JP7147711B2 - 硬化性重合体組成物、硬化物、積層体 - Google Patents

硬化性重合体組成物、硬化物、積層体 Download PDF

Info

Publication number
JP7147711B2
JP7147711B2 JP2019142956A JP2019142956A JP7147711B2 JP 7147711 B2 JP7147711 B2 JP 7147711B2 JP 2019142956 A JP2019142956 A JP 2019142956A JP 2019142956 A JP2019142956 A JP 2019142956A JP 7147711 B2 JP7147711 B2 JP 7147711B2
Authority
JP
Japan
Prior art keywords
group
meth
acrylate
layer
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019142956A
Other languages
English (en)
Other versions
JP2021024925A (ja
Inventor
嘉秀 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2019142956A priority Critical patent/JP7147711B2/ja
Publication of JP2021024925A publication Critical patent/JP2021024925A/ja
Application granted granted Critical
Publication of JP7147711B2 publication Critical patent/JP7147711B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Polymerisation Methods In General (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、硬化性重合体組成物、前記硬化性重合体組成物の硬化物、及び前記硬化物からなる層を有する積層体に関する。
ポリエチレンテレフタレート(PET)フィルムに代表される熱可塑性樹脂フィルム等の物品の表面には、硬度や滑り性等の機能を付与する目的で、ハードコート層を設ける場合がある。
ハードコート層として、一般に、ラジカル重合性基を有する化合物と光重合開始剤とを含有する硬化性組成物を、ラジカル重合によって硬化させたものが知られている。
ハードコート層を設けたフィルム(以下、「ハードコートフィルム」とも記す。)は、保存場所の確保、成形時の操作性、汚れ防止等の目的のために、保存に際してロール状に巻回される場合がある。このように、ハードコートフィルムをロール状に巻回する際にはフィルム同士のブロッキングを防ぐこと(アンチブロッキング性)が要求される。
ハードコートフィルムにアンチブロッキング性を付与する方法として、例えばハードコート層に粒子を配合して表面に凹凸を形成する方法が知られている。
特許文献1には、基材層の一方の面にハードコート層が形成され、基材層の他方の面に平均一次粒子径が0.5~1.5μmの有機微粒子を含むアンチブロッキングハードコート層が形成されたハードコートフィルムが記載されている。
特許文献2には、基材層の一方の面に、平均一次粒子径が5~200nmの無機粒子の凝集体を有する粒子含有樹脂層が形成された積層体が記載されている。
特開2013-75955号公報 特開2011-29175号公報
しかし、特許文献1に記載のハードコートフィルムや特許文献2に記載の積層体では、透明性が低下しやすい。
本発明は、アンチブロッキング性及び透明性に優れる硬化物が得られる硬化性重合体組成物、前記硬化性重合体組成物の硬化物、及び前記硬化物からなる層を有する積層体を提供することを目的とする。
本発明は、以下の態様を有する。
〔1〕活性エネルギー線の照射によりラジカルを発生する第1の活性基を有するモノマー(x)に基づく単位と、水素供与性官能基を有するモノマー(h)に基づく単位を有する共重合体(A)、1分子に2つ以上のラジカル重合性基を有する多官能化合物(B)、及び水素供与性官能基と静電相互作用を有する粒子(D)を含む、硬化性重合体組成物。
〔2〕前記硬化性重合体組成物の不揮発分に対して、前記共重合体(A)の含有量が0.5~50質量%である、前記〔1〕の硬化性重合体組成物。
〔3〕前記共重合体(A)1g当たりの前記第1の活性基の含有量が0.1~3.5mmol/gである、前記〔1〕又は〔2〕の硬化性重合体組成物。
〔4〕さらに、活性エネルギー線の照射によりラジカルを発生する第2の活性基を有する非重合体(C)を含む、前記〔1〕~〔3〕のいずれかの硬化性重合体組成物。
〔5〕前記第1の活性基及び前記第2の活性基が、それぞれ独立して、ベンゾフェノン基、アセトフェノン基、ベンゾイン基、α-ヒドロキシケトン基、α-アミノケトン基、α-ジケトン基、α-ジケトンジアルキルアセタール基、アントラキノン基、チオキサントン基、及びホスフィンオキシド基からなる群から選ばれる1種以上である、前記〔4〕の硬化性重合体組成物。
〔6〕前記共重合体(A)/前記非重合体(C)で表される質量比が0.1以上である、前記〔4〕又は〔5〕の硬化性重合体組成物。
〔7〕前記共重合体(A)/前記粒子(D)で表される質量比が0.1~30である、前記〔1〕~〔6〕のいずれかの硬化性重合体組成物。
〔8〕前記水素供与性官能基が、水酸基、アミノ基、メルカプト基、アミド基、カルボキシ基、及びエーテル結合を有する基からなる群から選ばれる1種以上である前記〔1〕~〔7〕のいずれかの硬化性重合体組成物。
〔9〕前記共重合体(A)が、炭素数4以上のアルキル基を有するモノマー(r)に基づく単位を有する、前記〔1〕~〔8〕のいずれかの硬化性重合体組成物。
〔10〕前記〔1〕~〔9〕のいずれかの硬化性重合体組成物の硬化物。
〔11〕基材層と、前記〔10〕の硬化物からなる層とを有する積層体。
本発明によれば、アンチブロッキング性及び透明性に優れる硬化物が得られる硬化性重合体組成物、前記硬化性重合体組成物の硬化物、及び前記硬化物からなる層を有する積層体を提供できる。
本発明の積層体の一例を示す模式断面図である。 本発明の積層体の他の一例を示す模式断面図である。 本発明の積層体の他の一例を示す模式断面図である。 本発明の積層体の他の一例を示す模式断面図である。 本発明の積層体の他の一例を示す模式断面図である。
以下、本発明の実施の形態について詳細に説明する。
本発明において、「(メタ)アクリレート」は、アクリレート又はメタクリレートの総称である。「(メタ)アクリル」は、アクリル及びメタクリルの総称である。
数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。
〔硬化性重合体組成物〕
硬化性重合体組成物は、活性エネルギー線の照射によりラジカルを発生する第1の活性基を有するモノマー(x)に基づく単位と、水素供与性官能基を有するモノマー(h)に基づく単位を有する共重合体(A)、1分子に2つ以上のラジカル重合性基を有する多官能化合物(B)、及び水素供与性官能基と静電相互作用を有する粒子(D)を含む。
硬化性重合体組成物に活性エネルギー線を照射すると、共重合体(A)の第1の活性基からラジカルが発生し、発生したラジカルを起点として多官能化合物(B)のラジカル重合性基同士の反応が進行し、硬化性重合体組成物全体が硬化する。こうして得られる硬化性重合体組成物の硬化物の表面は、粒子(D)の存在により凹凸状となり、アンチブロッキング性の機能が得られる。
硬化性重合組成物は、活性エネルギー線の照射によりラジカルを発生する第2の活性基を有する非重合体(C)をさらに含むことが好ましい。
硬化性重合組成物は、必要に応じて、有機溶剤をさらに含むことができる。
硬化性重合組成物は、必要に応じて、上記以外の他の成分をさらに含むことができる。
<共重合体(A)>
共重合体(A)は、活性エネルギー線の照射によりラジカルを発生する第1の活性基を有するモノマー(x)に基づく単位と、水素供与性官能基を有するモノマー(h)に基づく単位を有する。共重合体(A)は、モノマー(x)に基づく単位及びモノマー(h)に基づく単位に加えて、炭素数4以上のアルキル基を有するモノマー(r)に基づく単位を有することが好ましい。
[モノマー(x)]
モノマー(x)は、活性エネルギー線の照射によりラジカルを発生する第1の活性基を有する単量体である。
モノマー(x)としては、第1の活性基とラジカル重合性基とを有する化合物が挙げられる。
第1の活性基としては、活性エネルギー線の照射によりラジカルを発生する構造(光重合開始性を有する構造)を持つものであればよい。光重合開始性を有する構造としては、公知の種々の構造を採用でき、例えば水素引き抜き型、電子移動型、分子内開裂型が挙げられる。
第1の活性基の具体例としては、ベンゾフェノン基、アセトフェノン基、ベンゾイン基、α-ヒドロキシケトン基(例えば、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-メチルプロパノン)の「2-ヒドロキシエトキシ中の水酸基」から水素原子を1つ除いた基)、α-アミノケトン基、α-ジケトン基、α-ジケトンジアルキルアセタール基、アントラキノン基、チオキサントン基、ホスフィンオキシド基等が挙げられる。これらの中でも、硬化時に酸素阻害を受けにくく、硬化性が良好となる点で、ベンゾフェノン基、アセトフェノン基、α-ヒドロキシケトン基が好ましい。
なお、α-ヒドロキシケトン基は、ケトン基に隣接する炭素原子に結合する水酸基以外の2つの基が環を形成しているものでもよい。
第1の活性基は、共重合体(A)の主鎖の末端に存在してもよく、共重合体(A)を構成する単量体に基づく単位中に存在してもよい。
共重合体(A)は、分子中に複数個の第1の活性基を有することが好ましい。
モノマー(x)のラジカル重合性基としては、ラジカル重合性不飽和結合(炭素-炭素二重結合等)を含む官能基が挙げられ、具体例としては(メタ)アクリロイル基、(メタ)アクリルアミド基、ビニル基等が挙げられる。
モノマー(x)としては、共重合体(A)の合成のしやすさ、活性基の導入量の調整のしやすさの観点から、第1の活性基を有する(メタ)アクリル酸エステルが好ましい。
モノマー(x)としては、例えば、4-メタクリロイルオキシベンゾフェノン、2-[4-(2-ヒドロキシ-2-メチル-1-オキソプロピル)フェノキシ]エチルメタクリレートが挙げられる。
[モノマー(h)]
モノマー(h)は、水素供与性官能基を有する単量体である。
共重合体(A)がモノマー(h)に基づく単位を有していれば、後述する粒子(D)との静電相互作用により共重合体(A)が粒子(D)の周囲に局在化しやすくなる。
水素供与性官能基としては、水酸基、アミノ基、メルカプト基、アミド基、カルボキシ基、及びエーテル結合を有する基からなる群から選ばれる1種以上が好ましい。これらの中でも、強い静電相互作用が得られ、共重合体(A)が粒子(D)の周囲により局在化しやすい観点から、水酸基、アミノ基又はアミド基が好ましい。
モノマー(h)としては、水素供与性官能基とラジカル重合性基とを有する化合物が挙げられる。ラジカル重合性基はモノマー(x)の説明において先に例示したラジカル重合性基と同様である。
化合物の合成のしやすさと水素供与性官能基の導入量の調整のしやすさの観点から、モノマー(h)としては、水素供与性官能基を有する(メタ)アクリル酸エステルや(メタ)アクリルアミド類が好ましい。
モノマー(h)としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート、10-ヒドロキシデシル(メタ)アクリレート、12-ヒドロキシラウリル(メタ)アクリレート、モノブチルヒドロキルフマレート、モノブチルヒドロキシイタコネート等の水酸基含有モノマー;N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-ビニルカプロラクタム、N-ビニルピロリドン、N-イソプロピル(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリレート、2-[(ブチルアミノ)カルボニル]オキシ]エチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-ジエチルアミノプロピル(メタ)アクリルアミド、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリルアミド、N,N-ジエチルアミノエチル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ビニルアセトアミド等のアミノ基又はアミド基含有モノマー等が挙げられる。これらの中でも、活性基との併用において硬化促進効果に優れる点で、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、N,N-ジメチルアクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレートが好ましく、2-ヒドロキシエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレートがより好ましい。これらの化合物は1種を単独で用いてもよく、2種以上を併用してもよい。
[モノマー(r)]
モノマー(r)は、炭素数4以上のアルキル基を有する単量体である。
共重合体(A)がモノマー(r)に基づく単位を有していれば、硬化性重合体組成物の硬化物の滑り性が高まり、アンチブロッキング性がより向上する。
炭素数4以上のアルキル基は、直鎖状、分岐状、環状のいずれであってもよい。環状のアルキル基は、単環式でも多環式でもよい。硬化物の滑り性をより高める観点から、アルキル基は直鎖状であることが好ましい。
炭素数4以上のアルキル基の炭素数は、硬化物の滑り性をより高める観点から、好ましくは4~30の範囲、より好ましくは6~20の範囲、さらに好ましくは12~18の範囲である。
モノマー(r)としては、炭素数4以上のアルキル基とラジカル重合性基とを有する化合物が挙げられ、化合物の合成のしやすさと炭素数4以上のアルキル基の導入量の調整のしやすさの観点から、炭素数4以上のアルキル基を有する(メタ)アクリル酸アルキルエステルが好ましい。
モノマー(r)としては、例えば、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、デシル(メタ)アクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ミリスチル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、トリシクロデカン(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレート等が挙げられる。
これらの中でも、直鎖状の炭素数4以上のアルキル基を有する(メタ)アクリル酸アルキルエステルを含むことが好ましい。直鎖状の炭素数4以上のアルキル基を有する(メタ)アクリル酸アルキルエステルとしては、アルキル基の炭素数が上述の好ましい範囲にあるものが好ましく、製造のしやすさ等も考慮すると、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、ステアリル(メタ)アクリレートがより好ましく、ステアリル(メタ)アクリレートが特に好ましい。
これらの(メタ)アクリル酸エステルは1種を単独で用いてもよく、2種以上を併用してもよい。
[モノマー(f)]
共重合体(A)は、必要に応じて、フッ素原子又はケイ素原子を有するモノマー(f)に基づく単位をさらに有していてもよい。
モノマー(f)としては、フッ素原子又はケイ素原子とラジカル重合性基とを有する化合物が挙げられる。ラジカル重合性基はモノマー(x)の説明において先に例示したラジカル重合性基と同様である。
モノマー(f)は、硬化物に撥水性及び撥油性の少なくとも一方を付与し、硬化物の防汚性を高める成分でもある。
モノマー(f)は、フルオロアルキル基とラジカル重合性基とを有する化合物、及びポリジメチルシロキサン鎖とラジカル重合性基とを有する化合物からなる群から選ばれる1種以上を含むことが好ましい。
モノマー(f)は、フルオロアルキル基を有する(メタ)アクリル酸エステル、及びポリジメチルシロキサン鎖を有する(メタ)アクリル酸エステルからなる群から選ばれる1種以上を含むことがより好ましい。
フルオロアルキル基を有する(メタ)アクリル酸エステルとしては、パーフルオロアルキル基を有する(メタ)アクリル酸エステルがより好ましい。パーフルオロアルキル基の炭素数は4以上が好ましい。
ポリジメチルシロキサン鎖を有する(メタ)アクリル酸エステルの具体例としては、分子量が500~50000の片末端(メタ)アクリロイル基置換ポリジメチルシロキサンが挙げられる。前記分子量は1000~30000が好ましく、1500~20000がより好ましい。
[モノマー(o)]
共重合体(A)は、必要に応じて、上記以外の他のモノマー(モノマー(o))に基づく単位をさらに有していてもよい。モノマー(o)としては、例えば、ラジカル重合性基を有し、第1の活性基、水素供与性官能基、炭素数4以上のアルキル基、フッ素原子及びケイ素原子を有さない化合物が挙げられる。ラジカル重合性基はモノマー(x)の説明において先に例示したラジカル重合性基と同様である。
モノマー(o)としては、例えば、アクリル酸、メタクリル酸、クロトン酸、イタコン酸、フマル酸、マレイン酸、シトラコン酸等のカルボキシル基含有モノマー及びそれらの塩;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート等の(メタ)アクリレート;(メタ)アクリロニトリル等の窒素含有モノマー;スチレン、α-メチルスチレン、ジビニルベンゼン、ビニルトルエン等のスチレン系化合物、プロピオン酸ビニル、酢酸ビニル等のビニルエステル;燐含有ビニル系モノマー;塩化ビニル、塩化ビリデン等のハロゲン化ビニル;ブタジエン等の共役ジエンが挙げられる。
共重合体(A)は、分子中に複数個の第1の活性基を有することが好ましい。
共重合体(A)の1g当たりの第1の活性基の含有量は、好ましくは0.1~3.5mmol/g、より好ましくは0.5~2.5mmol/g、さらに好ましくは0.8~2.0mmol/gの範囲である。第1の活性基の含有量が上記範囲の下限値以上であるとアンチブロッキング性がより優れる。加えて、塗膜の耐擦傷性が高まる。第1の活性基の含有量が上記範囲の上限値以下であると硬化性組成物の貯蔵安定性が優れる。
共重合体(A)の1g当たりの水素供与性官能基の含有量は、好ましくは0.1~3.5mmol/g、より好ましくは0.8~3.2mmol/g、さらに好ましくは1.0~3.0mmol/gの範囲である。水素供与性官能基の含有量が上記範囲の下限値以上であるとアンチブロッキング性がより優れる。水素供与性官能基の含有量が上記範囲の上限値以下であると共重合体(A)と多官能化合物(B)との相溶性が優れる。
共重合体(A)を構成する全単位の合計質量に対する、モノマー(x)に基づく単位の割合は、好ましくは1~90質量%、より好ましくは10~80質量%、さらに好ましくは20~70質量%、特に好ましくは30~60質量%の範囲である。モノマー(x)に基づく単位の割合が上記範囲の下限値以上であるとアンチブロッキング性がより優れる。モノマー(x)に基づく単位の割合が上記範囲の上限値以下であると硬化性組成物の貯蔵安定性が優れる。
共重合体(A)を構成する全単位の合計質量に対する、モノマー(h)に基づく単位の割合は、好ましくは80質量%以下、より好ましくは1~60質量%、さらに好ましくは3~50質量%、特に好ましくは5~40質量%の範囲である。モノマー(h)に基づく単位の割合が上記範囲内であれば、滑り性が高まり、アンチブロッキング性がより優れる。
共重合体(A)を構成する全単位の合計質量に対する、モノマー(r)に基づく単位の割合は、好ましくは80質量%以下、より好ましくは1~70質量%、さらに好ましくは5~60質量%、特に好ましくは8~50質量%の範囲である。モノマー(r)に基づく単位の割合が上記範囲の下限値以上であるとアンチブロッキング性がより優れる。モノマー(r)に基づく単位の割合が上記範囲の上限値以下であると共重合体(A)と多官能化合物(B)との相溶性が優れる。
共重合体(A)を構成する全単位の合計質量に対する、モノマー(f)に基づく単位の割合は、好ましくは80質量%以下、より好ましくは1~70質量%、さらに好ましくは5~60質量%、特に好ましくは8~50質量%の範囲である。モノマー(f)に基づく単位の割合が上記範囲の下限値以上であるとアンチブロッキング性がより優れる。加えて、硬化物の防汚性が優れる。モノマー(f)に基づく単位の割合が上記範囲の上限値以下であると共重合体(A)と多官能化合物(B)との相溶性により優れる。
共重合体(A)の重量平均分子量(Mw)は、好ましくは1,000~500,000、より好ましくは2,000~100,000、さらに好ましくは3,000~60,000の範囲である。Mwが上記範囲の下限値以上であると、アンチブロッキング性がより優れる。Mwが上記範囲の上限値以下であると、硬化性重合体組成物の塗布性が優れる。
共重合体(A)のMwは、ゲルパーミエーションクロマトグラフィー(GPC)により測定される標準ポリスチレン換算の値である。詳しい測定条件は後述する実施例に記載のとおりである。
共重合体(A)のガラス転移温度(Tg)は、好ましくは-30~180℃、より好ましくは0~150℃、さらに好ましくは25~100℃の範囲である。Tgが上記範囲の下限値以上であるとアンチブロッキング性がより優れる。上限値以下であると共重合体(A)と多官能化合物(B)との相溶性に優れる。
共重合体(A)のTgは、示差走査熱量計(DSC)等を用いた実測定やFoxの式により求められる。
共重合体(A)は、例えば、モノマー(x)及びモノマー(h)を含むモノマー成分を重合することで得られる。モノマー成分はモノマー(r)をさらに含むことが好ましい。また、モノマー成分は、必要に応じて、モノマー(f)及びモノマー(o)のいずれか1以上をさらに含んでいてもよい。
重合は、典型的には、重合開始剤の存在下で行う。重合の際、必要に応じて、連鎖移動剤を併用してもよい。
重合方法としては、溶液重合、懸濁重合、塊状重合、乳化重合等の公知の方法が挙げられ、その中でも操作が簡便で生産性が高い点で、溶液重合が好ましい。
<多官能化合物(B)>
多官能化合物(B)としては、1分子に2つ以上のラジカル重合性基を有するものであればよく、公知の各種の化合物を用いることができる。
多官能化合物(B)としては、多官能(メタ)アクリレートが好ましい。
多官能化合物(B)は1種を単独で使用してもよく、2種以上を併用してもよい。
二官能の多官能(メタ)アクリレートとしては、特に限定されるものではないが、例えば1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリシクロデカンジメチロールジ(メタ)アクリレート等のアルカンジオールジ(メタ)アクリレート、ビスフェノールAエチレンオキサイド変性ジ(メタ)アクリレート、ビスフェノールFエチレンオキサイド変性ジ(メタ)アクリレート等のビスフェノール変性ジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ウレタンジ(メタ)アクリレート、エポキシジ(メタ)アクリレート等が挙げられる。
三官能以上の多官能(メタ)アクリレートとしては、特に限定されるものではないが、例えばジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性トリ(メタ)アクリレート、ε-カプロラクトン変性トリス(アクロキシエチル)イソシアヌレート等のイソシアヌル酸変性トリ(メタ)アクリレート、ペンタエリスリトールトリアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、ペンタエリスリトールトリアクリレートトルエンジイソシアネートウレタンプレポリマー、ジペンタエリスリトールペンタアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー等のウレタンアクリレート等が挙げられる。これらの中でも、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートが好ましい。
<非重合体(C)>
非重合体(C)は、活性エネルギー線の照射によりラジカルを発生する第2の活性基を有する。非重合体(C)は、重合体でない化合物であり、重合開始剤の機能を有する。
上述したように、共重合体(A)は後述の粒子(D)の周囲に局在化するが、非重合体(C)は塗膜中に分散する。そのため、活性エネルギー線を照射したときに、共重合体(A)が粒子(D)の周囲に局在化しても、粒子(D)の周囲とそれ以外とで硬化速度にムラが生じにくく、粒子(D)の周囲で硬化が進行するとともに、粒子(D)の周囲以外でも硬化が進行する。その結果、より透明性に優れる硬化物が得られる。
第2の活性基としては、共重合体(A)の説明において先に例示した第1の活性基と同様である。
第2の活性基は、第1の活性基と同じ種類であってもよいし、異なる種類であってもよい。
非重合体(C)としては、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン-n-ブチルエーテル、ベンゾインフェニルエーテル、ベンジルジフェニルジスルフィド、ジベンジル、ジアセチル、アントラキノン、ナフトキノン、3,3’-ジメチル-4-メトキシベンゾフェノン、ベンゾフェノン、p,p’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、ピバロインエチルエーテル、ベンジルジメチルケタール、1,1-ジクロロアセトフェノン、p-t-ブチルジクロロアセトフェノン、2-クロロチオキサントン、2-メチルチオキサントン、2,4-ジエチルチオキサントン、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジクロロ-4-フェノキシアセトフェノン、フェニルグリオキシレート、α-ヒドロキシイソブチルフェノン、ジベンゾスパロン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチル-1-プロパノン、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン、トリブロモフェニルスルホン、トリブロモメチルフェニルスルホン、1-[4-(2-ヒドロキシエトキシル)-フェニル]-2-ヒドロキシ-メチルプロパノン、1-ヒドロキシシクロヘキシルフェニルケトン等が挙げられる。これらの中でも、1-[4-(2-ヒドロキシエトキシル)-フェニル]-2-ヒドロキシ-メチルプロパノン、1-ヒドロキシシクロヘキシルフェニルケトンが好ましい。これらの非重合体(C)は1種を単独で用いてもよく、2種以上を併用してもよい。
<粒子(D)>
粒子(D)は、水素供与性官能基と静電相互作用を有する粒子である。
上述したように、共重合体(A)は、水素供与性官能基を有するモノマー(h)に基づく単位を有するので、静電相互作用により共重合体(A)が粒子(D)の周囲に局在化しやすくなる。共重合体(A)が粒子(D)の周囲に局在化することで、粒子(D)の周囲の活性基の濃度が高くなる。そのため、活性エネルギー線を照射したときに、粒子(D)の周囲が重合場となり粒子(D)を中心として硬化反応が開始することにより、粒子(D)の大きさが見かけ上、大きくなるため、硬化物の表面の凹凸が大きくなり、アンチブロッキング性が向上する。
ところで、アンチブロッキング性を向上させるためには、通常、平均粒子径の大きな粒子を配合したり、粒子の配合量を増やしたりする必要があるが、硬化物の透明性が低下してしまう。
しかし、本発明の硬化性重合体組成物であれば、前述のように粒子(D)の大きさが見かけ上、大きくなるため、粒子(D)の平均粒子径を大きくしなくても、アンチブロッキング性が向上する。また、粒子(D)の配合量を増やさなくても、アンチブロッキング性が向上する。よって、硬化物の透明性も維持できる。
さらに、本発明の硬化性重合体組成物が非重合体(C)を含んでいれば、活性エネルギー線を照射したときに、共重合体(A)が粒子(D)の周囲に局在化しても、粒子(D)の周囲とそれ以外とで硬化速度にムラが生じにくく、硬化物の透明性をさらに高めることも可能であり、より好ましい形態となる。
粒子(D)としては、水素供与性官能基と静電相互作用を有するものであれば特に限定されないが、例えば、表面にシラノール基、水酸基、アミン基、カルボン酸基、スルホン酸基等の官能基を有する粒子が挙げられる。
粒子(D)は、有機粒子でも無機粒子でもよく、これらを併用してもよい。静電相互作用や水素結合力をより強くできるという観点から、無機粒子が好ましい。
無機粒子としては、例えば、シリカ(コロイダルシリカを含む)、アルミナ、チタニア、ゼオライト、雲母、合成雲母、酸化カルシウム、酸化ジルコニウム、酸化亜鉛、フッ化マグネシウム、スメクタイト、合成スメクタイト、バーミキュライト、ITO(酸化インジウム/酸化錫)、ATO(酸化アンチモン/酸化錫)、酸化錫、酸化インジウム、酸化アンチモン等が挙げられる。これらの中でも、入手の容易さ、価格、硬化物の耐摩耗性の点から、シリカやアルミナが好ましく、コロイダルシリカが特に好ましい。
無機粒子は(メタ)アクリロイル基等の反応性基を有するシランカップリング剤で表面修飾された粒子であってもよい。
表面修飾された粒子は、例えば、シランカップリング剤と無機粒子とを、酸や塩基、アセチルアセトンアルミニウム等のシランカップリング反応触媒の存在下に25℃~120℃で1時間~24時間程度反応させる方法で得られる。
無機粒子は1種を単独で用いてもよく、2種以上を併用してもよい。
コロイダルシリカは、通常の水性分散液の形態、又は有機溶媒に分散させた形態で用いることができる。コロイダルシリカとしては、硬化性重合体組成物中に均一かつ安定に分散させる点から、有機溶媒に分散させた形態のコロイダルシリカが好ましい。
有機溶媒としては、例えば、メタノール、イソプロピルアルコール、n-ブタノール、エチレングリコール、キシレン/ブタノール、エチルセロソルブ、ブチルセロソルブ、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、メチルエチルケトン、メチルイソブチルケトン、トルエン等が挙げられる。有機溶媒は1種を単独で用いてもよく、2種以上を併用してもよい。
有機溶媒に分散させた形態のコロイダルシリカとしては市販品を用いることができ、例えば、日産化学工業株式会社から市販されている、メタノール分散シリカゾル、IPA-ST(イソプロピルアルコール分散シリカゾル)、NBA-ST(n-ブタノール分散シリカゾル)、EG-ST(エチレングリコール分散シリカゾル)、XBA-ST(キシレン/ブタノール分散シリカゾル)、ETC-ST(エチルセロソルブ分散シリカゾル)、BTC-ST(ブチルセロソルブ分散シリカゾル)、DBF-ST(ジメチルホルムアミド分散シリカゾル)、DMAC-ST(ジメチルアセトアミド分散シリカゾル)、MEK-ST(メチルエチルケトン分散シリカゾル)、MIBK-ST(メチルイソブチルケトン分散シリカゾル)等が挙げられる。
有機溶媒に分散させた形態のコロイダルシリカは、1種を単独で用いてもよく、2種以上を併用してもよい。
粒子(D)の平均粒子径は、好ましくは1nm~1μm、より好ましくは2~200nm、さらに好ましくは5~100nm、特に好ましくは8~50nm、最も好ましくは10~20nmの範囲である。粒子(D)の平均粒子径が上記範囲の下限値以上であると、アンチブロッキング性がより優れる。粒子(D)の平均粒子径が上記範囲の上限値以下であると、透明性がより優れる。
なお、粒子(D)平均粒子径とは、平均一次粒子径のことである。
粒子(D)の平均粒子径は、動的光散乱式粒度分布測定装置により測定される等価球形分布における積算(個数基準)50%の値である。
<有機溶剤>
有機溶剤は、硬化性重合体組成物を基材上に塗布する際の作業性を向上する目的で、必要に応じて用いられる。
有機溶剤としてはトルエン、キシレン等の芳香族系溶剤;メチルエチルケトン、アセトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤;ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、アニソール、フェネトール等のエーテル系溶剤;酢酸エチル、酢酸ブチル、酢酸イソプロピル、エチレングリコールジアセテート等のエステル系溶剤;ジメチルホルムアミド、ジエチルホルムアミド、N-メチルピロリドン等のアミド系溶剤;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ等のセロソルブ系溶剤;メタノール、エタノール、プロパノール、イソプロパノール、ブタノール等のアルコール系溶剤;ジクロロメタン、クロロホルム等のハロゲン系溶剤;等が挙げられる。これらの有機溶剤は1種を単独で使用してもよく、2種以上を併用してもよい。これらの有機溶剤のうち、塗布における作業性を向上させやすい点で、エステル系溶剤、エーテル系溶剤、アルコール系溶剤及びケトン系溶剤が好ましい。
<その他の成分>
硬化性重合体組成物は、硬化物外観を向上させるため、レベリング剤をさらに含有することができる。
レベリング剤としては、アクリル系レベリング剤、シリコーン系レベリング剤、フッ素系レベリング剤等が挙げられる。これらのレベリング剤は1種を単独で用いてもよく、2種以上を併用してもよい。
硬化性重合体組成物は、粘度の調整や活性エネルギー線による硬化速度の調整のため、1分子中に1つのラジカル重合性基を有する単官能(メタ)アクリレートをさらに含有することができる。
単官能(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ベンジル(メタ)アクリレート、クレゾール(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、フェニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、7-アミノ-3,7-ジメチルオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、エチルジエチレングリコール(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ポリウレタンモノ(メタ)アクリレート、ポリエポキシモノ(メタ)アクリレート、ポリエステルモノ(メタ)アクリレート等が挙げられる。
硬化性重合体組成物は、本発明の効果を損なわない範囲で、チオール基を含有する化合物等の重合促進剤、帯電防止剤、可塑剤、界面活性剤、酸化防止剤、紫外線吸収剤等を含有していてもよい。
<含有量>
硬化性重合体組成物の不揮発分に対する共重合体(A)の含有量は、好ましくは0.5~50質量%、より好ましくは1~20質量%、さらに好ましくは1.5~5質量%の範囲である。共重合体(A)の含有量が上記範囲の下限値以上であると、アンチブロッキング性がより優れる。共重合体(A)の含有量が上記範囲の上限値以下であると、塗工性が優れる。
硬化性重合体組成物の不揮発分とは、有機溶剤以外の成分の合計質量である。硬化性重合体組成物の不揮発分は、従来公知の方法で測定することができ、例えば、1gの組成物を広げて、100℃で1時間加熱することで有機溶剤を揮発させたときの重さの変化により測定される。
多官能化合物(B)100質量部に対する共重合体(A)の含有量は、好ましくは0.1~50質量部、より好ましくは0.2~30質量部、さらに好ましくは0.5~20質量部、特に好ましくは0.8~10質量部の範囲である。共重合体(A)の含有量が上記範囲の下限値以上であると、アンチブロッキング性がより優れる。共重合体(A)の含有量が上記範囲の上限値以下であると、塗工性が優れる。
硬化性重合体組成物の不揮発分に対する多官能化合物(B)の含有量は、好ましくは50~99.5質量%、より好ましくは70~99質量%、さらに好ましくは80~98.5質量%の範囲である。多官能化合物(B)の含有量が上記範囲の下限値以上であると、硬化性が優れる。多官能化合物(B)の含有量が上記範囲の上限値以下であると、硬化物の屈曲性が優れる。
硬化性重合体組成物の不揮発分に対する非重合体(C)の含有量は、好ましくは15質量%以下、より好ましくは0.1~10質量%、さらに好ましくは0.5~7質量%の範囲である。非重合体(C)の含有量が上記範囲の下限値以上であると、塗膜の透明性がより優れる。非重合体(C)の含有量が上記範囲の上限値以下であると、アンチブロッキング性がより優れる。
多官能化合物(B)100質量部に対する非重合体(C)の含有量は、好ましくは15質量部以下、より好ましくは0.1~10質量部、さらに好ましくは0.5~8質量部の範囲である。非重合体(C)の含有量が上記範囲の下限値以上であると、塗膜の透明性がより優れる。非重合体(C)の含有量が上記範囲の上限値以下であると、アンチブロッキング性がより優れる。
硬化性重合体組成物の不揮発分に対する粒子(D)の含有量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、さらに好ましくは1.0~10質量%の範囲である。粒子(D)の含有量が上記範囲の下限値以上であると、アンチブロッキング性がより優れる。粒子(D)の含有量が上記範囲の上限値以下であると、塗膜の透明性がより優れる。
多官能化合物(B)100質量部に対する粒子(D)の含有量は、好ましくは0.01~50質量部、より好ましくは0.5~30質量部、さらに好ましくは0.8~10質量部、特に好ましくは1.0~5質量部の範囲である。粒子(D)の含有量が上記範囲の下限値以上であると、アンチブロッキング性がより優れる。粒子(D)の含有量が上記範囲の上限値以下であると、塗膜の透明性がより優れる。
共重合体(A)/非重合体(C)で表される質量比(A/C比)は、好ましくは0.1以上、より好ましくは0.15~10、さらに好ましくは0.2~7、特に好ましくは0.5~5の範囲である。A/C比が上記範囲の下限値以上であると、アンチブロッキング性がより優れる。A/C比が上記範囲の上限値以下であると、塗膜の透明性をより高度なものとすることができ、かつアンチブロッキング性とのバランスにより優れる。
共重合体(A)/樹脂(D)で表される質量比(A/D比)は、好ましくは0.1~30、より好ましくは0.2~10、さらに好ましくは0.5~5の範囲である。A/D比が上記範囲内であれば、アンチブロッキング性と塗膜の透明性のバランスに優れる。
硬化性重合体組成物の不揮発分100質量部に対する有機溶剤の含有量は、塗布操作における操作性の向上の観点から、10質量部以上1900質量部以下が好ましく、40質量部以上400質量部以下がより好ましい。
〔硬化物〕
硬化性重合体組成物の硬化物は、硬化性重合体組成物を基材又は物品の面上に塗布して塗膜を形成し、必要に応じて乾燥した後、塗膜に活性エネルギー線を照射することにより形成できる。
硬化性重合体組成物の塗布方法は特に限定されない。例えば、ディップコート法、エアーナイフコート法、カーテンコート法、スピンコート法、ローラーコート法、バーコート法、ワイヤーバーコート法、グラビアコート法、スプレーコート等の公知の方法により硬化性重合体組成物を塗布することができる。
硬化性重合体組成物が有機溶剤を含む場合、活性エネルギー線を照射する前に予め加熱乾燥することが好ましい。
加熱乾燥の乾燥温度は、30℃以上200℃以下が好ましく、40℃以上150℃以下がより好ましい。乾燥時間は、0.01分以上30分以下が好ましく、0.1分以上10分以下がより好ましい。
活性エネルギー線としては、紫外線、α線、β線、γ線等が挙げられる。その中でも紫外線が好ましい。
活性エネルギー線の照射量は、照射する活性エネルギー線に応じて適宜選定できる。
紫外線を用いる場合、照射の積算光量が100mJ/cm以上3000mJ/cm以下となるよう照射することが好ましく、200mJ/cm以上2000mJ/cm以下がより好ましい。また、照度としては、50mW/cm以上600mW/cm以下が好ましく、75mW/cm以上450mW/cm以下がより好ましく、100mW/cm以上300mW/cm以下がさらに好ましい。光源としては、中圧水銀灯、高圧水銀灯、超高圧水銀灯、無電極ランプ、メタルハライドランプ、又は走査型、カーテン型電子線加速路による電子線等高圧水銀灯、超高圧水銀灯等、低圧水銀灯等を用いることができる。
硬化物の表面は、凹凸を有する凹凸面(非平滑面)である。これにより硬化物はアンチブロッキング性を有する。
硬化物の表面粗さは、好ましくは0.1~20nm、より好ましくは0.2~10nm、さらに好ましくは0.5~7nm、特に好ましくは1.0~5nmの範囲である。表面粗さが上記範囲の下限値以上であるとアンチブロッキング性がより優れる。表面粗さが上記範囲の上限値以下であると透明性がより優れる。
硬化物の表面粗さは、後述する実施例に記載の方法により測定される。
硬化性重合体組成物の硬化物は透明性を有する。
硬化物の全光線透過率は、好ましくは80%以上、より好ましくは85%以上、さらに好ましくは88%以上である。上限は特に制限されないが、好ましくは99%である。全光線透過率が上記下限値以上であると透明性が高くなり、各種用途に用いた際の視認性が良好なものとなる。
硬化物のヘイズは、好ましくは10%未満、より好ましくは5%以下、さらに好ましくは4%以下である。下限は特に制限されないが、好ましくは0.1%である。ヘイズが上記上限値未満であると透明性がより良好となり、各種用途に用いた際の視認性が良好なものとなる。
硬化物の全光線透過率及びヘイズは、それぞれ後述する実施例に記載の方法により測定される。
硬化物の水接触角は、好ましくは50°以上、より好ましくは60~120°、さらに好ましくは70~110°の範囲である。水接触角が上記範囲の下限値以上であると防汚性や滑り性に優れたものにしやすい。
硬化物の水接触角は、後述する実施例に記載の方法により測定される。
硬化性重合体組成物の硬化物はアンチブロッキング性を有するハードコート層として好適である。
硬化物がハードコート層である場合、硬化物の厚みは、好ましくは0.1~20μm、より好ましくは0.2~10μm、さらに好ましくは0.3~5μmの範囲である。硬化物の厚みが上記範囲内であれば、アンチブロッキング性や耐擦傷性がより良好なものにできる。
硬化物の厚みは、硬化物の最大厚みを示し、電子顕微鏡による断面観察により求められる。
硬化物の硬度は、後述する実施例に記載の方法により測定される鉛筆硬度が、HBより硬いことが好ましく、Fより硬いことがより好ましい。
〔積層体〕
本発明の積層体(以下、「本積層体」とも記す。)は、基材層と、硬化性重合体組成物の硬化物からなる層(以下、「硬化層」とも記す。)とを有する。
本積層体はさらに、前記基材層と前記硬化層との間に設けられたプライマー層、前記硬化層の前記基材層側とは反対側の面上に設けられた表面機能層、及び前記基材層の前記硬化層側とは反対側の面上に設けられた裏面機能層からなる群から選ばれる1つ以上の層を有することが好ましい。特に、本積層体は、表面機能層を有することが好ましい。
本積層体は、例えば物品の保護フィルムなどに用いられるハードコートフィルムとして好適である。
図1~5は、本積層体の例を示す模式断面図である。図1~5における寸法比は、説明の便宜上のものであり、実際のものとは異なったものである。
図1の例の積層体10は、基材層1と、基材層1の一方の面1a上に設けられた硬化層2と、基材層1と硬化層2との間に設けられたプライマー層3と、を有する。
図2の例の積層体10は、基材層1と、基材層1の一方の面1a上に設けられた硬化層2と、硬化層2の基材層1側とは反対側の面上に設けられた表面機能層4と、を有する。
図3の例の積層体10は、基材層1と、基材層1の一方の面1a上に設けられた硬化層2と、基材層1と硬化層2との間に設けられたプライマー層3と、硬化層2の基材層1側とは反対側の面上に設けられた表面機能層4と、を有する。
図4の例の積層体10は、基材層1と、基材層1の一方の面1a上に設けられた硬化層2と、基材層1と硬化層2との間に設けられたプライマー層3と、基材層1の硬化層2側とは反対側の面1b上に設けられた裏面機能層5と、を有する。
図5の例の積層体10は、基材層1と、基材層1の一方の面1a上に設けられた硬化層2と、基材層1と硬化層2との間に設けられたプライマー層3と、硬化層2の基材層1側とは反対側の面上に設けられた表面機能層4と、基材層1の硬化層2側とは反対側の面1b上に設けられた裏面機能層5と、を有する。
硬化層2は、表面に粒子(D)2aが存在し、表面に凹凸を有する。すなわち、硬化層2の表面は非平滑面である。
<基材層>
基材層としては、公知のものを使用でき、例えば樹脂基材、金属基材、紙基材が挙げられる。これらの中では、加工性の観点から、樹脂基材が好ましい。
樹脂基材は、単層構成であっても2層以上の多層構成であってもよく、特に限定されるものではない。樹脂基材を2層以上の多層構成とし、それぞれの層に特徴を持たせ、多機能化を図ることが好ましい。
樹脂基材としては、各種の樹脂フィルム(シート)を使用でき、例えばポリエステルフィルム、ポリ(メタ)アクリレートフィルム、ポリオレフィンフィルム、ポリカーボネートフィルム、ポリイミドフィルム、トリアセチルセルロースフィルム、ポリスチレンフィルム、ポリ塩化ビニルフィルム、ポリビニルアルコールフィルム、ナイロンフィルム等が挙げられる。
本積層体をディスプレイ用途へ展開する場合には、ポリエステルフィルム、ポリ(メタ)アクリレートフィルム、ポリオレフィンフィルム、ポリカーボネートフィルム、ポリイミドフィルム、トリアセチルセルロースフィルムが好ましい。これらの中でも、アンチグレア用途においては、ポリエステルフィルム、ポリ(メタ)アクリレートフィルム、ポリオレフィンフィルムが好ましく、さらに透明性や成形性、汎用性を考慮すると、ポリエステルフィルムがより好ましい。
ポリエステルフィルムは、無延伸フィルムであっても延伸フィルムであってもよく、延伸フィルムが好ましい。中でも、一軸方向に延伸された一軸延伸フィルム、又は二軸方向に延伸された二軸延伸フィルムが好ましく、力学特性のバランスや平面性に優れる観点から、二軸延伸フィルムがより好ましい。
基材層として用いられうるポリエステルフィルムを構成するポリエステルは、ホモポリエステルであっても共重合ポリエステルであってもよい。
ホモポリエステルとしては、芳香族ジカルボン酸と脂肪族グリコールとを重縮合させて得られたものが好ましい。芳香族ジカルボン酸としては、テレフタル酸、2,6-ナフタレンジカルボン酸等が挙げられる。脂肪族グリコールとしては、エチレングリコール、ジエチレングリコール、1,4-シクロヘキサンジメタノール等が挙げられる。芳香族ジカルボン酸、脂肪族グリコールはそれぞれ1種を単独で用いてもよく、2種以上を併用してもよい。
共重合ポリエステルのジカルボン酸成分としては、イソフタル酸、フタル酸、テレフタル酸、2,6-ナフタレンジカルボン酸、アジピン酸、セバシン酸、オキシカルボン酸等が挙げられる。グリコール成分として、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブタンジオール、4-シクロヘキサンジメタノール、ネオペンチルグリコール等が挙げられる。ジカルボン酸成分、グリコール成分はそれぞれ1種を単独で用いてもよく、2種以上を併用してもよい。
代表的なポリエステルとしては、ポリエチレンテレフタレート、ポリエチレンナフタレートが例示される。
ポリエステルフィルムとしては、機械的強度や耐熱性を考慮すると、前記の中でも、ポリエチレンテレフタレートやポリエチレンナフタレートから形成されたフィルムがより好ましく、製造のしやすさ、表面保護フィルム等の用途としての取扱い性を考慮すると、ポリエチレンテレフタレートから形成されたフィルムがより好ましい。
基材層として用いられうるポリ(メタ)アクリレートフィルムを構成するポリ(メタ)アクリレートとしては、(メタ)アクリレートに基づく単位を有するものであればよく、各種のアクリル樹脂を使用することができる。(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート等の炭素数が1~4のアルキル基を有するアルキル(メタ)アクリレート、より炭素数が多いアルキル基を有するアルキル(メタ)アクリレート等が挙げられる。
ポリ(メタ)アクリレートは、透明性、加工性、耐薬品性を考慮すると、炭素数が1~4のアルキル基を有するアルキル(メタ)アクリレートに基づく単位を主成分とすることが好ましく、メチル(メタ)アクリレートに基づく単位及びエチル(メタ)アクリレートに基づく単位からなる群から選ばれる少なくとも1種を主成分とすることがより好ましく、メチル(メタ)アクリレートに基づく単位を主成分とすることが特に好ましい。
ポリ(メタ)アクリレートに、アルキル(メタ)アクリレート以外の(メタ)アクリレートに基づく単位や、その他の単量体に基づく単位を含有させて柔軟性等の特性を付与することも可能である。
ポリ(メタ)アクリレートの総質量に対する炭素数が1~4のアルキル基を有するアルキル(メタ)アクリレートに基づく単位の割合は、好ましくは50質量%以上、より好ましくは80質量%以上である。
基材層は、易滑性の付与、各工程での傷発生防止、耐ブロッキング特性の向上を目的として、粒子を含むことができる。
粒子の種類は、目的に応じて適宜選定でき、特に限定されない。具体例としては、シリカ、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、リン酸カルシウム、リン酸マグネシウム、カオリン、酸化アルミニウム、酸化ジルコニウム、酸化チタン等の無機粒子、アクリル樹脂、スチレン樹脂、尿素樹脂、フェノール樹脂、エポキシ樹脂、ベンゾグアナミン樹脂等の有機粒子等が挙げられる。さらに、基材層がポリエステルフィルムを含む場合、ポリエステル製造工程で触媒等の金属化合物の一部を析出させた析出粒子を用いることもできる。これらの中でも特に少量で効果が出やすいという点で、シリカ粒子や炭酸カルシウム粒子が好ましい。
粒子の形状は特に限定されるものではなく、球状、塊状、棒状、扁平状等のいずれを用いてもよい。また、その硬度、比重、色等についても特に制限はない。
これらの粒子は、必要に応じて2種類以上を併用してもよい。
粒子の平均粒径は、好ましくは10μm以下、より好ましくは0.01~5μm、さらに好ましくは0.01~3μmの範囲である。平均粒径が10μm以下であれば、基材層の透明性の低下が生じにくい。
粒子の平均粒径は、遠心沈降式粒度分布測定装置により測定される等価球形分布における積算(質量基準)50%の値である。
基材層が粒子を含む場合、基材層中の粒子の含有量は、粒子の平均粒径との兼ね合いもあるので一概にはいえないが、基材層中の粒子を含有する層の総質量に対し、好ましくは5質量%以下、より好ましくは0.0003~3質量%の範囲、さらに好ましくは0.0005~1質量%の範囲である。粒子の含有量が5質量%以下であれば、粒子の脱落や基材層の透明性の低下等が生じにくい。
基材層は、必要に応じて、上述の粒子以外の添加剤を含むことができる。添加剤としては、紫外線吸収剤、酸化防止剤、帯電防止剤、熱安定剤、潤滑剤、染料、顔料等の公知の添加剤を用いることができる。
基材層の厚みは、製膜可能な範囲であれば特に限定されるものではないが、好ましくは2~350μm、より好ましくは5~250μm、さらに好ましくは10~100μmの範囲である。
<プライマー層>
プライマー層は、基材層と硬化層との間に各種の機能を付与するために設けられる。
プライマー層としては、密着向上層、帯電防止層等が挙げられる。
プライマー層は、複数の機能を有していてもよい。例えば密着向上層が帯電防止層を兼ねていてもよい。
好ましい一態様において、プライマー層は密着向上層である。基材層と硬化層との密着性が不十分であると、用途によっては積層体を使用できない場合がある。密着向上層を有することで、基材層と硬化層との密着性が向上し、積層体を種々の用途に使用できる。
プライマー層が密着向上層である場合、プライマー層は、基材層と硬化層との密着性向上等の観点から、樹脂及び架橋剤由来の化合物のいずれか一方又は両方を含有することが好ましい。
好ましい他の一態様において、プライマー層は帯電防止層である。プライマー層が帯電防止層であれば、積層体の最表面、特に基材層に対して硬化層が存在する側の最表面に対する、剥離帯電や摩擦帯電による塵埃等の付着を軽減できる。
プライマー層を帯電防止層とするには、例えば、プライマー層に帯電防止剤を含有させればよい。
樹脂としては、従来公知の樹脂を使用することができる。樹脂の具体例としては、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、ポリビニル樹脂(ポリビニルアルコール、塩化ビニル-酢酸ビニル共重合体等)等が挙げられる。その中でも、密着性能やコーティング性を考慮すると、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂が好ましい。
基材層が樹脂フィルムである場合、基材層の樹脂としては、プライマー層と基材層との親和性の観点から、樹脂フィルムの樹脂と同種の樹脂が好ましい。例えば基材層がポリエステルフィルムの場合には、プライマー層はポリエステル樹脂を含有することが好ましい。基材層がポリ(メタ)アクリレートフィルムの場合には、プライマー層はアクリル樹脂を含有することが好ましい。
ポリエステル樹脂としては、主な構成成分が多価カルボン酸及び多価ヒドロキシ化合物からなるものが挙げられる。
多価カルボン酸としては、テレフタル酸、イソフタル酸、オルトフタル酸、4,4’-ジフェニルジカルボン酸、2,5-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸及び、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,4-シクロヘキサンジカルボン酸、2-カリウムスルホテレフタル酸、5-ソジウムスルホイソフタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、グルタル酸、コハク酸、トリメリット酸、トリメシン酸、ピロメリット酸、無水トリメリット酸、無水フタル酸、トリメリット酸モノカリウム塩及びそれらのエステル形成性誘導体等が挙げられる。
多価ヒドロキシ化合物としては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、2-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、p-キシリレングリコール、ビスフェノールA-エチレングリコール付加物、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリテトラメチレンオキシドグリコール、ジメチロールプロピオン酸、グリセリン、トリメチロールプロパン、ジメチロールエチルスルホン酸ナトリウム、ジメチロールプロピオン酸カリウム等が挙げられる。
これらの化合物の中から、それぞれ適宜1つ以上を選択し、常法の重縮合反応によりポリエステル樹脂を合成すればよい。
アクリル樹脂とは、(メタ)アクリル系モノマーを含む重合性モノマーの重合体である。
アクリル樹脂としては、例えば、(メタ)アクリル系モノマーの単独重合体及び共重合体、(メタ)アクリル系モノマーと(メタ)アクリル系モノマー以外の重合性モノマーとの共重合体等が挙げられる。
アクリル樹脂は、それら重合体と他のポリマー(例えばポリエステル、ポリウレタン等)との共重合体であってもよい。このような共重合体は、例えば、ブロック共重合体、グラフト共重合体である。又は、ポリエステルの溶液又は分散液中で重合性モノマーを重合して得られたポリマー(場合によってはポリマーの混合物)も含まれる。同様に、ポリウレタンの溶液又は分散液中で重合性モノマーを重合して得られたポリマー(場合によってはポリマーの混合物)も含まれる。同様に、他のポリマーの溶液又は分散液中で重合性モノマーを重合して得られたポリマー(場合によってはポリマー混合物)も含まれる。
上記重合性モノマーとしては、特に限定されないが、特に代表的な化合物としては、例えば、アクリル酸、メタクリル酸、クロトン酸、イタコン酸、フマル酸、マレイン酸、シトラコン酸等のカルボキシル基含有モノマー及びそれらの塩;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、モノブチルヒドロキルフマレート、モノブチルヒドロキシイタコネート等の水酸基含有モノマー;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、ラウリル(メタ)アクリレート等のアルキル(メタ)アクリレート;(メタ)アクリルアミド、ジアセトンアクリルアミド、N-メチロールアクリルアミド、(メタ)アクリロニトリル等の窒素含有モノマー;スチレン、α-メチルスチレン、ジビニルベンゼン、ビニルトルエン等のスチレン系化合物、プロピオン酸ビニル、酢酸ビニル等のビニルエステル;γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン等の珪素含有モノマー;燐含有ビニル系モノマー;塩化ビニル、塩化ビリデン等のハロゲン化ビニル;ブタジエン等の共役ジエンが挙げられる。
ウレタン樹脂とは、ウレタン結合を分子内に有する高分子化合物のことであり、典型的には、ポリオールとポリイソシアネートとの反応により合成される。ウレタン樹脂を合成する際に鎖延長剤を使用してもよい。
ウレタン樹脂を得るために使用されるポリオールとしては、ポリカーボネートポリオール、ポリエーテルポリオール、ポリエステルポリオール、ポリオレフィンポリオール、アクリルポリオール等が挙げられる。これらの化合物は1種を単独で用いてもよく、2種以上を併用してもよい。
ポリカーボネートポリオールは、多価アルコールとカーボネート化合物との反応(脱アルコール反応)により得られる。多価アルコールとしては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、3,3-ジメチロールヘプタン等が挙げられる。カーボネート化合物としては、ジメチルカーボネート、ジエチルカーボネート、ジフェニルカーボネート、エチレンカーボネート等が挙げられる。
ポリカーボネートポリオールの具体例としては、ポリ(1,6-ヘキシレン)カーボネート、ポリ(3-メチル-1,5-ペンチレン)カーボネート等が挙げられる。
ポリエーテルポリオールとしては、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンプロピレングリコール、ポリテトラメチレンエーテルグリコール、ポリヘキサメチレンエーテルグリコール等が挙げられる。
ポリエステルポリオールとしては、多価カルボン酸又はその酸無水物と、多価アルコールとの反応により得られるもの、ポリカプロラクトン等のラクトン化合物の誘導体ユニットを有するもの等が挙げられる。
多価カルボン酸としては、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、フマル酸、マレイン酸、テレフタル酸、イソフタル酸等が挙げられる。
多価アルコールとしては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、1,8-オクタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2,5-ジメチル-2,5-ヘキサンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、2-ブチル-2-ヘキシル-1,3-プロパンジオール、シクロヘキサンジオール、ビスヒドロキシメチルシクロヘキサン、ジメタノールベンゼン、ビスヒドロキシエトキシベンゼン、アルキルジアルカノールアミン、ラクトンジオール等が挙げられる。
ポリオールとしては、密着性能を考慮すると、ポリエステルポリオール及びポリカーボネートポリオールが好ましく、ポリエステルポリオールが特に好ましい。
ウレタン樹脂を得るために使用されるポリイソシアネートとしては、トリレンジイソシアネート、キシリレンジイソシアネート、メチレンジフェニルジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート、トリジンジイソシアネート等の芳香族ジイソシアネート;α,α,α’,α’-テトラメチルキシリレンジイソシアネート等の芳香環を有する脂肪族ジイソシアネート;メチレンジイソシアネート、プロピレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート;シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソプロピリデンジシクロヘキシルジイソシアネート等の脂環族ジイソシアネート等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
鎖延長剤としては、イソシアネート基と反応する活性基を2個以上有するものであれば特に制限はなく、一般的には、水酸基又はアミノ基を2個有する鎖延長剤を主に用いることができる。
水酸基を2個有する鎖延長剤としては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール等の脂肪族グリコール、キシリレングリコール、ビスヒドロキシエトキシベンゼン等の芳香族グリコール、ネオペンチルグリコールヒドロキシピバレート等のエステルグリコール等のグリコール化合物が挙げられる。
アミノ基を2個有する鎖延長剤としては、例えば、トリレンジアミン、キシリレンジアミン、ジフェニルメタンジアミン等の芳香族ジアミン、エチレンジアミン、プロピレンジアミン、ヘキサンジアミン、2,2-ジメチル-1,3-プロパンジアミン、2-メチル-1,5-ペンタンジアミン、トリメチルヘキサンジアミン、2-ブチル-2-エチル-1,5-ペンタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン等の脂肪族ジアミン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、ジシクロヘキシルメタンジアミン、イソプロビリチンシクロヘキシル-4,4’-ジアミン、1,4-ジアミノシクロヘキサン、1,3-ビスアミノメチルシクロヘキサン等の脂環族ジアミン等が挙げられる。
ウレタン樹脂は、典型的には、分散液又は溶液の形態で使用される。分散液又は溶液の媒体としては、溶剤であってもよいが、水が好ましい。
ウレタン樹脂の水分散液又は水溶液としては、乳化剤を用いた強制乳化型、ウレタン樹脂の構造中に親水性基を導入した自己乳化型又は水溶型等がある。特に、ウレタン樹脂の構造中にイオン基を導入しアイオノマー化した自己乳化型が、液の貯蔵安定性や、得られるプライマー層の耐水性、透明性に優れており好ましい。
ウレタン樹脂の構造中に導入されるイオン基としては、カルボキシル基、スルホン酸基、リン酸基、ホスホン酸基、第4級アンモニウム塩基等、種々のものが挙げられるが、カルボキシル基が好ましい。
カルボキシル基はアンモニア、アミン、アルカリ金属類、無機アルカリ類等の中和剤で中和した塩の形にするのが好ましい。特に好ましい中和剤は、アンモニア、トリメチルアミン、トリエチルアミンである。中和剤で中和されたカルボキシル基を有するウレタン樹脂は、塗布後の乾燥工程において中和剤が外れたカルボキシル基を、架橋剤による架橋反応点として用いることが出来る。これにより、コーティング前の液の状態での安定性に優れる上、得られるプライマー層の耐久性、耐溶剤性、耐水性、耐ブロッキング性等をさらに改善することが可能となる。
ウレタン樹脂にカルボキシル基を導入する方法としては、重合反応の各段階の中で種々の方法が取り得る。例えば、プレポリマー合成時に、カルボキシル基を持つ樹脂を共重合成分として用いる方法や、ポリオールやポリイソシアネート、鎖延長剤等の一成分としてカルボキシル基を持つ成分を用いる方法がある。特に、カルボキシル基含有ジオールを用い、この成分の仕込み量によって所望の量のカルボキシル基を導入する方法が好ましい。例えば、ウレタン樹脂の合成に用いるポリオールに対してカルボキシル基含有ジオールを共重合させることができる。
カルボキシル基含有ジオールとしては、ジメチロールプロピオン酸、ジメチロールブタン酸、ビス-(2-ヒドロキシエチル)プロピオン酸、ビス-(2-ヒドロキシエチル)ブタン酸、それらのカルボキシル基が中和剤で中和された塩等が挙げられる。
プライマー層は、プライマー層をより強固にして密着性等の性能を向上させるため、架橋剤由来の化合物を含有することが好ましい。
架橋剤としては、公知の材料を使用することができ、例えば、メラミン化合物、オキサゾリン化合物、イソシアネート系化合物、エポキシ化合物、カルボジイミド系化合物、シランカップリング化合物、ヒドラジド化合物、アジリジン化合物等が挙げられる。それらの中でも、メラミン化合物、イソシアネート系化合物、エポキシ化合物、オキサゾリン化合物、カルボジイミド系化合物、シランカップリング化合物が好ましく、密着性及び耐久性をさらに向上させる観点からは、メラミン化合物、オキサゾリン化合物、イソシアネート系化合物やエポキシ化合物がより好ましく、オキサゾリン化合物やイソシアネート系化合物が特に好ましい。これらの架橋剤は1種を単独で用いてもよく、2種以上を併用してもよい。2種以上を併用することでさらに密着性や耐久性が向上して良好となる場合もある。
メラミン化合物とは、化合物中にメラミン骨格を有する化合物のことであり、例えば、アルキロール化メラミン誘導体、アルキロール化メラミン誘導体にアルコールを反応させて部分的又は完全にエーテル化した化合物、及びこれらの混合物が挙げられる。エーテル化に用いるアルコールとしては、メチルアルコール、エチルアルコール、イソプロピルアルコール、n-ブタノール、イソブタノール等が挙げられる。メラミン化合物としては、単量体、又は2量体以上の多量体のいずれであってもよく、又はこれらの混合物を用いてもよい。さらに、メラミンの一部に尿素等を共縮合したものも使用できるし、メラミン化合物の反応性を上げるために触媒を使用することも可能である。
メラミン化合物としては、各種化合物との反応性を考慮すると、水酸基を有するものが好ましい。
イソシアネート系化合物とは、イソシアネート、又はブロックイソシアネートに代表されるイソシアネート誘導体構造を有する化合物のことである。
イソシアネートとしては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、メチレンジフェニルジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート等の芳香族イソシアネート;α,α,α’,α’-テトラメチルキシリレンジイソシアネート等の芳香環を有する脂肪族イソシアネート;メチレンジイソシアネート、プロピレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族イソシアネート;シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、イソプロピリデンジシクロヘキシルジイソシアネート等の脂環族イソシアネート等が挙げられる。また、これらイソシアネートのビュレット化物、イソシアヌレート化物、ウレトジオン化物、カルボジイミド変性体等の重合体や誘導体も挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。上記イソシアネートの中でも、紫外線による黄変を避ける観点から、芳香族イソシアネートよりも脂肪族イソシアネート又は脂環族イソシアネートがより好ましい。
ブロックイソシアネートとしては、上記イソシアネート系化合物のイソシアネート基がブロック剤でブロックされたものが挙げられる。ブロック剤としては、例えば重亜硫酸塩類、フェノール、クレゾール、エチルフェノール等のフェノール系化合物、プロピレングリコールモノメチルエーテル、エチレングリコール、ベンジルアルコール、メタノール、エタノール等のアルコール系化合物、マロン酸ジメチル、マロン酸ジエチル、イソブタノイル酢酸メチル、アセト酢酸メチル、アセト酢酸エチル、アセチルアセトン等の活性メチレン系化合物、ブチルメルカプタン、ドデシルメルカプタン等のメルカプタン系化合物、ε-カプロラクタム、δ-バレロラクタム等のラクタム系化合物、ジフェニルアニリン、アニリン、エチレンイミン等のアミン系化合物、アセトアニリド、酢酸アミド等の酸アミド化合物、ホルムアルデヒド、アセトアルドオキシム、アセトンオキシム、メチルエチルケトンオキシム、シクロヘキサノンオキシム等のオキシム系化合物が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
ブロックイソシアネートとしては、プライマー層が破壊されにくいという観点から、活性メチレン系化合物によりブロックされたイソシアネートが好ましい。
イソシアネート系化合物は単体で用いてもよいし、各種ポリマーとの混合物や結合物として用いてもよい。イソシアネート系化合物の分散性や架橋性を向上させるという意味において、ポリエステル樹脂やウレタン樹脂との混合物や結合物を用いることが好ましい。
オキサゾリン化合物とは、分子内にオキサゾリン基を有する化合物である。
オキサゾリン化合物としては、オキサゾリン基を含有する重合体が好ましい。オキサゾリン基を含有する重合体は、付加重合性オキサゾリン基含有モノマー単独又は他のモノマーとの重合によって得られる。
付加重合性オキサゾリン基含有モノマーとしては、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。これらの中でも2-イソプロペニル-2-オキサゾリンが、工業的にも入手しやすく好適である。
他のモノマーとしては、付加重合性オキサゾリン基含有モノマーと共重合可能なモノマーであれば特に制限はなく、例えばアルキル(メタ)アクリレート(アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基)等の(メタ)アクリレート;アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマール酸、クロトン酸、スチレンスルホン酸及びその塩(ナトリウム塩、カリウム塩、アンモニウム塩、第三級アミン塩等)等の不飽和カルボン酸;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル;(メタ)アクリルアミド、N-アルキル(メタ)アクリルアミド、N,N-ジアルキル(メタ)アクリルアミド、(アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基等)等の不飽和アミド;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル;エチレン、プロピレン等のα-オレフィン;塩化ビニル、塩化ビニリデン、フッ化ビニル等の含ハロゲンα,β-不飽和モノマー;スチレン、α-メチルスチレン、等のα,β-不飽和芳香族モノマー等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
オキサゾリン化合物1g当たりのオキサゾリン基量は、好ましくは0.5~10mmol/g、より好ましくは1~9mmol/g、さらに好ましくは3~8mmol/g、特に好ましくは4~6mmol/gの範囲である。オキサゾリン基量が上記範囲内であれば、塗膜の耐久性が向上し、密着性の調整がしやすくなる。
エポキシ化合物とは、分子内にエポキシ基を有する化合物である。
エポキシ化合物としては、例えば、エピクロロヒドリンと水酸基又はアミノ基を有する化合物(エチレングリコール、ポリエチレングリコール、グリセリン、ポリグリセリン、ビスフェノールA等)との縮合物が挙げられ、ポリエポキシ化合物、ジエポキシ化合物、モノエポキシ化合物、グリシジルアミン化合物等がある。ポリエポキシ化合物としては、例えば、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、トリグリシジルトリス(2-ヒドロキシエチル)イソシアネート、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテルが挙げられる。ジエポキシ化合物としては、例えば、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、レゾルシンジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテルが挙げられる。モノエポキシ化合物としては、例えば、アリルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテルが挙げられる。グリシジルアミン化合物としては、例えば、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノ)シクロヘキサンが挙げられる。
カルボジイミド系化合物とは、分子内にカルボジイミド構造又はカルボジイミド誘導体構造を1つ以上有する化合物である。
カルボジイミド系化合物としては、より良好なプライマー層の強度等のために、分子内にカルボジイミド構造又はカルボジイミド誘導体構造を2つ以上有するポリカルボジイミド系化合物がより好ましい。
カルボジイミド系化合物は、公知の技術で合成することができ、一般的には、ジイソシアネートの縮合反応が用いられる。ジイソシアネートとしては、特に限定されるものではなく、芳香族系、脂肪族系いずれも使用することができ、具体的には、トリレンジイソシアネート、キシレンジイソシアネート、ジフェニルメタンジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルジイソシアネート、ジシクロヘキシルメタンジイソシアネート等が挙げられる。
ポリカルボジイミド系化合物の水溶性や水分散性を向上させるために、本発明の効果を消失させない範囲において、界面活性剤を添加してもよいし、ポリアルキレンオキシド、ジアルキルアミノアルコールの四級アンモニウム塩、ヒドロキシアルキルスルホン酸塩等の親水性モノマーを添加してもよい。
シランカップリング化合物とは、1つの分子中に有機官能基とアルコキシ基等の加水分解基を有する有機ケイ素化合物である。
シランカップリング化合物としては、例えば、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有化合物、ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニル基含有化合物、p-スチリルトリメトキシシラン、p-スチリルトリエトキシシラン等のスチリル基含有化合物、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン等の(メタ)アクリロイル基含有化合物、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン等のアミノ基含有化合物、トリス(トリメトキシシリルプロピル)イソシアヌレート、トリス(トリエトキシシリルプロピル)イソシアヌレート等のイソシアヌレート基含有化合物、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジエトキシシラン等のメルカプト基含有化合物等が挙げられる。
シランカップリング化合物としては、上記化合物の中でも、プライマー層の強度の観点から、エポキシ基含有シランカップリング化合物、ビニル基や(メタ)アクリル基等の二重結合含有シランカップリング化合物、アミノ基含有シランカップリング化合物がより好ましい。
なお、これら架橋剤は、乾燥過程や製膜過程において反応し、プライマー層の性能を向上させる。形成されるプライマー層中には、架橋剤由来の化合物として、架橋剤の未反応物、反応後の化合物、又はそれらの混合物が存在しているものと推測できる。
プライマー層に含有させる帯電防止剤としては、特に制限はなく、公知の帯電防止剤を使用することが可能であり、例えば、アンモニウム基を有する化合物、ポリエーテル化合物、スルホン酸基を有する化合物、ベタイン化合物、導電性有機高分子等が挙げられる。
帯電防止剤としては、耐熱性、耐湿熱性が良好であることから、高分子タイプの帯電防止剤が好ましい。
アンモニウム基を有する化合物とは、分子内にアンモニウム基を有する化合物であり、脂肪族アミン、脂環族アミン、芳香族アミンのアンモニウム化物等が挙げられる。
アンモニウム基を有する化合物は、高分子タイプのアンモニウム基を有する化合物であることが好ましい。
高分子タイプのアンモニウム基を有する化合物において、アンモニウム基は、カウンターイオンとしてではなく、高分子の主鎖や側鎖中に組み込まれていることが好ましい。このような化合物としては、例えば、アンモニウム基又はアミン等のアンモニウム基の前駆体基を有する付加重合性のモノマーを重合し、必要に応じて、アンモニウム基の前駆体基をアンモニウム基に変換し、アンモニウム基を有する高分子化合物としたものが挙げられる。アンモニウム基又はアンモニウム基の前駆体基を含有する付加重合性のモノマーは、1種を単独で重合してもよいし、2種以上を共重合してもよいし、他のモノマーと共重合してもよい。
アンモニウム基を有する化合物として、帯電防止性、耐熱安定性が優れているという点で、ピロリジニウム環を有する化合物も好ましい。
ピロリジニウム環を有する化合物の窒素原子に結合している2つの置換基は、それぞれ独立してアルキル基、フェニル基等であり、これらのアルキル基、フェニル基が以下に示す基で置換されていてもよい。置換可能な基は、例えば、ヒドロキシル基、アミド基、エステル基、アルコキシ基、フェノキシ基、ナフトキシ基、チオアルコキシ、チオフェノキシ基、シクロアルキル基、トリアルキルアンモニウムアルキル基、シアノ基、ハロゲンである。また、窒素原子に結合している2つの置換基は化学的に結合していてもよく、2つの置換基が化学的に結合した基としては、例えば、-(CH-(m=2~5の整数)、-CH(CH)CH(CH)-、-CH=CH-CH=CH-、-CH=CH-CH=N-、-CH=CH-N=C-、-CHOCH-、-(CHO(CH-等が挙げられる。
ピロリジニウム環を有する化合物は、ピロリジニウム環を有するポリマーであることが好ましい。
ピロリジニウム環を有するポリマーは、例えば、ジアリルアミン誘導体を、ラジカル重合触媒を用いて環化重合させることにより得られる。ジアリルアミン誘導体と重合性のある炭素-炭素不飽和結合を有する化合物を共重合成分としてもよい。重合は、極性溶媒(水、メタノール、エタノール、イソプロパノール、ホルムアミド、ジメチルホルムアミド、ジオキサン、アセトニトリル等)中で過酸化水素、ベンゾイルパーオキサイド、第3級ブチルパーオキサイド等の重合開始剤を用い、公知の方法で実施できるが、これに限定するものではない。
上述したアンモニウム基を有する化合物のアンモニウム基の対イオン(カウンターイオン)となるアニオンとしては例えば、ハロゲンイオン、スルホナート、ホスファート、ニトラート、アルキルスルホナート、カルボキシラート等のイオンが挙げられる。
アンモニウム基を有する化合物の数平均分子量は、好ましくは1000~500000、より好ましくは2000~350000、さらに好ましくは5000~200000である。数平均分子量が1000以上であれば、塗膜の強度、耐熱安定性がより優れる。数平均分子量が500000以下であれば、プライマー層を形成するための塗布液の粘度が低く、取扱い性や塗布性が良好である。
ポリエーテル化合物としては、例えば、ポリエチレンオキシド、ポリエーテルエステルアミド、ポリエチレングリコールを側鎖に有するアクリル樹脂等が挙げられる。
スルホン酸基を有する化合物において、スルホン酸基は、中和剤で中和されて塩の形態となっていてもよい。スルホン酸基を有する化合物としては、ポリスチレンスルホン酸及びその塩等、分子内に複数のスルホン酸基を有する化合物が好ましい。
導電性有機高分子としては、公知の材料を使用することができるが、例えば、ポリチオフェン系、ポリアニリン系、ポリピロール系、ポリアセチレン系、ポリフェニレンサルファイド系等が挙げられる。これらの中でもポリチオフェン系(ポリチオフェン又はポリチオフェン誘導体)が、高い透明性と高い導電性の両立や、着色し難さ、コーティングによる性能の発現が出しやすいため好ましい。ポリチオフェン系の中でもポリ(3,4-エチレンジオキシチオフェン)をポリスチレンスルホン酸と複合させた化合物が、導電性能の観点から特に好ましい。
導電性有機高分子は、高い導電性を示し、湿度依存性が少なく、かつ様々な用途展開が期待できるという点において好ましい。
プライマー層は、ブロッキングや滑り性改良のために粒子を含有していてもよい。
プライマー層は、本発明の主旨を損なわない範囲において、必要に応じて、消泡剤、塗布性改良剤、増粘剤、有機系潤滑剤、紫外線吸収剤、酸化防止剤、発泡剤、染料、顔料等の添加剤を含有していてもよい。
プライマー層100質量%中の樹脂の割合は、例えば5質量%以上、好ましくは10~99質量%、より好ましくは20~95質量%、さらに好ましくは30~90質量%の範囲である。樹脂の割合が上記範囲内であれば、密着性能、プライマー層の外観がより優れる。
プライマー層100質量%中の架橋剤由来の化合物の割合は、例えば80質量%以下、好ましくは0.5~65質量%、より好ましくは3~50質量%、さらに好ましくは5~40質量%の範囲である。架橋剤由来の化合物の割合が上記範囲内であれば、密着性能、プライマー層の強度がより優れる。
プライマー層が帯電防止剤を含有する帯電防止層である場合、プライマー層100質量%中の帯電防止剤の割合は、帯電防止剤の種類にも依存するので一概ではないが、例えば80質量%以下、好ましくは0.5~70質量%、より好ましくは1~50質量%の範囲である。帯電防止剤の割合が上記範囲内であれば、プライマー層に十分な帯電防止機能を付与しやすく、プライマー層上に硬化層を形成した後でも帯電防止性能を発現しやすくなる。
プライマー層の厚みは、プライマー層に使用する材料や発現させる性能にも依存するため一概にはいえないが、好ましくは0.001~10μm、より好ましくは0.01~4μm、さらに好ましくは0.02~1μmの範囲である。
プライマー層は、公知の方法で形成できる。
<表面機能層>
表面機能層は、硬化層の上に各種の機能を付与するために設けられる。
表面機能層としては、防汚層、帯電防止層、屈折率調整層(反射防止層、低反射層等)、赤外線吸収層、紫外線吸収層、色補正層等が挙げられる。
防汚層は、硬化層に撥水性や撥油性を付与することで防汚性能を向上させるために設けられる。帯電防止層は、積層体の最表面、特に基材層に対して硬化層が存在する側の最表面に対する、剥離帯電や摩擦帯電による塵埃等の付着を軽減するために設けられる。屈折率調整層は、例えば、積層体の全光線透過率を向上させるために設けられる。
防汚層は、防汚成分を含有する。
防汚成分としては、シリコーン化合物、フッ素化合物、長鎖アルキル基含有化合物等、公知のものを用いることができる。これらのうち、より強力な防汚性能が発現するという観点からは、シリコーン化合物やフッ素化合物が好ましく、防汚層が接触する相手を汚染しにくいという観点からは、フッ素化合物や長鎖アルキル基含有化合物が好ましい。
シリコーン化合物は、分子内にシリコーン構造を有する化合物であり、例えば、アルキルシリコーン(ジメチルシリコーン、ジエチルシリコーン等)、(フェニル基を有するシリコーン(フェニルシリコーン、メチルフェニルシリコーン等)が挙げられる。
シリコーン化合物は、各種の官能基を有していてもよい。官能基としては、例えば、エーテル基、水酸基、アミノ基、エポキシ基、カルボン酸基、フッ素等のハロゲン基、パーフルオロアルキル基、各種アルキル基や各種芳香族基等の炭化水素基等が挙げられる。他の官能基として、ビニル基を有するシリコーンや水素原子が直接ケイ素原子に結合したハイドロゲンシリコーンも例示でき、両者を併用して、付加型(ビニル基とハイドロゲンシランの付加反応による型)のシリコーンとして使用することも可能である。またアクリロイル基等の二重結合を導入し、当該二重結合部で反応させることも可能である。
シリコーン化合物として、アクリルグラフトシリコーン、シリコーングラフトアクリル、アミノ変性シリコーン、パーフルオロアルキル変性シリコーン等の変性シリコーンを使用することも可能である。耐熱性、汚染性を考慮すると、硬化型シリコーン樹脂を使用することが好ましい。硬化型の種類としては、縮合型、付加型、活性エネルギー線硬化型等いずれの硬化反応タイプでも用いることができる。
フッ素化合物は、化合物中にフッ素原子を含有している化合物である。フッ素化合物としては、有機系フッ素化合物が好適に用いられ、例えば、パーフルオロアルキル基含有化合物、フッ素原子を含有するオレフィン化合物の重合体、フルオロベンゼン等の芳香族フッ素化合物等が挙げられる。離型性の観点から、パーフルオロアルキル基含有化合物が好ましい。フッ素化合物には後述するような長鎖アルキル基を含有している化合物も使用することができる。
パーフルオロアルキル基含有化合物としては、例えば、パーフルオロアルキル(メタ)アクリレート、パーフルオロアルキルメチル(メタ)アクリレート、2-パーフルオロアルキルエチル(メタ)アクリレート、3-パーフルオロアルキルプロピル(メタ)アクリレート、3-パーフルオロアルキル-1-メチルプロピル(メタ)アクリレート、3-パーフルオロアルキル-2-プロペニル(メタ)アクリレート等のパーフルオロアルキル基含有(メタ)アクリレートやその重合物、パーフルオロアルキルメチルビニルエーテル、2-パーフルオロアルキルエチルビニルエーテル、3-パーフルオロプロピルビニルエーテル、3-パーフルオロアルキル-1-メチルプロピルビニルエーテル、3-パーフルオロアルキル-2-プロペニルビニルエーテル等のパーフルオロアルキル基含有ビニルエーテルやその重合物等が挙げられる。耐熱性、汚染性を考慮すると、重合物であることが好ましい。重合物は単一化合物の重合物でも複数化合物の重合物でもよい。さらに後述するような長鎖アルキル化合物を含有している化合物との重合物であってもよい。
防汚性の観点からパーフルオロアルキル基の炭素数は3~11であることが好ましい。
長鎖アルキル基含有化合物とは、炭素数が通常6以上、好ましくは8以上、さらに好ましくは12以上の直鎖又は分岐のアルキル基(長鎖アルキル基)を有する化合物のことである。長鎖アルキル基としては、例えば、ヘキシル基、オクチル基、デシル基、ラウリル基、オクタデシル基、ベヘニル基等が挙げられる。
長鎖アルキル基含有化合物としては、例えば、各種の長鎖アルキル基含有高分子化合物、長鎖アルキル基含有アミン化合物、長鎖アルキル基含有エーテル化合物、長鎖アルキル基含有4級アンモニウム塩等が挙げられる。
長鎖アルキル基含有化合物は、耐熱性、汚染性を考慮すると、高分子化合物であることが好ましい。また、効果的に防汚性を得られるという観点から、長鎖アルキル基を側鎖に持つ高分子化合物であることがより好ましい。
長鎖アルキル基を側鎖に持つ高分子化合物は、例えば、反応性基を有する高分子化合物と、当該反応性基と反応可能な長鎖アルキル基含有化合物とを反応させて得ることができる。
上記反応性基としては、例えば、水酸基、アミノ基、カルボキシル基、酸無水物等が挙げられる。これらの反応性基を有する高分子化合物としては、例えば、ポリビニルアルコール、ポリエチレンイミン、ポリエチレンアミン、反応性基含有ポリエステル樹脂、反応性基含有ポリ(メタ)アクリル樹脂等が挙げられる。これらの中でも防汚性や取り扱い易さを考慮するとポリビニルアルコールであることが好ましい。
上記の反応性基と反応可能な長鎖アルキル基含有化合物としては、例えば、ヘキシルイソシアネート、オクチルイソシアネート、デシルイソシアネート、ラウリルイソシアネート、オクタデシルイソシアネート、ベヘニルイソシアネート等の長鎖アルキル基含有イソシアネート、ヘキシルクロライド、オクチルクロライド、デシルクロライド、ラウリルクロライド、オクタデシルクロライド、ベヘニルクロライド等の長鎖アルキル基含有酸クロライド、長鎖アルキル基含有アミン、長鎖アルキル基含有アルコール等が挙げられる。これらの中でも離型性や取り扱い易さを考慮すると、長鎖アルキル基含有イソシアネートが好ましく、オクタデシルイソシアネートが特に好ましい。
長鎖アルキル基を側鎖に持つ高分子化合物は、長鎖アルキル(メタ)アクリレートの重合物、又は長鎖アルキル(メタ)アクリレートと他のビニル基含有モノマーとの共重合物として得ることもできる。長鎖アルキル(メタ)アクリレートとしては、例えば、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、オクタデシル(メタ)アクリレート、ベヘニル(メタ)アクリレート等が挙げられる。
防汚層は、必要に応じて、防汚成分のほか、樹脂、架橋剤由来の化合物、帯電防止剤、消泡剤、塗布性改良剤、増粘剤、紫外線吸収剤、酸化防止剤、発泡剤、染料、顔料等をさらに含んでいてもよい。樹脂、架橋剤由来の化合物はそれぞれ前記したとおりである。防汚層は、層の強度向上、耐久性の向上の観点から、架橋構造を有することが好ましい。架橋構造を有する防汚層としては、例えば、アクリロイル基等のラジカル重合性基を複数有する化合物又は架橋剤と、防汚成分とを含有する組成物の硬化物の層が挙げられる。
表面機能層100質量%中の防汚成分の割合は、使用する防汚成分にも依存するので一概にはいえないが、防汚成分がシリコーン化合物やフッ素化合物である場合は、通常0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.2質量%以上であり、上限は100質量%であってもかまわない。防汚成分が長鎖アルキル基含有化合物である場合は、通常0.1質量%以上、好ましくは1質量%以上、さらに好ましくは3質量%以上であり、上限は100質量%であってもかまわない。防汚成分の割合が上記範囲内であれば、防汚性能がより優れる。
帯電防止層は、帯電防止剤を含有する。帯電防止剤は前記したとおりである。
帯電防止層は、必要に応じて、帯電防止剤のほか、樹脂、架橋剤由来の化合物、消泡剤、塗布性改良剤、増粘剤、防汚剤、紫外線吸収剤、酸化防止剤、発泡剤、染料、顔料等をさらに含んでいてもよい。樹脂、架橋剤由来の化合物はそれぞれ前記したとおりである。
帯電防止層100質量%中の帯電防止剤の割合は、帯電防止剤の種類にも依存するので一概ではないが、例えば0.1~100質量%である。
屈折率調整層としては、例えば、高屈折率層、低屈折率層及びそれらの積層物が挙げられる。
高屈折率層を構成する材料としては、公知の高屈折率材料を使用することができ、例えば、ベンゼン構造、ビスフェノールA構造、メラミン構造、フルオレン構造等の芳香族構造含有化合物、芳香族構造含有化合物の中でも高屈折率化合物と考えられるナフタレン、アントラセン、フェナントレン、ナフタセン、ベンゾ[a]アントラセン、ベンゾ[a]フェナントレン、ピレン、ベンゾ[c]フェナントレン、ペリレン構造等の縮合多環式芳香族化合物、酸化ジルコニウム、酸化チタン、酸化亜鉛、酸化スズ、酸化アンチモン、酸化イットリウム、酸化インジウム、酸化セリウム、ATO(アンチモン・スズ酸化物)、ITO(インジウム・スズ酸化物)等の金属酸化物、チタンキレート、ジルコニウムキレート等の金属キレート化合物等の金属含有化合物、硫黄元素を含有する化合物、ハロゲン元素を含有する化合物等が挙げられる。
金属酸化物は、使用形態によっては密着性が低下する懸念があるため、粒子の状態で使用することが好ましく、また、その平均粒径は塗布外観等の観点から、好ましくは100nm以下、より好ましくは50nm以下、さらに好ましくは25nm以下の範囲である。
低屈折率層を構成する材料としては、公知の低屈折率材料を使用することができ、例えば、アクリル樹脂、ウレタン樹脂、フッ素原子が樹脂の中に組み込まれた化合物(例えば、フッ素樹脂、主種骨格にフッ素樹脂を含有する化合物、側鎖にパーフルオロアルキル基を含有する化合物)等の樹脂;中空シリカ粒子、フッ化マグネシウム、フッ化カルシウム等フッ素原子含有無機化合物、それらの中空粒子やナノポーラス粒子等の無機材料が挙げられる。
表面機能層の厚みは、硬化層の表面の凹凸の高さよりも小さいことが好ましい。表面機能層の厚みが当該凹凸の高さよりも小さければ、表面機能層を設けても、当該凹凸によるアンチブロッキング性が低減しにくい。
表面機能層の厚みは、硬化層の表面の凹凸の高さによるので一概にはいえないが、好ましくは0.001~1μm、より好ましくは0.005~0.7μm、さらに好ましくは0.01~0.5μm、特に好ましくは0.02~0.2μm、最も好ましくは0.03~0.08μmの範囲である。表面機能層の厚みが上記範囲内であれば、表面機能層による機能の発現と、硬化層の凹凸によるアンチブロッキング性とを両立させやすい。
表面機能層は、公知の方法で形成できる。
<裏面機能層>
裏面機能層は、基材層の硬化層側とは反対側の面に各種の機能を付与するために設けられる。
裏面機能層としては、粘着層、帯電防止層、屈折率調整層、アンチブロッキング層等が挙げられる。
粘着層は、積層体を各種の被着体に接合するために設けられる。帯電防止層は、積層体の最表面、特に基材層の硬化層側とは反対側の最表面に対する、剥離帯電や摩擦帯電による周囲のゴミ等の付着、それによる欠陥等を防止するために設けられる。屈折率調整層は、例えば、積層体の全光線透過率を向上させるために設けられる。アンチブロッキング層は、積層体のブロッキングを軽減するために設けられる。
粘着層を形成する粘着剤としては、公知のものを使用でき、アクリル系、ポリエステル系、ウレタン系、ゴム系等が挙げられる。それらの中でも汎用性を考慮すると、アクリル系が好ましい。
帯電防止層、屈折率調整層はそれぞれ、表面機能層としての帯電防止層、屈折率調整層と同様である。
裏面機能層の厚みは、裏面機能層に使用する材料や発現させる性能にも依存するため一概にはいえないが、例えば0.001~30μmである。裏面機能層が粘着層である場合は、好ましくは0.01~30μm、より好ましくは0.1~20μmである。裏面機能層が帯電防止層である場合は、好ましくは0.001~10μm、より好ましくは0.01~5μmである。
裏面機能層は、公知の方法で形成できる。
以下、本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。
本発明で用いた測定方法及び評価方法は次のとおりである。
(1)重量平均分子量(Mw)の測定
下記条件のGPCで共重合体(A)の重量平均分子量を測定した。
機器:Waters社製「e2695」、
カラム:東ソー株式会社製「TSKgel super H3000+H4000+H6000」、
検出器:示差屈折率検出器(RI検出器/内蔵)、
溶媒:テトラヒドロフラン、
温度:40℃、
流速:0.5mL/分、
注入量:10μL、
濃度:0.2質量%、
校正試料:単分散ポリスチレン、
校正法:ポリスチレン換算。
(2)全光線透過率・ヘイズの測定
PETフィルム上に硬化層を形成した積層体を測定対象とした。全光線透過率及びヘイズは、JIS Z 8722(透過物体の照射及び受光の幾何条件)、JIS K 7361-1(プラスチック-透明材料の全光線透過率の試験方法)及びJIS K 7136(プラスチック-透明材料のヘ-ズの求め方)に準拠し、日本電色工業株式会社製のヘーズメーター「SH7000」を用いて波長550nmにおける値を測定した。
なお、積層体のヘイズは、基材層に対して硬化層が存在する側の最表面から入射して積層体を通過する透過光のうち、前方散乱によって、入射光から0.044rad(2.5°)以上それた透過光の百分率(全光線透過率に対する拡散透過率の比)である。
(3)アンチブロッキング性の評価
PETフィルム上に硬化層を形成した積層体を測定対象とした。2枚の積層体を、硬化層同士が向き合うように重ね合わせ、指圧にて約1kgの荷重を負荷した後、硬化層同士を滑らせたときの易滑性を確認し、下記の基準でアンチブロッキング性の評価を行った。
A:硬化層同士を容易に滑らせることができる。
B:硬化層同士を滑らせることができ、音が鳴ることもない。
C:硬化層同士を滑らせることはできるが、音が鳴る。
D:硬化層同士が密着して、硬化層同士を滑らせることができない。
(4)鉛筆硬度の測定
JIS K 5600-5-4(塗料一般試験法-第5部:塗膜の機械的性質-第4節:引っかき硬度(鉛筆法))に準拠し、硬化層の鉛筆硬度を測定した。
(5)屈曲性の評価
PETフィルム上に硬化層を形成した積層体を測定対象とした。JIS K 5600-5-1(塗料一般試験方法-第5部:塗膜の機械的性質)に準拠し、硬化層の屈曲性をマンドレル試験により確認した。具体的には、硬化層がマンドレル側となるようにマンドレルに積層体を巻き付け、硬化層の状態を目視にて観察した。マンドレルの直径を以下の通りに小さくしながら評価し、硬化層にクラックが生じないマンドレルの最小直径を求めた。最小直径の値が小さいほど、屈曲性に優れる。
マンドレルの直径:32mm、25mm、16mm、12mm、10mm、8mm、6mm、5mm、4mm、3mm、2mm。
(6)表面粗さの測定
表面形状計測システム(株式会社日立ハイテクサイエンス製、「Vert Scan」(登録商標) VS1330)を用い、硬化層の表面の703.12μm×937.42μmの領域について、表面の凹凸形状を光干渉法にて測定し、補完及びベースライン補正を行い、データを読み取った。測定時における対物レンズの倍率は5倍に設定した。
(7)水接触角の測定
硬化層の水接触角(液量2μL)を接触角計(協和界面科学株式会社製、「Drop Master500」)を用いて測定した。
表1に示す組成で共重合体を製造した。表中のモノマーは以下の通りである。
<モノマー(x)>
x-1:4-メタクリロイルオキシベンゾフェノン。
x-2:下記合成例1で得た2-[4-(2-ヒドロキシ-2-メチル-1-オキソプロピル)フェノキシ]エチルメタクリレート。
<モノマー(r)>
r-1:ステアリルメタクリレート。
r-2:2-エチルヘキシルメタクリレート。
<モノマー(h)>
h-1:2-ヒドロキシエチルメタクリレート。
h-2:N,N-ジエチルアミノエチルメタクリレート。
(合成例1:モノマー(x-2)の合成)
メタクリル酸無水物(東京化成工業株式会社製)を減圧蒸留し、純度99.8%以上となる留分を回収してメタクリル酸無水物の蒸留物を得た。減圧蒸留は、圧力30paで室温から90℃まで徐々に昇温する方法で実施した。
これとは別に、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-メチルプロパノン(東京化成工業株式会社製)22.4g(0.1mol)、及びトリエチルアミン(東京化成工業株式会社製)30.4g(0.3mol)を、塩化メチレン東京化成工業株式会社製)500mLに溶解した。ここに上記メタクリル酸無水物の蒸留物23.1g(0.15mol)を室温で滴下し、12時間撹拌した。
得られた反応液をイオン交換水500mLで3回洗浄した後、有機相を濃縮し、溶媒を留去した。残さをカラムクロマトグラフィー(酢酸エチル/ヘキサン=10/90(体積比))で精製して、目的の化合物21.6gを得た(収率74%)。
H-NMR分析により、得られた化合物が2-[4-(2-ヒドロキシ-2-メチル-1-オキソプロピル)フェノキシ]エチルメタクリレートであることを確認した。
H NMR(300MHz,chloroform‐d):δ8.06(d,J=9.0Hz,2H),6.96(d,J=9.0Hz,2H),6.13(d,J=0.6Hz,1H),5.59(s,1H),4.50(d,J=5.1Hz,2H),4.29(dd,J=5.5,4.1Hz,3H),1.94(dd,J=1.6,1.0Hz,3H),1.61(s,6H)。
(製造例1:共重合体(A-1)の製造)
撹拌機、冷却管及び温度計を備えたフラスコ中に、メチルイソブチルケトン(以下、MIBKという。)73質量部を入れ、次いで、フラスコ内を窒素置換し65℃に昇温して、モノマー(x-1)25質量部、モノマー(x-2)25質量部、モノマー(r-1)10質量部、モノマー(r-2)30質量部、モノマー(h-2)10質量部、重合開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.8質量部、及びMIBK78質量部の混合溶液を2時間かけて滴下した。さらに2時間後、重合率を上げるため、2,2’-アゾビス(2,4-ジメチルバレロニトリル) 0.5質量部とMIBK0.6質量部の混合液を投入し、5時間保持した。その後、反応液を40℃に冷却することで、共重合体のMIBK溶液(A-1)を得た。以下、溶液(A-1)中の固形分を共重合体(A-1)という。
溶液(A-1)の固形分(不揮発分)は40質量%であり、共重合体(A-1)の重量平均分子量(Mw)は19800であり、第1の活性基の含有量は1.77mmol/gであり、水素供与性官能基の量は1.38mmol/gであった。これらの結果と、混合溶液の配合組成を表1に示す。
(製造例2:共重合体(A-2)の製造)
製造例1において、混合溶液の組成をモノマー(x-1)40質量部、モノマー(r-1)10質量部、モノマー(r-2)15質量部、モノマー(h-1)17.5質量部、モノマー(h-2)17.5質量部、重合開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.8質量部、及びMIBK78質量部に変更した以外は製造例1と同様の条件で、共重合体のMIBKを溶液(A-2)得た。以下、溶液(A-2)中の固形分を共重合体(A-2)という。
溶液(A-2)の固形分(不揮発分)は40質量%であった。共重合体(A-2)の重量平均分子量(Mw)は5730であり、第1の活性基の含有量は1.48mmol/gであり、水素供与性官能基の量は2.26mmol/gであった。これらの結果と、混合溶液の配合組成を表1に示す。
Figure 0007147711000001
(実施例1~5、比較例1~3:塗布液(硬化性重合体組成物)の製造)
表2に示す各材料を、不揮発分換算で表2に示す割合(質量部)となるように混合した。その後、プロピレングリコールモノメチルエーテル(以下、PGM)とメチルエチルケトン(以下、MEK)の混合溶剤(PGM:MEK(質量比)が7:3)を固形分濃度が40質量%になるように添加し、均一になるまで撹拌して塗布液(硬化性重合体組成物)を得た。表中の材料は以下の通りである。
A-1:製造例1で得た共重合体(A-1)のMIBK溶液。
A-2:製造例2で得た共重合体(A-2)のMIBK溶液。
B-1:ペンタエリスリトールトリアクリレート(大阪有機化学工業社製、「ビスコート V#300」)。
B-2:カプロラクトン変性ジペンタエリスリトールヘキサアクリレート(日本化薬株式会社製、「カヤラッド DPCA-20」)。
C-1:1-ヒドロキシシクロヘキシルフェニルケトン(IGM Resins社製、「Omnirad 184」)。
D-1:コロイダルシリカ(日産化学株式会社製、「MEK-ST」、メチルエチルケトン分散シリカゾル、平均一次粒子径11nm)。
E-1:レベリング剤(共栄社化学株式会社製、「ポリフローNo.77」)。
得られた塗布液を、厚み50μmのPETフィルム(三菱ケミカル株式会社製、「T602E50」)に、バーコーターNo.8で塗布し、70℃に加熱した熱風乾燥機で60秒間乾燥して溶剤を揮発させ、空気雰囲気中にて高圧水銀灯で積算光量250mJ/cm、照度100mW/cmにて紫外線を照射して、厚みが2.5μmの硬化層(硬化物)を形成した。これにより、PETフィルムからなる基材層上に硬化物からなる層が積層した積層体を得た。
紫外線の照射は、アイグラフィックス高出力UV装置(型式:US5-X1802-X1202)のUVコンベアを用いた。積算光量は、岩崎電気株式会社製の照度計(アイ紫外線積算照度計「UVPF―A1」、「PD-365」)で波長300~390nmの積算光量を測定した際の値である。
得られた積層体について、上記の方法で表2に示す項目を測定又は評価した。結果を表2に示す。
Figure 0007147711000002
表2の結果に示されるように共重合体(A)と多官能化合物(B)と非重合体(C)と粒子(D)とを含む実施例1~5で得られた硬化性重合体組成物の硬化物は、アンチブロッキング性、透明性、硬度、屈曲性に優れていた。
一方、共重合体(A)と粒子(D)を含まない比較例1で得られた硬化性重合体組成物の硬化物は、アンチブロッキング性に劣っていた。
共重合体(A)を含まない比較例2で得られた硬化性重合体組成物の硬化物は、大量の粒子(D)を含有するもアンチブロッキング性は改善できず、ヘイズがやや高くなる結果であった。同様に共重合体(A)を含まない比較例3で得られた硬化性重合体組成物の硬化物は、比較例2よりもさらに大量の粒子(D)を含有させることでアンチブロッキング性を少し改善することができたが、その一方でヘイズがかなり高くなり透明性に劣るものであった。
1…基材層
2…硬化層
2a…粒子(D)
3…プライマー層
4…表面機能層
5…裏面機能層
10…積層体

Claims (9)

  1. 活性エネルギー線の照射によりラジカルを発生する第1の活性基を有するモノマー(x)に基づく単位と、アミノ基を有するモノマー(h)に基づく単位を有する共重合体(A)、1分子に2つ以上のラジカル重合性基を有する多官能化合物(B)、活性エネルギー線の照射によりラジカルを発生する第2の活性基を有する非重合体(C)、及び前記アミノ基と静電相互作用を有する粒子(D)を含み、
    硬化性重合体組成物の不揮発分100質量部に対する有機溶剤の含有量が10質量部以上1900質量部以下となるような、硬化性重合体組成物。
  2. 前記硬化性重合体組成物の不揮発分に対して、前記共重合体(A)の含有量が0.5~50質量%である、請求項1に記載の硬化性重合体組成物。
  3. 前記共重合体(A)1g当たりの前記第1の活性基の含有量が0.1~3.5mmol/gである、請求項1又は2に記載の硬化性重合体組成物。
  4. 前記第1の活性基及び前記第2の活性基が、それぞれ独立して、ベンゾフェノン基、アセトフェノン基、ベンゾイン基、α-ヒドロキシケトン基、α-アミノケトン基、α-ジケトン基、α-ジケトンジアルキルアセタール基、アントラキノン基、チオキサントン基、及びホスフィンオキシド基からなる群から選ばれる1種以上である、請求項1~3のいずれか1項に記載の硬化性重合体組成物。
  5. 前記共重合体(A)/前記非重合体(C)で表される質量比が0.1以上である、請求項1~4のいずれか1項に記載の硬化性重合体組成物。
  6. 前記共重合体(A)/前記粒子(D)で表される質量比が0.1~30である、請求項1~のいずれか1項に記載の硬化性重合体組成物。
  7. 前記共重合体(A)が、炭素数4以上のアルキル基を有するモノマー(r)に基づく単位を有する、請求項1~のいずれか1項に記載の硬化性重合体組成物。
  8. 請求項1~のいずれか1項に記載の硬化性重合体組成物の硬化物。
  9. 基材層と、請求項に記載の硬化物からなる層とを有する積層体。
JP2019142956A 2019-08-02 2019-08-02 硬化性重合体組成物、硬化物、積層体 Active JP7147711B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019142956A JP7147711B2 (ja) 2019-08-02 2019-08-02 硬化性重合体組成物、硬化物、積層体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019142956A JP7147711B2 (ja) 2019-08-02 2019-08-02 硬化性重合体組成物、硬化物、積層体

Publications (2)

Publication Number Publication Date
JP2021024925A JP2021024925A (ja) 2021-02-22
JP7147711B2 true JP7147711B2 (ja) 2022-10-05

Family

ID=74663073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019142956A Active JP7147711B2 (ja) 2019-08-02 2019-08-02 硬化性重合体組成物、硬化物、積層体

Country Status (1)

Country Link
JP (1) JP7147711B2 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209183A (ja) 2009-03-09 2010-09-24 Fujifilm Corp インク組成物及びインクジェット記録方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209183A (ja) 2009-03-09 2010-09-24 Fujifilm Corp インク組成物及びインクジェット記録方法

Also Published As

Publication number Publication date
JP2021024925A (ja) 2021-02-22

Similar Documents

Publication Publication Date Title
JP4661946B2 (ja) 光学用易接着性ポリエステルフィルム及び光学用積層ポリエステルフィルム
JP2006103169A (ja) 液晶ディスプレーカバー用ポリカーボネート樹脂積層体
US20160222178A1 (en) Coated film
WO2011152173A1 (ja) 積層ポリエステルフィルム
JP2007237700A (ja) ポリカーボネート樹脂積層体
JP7156204B2 (ja) 硬化膜、その製造方法及び積層体
CN103889722B (zh) 涂布膜
WO2011152172A1 (ja) 積層ポリエステルフィルム
JP2022172161A (ja) 積層体
JP2022025616A (ja) 硬化膜及び積層体、並びにこれらの製造方法
JP2022025625A (ja) 硬化膜及び積層体、並びにこれらの製造方法
JP2008127413A (ja) ハードコート剤及び反射防止フィルム
JP2024069600A (ja) 硬化膜
JP5493811B2 (ja) 易接着性ポリエステルフィルム
EP2769841A1 (en) Coating film
JP7147711B2 (ja) 硬化性重合体組成物、硬化物、積層体
JP7167877B2 (ja) 硬化物、積層体
JP7099414B2 (ja) 積層体
JP7131504B2 (ja) 硬化性重合体組成物、硬化物、積層体
JP7435343B2 (ja) 硬化膜、積層体及びその製造方法
JP6176270B2 (ja) 離型フィルム
JP2023024507A (ja) 共重合体、硬化性重合体組成物、硬化物、積層体
JP2023145550A (ja) 共重合体、硬化性重合体組成物、硬化物、積層体
JP7480618B2 (ja) 積層体の製造方法
CN104582962A (zh) 涂布膜

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220530

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220530

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220606

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220905

R151 Written notification of patent or utility model registration

Ref document number: 7147711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151