WO2018179493A1 - pH・酸化還元電位調整水の製造装置 - Google Patents

pH・酸化還元電位調整水の製造装置 Download PDF

Info

Publication number
WO2018179493A1
WO2018179493A1 PCT/JP2017/032791 JP2017032791W WO2018179493A1 WO 2018179493 A1 WO2018179493 A1 WO 2018179493A1 JP 2017032791 W JP2017032791 W JP 2017032791W WO 2018179493 A1 WO2018179493 A1 WO 2018179493A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxidation
reduction potential
water
redox potential
injection device
Prior art date
Application number
PCT/JP2017/032791
Other languages
English (en)
French (fr)
Inventor
暢子 顔
侑 藤村
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to KR1020197026244A priority Critical patent/KR102474711B1/ko
Priority to CN201780086348.9A priority patent/CN110291046A/zh
Priority to US16/492,616 priority patent/US11339065B2/en
Publication of WO2018179493A1 publication Critical patent/WO2018179493A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0031Degasification of liquids by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/29Mixing systems, i.e. flow charts or diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/2132Concentration, pH, pOH, p(ION) or oxygen-demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/2201Control or regulation characterised by the type of control technique used
    • B01F35/2202Controlling the mixing process by feed-back, i.e. a measured parameter of the mixture is measured, compared with the set-value and the feed values are corrected
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/04Oxidation reduction potential [ORP]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/18Removal of treatment agents after treatment

Definitions

  • the present invention relates to an apparatus for producing pH / oxidation-reduction potential adjustment water used in the field of electronics industry and the like, and in particular, minimizes corrosion dissolution while preventing charging of a semiconductor wafer on which a transition metal such as cobalt is exposed.
  • the present invention relates to an apparatus for producing pH / oxidation-reduction potential adjustment water.
  • a process of processing an object to be processed having a fine structure is repeated. And cleaning for the purpose of removing fine particles, organic matter, metal, natural oxide film, etc. adhering to the surface of the processing object such as wafers and substrates, and achieving and maintaining a high degree of cleanliness will maintain product quality. And is important for yield improvement.
  • This cleaning is performed using, for example, a cleaning liquid such as a sulfuric acid / hydrogen peroxide solution mixed solution or a hydrofluoric acid solution, and rinsing with ultrapure water is performed after the cleaning. High purity is required for the ultrapure water and chemicals supplied in the rinsing process and the like. In recent years, the number of cleanings has increased due to miniaturization of semiconductor devices, diversification of materials, and complexity of processes.
  • an ultrapure water production apparatus composed of a pretreatment system, a primary pure water system, and a secondary pure water system (subsystem) is used.
  • the higher the purity of ultrapure water the higher the specific resistance value, but the higher the specific resistance value.
  • the use of ultrapure water makes it easy to generate static electricity during cleaning, causing problems such as electrostatic breakdown of the insulating film and reattachment of fine particles. Therefore, in recent years, the pH is adjusted by using a dilute chemical solution in which carbon dioxide or the like is dissolved in ultrapure water as rinsing water to reduce static electricity and tackle the above-described problems.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an apparatus for producing high-purity pH / redox potential adjusting water capable of accurately adjusting pH and redox potential.
  • the present invention provides a hydrogen peroxide removal mechanism, a pH adjuster injection device for adding a pH adjuster to ultrapure water, and a redox potential for adding a redox potential adjuster to an ultrapure water supply line.
  • a regulator injecting device and a pH measuring unit, a redox potential measuring unit, a pH measuring unit, and a redox potential measuring unit at a subsequent stage of the pH adjusting agent injecting device and the redox potential adjusting agent injecting device;
  • PH / redox comprising control means for controlling the addition amount of the pH adjusting agent in the pH adjusting agent injection device and the addition amount of the oxidation / reduction potential adjusting agent in the oxidation / reduction potential adjusting agent injection device based on the measured value
  • An apparatus for producing electric potential adjustment water is provided (Invention 1).
  • invention 1 by passing ultrapure water from the ultrapure water supply line to the hydrogen peroxide removal mechanism, hydrogen peroxide contained in a trace amount in the ultrapure water is removed, and subsequently desired. Based on the measurement results of the pH measurement means and the oxidation-reduction potential measurement means after preparing the pH / oxidation-reduction potential adjustment water by adding the pH adjuster and the oxidation-reduction potential adjustment agent so that the pH and the oxidation-reduction potential are obtained. By controlling the addition amount of the pH adjusting agent and the redox potential adjusting agent by the control means so that the pH and the redox potential are as desired, the influence of the dissolved hydrogen peroxide in the raw water is eliminated. The desired pH and redox potential adjusted water can be produced.
  • the pH adjuster is preferably one or more selected from ammonia, sodium hydroxide, potassium hydroxide, and TMAH (Invention 2).
  • the pH of the pH / redox potential adjustment water can be adjusted to the alkali side.
  • the oxidation-reduction potential regulator is preferably one or more selected from hydrogen peroxide, ozone gas and oxygen gas (Invention 3).
  • the oxidation-reduction potential of pH / oxidation-reduction potential adjustment water can be adjusted to plus or minus by appropriately selecting them.
  • the oxidation-reduction potential adjusting agent is a hydrogen peroxide solution
  • the pH measuring means and the oxidation-reducing agent are provided downstream of the pH adjusting agent injection device and the oxidation-reduction potential adjustment agent injection device. It is preferable to provide a membrane type deaerator in front of the reduction potential measuring means (Invention 4).
  • dissolved gas such as oxygen dissolved in the pH / redox potential adjustment water is effectively degassed by the membrane deaerator, and the resulting pH / redox potential adjustment water is dissolved. Since the oxygen concentration can be reduced, high-purity adjusted water reflecting the desired pH and redox potential can be produced.
  • invention 5 by dissolving an inert gas in high-purity adjusted water, it is difficult to dissolve the gas component again in the obtained adjusted water, and the desired pH and oxidation-reduction potential are maintained for a long time. Maintained high-purity conditioned water can be produced.
  • invention 6 it is possible to provide an apparatus for producing adjusted water corresponding to the object to be cleaned by adjusting the pH / redox potential within the above range.
  • the pH / oxidation-reduction potential adjustment water is for cleaning a semiconductor material in which a transition metal is exposed at least partially (Invention 7).
  • the pH and oxidation-reduction potential can be adjusted to those capable of suppressing the corrosion of the transition metal, depending on the type of the exposed transition metal such as cobalt.
  • the apparatus for producing pH / oxidation / reduction potential adjustment water of the present invention hydrogen peroxide contained in a trace amount is removed from ultrapure water, and then pH / oxidation / reduction potential adjustment agent is injected to adjust the pH / oxidation potential.
  • the adjustment water obtained is controlled so as to have the desired pH and oxidation reduction potential. pH and redox potential adjusted water of pH and redox potential can be produced. Thereby, it becomes possible to supply stably the adjustment water which maintained pH and the oxidation-reduction potential which do not produce the corrosion of the transition metal which comprises to-be-processed members, such as cobalt.
  • FIG. 1 shows an apparatus for producing pH / oxidation-reduction potential adjustment water.
  • the adjustment water production apparatus is a platinum group metal-supported resin serving as a hydrogen peroxide removal mechanism in a supply line 1 of ultrapure water W.
  • a column 2 is provided, and a pH adjusting agent injection device 3A and an oxidation-reduction potential adjustment agent injection device 3B are provided at the subsequent stage.
  • the pH adjustment agent injection device 3A and the oxidation-reduction potential adjustment agent are provided.
  • a membrane type deaeration device 4 and a gas dissolution membrane device 5 are sequentially provided in the subsequent stage of the injection device 3B.
  • An inert gas source 6 is connected to the gas phase side of the membrane degassing device 4, and an inert gas source 7 is also connected to the gas phase side of the gas dissolving membrane device 5.
  • a discharge line 8 communicates with the device 5.
  • Reference numeral 9 denotes a drain tank of the membrane degassing device 4 and the gas dissolving membrane device 5.
  • a pH meter 10A as a pH measuring unit and an ORP meter 10B as a redox potential measuring unit are provided in the middle of the discharge line 8, and the pH meter 10A and the ORP meter 10B are And connected to a control device 11 such as a personal computer.
  • the control device 11 is also connected to the pH adjusting agent injecting device 3A and the oxidation-reduction potential adjusting agent injecting device 3B, and can control the injection amount of the medicine and the like from these devices 3A and 3B.
  • the ultrapure water W as raw water is, for example, resistivity: 18.1 M ⁇ ⁇ cm or more, fine particles: particle size of 50 nm or more and 1000 / L or less, viable bacteria: 1 / L or less, TOC (Total Organic Carbon): 1 ⁇ g / L or less, Total silicon: 0.1 ⁇ g / L or less, Metals: 1 ng / L or less, Ions: 10 ng / L or less, Hydrogen peroxide: 30 ⁇ g / L or less, Water temperature: 25 ⁇ The one at 2 ° C. is preferred.
  • a platinum group metal-supported resin column 2 is used as a hydrogen peroxide removal mechanism.
  • platinum group metals examples of the platinum group metal supported on the platinum group metal supported resin used in the platinum group metal supported resin column 2 include ruthenium, rhodium, palladium, osmium, iridium and platinum. These platinum group metals can be used individually by 1 type, can be used in combination of 2 or more types, can also be used as an alloy of 2 or more types, or the refined product of the naturally produced mixture Can also be used without separating them into single bodies. Among these, platinum, palladium, a platinum / palladium alloy alone or a mixture of two or more of them can be suitably used because of their strong catalytic activity. In addition, nano-order fine particles of these metals can be particularly preferably used.
  • an ion exchange resin in the platinum group metal-supported resin column 2, an ion exchange resin can be used as the carrier resin for supporting the platinum group metal.
  • an anion exchange resin can be particularly preferably used. Since the platinum group metal is negatively charged, it is stably supported on the anion exchange resin and hardly peels off.
  • the exchange group of the anion exchange resin is preferably in the OH form. In the OH-type anion exchange resin, the resin surface becomes alkaline and promotes decomposition of hydrogen peroxide.
  • the injection device is not particularly limited, and a general chemical injection device can be used.
  • a pump such as a diaphragm pump can be used.
  • a pressurizing pump in which a pH adjusting agent or an oxidation-reduction potential adjusting agent is put in an airtight container together with an inert gas such as N 2 gas, and these agents are pushed out by the pressure of the inert gas can be suitably used.
  • a direct gas-liquid contact device such as a gas permeable membrane module or an ejector can be used.
  • ⁇ PH adjuster> there is no restriction
  • hydrochloric acid, nitric acid, a sulfuric acid, hydrofluoric acid, etc. can be used.
  • ammonia, sodium hydroxide, potassium hydroxide, TMAH, etc. can be used.
  • pH / redox potential adjustment water as cleaning water for wafers with exposed transition metals such as copper and cobalt, it is preferable to use an alkali, but an alkali metal solution such as sodium hydroxide is a metal component. Is not suitable. Therefore, ammonia is used in this embodiment.
  • the redox potential adjusting agent injected from the redox potential adjusting agent injection device 3B is not particularly limited, but potassium ferricyanide and potassium ferrocyanide are not preferable because they contain a metal component. Therefore, in order to adjust the oxidation-reduction potential to the positive side, a liquid such as hydrogen peroxide water or a gas body such as ozone gas or oxygen gas can be used. In order to adjust the redox potential to the negative side, it is preferable to use a liquid such as oxalic acid or a gas body such as hydrogen.
  • the redox potential is preferably adjusted to be positive in order to suppress elution of these materials.
  • a hydrogen peroxide solution is used because the gas body is not suitable.
  • the membrane type deaeration device 4 is configured such that ultrapure water W is allowed to flow on one side (liquid phase side) of the deaeration membrane and the other side (gas phase side) is exhausted by a vacuum pump.
  • an inert gas source 6 such as nitrogen to the vacuum side (gas phase side) of this film to improve the deaeration performance.
  • the deaeration membrane may be a membrane that allows gas such as oxygen, nitrogen, and vapor to pass through but does not permeate water. Examples thereof include silicon rubber, polytetrafluoroethylene, polyolefin, and polyurethane.
  • Various commercially available degassing membranes can be used.
  • the gas dissolving membrane device 5 causes the ultrapure water W to flow on one side (liquid phase side) of the gas permeable membrane, and causes the gas to flow on the other side (gas phase side) to move to the liquid phase side.
  • polypropylene polydimethylsiloxane, polycarbonate-polydimethylsiloxane block copolymer, polyvinylphenol-polydimethylsiloxane-polysulfone block copolymer, poly (4 -A polymer film such as methylpentene-1), poly (2,6-dimethylphenylene oxide), or polytetrafluoroethylene
  • polypropylene polydimethylsiloxane
  • polycarbonate-polydimethylsiloxane block copolymer polyvinylphenol-polydimethylsiloxane-polysulfone block copolymer
  • poly (4 -A polymer film such as methylpentene-1
  • poly (2,6-dimethylphenylene oxide) polytetrafluoroethylene
  • an inert gas such as nitrogen is used as the gas dissolved in the water, and this inert gas is supplied from the inert gas source 7.
  • ultrapure water W as raw water is supplied from a supply line 1 to a platinum group metal-supported resin column 2.
  • the platinum group metal-supported resin column 2 functions as a hydrogen peroxide removing mechanism that decomposes and removes hydrogen peroxide in the ultrapure water W by the catalytic action of the platinum group metal.
  • dissolved oxygen in the ultrapure water W may show a slight increasing tendency due to decomposition of hydrogen peroxide.
  • a pH adjusting agent is injected into the ultrapure water W from the pH adjusting agent injection device 3A, and a redox potential adjusting agent is injected from the oxidation reduction potential adjusting agent injection device 3B to prepare adjusted water W1.
  • the injection amount (flow rate) of the pH adjusting agent and the oxidation-reduction potential adjusting agent is controlled by a control means (not shown) according to the flow rate of the ultrapure water W so that the obtained adjusted water W1 has the desired pH and oxidation-reduction potential. What is necessary is just to control the injection amount.
  • the injection amount when used as cleaning water for a wafer with an exposed transition metal such as copper or cobalt, the injection amount may be controlled so that the oxidation-reduction potential is 0 to 1.7 V at pH 9 to 13.
  • the adjusted water W1 contains dissolved oxygen of the ultrapure water W and dissolved oxygen brought in from the pH adjuster and the oxidation-reduction potential adjuster.
  • this adjusted water W1 is supplied to the membrane deaerator 4.
  • the adjustment water W ⁇ b> 1 is caused to flow to the liquid phase chamber side of the liquid phase chamber and the gas phase chamber constituted by the hydrophobic gas permeable membrane, and the gas phase chamber is decompressed by a vacuum pump (not shown).
  • the dissolved gas such as dissolved oxygen contained in the adjustment water W1 is removed by transferring it to the gas phase chamber through the hydrophobic gas permeable membrane.
  • the condensed water generated on the gas phase chamber side is collected in the drain tank 9.
  • an inert gas is supplied as a sweep gas to the gas phase chamber of the membrane deaerator 4 from the inert gas source 6 under reduced pressure. This improves the deaeration effect and adjusts the water W1. It is desirable in that the effect of removing dissolved oxygen is further enhanced.
  • the inert gas is not particularly limited, and rare gas or nitrogen gas can be used. In particular, nitrogen can be suitably used because it is easily available and is inexpensive even at a high purity level. Thereby, the dissolved oxygen concentration of the adjustment water W1 can be reduced to a very low level. In this way, the pH adjusting agent and the oxidation-reduction potential adjusting agent are directly degassed and then degassed after being adjusted water W1, thereby reducing the risk of chemical leakage when these drugs are vacuum degassed. be able to.
  • the degassed adjusted water W1 is supplied to the gas dissolution membrane device 5.
  • the adjustment water W ⁇ b> 1 is allowed to flow to the liquid phase chamber side and the gas phase chamber side constituted by the hydrophobic gas permeable membrane, and the pressure on the gas phase chamber side becomes higher than that on the liquid phase chamber side.
  • the inert gas is transferred to the liquid phase chamber side and dissolved in the adjustment water W1, and the final adjustment water (clean adjustment water) ) W2 can be obtained.
  • the condensed water generated on the gas phase chamber side is collected in the drain tank 9.
  • the dissolution of the inert gas can suppress the re-dissolution of the gas species in the clean adjustment water W2, and the clean adjustment water W2 can be maintained in a state in which dissolved oxygen is reduced.
  • the inert gas is not particularly limited, and rare gas or nitrogen gas can be used. In particular, nitrogen can be suitably used because it is easily available and is inexpensive even at a high purity level. By using such a gas-dissolving membrane module, the inert gas can be easily dissolved in water, and the dissolved gas concentration can be easily adjusted and managed.
  • the pH of the clean water W2 is measured by the pH meter 10A, and the oxidation-reduction potential is measured by the ORP meter 10B to monitor whether the pH and the oxidation-reduction potential are desired.
  • the controller 11 injects the pH adjuster so that the clean adjusted water W2 has the desired pH and redox potential.
  • the injection amount by the device 3A and the oxidation-reduction potential adjusting agent injection device 3B can be controlled.
  • the pH and oxidation-reduction potential can be controlled by a known method in addition to feedback control such as PI control and PID control.
  • the cleaning adjustment water W2 manufactured according to this embodiment as described above is supplied to a cleaning machine for electronic materials such as a semiconductor silicon substrate, a liquid crystal glass substrate, or a photomask quartz substrate.
  • Such clean adjustment water W2 not only has the desired pH and redox potential as described above, but also can be at a very low level such as a hydrogen peroxide concentration of 1 ppb or less and a clean dissolved oxygen concentration of 100 ppb or less.
  • a hydrogen peroxide concentration of 1 ppb or less and a clean dissolved oxygen concentration of 100 ppb or less.
  • a chemical flow rate adjusting valve is provided in the pH adjusting agent injection device 3A and the oxidation-reduction potential adjusting agent injection device 3B, or the inert gas source 6 and the inert gas source 7 are controlled by a gas flow rate adjusting valve or the like.
  • Equipment may be provided.
  • the membrane type deaeration device 4 and the gas dissolution membrane device 5 may not necessarily be provided depending on the required quality of the adjustment water.
  • a gas body is used as the pH adjusting agent and the oxidation-reduction potential adjusting agent. Can be used.
  • Test Example 1-2 The same test piece as in Test Example 1-1 was immersed in 100 mL of hydrogen peroxide-added aqueous ammonia (ammonia concentration: 1 ppm, hydrogen peroxide concentration: 10 ppm, pH 10.0, oxidation-reduction potential: 0.4 V) at room temperature for 20 minutes. The concentration of cobalt in the treatment solution was analyzed by ICP-MS, and the dissolution rate of cobalt was calculated. The results are shown in FIG.
  • Test Example 3-2 The same test piece as in Test Example 3-1 was immersed in 100 mL of hydrogen peroxide-added aqueous ammonia (ammonia concentration: 1 ppm, hydrogen peroxide concentration: 10 ppm, pH 10.0, redox potential: 0.4 V) at room temperature for 20 minutes. The concentration of cobalt in the treatment solution was analyzed by ICP-MS, and the dissolution rate of cobalt was calculated. The results are shown in FIG.
  • the adjusted water production apparatus is configured with the configuration shown in FIG. 1, and ultrapure water W is supplied from the supply line 1 at a flow rate of 3 L / min, and circulates through the platinum group metal-supported resin column 2 that supports platinum as a platinum group metal. Thereafter, an aqueous ammonia solution (concentration of 28% by weight) is supplied from the pH adjuster injection device 3A so as to be within the range of pH 9.5 to 10.2, and the oxidation-reduction potential is 0.4 V at a hydrogen peroxide concentration of 10 ppm. As described above, hydrogen peroxide solution (concentration: 5% by weight) was supplied from the oxidation-reduction potential adjusting agent injection device 3B to prepare adjusted water W1.
  • This adjustment water W1 was processed by the membrane type deaeration device 4 and the gas dissolution membrane device 5 to produce clean adjustment water W2.
  • the pH of the clean adjustment water W2 is measured by the pH meter 10A and the redox potential is measured by the ORP meter 10B.
  • the controller 11 follows the fluctuations in pH and redox potential due to the flow rate fluctuation of the ultrapure water W.
  • the doses from the pH adjuster injection device 3A and the oxidation-reduction potential adjuster injection device 3B were PID controlled. Further, the hydrogen peroxide (H 2 O 2 ) concentration was measured with a hydrogen peroxide concentration meter. The results are shown in Table 1 together with the dissolved oxygen concentration of the clean adjustment water W2.
  • membrane type deaerator 4 Lixel (manufactured by Celgard) was used, and nitrogen gas was circulated as a sweep gas at a flow rate of 10 L / min.
  • gas dissolution membrane device 5 “MHF1704” manufactured by Mitsubishi Rayon was used, and nitrogen gas was supplied at a flow rate of 0.1 L / min.
  • the pH of the clean adjustment water W2 is measured by the pH meter 10A and the redox potential is measured by the ORP meter 10B.
  • the controller 11 follows the fluctuations in pH and redox potential due to the flow rate fluctuation of the ultrapure water W.
  • the doses from the pH adjuster injection device 3A and the oxidation-reduction potential adjuster injection device 3B were PID controlled. Further, the hydrogen peroxide (H 2 O 2 ) concentration was measured with a hydrogen peroxide concentration meter. The results are shown in Table 1 together with the dissolved oxygen concentration of the clean adjustment water W2.
  • Comparative Example 2 In Comparative Example 1, the aqueous ammonia solution (from the pH adjuster injection device 3A (pH 7.4 to 9.5) without supplying the hydrogen peroxide concentration from the pH adjuster injection device 3A with the apparatus of FIG. Clean adjustment water W2 was produced in the same manner except that the hydrogen peroxide solution was not supplied from the oxidation-reduction potential adjusting agent injection device 3B.
  • the adjustment water W1 was processed by the membrane type deaeration device 4 and the gas dissolution membrane device 5 to produce clean adjustment water W2.
  • the pH of the clean adjustment water W2 is measured by the pH meter 10A and the redox potential is measured by the ORP meter 10B.
  • the controller 11 follows the fluctuations in pH and redox potential due to the flow rate fluctuation of the ultrapure water W.
  • the doses from the pH adjuster injection device 3A and the oxidation-reduction potential adjuster injection device 3B were PID controlled. Further, the hydrogen peroxide (H 2 O 2 ) concentration was measured with a hydrogen peroxide concentration meter. The results are shown in Table 1 together with the dissolved oxygen concentration of the clean adjustment water W2. For comparison, the pH, oxidation-reduction potential, and dissolved oxygen concentration of ultrapure water W are shown in Table 1 as a reference example.
  • the dissolved oxygen concentration is less than 100 ppb, the pH is within the target range, and the ORP and hydrogen peroxide concentrations are also targeted. It was possible to control to a value very close to the value.
  • hydrogen peroxide was close to the target value, but the dissolved oxygen concentration was 1 ppm or more, and as a result, the pH was smaller than the target value. This is considered to be the influence of dissolved oxygen dissolved in the aqueous ammonia solution and the hydrogen peroxide solution supplied from the pH adjuster injection device 3A and the oxidation-reduction potential adjuster injection device 3B.
  • Comparative Example 2 although peroxide water was not added, the dissolved oxygen concentration was 1 ppm or more, and the pH was still lower than the target value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

pH・酸化還元電位調整水の製造装置は、超純水Wの供給ライン1に白金族金属担持樹脂カラム2を設け、この後段にpH調整剤注入装置3Aと酸化還元電位調整剤注入装置3Bとを備える。この装置3A、3Bの後段に膜式脱気装置4と、ガス溶解膜装置5とを順次有し、ガス溶解膜装置5には排出ライン8が連通している。排出ライン8の途中には、pH計10AとORP計10Bとが設けられていて、これらpH計10A及びORP計10Bは、制御装置11に接続している。そして、pH計10A及びORP計10Bの計測結果に基づき、pH調整剤注入装置3Aと酸化還元電位調整剤注入装置3Bの注入量を制御する。かかるpH・酸化還元電位調整水の製造装置によれば、pH及び酸化還元電位を正確に調整可能である。

Description

pH・酸化還元電位調整水の製造装置
 本発明は電子産業分野等で使用されるpH・酸化還元電位調整水の製造装置に関し、特にコバルト等の遷移金属が露出している半導体ウエハの帯電を防止しつつ腐食溶解を最小限化することの可能なpH・酸化還元電位調整水の製造装置に関する。
 LSI等の電子部品の製造工程では、微細構造を有する被処理体を処理する工程が繰り返される。そして、ウエハや基板等の処理体表面に付着している微粒子、有機物、金属、自然酸化皮膜等の除去を目的とした洗浄を行い、高度な清浄度を達成、維持することは製品の品質保持や歩留まり向上にとって重要である。この洗浄は、例えば、硫酸・過酸化水素水混合液、フッ酸溶液等の洗浄液を用いて行われ、該洗浄後に超純水を用いたリンスが行われる。このリンス工程等で供給される超純水や薬液には高い純度が要求される。また、近年では、半導体デバイスの微細化、材料の多様化、プロセスの複雑化により、洗浄回数が多くなっている。
 一般的に、超純水の製造には、前処理システム、一次純水システム、二次純水システム(サブシステム)で構成される超純水製造装置が用いられている。このような超純水製造装置で製造された超純水を用いたウエハ製造等でのリンス工程においては、超純水はその純度が高いほど比抵抗値が高くなるが、比抵抗値の高い超純水を用いることで、洗浄時に静電気が発生しやすくなり、絶縁膜の静電破壊や微粒子の再付着を招くといった問題があることが知られている。そのため、近年では、超純水に炭酸ガスなどを溶解した希薄な薬液をリンス水とすることでpH調整を行い、静電気を低減して上述したような問題に取り組んでいる。
 しかしながら、超純水に炭酸ガスなどを溶解したリンス水は酸性を示すため、一面あるいは全面に銅やコバルトなどの遷移金属が露出しているウエハを洗浄すると、露出している遷移金属が微量ではあっても腐食されてしまい、半導体性能が低下する、という問題点があった。この対策として、アンモニアを溶解させたアルカリ性の希薄溶液を酸性のリンス液の代替として用いているが、同じ濃度のアンモニア水を用いてリンスしても、十分な遷移金属の腐食抑制効果が得られる場合と、得られない場合とがあることがわかった。
 そこで、本発明者がウエハなどの洗浄における露出している遷移金属のリンス水による腐食の発生要因について検討した結果、遷移金属の腐食にはリンス水のpHだけでなく、酸化還元電位も大きく影響することがわかった。したがって、銅やコバルトなどの遷移金属が露出しているウエハの洗浄水は、その洗浄対象となる遷移金属に応じてpHと酸化還元電位を正確に調整できることが望ましいが、従来これらを両方正確に調整可能な希釈薬液の製造装置はなかった。
 本発明は上記課題に鑑みてなされたものであり、pH及び酸化還元電位を正確に調整可能な高純度のpH・酸化還元電位調整水の製造装置を提供することを目的とする。
 上記目的に鑑み、本発明は、超純水供給ラインに、過酸化水素除去機構と、超純水にpH調整剤を添加するpH調整剤注入装置及び酸化還元電位調整剤を添加する酸化還元電位調整剤注入装置とを順次設け、前記pH調整剤注入装置及び前記酸化還元電位調整剤注入装置の後段にpH計測手段及び酸化還元電位計測手段と、前記pH計測手段及び前記酸化還元電位計測手段の測定値に基づいて、前記pH調整剤注入装置におけるpH調整剤の添加量及び前記酸化還元電位調整剤注入装置における酸化還元電位調整剤の添加量を制御する制御手段とを備える、pH・酸化還元電位調整水の製造装置を提供する(発明1)。
 かかる発明(発明1)によれば、超純水供給ラインから超純水を過酸化水素除去機構に通水することにより、超純水中に微量含まれる過酸化水素を除去し、続いて所望とするpH及び酸化還元電位となるようにpH調整剤及び酸化還元電位調整剤を添加してpH・酸化還元電位調整水を調製した後、pH計測手段及び酸化還元電位計測手段の測定結果に基づいて、pH及び酸化還元電位が所望とするものとなるように制御手段によりpH調整剤及び酸化還元電位調整剤の添加量を制御することで、原水中の溶存過酸化水素の影響を排除して、所望とするpH及び酸化還元電位の調整水を製造することができる。
 上記発明(発明1)においては、前記pH調整剤が、アンモニア、水酸化ナトリウム、水酸化カリウム及びTMAHから選ばれた1種又は2種以上であることが好ましい(発明2)。
 かかる発明(発明2)によれば、pH・酸化還元電位調整水のpHをアルカリ側に調整することができる。
 上記発明(発明1、2)においては、前記酸化還元電位調整剤が、過酸化水素水、オゾンガス及び酸素ガスから選ばれた1種又は2種以上であることが好ましい(発明3)。
 かかる発明(発明3)によれば、これらを適宜選択することで、pH・酸化還元電位調整水の酸化還元電位をプラスあるいはマイナスに調整することができる。
 上記発明(発明1~3)においては前記酸化還元電位調整剤が過酸化水素水であり、前記pH調整剤注入装置及び前記酸化還元電位調整剤注入装置の後段で、前記pH計測手段及び前記酸化還元電位計測手段の前段に膜式脱気装置を備えることが好ましい(発明4)。
 かかる発明(発明4)によれば、膜式脱気装置によりpH・酸化還元電位調整水に溶存する酸素などの溶存ガスを効果的に脱気し、得られるpH・酸化還元電位調整水の溶存酸素濃度を低減することができるので、所望とするpH及び酸化還元電位を反映した高純度の調整水を製造することができる。
 上記発明(発明4)においては、前記膜式脱気装置の後段に不活性ガス溶解装置を備えることが好ましい(発明5)。
 かかる発明(発明5)によれば、高純度の調整水に不活性ガスを溶解することで、得られる調整水にガス成分を再度溶解しにくくし、所望とするpH及び酸化還元電位を長時間維持した高純度の調整水を製造することができる。
 上記発明(発明1~5)においては、pHが9~13で酸化還元電位が0~1,7VであるpH・酸化還元電位調整水を製造することが好ましい(発明6)。
 かかる発明(発明6)によれば、上記範囲内でpH・酸化還元電位を調整することで、洗浄対象に応じた調整水を製造する装置とすることができる。
 そして、上記発明(発明1~6)においては、前記pH・酸化還元電位調整水が、少なくとも一部に遷移金属が露出した半導体材料の洗浄用であることが好ましい(発明7)。
 かかる発明(発明7)によれば、露出したコバルトなどの遷移金属の種類に応じて、pH及び酸化還元電位を該遷移金属の腐食を抑制可能なものに調整することができる。
 本発明のpH・酸化還元電位調整水の製造装置によれば、超純水中に微量含まれる過酸化水素を除去し、続いてpH調整剤及び酸化還元電位調整剤を注入してpH・酸化還元電位調整水を調製した後、pH計測手段及び酸化還元電位計測手段の測定結果に基づいて、得られる調整水が所望とするpH及び酸化還元電位となるように制御することにより、所望とするpH及び酸化還元電位のpH・酸化還元電位調整水を製造することができる。これにより、コバルトなど被処理部材を構成する遷移金属の腐食を生じないpH及び酸化還元電位を維持した調整水を安定的に供給することが可能となる。
本発明の一実施形態によるpH・酸化還元電位調整水の製造装置を示す概略図である。 試験例1におけるコバルトの溶解速度を示すグラフである。 試験例2における過酸化水素濃度とコバルトの溶解速度との関係を示すグラフである。 試験例3におけるコバルトの溶解速度を示すグラフである。 比較例1のpH・酸化還元電位調整水の製造装置を示す概略図である。
 以下、本発明のpH・酸化還元電位調整水の製造装置の一実施形態について添付図面を参照にして詳細に説明する。
〔pH・酸化還元電位調整水の製造装置〕
 図1は、pH・酸化還元電位調整水の製造装置を示しており、図1において当該調整水の製造装置は、超純水Wの供給ライン1に過酸化水素除去機構たる白金族金属担持樹脂カラム2を設け、この後段にpH調整剤注入装置3Aと酸化還元電位調整剤注入装置3Bとを備えた構成を有し、本実施形態においては、pH調整剤注入装置3A及び酸化還元電位調整剤注入装置3Bの後段に膜式脱気装置4と、ガス溶解膜装置5とを順次備える。この膜式脱気装置4の気相側には不活性ガス源6が接続しているとともに、ガス溶解膜装置5の気相側にも不活性ガス源7が接続していて、ガス溶解膜装置5には排出ライン8が連通している。なお、符号9は膜式脱気装置4及びガス溶解膜装置5のドレンタンクである。そして、本実施形態においては、排出ライン8の途中に、pH計測手段としてのpH計10Aと酸化還元電位計測手段としてのORP計10Bとが設けられていて、これらpH計10A及びORP計10Bは、パーソナルコンピュータなどの制御装置11に接続している。一方、制御装置11は、pH調整剤注入装置3A及び酸化還元電位調整剤注入装置3Bにも接続していて、これらの装置3A,3Bからの薬剤等の注入量を制御可能となっている。
<超純水>
 本実施形態において、原水となる超純水Wとは、例えば、抵抗率:18.1MΩ・cm以上、微粒子:粒径50nm以上で1000個/L以下、生菌:1個/L以下、TOC(Total Organic Carbon):1μg/L以下、全シリコン:0.1μg/L以下、金属類:1ng/L以下、イオン類:10ng/L以下、過酸化水素;30μg/L以下、水温:25±2℃のものが好適である。
<過酸化水素除去機構>
 本実施形態においては、過酸化水素除去機構として白金族金属担持樹脂カラム2を使用する。
(白金族金属)
 本実施形態において、白金族金属担持樹脂カラム2に用いる白金族金属担持樹脂に担持する白金族金属としては、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金を挙げることができる。これらの白金族金属は、1種を単独で用いることができ、2種以上を組み合わせて用いることもでき、2種以上の合金として用いることもでき、あるいは、天然に産出される混合物の精製品を単体に分離することなく用いることもできる。これらの中で白金、パラジウム、白金/パラジウム合金の単独又はこれらの2種以上の混合物は、触媒活性が強いので好適に用いることができる。また、これらの金属のナノオーダーの微粒子も特に好適に用いることができる。
(担体樹脂)
 白金族金属担持樹脂カラム2において、白金族金属を担持させる担体樹脂としては、イオン交換樹脂を用いることができる。これらの中で、アニオン交換樹脂を特に好適に用いることができる。白金族金属は、負に帯電しているので、アニオン交換樹脂に安定に担持されて剥離しにくいものとなる。アニオン交換樹脂の交換基は、OH形であることが好ましい。OH形アニオン交換樹脂は、樹脂表面がアルカリ性となり、過酸化水素の分解を促進する。
<pH調整剤注入装置3A及び酸化還元電位調整剤注入装置3B>
 本実施形態において、注入装置は特に制限はなく、一般的な薬注装置を用いることができる。pH調整剤または酸化還元電位調整剤が液体の場合には、ダイヤフラムポンプなどのポンプを用いることができる。また、密閉容器にpH調整剤または酸化還元電位調整剤をNガスなどの不活性ガスとともに入れておき、不活性ガスの圧力によりこれらの剤を押し出す加圧式ポンプも好適に用いることができる。また、pH調整剤または酸化還元電位調整剤が気体の場合には、気体透過膜モジュールやエゼクター等の直接的な気液接触装置を用いることができる。
<pH調整剤>
 本実施形態において、pH調整剤注入装置3Aから注入するpH調整剤としては特に制限はなく、pH7未満に調整する場合には、塩酸、硝酸、硫酸、フッ酸などを用いることができる。また、pH7以上に調整する場合には、アンモニア、水酸化ナトリウム、水酸化カリウム又はTMAH等を用いることができる。pH・酸化還元電位調整水を銅やコバルトなどの遷移金属が露出しているウエハの洗浄水として用いる場合には、アルカリとするのが好ましいが、水酸化ナトリウムなどのアルカリ金属溶液は、金属成分を含有するため適当でない。したがって、本実施形態においては、アンモニアを用いることとする。
<酸化還元電位調整剤>
 本実施形態において、酸化還元電位調整剤注入装置3Bから注入する酸化還元電位調整剤としては特に制限はないが、フェリシアン化カリウムやフェロシアン化カリウムなどは、金属成分を含有するため好ましくない。したがって、酸化還元電位を正側に調整するには、過酸化水素水などの液体やオゾンガス、酸素ガスなどのガス体を用いることができる。また、酸化還元電位を負側に調整するにはシュウ酸などの液体や水素などのガス体を用いることが好ましい。例えば、銅やコバルトなどの遷移金属が露出しているウエハの洗浄水として用いる場合には、これらの材料の溶出を抑制するために酸化還元電位は正に調整するのが好ましいが、本実施形態のように後段の膜式脱気装置4で溶存酸素などを除去する場合にはガス体は適当でないことから、過酸化水素水を用いることとする。
<膜式脱気装置>
 本実施形態において、膜式脱気装置4としては、脱気膜の一方の側(液相側)に超純水Wを流し、他方の側(気相側)を真空ポンプで排気することで、溶存酸素を、膜を透過させて気相室側に移行させて除去するようにしたものを用いることができる。なお、この膜の真空側(気相側)には窒素等の不活性ガス源6を接続し、脱気性能を向上させることが好ましい。脱気膜は、酸素、窒素、蒸気等のガスは通過するが水は透過しない膜であれば良く、例えば、シリコンゴム系、ポリテトラフルオロエチレン系、ポリオレフィン系、ポリウレタン系等がある。この脱気膜としては市販の各種のものを用いることができる。
<ガス溶解膜装置>
 本実施形態において、ガス溶解膜装置5は、ガス透過膜の一方の側(液相側)に超純水Wを流し、他方の側(気相側)にガスを流通させて液相側にガスを移行させて溶解させるものであれば特に制限はなく、例えば、ポリプロピレン、ポリジメチルシロキサン、ポリカーボネート-ポリジメチルシロキサンブロック共重合体、ポリビニルフェノール-ポリジメチルシロキサン-ポリスルホンブロック共重合体、ポリ(4-メチルペンテン-1)、ポリ(2,6-ジメチルフェニレンオキシド)、ポリテトラフルオロエチレンなどの高分子膜などを用いることができる。この水に溶解させるガスとしては、本実施形態においては窒素などの不活性ガスを用い、この不活性ガスは不活性ガス源7から供給する。
〔pH・酸化還元電位調整水の製造方法〕
 前述したような構成を有する本実施形態のpH・酸化還元電位調整水の製造装置を用いた高純度の調整水の製造方法について以下説明する。
 まず、原水としての超純水Wを供給ライン1から白金族金属担持樹脂カラム2に供給する。この白金族金属担持樹脂カラム2では白金族金属の触媒作用により、超純水W中の過酸化水素を分解除去する、すなわち過酸化水素除去機構として機能する。ただし、ここでは超純水W中の溶存酸素は、過酸化水素の分解によりわずかに増加傾向を示す場合がある。
 次に、この超純水Wに対しpH調整剤注入装置3AからpH調整剤を注入するとともに、酸化還元電位調整剤注入装置3Bから酸化還元電位調整剤を注入して調整水W1を調製する。pH調整剤及び酸化還元電位調整剤の注入量(流量)は、得られる調整水W1が所望とするpH及び酸化還元電位となるように超純水Wの流量に応じて、図示しない制御手段によりその注入量を制御すればよい。例えば、銅やコバルトなどの遷移金属が露出しているウエハの洗浄水として用いる場合には、pH9~13で酸化還元電位が0~1.7Vとなるように注入量を制御すればよい。ここで、この調整水W1中には超純水Wの溶存酸素と、pH調整剤及び酸化還元電位調整剤から持ち込まれた溶存酸素とが含まれることになる。
 続いて、この調整水W1を膜式脱気装置4に供給する。膜式脱気装置4では、疎水性気体透過膜により構成された液相室及び気相室の液相室側に調整水W1を流すとともに、気相室を図示しない真空ポンプで減圧することにより、調整水W1中に含まれる溶存酸素等の溶存ガスを、疎水性気体透過膜を通して気相室に移行させることで除去する。このとき気相室側に発生する凝縮水はドレンタンク9に回収する。本実施形態においては、膜式脱気装置4の気相室にスイープガスとして不活性ガスを不活性ガス源6から減圧下で供給しているが、これにより、脱気効果が高まり調整水W1の溶存酸素除去効果が更に高くなる点で望ましい。不活性ガスとしては、特に限定されず希ガスや窒素ガスなどを用いることができる。特に、窒素は容易に入手でき、かつ高純度レベルでも安価であるため、好適に用いることができる。これにより調整水W1の溶存酸素濃度を非常に低いレベルにまで低減することができる。このようにpH調整剤及び酸化還元電位調整剤を直接脱気せずに調整水W1とした後で脱気することにより、これらの薬剤を真空脱気する際の薬液漏えいなどのリスクを低減することができる。
 そして、本実施形態においては、この脱気した調整水W1をガス溶解膜装置5に供給する。ガス溶解膜装置5では、疎水性気体透過膜により構成された液相室及び気相室の液相室側に調整水W1を流すとともに、気相室側の圧力が液相室側より高くなる条件下で不活性ガス源7から気相室に不活性ガスを供給することにより、液相室側に不活性ガスを移行させて調整水W1に溶解し、最終的な調整水(清浄調整水)W2を得ることができる。このとき気相室側に発生する凝縮水はドレンタンク9に回収する。この不活性ガスの溶解により清浄調整水W2へのガス種の再溶解を抑制することができ、清浄調整水W2を溶存酸素が低減された状態に維持することができる。不活性ガスとしては、特に限定されず希ガスや窒素ガスなどを用いることができる。特に、窒素は容易に入手でき、かつ高純度レベルでも安価であるため、好適に用いることができる。このようなガス溶解膜モジュールを用いる方法であれば、水中に容易に不活性ガスを溶解させることができ、また、溶存ガス濃度の調整、管理も容易に行うことができる。
 この清浄調整水W2は、本実施形態においてはpH計10AによりpHが計測されるとともに、ORP計10Bにより酸化還元電位が測定され、所望とするpH及び酸化還元電位であるか否かを監視される。そして、超純水Wの供給量のわずかな変動によってもpH及び酸化還元電位が変動するので、清浄調整水W2が所望とするpH及び酸化還元電位となるように制御装置11によりpH調整剤注入装置3A及び酸化還元電位調整剤注入装置3Bによる注入量を制御可能となっている。このpH及び酸化還元電位は、PI制御やPID制御などのフィードバック制御の他、周知の方法により制御することができる。
 上述したような本実施形態により製造される清浄調整水W2は、半導体用シリコン基板、液晶用ガラス基板あるいはフォトマスク用石英基板などの電子材料の洗浄機に供給される。このような清浄調整水W2は、上述したように所望とするpH及び酸化還元電位を有するのみならず、過酸化水素濃度1ppb以下、清浄溶存酸素濃度100ppb以下と非常に低いレベルとすることが可能で、清浄調整水W2へのガス種の再溶解を抑制して低い状態を維持することが可能であり、清浄調整水W2を洗浄に好適な状態に維持することが可能となっている。
 以上、本発明について添付図面を参照して説明してきたが、本発明は前記実施形態に限らず種々の変更実施が可能である。例えば、流量計、温度計、圧力計、気体濃度計等の計器類を任意の場所に設けることができる。また、必要に応じて、pH調整剤注入装置3A及び酸化還元電位調整剤注入装置3Bに薬液流量調整バルブを設けたり、不活性ガス源6及び不活性ガス源7に気体流量調整バルブ等の制御機器を設けたりしてもよい。さらに、膜式脱気装置4及びガス溶解膜装置5は、要求される調整水の水質によっては必ずしも設けなくてもよく、この場合には、pH調整剤及び酸化還元電位調整剤としてはガス体を用いることができる。
 以下の具体的実施例により本発明をさらに詳細に説明する。
(酸化還元電位の影響確認試験1)
[試験例1-1]
 300mmΦのELD用Co膜付きウエハから10mm×45mmの角形の試験片を切り出した。この試験片をアンモニア水(アンモニア濃度:1ppm、pH9.4、酸化還元電位0.2V)100mLに室温にて20分浸漬した後の処理液中のコバルトの濃度をICP-MSにより分析し、コバルトの溶解速度を算出した。結果を図2に示す。
[試験例1-2]
 試験例1-1と同じ試験片を過酸化水素添加アンモニア水(アンモニア濃度:1ppm、過酸化水素濃度10ppm、pH10.0、酸化還元電位0.4V)100mLに室温にて20分浸漬した後の処理液中のコバルトの濃度をICP-MSにより分析し、コバルトの溶解速度を算出した。結果を図2にあわせて示す。
 図2から明らかな通り、同じ濃度のアンモニア水であっても過酸化水素水を添加することにより、コバルトの溶解速度が約1/4と大幅に低下することが確認された。これは、
Co+H → CoO+H
の反応によりウエハ表面に酸化コバルト(CoO)が形成され、この酸化コバルトがアルカリ条件下では安定な不動態皮膜として働くためであると考えられる。
(酸化還元電位の影響確認試験2)
[試験例2]
 300mmΦのELD用Co膜付きウエハから10mm×45mmの角形の試験片を切り出した。この試験片を過酸化水素添加アンモニア水(アンモニア濃度:1ppm、過酸化水素濃度0.001ppm~1000ppm、酸化還元電位0.2V~1.6V)100mLに室温にて20分浸漬した後の処理液中のコバルトの濃度をICP-MSにより分析し、コバルトの溶解速度を算出した。結果を図3にあわせて示す。
 図3から明らかな通り、同じ濃度のアンモニア水であっても過酸化水素水の添加料によりコバルトの溶解速度が大きく変動し、1000ppmでは1ppmアンモニア濃度の場合(試験例1-1)と比較して約30倍と大幅に大きくなった。これによりアルカリ環境下における酸化還元電位の変化により、コバルトの溶解速度が大きく変動することがわかった。
 これは過酸化水素濃度100ppm(酸化還元電位0.5V以下)の場合は、
Co+H → CoO+HO    ・・・(1)
の反応によりウエハ表面に酸化コバルト(CoO)が形成され、この酸化コバルトがアルカリ条件下では安定な不動態皮膜として働くためであると考えられる。
 一方、過酸化水素濃度1000ppm(酸化還元電位1.6V)の場合は、豊富な過酸化水素により下記反応式が順次進行し、コバルトがイオン化して溶出すると考えられる。
Co+H → CoO+HO    ・・・(1)
3CoO+H → Co+HO    ・・・(2)
2Co+H → 3Co+HO  ・・・(3)
2Co+5H → 4CoO 2-+5H ・・・(4)
(酸化還元電位の影響確認試験3)
[試験例3-1]
 300mmΦのELD用Co膜付きウエハから10mm×45mmの角形の試験片を切り出した。また、300mmΦのELD用Cu膜付きウエハから10mm×45mmの角形の試験片を切り出した。これら2枚の試験片を電気的に接続し、アンモニア水(アンモニア濃度:1ppm、pH9.4、酸化還元電位0.2V)100mLに室温にて20分浸漬した後の処理液中のコバルトの濃度をICP-MSにより分析し、コバルトの溶解速度を算出した。結果を図4に示す。
[試験例3-2]
 試験例3-1と同じ試験片を過酸化水素添加アンモニア水(アンモニア濃度:1ppm、過酸化水素濃度10ppm、pH10.0、酸化還元電位0.4V)100mLに室温にて20分浸漬した後の処理液中のコバルトの濃度をICP-MSにより分析し、コバルトの溶解速度を算出した。結果を図4にあわせて示す。
 図4から明らかな通り、異種金属(コバルトと銅)が電気的に接続した状態では、試験例3-1は、試験例1-1と比較してコバルトの溶解速度が大幅に上昇している。なお、銅の溶出はほとんど認められなかった。これは、両者の酸化還元電位の相違から異種金属腐食が発生し、酸化還元電位の低いコバルトが溶解しやすくなるためであると考えられる。これに対し同じ濃度のアンモニア水であっても過酸化水素水を添加することにより、コバルトの溶解速度が大幅に低下することが確認された。これは、過酸化水素により、コバルト及び銅両方の表面に酸化物による不動態皮膜が形成されるためであると考えられる。
 これら試験例1~試験例3から明らかなとおり、コバルトなどの遷移金属が露出した被処理部材を洗浄した際の該被処理部材からの遷移金属の溶出には、洗浄水のpH及び酸化還元電位を制御することが有効であることがわかった。
[実施例1]
 図1に示す構成で調整水製造装置を構成し、供給ライン1から超純水Wを3L/分の流量で供給し、白金族金属として白金を担持した白金族金属担持樹脂カラム2に流通した後、pH9.5~10.2の範囲内となるようにpH調整剤注入装置3Aからアンモニア水溶液(濃度28重量%)を供給するとともに、過酸化水素濃度10ppmで酸化還元電位0.4Vとなるように酸化還元電位調整剤注入装置3Bから過酸化水素水(濃度5重量%)を供給して調整水W1を調製した。この調整水W1を膜式脱気装置4及びガス溶解膜装置5で処理して清浄調整水W2を製造した。この清浄調整水W2のpHをpH計10Aで測定するとともにORP計10Bで酸化還元電位を計測し、超純水Wの流量変動などによるpH及び酸化還元電位の変動に追従して制御装置11によりpH調整剤注入装置3A及び酸化還元電位調整剤注入装置3Bからの薬注量をPID制御した。さらに過酸化水素濃度計で過酸化水素(H)濃度を測定した。結果を清浄調整水W2の溶存酸素濃度とともに表1にあわせて示す。
 なお、膜式脱気装置4としては、リキセル(セルガード社製)を用い、スイープガスとして窒素ガスを10L/分の流量で流通した。また、ガス溶解膜装置5としては、三菱レイヨン製「MHF1704」を用い、窒素ガスを0.1L/分の流量で供給した。
[比較例1]
 図5に示すように、図1に示す装置においてガス溶解膜装置5の後段で、pH9.5~10.2の範囲内となるようにpH調整剤注入装置3Aからアンモニア水溶液(濃度28重量%)を供給するとともに、過酸化水素濃度10ppmで酸化還元電位0.4Vとなるように酸化還元電位調整剤注入装置3Bから過酸化水素水(濃度5重量%)を供給して清浄調整水W2を調製した以外は同様にして調整水製造装置を構成した。この調整水製造装置により実施例1と同じ条件で清浄調整水W2を製造した。調整水W1を膜式脱気装置4及びガス溶解膜装置5で処理して清浄調整水W2を製造した。この清浄調整水W2のpHをpH計10Aで測定するとともにORP計10Bで酸化還元電位を計測し、超純水Wの流量変動などによるpH及び酸化還元電位の変動に追従して制御装置11によりpH調整剤注入装置3A及び酸化還元電位調整剤注入装置3Bからの薬注量をPID制御した。さらに過酸化水素濃度計で過酸化水素(H)濃度を測定した。結果を清浄調整水W2の溶存酸素濃度とともに表1にあわせて示す。
[比較例2]
 比較例1において、図5の装置でpH調整剤注入装置3Aから過酸化水素濃度を供給せずにpH7.4~9.5の範囲内となるようにpH調整剤注入装置3Aからアンモニア水溶液(濃度28重量%)を供給し、酸化還元電位調整剤注入装置3Bから過酸化水素水を供給しなかった以外は同様にして清浄調整水W2を製造した。調整水W1を膜式脱気装置4及びガス溶解膜装置5で処理して清浄調整水W2を製造した。この清浄調整水W2のpHをpH計10Aで測定するとともにORP計10Bで酸化還元電位を計測し、超純水Wの流量変動などによるpH及び酸化還元電位の変動に追従して制御装置11によりpH調整剤注入装置3A及び酸化還元電位調整剤注入装置3Bからの薬注量をPID制御した。さらに過酸化水素濃度計で過酸化水素(H)濃度を測定した。結果を清浄調整水W2の溶存酸素濃度とともに表1にあわせて示す。なお、比較のために参考例として超純水WのpH及び酸化還元電位及び溶存酸素濃度を表1にあわせて示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなとおり、実施例1のpH・酸化還元電位調整水製造装置では、溶存酸素濃度が100ppb未満で、pHが目標とする範囲内で、かつORP及び過酸化水素濃度も目標とする値に非常に近似した値に制御することができた。これに対し、比較例1の調整水製造装置では、過酸化水素は目標値に近いものの溶存酸素濃度は1ppm以上であり、これに起因してpHは目標値より小さかった。これはpH調整剤注入装置3A及び酸化還元電位調整剤注入装置3Bから供給されるアンモニア水溶液及び過酸化水素水に溶解している溶存酸素の影響であると考えられる。また、比較例2では過酸化水を添加していないものであるが、溶存酸素濃度は1ppm以上であり、やはりpHは目標値より小さかった。
1 供給ライン
2 白金族金属担持樹脂カラム(過酸化水素除去機構)
3A pH調整剤注入装置
3B 酸化還元電位調整剤注入装置
4 膜式脱気装置
5 ガス溶解膜装置
6 不活性ガス源
7 不活性ガス源
8 排出ライン
9 ドレンタンク
10A pH計(pH計測手段)
10B ORP計(酸化還元電位計測手段)
11 制御装置
W 超純水
W1 調整水
W2 清浄調整水

Claims (7)

  1.  超純水供給ラインに、過酸化水素除去機構と、超純水にpH調整剤を添加するpH調整剤注入装置及び酸化還元電位調整剤を添加する酸化還元電位調整剤注入装置とを順次設け、
     前記pH調整剤注入装置及び前記酸化還元電位調整剤注入装置の後段にpH計測手段及び酸化還元電位計測手段と、
     前記pH計測手段及び前記酸化還元電位計測手段の測定値に基づいて、前記pH調整剤注入装置におけるpH調整剤の添加量及び前記酸化還元電位調整剤注入装置における酸化還元電位調整剤の添加量を制御する制御手段とを備える、pH・酸化還元電位調整水の製造装置。
  2.  前記pH調整剤が、アンモニア、水酸化ナトリウム、水酸化カリウム及びTMAHから選ばれた1種又は2種以上である、請求項1に記載のpH・酸化還元電位調整水の製造装置。
  3.  前記酸化還元電位調整剤が、過酸化水素水、オゾンガス及び酸素ガスから選ばれた1種又は2種以上である、請求項1又は2に記載のpH・酸化還元電位調整水の製造装置。
  4.  前記酸化還元電位調整剤が過酸化水素水であり、
     前記pH調整剤注入装置及び前記酸化還元電位調整剤注入装置の後段で、前記pH計測手段及び前記酸化還元電位計測手段の前段に膜式脱気装置を備える、請求項1~3のいずれか一項に記載のpH・酸化還元電位調整水の製造装置。
  5.  前記膜式脱気装置の後段に不活性ガス溶解装置を備える、請求項4に記載のpH・酸化還元電位調整水の製造装置。
  6.  pHが9~13で酸化還元電位が0~1,7VであるpH・酸化還元電位調整水を製造する、請求項1~5のいずれか一項に記載のpH・酸化還元電位調整水の製造装置。
  7.  前記pH・酸化還元電位調整水が、少なくとも一部に遷移金属が露出した半導体材料の洗浄用である、請求項1~6のいずれか一項に記載のpH・酸化還元電位調整水の製造装置。
PCT/JP2017/032791 2017-03-30 2017-09-12 pH・酸化還元電位調整水の製造装置 WO2018179493A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197026244A KR102474711B1 (ko) 2017-03-30 2017-09-12 pH·산화 환원 전위 조정수의 제조 장치
CN201780086348.9A CN110291046A (zh) 2017-03-30 2017-09-12 pH、氧化还原电位调节水的制造装置
US16/492,616 US11339065B2 (en) 2017-03-30 2017-09-12 Apparatus for producing aqueous pH- and redox potential-adjusting solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017068981A JP6299913B1 (ja) 2017-03-30 2017-03-30 pH・酸化還元電位調整水の製造装置
JP2017-068981 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018179493A1 true WO2018179493A1 (ja) 2018-10-04

Family

ID=61756522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032791 WO2018179493A1 (ja) 2017-03-30 2017-09-12 pH・酸化還元電位調整水の製造装置

Country Status (6)

Country Link
US (1) US11339065B2 (ja)
JP (1) JP6299913B1 (ja)
KR (1) KR102474711B1 (ja)
CN (1) CN110291046A (ja)
TW (1) TWI736672B (ja)
WO (1) WO2018179493A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220242760A1 (en) * 2019-06-12 2022-08-04 Kurita Water Industries Ltd. Ph-adjusted water production device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6299913B1 (ja) * 2017-03-30 2018-03-28 栗田工業株式会社 pH・酸化還元電位調整水の製造装置
JP6299912B1 (ja) * 2017-03-30 2018-03-28 栗田工業株式会社 pH及び酸化還元電位を制御可能な希釈薬液の製造装置
JP6350706B1 (ja) * 2017-03-30 2018-07-04 栗田工業株式会社 水質調整水製造装置
JP7087444B2 (ja) * 2018-02-27 2022-06-21 栗田工業株式会社 pH・酸化還元電位調整水の製造装置
WO2022034712A1 (ja) * 2020-08-12 2022-02-17 栗田工業株式会社 pH・酸化還元電位調整水製造装置
JP7088266B2 (ja) * 2020-11-13 2022-06-21 栗田工業株式会社 pH・酸化還元電位調整水の製造装置
JP2022136767A (ja) * 2021-03-08 2022-09-21 キオクシア株式会社 基板処理装置および基板処理方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10128254A (ja) * 1996-10-29 1998-05-19 Japan Organo Co Ltd 電子部品部材類の洗浄方法及び洗浄装置
JP2000183015A (ja) * 1998-12-14 2000-06-30 Toshiba Corp 半導体基板の洗浄方法及び洗浄装置
JP2000216130A (ja) * 1999-01-26 2000-08-04 Kurita Water Ind Ltd 電子材料用洗浄水及び電子材料の洗浄方法
JP2001157879A (ja) * 1999-08-31 2001-06-12 Tadahiro Omi 水溶液のpH制御の方法及びその装置
JP2003205299A (ja) * 2002-01-15 2003-07-22 Japan Organo Co Ltd 水素溶解水製造装置
JP2005019876A (ja) * 2003-06-27 2005-01-20 Trecenti Technologies Inc 半導体装置の製造方法、オゾン水洗浄システムおよびオゾン水濃度制御システム
JP2009219995A (ja) * 2008-03-14 2009-10-01 Kurita Water Ind Ltd ガス溶解水供給システム
JP2010240641A (ja) * 2009-03-18 2010-10-28 Japan Organo Co Ltd 過酸化水素分解処理水の製造方法、過酸化水素分解処理水の製造装置、処理槽、超純水の製造方法、超純水の製造装置、水素溶解水の製造方法、水素溶解水の製造装置、オゾン溶解水の製造方法、オゾン溶解水の製造装置および電子部品の洗浄方法
WO2015045975A1 (ja) * 2013-09-25 2015-04-02 オルガノ株式会社 基板処理方法および基板処理装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834912B2 (ja) * 1979-10-19 1983-07-29 工業技術院長 燃料電池
JPH08126873A (ja) * 1994-10-28 1996-05-21 Nec Corp 電子部品等の洗浄方法及び装置
WO1998008248A1 (fr) 1996-08-20 1998-02-26 Organo Corporation Procede et dispositif pour laver des composants electroniques ou similaires
US6021791A (en) * 1998-06-29 2000-02-08 Speedfam-Ipec Corporation Method and apparatus for immersion cleaning of semiconductor devices
JP4367587B2 (ja) * 1998-12-01 2009-11-18 財団法人国際科学振興財団 洗浄方法
JP2003136077A (ja) * 2001-10-31 2003-05-13 Nec Corp 半導体製造に用いる洗浄水又は浸漬水の製造装置
US20030116174A1 (en) * 2001-12-21 2003-06-26 Park Jin-Goo Semiconductor wafer cleaning apparatus and cleaning method using the same
JP5124946B2 (ja) * 2006-01-12 2013-01-23 栗田工業株式会社 超純水製造装置における超純水中の過酸化水素の除去方法
CN101100744A (zh) 2006-07-04 2008-01-09 财团法人工业技术研究院 金属腐蚀抑制的方法
JP5326572B2 (ja) * 2006-10-31 2013-10-30 栗田工業株式会社 超純水の高純度化方法及び超純水製造システム
US8999173B2 (en) * 2007-06-04 2015-04-07 Global Water Holdings, Llc Aqueous treatment apparatus utilizing precursor materials and ultrasonics to generate customized oxidation-reduction-reactant chemistry environments in electrochemical cells and/or similar devices
JP5361325B2 (ja) * 2008-10-17 2013-12-04 有限会社スプリング 溶存水素飲料水の製造装置及びその製造方法
CN103300060B (zh) * 2013-05-31 2016-01-20 天津南药科技有限公司 一种过氧化氢溶液及其制备方法
KR20160143768A (ko) * 2014-05-08 2016-12-14 오르가노 코포레이션 여과 처리 시스템 및 여과 처리 방법
CN103981363A (zh) * 2014-06-04 2014-08-13 沈少波 一种湿法提取稀贵金属的装置和方法
JP6228531B2 (ja) * 2014-12-19 2017-11-08 栗田工業株式会社 超純水製造装置及び超純水製造方法
JP6299912B1 (ja) * 2017-03-30 2018-03-28 栗田工業株式会社 pH及び酸化還元電位を制御可能な希釈薬液の製造装置
JP6299913B1 (ja) * 2017-03-30 2018-03-28 栗田工業株式会社 pH・酸化還元電位調整水の製造装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10128254A (ja) * 1996-10-29 1998-05-19 Japan Organo Co Ltd 電子部品部材類の洗浄方法及び洗浄装置
JP2000183015A (ja) * 1998-12-14 2000-06-30 Toshiba Corp 半導体基板の洗浄方法及び洗浄装置
JP2000216130A (ja) * 1999-01-26 2000-08-04 Kurita Water Ind Ltd 電子材料用洗浄水及び電子材料の洗浄方法
JP2001157879A (ja) * 1999-08-31 2001-06-12 Tadahiro Omi 水溶液のpH制御の方法及びその装置
JP2003205299A (ja) * 2002-01-15 2003-07-22 Japan Organo Co Ltd 水素溶解水製造装置
JP2005019876A (ja) * 2003-06-27 2005-01-20 Trecenti Technologies Inc 半導体装置の製造方法、オゾン水洗浄システムおよびオゾン水濃度制御システム
JP2009219995A (ja) * 2008-03-14 2009-10-01 Kurita Water Ind Ltd ガス溶解水供給システム
JP2010240641A (ja) * 2009-03-18 2010-10-28 Japan Organo Co Ltd 過酸化水素分解処理水の製造方法、過酸化水素分解処理水の製造装置、処理槽、超純水の製造方法、超純水の製造装置、水素溶解水の製造方法、水素溶解水の製造装置、オゾン溶解水の製造方法、オゾン溶解水の製造装置および電子部品の洗浄方法
WO2015045975A1 (ja) * 2013-09-25 2015-04-02 オルガノ株式会社 基板処理方法および基板処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220242760A1 (en) * 2019-06-12 2022-08-04 Kurita Water Industries Ltd. Ph-adjusted water production device

Also Published As

Publication number Publication date
KR102474711B1 (ko) 2022-12-06
JP6299913B1 (ja) 2018-03-28
US20200048116A1 (en) 2020-02-13
CN110291046A (zh) 2019-09-27
TW201836988A (zh) 2018-10-16
KR20190129039A (ko) 2019-11-19
JP2018167245A (ja) 2018-11-01
TWI736672B (zh) 2021-08-21
US11339065B2 (en) 2022-05-24

Similar Documents

Publication Publication Date Title
JP6299913B1 (ja) pH・酸化還元電位調整水の製造装置
JP6299912B1 (ja) pH及び酸化還元電位を制御可能な希釈薬液の製造装置
WO2018055801A1 (ja) 希釈薬液製造装置及び希釈薬液製造方法
KR102503070B1 (ko) pH·산화 환원 전위 조정수의 제조 장치
JP2010017633A (ja) 水素溶解水の製造装置及びこれを用いた製造方法ならびに電子部品又は電子部品の製造器具用の洗浄装置
JP6471816B2 (ja) pH・酸化還元電位調整水の製造装置
WO2020250495A1 (ja) pH調整水製造装置
US11104594B2 (en) Ammonia solution production device and ammonia solution production method
WO2022070475A1 (ja) 電子部品・部材の洗浄水供給装置及び電子部品・部材の洗浄水の供給方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903318

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197026244

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903318

Country of ref document: EP

Kind code of ref document: A1