよいし、2層以上でもよい。また、このような他の層は、1種のみであってもよいし、2種以上であってもよい。
 図2は、本発明の遮熱断熱基板の一つの実施形態を示す概略断面図である。図2において、遮熱断熱基板100は、透明基板層10とアンダーコート層60と赤外線反射層20と保護トップコート層40と保護フィルム70とを備える。図2において、赤外線反射層20は、第一金属酸化物層22a、金属層21、第二金属酸化物層22bの3層からなる。
 本発明の遮熱断熱基板においては、トップコート層を含んでも良い。トップコート層はドライプロセスによって形成された層であり、保護トップコート層は塗布によって形成された層である。
 トップコート層と保護トップコート層の配置としては、トップコート層が赤外線反射層と保護トップコート層の間に配置されていてもよいし、保護トップコート層が赤外線反射層とトップコート層の間に配置されていてもよい。
 本発明の遮熱断熱基板は、透明基板層の赤外線反射層と反対の側に、粘着剤層を備えていてもよい。さらに、セパレータフィルムが、このような粘着剤層の表面に備えられていてもよい。
 本発明の遮熱断熱基板の可視光線透過率は、好ましくは30%以上であり、より好ましくは30%~85%であり、さらに好ましくは45%~80%であり、特に好ましくは55%~80%であり、最も好ましくは55%~75%である。なお、可視光線透過率は、JIS-A5759-2008(建築窓ガラス用フィルム)に準じて測定される。
 本発明の遮熱断熱基板は、好ましくは、アンダーコート層の硬度が0.50GPa以上であり、保護トップコート層の硬度が0.50GPa以上である。本発明の遮熱断熱基板は、このような特性を満たすことにより、耐擦傷性に優れ得る。逆に、このような特性の中の1つでも満たさないと、耐擦傷性に優れた遮熱断熱基板を提供することができないおそれがある。
 本発明の遮熱断熱基板は、アンダーコート層の硬度が、好ましくは0.50GPa以上であり、より好ましくは0.50GPa~1.00GPaであり、さらに好ましくは0.50GPa~0.90GPaであり、特に好ましくは0.50GPa~0.80GPaであり、最も好ましくは0.50GPa~0.70GPaである。アンダーコート層の硬度が0.50GPaより低いと、本発明の遮熱断熱基板は、清掃時の拭き作業などにおける弱い力での繰り返しの擦りによって傷つきが生じるおそれがある。
 本発明の遮熱断熱基板は、アンダーコート層の弾性率が、好ましくは8.25GPa以下であり、より好ましくは4.00GPa~8.25GPaであり、さらに好ましくは5.00GPa~8.25GPaであり、特に好ましくは5.50GPa~8.25GPaであり、最も好ましくは6.00GPa~8.25GPaである。アンダーコート層の弾性率が8.25GPaを超えると、本発明の遮熱断熱基板は、取り扱い時や保管時などに屈曲状態になった場合にクラックが生じるおそれがある。
 本発明の遮熱断熱フィルムは、保護トップコート層の硬度が、好ましくは0.50GPa以上であり、より好ましくは0.50GPa~1.40GPaであり、さらに好ましくは0.50GPa~1.30GPaであり、特に好ましくは0.50GPa~1.20GPaであり、最も好ましくは0.50GPa~1.00GPaである。保護トップコート層の硬度が0.50GPaより低いと、本発明の遮熱断熱基板は、清掃時の拭き作業などにおける弱い力での繰り返しの擦りによって傷つきが生じるおそれがある。
 本発明の遮熱断熱基板は、保護トップコート層の弾性率が、好ましくは10.0GPa以下であり、より好ましくは4.00GPa~10.0GPaであり、さらに好ましくは5.00GPa~10.0GPaであり、特に好ましくは5.50GPa~10.0GPaであり、最も好ましくは6.00GPa~10.0GPaである。保護トップコート層の弾性率が10.0GPaを超えると、本発明の遮熱断熱基板は、取り扱い時や保管時などに屈曲状態になった場合にクラックが生じるおそれがある。
≪2.透明基板層≫
 透明基板層は、好ましくは、透明板状部材、透明フィルム、または、これらの複合体である。透明板状部材としては、例えば、ガラス、アクリル板、ポリカーボネート板などが挙げられる。透明フィルムは、好ましくは可撓性の透明フィルムである。透明基板層の可視光線透過率は、好ましくは10%以上であり、より好ましくは80%以上であり、さらに好ましくは85%以上であり、特に好ましくは88%以上であり、最も好ましくは90%以上である。なお、可視光線透過率は、JIS-A5759-2008(建築窓ガラス用フィルム)に準じて測定される。
 透明基板層の厚みは、透明基板層が透明板状部材の場合、好ましくは0.2mm~40mmであり、より好ましくは0.5mm~30mmであり、さらに好ましくは1mm~24mmであり、特に好ましくは1.5mm~18mmであり、最も好ましくは2mm~12mmである。
 透明基板層の厚みは、透明基板層がフィルムの場合は、好ましくは5μm~500μmであり、より好ましくは10μm~300μmであり、さらに好ましくは20μm~200μmであり、特に好ましくは30μm~100μmである。
 透明基板層がフィルムの場合、透明基板層を構成する材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルエーテルケトン(PEEK)、ポリカーボネート(PC)などが挙げられ、耐熱性に優れる等の観点から、ポリエチレンテレフタレート(PET)が好ましい。
≪3.アンダーコート層≫
 透明基板層と赤外線反射層との間にはアンダーコート層が備えられている。好ましくは、アンダーコート層が透明基板層と直接に積層されてなる。透明基板層の表面上にアンダーコート層が備えられていることにより、本発明の遮熱断熱基板の機械的強度が高められ得るとともに、本発明の遮熱断熱基板の耐擦傷性が高められ得る。
 アンダーコート層の硬度は、前述したように、好ましくは0.50GPa以上であり、より好ましくは0.50GPa~1.00GPaであり、さらに好ましくは0.50GPa~0.90GPaであり、特に好ましくは0.50GPa~0.80GPaであり、最も好ましくは0.50GPa~0.70GPaである。アンダーコート層の硬度が0.50GPaより低いと、本発明の遮熱断熱基板は、清掃時の拭き作業などにおける弱い力での繰り返しの擦りによって傷つきが生じるおそれがある。
 アンダーコート層の弾性率は、前述したように、好ましくは8.25GPa以下であり、より好ましくは4.00GPa~8.25GPaであり、さらに好ましくは5.00GPa~8.25GPaであり、特に好ましくは5.50GPa~8.25GPaであり、最も好ましくは6.00GPa~8.25GPaである。アンダーコート層の弾性率が8.25GPaを超えると、本発明の遮熱断熱基板は、取り扱い時や保管時などに屈曲状態になった場合にクラックが生じるおそれがある。
 アンダーコート層の厚みは、好ましくは0.01μm~5μmであり、より好ましくは0.2μm~5μmであり、さらに好ましくは0.2μm~3μmであり、特に好ましくは0.5μm~3μmであり、最も好ましくは1μm~2μmである。アンダーコート層の厚みが上記範囲内にあれば、本発明の遮熱断熱基板の機械的強度が高められ得るとともに、本発明の遮熱断熱基板の耐擦傷性がより高められ得る。
 アンダーコート層は、好ましくは硬化型樹脂の硬化被膜であり、例えば、任意の適切な紫外線硬化型樹脂の硬化被膜を透明基板層上に付設する方式により形成できる。
 アンダーコート層の表面(透明基板層と反対の側)には、密着性向上等の目的で、コロナ処理、プラズマ処理、フレーム処理、オゾン処理、プライマー処理、グロー処理、ケン化処理、カップリング剤による処理などの表面改質処理が行われてもよい。
 アンダーコート層の材料としては、好ましくは、アンダーコート層の硬度が0.50GPa以上となり、より好ましくは、さらに、アンダーコート層の弾性率が8.25GPa以下となるような材料であれば、本発明の効果を損なわない範囲で任意の適切な材料を採用し得る。このような材料としては、例えば、下記のようなものが挙げられる。
 アンダーコート層としては、任意の適切な構成が採用され得る。アンダーコート層は、好ましくは、有機樹脂を含む樹脂組成物から形成される樹脂層であり、有機樹脂としては、例えば、紫外線硬化樹脂が挙げられる。有機樹脂としての紫外線硬化樹脂としては、例えば、アクリル系樹脂、シリコーン系樹脂、ポリエステル系樹脂、ウレタン系樹脂、アミド系樹脂、エポキシ系樹脂、オキセタン系樹脂などが挙げられる。アンダーコート層の形成にこのような紫外線硬化樹脂を含む樹脂組成物を用いれば、優れた耐擦傷性を有効に発現できるアンダーコート層を得ることができる。耐擦傷性や取扱性等の点から、有機樹脂としての紫外線硬化樹脂としては、特に好ましくは、アクリル系樹脂である。
 上記アクリル系樹脂としては、単官能又は多官能の各種(メタ)アクリレート由来の繰り返し単位を有する樹脂であれば、任意の適切なアクリル系樹脂が採用され得る。上記単官能(メタ)アクリレートとしては、例えば、イソボルニルアクリレート、テトラヒドロフルフリルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、ブトキシエチルアクリレート、ラウリルアクリレート、ステアリルアクリレート、ベンジルアクリレート、ヘキシルジグリコールアクリレート、2-ヒドロキシエチルアクリレート、2-エチルヘキシルアクリレート、シクロヘキシルアクリレート、フェノキシエチルアクリレート、ジシクロペンタジエンアクリレート、ポリエチレングリコールアクリレート、ポリプロピレングリコールアクリレート、ノニルフェノキシエチルセロソルブアクリレートなどが挙げられる。多官能(メタ)アクリレートとしては、例えば、ポリエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート等の多官能(メタ)アクリレート;オリゴウレタン(メタ)アクリレート、オリゴエステル(メタ)アクリレート等の多官能(メタ)アクリレートオリゴマー;などが挙げられる。これらの単官能又は多官能の各種(メタ)アクリレートは、1種のみであってもよいし、2種以上であってもよい。
 アンダーコート層は、必要に応じて、任意の適切な添加剤を含んでいてもよい。このような添加剤の代表例としては、光重合開始剤、シランカップリング剤、離型剤、硬化剤、硬化促進剤、希釈剤、老化防止剤、変成剤、界面活性剤、染料、顔料、無機粒子、変色防止剤、紫外線吸収剤、柔軟剤、安定剤、可塑剤、消泡剤などが挙げられる。樹脂組成物に含有される添加剤の種類、数および量は、目的に応じて適切に設定され得る。
≪4.反射防止層≫
 アンダーコート層と赤外線反射層との間には、反射防止層が備えられていてもよい。反射防止層が備えられていることにより、本発明の遮熱断熱基板の透明性が向上し得る。
 反射防止層の厚みは、好ましくは30nm以下であり、より好ましくは1nm~30nmであり、さらに好ましくは1nm~20nmであり、特に好ましくは1nm~15nmである。
 反射防止層の製膜方法としては、任意の適切な方法を採用し得る。このような製膜方法としては、例えば、スパッタ法、真空蒸着法、CVD法、電子線蒸着法等のドライプロセスによる製膜方法が挙げられる。反射防止層の製膜方法としては、好ましくは、直流スパッタ法による製膜方法である。直流スパッタ法による製膜方法を採用する場合、複数の製膜室を備える巻取り式スパッタ装置を用いれば、これら複数層を1パスで形成することが可能となる。このため、反射防止層の生産性が大幅に向上し得るだけでなく、ひいては、本発明の遮熱断熱基板の生産性が大幅に向上し得る。
≪5.赤外線反射層≫
 赤外線反射層は、近赤外線の反射による遮熱性向上と遠赤外線の反射による断熱性向上を両立させることができる層であれば、任意の適切な層を採用し得る。
 赤外線反射層の一つの実施形態は、第一金属酸化物層、金属層、第二金属酸化物層をこの順に備え、第一金属酸化物層および第二金属酸化物層は金属層に直接積層されてなる。この実施形態においては、赤外線反射層は、好ましくは、第一金属酸化物層、金属層、第二金属酸化物層の3層からなり、第一金属酸化物層、金属層、第二金属酸化物層をこの順に備える。このような赤外線反射層の一つの実施形態は、例えば、特開2016-93892号公報、特開2016-94012号公報などに記載の実施形態を援用し得る。
 金属層は、赤外線反射の中心的な役割を有する。積層数を増加させることなく可視光線透過率と近赤外線反射率を高める観点から、金属層は、好ましくは、銀を主成分とする銀合金層または金を主成分とする金合金層である。例えば、銀は高い自由電子密度を有するため、近赤外線・遠赤外線の高い反射率を実現することができる。したがって、赤外線反射層を構成する層の積層数が少ない場合でも、近赤外線の反射による遮熱性向上と遠赤外線の反射による断熱性向上を両立させることができる。
 金属層が銀を主成分とする銀合金層である場合、金属層中の銀の含有割合は、好ましくは85重量%~99.9重量%であり、より好ましくは90重量%~99.8重量%であり、さらに好ましくは95重量%~99.7重量%であり、特に好ましくは97重量%~99.6重量%である。金属層中の銀の含有割合が高いほど、透過率および反射率の波長選択性を高め、可視光線透過率を高めることができる。一方、銀は、水分、酸素、塩素等が存在する環境下に暴露された場合や、紫外光や可視光が照射された場合に、酸化や腐食等の劣化を生じる場合がある。このため、金属層は、耐久性を高める目的で、銀以外の金属を含有する銀合金層であることが好ましく、具体的には、上記のように、金属層中の銀の含有割合が99.9重量%以下であることが好ましい。
 金属層が銀を主成分とする銀合金層である場合、金属層は、上記のように、耐久性を高める目的から、銀以外の金属を含有することが好ましい。金属層中の銀以外の金属の含有割合は、好ましくは0.1重量%~15重量%であり、より好ましくは0.2重量%~10重量%であり、さらに好ましくは0.3重量%~5重量%であり、特に好ましくは0.4重量%~3重量%である。銀以外の金属としては、例えば、パラジウム(Pd)、金(Au)、銅(Cu)、ビスマス(Bi)、ゲルマニウム(Ge)、ガリウム(Ga)などが挙げられ、高い耐久性を付与できる観点から、パラジウム(Pd)が好ましい。
 金属酸化物層(第一金属酸化物層および第二金属酸化物層)は、金属層との界面における可視光線の反射量を制御して、高い可視光線透過率と高い赤外線反射率とを両立させる等の目的で設けられる。金属酸化物層は、金属層の劣化を防止するための保護層としても機能し得る。赤外線反射層における反射および透過の波長選択性を高める観点から、金属酸化物層の可視光に対する屈折率は、好ましくは1.5以上であり、より好ましくは1.6以上であり、さらに好ましくは1.7以上である。
 金属酸化物層(第一金属酸化物層および第二金属酸化物層)は、好ましくは、Ti、Zr、Hf、Nb、Zn、Al、Ga、In、Tl、Sn等の金属の酸化物、あるいはこれらの金属の複合酸化物を含む。金属酸化物層は、より好ましくは、酸化亜鉛を含有する複合金属酸化物を含む。金属酸化物層は、好ましくは非晶質である。金属酸化物層が酸化亜鉛を含有する非晶質層である場合、金属酸化物層自体の耐久性が高められるとともに、金属層に対する保護層としての作用が増大するため、金属層の劣化が抑制され得る。
 金属酸化物層(第一金属酸化物層および第二金属酸化物層)は、特に好ましくは、酸化亜鉛を含有する複合金属酸化物である。この場合、金属酸化物層中(第一金属酸化物層および第二金属酸化物層のそれぞれ中)の酸化亜鉛の含有割合は、金属酸化物の合計100重量部に対して、好ましくは3重量部以上であり、より好ましくは5重量部以上であり、さらに好ましくは7重量部以上である。酸化亜鉛の含有割合が上記範囲内にあれば、金属酸化物層が非晶質層となりやすく、耐久性が高められる傾向がある。一方、酸化亜鉛の含有割合が過度に大きいと、耐久性が低下したり、可視光線透過率が低下したりするおそれがある。そのため、金属酸化物層中の酸化亜鉛の含有割合は、金属酸化物の合計100重量部に対して、好ましくは60重量部以下でありより好ましくは50重量部以下であり、さらに好ましくは40重量部以下である。
 酸化亜鉛を含有する複合金属酸化物としては、可視光線透過率、屈折率、耐久性の全てを満足し得る観点から、インジウム-亜鉛複合酸化物(IZO)、亜鉛-錫複合酸化物(ZTO)、インジウム-錫-亜鉛複合酸化物(ITZO)が好ましい。これらの複合酸化物は、さらに、AlやGa等の金属や、これらの金属の酸化物を含有していてもよい。
 金属層および金属酸化物層(第一金属酸化物層および第二金属酸化物層)の厚みは、赤外線反射層が、可視光線を透過し近赤外線を選択的に反射するように、材料の屈折率等を勘案して適宜に設定され得る。金属層の厚みは、好ましくは5nm~50nmであり、より好ましくは5nm~25nmであり、さらに好ましくは10nm~18nmである。金属酸化物層の厚み(第一金属酸化物層および第二金属酸化物層のそれぞれの厚み)は、好ましくは1nm~80nmであり、より好ましくは1nm~50nmであり、さらに好ましくは1nm~30nmであり、特に好ましくは2nm~10nmである。本発明の遮熱断熱基板は、好ましくは機械的強度が高められ得るので、金属酸化物層の厚み(第一金属酸化物層および第二金属酸化物層のそれぞれの厚み)を従来品レベルよりも薄くすることが可能となる。
 金属層および金属酸化物層の製膜方法としては、任意の適切な方法を採用し得る。このような製膜方法としては、例えば、スパッタ法、真空蒸着法、CVD法、電子線蒸着法等のドライプロセスによる製膜方法が挙げられる。金属層および金属酸化物層の製膜方法としては、好ましくは、直流スパッタ法による製膜方法である。直流スパッタ法による製膜方法を採用する場合、複数の製膜室を備える巻取り式スパッタ装置を用いれば、これら複数層を1パスで形成することが可能となる。このため、赤外線反射層の生産性が大幅に向上し得るだけでなく、ひいては、本発明の遮熱断熱基板の生産性が大幅に向上し得る。また、直流スパッタするターゲットは、導電性を付与するために導電性の不純物を添加されていてもよく、一部を還元性としてもよい。そのため、製膜される反射防止層にも該不純物が混入したり、層の組成が化学量論組成と異なったりする場合があるが、本発明の効果を奏する限りは問題とならない。
 赤外線反射層の別の一つの実施形態としては、例えば、特開2014-30910号公報に記載の基材層の実施形態を援用し得る。
≪6.保護トップコート層≫
 赤外線反射層の透明基板層と反対の側には保護トップコート層が備えられている。好ましくは、保護トップコート層は後述するトップコート層と直接に積層されてなる。
 保護トップコート層の硬度は、前述したように、好ましくは0.50GPa以上であり、より好ましくは0.50GPa~1.40GPaであり、さらに好ましくは0.50GPa~1.30GPaであり、特に好ましくは0.50GPa~1.20GPaであり、最も好ましくは0.50GPa~1.00GPaである。保護トップコート層の硬度が0.50GPaより低いと、本発明の遮熱断熱基板は、清掃時の拭き作業などにおける弱い力での繰り返しの擦りによって傷つきが生じるおそれがある。
 保護トップコート層の弾性率は、前述したように、好ましくは10.0GPa以下であり、より好ましくは4.00GPa~10.0GPaであり、さらに好ましくは5.00GPa~10.0GPaであり、特に好ましくは5.50GPa~10.0GPaであり、最も好ましくは6.00GPa~10.0GPaである。保護トップコート層の弾性率が10.0GPaを超えると、本発明の遮熱断熱基板は、取り扱い時や保管時などに屈曲状態になった場合にクラックが生じるおそれがある。
 保護トップコート層の接触角は、好ましくは90度以上であり、より好ましくは90度~160度であり、さらに好ましくは90度~140度であり、特に好ましくは90度~120度であり、最も好ましくは100度~120度である。保護トップコート層の接触角が上記範囲内にあれば、防汚性および耐擦傷性のいずれにもより優れた遮熱断熱基板を提供し得る。
 保護トップコート層は、好ましくは、塗布によって形成された層である。塗布による保護トップコート層の形成は、例えば、後述するような材料を溶剤に溶解させて溶液を調整し、この溶液を赤外線反射層上に塗布し、溶媒を乾燥させた後、紫外線や電子線等の照射や熱エネルギーの付与によって、硬化させることによる形成が挙げられる。本発明の遮熱断熱基板が、このような保護トップコート層を備えることにより、例えば、後述するトップコート層と保護トップコート層の密着性が高められ、本発明の遮熱断熱基板の耐擦傷性が向上し、赤外線反射層の耐久性を高めることができる。
 保護トップコート層は、高い可視光線の透過率を有することが好ましい。
 保護トップコート層は、遠赤外線の吸収が小さいことが好ましい。保護トップコート層において遠赤外線の吸収が小さいと、室内の遠赤外線が赤外線反射層によって室内に反射されるため、断熱効果が高められ得る。保護トップコート層による遠赤外線吸収量を小さくする方法としては、保護トップコート層の材料として遠赤外線の吸収率が小さいものを用いる方法、保護トップコート層の厚みを小さくする方法などが挙げられる。一方、保護トップコート層において遠赤外線の吸収が大きいと、室内の遠赤外線が保護トップコート層で吸収され、赤外線反射層によって反射されることなく、熱伝導により外部に放熱されるため、断熱性が低下するおそれがある。
 保護トップコート層の材料として遠赤外線の吸収率が小さいものを用いれば、保護トップコート層の厚みが大きい場合でも、遠赤外線吸収量を小さく保つことができ、赤外線反射層に対する保護効果を高めることができる。遠赤外線の吸収が小さい保護トップコート層の材料としては、C=C結合、C=O結合、C-O結合、芳香族環などの含有量が小さい化合物が好適に用いられる。このような化合物としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンや、シクロオレフィン系ポリマー等の脂環式ポリマー、ゴム系ポリマーなどが挙げられる。
 保護トップコート層は、遠赤外線吸収量を小さくする観点から、その厚みは、好ましくは500nm以下であり、より好ましくは300nm以下であり、さらに好ましくは200nm以下であり、さらに好ましくは150nm以下であり、特に好ましくは120nm以下であり、最も好ましくは100nm以下である。保護トップコート層の光学膜厚(屈折率と物理的な膜厚の積)が可視光の波長範囲と重複すると、界面での多重反射干渉によって、本発明の遮熱断熱基板の表面が虹模様に見える「虹彩現象」を生じる場合がある。一般的な樹脂の屈折率は1.5程度であるため、虹彩現象を抑制する観点からも保護トップコート層の厚みは200nm以下であることがさらに好ましい。
 保護トップコート層は、それに機械的強度および化学的強度を付与するとともに、本発明の遮熱断熱基板の耐久性を高める観点から、その厚みは、好ましくは5nm以上であり、より好ましくは15nm以上であり、さらに好ましくは30nm以上であり、特に好ましくは50nm以上である。
 保護トップコート層の厚みが上記範囲内にあれば、保護トップコート層の表面側での反射光と赤外線反射層側界面での反射光との多重反射干渉により、可視光線の反射率を低下させることができる。そのため、赤外線反射層の光吸収による反射率低下効果に加えて、保護トップコート層による反射防止効果が得られ、本発明の遮熱断熱基板の視認性がさらに高められ得る。
 保護トップコート層の材料としては、好ましくは、多官能(メタ)アクリル系モノマーを含む硬化型組成物である。多官能(メタ)アクリル系モノマーは、1種のみであってもよいし、2種以上であってもよい。保護トップコート層は、例えば、多官能(メタ)アクリル系モノマーを含む硬化型組成物を硬化させて形成される。硬化の方法としては、例えば、光硬化、熱硬化などが挙げられ、好ましくは光硬化である。
 多官能(メタ)アクリル系モノマーを含む硬化型組成物中の多官能(メタ)アクリル系モノマーの含有割合は、本発明の効果をより発現させ得る点で、溶剤等を除いた固形分1を100重量%としたときに、好ましくは10重量%~70重量%であり、より好ましくは20重量%~60重量%重量%であり、さらに好ましくは25重量%~55重量%であり、特に好ましくは30重量%~50重量%である。
 多官能(メタ)アクリル系モノマーとしては、例えば、分子中に複数の(メタ)アクリル基を有するモノマーであって光硬化または熱硬化が可能なモノマーが挙げられる。このようなモノマーとしては、例えば、多官能(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレートなどが挙げられ、好ましくは、多官能(メタ)アクリレートである。
 多官能(メタ)アクリレートとしては、例えば、ヘキサンジオールジ(メタ)アクリレート、オクタンジオールジ(メタ)アクリレート、デカンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコール(繰り返し単位数(以下「n」と記載する)=2~15)ジ(メタ)アクリレート、ポリプロピレングリコール(n=2~15)ジ(メタ)アクリレート、ポリブチレングリコール(n=2~15)ジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシジエトキシフェニル)プロパン、トリメチロールプロパンジアクリレート、ビス(2-(メタ)アクリロキシエチル)-ヒドロキシエチル-イソシアヌレート、トリメチロールプロパントリ(メタ)アクリレート、トリス(2-(メタ)アクリロキシエチル)イソシアヌレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ビスフェノールA型ジエポキシと(メタ)アクリル酸とを反応させたエポキシジ(メタ)アクリレート等のエポキシポリ(メタ)アクリレート、1,6-ヘキサメチレンジイソシアネートの3量体に2-ヒドロキシエチル(メタ)アクリレートを反応させたウレタントリ(メタ)アクリレート、イソホロンジイソシアネートと2-ヒドロキシプロピル(メタ)アクリレートとを反応させたウレタンジ(メタ)アクリレート、イソホロンジイソシアネートとペンタエリスリトールトリ(メタ)アクリレートとを反応させたウレタンヘキサ(メタ)アクリレート、ジシクロメタンジイソシアネートと2-ヒドロキシエチル(メタ)アクリレートとを反応させたウレタンジ(メタ)アクリレート、ジシクロメタンジイソシアネートとポリ(n=6-15)テトラメチレングリコールとのウレタン化反応物に2-ヒドロキシエチル(メタ)アクリレートとを反応させたウレタンジ(メタ)アクリレート等のウレタンポリ(メタ)アクリレート、トリメチロ-ルエタンとコハク酸及び(メタ)アクリル酸とを反応させたポリエステル(メタ)アクリレート、トリメチロ-ルプロパンとコハク酸、エチレングリコール、及び(メタ)アクリル酸とを反応させたポリエステル(メタ)アクリレート等のポリエステルポリ(メタ)アクリレートなどが挙げられる。
 多官能(メタ)アクリレートとしては、本発明の効果をより発現させ得る点で、好ましくは、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリス(2-(メタ)アクリロキシエチル)イソシアヌレート、1分子内に少なくとも5個の(メタ)アクリル基等のラジカル重合性不飽和二重結合を有するポリウレタンポリ(メタ)アクリレート、1分子内に少なくとも5個の(メタ)アクリル基等のラジカル重合性不飽和二重結合を有するポリエステルポリ(メタ)アクリレートが挙げられ、より好ましくは、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートであり、さらに好ましくは、ジペンタエリスリトールペンタ(メタ)アクリレートである。
 多官能(メタ)アクリル系モノマーを含む硬化型組成物は、無機粒子や有機基で修飾された無機粒子(有機無機ハイブリッド粒子)を含んでいてもよい。このような有機無機ハイブリッド粒子としては、例えば、(メタ)アクリロイルオキシアルコキシシランの加水分解物/縮合物、コロイダルシリカと(メタ)アクリロイルオキシアルコキシシランとを加水分解縮合して得られる有機無機ハイブリッド(メタ)アクリレートなどが挙げられる。有機無機ハイブリッド粒子としては、具体的には、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、p-スチリルトリメトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、2-(メタ)アクリロキシエチルトリメトキシシラン、2-(メタ)アクリロキシエチルトリエトキシシラン、(メタ)アクリロキシメチルトリメトキシシラン、(メタ)アクリロキシメチルトリエトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン、8-(メタ)アクリロキシオクチルトリメトキシシラン、8-(メタ)アクリロキシオクチルトリエトキシシランなどの単独シランまたは他のシランとの混合シランを、場合によってコロイダルシリカ存在下で、(共)加水分解縮合することによって得られる有機無機ハイブリッドビニル化合物や有機無機ハイブリッド(メタ)アクリレート化合物などが挙げられる。
 多官能(メタ)アクリル系モノマーを含む硬化型組成物中の、無機粒子あるいは有機無機ハイブリッド粒子の含有割合は、本発明の効果をより発現させ得る点で、溶剤等を除いた固形分1を100重量%としたときに、好ましくは5量%~150重量%であり、より好ましくは10重量%~100重量%であり、さらに好ましくは15重量%~60重量%であり、特に好ましくは20重量%~50重量%である。有機無機ハイブリッド粒子は、1種のみであってもよいし、2種以上であってもよい。
 多官能(メタ)アクリル系モノマーを含む硬化型組成物は、好ましくは、重合開始剤を含む。重合開始剤としては、例えば、光重合開始剤、熱重合開始剤が挙げられ、好ましくは、光重合開始剤である。重合開始剤としては、本発明の効果を損なわない範囲で、任意の適切な重合開始剤を採用し得る。重合開始剤は、1種のみであってもよいし、2種以上であってもよい。
 多官能(メタ)アクリル系モノマーを含む硬化型組成物中の、重合開始剤の含有割合は、本発明の効果をより発現させ得る点で、溶剤等を除いた固形分1を100重量%としたときに、好ましくは1重量%~35重量%であり、より好ましくは2重量%~30重量%であり、さらに好ましくは3重量%~25重量%であり、特に好ましくは4重量%~25重量%である。
 多官能(メタ)アクリル系モノマーを含む硬化型組成物は、粘度調整等を目的として、溶剤を含んでいてもよい。溶剤としては、水性溶剤、有機溶剤、これらの混合溶剤などが挙げられる。溶剤としては、例えば、トルエン、キシレン等の芳香族炭化水素類;酢酸エチル、酢酸ブチル、酢酸イソブチル等の脂肪族エステル類;シクロヘキサン等の脂環族炭化水素類;ヘキサン、ペンタン等の脂肪族炭化水素類;メチルエチルケトン、メチルイソブチルケトン等の脂肪族ケトン類;イソプロパノール、1-ブタノールなどのアルコール類:などが挙げられる。溶剤は、1種のみであってもよいし、2種以上であってもよい。
 多官能(メタ)アクリル系モノマーを含む硬化型組成物は、必要に応じて、本発明の効果を損なわない範囲で任意の適切なその他の成分を含んでいてもよい。その他の成分としては、例えば、紫外線吸収剤、防汚剤、撥水剤、レベリング剤、着色剤、顔料、酸化防止剤、黄変防止剤、ブルーイング剤、消泡剤、増粘剤、沈降防止剤、帯電防止剤、界面活性剤、接着促進剤、赤外線吸収剤、光安定剤、硬化触媒、金属酸化物微粒子などが挙げられる。その他の成分は、1種のみであってもよいし、2種以上であってもよい。
 保護トップコート層の材料として、例えば、有機樹脂、無機材料、有機成分と無機成分が化学結合した有機無機ハイブリッド材料などを用いてもよい。有機樹脂は、1種のみであってもよいし、2種以上であってもよい。無機材料は、1種のみであってもよいし、2種以上であってもよい。有機無機ハイブリッド材料は、1種のみであってもよいし、2種以上であってもよい。
 有機樹脂としては、例えば、活性光線硬化型あるいは熱硬化型の有機樹脂が挙げられ、具体的には、例えば、フッ素系樹脂、アクリル系樹脂、ウレタン系樹脂、エステル系樹脂、エポキシ系樹脂、シリコーン系樹脂などが挙げられる。本発明の効果をより発現させ得る点で、有機樹脂としては、好ましくは、アクリル系樹脂である。
 無機材料としては、例えば、酸化シリコン、窒化シリコン、酸化窒化シリコン、酸化アルミニウム、酸化チタン、酸化ジルコニウム、サイアロン(SiAlON)などが挙げられる。
 保護トップコート層としては、好ましくは、有機樹脂を含む樹脂組成物から形成される樹脂層、有機無機ハイブリッド材料を含む組成物から形成される樹脂層が挙げられ、より好ましくは、有機樹脂を含む樹脂組成物から形成される樹脂層が挙げられる。
 保護トップコート層は、好ましくは、配位結合型材料を含む。配位結合型材料としては、他の化合物と配位結合を形成し得る材料であれば、本発明の効果を損なわない範囲で、任意の適切な配位結合型材料を採用し得る。配位結合型材料は、1種のみであってもよいし、2種以上であってもよい。保護トップコート層が配位結合型材料を含むことにより、例えば、赤外線反射層が該保護トップコート層と直接に積層されている場合に、これらの2層の間に配位結合性の結合力が発現して密着性が向上し得る。特に、赤外線反射層が金属酸化物を含有する場合、保護トップコート層中の酸性基が赤外線反射層中の金属酸化物と配位結合性の高い親和力を発現し得る。また、赤外線反射層と保護トップコート層との密着性が向上することにより、表面保護層の強度が向上し得るため、赤外線反射層の耐久性を高め得る。
 配位結合型材料としては、好ましくは、孤立電子対を持つ基を有する化合物であり、該孤立電子対を持つ基としては、例えば、リン原子、硫黄原子、酸素原子、窒素原子などの配位原子を有する基が挙げられ、具体的には、例えば、リン酸基、硫酸基、チオール基、カルボキシル基、アミノ基などが挙げられる。
 配位結合型材料は、好ましくは、金属イオンとの作用によって密着力を高め得る。配位結合型材料は、他の樹脂材料等との密着力を高めるために、反応性基を有していてもよい。
 配位結合型材料としては、好ましくは、酸性基と重合性官能基とを同一分子中に有するエステル化合物が挙げられる。
 酸性基と重合性官能基とを同一分子中に有するエステル化合物としては、リン酸、硫酸、シュウ酸、コハク酸、フタル酸、フマル酸、マレイン酸等の多価の酸と、エチレン性不飽和基、シラノール基、エポキシ基等の重合性官能基と水酸基とを分子中に有する化合物とのエステルが挙げられる。なお、このようなエステル化合物は、ジエステルやトリエステル等の多価エステルでもよいが、多価の酸の少なくとも1つの酸性基がエステル化されていないことが好ましい。
 保護トップコート層の機械的強度および化学的強度を高める観点から、酸性基と重合性官能基とを同一分子中に有するエステル化合物は、重合性官能基として(メタ)アクリロイル基を含有することが好ましい。酸性基と重合性官能基とを同一分子中に有するエステル化合物は、分子中に複数の重合性官能基を有していてもよい。酸性基と重合性官能基とを同一分子中に有するエステル化合物としては、好ましくは、一般式(A)で表される、リン酸モノエステル化合物またはリン酸ジエステル化合物が挙げられる。なお、リン酸モノエステルとリン酸ジエステルとを併用することもできる。酸性基と重合性官能基とを同一分子中に有するエステル化合物として、一般式(A)で表される、リン酸モノエステル化合物またはリン酸ジエステル化合物を採用すると、リン酸ヒドロキシ基は金属酸化物との親和性に優れるため、トップコート層が保護トップコート層と直接に積層されている場合であって該トップコート層が金属酸化物を含有する場合、これらの2層の間の密着性がより向上し得る。
Figure JPOXMLDOC01-appb-C000001
 一般式(A)中、Xは水素原子またはメチル基を表し、(Y)は-OCO(CH-基を表す。nは0または1であり、pは1または2である。
 保護トップコート層中の配位結合型材料の含有割合は、好ましくは1重量%~20重量%であり、より好ましくは1.5重量%~17.5重量%であり、さらに好ましくは2重量%~15重量%であり、特に好ましくは2.5重量%~12.5重量%である。保護トップコート層中の配位結合型材料の含有割合が過度に小さいと、強度や密着性の向上効果が十分に得られないおそれがある。保護トップコート層中の配位結合型材料の含有割合が過度に大きいと、保護トップコート層形成時の硬化速度が小さくなって硬度が低下したりするおそれや、保護トップコート層表面の滑り性が低下して耐擦傷性が低下したりするおそれがある。
 保護トップコート層は、好ましくは、30℃~75℃の範囲内に軟化温度を有さない。保護トップコート層は、より好ましくは、25℃~75℃の範囲内に軟化温度を有さず、さらに好ましくは、20℃~80℃の範囲内に軟化温度を有さず、特に好ましくは、15℃~85℃の範囲内に軟化温度を有さず、最も好ましくは、10℃~90℃の範囲内に軟化温度を有さない。保護トップコート層が上記の温度範囲内に軟化温度を有さないと、実使用環境中において保護トップコート層の物性が変化し難く、安定した耐擦傷性および耐凹み性を得ることができるという効果を発現し得る。なお、軟化温度の測定方法については、後述する。
 保護トップコート層の材料として有機樹脂あるいは有機・無機ハイブリッド材料が用いられる場合、架橋構造が導入されることが好ましい。架橋構造が形成されることによって、保護トップコート層の機械的強度および化学的強度が高められ、赤外線反射層に対する保護機能が増大する。このような架橋構造の中でも、酸性基と重合性官能基とを同一分子中に有するエステル化合物に由来する架橋構造が導入されることが好ましい。
 保護トップコート層の材料には、シランカップリング剤、チタンカップリング剤等のカップリング剤、レベリング剤、紫外線吸収剤、酸化防止剤、熱安定剤、滑剤、可塑剤、着色防止剤、難燃剤、帯電防止剤等の添加剤が含まれていてもよい。これらの添加剤の含有量としては、本発明の効果を損なわない範囲で任意の適切な含有量を採用し得る。
≪7.トップコート層≫
 本発明の遮熱断熱基板においては、赤外線反射層の透明基板層と反対の側には、トップコート層が備えられていてもよい。
 トップコート層は、好ましくは、周期表第13族または第14族の1種以上が主成分となる酸化物または窒化物、酸化窒化物、非酸化窒化物であり、周期表第3族または第4族の1種以上の成分を含む。トップコート層は、より好ましくは、第14族の1種以上が主成分となる酸化物または窒化物、酸化窒化物、非窒化物または非酸化物であり、周期表第3族または第4族の1種以上の成分を含む。トップコート層は、さらに好ましくは、SiとZrを含む酸化物または酸化窒化物、SiとYを含む酸化物または酸化窒化物、SiとTiを含む酸化物または酸化窒化物から選ばれる少なくとも1種を含む。トップコート層は、特に好ましくは、SiとZrを含む酸化物、SiとYを含む酸化物、SiとTiを含む酸化物から選ばれる少なくとも1種を含む。
 第14族の元素は最外殻電子が4つのためイオンになりにくい。第13族の元素は最外殻電子が3つのため陰イオンになりにくい。そのため、窒化物、酸化窒化物、非窒化物または非酸化物の硬度が高くなると考察される。
 周期表第3族または第4族の元素の添加は、主成分元素の結晶緻密化、分子構造の最密化などによって、強度の増加や耐腐食性、耐熱性を向上させる。
 周期表第3族または第4族の元素の添加量は、本発明の効果をより発現させ得る点で、好ましくは0.01atm%~49.9atm%であり、より好ましくは0.05atm%~40.0atm%であり、さらに好ましくは0.1atm%~40.0atm%であり、特に好ましくは0.5atm%~35.0atm%である。周期表第3族または第4族の元素の添加量が少ない場合は、マトリックス全体に均一に元素が挿入されないために、本発明の効果が発現できないおそれがある。一方、周期表第3族または第4族の元素の添加量が多すぎる場合は、主成分との相溶性が悪くなり、本発明の効果が発現できないおそれがある。相溶性は相図によって確認することができる。
 トップコート層の厚みは、好ましくは0.5nm~30nmであり、より好ましくは1nm~25nmであり、さらに好ましくは2nm~20nmであり、特に好ましくは3nm~15nmである。トップコート層の厚みが上記範囲内にあれば、本発明の遮熱断熱基板は、より優れた耐擦傷性を発現できる。
 トップコート層の製膜方法としては、任意の適切な方法を採用し得る。このような製膜方法としては、例えば、スパッタ法、真空蒸着法、CVD法、電子線蒸着法等のドライプロセスによる製膜方法が挙げられる。トップコート層の製膜方法としては、好ましくは、直流スパッタ法による製膜方法である。直流スパッタ法による製膜方法を採用する場合、複数の製膜室を備える巻取り式スパッタ装置を用いれば、これら複数層を1パスで形成することが可能となる。このため、トップコート層の生産性が大幅に向上し得るだけでなく、ひいては、本発明の遮熱断熱基板の生産性が大幅に向上し得る。
≪8.保護フィルム≫
 保護トップコート層の赤外線反射層と反対の側には、保護フィルムが備えられていてもよい。
 保護フィルムの厚みは、好ましくは10μm~150μmであり、より好ましくは25μm~100μmであり、さらに好ましくは30μm~75μmであり、特に好ましくは35μm~65μmであり、最も好ましくは35μm~50μmである。
≪9.その他の構成部材≫
 透明基板層の赤外線反射層と反対の側には、接着剤層が備えられていてもよい。接着剤層は、例えば、窓ガラス等との貼り合せに用いられ得る。
 接着剤層としては、可視光線透過率が高く、透明基板層との屈折率差が小さいものが好ましい。接着剤層の材料としては、本発明の効果を損なわない範囲で任意の適切な材料を採用し得る。このような材料としては、例えば、アクリル系粘着剤(アクリル系感圧接着剤)が挙げられる。アクリル系粘着剤(アクリル系感圧接着剤)は、光学的透明性に優れ、適度な濡れ性と凝集性と接着性を示し、耐候性や耐熱性等に優れることから、接着剤層の材料として好適である。
 接着剤層としては、可視光線の透過率が高く、かつ、紫外線透過率が小さいものが好ましい。接着剤層の紫外線透過率を小さくすることにより、太陽光等の紫外線に起因する赤外線反射層の劣化を抑制し得る。接着剤層の紫外線透過率を小さくする観点から、接着剤層は紫外線吸収剤を含有することが好ましい。なお、紫外線吸収剤を含有する透明基板層等を用いることによっても、屋外からの紫外線に起因する赤外線反射層の劣化を抑制し得る。
 接着剤層の露出面は、本発明の遮熱断熱基板が実用に供されるまでの間、露出面の汚染防止等を目的として、セパレータが仮着されてカバーされていることが好ましい。このようなセパレータにより、通例の取扱状態で、接着剤層の露出面の外部との接触による汚染を防止し得る。
≪10.遮熱断熱基板の用途≫
 本発明の遮熱断熱基板は、建物や乗り物等の窓、植物等を入れる透明ケース、冷凍もしくは冷蔵のショーケース等に用いることができ、冷暖房効果の向上や急激な温度変化を防ぐ作用を有し得る。
 図3は、本発明の遮熱断熱基板の使用形態の一例を模式的に表す断面図である。この使用形態において、本発明の遮熱断熱基板100は、透明基板層10側が、任意の適切な接着剤層80を介して、建物や自動車の窓1000の室内側に貼り合せて配置される。図3に模式的に示すように、本発明の遮熱断熱基板100は、屋外からの可視光(VIS)を透過して室内に導入するとともに、屋外からの近赤外線(NIR)を赤外線反射層20で反射する。近赤外線反射により、太陽光等に起因する室外からの熱の室内への流入が抑制される(遮熱効果が発揮される)ため、例えば、夏場の冷房効率を高めることができる。さらに、赤外線反射層20は、暖房器具90から放射される室内の遠赤外線(FIR)を反射するため、断熱効果が発揮され、冬場の暖房効率を高めることができる。また、本発明の遮熱断熱基板100は、赤外線反射層20を備えることにより可視光の反射率が低減されるため、ショーケースやショーウィンドウ等に用いた場合に、商品等の視認性を低下させることなく、遮熱性と断熱性を付与することができる。
 本発明の遮熱断熱基板は、例えば、特開2013-61370号公報に開示されているように、枠体等に嵌め込んで用いることもできる。このような形態では、接着剤層を設ける必要がないため、接着剤層による遠赤外線の吸収が生じない。このため、透明基板層として、例えば、C=C結合、C=O結合、C-O結合、芳香族環等の官能基の含有量が少ない材料(例えば、環状ポリオレフィン)を用いることにより、透明基板層側からの遠赤外線を赤外線反射層で反射させることができ、本発明の遮熱断熱基板の両面側に断熱性を付与できる。このような構成は、例えば、冷蔵ショーケースや冷凍ショーケース等で特に有用である。
 本発明の遮熱断熱基板は、透明基板層が、例えば、透明板状部材(例えば、ガラス、アクリル板、ポリカーボネート板など)や、該透明板状部材と透明フィルムの複合体である場合には、例えば、そのまま、建物や自動車の窓などに適用できる。
 以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例になんら限定されるものではない。なお、実施例等における、試験および評価方法は以下のとおりである。なお、「部」と記載されている場合は、特記事項がない限り「重量部」を意味し、「%」と記載されている場合は、特記事項がない限り「重量%」を意味する。
<各層の膜厚>
 金属酸化物層、金属層の膜厚は、集束イオンビーム加工観察装置(日立製作所製、製品名「FB-2100」)を用いて、集束イオンビーム(FIB)法により試料を加工し、その断面を、電界放出形透過電子顕微鏡(日立製作所製、製品名「HF-2000」)により観察して求めた。
 保護トップコート層、アンダーコート層の膜厚は、瞬間マルチ測光システム(大塚電子製、製品名「MCPD3000」)を用い、測定対象側から光を入射させた際の可視光の反射率の干渉パターンから、計算により求めた。
<放射率>
 測定用の遮熱断熱基板を室温に24時間放置し、その遮熱断熱基板の透明基板層側の面を、厚み25μmの粘着剤層(日東電工社製、製品名「HJ-9150W」)を介して厚み3mmのフロート板ガラス(松浪硝子製)に貼り合せたものを試料として用い、放射率計(Devices and Services社製、Model AE1)を用いて赤外線反射層の透明基板層と反対の側を測定した。なお、実際の試験の際の温度、湿度の実測値は、温度23℃、湿度50%RHであった。
〇:放射率が0.20以下。
△:放射率が0.20以上0.40未満。
×:放射率が0.40以上。
<コットン耐擦傷性試験>
 測定用の遮熱断熱基板を室温に24時間放置し、その遮熱断熱基板の透明基板層側の面を、厚み25μmの粘着剤層(日東電工社製、製品名「HJ-9150W」)を介してアルミ板に貼り合せたものを試料として用いた。学振摩耗試験機を用いて、試験用綿布(金巾3号)で500gの荷重を加えながら、アルミ板上の遮熱断熱基板の、赤外線反射層の透明基板層と反対の側の最表面を、1000往復擦った。試験後の試料への傷、剥離の有無を目視で評価し、以下の評価基準に従い、評価した。なお、実際の試験の際の温度、湿度の実測値は、温度23℃、湿度50%RHであった。
◎:2000往復擦った後、表面に傷が認められないもの。
○:1000往復擦った後、表面に傷が認められないもの。
△:1000往復擦った後、表面に若干の傷が認められるもの。
×:1000往復擦った後、表面に多数の傷が認められるもの。
<マンドレル試験(2mmφ、3mmφ)>
 透明基板層がフィルムの場合、測定用の遮熱断熱基板を室温に24時間放置し、その遮熱断熱基板に対しマンドレルを用いて遮熱断熱基板の保護トップコート層を外側にして、屈曲性試験を(JIS K 5600-5-1)を行った。直径2mm以上で割れが発生しなかった場合を○、直径3mm以上で割れが発生しなかった場合を△、直径4mm以上で割れが発生しなかった場合を×とした。なお、実際の試験の際の温度、湿度の実測値は、温度23℃、湿度50%RHであった。
○:直径2mm以上で割れが発生しなかった場合
△:直径3mm以上で割れが発生しなかった場合
×:直径4mm以上で割れが発生しなかった場合
<保護トップコート層の接触角の測定>
 接触角計(協和界面科学株式会社製、商品名「CA-X型」)を用いて、23℃/50%RH環境下、蒸留水を保護トップコート層の表面に2μL滴下し、滴下して10秒後に液滴の接触角を測定した。3回測定して得られた測定値の平均を採用した。
<アンダーコート層の硬度・弾性率の測定>
 遮熱断熱基板の構成部材の硬度・弾性率は下記のようにして測定できる。ここでいう硬度・弾性率は、ナノインデンターHYSITRON社製「Triboindenter」を用いたナノインデンテーション試験によって得られる。ナノインデンテーション試験は、バーコビッチ圧子(三角錐のダイヤモンド製圧子)を徐々に荷重Pをかけて所定の最大荷重Pmaxとなるまで被検材に押し込む過程、最大荷重Pmaxで一定時間保持する過程、保持後、徐々に除荷して荷重Pが0になるまで引き抜く過程において得られる、圧子の荷重Pと押し込み深さhとの関係から、被検材の性質を測定する試験である。押し込み深さhは、圧子の先端と初期状態の被検材表面(圧子を押し込む前の被検材表面)との距離を意味し、圧子が被検材の表面に初めて接触した位置を基準とした圧子の変位量に相当する。アンダーコート層の硬度・弾性率は、上記のナノインデンテーション試験によって得られる圧子の荷重Pと押し込み深さhとの関係に基づき、下記の式(1)(2)によって算出した。具体的には、アンダーコート層を樹脂包埋後、ミクロトームを用いて作製した断面から押し込み深さ100nmで測定した。ここで、下記の式(1)(2)において、Hは硬度を、Erは弾性率を、βは圧子形状により決定される定数であり、バーコビッチ型圧子の場合β=1.034を用いる。Sは接触剛性率を、πは円周率を、Aは圧子と被検材表面との接触射影面積を示す。
H=P/A・・・ (1)
Er=1/β・S/2・(π/A)1/2 ・・・ (2)
<保護トップコート層の硬度・弾性率の測定>
 遮熱断熱基板の構成部材の硬度・弾性率は下記のようにして測定できる。ここでいう硬度・弾性率とは、ナノインデンターHYSITRON社製「Triboindenter」を用いたナノインデンテーション試験によって得られる。ナノインデンテーション試験は、バーコビッチ圧子(三角錐のダイヤモンド製圧子)を徐々に荷重Pをかけて所定の最大荷重Pmaxとなるまで被検材に押し込む過程、最大荷重Pmaxで一定時間保持する過程、保持後、徐々に除荷して荷重Pが0になるまで引き抜く過程において得られる、圧子の荷重Pと押し込み深さhとの関係から、被検材の性質を測定する試験である。押し込み深さhは、圧子の先端と初期状態の被検材表面(圧子を押し込む前の被検材表面)との距離を意味し、圧子が被検材の表面に初めて接触した位置を基準とした圧子の変位量に相当する。保護トップコート層の硬度・弾性率は、上記のナノインデンテーション試験によって得られる圧子の荷重Pと押し込み深さhとの関係に基づき、下記の式(1)(2)によって算出した。具体的には、保護トップコート層側の表面から押し込み深さ20nmで測定した。ここで、下記の式(1)(2)において、Hは硬度を、Erは弾性率を、βは圧子形状により決定される定数であり、バーコビッチ型圧子の場合β=1.034を用いる。Sは接触剛性率を、πは円周率を、Aは圧子と被検材表面との接触射影面積を示す。
H=P/A・・・ (1)
Er=1/β・S/2・(π/A)1/2 ・・・ (2)
<軟化温度の測定>
 軟化温度は、日立ハイテクサイエンス製のAFM5300E/NanoNavi2/Nano-TA2を用いて、コンタクトモードでカンチレバーの温度を10℃~300℃に変化させながら10μmスキャンすることで測定した。軟化温度は、この測定で得られた曲線の変曲点であり、変曲点は変曲点前後の曲線の接線の交点として求めた。
〔実施例1〕
(透明基板層上へのアンダーコート層の形成)
 厚み50μmのポリエチレンテレフタレートフィルム基材(東レ製、商品名「ルミラーU48」、可視光透過率93%)の一方の面に、アクリル系紫外線硬化型ハードコート層(JSR製、Z7543)を2μmの厚みで形成した。詳しくは、グラビアコーターにより、上記ハードコート層の溶液を塗布し、80℃で乾燥後、超高圧水銀ランプにより積算光量300mJ/cmの紫外線を照射し、硬化を行い、透明基板層上へアンダーコート層を形成した。
(第一金属酸化物層、金属層、第二金属酸化物層の形成)
 巻取式スパッタ装置を用いて、上記透明基板層上に形成されたアンダーコート層上に、直流マグネトロンスパッタ法により、膜厚10nmの亜鉛-錫複合酸化物(ZTO)層、膜厚16nmのAg-Pd合金層、膜厚10nmの亜鉛-錫複合酸化物(ZTO)層を順次形成し、上記アンダーコート層上に、第一金属酸化物層、金属層、第二金属酸化物層をこの順に形成した。
 ZTO層の形成には、酸化亜鉛と酸化錫と金属亜鉛粉末とを、8.5:83:8.5の重量比で焼結させたターゲットを用い、電力密度:2.67W/cm、プロセス圧力:0.4Paの条件でスパッタを行った。この際、スパッタ製膜室へのガス導入量を、Ar:Oが98:2(体積比)となるように調整した。
 Ag-Pd合金層の形成には、銀:パラジウムを96.4:3.6の重量比で含有する金属ターゲットを用いた。
(保護トップコート層の形成)
 上記第二金属酸化物層上に、配位結合型材料を有するアクリル系の紫外線硬化型樹脂からなる保護トップコート層を60nmの膜厚で形成した。詳しくは、アクリル系ハードコート樹脂溶液(アイカ工業製、商品名「Z773」)の固形分100重量部に対して、シリカ粒子(日産化学製、商品名「PGM-AC-2140Y」)を150重量部、リン酸エステル化合物(日本化薬製、商品名「KAYAMER PM-21」)を5重量部添加し、フッ素系添加剤(ダイキン工業製、商品名「オプツールDAC-HP」)を10重量部添加した溶液を、スピンコーターを用いて塗布し、100℃で1分間乾燥後、窒素雰囲気下で超高圧水銀ランプにより積算光量400mJ/cmの紫外線を照射し、硬化を行った。硬化後の保護トップコート層の屈折率は1.5であった。なお、上記リン酸エステル化合物は、分子中に1個のアクリロイル基を有するリン酸モノエステル化合物(上記の一般式(1)において、Xがメチル基、n=0、p=1である化合物)と分子中に2個のアクリロイル基を有するリン酸ジエステル化合物(上記の一般式(A)において、Xがメチル基、n=0、p=2である化合物)との混合物である。
 得られた保護トップコート層の軟化温度の測定結果を図4に示した。軟化温度は95℃であった。
(遮熱断熱基板)
 以上のようにして、透明基板層(厚み3mm)/アンダーコート層(厚み2μm)/第一金属酸化物層(厚み10nm)/金属層(厚み16nm)/第二金属酸化物層(厚み10nm)/保護トップコート層(厚み60nm)の構成を有する遮熱断熱基板(1)を得た。
 結果を表1に示した。
〔実施例2〕
 保護トップコート層の形成に用いるシリカ粒子(A)の量を50部に変えた以外は、実施例1と同様に行い、遮熱断熱基板(2)を得た。
 結果を表1に示した。
〔実施例3〕
 保護トップコート層の形成に用いるシリカ粒子(A)の量を10部に変えた以外は、実施例1と同様に行い、遮熱断熱基板(3)を得た。
 結果を表1に示した。
〔実施例4〕
 保護トップコート層の形成にシリカ粒子(A)を用いなかった以外は、実施例1と同様に行い、遮熱断熱基板(4)を得た。
 結果を表1に示した。
〔実施例5〕
 保護トップコート層の形成に用いるシリカ粒子(A)150部をシリカ粒子(B)50部に変えた以外は、実施例1と同様に行い、遮熱断熱基板(5)を得た。
 なお、シリカ粒子(B)は、日産化学製、商品名「PMA-ST」である。
 結果を表1に示した。
〔実施例6〕
 保護トップコート層を下記のようにして形成した以外は、実施例1と同様に行い、遮熱断熱基板(6)を得た。
 結果を表1に示した。
(保護トップコート層の形成)
 第二金属酸化物層上に、配位結合型材料を有するアクリル系の紫外線硬化型樹脂からなる保護トップコート層を60nmの膜厚で形成した。詳しくは、アクリル系ハードコート樹脂溶液(JSR製、商品名「Z7543」)の固形分100重量部に対して、リン酸エステル化合物(日本化薬製、商品名「KAYAMER PM-21」)を5重量部添加し、フッ素系添加剤(ダイキン工業製、商品名「オプツールDAC-HP」)を10重量部添加した溶液を、スピンコーターを用いて塗布し、100℃で1分間乾燥後、窒素雰囲気下で超高圧水銀ランプにより積算光量400mJ/cmの紫外線を照射し、硬化を行った。硬化後の保護トップコート層の屈折率は1.5であった。なお、上記リン酸エステル化合物は、分子中に1個のアクリロイル基を有するリン酸モノエステル化合物(上記の一般式(A)において、Xがメチル基、n=0、p=1である化合物)と分子中に2個のアクリロイル基を有するリン酸ジエステル化合物(上記の一般式(A)において、Xがメチル基、n=0、p=2である化合物)との混合物である。
〔実施例7〕
 アンダーコート層の形成において、アクリル系紫外線硬化型ハードコート層(JSR製、Z7543)を、アクリル系紫外線硬化型ハードコート層(DIC製、ERS219(70部)+V6841(30部))に変えた以外は、実施例5と同様に行い、遮熱断熱基板(7)を得た。
 結果を表1に示した。
〔実施例8〕
 アンダーコート層の形成において、アクリル系紫外線硬化型ハードコート層(DIC製、ERS219(70部)+V6841(30部))をアクリル系紫外線硬化型ハードコート層(DIC製、ERS219(50部)+V6841(50部))に変えた以外は、実施例7と同様に行い、遮熱断熱基板(8)を得た。
 結果を表1に示した。
〔実施例9〕
 アンダーコート層の形成において、アクリル系紫外線硬化型ハードコート層(DIC製、ERS219(70部)+V6841(30部))をアクリル系紫外線硬化型ハードコート層(DIC製、ERS219(60部)+V6841(40部))に変えた以外は、実施例7と同様に行い、遮熱断熱基板(9)を得た。
 結果を表1に示した。
〔実施例10〕
 アンダーコート層の形成において、アクリル系紫外線硬化型ハードコート層(DIC製、ERS219(70部)+V6841(30部))をアクリル系紫外線硬化型ハードコート層(JSR製、Z7537(90部)+DIC製、EPS1113(10部))に変えた以外は、実施例5と同様に行い、遮熱断熱基板(10)を得た。
 結果を表1に示した。
〔実施例11〕
 アンダーコート層の形成において、アクリル系紫外線硬化型ハードコート層(JSR製、Z7537(90部)+DIC製、EPS1113(10部))をアクリル系紫外線硬化型ハードコート層(JSR製、Z7537(80部)+DIC製、EPS1113(20部))に変えた以外は、実施例10と同様に行い、遮熱断熱基板(11)を得た。
 結果を表1に示した。
〔実施例12〕
 アンダーコート層の形成において、アクリル系紫外線硬化型ハードコート層(JSR製、Z7537(90部)+DIC製、EPS1113(10部))をアクリル系紫外線硬化型ハードコート層(JSR製、Z7537)に変えた以外は、実施例10と同様に行い、遮熱断熱基板(12)を得た。
 結果を表1に示した。
〔実施例13〕
 保護トップコート層を下記のようにして形成した以外は、実施例1と同様に行い、遮熱断熱基板(13)を得た。
 結果を表1に示した。
(保護トップコート層の形成)
 第二金属酸化物層上に、配位結合型材料を有するアクリル系の紫外線硬化型樹脂からなる保護トップコート層を60nmの膜厚で形成した。詳しくは、アクリル系ハードコート樹脂溶液(JSR製、商品名「Z7537」)の固形分100重量部に対して、リン酸エステル化合物(日本化薬製、商品名「KAYAMER PM-21」)を5重量部添加し、フッ素系添加剤(ダイキン工業製、商品名「オプツールDAC-HP」)を10重量部添加した溶液を、スピンコーターを用いて塗布し、100℃で1分間乾燥後、窒素雰囲気下で超高圧水銀ランプにより積算光量400mJ/cmの紫外線を照射し、硬化を行った。硬化後の保護トップコート層の屈折率は1.5であった。なお、上記リン酸エステル化合物は、分子中に1個のアクリロイル基を有するリン酸モノエステル化合物(上記の一般式(A)において、Xがメチル基、n=0、p=1である化合物)と分子中に2個のアクリロイル基を有するリン酸ジエステル化合物(上記の一般式(A)において、Xがメチル基、n=0、p=2である化合物)との混合物である。
〔実施例14〕
 アンダーコート層の形成において、アクリル系紫外線硬化型ハードコート層(JSR製、Z7543)を、アクリル系紫外線硬化型ハードコート層(DIC製、ERS219(70部)+V6841(30部))に変えた以外は、実施例13と同様に行い、遮熱断熱基板(14)を得た。
 結果を表1に示した。
〔実施例15〕
 アンダーコート層の形成において、アクリル系紫外線硬化型ハードコート層(DIC製、ERS219(70部)+V6841(30部))をアクリル系紫外線硬化型ハードコート層(DIC製、ERS219(50部)+V6841(50部))に変えた以外は、実施例14と同様に行い、遮熱断熱基板(15)を得た。
 結果を表1に示した。
〔実施例16〕
 アンダーコート層の形成において、アクリル系紫外線硬化型ハードコート層(DIC製、ERS219(70部)+V6841(30部))をアクリル系紫外線硬化型ハードコート層(DIC製、ERS219(60部)+V6841(40部))に変えた以外は、実施例14と同様に行い、遮熱断熱基板(16)を得た。
 結果を表1に示した。
〔実施例17〕
 保護トップコート層の形成に用いるシリカ粒子(B)の量を100部に変えた以外は、実施例7と同様に行い、遮熱断熱基板(17)を得た。
 結果を表1に示した。
〔実施例18〕
 透明基板層として、厚み50μmのポリエチレンテレフタレートフィルム基材(東レ製、商品名「ルミラーU48」、可視光透過率93%)に代えて、厚み3mmのフロート板ガラス(松浪硝子製、可視光透過率91%)を用いた以外は、実施例1と同様に行い、遮熱断熱基板(18)を得た。
 結果を表1に示した。
〔実施例19〕
 透明基板層として、厚み50μmのポリエチレンテレフタレートフィルム基材(東レ製、商品名「ルミラーU48」、可視光透過率93%)に代えて、厚み3mmのフロート板ガラス(松浪硝子製、可視光透過率91%)を用いた以外は、実施例2と同様に行い、遮熱断熱基板(19)を得た。
 結果を表1に示した。
〔実施例20〕
 透明基板層として、厚み50μmのポリエチレンテレフタレートフィルム基材(東レ製、商品名「ルミラーU48」、可視光透過率93%)に代えて、厚み3mmのフロート板ガラス(松浪硝子製、可視光透過率91%)を用いた以外は、実施例3と同様に行い、遮熱断熱基板(20)を得た。
 結果を表1に示した。
〔実施例21〕
 透明基板層として、厚み50μmのポリエチレンテレフタレートフィルム基材(東レ製、商品名「ルミラーU48」、可視光透過率93%)に代えて、厚み3mmのフロート板ガラス(松浪硝子製、可視光透過率91%)を用いた以外は、実施例4と同様に行い、遮熱断熱基板(21)を得た。
 結果を表1に示した。
〔実施例22〕
 透明基板層として、厚み50μmのポリエチレンテレフタレートフィルム基材(東レ製、商品名「ルミラーU48」、可視光透過率93%)に代えて、厚み3mmのフロート板ガラス(松浪硝子製、可視光透過率91%)を用いた以外は、実施例5と同様に行い、遮熱断熱基板(22)を得た。
 結果を表1に示した。
〔実施例23〕
 透明基板層として、厚み50μmのポリエチレンテレフタレートフィルム基材(東レ製、商品名「ルミラーU48」、可視光透過率93%)に代えて、厚み3mmのフロート板ガラス(松浪硝子製、可視光透過率91%)を用いた以外は、実施例6と同様に行い、遮熱断熱基板(23)を得た。
 結果を表1に示した。
〔実施例24〕
 透明基板層として、厚み50μmのポリエチレンテレフタレートフィルム基材(東レ製、商品名「ルミラーU48」、可視光透過率93%)に代えて、厚み3mmのフロート板ガラス(松浪硝子製、可視光透過率91%)を用いた以外は、実施例7と同様に行い、遮熱断熱基板(24)を得た。
 結果を表1に示した。
〔実施例25〕
 透明基板層として、厚み50μmのポリエチレンテレフタレートフィルム基材(東レ製、商品名「ルミラーU48」、可視光透過率93%)に代えて、厚み3mmのフロート板ガラス(松浪硝子製、可視光透過率91%)を用いた以外は、実施例8と同様に行い、遮熱断熱基板(25)を得た。
 結果を表1に示した。
〔実施例26〕
 透明基板層として、厚み50μmのポリエチレンテレフタレートフィルム基材(東レ製、商品名「ルミラーU48」、可視光透過率93%)に代えて、厚み3mmのフロート板ガラス(松浪硝子製、可視光透過率91%)を用いた以外は、実施例9と同様に行い、遮熱断熱基板(26)を得た。
 結果を表1に示した。
〔実施例27〕
 保護トップコート層の形成においてフッ素系添加剤(ダイキン工業製、商品名「オプツールDAC-HP」)の添加量を2重量部に変更した以外は実施例5と同様に行い、遮熱断熱基板(27)を得た。
 結果を表1に示した。
〔実施例28〕
 保護トップコート層に含まれる配位結合型材料として、リン酸エステル化合物(日本化薬製、商品名「KAYAMER PM-21」)に代えて、ジペンタエリスリトールペンタアクリレート-コハク酸変性物(共栄社化学製、商品名「ライトアクリレート DPE-6A-MS」)を用いた以外は、実施例5と同様に行い、遮熱断熱基板(28)を得た。
 結果を表1に示した。
〔実施例29〕
 超高圧水銀ランプにより積算光量100mJ/cmの紫外線を照射し、硬化を行った以外は、実施例5と同様に行い、遮熱断熱基板(29)を得た。
 結果を表1に示した。
〔比較例1〕
 アンダーコート層の形成において、アクリル系紫外線硬化型ハードコート層(DIC製、ERS219(70部)+V6841(30部))をアクリル系紫外線硬化型ハードコート層(DIC製、ERS219(40部)+V6841(60部))に変えた以外は、実施例7と同様に行い、遮熱断熱基板(C1)を得た。
 結果を表2に示した。
〔比較例2〕
 アンダーコート層の形成において、アクリル系紫外線硬化型ハードコート層(DIC製、ERS219(70部)+V6841(30部))をアクリル系紫外線硬化型ハードコート層(DIC製、V6850(50部)+V6841(50部))に変えた以外は、実施例7と同様に行い、遮熱断熱基板(C2)を得た。
 結果を表2に示した。
〔比較例3〕
 保護トップコート層を下記のようにして形成した以外は、実施例1と同様に行い、遮熱断熱基板(C3)を得た。
 結果を表2に示した。
(保護トップコート層の形成)
 第二金属酸化物層上に、配位結合型材料を有するアクリル系の紫外線硬化型樹脂からなる保護トップコート層を60nmの膜厚で形成した。詳しくは、アクリル系ハードコート樹脂溶液(DIC製、商品名「V6850」)の固形分100重量部に対して、リン酸エステル化合物(日本化薬製、商品名「KAYAMER PM-21」)を5重量部添加し、フッ素系添加剤(ダイキン工業製、商品名「オプツールDAC-HP」)を10重量部添加した溶液を、スピンコーターを用いて塗布し、100℃で1分間乾燥後、窒素雰囲気下で超高圧水銀ランプにより積算光量400mJ/cmの紫外線を照射し、硬化を行った。硬化後の保護トップコート層の屈折率は1.5であった。なお、上記リン酸エステル化合物は、分子中に1個のアクリロイル基を有するリン酸モノエステル化合物(上記の一般式(A)において、Xがメチル基、n=0、p=1である化合物)と分子中に2個のアクリロイル基を有するリン酸ジエステル化合物(上記の一般式(A)において、Xがメチル基、n=0、p=2である化合物)との混合物である。
〔比較例4〕
 フッ素系添加剤(ダイキン工業製、商品名「オプツールDAC-HP」)の添加量を2重量部に変更した以外は比較例3と同様に行い、遮熱断熱基板(C4)を得た。
 結果を表2に示した。
〔比較例5〕
 保護トップコート層の形成において配位結合型材料を用いないで行った以外は、比較例3と同様に行い、遮熱断熱基板(C5)を得た。
 結果を表2に示した。
〔比較例6〕
 超高圧水銀ランプにより積算光量100mJ/cmの紫外線を照射し、硬化を行った以外は、比較例3と同様に行い、遮熱断熱基板(C6)を得た。
 結果を表2に示した。
〔比較例7〕
 透明基板層として、厚み50μmのポリエチレンテレフタレートフィルム基材(東レ製、商品名「ルミラーU48」、可視光透過率93%)に代えて、厚み3mmのフロート板ガラス(松浪硝子製、可視光透過率91%)を用いた以外は、比較例1と同様に行い、遮熱断熱基板(C7)を得た。
 結果を表2に示した。
〔比較例8〕
 透明基板層として、厚み50μmのポリエチレンテレフタレートフィルム基材(東レ製、商品名「ルミラーU48」、可視光透過率93%)に代えて、厚み3mmのフロート板ガラス(松浪硝子製、可視光透過率91%)を用いた以外は、比較例2と同様に行い、遮熱断熱基板(C8)を得た。
 結果を表2に示した。
〔比較例9〕
 透明基板層として、厚み50μmのポリエチレンテレフタレートフィルム基材(東レ製、商品名「ルミラーU48」、可視光透過率93%)に代えて、厚み3mmのフロート板ガラス(松浪硝子製、可視光透過率91%)を用いた以外は、比較例3と同様に行い、遮熱断熱基板(C9)を得た。
 結果を表2に示した。
〔比較例10〕
 透明基板層として、厚み50μmのポリエチレンテレフタレートフィルム基材(東レ製、商品名「ルミラーU48」、可視光透過率93%)に代えて、厚み3mmのフロート板ガラス(松浪硝子製、可視光透過率91%)を用いた以外は、比較例4と同様に行い、遮熱断熱基板(C10)を得た。
 結果を表2に示した。
〔比較例11〕
 透明基板層として、厚み50μmのポリエチレンテレフタレートフィルム基材(東レ製、商品名「ルミラーU48」、可視光透過率93%)に代えて、厚み3mmのフロート板ガラス(松浪硝子製、可視光透過率91%)を用いた以外は、比較例5と同様に行い、遮熱断熱基板(C11)を得た。
 結果を表2に示した。
〔比較例12〕
 透明基板層として、厚み50μmのポリエチレンテレフタレートフィルム基材(東レ製、商品名「ルミラーU48」、可視光透過率93%)に代えて、厚み3mmのフロート板ガラス(松浪硝子製、可視光透過率91%)を用いた以外は、比較例6と同様に行い、遮熱断熱基板(C12)を得た。
 結果を表2に示した。
〔比較例13〕
 保護トップコート層の厚みを800nmに変更した以外は、比較例1と同様に行い、透明基板層(厚み50μm)/アンダーコート層(厚み2μm)/第一金属酸化物層(厚み10nm)/金属層(厚み16nm)/第二金属酸化物層(厚み10nm)/保護トップコート層(厚み800nm)の構成を有する遮熱断熱基板(C13)を得た。
 結果を表2に示した。
〔比較例14〕
 保護トップコート層を設けなかった以外は、比較例1と同様に行い、透明基板層(厚み50μm)/アンダーコート層(厚み2μm)/第一金属酸化物層(厚み10nm)/金属層(厚み16nm)/第二金属酸化物層(厚み10nm)の構成を有する遮熱断熱基板(C14)を得た。
 結果を表2に示した。
〔比較例15〕
 アンダーコート層の厚みを6μmに変更した以外は、比較例1と同様に行い、透明基板層(厚み50μm)/アンダーコート層(厚み6μm)/第一金属酸化物層(厚み10nm)/金属層(厚み16nm)/第二金属酸化物層(厚み10nm)/保護トップコート層(厚み60nm)の構成を有する遮熱断熱基板(C15)を得た。
 結果を表2に示した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明の遮熱断熱基板は、例えば、建物や乗り物等の窓、植物等を入れる透明ケース、冷凍もしくは冷蔵のショーケース等に利用することができる。
10   透明基板層
20   赤外線反射層
21   金属層
22a  第一金属酸化物層
22b  第二金属酸化物層
40   保護トップコート層
60   アンダーコート層
70   保護フィルム
80   接着剤層
90   暖房器具
100  遮熱断熱基板
1000 窓
 

Claims (12)

  1.  透明基板層と赤外線反射層を含む遮熱断熱基板であって、
     該透明基板層と該赤外線反射層との間にアンダーコート層を備え、
     該赤外線反射層の該透明基板層と反対の側に保護トップコート層を備え、
     該アンダーコート層の厚みが0.01μm~5μmであり、
     該保護トップコート層の厚みが5nm~500nmであり、
     該アンダーコート層の硬度が0.50GPa以上であり、
     該保護トップコート層の硬度が0.50GPa以上である、
     遮熱断熱基板。
  2.  前記保護トップコート層の接触角が90度以上である、請求項1に記載の遮熱断熱基板。
  3.  前記保護トップコート層が配位結合型材料を含む、請求項1または2に記載の遮熱断熱基板。
  4.  前記保護トップコート層が、30℃~75℃の範囲内に軟化温度を有さない、請求項1から3までのいずれかに記載の遮熱断熱基板。
  5.  前記透明基板層の可視光線透過率が10%以上である、請求項1から4までのいずれかに記載の遮熱断熱基板。
  6.  前記保護トップコート層と前記赤外線反射層との間にトップコート層が配置されている、請求項1から5までのいずれかに記載の遮熱断熱基板。
  7.  前記保護トップコート層が、有機樹脂を含む樹脂組成物から形成される樹脂層である、請求項1から6までのいずれかに記載の遮熱断熱基板。
  8.  前記有機樹脂がアクリル系樹脂である、請求項7に記載の遮熱断熱基板。
  9.  前記アンダーコート層が、有機樹脂を含む樹脂組成物から形成される樹脂層である、請求項1から8までのいずれかに記載の遮熱断熱基板。
  10.  前記有機樹脂がアクリル系樹脂である、請求項9に記載の遮熱断熱基板。
  11.  前記アンダーコート層の弾性率が8.25GPa以下である、請求項1から10までのいずれかに記載の遮熱断熱基板。
  12.  前記保護トップコート層の弾性率が10.0GPa以下である、請求項1から11までのいずれかに記載の遮熱断熱基板。
     
PCT/JP2018/012658 2017-03-30 2018-03-28 遮熱断熱基板 WO2018181433A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-066619 2017-03-30
JP2017066619 2017-03-30
JP2018059420A JP7171211B2 (ja) 2017-03-30 2018-03-27 遮熱断熱基板
JP2018-059420 2018-03-27

Publications (1)

Publication Number Publication Date
WO2018181433A1 true WO2018181433A1 (ja) 2018-10-04

Family

ID=63677268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012658 WO2018181433A1 (ja) 2017-03-30 2018-03-28 遮熱断熱基板

Country Status (1)

Country Link
WO (1) WO2018181433A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301537A (ja) * 1988-04-01 1989-12-05 Ppg Ind Inc 高透過性低放射性物品及びその製法
JPH063523A (ja) * 1992-03-04 1994-01-14 Boc Group Inc:The 耐久性のある低放射率日射制御薄膜コーティング
JP2013521160A (ja) * 2010-03-01 2013-06-10 シーピーフィルムズ, インク. 低放射emi遮蔽窓フィルム
WO2016021532A1 (ja) * 2014-08-05 2016-02-11 日東電工株式会社 赤外線反射基板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301537A (ja) * 1988-04-01 1989-12-05 Ppg Ind Inc 高透過性低放射性物品及びその製法
JPH063523A (ja) * 1992-03-04 1994-01-14 Boc Group Inc:The 耐久性のある低放射率日射制御薄膜コーティング
JP2013521160A (ja) * 2010-03-01 2013-06-10 シーピーフィルムズ, インク. 低放射emi遮蔽窓フィルム
WO2016021532A1 (ja) * 2014-08-05 2016-02-11 日東電工株式会社 赤外線反射基板

Similar Documents

Publication Publication Date Title
EP3140355B1 (en) Article with hardcoat and method of making the same
JP6282142B2 (ja) 赤外線反射基板およびその製造方法
TWI476223B (zh) 防污組成物、防污膜、防污積層膜、轉印薄膜及樹脂積層體以及樹脂積層體的製造方法
WO2014119677A1 (ja) 赤外線反射フィルム
KR20180056753A (ko) 하드 코트층이 부착된 고분자 기판 및 그 제조 방법
JP5309597B2 (ja) 反射防止フイルムの製造方法および画像表示装置
CN108472685B (zh) 层叠体的制造方法
WO2005085913A1 (ja) 反射防止フィルムおよびその製造方法
WO2014119668A1 (ja) 赤外線反射フィルムの製造方法
JP6950330B2 (ja) 積層体、および樹脂フィルム
US11866564B2 (en) Polymer substrate with hard coat layer
JP6370347B2 (ja) 赤外線反射フィルム
WO2018181424A1 (ja) 遮熱断熱基板
WO2018181433A1 (ja) 遮熱断熱基板
JP4993242B2 (ja) 撥水・撥油性及び耐擦傷性が向上した反射防止フィルム
JP7171211B2 (ja) 遮熱断熱基板
WO2018181444A1 (ja) 遮熱断熱基板
JP7145629B2 (ja) 遮熱断熱基板
TWI765015B (zh) 熱射線反射透光性基材、熱射線反射窗
JP5218868B2 (ja) 撥水・撥油性及び耐擦傷性が向上した反射防止フィルムの製造方法
JP2018173166A (ja) 遮熱断熱基板
JP2018171914A (ja) 遮熱断熱フィルム
KR20240019407A (ko) 열선 반사 투광성 기재 및 열선 반사창
JP7147711B2 (ja) 硬化性重合体組成物、硬化物、積層体
JP7131504B2 (ja) 硬化性重合体組成物、硬化物、積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775864

Country of ref document: EP

Kind code of ref document: A1