WO2018179926A1 - エンジンのシリンダブロック構造 - Google Patents

エンジンのシリンダブロック構造 Download PDF

Info

Publication number
WO2018179926A1
WO2018179926A1 PCT/JP2018/004866 JP2018004866W WO2018179926A1 WO 2018179926 A1 WO2018179926 A1 WO 2018179926A1 JP 2018004866 W JP2018004866 W JP 2018004866W WO 2018179926 A1 WO2018179926 A1 WO 2018179926A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder block
cylinder
pump
oil
chain
Prior art date
Application number
PCT/JP2018/004866
Other languages
English (en)
French (fr)
Inventor
松浦 弘和
啓輔 山口
絢大 本田
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to US16/491,945 priority Critical patent/US10914206B2/en
Priority to CN201880016768.4A priority patent/CN110431298B/zh
Priority to EP18778060.6A priority patent/EP3578788B1/en
Publication of WO2018179926A1 publication Critical patent/WO2018179926A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/0004Oilsumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/02Arrangements of lubricant conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • F02F1/20Other cylinders characterised by constructional features providing for lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0082Mounting of engine casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • F01M2001/0253Pressure lubrication using lubricating pumps characterised by the pump driving means
    • F01M2001/0269Pressure lubrication using lubricating pumps characterised by the pump driving means driven by the crankshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • F01M2001/0284Pressure lubrication using lubricating pumps mounting of the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/0004Oilsumps
    • F01M2011/0008Oilsumps with means for reducing vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/0004Oilsumps
    • F01M2011/002Oilsumps with means for improving the stiffness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/0004Oilsumps
    • F01M2011/0079Oilsumps with the oil pump integrated or fixed to sump

Definitions

  • the present invention relates to a cylinder block structure including a cylinder block in which a cylinder row is accommodated.
  • Patent Document 1 discloses the oil pump attached to the cylinder block. The oil pump supplies oil to the cylinder block.
  • the oil pump is attached to the cylinder block via a pair of small plates. Although the oil pump contributes slightly to the reduction of engine vibration, it cannot sufficiently suppress the vibration of the engine due to the high combustion peak pressure set to obtain the high combustion efficiency required for the engine.
  • An object of the present invention is to provide a cylinder block structure capable of sufficiently reducing engine vibration.
  • An engine cylinder block structure includes a cylinder block surrounding a cylinder row formed of a plurality of cylinders arranged in a first direction, a first fastening portion fastened to the cylinder block, A reinforcing plate including a second fastening portion fastened to the cylinder block at a position spaced from the first fastening portion in a second direction intersecting the first direction, and an oil pump for supplying oil to the cylinder block .
  • the oil pump is fastened to the cylinder block together with the reinforcing plate.
  • the reinforcing plate is sandwiched between the cylinder block and the oil pump, and has a length of more than half of the cylinder row in the first direction.
  • the above-described cylinder block structure can sufficiently reduce engine vibration.
  • FIG. 5 is a schematic bottom view of an exemplary cylinder block structure with an oil pan removed.
  • FIG. 2 is a schematic plan view of a reinforcing plate having a cylinder block structure shown in FIG. 1. It is the schematic of the chain mechanism of the cylinder block structure shown by FIG. It is a schematic side view of the cylinder block structure shown by FIG.
  • FIG. 1 is a schematic bottom view of an exemplary cylinder block structure 100 with an oil pan removed.
  • a cylinder block structure 100 will be described with reference to FIG.
  • the cylinder block structure 100 includes a cylinder block 200, a reinforcing plate 300, and an oil pump 400.
  • the cylinder block 200 includes a bottom surface 210.
  • FIG. 1 shows an opening 211 formed in the bottom surface 210. A part of the crankshaft 101 is drawn in the opening 211.
  • the crankshaft 101 extends in the first direction.
  • the piston reciprocates during operation of the engine via a plurality of connecting rods attached to the crankshaft 101. Accordingly, the plurality of cylinders are arranged in the first direction to form a cylinder row.
  • the cylinder block 200 surrounds the crankshaft 101 and the cylinder row.
  • a normal oil pan that covers the reinforcing plate 300 (described later) and the oil pump 400 is attached to the bottom surface 210 of the cylinder block 200.
  • FIG. 2 is a schematic plan view of the reinforcing plate 300.
  • the cylinder block structure 100 will be further described with reference to FIGS. 1 and 2.
  • the reinforcing plate 300 has a rectangular shape as a whole.
  • the reinforcing plate 300 includes a first long edge 311, a second long edge 312, a first short edge 313, and a second short edge 314.
  • the first long edge 311, the second long edge 312, the first short edge 313, and the second short edge 314 form an outer contour of the reinforcing plate 300.
  • the first long edge 311 and the second long edge 312 are long in the first direction.
  • the first short edge 313 and the second short edge 314 are long in the second direction perpendicular to the first direction.
  • the second direction is perpendicular to the first direction.
  • the second direction may be another angle that intersects the first direction.
  • the plurality of through holes 321 to 328 are formed in the reinforcing plate 300.
  • the through hole 321 passes through a corner formed by the first long edge 311 and the first short edge 313.
  • the through hole 322 passes through a corner formed by the second long edge 312 and the first short edge 313.
  • the through hole 328 passes through a corner formed by the second long edge 312 and the second short edge 314.
  • the through hole 327 is formed near the end opposite to the end of the second short edge 314 that forms the corner portion where the through hole 328 is formed.
  • the through holes 323 and 325 are formed near the first long edge 311 between the through holes 321 and 327.
  • the through holes 321, 323, 325, and 327 are arranged at intervals along the first long edge 311.
  • the through holes 324 and 326 are formed near the second long edge 312 between the through holes 322 and 328. Therefore, the through holes 322, 324, 326, and 328 are arranged at intervals along the second long edge 312.
  • the row of through holes 322, 324, 326, and 328 is spaced from the row of through holes 321, 323, 325, and 327 in the second direction.
  • the cylinder block structure 100 includes a plurality of bolts 331 to 338.
  • the bolt 331 is inserted into the through hole 321 and screwed into a bolt hole (not shown) formed in the bottom surface 210 of the cylinder block 200.
  • the bolt 332 is inserted into the through hole 322 and screwed into a bolt hole (not shown) formed in the bottom surface 210 of the cylinder block 200.
  • the bolt 333 is inserted into the through hole 323 and screwed into a bolt hole (not shown) formed in the bottom surface 210 of the cylinder block 200.
  • the bolt 334 is inserted into the through hole 324 and screwed into a bolt hole (not shown) formed in the bottom surface 210 of the cylinder block 200.
  • the bolt 335 is inserted into the through hole 325 and screwed into a bolt hole (not shown) formed in the bottom surface 210 of the cylinder block 200.
  • the bolt 336 is inserted into the through hole 326 and screwed into a bolt hole (not shown) formed in the bottom surface 210 of the cylinder block 200.
  • the bolt 337 is inserted into the through hole 327 and screwed into a bolt hole (not shown) formed in the bottom surface 210 of the cylinder block 200.
  • the bolt 338 is inserted into the through hole 328 and screwed into a bolt hole (not shown) formed in the bottom surface 210 of the cylinder block 200. Therefore, the reinforcing plate 300 is fastened to the bottom surface 210 of the cylinder block 200 by the bolts 331 to 338.
  • Oil pump 400 supplies oil to cylinder block 200. Oil is supplied to various hydraulic drive devices (not shown) through a flow path (not shown) formed in the cylinder block 200.
  • the oil pump 400 includes a pump housing 410, a rotating shaft 420, a sprocket 430, and a pump mechanism (not shown).
  • the pump mechanism is accommodated in the pump housing 410. A part of the rotating shaft 420 is inserted into the pump housing 410.
  • the pump mechanism is driven by the rotation of the rotary shaft 420 and discharges oil.
  • the pump mechanism may have a structure that various known pump devices have.
  • the pump mechanism may have a known variable displacement oil pump structure or may have another oil pump structure. Therefore, the principle of this embodiment is not limited to a specific structure of the pump mechanism.
  • Rotating shaft 420 protrudes from pump housing 410.
  • the sprocket 430 is attached to the rotating shaft 420.
  • the second sprocket is exemplified by sprocket 430.
  • the cylinder block structure 100 further includes a chain mechanism (not shown).
  • the crankshaft 101 is rotated by the power output from the cylinder row.
  • the rotation of the crankshaft 101 is transmitted to the sprocket 430.
  • the rotating shaft 420 is rotated to drive the pump mechanism in the pump housing 410.
  • the pump casing 410 is brought into contact with the lower surface of the reinforcing plate 300. Therefore, the reinforcing plate 300 is sandwiched between the pump housing 410 and the bottom surface 210 of the cylinder block 200.
  • the pump housing 410 is penetrated by the bolts 331 to 334 described above. Therefore, the pump housing 410 is fastened to the bottom surface 210 of the cylinder block 200 together with the reinforcing plate 300.
  • the first fastening portion is exemplified by one of the through holes 321 and 323.
  • the second fastening portion is exemplified by one of the through holes 322 and 324.
  • the first fastener is exemplified by one of the bolts 331 and 333.
  • the second fastener is exemplified by one of the bolts 332 and 334.
  • the first fastener and the second fastener may be other parts (for example, caulking pins) that can fasten the pump housing 410 and the reinforcing plate 300 to the bottom surface 210 of the cylinder block 200. Therefore, the principle of the present embodiment is not limited to specific parts used as the first fastener and the second fastener.
  • the length of the reinforcing plate 300 in the first direction is larger than half the length of the bottom surface 210 of the cylinder block 200 in the first direction.
  • the length of the reinforcing plate 300 in the first direction is half the length of the cylinder row formed in the cylinder block 200 (length in the first direction) (for example, 2 in the case of a four-cylinder engine). It means that it is larger than the length of the cylinder row). Therefore, the reinforcing plate 300 can reduce vibration over a wide area of the bottom surface 210 of the cylinder block 200.
  • the crankshaft 101 extends in the first direction between a row of bolts 331, 333, 335, and 337 and a row of bolts 332, 334, 336, and 338. Therefore, the row of the bolts 331, 333, 335, and 337 and the row of the bolts 332, 334, 336, and 338 can suppress the twist of the reinforcing plate 300.
  • the inlet 341 into which oil discharged from the oil pump 400 (see FIG. 1) flows is formed on the lower surface of the reinforcing plate 300.
  • an outflow port 342 connected to a flow path (not shown) formed in the cylinder block 200 is also formed in the reinforcing plate 300.
  • the outlet 342 appears on the upper surface of the reinforcing plate 300.
  • a flow path 343 extending between the inflow port 341 and the outflow port 342 is formed between the upper surface and the lower surface of the reinforcing plate 300. Oil that has flowed into the inflow port 341 from the oil pump 400 is guided to the outflow port 342 through the flow path 343. The oil then flows out from the outlet 342 and is supplied to various hydraulic drive devices (not shown) through the flow path formed in the cylinder block 200.
  • the reinforcing plate 300 not only increases the rigidity of the cylinder block 200 but also forms an oil supply path. Therefore, a pipe member for guiding the oil discharged from the oil pump 400 to the cylinder block 200 is not required. As a result, the cylinder block structure 100 can be light and have a simplified structure.
  • FIG. 3 is a schematic view of the chain mechanism 500 described above. With reference to FIG.1 and FIG.3, the chain mechanism 500 which drives the oil pump 400 is demonstrated.
  • the cylinder block 200 includes a first surface (rear end surface) 221 and a second surface (front end surface) 222.
  • the first surface 221 and the second surface 222 are bent upward from the bottom surface 210. Accordingly, the first surface 221 and the second surface 222 are substantially perpendicular to the first direction.
  • the second surface 222 is the opposite side to the first surface 221.
  • the chain mechanism 500 is formed next to the first surface 221.
  • the crankshaft 101 includes an output end 102 that protrudes from the first surface 221.
  • the power output from the cylinder row rotates the output end 102.
  • the chain mechanism 500 transmits the rotation of the output end 102 to the sprocket 430 of the oil pump 400.
  • the sprocket 103 is attached to the output end 102 of the crankshaft 101.
  • the chain mechanism 500 includes an endless chain 510 that meshes with the sprockets 103 and 430.
  • the rotation of the sprocket 103 is transmitted to the sprocket 430 by the chain 510.
  • the sprocket 430 rotates.
  • the rotation of the sprocket 430 results in the rotation of the rotating shaft 420 as described above.
  • a pump mechanism (not shown) in the pump housing 410 is driven, and oil is discharged from the oil pump 400.
  • the first sprocket is exemplified by sprocket 103.
  • the first chain is illustrated by chain 510.
  • the oil pump 400 is disposed closer to the first surface 221 than the second surface 222. That is, the pump housing 410 of the oil pump 400 is disposed in the cylinder block 200 on the side close to the chain mechanism 500. Therefore, even if the rotation shaft 420 is short, the alignment between the sprockets 430 and 103 in the first direction is appropriate. Therefore, the rotation of the crankshaft 101 is transmitted to the rotation shaft 420 and the pump mechanism in the pump housing 410 through the sprockets 103 and 430 and the chain 510.
  • FIG. 4 is a schematic side view of the cylinder block structure 100.
  • the cylinder block structure 100 will be further described with reference to FIGS. 1, 3 and 4.
  • FIG. 4 shows a transmission housing 104 in addition to the cylinder block structure 100.
  • a transmission mechanism (not shown) is housed in the transmission housing 104.
  • the transmission mechanism changes the gear ratio according to the driver's gear operation. Alternatively, the transmission mechanism changes the gear ratio under the control of a computer mounted on the vehicle.
  • the flange 105 is attached to the output end 102 of the crankshaft 101.
  • the transmission mechanism is connected to the flange 105. That is, the transmission mechanism is coupled to the output end 102 via the flange 105. Therefore, the transmission mechanism can receive the power output as the rotation of the crankshaft 101.
  • the transmission mechanism amplifies power according to the gear ratio described above.
  • the amplified power is transmitted from the transmission mechanism to wheels (not shown).
  • Known transmission mechanism structures mounted on various vehicles may be applied to the transmission mechanism in the transmission housing 104. Therefore, the principle of this embodiment is not limited to a specific structure of the transmission mechanism.
  • the cylinder block structure 100 further includes a cover 600.
  • the cover 600 is disposed between the first surface 221 of the cylinder block 200 and the transmission housing 104.
  • the cover 600 is attached to the first surface 221.
  • Transmission housing 104 is at least partially coupled to cover 600.
  • the cover 600 covers a part of the chain mechanism 500.
  • FIG. 3 shows a plurality of sprockets 106, 107, 108, 109, 111. Similar to the sprocket 103, the sprocket 111 is attached to the output end of the crankshaft 101. The sprocket 106 is used to drive a fuel injection pump (not shown) that injects fuel into the cylinder row. The sprocket 107 is disposed coaxially with the sprocket 106. The sprocket 107 rotates together with the sprocket 106.
  • the sprockets 108 and 109 rotate a camshaft that drives a plurality of valve bodies (that is, an intake valve and an exhaust valve: not shown) that are responsible for intake to the cylinder row (not shown) and exhaust from the cylinder row. Used for.
  • the third sprocket is exemplified by sprocket 111.
  • the plurality of fourth sprockets are exemplified by sprockets 108 and 109.
  • FIG. 3 and 4 show the cylinder head 110 installed on the upper surface of the cylinder block 200.
  • FIG. The plurality of valve bodies described above are mainly accommodated in the cylinder head 110. Therefore, the sprockets 108 and 109 are arranged next to the cylinder head 110. That is, the sprockets 108 and 109 are located above the cylinder block 200.
  • the sprockets 106 and 107 are disposed at a height position between the sprocket 103 and the sprockets 108 and 109.
  • the chain mechanism 500 includes chains 520 and 530.
  • the chain 520 is an endless chain that meshes with the sprockets 111 and 106.
  • the chain 530 is an endless chain that meshes with the sprockets 107, 108, and 109.
  • the rotation of the sprocket 111 is transmitted to the sprocket 106 by the chain 520. Therefore, when the sprocket 111 rotates, the sprocket 106 also rotates. During this time, the sprocket 107 rotates coaxially with the sprocket 106. The rotation of the sprocket 107 is transmitted to the sprockets 108 and 109 by the chain 530.
  • the chain mechanism 500 including the chain 530 and the sprockets 108 and 109 on the cylinder head 100 side is divided from the cover 600 and covered with a cover 700 attached to the end face of the cylinder head 110. That is, the chain mechanism 500 is entirely covered with the covers 600 and 700.
  • the at least one second chain is illustrated by chains 520 and 530.
  • the at least one second chain may be a single endless chain arranged to engage the sprockets 111, 108, 109.
  • the sprockets 103 and 111 described above are attached to the output end 102 of the crankshaft 101. However, the sprockets 103 and 111 may be formed integrally with the output end 102.
  • the rotation shaft of the sprocket 430 attached to the rotation shaft 420 of the oil pump 400 is located below the cylinder block 200.
  • the sprockets 108 and 109 are located above the cylinder block 200.
  • the cover 600 covers a part of the chain mechanism 500, a wide space is formed in the vertical direction between the first surface 221 of the cylinder block 200 and the transmission housing 104. This means that large vibrations are likely to occur between the cylinder block 200 and the transmission housing 104.
  • the oil pump 400 is disposed near the first surface 221. Therefore, the cylinder block structure 100 can have particularly high rigidity near the first surface 221.
  • the reinforcing plate 300 and the oil pump 400 reduce the risk of occurrence of large vibrations between the cylinder block 200 and the transmission housing 104. Can be reduced.
  • the reinforcing plate 300 may not entirely cover the bottom surface 210 of the cylinder block 200. As shown in FIG. 1, the distance from the second surface 222 to the reinforcing plate 300 is longer than the distance from the first surface 221 to the reinforcing plate 300. This contributes to weight reduction of the cylinder block structure 100.
  • the exemplary cylinder block structure described in connection with the various embodiments described above primarily comprises the following features.
  • the cylinder block structure of the engine includes a cylinder block surrounding a cylinder row formed of a plurality of cylinders arranged in a first direction, and a first fastening portion fastened to the cylinder block.
  • a reinforcing plate including a second fastening portion fastened to the cylinder block at a position spaced from the first fastening portion in a second direction intersecting the first direction, and oil for supplying oil to the cylinder block
  • a pump is fastened to the cylinder block together with the reinforcing plate.
  • the reinforcing plate is sandwiched between the cylinder block and the oil pump, and has a length of more than half of the cylinder row in the first direction.
  • the cylinder block surrounds the cylinder row formed by the plurality of cylinders arranged in the first direction, so that vibration generated from the cylinder row is transmitted to the cylinder block. Since the oil pump that supplies oil to the cylinder block is fastened to the cylinder block together with the reinforcing plate sandwiched between the cylinder block and the oil pump, the oil pump and the reinforcing plate can contribute to the reduction of vibration of the cylinder block. it can. Since the reinforcing plate is sandwiched between the cylinder block and the oil pump and has a length that is more than half of the cylinder row in the first direction, it can contribute to reduction of vibration over a wide area of the cylinder block. .
  • the reinforcing plate includes a first fastening portion fastened to the cylinder block, a second fastening portion fastened to the cylinder block at a position spaced from the first fastening portion in a second direction intersecting the first direction, Therefore, torsional deformation hardly occurs in the reinforcing plate. Therefore, the reinforcing plate can function stably as a vibration reducing member.
  • an inlet through which the oil flows in an outlet through which the oil flows out, and a flow path that extends between the inlet and the outlet, and guides the oil from the inlet to the outlet.
  • the reinforcing plate may be formed.
  • the inflow port through which the oil flows in, the outflow port through which the oil flows out, and the flow path that guides the oil from the inflow port to the outflow port are formed in the reinforcing plate.
  • the reinforcing plate can be used to supply oil to the cylinder block.
  • the cylinder block structure is lightweight because no additional parts are required to guide the oil to the cylinder block.
  • the cylinder block may include a bottom surface to which the reinforcing plate is attached.
  • the cylinder row may be located between the first fastening portion and the second fastening portion in a bottom view.
  • the reinforcing plate can function stably as a vibration reducing member.
  • the cylinder block structure may further include a first fastener that penetrates the first fastening portion and a second fastener that penetrates the second fastening portion.
  • the oil pump may include a pump housing that is penetrated by the first fastener and the second fastener.
  • the first fastener and the second fastener may be connected to the cylinder block, and the reinforcing plate and the pump housing may be fastened to the cylinder block.
  • the cylinder block structure may further include a chain mechanism including a first chain that meshes with a first sprocket provided on the output end side of the crankshaft that is rotated by the power output from the cylinder row.
  • the oil pump is provided with a second sprocket that meshes with the first chain, a pump mechanism that is disposed in the pump casing and discharges the oil, and protrudes from the pump casing, and the second sprocket is provided.
  • a rotating shaft The rotating shaft may be rotated by the power transmitted to the second sprocket through the first chain to drive the pump mechanism.
  • the pump housing may be disposed on the cylinder block on the side close to the chain mechanism.
  • the chain mechanism includes the first chain that meshes with the first sprocket provided on the output end side of the crankshaft that is rotated by the power output from the cylinder row. Driven by. Since the oil pump includes the second sprocket that meshes with the first chain, the chain mechanism uses the power output from the cylinder row to rotate the rotating shaft provided with the second sprocket, and the pump mechanism in the pump housing Can be driven. As a result, the oil pump can supply oil to the cylinder block.
  • the chain mechanism is disposed on the output end side of the crankshaft where the first sprocket is provided, the side opposite to the output end side can be used for mounting various accessories.
  • the pump casing Since the pump casing is arranged in the cylinder block on the side close to the chain mechanism, the rotating shaft protruding from the pump casing does not become excessively long. Therefore, the power transmitted to the second sprocket through the first chain is stably transmitted to the pump mechanism in the pump housing through the rotary shaft.
  • the cylinder block structure is disposed between the cylinder block and a transmission housing that is coupled to the output end of the crankshaft and that houses the transmission mechanism that amplifies the power.
  • You may further provide the cover which covers a chain mechanism.
  • the chain mechanism rotates from a third sprocket provided at the output end to a plurality of fourth sprockets that rotate together with a plurality of cams that drive a plurality of valve bodies that perform intake to the cylinder row and exhaust from the cylinder row.
  • at least one second chain for transmitting the power may be included.
  • the cover that covers the chain mechanism is disposed between the cylinder block and the transmission housing that is coupled to the output end of the crankshaft and that houses the transmission mechanism that amplifies power. Therefore, the side where the transmission housing is not disposed (that is, the side opposite to the output end side of the crankshaft) can be used for mounting various auxiliary machines.
  • the chain mechanism includes at least one of a plurality of fourth sprockets that rotate together with a plurality of cams that drive a plurality of valve bodies that perform intake to the cylinder row and exhaust from the cylinder row from a third sprocket provided at the output end. Therefore, the chain mechanism overlaps with a wide area of the end face of the cylinder block. Since the cover covers the chain mechanism, a wide space is formed between the cover and the end face of the cylinder block. In addition, since the cover is located between the cylinder block and the transmission housing, the vibration is particularly large around the cover. However, since the oil pump is disposed near the chain mechanism, the vibration around the cover is effectively reduced by the oil pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

本出願は、第1方向に並べられた複数の気筒から形成された気筒列を取り囲むシリンダブロックと、前記シリンダブロックに締結された第1締結部と、前記第1方向に交差する第2方向において前記第1締結部から離間した位置で前記シリンダブロックに締結された第2締結部と、を含む補強プレートと、前記シリンダブロックへオイルを供給するオイルポンプと、を備えるシリンダブロック構造を開示する。前記オイルポンプは、前記補強プレートとともに前記シリンダブロックに締結される。前記補強プレートは、前記シリンダブロックと前記オイルポンプとによって挟まれ、且つ、前記第1方向において前記気筒列の半分以上の長さを有する。

Description

エンジンのシリンダブロック構造
 本発明は、気筒列が収容されるシリンダブロックを含むシリンダブロック構造に関する。
 気筒列が収容されるシリンダブロックには、エンジンの動作に必要とされる様々な装置が取り付けられる(特許文献1を参照)。特許文献1は、シリンダブロックに取り付けられたオイルポンプを開示する。オイルポンプは、オイルをシリンダブロックへ供給する。
 特許文献1の構造に関して、オイルポンプは、一対の小さな板材を介してシリンダブロックに取り付けられている。オイルポンプはエンジンの振動の低減に僅かに貢献するけれども、エンジンに要求される高い燃焼効率を得るために設定された高い燃焼ピーク圧に起因するエンジンの振動を十分に抑制することはできない。
特開平4-279709号公報
 本発明は、エンジンの振動を十分に低減することができるシリンダブロック構造を提供することを目的とする。
 本発明の一局面に係るエンジンのシリンダブロック構造は、第1方向に並べられた複数の気筒から形成された気筒列を取り囲むシリンダブロックと、前記シリンダブロックに締結された第1締結部と、前記第1方向に交差する第2方向において前記第1締結部から離間した位置で前記シリンダブロックに締結された第2締結部と、を含む補強プレートと、前記シリンダブロックへオイルを供給するオイルポンプと、を備える。前記オイルポンプは、前記補強プレートとともに前記シリンダブロックに締結される。前記補強プレートは、前記シリンダブロックと前記オイルポンプとによって挟まれ、且つ、前記第1方向において前記気筒列の半分以上の長さを有する。
 上述のシリンダブロック構造は、エンジンの振動を十分に低減することができる。
 本発明の目的、特徴及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。
オイルパンが取り外された例示的なシリンダブロック構造の概略的な底面図である。 図1に示されるシリンダブロック構造の補強プレートの概略的な平面図である。 図1に示されるシリンダブロック構造のチェーン機構の概略図である。 図1に示されるシリンダブロック構造の概略的な側面図である。
 図1は、オイルパンが取り外された例示的なシリンダブロック構造100の概略的な底面図である。図1を参照して、シリンダブロック構造100が説明される。
 シリンダブロック構造100は、シリンダブロック200と、補強プレート300と、オイルポンプ400と、を備える。シリンダブロック200は、底面210を含む。図1は、底面210に形成された開口部211を示す。クランク軸101の一部は、開口部211内に描かれている。クランク軸101は、第1方向に延びる。複数の気筒(図示せず)内では、クランク軸101に取り付けられた複数のコネクティングロッドを介して、ピストンがエンジンの運転時に往復運動をする。したがって、複数の気筒は、第1方向に並び、気筒列を形成する。シリンダブロック200は、クランク軸101と気筒列とを取り囲む。なお、シリンダブロック200の底面210には、図4の側面図に示されるように、補強プレート300(後述される)とオイルポンプ400とを覆う通常のオイルパンが取り付けられる。
 図2は、補強プレート300の概略的な平面図である。図1及び図2を参照して、シリンダブロック構造100が更に説明される。
 補強プレート300は、全体的に、矩形状である。補強プレート300は、第1長縁311と、第2長縁312と、第1短縁313と、第2短縁314と、を含む。第1長縁311、第2長縁312、第1短縁313及び第2短縁314は、補強プレート300の外形輪郭を形成する。第1長縁311及び第2長縁312は、第1方向に長い。第1短縁313及び第2短縁314は、第1方向に直角の第2方向に長い。本実施形態に関して、第2方向は、第1方向に直角である。しかしながら、第2方向は、第1方向に交差する他の角度であってもよい。
 図2に示されるように、複数の貫通穴321~328は、補強プレート300に形成される。貫通穴321は、第1長縁311と第1短縁313とによって形成された角隅部を貫通する。貫通穴322は、第2長縁312と第1短縁313とによって形成された角隅部を貫通する。貫通穴328は、第2長縁312と第2短縁314とによって形成された角隅部を貫通する。貫通穴327は、貫通穴328が形成された角隅部を形成する第2短縁314の端部とは反対側の端部の近くに形成される。貫通穴323,325は、貫通穴321,327の間で第1長縁311の近くに形成される。したがって、貫通穴321,323,325,327は、第1長縁311に沿って、間隔をあけて並ぶ。貫通穴324,326は、貫通穴322,328の間で第2長縁312の近くに形成される。したがって、貫通穴322,324,326,328は、第2長縁312に沿って、間隔をあけて並ぶ。貫通穴322,324,326,328の列は、第2方向において、貫通穴321,323,325,327の列から離間している。
 図1に示されるように、シリンダブロック構造100は、複数のボルト331~338を含む。ボルト331は、貫通穴321に挿通され、シリンダブロック200の底面210に形成されたボルト穴(図示せず)に螺合される。ボルト332は、貫通穴322に挿通され、シリンダブロック200の底面210に形成されたボルト穴(図示せず)に螺合される。ボルト333は、貫通穴323に挿通され、シリンダブロック200の底面210に形成されたボルト穴(図示せず)に螺合される。ボルト334は、貫通穴324に挿通され、シリンダブロック200の底面210に形成されたボルト穴(図示せず)に螺合される。ボルト335は、貫通穴325に挿通され、シリンダブロック200の底面210に形成されたボルト穴(図示せず)に螺合される。ボルト336は、貫通穴326に挿通され、シリンダブロック200の底面210に形成されたボルト穴(図示せず)に螺合される。ボルト337は、貫通穴327に挿通され、シリンダブロック200の底面210に形成されたボルト穴(図示せず)に螺合される。ボルト338は、貫通穴328に挿通され、シリンダブロック200の底面210に形成されたボルト穴(図示せず)に螺合される。したがって、補強プレート300は、ボルト331~338によって、シリンダブロック200の底面210に締結される。
 オイルポンプ400は、シリンダブロック200へオイルを供給する。オイルは、シリンダブロック200に形成された流路(図示せず)を通じて、様々な油圧駆動装置(図示せず)に供給される。
 オイルポンプ400は、ポンプ筐体410と、回転シャフト420と、スプロケット430と、ポンプ機構(図示せず)を含む。ポンプ機構は、ポンプ筐体410内に収容される。回転シャフト420の一部は、ポンプ筐体410内に挿入される。ポンプ機構は、回転シャフト420の回転によって駆動され、オイルを吐出する。ポンプ機構は、様々な既知のポンプ装置が有する構造を有してもよい。たとえば、ポンプ機構は、既知の可変容量オイルポンプの構造を有してもよいし、他のオイルポンプの構造を有してもよい。したがって、本実施形態の原理は、ポンプ機構の特定の構造に限定されない。
 回転シャフト420は、ポンプ筐体410から突出する。スプロケット430は、回転シャフト420に取り付けられる。本実施形態に関して、第2スプロケットは、スプロケット430によって例示される。
 シリンダブロック構造100は、チェーン機構(図示せず)を更に備える。クランク軸101は、気筒列から出力された動力によって回転される。クランク軸101の回転は、スプロケット430へ伝達される。この結果、回転シャフト420は、回転され、ポンプ筐体410内のポンプ機構を駆動する。
 ポンプ筐体410は、補強プレート300の下面に当接される。したがって、補強プレート300は、ポンプ筐体410とシリンダブロック200の底面210とによって挟まれる。ポンプ筐体410は、上述のボルト331~334によって貫通される。したがって、ポンプ筐体410は、補強プレート300とともに、シリンダブロック200の底面210に締結される。本実施形態に関して、第1締結部は、貫通穴321,323のうち一方によって例示される。第2締結部は、貫通穴322,324のうち一方によって例示される。第1締結具は、ボルト331,333のうち一方によって例示される。第2締結具は、ボルト332,334のうち一方によって例示される。しかしながら、第1締結具及び第2締結具は、ポンプ筐体410及び補強プレート300をともにシリンダブロック200の底面210に締結することができる他の部品(たとえば、カシメピン)であってもよい。したがって、本実施形態の原理は、第1締結具及び第2締結具として用いられる特定の部品に限定されない。
 図1に示されるように、第1方向における補強プレート300の長さは、第1方向におけるシリンダブロック200の底面210の長さの半分よりも大きい。このことは、第1方向における補強プレート300の長さは、シリンダブロック200内で形成された気筒列の長さ(第1方向における長さ)の半分(たとえば、4気筒エンジンの場合は、2気筒列の長さ)よりも大きいことを意味する。したがって、補強プレート300は、シリンダブロック200の底面210の広い領域に亘って、振動を低減することができる。
 図1に示されるように、クランク軸101は、ボルト331,333,335,337の列とボルト332,334,336,338の列との間で、第1方向に延びる。したがって、ボルト331,333,335,337の列及びボルト332,334,336,338の列は、補強プレート300の捻れを抑制することができる。
 <他の特徴>
 設計者は、上述のシリンダブロック構造100に様々な特徴を与えることができる。以下に説明される特徴は、上述の実施形態に関連して説明されたシリンダブロック構造100の原理を何ら限定しない。
 (オイルの供給経路)
 図2に示されるように、オイルポンプ400(図1を参照)から吐出されたオイルが流入する流入口341は、補強プレート300の下面に形成される。流入口341に加えて、シリンダブロック200に形成された流路(図示せず)に連なる流出口342も、補強プレート300に形成される。流出口342は、補強プレート300の上面に現れる。流入口341と流出口342との間で延びる流路343は、補強プレート300の上面と下面との間で形成される。オイルポンプ400から流入口341に流入したオイルは、流路343によって、流出口342へ案内される。オイルは、その後、流出口342から流出し、シリンダブロック200に形成された流路を通じて、様々な油圧駆動装置(図示せず)へ供給される。
 上述の如く、補強プレート300は、シリンダブロック200の剛性を高めるだけでなく、オイルの供給経路も形成する。したがって、オイルポンプ400から吐出されたオイルをシリンダブロック200へ案内するための管部材は、必要とされない。この結果、シリンダブロック構造100は、軽量になり、且つ、簡素化された構造を有することができる。
 (オイルポンプの駆動)
 図3は、上述のチェーン機構500の概略図である。図1及び図3を参照して、オイルポンプ400を駆動するチェーン機構500が説明される。
 図1に示されるように、シリンダブロック200は、第1面(後端面)221と、第2面(前端面)222と、を含む。第1面221及び第2面222は、底面210から上方に屈曲する。したがって、第1面221及び第2面222は、第1方向に対して略直角である。第2面222は、第1面221とは反対側である。図3に示されるように、チェーン機構500は、第1面221の隣に形成される。
 クランク軸101は、第1面221から突出する出力端102を含む。気筒列が出力した動力は、出力端102を回転させる。チェーン機構500は、出力端102の回転を、オイルポンプ400のスプロケット430へ伝達する。
 スプロケット103は、クランク軸101の出力端102に取り付けられる。チェーン機構500は、スプロケット103,430に噛み合う無端のチェーン510を含む。クランク軸101が回転すると、出力端102に取り付けられたスプロケット103も回転する。スプロケット103の回転は、チェーン510によって、スプロケット430へ伝達される。この結果、スプロケット430は、回転する。スプロケット430の回転は、上述の如く、回転シャフト420の回転に帰結する。回転シャフト420の回転の結果、ポンプ筐体410内のポンプ機構(図示せず)は、駆動され、オイルは、オイルポンプ400から吐出される。本実施形態に関して、第1スプロケットは、スプロケット103によって例示される。第1チェーンは、チェーン510によって例示される。
 図1に示されるように、オイルポンプ400は、第2面222よりも第1面221の近くに配置される。すなわち、オイルポンプ400のポンプ筐体410は、チェーン機構500に近い側のシリンダブロック200に配置される。したがって、回転シャフト420が短くても、第1方向におけるスプロケット430,103間のアライメントは適切になる。したがって、クランク軸101の回転は、スプロケット103,430及びチェーン510を通じて、回転シャフト420及びポンプ筐体410内のポンプ機構へ伝達される。
 (トランスミッション筐体)
 図4は、シリンダブロック構造100の概略的な側面図である。図1、図3及び図4を参照して、シリンダブロック構造100が更に説明される。
 図4は、シリンダブロック構造100に加えて、トランスミッション筐体104を示す。トランスミッション機構(図示せず)は、トランスミッション筐体104内に収容される。トランスミッション機構は、運転者のギア操作に応じて、ギア比を変更する。或いは、トランスミッション機構は、車両に搭載されたコンピュータの制御下でギア比を変更する。図3に示されるように、フランジ105は、クランク軸101の出力端102に取り付けられる。トランスミッション機構は、フランジ105に連結される。すなわち、トランスミッション機構は、フランジ105を介して、出力端102に連結される。したがって、トランスミッション機構は、クランク軸101の回転として出力された動力を受け取ることができる。トランスミッション機構は、上述のギア比に応じて、動力を増幅する。増幅された動力は、トランスミッション機構から車輪(図示せず)へ伝達される。様々な車両に搭載された既知のトランスミッション機構の構造が、トランスミッション筐体104内のトランスミッション機構に適用されてもよい。したがって、本実施形態の原理は、トランスミッション機構の特定の構造に限定されない。
 シリンダブロック構造100は、カバー600を更に備える。カバー600は、シリンダブロック200の第1面221とトランスミッション筐体104との間に配置される。カバー600は、第1面221に取り付けられる。トランスミッション筐体104は、少なくとも部分的にカバー600に連結される。カバー600は、チェーン機構500の一部を覆う。
 図3は、複数のスプロケット106,107,108,109,111を示す。スプロケット103と同様に、スプロケット111は、クランク軸101の出力端に取り付けられる。スプロケット106は、気筒列へ燃料を噴射する燃料噴射ポンプ(図示せず)を駆動するために用いられる。スプロケット107は、スプロケット106と同軸に配置される。スプロケット107は、スプロケット106とともに回転する。スプロケット108,109は、気筒列(図示せず)への吸気及び気筒列からの排気を担う複数の弁体(すなわち、吸気弁及び排気弁:図示せず)を駆動するカム軸を回転させるために用いられる。本実施形態に関して、第3スプロケットは、スプロケット111によって例示される。複数の第4スプロケットは、スプロケット108,109によって例示される。
 図3及び図4は、シリンダブロック200の上面に据え付けられたシリンダヘッド110を示す。上述の複数の弁体は、シリンダヘッド110内に主に収容される。したがって、スプロケット108,109は、シリンダヘッド110の隣に配置される。すなわち、スプロケット108,109は、シリンダブロック200の上方に位置することになる。スプロケット106,107は、スプロケット103とスプロケット108,109との間の高さ位置に配置される。
 チェーン機構500は、チェーン520,530を含む。チェーン520は、スプロケット111,106に噛み合う無端チェーンである。チェーン530は、スプロケット107,108,109に噛み合う無端チェーンである。スプロケット111の回転は、チェーン520によって、スプロケット106へ伝達される。したがって、スプロケット111が回転すると、スプロケット106も回転する。この間、スプロケット107は、スプロケット106と同軸回転する。スプロケット107の回転は、チェーン530によって、スプロケット108,109へ伝達される。したがって、スプロケット111が回転すると、スプロケット108,109も回転することができる。なお、シリンダヘッド100側のチェーン530及びスプロケット108,109を含むチェーン機構500は、カバー600から分割形成され、且つ、シリンダヘッド110の端面に取り付けられたカバー700によって覆われている。すなわち、チェーン機構500は、カバー600,700によって全体的に覆われている。本実施形態に関して、少なくとも1つの第2チェーンは、チェーン520,530によって例示される。代替的に、少なくとも1つの第2チェーンは、スプロケット111,108,109に噛み合うように配置された単一の無端チェーンであってもよい。上述のスプロケット103,111は、クランク軸101の出力端102に取り付けられている。しかしながら、スプロケット103,111は、出力端102と一体的に形成されてもよい。
 上述の如く、オイルポンプ400は、シリンダブロック200の底面210に取り付けられるので、オイルポンプ400の回転シャフト420に取り付けられたスプロケット430の回転軸は、シリンダブロック200の下方に位置する。上述の如く、スプロケット108,109は、シリンダブロック200の上方に位置する。カバー600は、チェーン機構500の一部を覆うので、シリンダブロック200の第1面221とトランスミッション筐体104との間には、鉛直方向に広い空間を形成する。このことは、大きな振動が、シリンダブロック200とトランスミッション筐体104との間で生じやすいことを意味する。しかしながら、図1を参照して説明された如く、オイルポンプ400は、第1面221の近くに配置される。したがって、シリンダブロック構造100は、第1面221の近くで特に高い剛性を有することができる。この結果、シリンダブロック200、カバー600及びトランスミッション筐体104が、連接されていても、補強プレート300及びオイルポンプ400は、シリンダブロック200とトランスミッション筐体104との間での大きな振動の発生リスクを低減することができる。
 第1面221の周囲の領域とは異なり、大きな振動は、第2面222の周囲では発生しにくい。したがって、補強プレート300は、シリンダブロック200の底面210を全体的に覆わなくてもよい。図1に示されるように、第2面222から補強プレート300までの距離は、第1面221から補強プレート300までの距離より長い。このことは、シリンダブロック構造100の軽量化に貢献する。
 上述の様々な実施形態に関連して説明された例示的なシリンダブロック構造は、以下の特徴を主に備える。
 上述の実施形態の一局面に係るエンジンのシリンダブロック構造は、第1方向に並べられた複数の気筒から形成された気筒列を取り囲むシリンダブロックと、前記シリンダブロックに締結された第1締結部と、前記第1方向に交差する第2方向において前記第1締結部から離間した位置で前記シリンダブロックに締結された第2締結部と、を含む補強プレートと、前記シリンダブロックへオイルを供給するオイルポンプと、を備える。前記オイルポンプは、前記補強プレートとともに前記シリンダブロックに締結される。前記補強プレートは、前記シリンダブロックと前記オイルポンプとによって挟まれ、且つ、前記第1方向において前記気筒列の半分以上の長さを有する。
 上記の構成によれば、シリンダブロックは、第1方向に並べられた複数の気筒から形成された気筒列を取り囲むので、気筒列から生じた振動は、シリンダブロックへ伝達される。シリンダブロックへオイルを供給するオイルポンプは、シリンダブロックとオイルポンプとによって挟まれた補強プレートとともにシリンダブロックに締結されるので、オイルポンプ及び補強プレートは、シリンダブロックの振動の低減に貢献することができる。補強プレートは、シリンダブロックとオイルポンプとによって挟まれ、且つ、第1方向において気筒列の半分以上の長さを有するので、シリンダブロックの広い領域に亘って、振動の低減に貢献することができる。加えて、補強プレートは、シリンダブロックに締結された第1締結部と、第1方向に交差する第2方向において第1締結部から離間した位置でシリンダブロックに締結された第2締結部と、を含むので、捻れ変形は、補強プレートに生じにくくなる。したがって、補強プレートは、振動低減部材として安定的に機能することができる。
 上記の構成に関して、前記オイルが流入する流入口、前記オイルが流出する流出口及び前記流入口と前記流出口との間で延び、前記オイルを前記流入口から前記流出口へ案内する流路は、前記補強プレートに形成されてもよい。
 上記の構成によれば、オイルが流入する流入口、オイルが流出する流出口及び流入口と流出口との間で延び、オイルを流入口から流出口へ案内する流路は、補強プレートに形成されるので、補強プレートは、シリンダブロックへのオイルの供給に利用されることができる。オイルをシリンダブロックへ案内するための追加的な部品は、必要とされないので、シリンダブロック構造は、軽量である。
 上記の構成に関して、前記シリンダブロックは、前記補強プレートが取り付けられた底面を含んでもよい。前記気筒列は、底面視において、前記第1締結部と前記第2締結部との間に位置してもよい。
 上記の構成によれば、気筒列は、底面視において、第1締結部と第2締結部との間に位置するので、捻れ変形は、補強プレートに生じにくくなる。したがって、補強プレートは、振動低減部材として安定的に機能することができる。
 上記の構成に関して、シリンダブロック構造は、前記第1締結部を貫通する第1締結具と、前記第2締結部を貫通する第2締結具と、を更に備えてもよい。前記オイルポンプは、前記第1締結具及び前記第2締結具によって貫通されるポンプ筐体を含んでもよい。前記第1締結具及び前記第2締結具は、前記シリンダブロックに接続され、前記補強プレート及び前記ポンプ筐体を前記シリンダブロックに締結してもよい。
 上記の構成によれば、オイルポンプのポンプ筐体は、第1締結部を貫通する第1締結具と、第2締結部を貫通する第2締結具と、によって貫通されるので、オイルポンプは、補強プレートとにシリンダブロックに締結されることになる。この結果、オイルポンプ及び補強プレートは、シリンダブロックの振動の低減に大きく貢献することができる。
 上記の構成に関して、シリンダブロック構造は、前記気筒列から出力された動力によって回転されるクランク軸の出力端側に設けられた第1スプロケットに噛み合う第1チェーンを含むチェーン機構を更に備えてもよい。前記オイルポンプは、前記第1チェーンに噛み合う第2スプロケットと、前記ポンプ筐体内に配置され、且つ、前記オイルを吐出するポンプ機構と、前記ポンプ筐体から突出し、前記第2スプロケットが設けられた回転シャフトと、を含んでもよい。前記回転シャフトは、前記第1チェーンを通じて前記第2スプロケットに伝達された前記動力によって回転され、前記ポンプ機構を駆動してもよい。前記ポンプ筐体は、前記チェーン機構に近い側の前記シリンダブロックに配置してもよい。
 上記の構成によれば、チェーン機構は、気筒列から出力された動力によって回転されるクランク軸の出力端側に設けられた第1スプロケットに噛み合う第1チェーンを含むので、チェーン機構は、クランク軸によって駆動される。オイルポンプは、第1チェーンに噛み合う第2スプロケットを含むので、チェーン機構は、気筒列から出力された動力を用いて、第2スプロケットが設けられた回転シャフトを回転し、ポンプ筐体内のポンプ機構を駆動することができる。この結果、オイルポンプは、オイルをシリンダブロックへ供給することができる。
 チェーン機構は、第1スプロケットが設けられるクランク軸の出力端側に、配置されているので、出力端側とは反対側は、様々な補機の取付に利用されることができる。
 ポンプ筐体は、チェーン機構に近い側のシリンダブロックに配置されているので、ポンプ筐体から突出した回転シャフトは、過度に長くならない。したがって、第1チェーンを通じて、第2スプロケットへ伝達された動力は、回転シャフトを通じて、ポンプ筐体内のポンプ機構へ安定的に伝達されることになる。
 上記の構成に関して、シリンダブロック構造は、前記シリンダブロックと、前記クランク軸の出力端に連結され、且つ、前記動力を増幅するトランスミッション機構が収容されたトランスミッション筐体と、の間に配置され、前記チェーン機構を覆うカバーを更に備えてもよい。前記チェーン機構は、前記出力端に設けられた第3スプロケットから、前記気筒列への吸気及び前記気筒列からの排気を担う複数の弁体を駆動する複数のカムとともに回転する複数の第4スプロケットへ、前記動力を伝達する少なくとも1つの第2チェーンを含んでもよい。
 上記の構成によれば、チェーン機構を覆うカバーは、シリンダブロックと、クランク軸の出力端に連結され、且つ、動力を増幅するトランスミッション機構が収容されたトランスミッション筐体と、の間に配置されるので、トランスミッション筐体が配置されない側(すなわち、クランク軸の出力端側とは反対側)は、様々な補機の取付に利用されることができる。
 チェーン機構は、出力端に設けられた第3スプロケットから、気筒列への吸気及び気筒列からの排気を担う複数の弁体を駆動する複数のカムとともに回転する複数の第4スプロケットのうち少なくとも1つへ、動力を伝達する少なくとも1つの第2チェーンを含むので、チェーン機構は、シリンダブロックの端面の広い領域と重なる。カバーは、チェーン機構を覆うので、広い空間が、カバーとシリンダブロックの端面との間に形成されることになる。加えて、カバーは、シリンダブロックとトランスミッション筐体との間に位置するので、振動は、カバーの周囲において、特に大きくなる。しかしながら、オイルポンプは、チェーン機構の近くに配置されるので、カバーの周囲の振動は、オイルポンプによって効果的に低減される。
 上述の実施形態の原理は、様々な車両に好適に利用される。

Claims (6)

  1.  第1方向に並べられた複数の気筒から形成された気筒列を取り囲むシリンダブロックと、
     前記シリンダブロックに締結された第1締結部と、前記第1方向に交差する第2方向において前記第1締結部から離間した位置で前記シリンダブロックに締結された第2締結部と、を含む補強プレートと、
     前記シリンダブロックへオイルを供給するオイルポンプと、を備え、
     前記オイルポンプは、前記補強プレートとともに前記シリンダブロックに締結され、
     前記補強プレートは、前記シリンダブロックと前記オイルポンプとによって挟まれ、且つ、前記第1方向において前記気筒列の半分以上の長さを有する
     エンジンのシリンダブロック構造。
  2.  前記オイルが流入する流入口、前記オイルが流出する流出口及び前記流入口と前記流出口との間で延び、前記オイルを前記流入口から前記流出口へ案内する流路は、前記補強プレートに形成される
     請求項1に記載のエンジンのシリンダブロック構造。
  3.  前記シリンダブロックは、前記補強プレートが取り付けられた底面を含み、
     前記気筒列は、底面視において、前記第1締結部と前記第2締結部との間に位置する
     請求項1又は2に記載のエンジンのシリンダブロック構造。
  4.  前記第1締結部を貫通する第1締結具と、前記第2締結部を貫通する第2締結具と、を更に備え、
     前記オイルポンプは、前記第1締結具及び前記第2締結具によって貫通されるポンプ筐体を含み、
     前記第1締結具及び前記第2締結具は、前記シリンダブロックに接続され、前記補強プレート及び前記ポンプ筐体を前記シリンダブロックに締結する
     請求項1乃至3のいずれか1項に記載のエンジンのシリンダブロック構造。
  5.  前記気筒列から出力された動力によって回転されるクランク軸の出力端側に設けられた第1スプロケットに噛み合う第1チェーンを含むチェーン機構を更に備え、
     前記オイルポンプは、前記第1チェーンに噛み合う第2スプロケットと、前記ポンプ筐体内に配置され、且つ、前記オイルを吐出するポンプ機構と、前記ポンプ筐体から突出し、前記第2スプロケットが設けられた回転シャフトと、を含み、
     前記回転シャフトは、前記第1チェーンを通じて前記第2スプロケットに伝達された前記動力によって回転され、前記ポンプ機構を駆動し、
     前記ポンプ筐体は、前記チェーン機構に近い側の前記シリンダブロックに配置される
     請求項4に記載のエンジンのシリンダブロック構造。
  6.  前記シリンダブロックと、前記クランク軸の出力端に連結され、且つ、前記動力を増幅するトランスミッション機構が収容されたトランスミッション筐体と、の間に配置され、前記チェーン機構を覆うカバーを更に備え、
     前記チェーン機構は、前記出力端に設けられた第3スプロケットから、前記気筒列への吸気及び前記気筒列からの排気を担う複数の弁体を駆動する複数のカムとともに回転する複数の第4スプロケットへ、前記動力を伝達する少なくとも1つの第2チェーンを含む
     請求項5に記載のエンジンのシリンダブロック構造。
PCT/JP2018/004866 2017-03-29 2018-02-13 エンジンのシリンダブロック構造 WO2018179926A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/491,945 US10914206B2 (en) 2017-03-29 2018-02-13 Cylinder block structure for engine
CN201880016768.4A CN110431298B (zh) 2017-03-29 2018-02-13 发动机的气缸体构造
EP18778060.6A EP3578788B1 (en) 2017-03-29 2018-02-13 Cylinder block structure for engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-065800 2017-03-29
JP2017065800A JP6451767B2 (ja) 2017-03-29 2017-03-29 エンジンのシリンダブロック構造

Publications (1)

Publication Number Publication Date
WO2018179926A1 true WO2018179926A1 (ja) 2018-10-04

Family

ID=63675124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004866 WO2018179926A1 (ja) 2017-03-29 2018-02-13 エンジンのシリンダブロック構造

Country Status (5)

Country Link
US (1) US10914206B2 (ja)
EP (1) EP3578788B1 (ja)
JP (1) JP6451767B2 (ja)
CN (1) CN110431298B (ja)
WO (1) WO2018179926A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110905624B (zh) * 2019-12-03 2023-12-26 南京航天国器智能装备有限公司 高机油利用率二冲程发动机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165562A (ja) * 1986-01-14 1987-07-22 Mazda Motor Corp エンジンの遮音装置
JPH0430243U (ja) * 1990-07-04 1992-03-11
JPH04279709A (ja) 1991-03-08 1992-10-05 Yanmar Diesel Engine Co Ltd 潤滑油ポンプの取付機構
JP2004293347A (ja) * 2003-03-25 2004-10-21 Yed:Kk エンジンにおける潤滑装置
JP2011226290A (ja) * 2010-04-15 2011-11-10 Honda Motor Co Ltd 内燃機関
JP2017053322A (ja) * 2015-09-11 2017-03-16 マツダ株式会社 エンジンの燃料ポンプ取付構造

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10357175B4 (de) * 2003-12-06 2006-03-16 Mtu Friedrichshafen Gmbh Bodenplatte für ein Kurbelgehäuse
US6928974B1 (en) * 2004-01-30 2005-08-16 Demetrios Markou Reinforcement plate for a reciprocating engine
DE102009025453B4 (de) * 2009-06-10 2019-12-05 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Ausgleichswellenmodul
JP5574270B2 (ja) * 2010-01-22 2014-08-20 スズキ株式会社 エンジンのチェーンケース構造

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165562A (ja) * 1986-01-14 1987-07-22 Mazda Motor Corp エンジンの遮音装置
JPH0430243U (ja) * 1990-07-04 1992-03-11
JPH04279709A (ja) 1991-03-08 1992-10-05 Yanmar Diesel Engine Co Ltd 潤滑油ポンプの取付機構
JP2004293347A (ja) * 2003-03-25 2004-10-21 Yed:Kk エンジンにおける潤滑装置
JP2011226290A (ja) * 2010-04-15 2011-11-10 Honda Motor Co Ltd 内燃機関
JP2017053322A (ja) * 2015-09-11 2017-03-16 マツダ株式会社 エンジンの燃料ポンプ取付構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3578788A4

Also Published As

Publication number Publication date
US10914206B2 (en) 2021-02-09
EP3578788B1 (en) 2022-03-30
JP6451767B2 (ja) 2019-01-16
US20200072099A1 (en) 2020-03-05
EP3578788A4 (en) 2020-02-19
CN110431298B (zh) 2021-09-24
JP2018168728A (ja) 2018-11-01
EP3578788A1 (en) 2019-12-11
CN110431298A (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
JP4895021B2 (ja) 可変バルブタイミング機構付エンジンのマウント構造
JP2008215323A (ja) 可変バルブタイミング機構付エンジン
US20100192902A1 (en) Cover member to engines
US20160223070A1 (en) Vehicle drive device
JP6107874B2 (ja) エンジンの補機レイアウト
US7267094B2 (en) Lubrication system of small vehicle engine
JP2013245636A (ja) 可変バルブタイミング機構付エンジン
JP2006336612A (ja) 内燃機関
EP1895138B1 (en) Cover structure of an internal combustion engine
WO2016171211A1 (ja) エンジンの補機取付構造
WO2018179926A1 (ja) エンジンのシリンダブロック構造
JP4411637B2 (ja) エンジン及び車両
CN103939173A (zh) 一种发动机机油泵
JP5045887B2 (ja) エンジンのチェーンケース構造
US20210048087A1 (en) Balancer device for internal combustion engines
JP2019031964A (ja) 内燃機関の排気構造
JP2008157096A (ja) 可変バルブタイミング機構付エンジン
JP2007016715A (ja) エンジンの燃料ポンプ取付構造
JP6210089B2 (ja) エンジンの補機駆動装置
JP4544100B2 (ja) エンジンの前部構造
EP2932066B1 (en) Pump module and piston engine
JP7099120B2 (ja) 車両用内燃機関
JP6168095B2 (ja) エンジンの燃料ポンプ締結構造
JP2020012450A (ja) 車両用内燃機関
JP2005273669A (ja) エンジンのテンショナ装置取付構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18778060

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018778060

Country of ref document: EP

Effective date: 20190905

NENP Non-entry into the national phase

Ref country code: DE