TW201836988A - pH-氧化還原電位調整水的製造裝置 - Google Patents
pH-氧化還原電位調整水的製造裝置 Download PDFInfo
- Publication number
- TW201836988A TW201836988A TW106131359A TW106131359A TW201836988A TW 201836988 A TW201836988 A TW 201836988A TW 106131359 A TW106131359 A TW 106131359A TW 106131359 A TW106131359 A TW 106131359A TW 201836988 A TW201836988 A TW 201836988A
- Authority
- TW
- Taiwan
- Prior art keywords
- redox potential
- water
- adjusting agent
- injection device
- gas
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/58—Treatment of water, waste water, or sewage by removing specified dissolved compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D19/00—Degasification of liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D19/00—Degasification of liquids
- B01D19/0031—Degasification of liquids by filtration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F21/00—Dissolving
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/29—Mixing systems, i.e. flow charts or diagrams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/20—Measuring; Control or regulation
- B01F35/21—Measuring
- B01F35/2132—Concentration, pH, pOH, p(ION) or oxygen-demand
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/20—Measuring; Control or regulation
- B01F35/22—Control or regulation
- B01F35/2201—Control or regulation characterised by the type of control technique used
- B01F35/2202—Controlling the mixing process by feed-back, i.e. a measured parameter of the mixture is measured, compared with the set-value and the feed values are corrected
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/008—Control or steering systems not provided for elsewhere in subclass C02F
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/68—Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/70—Treatment of water, waste water, or sewage by reduction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02043—Cleaning before device manufacture, i.e. Begin-Of-Line process
- H01L21/02052—Wet cleaning only
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/20—Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/42—Treatment of water, waste water, or sewage by ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/66—Treatment of water, waste water, or sewage by neutralisation; pH adjustment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/722—Oxidation by peroxides
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/42—Treatment of water, waste water, or sewage by ion-exchange
- C02F2001/422—Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/02—Non-contaminated water, e.g. for industrial water supply
- C02F2103/04—Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/04—Oxidation reduction potential [ORP]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/06—Controlling or monitoring parameters in water treatment pH
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/18—Removal of treatment agents after treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cleaning Or Drying Semiconductors (AREA)
- Degasification And Air Bubble Elimination (AREA)
- Physical Water Treatments (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Removal Of Specific Substances (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
pH-氧化還原電位調整水的製造裝置於超純水W的供給管線1中設有鉑族金屬擔載樹脂管柱2,且於其後段具備pH調整劑注入裝置3A與氧化還原電位調整劑注入裝置3B。於該裝置3A、3B的後段依序具有膜式脫氣裝置4與氣體溶解膜裝置5,且於氣體溶解膜裝置5上連通排出管線8。於排出管線8的中途設有pH計10A與ORP計10B,該些pH計10A及ORP計10B連接於控制裝置11。而且,基於pH計10A及ORP計10B的測量結果來控制pH調整劑注入裝置3A與氧化還原電位調整劑注入裝置3B的注入量。根據所述pH-氧化還原電位調整水的製造裝置,能夠準確地調整pH及氧化還原電位。
Description
本發明是有關於一種電子產業領域等中使用的pH-氧化還原電位調整水的製造裝置,特別是有關於一種能夠防止露出有鈷等過渡金屬的半導體晶圓的帶電並將腐蝕溶解最小限化的pH-氧化還原電位調整水的製造裝置。
於LSI(Large Scale Integration,LSI)等電子零件的製造步驟中,反覆進行對具有微細結構的被處理體進行處理的步驟。而且,對於製品的品質保持或良率提高而言重要的是:進行以附著於晶圓或基板等的處理體表面的微粒子、有機物、金屬、自然氧化皮膜等的去除為目的的清洗,並達成、維持高度的清潔度。該清洗例如是使用硫酸·過氧化氫水混合液、氫氟酸溶液等清洗液來進行,並於該清洗後進行使用超純水的淋洗。對該淋洗步驟等中所供給的超純水或藥液要求高純度。另外,近年來因半導體元件的微細化、材料的多樣化、製程的複雜化而導致清洗次數變多。
一般而言,於超純水的製造時使用包括前處理系統、一次純水系統、二次純水系統(子系統)的超純水製造裝置。於使用在此種超純水製造裝置中所製造的超純水的晶圓製造等的淋洗步驟中,已知有如下問題:超純水的純度越高則比電阻值變得越高,但藉由使用比電阻值高的超純水,於清洗時容易產生靜電,從而導致絕緣膜的靜電破壞或微粒子的再附著等。因此,近年來藉由將於超純水中溶解有碳酸氣體等的稀藥液設為淋洗水,進行pH調整而減少靜電來致力解決所述般的問題。
[發明所欲解決之課題] 然而,於超純水中溶解有碳酸氣體等的淋洗水顯示出酸性,因此當對在一面或整個面露出有銅或鈷等過渡金屬的晶圓進行清洗時,有如下問題點:所露出的過渡金屬即便為微量,亦會產生腐蝕,從而導致半導體性能下降。可知,作為其對策,將使氨溶解的鹼性稀薄溶液用作酸性淋洗液的替代品,但即便使用相同濃度的氨水來進行淋洗,亦有可獲得充分的過渡金屬的腐蝕抑制效果的情況與無法獲得充分的過渡金屬的腐蝕抑制效果的情況。
因此,本發明者對晶圓等的清洗時的所露出的過渡金屬因淋洗水而產生腐蝕的原因進行了研究,結果可知,不僅淋洗水的pH而且氧化還原電位亦對過渡金屬的腐蝕產生大的影響。因而,露出有銅或鈷等過渡金屬的晶圓的清洗水理想的是可對應於成為其清洗對象的過渡金屬而準確地調整pH與氧化還原電位,但先前並無能夠準確地調整該些兩者的稀釋藥液的製造裝置。
本發明是鑒於所述課題而成者,其目的在於提供一種能夠準確地調整pH及氧化還原電位的高純度的pH-氧化還原電位調整水的製造裝置。 [解決課題之手段]
鑒於所述目的,本發明提供一種pH-氧化還原電位調整水的製造裝置,其於超純水供給管線中依序設有過氧化氫去除機構、向超純水中添加pH調整劑的pH調整劑注入裝置以及添加氧化還原電位調整劑的氧化還原電位調整劑注入裝置,於所述pH調整劑注入裝置及所述氧化還原電位調整劑注入裝置的後段具備:pH測量部件及氧化還原電位測量部件;以及控制部件,基於所述pH測量部件及所述氧化還原電位測量部件的測定值來控制所述pH調整劑注入裝置中的pH調整劑的添加量及所述氧化還原電位調整劑注入裝置中的氧化還原電位調整劑的添加量(發明1)。
根據所述發明(發明1),藉由自超純水供給管線將超純水於過氧化氫去除機構中通水,而去除超純水中微量含有的過氧化氫,繼而以成為所期望的pH及氧化還原電位的方式添加pH調整劑及氧化還原電位調整劑來製備pH-氧化還原電位調整水後,基於pH測量部件及氧化還原電位測量部件的測定結果,以pH及氧化還原電位成為所期望的pH及氧化還原電位的方式,藉由控制部件來控制pH調整劑及氧化還原電位調整劑的添加量,藉此可排除原水中的溶存過氧化氫的影響來製造所期望的pH及氧化還原電位的調整水。
於所述發明(發明1)中,較佳為所述pH調整劑為選自氨、氫氧化鈉、氫氧化鉀及四甲基氫氧化銨(Tetramethyl ammonium hydroxide,TMAH)中的一種或兩種以上(發明2)。
根據所述發明(發明2),可將pH-氧化還原電位調整水的pH調整為鹼側。
於所述發明(發明1、發明2)中,較佳為所述氧化還原電位調整劑為選自過氧化氫水、臭氧氣體及氧氣中的一種或兩種以上(發明3)。
根據所述發明(發明3),藉由適宜選擇該些,可將pH-氧化還原電位調整水的氧化還原電位調整為正或負。
於所述發明(發明1~發明3)中,較佳為所述氧化還原電位調整劑為過氧化氫水,且於所述pH調整劑注入裝置及所述氧化還原電位調整劑注入裝置的後段、所述pH測量部件及所述氧化還原電位測量部件的前段具備膜式脫氣裝置(發明4)。
根據所述發明(發明4),可藉由膜式脫氣裝置將溶存於pH-氧化還原電位調整水中的氧等溶存氣體有效地脫氣,並可減少所獲得的pH-氧化還原電位調整水的溶存氧濃度,故可製造反映出所期望的pH及氧化還原電位的高純度的調整水。
於所述發明(發明4)中,較佳為於所述膜式脫氣裝置的後段具備惰性氣體溶解裝置(發明5)。
根據所述發明(發明5),藉由將惰性氣體溶解於高純度的調整水中,可使氣體成分不易再度溶解於所獲得的調整水中,可製造長時間維持所期望的pH及氧化還原電位的高純度的調整水。
於所述發明(發明1~發明5)中,較佳為製造pH為9~13、氧化還原電位為0 V~1.7 V的pH-氧化還原電位調整水(發明6)。
根據所述發明(發明6),藉由於所述範圍內調整pH-氧化還原電位,可製成製造與清洗對象相對應的調整水的裝置。
而且,於所述發明(發明1~發明6)中,較佳為所述pH-氧化還原電位調整水用於在至少一部分露出有過渡金屬的半導體材料的清洗(發明7)。
根據所述發明(發明7),可對應於露出的鈷等過渡金屬的種類,而將pH及氧化還原電位調整為能夠抑制該過渡金屬的腐蝕者。 [發明的效果]
根據本發明的pH-氧化還原電位調整水的製造裝置,去除超純水中微量含有的過氧化氫,繼而注入pH調整劑及氧化還原電位調整劑來製備pH-氧化還原電位調整水後,基於pH測量部件及氧化還原電位測量部件的測定結果,以所獲得的調整水成為所期望的pH及氧化還原電位的方式進行控制,藉此可製造所期望的pH及氧化還原電位的pH-氧化還原電位調整水。藉此,能夠穩定地供給維持不會產生鈷等構成被處理構件的過渡金屬的腐蝕的pH及氧化還原電位的調整水。
以下,參照隨附圖式來對本發明的pH-氧化還原電位調整水的製造裝置的一實施形態進行詳細說明。
[pH-氧化還原電位調整水的製造裝置] 圖1表示pH-氧化還原電位調整水的製造裝置,圖1中,該調整水的製造裝置具有以下構成:於超純水W的供給管線1中設有作為過氧化氫去除機構的鉑族金屬擔載樹脂管柱2,且於其後段具備pH調整劑注入裝置3A與氧化還原電位調整劑注入裝置3B,本實施形態中,於pH調整劑注入裝置3A及氧化還原電位調整劑注入裝置3B的後段依序具備膜式脫氣裝置4與氣體溶解膜裝置5。於該膜式脫氣裝置4的氣相側連接惰性氣體源6並且於氣體溶解膜裝置5的氣相側亦連接惰性氣體源7,於氣體溶解膜裝置5上連通排出管線8。再者,符號9為膜式脫氣裝置4及氣體溶解膜裝置5的排泄櫃(drain tank)。而且,本實施形態中,於排出管線8的中途設有作為pH測量部件的pH計10A與作為氧化還原電位測量部件的氧化還原電位(Oxidation reduction potential,ORP)計10B,該些pH計10A及ORP計10B連接於個人電腦等控制裝置11。另一方面,控制裝置11亦連接於pH調整劑注入裝置3A及氧化還原電位調整劑注入裝置3B,並能夠控制源自該些裝置3A、3B的藥劑等的注入量。
<超純水> 本實施形態中,所謂成為原水的超純水W,例如較佳的是電阻率為18.1 MΩ·cm以上、微粒子為粒徑50 nm以上且1000個/L以下、生菌為1個/L以下、總有機碳(Total Organic Carbon,TOC)為1 μg/L以下、總矽為0.1 μg/L以下、金屬類為1 ng/L以下、離子類為10 ng/L以下、過氧化氫為30 μg/L以下、水溫為25℃±2℃的超純水。
<過氧化氫去除機構> 本實施形態中,使用鉑族金屬擔載樹脂管柱2作為過氧化氫去除機構。
(鉑族金屬) 本實施形態中,鉑族金屬擔載樹脂管柱2中使用的鉑族金屬擔載樹脂所擔載的鉑族金屬可列舉釕、銠、鈀、鋨、銥及鉑。該些鉑族金屬可單獨使用一種,亦可組合使用兩種以上,亦可以兩種以上的合金的形式使用,或者亦可不將天然產出的混合物的純化品分離成單體而使用。該些中,鉑、鈀、鉑/鈀合金單獨或該些金屬的兩種以上的混合物因觸媒活性強,故可較佳地使用。另外,亦可特別較佳地使用該些金屬的奈米級微粒子。
(載體樹脂) 鉑族金屬擔載樹脂管柱2中,擔載鉑族金屬的載體樹脂可使用離子交換樹脂。該些離子交換樹脂中,可特別較佳地使用陰離子交換樹脂。鉑族金屬因帶負電,故穩定地擔載於陰離子交換樹脂而不易剝離。陰離子交換樹脂的交換基較佳為OH形。OH形陰離子交換樹脂的樹脂表面成為鹼性,促進過氧化氫的分解。
<pH調整劑注入裝置3A及氧化還原電位調整劑注入裝置3B> 本實施形態中,注入裝置並無特別限制,可使用一般的注藥裝置。於pH調整劑或氧化還原電位調整劑為液體的情況下,可使用隔膜泵(diaphragm pump)等泵。另外,亦可較佳地使用將pH調整劑或氧化還原電位調整劑與N2
氣體等惰性氣體一同放入密閉容器中,利用惰性氣體的壓力對該些的劑進行擠出的加壓式泵。另外,於pH調整劑或氧化還原電位調整劑為氣體的情況下,可使用氣體透過膜模組或噴射器(ejector)等直接的氣液接觸裝置。
<pH調整劑> 本實施形態中,自pH調整劑注入裝置3A注入的pH調整劑並無特別限制,於調整為pH未滿7的情況下,可使用鹽酸、硝酸、硫酸、氫氟酸等。另外,於調整為pH為7以上的情況下,可使用氨、氫氧化鈉、氫氧化鉀或TMAH等。於將pH-氧化還原電位調整水用作露出有銅或鈷等過渡金屬的晶圓的清洗水的情況下,較佳為設為鹼,但氫氧化鈉等的鹼金屬溶液因含有金屬成分而不適當。因而,本實施形態中,設為使用氨。
<氧化還原電位調整劑> 本實施形態中,自氧化還原電位調整劑注入裝置3B注入的氧化還原電位調整劑並無特別限制,但鐵氰化鉀或亞鐵氰化鉀等因含有金屬成分而欠佳。因而,於將氧化還原電位調整為正側時,可使用過氧化氫水等液體或臭氧氣體、氧氣等氣體。另外,於將氧化還原電位調整為負側時,較佳為使用草酸等液體或氫氣等氣體。例如,於用作露出有銅或鈷等過渡金屬的晶圓的清洗水的情況下,為了抑制該些材料的溶出,氧化還原電位較佳為調整為正,本實施形態般利用後段的膜式脫氣裝置4去除溶存氧等的情況下,氣體不適當,因此設為使用過氧化氫水。
<膜式脫氣裝置> 本實施形態中,膜式脫氣裝置4可使用以如下方式設定的裝置:於脫氣膜的一側(液相側)流通超純水W,於另一側(氣相側)利用真空泵進行排氣,藉此使溶存氧透過膜移動至氣相室側而加以去除。再者,較佳為於該膜的真空側(氣相側)連接氮等的惰性氣體源6,提高脫氣性能。脫氣膜只要為氧、氮、蒸氣等氣體通過但水不透過的膜即可,例如有矽橡膠系、聚四氟乙烯系、聚烯烴系、聚胺基甲酸酯系等。該脫氣膜可使用市售的各種脫氣膜。
<氣體溶解膜裝置> 本實施形態中,氣體溶解膜裝置5只要於氣體透過膜的一側(液相側)流通超純水W,於另一側(氣相側)使氣體流通而使氣體移動至液相側並溶解,則並無特別限制,例如可使用:聚丙烯、聚二甲基矽氧烷、聚碳酸酯-聚二甲基矽氧烷嵌段共聚物、聚乙烯基苯酚-聚二甲基矽氧烷-聚碸嵌段共聚物、聚(4-甲基戊烯-1)、聚(2,6-二甲基苯醚)、聚四氟乙烯等的高分子膜等。關於該溶解於水中的氣體,本實施形態中使用氮等惰性氣體,該惰性氣體是自惰性氣體源7供給。
[pH-氧化還原電位調整水的製造方法] 以下,對使用具有如所述般的構成的本實施形態的pH-氧化還原電位調整水的製造裝置的高純度的調整水的製造方法進行說明。
首先,自供給管線1將作為原水的超純水W供給於鉑族金屬擔載樹脂管柱2。於該鉑族金屬擔載樹脂管柱2中,藉由鉑族金屬的觸媒作用將超純水W中的過氧化氫分解去除、即作為過氧化氫去除機構而發揮功能。然而,此處超純水W中的溶存氧因過氧化氫的分解而有時表現出稍增加的傾向。
其次,相對於該超純水W,自pH調整劑注入裝置3A注入pH調整劑並且自氧化還原電位調整劑注入裝置3B注入氧化還原電位調整劑,從而製備調整水W1。關於pH調整劑及氧化還原電位調整劑的注入量(流量),只要以所獲得的調整水W1成為所期望的pH及氧化還原電位的方式對應於超純水W的流量並藉由未圖示的控制部件來控制其注入量即可。例如,於用作露出有銅或鈷等過渡金屬的晶圓的清洗水的情況下,只要以pH成為9~13、氧化還原電位成為0 V~1.7 V的方式控制注入量即可。此處,該調整水W1中包含超純水W的溶存氧、與自pH調整劑及氧化還原電位調整劑所帶入的溶存氧。
繼而,將該調整水W1供給於膜式脫氣裝置4。於膜式脫氣裝置4中,於藉由疏水性氣體透過膜所構成的液相室及氣相室的液相室側流通調整水W1,並且藉由未圖示的真空泵對氣相室進行減壓,藉此使調整水W1中所含的溶存氧等溶存氣體通過疏水性氣體透過膜而移動至氣相室,由此加以去除。此時,將於氣相室側產生的凝縮水回收至排泄櫃9中。本實施形態中,自惰性氣體源6將作為吹掃氣體(sweep gas)的惰性氣體於減壓下供給於膜式脫氣裝置4的氣相室,藉此脫氣效果提高而調整水W1的溶存氧去除效果進一步提高,於此方面而言理想。惰性氣體並無特別限定,可使用稀有氣體或氮氣等。特別是氮可容易獲取,且即便為高純度水準亦廉價,故可較佳地使用。藉此可降低調整水W1的溶存氧濃度至非常低的水準。藉由如此般不將pH調整劑及氧化還原電位調整劑直接脫氣而製成調整水W1之後進行脫氣,可降低對該些藥劑進行真空脫氣時的藥液洩漏等風險。
而且,本實施形態中,將該經脫氣的調整水W1供給於氣體溶解膜裝置5。於氣體溶解膜裝置5中,於藉由疏水性氣體透過膜所構成的液相室及氣相室的液相室側流通調整水W1,並且於氣相室側的壓力高於液相室側的條件下自惰性氣體源7將惰性氣體供給於氣相室,藉此可使惰性氣體移動至液相室側並溶解於調整水W1中,獲得最終的調整水(清潔調整水)W2。此時,將於氣相室側產生的凝縮水回收至排泄櫃9中。可藉由該惰性氣體的溶解而抑制清潔調整水W2中的氣體種的再溶解,可將清潔調整水W2維持於溶存氧經減少的狀態。惰性氣體並無特別限定,可使用稀有氣體或氮氣等。特別是氮可容易獲取,且即便為高純度水準亦廉價,故可較佳地使用。若為使用此種氣體溶解膜模組的方法,則可使惰性氣體容易地溶解於水中,另外亦可容易地進行溶存氣體濃度的調整、管理。
該清潔調整水W2於本實施形態中,藉由pH計10A來測量pH並且藉由ORP計10B來測定氧化還原電位,監視是否為所期望的pH及氧化還原電位。而且,因超純水W的供給量的微小的變動亦引起pH及氧化還原電位發生變動,因此能夠以清潔調整水W2成為所期望的pH及氧化還原電位的方式藉由控制裝置11來控制pH調整劑注入裝置3A及氧化還原電位調整劑注入裝置3B的注入量。該pH及氧化還原電位除比例積分(Proportion integration,PI)控制或比例積分微分(Proportion integration differentiation,PID)控制等回饋控制以外,亦可藉由眾所周知的方法來進行控制。
將所述般的藉由本實施形態所製造的清潔調整水W2供給於半導體用矽基板、液晶用玻璃基板或光罩用石英基板等電子材料的清洗機。此種清潔調整水W2如所述般,不僅能夠具有所期望的pH及氧化還原電位,而且能夠製成過氧化氫濃度1 ppb以下、清潔溶存氧濃度100 ppb以下的非常低的水準,能夠抑制清潔調整水W2中的氣體種的再溶解而維持低的狀態,並能夠將清潔調整水W2維持為適於清洗的狀態。
以上,參照隨附圖式對本發明進行了說明,但本發明並不限於所述實施形態而能夠實施各種變更。例如,可於任意部位設置流量計、溫度計、壓力計、氣體濃度計等測量儀器類。另外,視需要亦可於pH調整劑注入裝置3A及氧化還原電位調整劑注入裝置3B中設置藥液流量調整閥,或於惰性氣體源6及惰性氣體源7中設置氣體流量調整閥等控制機器。進而,膜式脫氣裝置4及氣體溶解膜裝置5亦可未必根據所要求的調整水的水質來設置,該情況下,作為pH調整劑及氧化還原電位調整劑,可使用氣體。 [實施例]
藉由以下的具體實施例對本發明進行更詳細說明。
(氧化還原電位的影響確認試驗1) [試驗例1-1] 自300 mmΦ的帶有電致發光顯示器(electroluminescent display,ELD)用Co膜的晶圓切出10 mm×45 mm的角形試驗片。利用感應耦合電漿質量分析(Inductively coupled plasma mass spectrometry,ICP-MS)來分析將該試驗片在室溫下於氨水(氨濃度:1 ppm,pH為9.4,氧化還原電位為0.2 V)100 mL中浸漬20分鐘後的處理液中的鈷的濃度,從而算出鈷的溶解速度。將結果示於圖2中。
[試驗例1-2] 利用ICP-MS來分析將與試驗例1-1相同的試驗片在室溫下於添加有過氧化氫的氨水(氨濃度:1 ppm,過氧化氫濃度為10 ppm,pH為10.0,氧化還原電位為0.4 V)100 mL中浸漬20分鐘後的處理液中的鈷的濃度,從而算出鈷的溶解速度。將結果一併示於圖2中。
根據圖2明確般,確認到即便為相同濃度的氨水,亦藉由添加過氧化氫水,鈷的溶解速度為約1/4而大幅度降低。認為這是因為:藉由 Co+H2
O2
→CoO+H2
O 的反應,於晶圓表面形成氧化鈷(CoO),該氧化鈷於鹼條件下作為穩定的鈍態皮膜發揮作用。
(氧化還原電位的影響確認試驗2) [試驗例2] 自300 mmΦ的帶有ELD用Co膜的晶圓切出10 mm×45 mm的角形試驗片。利用ICP-MS來分析將該試驗片在室溫下於添加有過氧化氫的氨水(氨濃度:1 ppm,過氧化氫濃度為0.001 ppm~1000 ppm,氧化還原電位為0.2 V~1.6 V)100 mL中浸漬20分鐘後的處理液中的鈷的濃度,從而算出鈷的溶解速度。將結果一併示於圖3中。
根據圖3所明確般,即便為相同濃度的氨水,亦藉由過氧化氫水的添加料而鈷的溶解速度的變動大,於1000 ppm下,與1 ppm氨濃度的情況(試驗例1-1)相比較,為約30倍而大幅度地變大。由此可知,因鹼環境下的氧化還原電位的變化而導致鈷的溶解速度的變動大。
認為這是因為:於過氧化氫濃度為100 ppm(氧化還原電位為0.5 V以下)的情況下,藉由 Co+H2
O2
→CoO+H2
O・・・(1) 的反應,於晶圓表面形成氧化鈷(CoO),該氧化鈷於鹼條件下作為穩定的鈍態皮膜發揮作用。
另一方面,認為於過氧化氫濃度為1000 ppm(氧化還原電位為1.6 V)的情況下,藉由豐富的過氧化氫而依序進行下述反應式,鈷進行離子化而溶出。 Co+H2
O2
→CoO+H2
O・・・(1) 3CoO+H2
O2
→Co3
O4
+H2
O・・・(2) 2Co3
O4
+H2
O2
→3Co2
O3
+H2
O・・・(3) 2Co2
O3
+5H2
O2
→4CoO4 2-
+5H2
・・・(4)
(氧化還原電位的影響確認試驗3) [試驗例3-1] 自300 mmΦ的帶有ELD用Co膜的晶圓切出10 mm×45 mm的角形試驗片。另外,自300 mmΦ的帶有ELD用Cu膜的晶圓切出10 mm×45 mm的角形試驗片。利用ICP-MS來分析將該些兩片試驗片電性連接,並在室溫下於氨水(氨濃度:1 ppm,pH為9.4,氧化還原電位為0.2 V)100 mL中浸漬20分鐘後的處理液中的鈷的濃度,從而算出鈷的溶解速度。將結果示於圖4中。
[試驗例3-2] 利用ICP-MS來分析將與試驗例3-1相同的試驗片在室溫下於添加有過氧化氫的氨水(氨濃度:1 ppm,過氧化氫濃度為10 ppm,pH為10.0,氧化還原電位為0.4 V)100 mL中浸漬20分鐘後的處理液中的鈷的濃度,從而算出鈷的溶解速度。將結果一併示於圖4中。
根據圖4明確般,於將異種金屬(鈷與銅)電性連接的狀態下,與試驗例1-1相比較,試驗例3-1中鈷的溶解速度大幅度上昇。再者,幾乎未確認到銅的溶出。認為這是因為因兩者的氧化還原電位的不同而導致異種金屬腐蝕,氧化還原電位低的鈷容易溶解。相對於此,確認到即便為相同濃度的氨水,亦藉由添加過氧化氫水,鈷的溶解速度大幅度地降低。認為這是因為藉由過氧化氫而於鈷及銅兩者的表面形成氧化物的鈍態皮膜。
根據該些試驗例1~試驗例3明確般,可知對清洗露出有鈷等過渡金屬的被處理構件時的自該被處理構件的過渡金屬的溶出而言,有效的是控制清洗水的pH及氧化還原電位。
[實施例1] 以圖1所示的構成而構成調整水製造裝置,自供給管線1以3 L/min的流量供給超純水W,於擔載有鉑作為鉑族金屬的鉑族金屬擔載樹脂管柱2中流通後,以pH成為9.5~10.2的範圍內的方式自pH調整劑注入裝置3A供給氨水溶液(濃度28重量%),並且以成為過氧化氫濃度10 ppm、氧化還原電位0.4 V的方式自氧化還原電位調整劑注入裝置3B供給過氧化氫水(濃度5重量%)而製備調整水W1。利用膜式脫氣裝置4及氣體溶解膜裝置5對該調整水W1進行處理而製造清潔調整水W2。利用pH計10A測定該清潔調整水W2的pH,並且利用ORP計10B測量氧化還原電位,追隨由超純水W的流量變動等而引起的pH及氧化還原電位的變動,並利用控制裝置11對自pH調整劑注入裝置3A及氧化還原電位調整劑注入裝置3B的注藥量進行PID控制。進而利用過氧化氫濃度計測定過氧化氫(H2
O2
)濃度。將結果與清潔調整水W2的溶存氧濃度一併示於表1中。
再者,膜式脫氣裝置4是使用利克塞(Liqui-Cel)(賽爾加(Celgard)公司製造),以10 L/min的流量流通作為吹掃氣體的氮氣。另外,氣體溶解膜裝置5是使用三菱麗陽製造的「MHF1704」,以0.1 L/min的流量供給氮氣。
[比較例1] 如圖5所示,於圖1所示的裝置中,在氣體溶解膜裝置5的後段,以pH成為9.5~10.2的範圍內的方式自pH調整劑注入裝置3A供給氨水溶液(濃度28重量%),並且以成為過氧化氫濃度10 ppm、氧化還原電位0.4 V的方式自氧化還原電位調整劑注入裝置3B供給過氧化氫水(濃度5重量%)而製備清潔調整水W2,除此以外同樣地進行而構成調整水製造裝置。藉由該調整水製造裝置於與實施例1相同的條件下製造清潔調整水W2。利用膜式脫氣裝置4及氣體溶解膜裝置5對調整水W1進行處理而製造清潔調整水W2。利用pH計10A測定該清潔調整水W2的pH,並且利用ORP計10B測量氧化還原電位,追隨由超純水W的流量變動等而引起的pH及氧化還原電位的變動,並利用控制裝置11對自pH調整劑注入裝置3A及氧化還原電位調整劑注入裝置3B的注藥量進行PID控制。進而利用過氧化氫濃度計測定過氧化氫(H2
O2
)濃度。將結果與清潔調整水W2的溶存氧濃度一併示於表1中。
[比較例2] 於比較例1中,於圖5的裝置中,未自pH調整劑注入裝置3A供給過氧化氫濃度,以pH成為7.4~9.5的範圍內的方式自pH調整劑注入裝置3A供給氨水溶液(濃度28重量%),未自氧化還原電位調整劑注入裝置3B供給過氧化氫水,除此以外同樣地進行而製造清潔調整水W2。利用膜式脫氣裝置4及氣體溶解膜裝置5對調整水W1進行處理而製造清潔調整水W2。利用pH計10A測定該清潔調整水W2的pH,並且利用ORP計10B測量氧化還原電位,追隨由超純水W的流量變動等而引起的pH及氧化還原電位的變動,並利用控制裝置11對自pH調整劑注入裝置3A及氧化還原電位調整劑注入裝置3B的注藥量進行PID控制。進而利用過氧化氫濃度計測定過氧化氫(H2
O2
)濃度。將結果與清潔調整水W2的溶存氧濃度一併示於表1中。再者,為了比較而以參考例的形式將超純水W的pH及氧化還原電位及溶存氧濃度一併示於表1中。
[表1]
由表1明確,於實施例1的pH-氧化還原電位調整水製造裝置中,可控制為如下值:溶存氧濃度未滿100 ppb,pH為設為目標的範圍內,且ORP及過氧化氫濃度亦非常接近設為目標的值。相對於此,於比較例1的調整水製造裝置中,過氧化氫接近目標值但溶存氧濃度為1 ppm以上,起因於此而pH小於目標值。可認為這是自pH調整劑注入裝置3A及氧化還原電位調整劑注入裝置3B所供給的氨水溶液及過氧化氫水中溶解的溶存氧的影響。另外,於比較例2中未添加過氧化水,但溶存氧濃度為1 ppm以上,pH仍小於目標值。
1‧‧‧供給管線
2‧‧‧鉑族金屬擔載樹脂管柱(過氧化氫去除機構)
3A‧‧‧pH調整劑注入裝置
3B‧‧‧氧化還原電位調整劑注入裝置
4‧‧‧膜式脫氣裝置
5‧‧‧氣體溶解膜裝置
6、7‧‧‧惰性氣體源
8‧‧‧排出管線
9‧‧‧排泄櫃
10A‧‧‧pH計(pH測量部件)
10B‧‧‧ORP計(氧化還原電位測量部件)
11‧‧‧控制裝置
W‧‧‧超純水
W1‧‧‧調整水
W2‧‧‧清潔調整水(最終的調整水)
圖1為表示本發明的一實施形態的pH-氧化還原電位調整水的製造裝置的概略圖。 圖2為表示試驗例1的鈷的溶解速度的圖表。 圖3為表示試驗例2的過氧化氫濃度與鈷的溶解速度的關係的圖表。 圖4為表示試驗例3的鈷的溶解速度的圖表。 圖5為表示比較例1的pH-氧化還原電位調整水的製造裝置的概略圖。
Claims (7)
- 一種pH-氧化還原電位調整水的製造裝置,其於超純水供給管線中依序設有過氧化氫去除機構、向超純水中添加pH調整劑的pH調整劑注入裝置以及添加氧化還原電位調整劑的氧化還原電位調整劑注入裝置, 於所述pH調整劑注入裝置及所述氧化還原電位調整劑注入裝置的後段具備:pH測量部件及氧化還原電位測量部件;以及 控制部件,基於所述pH測量部件及所述氧化還原電位測量部件的測定值來控制所述pH調整劑注入裝置中的所述pH調整劑的添加量及所述氧化還原電位調整劑注入裝置中的所述氧化還原電位調整劑的添加量。
- 如申請專利範圍第1項所述的pH-氧化還原電位調整水的製造裝置,其中所述pH調整劑為選自氨、氫氧化鈉、氫氧化鉀及四甲基氫氧化銨中的一種或兩種以上。
- 如申請專利範圍第1項或第2項所述的pH-氧化還原電位調整水的製造裝置,其中所述氧化還原電位調整劑為選自過氧化氫水、臭氧氣體及氧氣中的一種或兩種以上。
- 如申請專利範圍第1項至第3項中任一項所述的pH-氧化還原電位調整水的製造裝置,其中所述氧化還原電位調整劑為過氧化氫水,且 於所述pH調整劑注入裝置及所述氧化還原電位調整劑注入裝置的後段、所述pH測量部件及所述氧化還原電位測量部件的前段具備膜式脫氣裝置。
- 如申請專利範圍第4項所述的pH-氧化還原電位調整水的製造裝置,其於所述膜式脫氣裝置的後段具備惰性氣體溶解裝置。
- 如申請專利範圍第1項至第5項中任一項所述的pH-氧化還原電位調整水的製造裝置,其製造pH為9~13、氧化還原電位為0 V~1.7 V的pH-氧化還原電位調整水。
- 如申請專利範圍第1項至第6項中任一項所述的pH-氧化還原電位調整水的製造裝置,其中所述pH-氧化還原電位調整水用於在至少一部分露出有過渡金屬的半導體材料的清洗。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-068981 | 2017-03-30 | ||
JP2017068981A JP6299913B1 (ja) | 2017-03-30 | 2017-03-30 | pH・酸化還元電位調整水の製造装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201836988A true TW201836988A (zh) | 2018-10-16 |
TWI736672B TWI736672B (zh) | 2021-08-21 |
Family
ID=61756522
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106131359A TWI736672B (zh) | 2017-03-30 | 2017-09-13 | pH-氧化還原電位調整水的製造裝置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11339065B2 (zh) |
JP (1) | JP6299913B1 (zh) |
KR (1) | KR102474711B1 (zh) |
CN (1) | CN110291046A (zh) |
TW (1) | TWI736672B (zh) |
WO (1) | WO2018179493A1 (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6299913B1 (ja) * | 2017-03-30 | 2018-03-28 | 栗田工業株式会社 | pH・酸化還元電位調整水の製造装置 |
JP6299912B1 (ja) * | 2017-03-30 | 2018-03-28 | 栗田工業株式会社 | pH及び酸化還元電位を制御可能な希釈薬液の製造装置 |
JP6350706B1 (ja) * | 2017-03-30 | 2018-07-04 | 栗田工業株式会社 | 水質調整水製造装置 |
JP7087444B2 (ja) * | 2018-02-27 | 2022-06-21 | 栗田工業株式会社 | pH・酸化還元電位調整水の製造装置 |
JP6900975B2 (ja) * | 2019-06-12 | 2021-07-14 | 栗田工業株式会社 | pH調整水製造装置 |
US20240124337A1 (en) * | 2020-08-12 | 2024-04-18 | Kurita Water Industries Ltd. | Ph/redox potential-adjusted water production apparatus |
JP7088266B2 (ja) * | 2020-11-13 | 2022-06-21 | 栗田工業株式会社 | pH・酸化還元電位調整水の製造装置 |
JP2022136767A (ja) * | 2021-03-08 | 2022-09-21 | キオクシア株式会社 | 基板処理装置および基板処理方法 |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5834912B2 (ja) * | 1979-10-19 | 1983-07-29 | 工業技術院長 | 燃料電池 |
JPH08126873A (ja) * | 1994-10-28 | 1996-05-21 | Nec Corp | 電子部品等の洗浄方法及び装置 |
CN1299333C (zh) | 1996-08-20 | 2007-02-07 | 奥加诺株式会社 | 清洗电子元件或其制造设备的元件的方法和装置 |
JP3332323B2 (ja) * | 1996-10-29 | 2002-10-07 | オルガノ株式会社 | 電子部品部材類の洗浄方法及び洗浄装置 |
US6021791A (en) * | 1998-06-29 | 2000-02-08 | Speedfam-Ipec Corporation | Method and apparatus for immersion cleaning of semiconductor devices |
JP4367587B2 (ja) * | 1998-12-01 | 2009-11-18 | 財団法人国際科学振興財団 | 洗浄方法 |
JP4151927B2 (ja) * | 1998-12-14 | 2008-09-17 | 株式会社東芝 | 半導体基板の洗浄方法 |
JP4273440B2 (ja) * | 1999-01-26 | 2009-06-03 | 栗田工業株式会社 | 電子材料用洗浄水及び電子材料の洗浄方法 |
JP2001157879A (ja) * | 1999-08-31 | 2001-06-12 | Tadahiro Omi | 水溶液のpH制御の方法及びその装置 |
JP2003136077A (ja) * | 2001-10-31 | 2003-05-13 | Nec Corp | 半導体製造に用いる洗浄水又は浸漬水の製造装置 |
US20030116174A1 (en) * | 2001-12-21 | 2003-06-26 | Park Jin-Goo | Semiconductor wafer cleaning apparatus and cleaning method using the same |
JP4109455B2 (ja) * | 2002-01-15 | 2008-07-02 | オルガノ株式会社 | 水素溶解水製造装置 |
JP2005019876A (ja) * | 2003-06-27 | 2005-01-20 | Trecenti Technologies Inc | 半導体装置の製造方法、オゾン水洗浄システムおよびオゾン水濃度制御システム |
JP5124946B2 (ja) * | 2006-01-12 | 2013-01-23 | 栗田工業株式会社 | 超純水製造装置における超純水中の過酸化水素の除去方法 |
CN101100744A (zh) | 2006-07-04 | 2008-01-09 | 财团法人工业技术研究院 | 金属腐蚀抑制的方法 |
KR101098068B1 (ko) * | 2006-10-31 | 2011-12-26 | 쿠리타 고교 가부시키가이샤 | 초순수의 고순도화 방법 및 장치 |
US8999173B2 (en) * | 2007-06-04 | 2015-04-07 | Global Water Holdings, Llc | Aqueous treatment apparatus utilizing precursor materials and ultrasonics to generate customized oxidation-reduction-reactant chemistry environments in electrochemical cells and/or similar devices |
JP5251184B2 (ja) | 2008-03-14 | 2013-07-31 | 栗田工業株式会社 | ガス溶解水供給システム |
JP5361325B2 (ja) * | 2008-10-17 | 2013-12-04 | 有限会社スプリング | 溶存水素飲料水の製造装置及びその製造方法 |
JP5329463B2 (ja) * | 2009-03-18 | 2013-10-30 | オルガノ株式会社 | 過酸化水素分解処理水の製造方法、過酸化水素分解処理水の製造装置、処理槽、超純水の製造方法、超純水の製造装置、水素溶解水の製造方法、水素溶解水の製造装置、オゾン溶解水の製造方法、オゾン溶解水の製造装置および電子部品の洗浄方法 |
CN103300060B (zh) * | 2013-05-31 | 2016-01-20 | 天津南药科技有限公司 | 一种过氧化氢溶液及其制备方法 |
KR101914843B1 (ko) * | 2013-09-25 | 2018-11-02 | 오르가노 코포레이션 | 기판처리방법 및 기판처리장치 |
MY176582A (en) * | 2014-05-08 | 2020-08-17 | Organo Corp | Filtration treatment system and filtration treatment method |
CN103981363A (zh) * | 2014-06-04 | 2014-08-13 | 沈少波 | 一种湿法提取稀贵金属的装置和方法 |
JP6228531B2 (ja) * | 2014-12-19 | 2017-11-08 | 栗田工業株式会社 | 超純水製造装置及び超純水製造方法 |
JP6299913B1 (ja) * | 2017-03-30 | 2018-03-28 | 栗田工業株式会社 | pH・酸化還元電位調整水の製造装置 |
JP6299912B1 (ja) * | 2017-03-30 | 2018-03-28 | 栗田工業株式会社 | pH及び酸化還元電位を制御可能な希釈薬液の製造装置 |
-
2017
- 2017-03-30 JP JP2017068981A patent/JP6299913B1/ja active Active
- 2017-09-12 US US16/492,616 patent/US11339065B2/en active Active
- 2017-09-12 WO PCT/JP2017/032791 patent/WO2018179493A1/ja active Application Filing
- 2017-09-12 KR KR1020197026244A patent/KR102474711B1/ko active IP Right Grant
- 2017-09-12 CN CN201780086348.9A patent/CN110291046A/zh active Pending
- 2017-09-13 TW TW106131359A patent/TWI736672B/zh active
Also Published As
Publication number | Publication date |
---|---|
CN110291046A (zh) | 2019-09-27 |
TWI736672B (zh) | 2021-08-21 |
WO2018179493A1 (ja) | 2018-10-04 |
JP2018167245A (ja) | 2018-11-01 |
JP6299913B1 (ja) | 2018-03-28 |
US20200048116A1 (en) | 2020-02-13 |
KR102474711B1 (ko) | 2022-12-06 |
KR20190129039A (ko) | 2019-11-19 |
US11339065B2 (en) | 2022-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201836988A (zh) | pH-氧化還原電位調整水的製造裝置 | |
TWI753014B (zh) | 稀釋藥液的製造裝置 | |
TWI746528B (zh) | 稀釋藥液製造裝置及稀釋藥液製造方法 | |
JP2010017633A (ja) | 水素溶解水の製造装置及びこれを用いた製造方法ならびに電子部品又は電子部品の製造器具用の洗浄装置 | |
JP7087444B2 (ja) | pH・酸化還元電位調整水の製造装置 | |
JP6471816B2 (ja) | pH・酸化還元電位調整水の製造装置 | |
WO2020250495A1 (ja) | pH調整水製造装置 | |
US11104594B2 (en) | Ammonia solution production device and ammonia solution production method | |
JP2022057656A (ja) | 電子部品・部材の洗浄水供給装置及び電子部品・部材の洗浄水の供給方法 | |
US20240025785A1 (en) | Production device for ph/redox potential-adjusted water |