WO2018176848A1 - 用于蒸镀的掩模板及其制作方法 - Google Patents

用于蒸镀的掩模板及其制作方法 Download PDF

Info

Publication number
WO2018176848A1
WO2018176848A1 PCT/CN2017/110766 CN2017110766W WO2018176848A1 WO 2018176848 A1 WO2018176848 A1 WO 2018176848A1 CN 2017110766 W CN2017110766 W CN 2017110766W WO 2018176848 A1 WO2018176848 A1 WO 2018176848A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
region
holes
area
vapor deposition
Prior art date
Application number
PCT/CN2017/110766
Other languages
English (en)
French (fr)
Inventor
嵇凤丽
梁逸南
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/781,873 priority Critical patent/US20200270740A1/en
Priority to EP17875066.7A priority patent/EP3605628A4/en
Publication of WO2018176848A1 publication Critical patent/WO2018176848A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Definitions

  • At least one embodiment of the present disclosure is directed to a mask for vapor deposition and a method of fabricating the same.
  • An organic light emitting diode refers to a phenomenon in which an organic semiconductor material and a light-emitting material are driven by an electric field to cause light emission by carrier injection and recombination.
  • the principle of illuminating organic light-emitting diodes is to use transparent electrodes and metal electrodes as the anode and cathode of the device respectively. Under a certain voltage, electrons and holes are injected from the cathode and the anode to the electron and hole transport layers, respectively. After the electron and hole transport layers migrate to the light-emitting layer and meet in the light-emitting layer, excitons are formed and the light-emitting molecules are excited, and the latter emits visible light through radiation relaxation. The radiant light can be observed from the side of the transparent electrode, and the metal electrode also functions as a reflective layer.
  • the Active Matrix/Organic Light Emitting Diode has the following advantages: AMOLED does not require liquid crystal, and self-luminescence can be realized only by a very thin organic light-emitting layer, so AMOLED Can be made lighter and thinner; AMOLED can break through the traditional red, green and blue (RGB) pixel arrangement, can achieve the pixel structure of the pentile arrangement, achieve high resolution effect; AMOLED is based on the principle of autonomous illumination to achieve display, when the picture When the black color is displayed, since the pixels do not emit light, the AMOLED can not only achieve high contrast, but also reduce power consumption and achieve power saving effect.
  • AMOLED has very strict requirements on the process, and it is difficult to make the driving circuit and the subsequent evaporation of the organic light-emitting layer.
  • At least one embodiment of the present disclosure provides a mask for vapor deposition and a method of fabricating the same.
  • the mask for vapor deposition fills the shielding material in the through hole provided in the dummy region, and on the one hand, can block evaporation of the evaporation material onto the substrate to be evaporated, and on the other hand, can promote the tension balance of the mask region.
  • improvement The phenomenon of poor etching at the edge of the effective region avoids the abnormal display of the edge of the effective display region formed by vapor deposition of the mask, thereby improving the yield of the product.
  • At least one embodiment of the present disclosure provides a mask for vapor deposition, the mask for vapor deposition comprising a mask substrate, the mask substrate including a mask region, the mask region including an active region, and an active region
  • a plurality of through holes penetrating through the mask substrate are disposed in the active region and the dummy region, and the plurality of through holes disposed in the dummy region are filled with the shielding material.
  • the barrier material includes any one or combination of polyimide, polycarbonate, and polyacrylate.
  • the overall shape of the mask region is a rectangle.
  • the reticle includes at least one active area, and the shape of each active area includes a circle, an ellipse, a polygon, a sector, or an irregular pattern.
  • the active area is completely surrounded by the dummy area.
  • a plurality of through holes provided in the effective area are evenly arranged.
  • the distribution density of the plurality of through holes disposed in the effective area is substantially the same as the distribution density of the plurality of through holes disposed in the dummy area.
  • each of the plurality of through holes provided in the effective area is substantially the same in shape and size as each of the plurality of through holes provided in the dummy area along a cross section taken parallel to the mask substrate.
  • the arrangement of the plurality of through holes provided in the effective area is substantially the same as the arrangement of the plurality of through holes provided in the dummy area.
  • each of the plurality of through holes taken along a cross section taken parallel to the reticle is polygonal or circular.
  • At least one embodiment of the present disclosure provides a method for fabricating a mask for vapor deposition, the method for fabricating a mask for vapor deposition comprising: forming a plurality of through-mask substrates in a mask region of a mask substrate The through hole, the mask area includes an effective area and a dummy area located around the effective area, and the through hole is disposed in the effective area and the dummy area; and the plurality of through holes in the dummy area are filled with the shielding material.
  • filling a plurality of vias in the dummy region with the occlusion material includes: applying a occlusion material to the via holes located in the dummy region and the mask substrate.
  • the barrier material includes any one or combination of polyimide, polycarbonate, and polyacrylate.
  • the overall shape of the formed mask region is a rectangle.
  • the formed reticle includes at least one active area, and the shape of each active area includes a circle, an ellipse, a polygon, a sector, or a random pattern.
  • the formed active area is completely surrounded by the dummy area.
  • the distribution density of the plurality of through holes formed in the effective region is substantially the same as the distribution density of the plurality of through holes formed in the dummy region.
  • each of the plurality of through holes formed in the effective region is substantially the same in shape and size as each of the plurality of through holes formed in the dummy region in a cross section taken parallel to the mask substrate.
  • the arrangement of the plurality of through holes formed in the effective area is substantially the same as the arrangement of the plurality of through holes formed in the dummy area.
  • forming a plurality of vias through the mask substrate includes forming a plurality of vias by wet etching on the mask substrate.
  • 1a is a schematic view of a high-definition metal mask for fabricating a circular display panel
  • FIG. 1b is a schematic diagram showing the effect of simulating the netting process of the high-definition metal mask shown in FIG. 1a by using finite element analysis software (ANSYS);
  • 2a-2c are schematic cross-sectional views of a mask substrate of a high-definition metal mask after etching
  • FIG. 3a is a schematic diagram of a mask provided according to an embodiment of the present disclosure.
  • Figure 3b is a schematic cross-sectional view of the mask shown in Figure 3a taken along line AB;
  • FIG. 3 is a schematic diagram showing the effect of simulating the netting process of the high-definition metal mask shown in FIG. 3a by using finite element analysis software (ANSYS) according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a mask provided by another example according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a mask provided by another example according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a method for fabricating a mask according to an embodiment of the present disclosure.
  • the preparation process of the Active Matrix/Organic Light Emitting Diode includes evaporating the organic material onto the substrate.
  • the evaporation of organic materials generally requires the use of a high-grade metal mask (FMM), that is, red (R) color and green (e.g., respectively) which are deposited on a substrate by using different types of high-definition metal masks.
  • FMM high-grade metal mask
  • R red
  • green e.g., respectively
  • G The color, blue (B) color pixel positions, the R, G, B pixels in the effective display area (Active Area) correspond to the opening positions of the high-definition metal mask, respectively.
  • FIG. 1a is a schematic view of a high-definition metal mask for fabricating a circular display panel.
  • the mask includes a mask substrate 010, and the mask substrate 010 includes four disposed on the mask substrate 010.
  • the mask pattern region 011 a plurality of via holes 0111 are uniformly disposed in each of the mask pattern regions 011.
  • the through hole 0111 corresponds to an effective display area of the pixel to be vapor-deposited, and is used for vapor-depositing the light-emitting unit on the display panel.
  • the area circled by the zigzag polygonal dotted line frame is the mask pattern area 011. Since FIG.
  • the zigzag polygonal dotted frame is approximately circular, that is, the shape of the mask pattern region 011 is circular (approximately circular, non-standard circular).
  • the mask pattern area 011 corresponds to a circular effective display area of the circular display panel to be formed, that is, the mask pattern area 011 has the same shape and size as the circular effective display area of the circular display panel to be formed.
  • FIG. 1b is a schematic diagram showing the schematic effect of simulating the netting process of the high-definition metal mask shown in FIG. 1a by using finite element analysis software (ANSYS).
  • ANSYS finite element analysis software
  • FIG. 1b four white circular regions correspond to those in FIG. 1a.
  • the mask pattern area 011 the peripheral area of the circular area is filled with different patterns, indicating that the stress distribution of the edge of the mask pattern area is uneven, that is, the edge of the mask pattern area is easily deformed due to uneven force during the web process. Therefore, wrinkles are generated. Therefore, after the light-emitting unit is vapor-deposited on the base substrate through the mask, the color of the edge of the effective display area is abnormal when the display panel is lit.
  • FIG. 2a-2c are schematic diagrams showing the cross-sectional shape of the mask substrate after etching of the high-precision metal mask
  • FIG. 2a is a schematic diagram showing the normal cross-sectional shape of the mask substrate after the center of the mask region is etched, as shown in FIG.
  • the etched mask substrate includes a metal bridge 012 and an opening portion 013 between the adjacent metal bridges 012.
  • the opening portion 013 is a through hole 0111 as shown in FIG. 1a for vapor transmission.
  • the plating material is used to evaporate the evaporation material on the pixel position on the base substrate.
  • the opening portion 013 is formed by etching a portion of the metal material of the mask substrate by a chemical liquid etching method, and the metal bridge 012 between the adjacent opening portions 013 and the mask pattern on the mask substrate 010.
  • the position around the region 011 is a remaining metal material which is not etched, that is, the metal bridge 012 and the unetched region surrounding the mask pattern region 011 constitute a shielding portion for shielding the vapor deposition material.
  • the etched topography of the edge vias formed around the mask pattern region is different from the etched topography of the via holes formed at the center of the mask pattern region, and mainly occurs as shown in FIGS. 2b and 2c.
  • the size of the opening portion 013 formed between the metal bridges 012 at the edge of the mask pattern region is small, that is, the etching amount is small due to the position of the solution, and the remaining metal is left in the etching process.
  • the size of the bridge 012 is large, resulting in a small size of the opening portion 013, which results in a small area of the organic material evaporated on the base substrate, so that the evaporation amount of the material deposited on the edge and the center of the effective display area is reduced. Different, the phenomenon that the edge brightness of the effective display area is different from the center brightness.
  • the size of the opening portion 013 formed between the metal bridges 012 at the edge of the mask pattern region is large, that is, the etching amount of the solution is large due to the position during the etching process, leaving
  • the size of the metal bridge 012 is small, resulting in a large size of the opening portion 013, so that the area of the organic material evaporated on the base substrate is large, and the shadow of the vapor deposition is also large, resulting in steaming.
  • the organic materials coated with different colors may overlap in the evaporation region, that is, the color mixing phenomenon occurs, which affects the normal illumination of the edge of the effective display area.
  • Embodiments of the present disclosure provide a mask for vapor deposition and a method of fabricating the same.
  • the mask includes a mask substrate, and the mask substrate includes a mask region including an active region and a dummy region located around the active region, and a plurality of through-mask substrates are disposed in the active region and the dummy region. a hole, wherein the plurality of through holes disposed in the dummy area are filled with the shielding material.
  • the mask fills the through-holes disposed in the dummy region with the shielding material, and on the one hand, can block the vapor deposition material from being evaporated onto the substrate to be evaporated, and on the other hand, can promote the tension balance of the mask region and improve the edge of the effective region. Poor etching phenomenon, thereby avoiding the abnormal display of the edge of the effective display area formed by vapor deposition of the mask, and improving the yield of the product.
  • FIG. 3a is a schematic diagram of a mask provided by an embodiment of the present disclosure
  • FIG. 3b is a diagram of the mask shown in FIG. 3a along line AB (parallel to the X direction).
  • the mask comprises a mask substrate 100.
  • the mask substrate 100 includes a mask region 110.
  • the mask region 110 includes an active region 120 and a dummy region 130 located around the active region 120.
  • a plurality of through holes 101 penetrating the mask substrate 100 are provided in both the region 120 and the dummy region 130.
  • the mask region in this embodiment includes both a plurality of via holes and an unetched mask substrate (ie, a metal bridge as shown in FIG. 2a) between adjacent via holes.
  • mask region 110 is a generally rectangular region surrounded by a dashed rectangular frame in FIG. 3a.
  • the mask region 110 is a partial region of the mask substrate 100.
  • embodiments according to the present disclosure are not limited thereto, and the mask region may also occupy the entire area of the mask substrate.
  • the material of the mask substrate 100 is a metal material or a resin material.
  • the metal material may be selected from one or more of stainless steel, nickel, cobalt, nickel alloy, nickel cobalt alloy, and the like, and embodiments of the present disclosure are not limited thereto.
  • the material of the mask substrate 100 has a withstand temperature of 200 ° C or more, so that during the high-temperature evaporation process, the evaporation temperature can be prevented from being excessively high and the lifetime of the mask substrate can be reduced.
  • the active area 120 is the area circled by the zigzag polygonal dashed box.
  • FIG. 3 a is an exemplary schematic diagram.
  • the number of through holes in the mask area applied in the actual process is large and the size is small. Therefore, the zigzag polygonal dotted line frame is approximately circular, that is, the effective area 120
  • the shape is round (approximately circular, non-standard round).
  • the effective area 120 corresponds to a circular effective display area in the circular display panel to be formed, that is, the effective area 120 has the same shape and size as the circular effective display area in the circular display panel to be formed.
  • the plurality of through holes 101 in the active area 120 are white, indicating that the through hole 101 of the area can pass through the evaporation material, the substrate to be evaporated, for example, the organic light emitting diode display panel.
  • the region corresponding to the through hole 101 on the base substrate is vapor-deposited.
  • the effective area 120 on the mask plate in this embodiment is the mask pattern area on the general reticle (ie, the mask pattern area 011 in FIG. 1a), and the shape and size of the effective area 120 are effective on the display panel.
  • the shape and size of the display area are the same.
  • the evaporation of the light-emitting layer on the substrate of the organic light-emitting diode is described as an example, but the invention is not limited thereto, and may be other substrates or other layers.
  • the reticle includes at least one active area 120, and FIG. 3a is described by taking four active areas 120 on the reticle as an example, but the present embodiment is not limited thereto.
  • the number of effective areas on the reticle may also be one, two or more.
  • the dummy region 130 is a region located around the active region 120, and the plurality of through holes 101 disposed in the dummy region 130 are filled with the shielding material 200 to prevent evaporation of the evaporation material onto the substrate.
  • the location of the evaporation material is required, ie the non-vapor deposition zone.
  • the “a plurality of through holes 101 disposed in the dummy region 130 filled with the shielding material 200” may include the plurality of through holes 101 located in the dummy region 130 and the uninterposed between the adjacent via holes 101.
  • the masking material 200 (i.e., as shown in Figure 3b) is disposed on the mask substrate (i.e., the metal bridge 013 shown in Figure 2a).
  • This embodiment includes but is not limited thereto, and may include, for example, filling the occlusion material 200 only in the plurality of through holes 101 located in the dummy region 130.
  • the dummy region 130 on the mask substrate 100 in this embodiment corresponds to an unetched region around the mask pattern region on the general mask substrate (as shown in FIG. 1a).
  • the hatched coverage on the through hole 101 as shown in FIG. 3a indicates the filled occlusion material 200, and the area on the through hole 101 where the shadow is covered indicates the dummy area 130.
  • the dummy area 130 in Fig. 3a is an area of the rectangular dotted line that only covers the shadow.
  • the dummy area 130 is all areas of the mask area 110 except the active area 120.
  • the shielding material 200 includes a material having better elasticity such as any one or a combination of polyimide, polycarbonate, and polyacrylate, that is, the shielding material 200 filled in the plurality of through holes 101 provided in the dummy region 130.
  • the elastic material is used to avoid warpage of the mask in the web process, and the mask region 110 is promoted to achieve tension balance, thereby improving the color abnormality of the edge of the effective display area on the display panel formed by the mask.
  • the occluding material includes a material having a low coefficient of thermal expansion to prevent the reticle from being deformed by thermal expansion when used for vapor deposition.
  • the overall shape of the mask region 110 on the reticle is rectangular, that is, the region where the active region 120 and the dummy region 130 are combined is a rectangle.
  • the active area 120 and the dummy area 130 in the mask area 110 can be regarded as two complementary areas, that is, the effective area 120 is a vapor deposition zone, and the evaporation source passes the evaporation material through the through hole 101 in the effective area 120.
  • the position of the pixel unit corresponding to the substrate to be evaporated is vapor-deposited; the dummy region 130 is an occlusion region that blocks evaporation of the evaporation material onto the substrate substrate at a position where the evaporation material is not required.
  • the overall shape of the mask region in this embodiment adopts a rectangular shape, which is different from the circular shape of the display panel to be formed, which can prevent the mask from wrinkles due to uneven force during the webpage process, and is helpful for the web.
  • the control of the wrinkles thereby improving the abnormal color of the edge of the effective display area on the display panel to be formed.
  • the active area 120 shown in FIG. 3a is completely surrounded by the dummy area 130, that is, the outer side of the through hole 101 at the edge of the effective area 120 is distributed at least one turn in the through hole 101 of the dummy area 130.
  • the through hole 101 provided in the dummy area 130 can cause the edge of the effective area 120 to pass through the hole 101 due to the uneven etching liquid.
  • the region where the etched surface is abnormally moves to the position of the through hole 101 at the edge of the dummy region 130, that is, the through hole 101 at the edge of the effective region 120 in this embodiment is no longer at the edge position of the through hole 101 of the mask region 110.
  • This embodiment includes but is not limited to this.
  • the active area may not be completely surrounded by the dummy area, that is, the active area may be half surrounded by the dummy area or the like.
  • the mask provided in this embodiment can effectively prevent the occurrence of abnormalities in the edge via etching of the active region, thereby improving the phenomenon of color abnormality at the edge of the effective display region in the display panel to be formed, and effectively improving the product yield.
  • the plurality of through holes 101 provided in the effective area 120 are evenly arranged, and the embodiment is not limited thereto. It should be noted that the plurality of through holes 101 of the effective area 120 correspond to the positions of the pixel units of the display panel to be formed, and thus the size and arrangement of the plurality of through holes 101 of the effective area 120 are determined according to the display panel to be formed. The size and distribution of the pixel unit depend on it.
  • the plurality of through holes 101 disposed in the dummy area 130 are evenly arranged.
  • the embodiment is not limited thereto.
  • the arrangement of the plurality of through holes 101 disposed in the dummy area 130 may also be a non-uniform arrangement.
  • the distribution density of the plurality of via holes 101 disposed in the active region 120 is substantially the same as the distribution density of the plurality of via holes 101 disposed in the dummy region 130, that is, the plurality of passes disposed in the active region 120.
  • the hole 101 is arranged in an array with a plurality of through holes 101 provided in the dummy area 130.
  • the embodiment includes but is not limited thereto.
  • the distribution density of the plurality of through holes 101 disposed in the effective area may not be the same as the distribution density of the plurality of through holes disposed in the dummy area.
  • the distribution density of the plurality of through holes disposed in the effective area is substantially the same as the distribution density of the plurality of through holes disposed in the dummy area, which can effectively promote the balance of the force of the mask in the process of stretching.
  • the effective area reaches the balance of force to prevent wrinkles in the effective area, which causes the display panel to be formed to have an abnormal color of the edge of the effective display area.
  • substantially the same includes the case of being identical and approximately the same. It should be noted that “the same” in the subsequent description includes the cases of being identical and approximately the same.
  • the arrangement of the plurality of through holes 101 provided in the effective area 120 is the same as the arrangement of the plurality of through holes 101 provided in the dummy area 130.
  • the embodiment includes but is not limited thereto.
  • the arrangement manner of the plurality of through holes 101 disposed in the effective area 120 and the arrangement of the plurality of through holes 101 disposed in the dummy area 130 may be different.
  • the arrangement of the plurality of through holes disposed in the effective area is the same as the arrangement of the plurality of through holes disposed in the dummy area, which can effectively promote the balance of the mask in the process of stretching. .
  • the shape of the cross section of the plurality of through holes 101 is parallel to the shape of the cross section of the mask substrate 100.
  • FIG. 3a is described by taking a rectangle as an example. The embodiment is not limited thereto, and may be other polygons.
  • each of the plurality of via holes 101 disposed in the active region 120 and each of the plurality of via holes 101 disposed in the dummy region 130 are shaped in a cross section parallel to the mask substrate 100. And the same size.
  • the embodiment includes but is not limited thereto, for example, each of the plurality of through holes provided in the effective region has the same shape and size along a cross section taken parallel to the mask substrate, but each of the plurality of through holes of the effective region The shape and size of each of the plurality of through holes of the dummy region are different in shape and size along a cross section taken parallel to the mask substrate.
  • the size of each of the plurality of through holes disposed in the effective area along the cross section parallel to the mask substrate is not completely the same, that is, the plurality of through holes of the effective area correspond to the pixel unit of the display panel to be formed
  • the dimensions are not identical, that is to say the active area of the mask can be used for evaporation to form a pixel structure in a pentile arrangement.
  • FIG. 3c is a schematic diagram showing the effect of simulating the process of the netting of the high-definition metal mask shown in FIG. 3a by using finite element analysis software (ANSYS).
  • ANSYS finite element analysis software
  • four white circular areas correspond to those in FIG. 3a.
  • the peripheral area of the circular area shown in FIG. 3c has the same color, that is, both are white, and the color of the peripheral area is the same as the color of the circular area, that is, both are white, and
  • FIG. 3c shows The situation of the present invention indicates that the stress distribution at the edge of the effective region is uniform, and the overall stress distribution of the mask region is uniform. Therefore, the mask provided by the present embodiment maintains a balanced force during the web-forming process, thereby improving the effective display region on the display panel to be formed. Abnormal color of the edge can effectively improve product yield.
  • each active area 120 may have an elliptical shape (approximately an elliptical shape, a non-standard elliptical shape).
  • the embodiment includes but is not limited to, for example, the shape of the effective area may also be a regular figure such as a polygon, a fan, a random figure, or a rectangle.
  • FIG. 5 is a schematic diagram of a mask provided by another example of the embodiment. As shown in FIG. 5, each of the plurality of through holes 101 may have a circular shape along a cross section parallel to the mask. This example does not limit this.
  • the embodiment provides a method for fabricating a mask for vapor deposition.
  • the specific steps of the method for fabricating the mask are as shown in FIG. 6 and include:
  • S201 forming a plurality of through holes penetrating the mask substrate in the mask region of the mask substrate, the mask region including an effective region and a dummy region located around the effective region, and the through holes are disposed in the active region and the dummy region.
  • the material of the mask substrate is a metal material or a resin material.
  • the metal material may be selected from one or more of stainless steel, nickel, cobalt, nickel alloy, nickel-cobalt alloy, and the like, and the embodiment is not limited thereto.
  • forming a plurality of via holes through the mask substrate on the mask substrate includes forming a plurality of via holes by wet etching on the mask substrate.
  • the metal material or the resin material on the mask substrate may be etched away by a chemical etching method to form a plurality of via holes required in the present embodiment.
  • This embodiment is not limited to wet etching.
  • a plurality of through holes may be formed by etching such as dry etching.
  • the mask region includes an active region and a dummy region located around the active region.
  • the formed effective area is completely surrounded by the dummy area, that is, the outer side of the through hole at the edge of the effective area is distributed with at least one through hole in the dummy area.
  • the through hole provided in the dummy area can move the area of the effective area edge through hole etching morphology abnormally due to the uneven etching liquid to the position of the through hole at the edge of the dummy area, that is, the edge of the effective area in the present embodiment
  • the via hole is no longer at the edge of the via hole of the mask region.
  • the embodiment is not limited to the fact that the effective area is completely surrounded by the dummy area.
  • the effective area may not be completely surrounded by the dummy area, that is, the effective area may be half surrounded by the dummy area or the like.
  • the mask provided in this embodiment can effectively prevent the occurrence of an abnormal phenomenon in the edge of the effective area, thereby improving the color abnormality at the edge of the effective display area on the display panel to be formed, and improving the product yield.
  • the effective region included in the mask region is a vapor deposition region, and when the vapor deposition source is used for vapor deposition of the substrate to be evaporated, the vapor deposition source can vapor-deposit the vapor deposition material through the through holes in the effective region.
  • the effective area on the mask plate in this embodiment is the mask pattern area on the general reticle (ie, the mask pattern area 011 in FIG. 1a), the shape and size of the effective area and the effective display area on the display panel. The shape and size are the same.
  • the evaporation of the light-emitting layer on the substrate of the organic light-emitting diode is described as an example, but the invention is not limited thereto, and may be other substrates or other layers.
  • the shape of the effective area formed may include a circle, an ellipse, a polygon, a sector, or a random pattern.
  • the embodiment includes but is not limited thereto, and for example, the shape of the effective area may also be a regular shape such as a rectangle.
  • This embodiment is described by taking the shape of the display panel to be formed as a circular shape.
  • the effective area on the reticle corresponds to a circular effective display area on the circular display panel to be formed, that is, the effective area shape and size.
  • the shape and size of the circular effective display area on the circular display panel to be formed are the same.
  • a plurality of through holes formed in the effective area are uniformly arranged, and the embodiment is not limited thereto. It should be noted that the plurality of through holes of the effective area correspond to the positions of the pixel units of the display panel to be formed, and thus The size and arrangement of the plurality of through holes of the effect area depend on the size and distribution position of the pixel unit of the display panel to be formed.
  • the plurality of through holes formed in the dummy region are uniformly arranged, and the embodiment is not limited thereto.
  • the arrangement of the plurality of through holes disposed in the dummy region may also be a non-uniform arrangement.
  • the distribution density of the plurality of through holes formed in the effective region is the same as the distribution density of the plurality of through holes formed in the dummy region, that is, the plurality of through holes formed in the effective region and the plurality of through holes formed in the dummy region are present
  • the array is arranged.
  • the embodiment is not limited thereto, and for example, the distribution density of the plurality of through holes formed in the effective region may be different from the distribution density of the plurality of through holes formed in the dummy region.
  • the distribution density of the plurality of through holes formed in the effective region is the same as the distribution density of the plurality of through holes formed in the dummy region, which can effectively promote the balance of the mask in the process of stretching, effectively
  • the area reaches the force balance to prevent wrinkles in the effective area, which causes the display panel to be formed to have an abnormal color of the edge of the effective display area.
  • the arrangement of the plurality of through holes formed in the effective area is the same as the arrangement of the plurality of through holes formed in the dummy area.
  • This embodiment includes but is not limited thereto.
  • the arrangement of the plurality of through holes formed in the effective area may be different from the arrangement of the plurality of through holes formed in the dummy area.
  • the arrangement of the plurality of through holes formed in the effective area is the same as the arrangement of the plurality of through holes formed in the dummy area, which can effectively promote the balance of the mask in the process of stretching. .
  • each of the plurality of through holes formed has a polygonal or circular shape in a cross section parallel to the mask substrate, which is not limited in this embodiment.
  • each of the plurality of through holes formed in the effective region has the same shape and size as each of the plurality of through holes formed in the dummy region in a cross section taken parallel to the mask substrate.
  • the embodiment includes but is not limited thereto, for example, each of the plurality of through holes formed in the effective region has the same shape and size along a cross section taken parallel to the mask substrate, but each of the plurality of through holes of the effective region
  • the shape and size of each of the plurality of through holes of the dummy region are different in shape and size along a cross section taken parallel to the mask substrate.
  • each of the plurality of through holes formed in the effective region is not completely identical in size along a cross section taken parallel to the mask substrate, that is, the plurality of through holes of the effective region correspond to the pixel unit of the display panel to be formed
  • the dimensions are not identical, that is to say the active area of the mask can be used for evaporation to form a pixel structure in a pentile arrangement.
  • the formed mask includes at least one active area, that is, one or more effective areas may be included, and the number of effective areas formed in the mask is not limited in this embodiment.
  • the overall shape of the formed mask region is a rectangle, that is, the region where the effective region and the dummy region are formed together is a rectangle, and the effective region and the dummy region in the mask region can be regarded as two complementary regions.
  • the overall shape of the mask region in this embodiment adopts a rectangular shape, which is different from the circular shape of the display panel to be formed, which can prevent the mask from wrinkles due to uneven force during the webpage process, and is helpful for the web.
  • the control of the wrinkles improves the color abnormality of the edge of the effective display area on the display panel and improves the product yield.
  • S202 Filling a plurality of through holes of the dummy area with the shielding material.
  • filling the plurality of through holes of the dummy region with the shielding material can prevent the evaporation material from being evaporated onto the substrate substrate at a position where the evaporation material is not required, that is, the dummy region is a non-vapor deposition region.
  • the “filling the plurality of via holes in the dummy region” may be included in the plurality of via holes located in the dummy region and on the unetched mask substrate between the adjacent via holes.
  • the shielding material is applied (ie as shown in Figure 3b).
  • This embodiment includes but is not limited thereto, and for example, may further include applying a filling masking material only to a plurality of through holes located in the dummy region.
  • the dummy region on the mask substrate in this embodiment corresponds to a region on the general mask substrate that is not etched around the mask pattern region (as shown in FIG. 1a).
  • the shielding material includes a material having better elasticity such as any one or a combination of polyimide, polycarbonate, and polyacrylate, that is, a plurality of through holes filled in the dummy region are filled with an opaque material to avoid The mask plate warps during the web process, and promotes the tension balance of the mask area, thereby improving the abnormal color of the edge of the effective display area on the display panel to be formed, and effectively improving the yield of the product.
  • a material having better elasticity such as any one or a combination of polyimide, polycarbonate, and polyacrylate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种掩模板及其制作方法。该掩模板包括掩模基板(100),掩模基板(100)上包括掩模区(110),掩模区(110)包括有效区(120)以及位于有效区(120)周边的虚设区(130),在有效区(120)和虚设区(130)内均设置有贯穿掩模基板(100)的多个通孔(101),其中,设置在虚设区(130)的多个通孔(101)填充遮挡材料(200)。该掩模板对设置在虚设区的通孔填充遮挡材料,一方面可以阻挡蒸镀材料蒸镀到待蒸镀的衬底基板上,另一方面可以促进掩模区达到张力平衡以及改善有效区边缘刻蚀不良的现象,从而避免了采用该掩模板蒸镀形成的有效显示区边缘显示异常的现象,提升了产品的良率。

Description

用于蒸镀的掩模板及其制作方法
本申请要求于2017年3月27日递交的中国专利申请第201710188795.7号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开至少一个实施例涉及一种用于蒸镀的掩模板及其制作方法。
背景技术
有机发光二极管(Organic Light Emitting Diode,OLED)是指有机半导体材料和发光材料在电场驱动下,通过载流子注入和复合导致发光的现象。有机发光二极管的发光原理是采用透明电极和金属电极分别作为器件的阳极和阴极,在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子和空穴传输层,电子和空穴分别经过电子和空穴传输层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,后者经过辐射弛豫而发出可见光。辐射光可从透明电极一侧观察到,金属电极同时也起了反射层的作用。
与传统的显示技术相比较,主动矩阵发光二极管面板(Active Matrix/Organic Light Emitting Diode,AMOLED)有以下优点:AMOLED不需要液晶,仅通过非常薄的有机发光层,就能实现自发光,所以AMOLED可以做到更轻薄;AMOLED可以突破传统的红绿蓝(RGB)像素的排列束缚,可以实现pentile排列的像素结构,达到高分辨率的效果;AMOLED是采用自主发光的原理实现显示的,当画面显示黑色时是由于像素不发光,因此AMOLED不仅能达到高对比度,还能降低功耗,达到省电的效果。但是AMOLED作为一种高端的显示技术,对工艺的要求是非常严苛的,从驱动电路的制作,以及后续的有机发光层的蒸镀都有难点。
发明内容
本公开的至少一实施例提供一种用于蒸镀的掩模板及其制作方法。该用于蒸镀的掩模板对设置在虚设区的通孔填充遮挡材料,一方面可以阻挡蒸镀材料蒸镀到待蒸镀的衬底基板上,另一方面可以促进掩模区达到张力平衡以及改善 有效区边缘刻蚀不良的现象,从而避免了采用该掩模板蒸镀形成的有效显示区边缘显示异常的现象,提升了产品的良率。
本公开的至少一实施例提供一种用于蒸镀的掩模板,该用于蒸镀的掩模板包括掩模基板,掩模基板上包括掩模区,掩模区包括有效区以及位于有效区周边的虚设区,在有效区和虚设区内均设置有贯穿掩模基板的多个通孔,其中,设置在虚设区的多个通孔填充遮挡材料。
例如,遮挡材料包括聚酰亚胺、聚碳酸酯和聚丙烯酸酯的任一种或组合。
例如,掩模区的整体形状为矩形。
例如,掩模板包括至少一个有效区,且每个有效区的形状包括圆形、椭圆形、多边形、扇形或不规则图形。
例如,有效区完全被虚设区包围。
例如,设置在有效区的多个通孔均匀排布。
例如,设置在有效区的多个通孔的分布密度与设置在虚设区的多个通孔的分布密度基本相同。
例如,设置在有效区的多个通孔的每个与设置在虚设区的多个通孔的每个沿平行于掩模基板截取的横截面的形状及尺寸基本相同。
例如,设置在有效区的多个通孔的排布方式与设置在虚设区的多个通孔的排布方式基本相同。
例如,多个通孔的每个沿平行于掩模板截取的横截面的形状为多边形或圆形。
本公开的至少一实施例提供一种用于蒸镀的掩模板的制作方法,该用于蒸镀的掩模板的制作方法包括:在掩模基板的掩模区内形成贯穿掩模基板的多个通孔,掩模区包括有效区以及位于有效区周边的虚设区,在有效区和虚设区内均设置有通孔;对虚设区的多个通孔填充遮挡材料。
例如,对虚设区的多个通孔填充遮挡材料包括:对位于虚设区的通孔以及掩模基板涂覆遮挡材料。
例如,遮挡材料包括聚酰亚胺、聚碳酸酯和聚丙烯酸酯的任一种或组合。
例如,形成的掩模区的整体形状为矩形。
例如,形成的掩模板包括至少一个有效区,且每个有效区的形状包括圆形、椭圆形、多边形、扇形或无规则图形。
例如,形成的有效区完全被虚设区包围。
例如,形成在有效区的多个通孔的分布密度与形成在虚设区的多个通孔的分布密度基本相同。
例如,形成在有效区的多个通孔的每个与形成在虚设区的多个通孔的每个沿平行于掩模基板截取的横截面的形状及尺寸基本相同。
例如,形成在有效区的多个通孔的排布方式与形成在虚设区的多个通孔的排布方式基本相同。
例如,形成贯穿掩模基板的多个通孔包括:在掩模基板上通过湿法刻蚀形成多个通孔。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1a为一种用于制作圆形显示面板的高精细金属掩模板的示意图;
图1b为利用有限元分析软件(ANSYS)仿真如图1a所示的高精细金属掩模板的张网过程的效果示意性示意图;
图2a-图2c为高精细金属掩模板的掩模基板刻蚀后的截面形貌示意图;
图3a为本公开一实施例提供的掩模板示意图;
图3b为图3a所示的掩模板沿AB线所截的截面示意图;
图3c为本公开一实施例提供的利用有限元分析软件(ANSYS)仿真如图3a所示的高精细金属掩模板的张网过程的效果示意性示意图;
图4为本公开一实施例提供的另一示例提供的一种掩模板示意图;
图5为本公开一实施例提供的另一示例提供的一种掩模板示意图;
图6为本公开一实施例提供的掩模板的制作方法示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
主动矩阵发光二极管面板(Active Matrix/Organic Light Emitting Diode,AMOLED)的制备过程包括将有机材料蒸镀到衬底基板上。蒸镀有机材料一般需要使用高精细金属掩模板(Fine metal mask,FMM),即利用不同类型的高精细金属掩模板将有机材料分别蒸镀在衬底基板上的红(R)色、绿(G)色、蓝(B)色像素位置上,有效显示区(Active Area)内的R、G、B像素分别对应于高精细金属掩模板的开口位置。
图1a为一种用于制作圆形显示面板的高精细金属掩模板的示意图,如图1a所示,掩模板包括掩模基板010,掩模基板010包括设置在掩模基板010上的四个掩模图案区域011,每个掩模图案区域011中均匀的设置多个通孔0111。通孔0111与待蒸镀像素的有效显示区对应,用于蒸镀显示面板上的发光单元。这里用锯齿多边形虚线框圈出的区域即为掩模图案区域011,由于图1a为示例性示意图,实际工艺中应用的掩模图案区域中的通孔的数量较多且尺寸较小,因此,该锯齿多边形虚线框近似为圆形,即掩模图案区域011的形状为圆形(近似圆形,非标准圆形)。该掩模图案区域011对应于待形成的圆形显示面板的圆形有效显示区,即掩模图案区域011与待形成的圆形显示面板的圆形有效显示区的形状及尺寸相同。
图1b为利用有限元分析软件(ANSYS)仿真如图1a所示的高精细金属掩模板的张网过程的示意性效果示意图,如图1b所示,四个白色圆形区域对应于图1a中的掩模图案区域011,圆形区域的周边区域被不同图形填充的情况表示掩模图案区域边缘应力分布不均匀,即掩模板在张网过程中掩模图案区域边缘由于受力不均匀容易变形、产生褶皱,因此通过该掩模板在衬底基板上蒸镀发光单元后,点亮显示面板会出现有效显示区边缘颜色异常的现象。
图2a-图2c为高精细金属掩模板的掩模基板刻蚀后的截面形貌示意图,图2a为对应掩模区中心位置的掩模基板刻蚀后的正常的截面形貌示意图,如图 2a所示,刻蚀后的掩模基板包括金属桥012以及位于相邻金属桥012之间的开口部013,这里的开口部013即为图1a所示的通孔0111,用于透过蒸镀材料以将蒸镀材料蒸镀在衬底基板上的像素位置。例如,开口部013的形成过程为通过药液刻蚀的方法将掩模基板的部分金属原材料刻蚀掉,而相邻开口部013之间的金属桥012以及掩模基板010上围绕掩模图案区域011周围的位置为留下来的没有被刻蚀的金属原材料,即金属桥012以及围绕掩模图案区域011的未被刻蚀的区域构成了用于遮挡蒸镀材料的遮挡部。
在掩模图案区域与掩模基板上围绕掩模图案区域周围的位置未被刻蚀的金属原材料交界处,即在掩模图案区域的周围边缘处,由于刻蚀过程中药液流动不均匀导致形成在掩模图案区域周围边缘通孔的刻蚀形貌与形成于掩模图案区域中心的通孔的刻蚀形貌不同,主要会发生如图2b与图2c两种情况。
一种情况如图2b所示,形成于掩模图案区域边缘的金属桥012之间的开口部013的尺寸较小,即刻蚀过程中由于该位置药液刻蚀量较少,留下的金属桥012的尺寸较大,导致开口部013的尺寸偏小,因此会导致蒸镀在衬底基板上的有机材料的面积较小,使得蒸镀在有效显示区边缘与中心的材料的蒸镀量不同,造成有效显示区边缘亮度与中心亮度不同的现象。
另一种情况如图2c所示,形成于掩模图案区域边缘的金属桥012之间的开口部013的尺寸较大,即刻蚀过程中由于该位置药液刻蚀量较大,留下的金属桥012的尺寸较小,导致开口部013的尺寸偏大,因此会导致蒸镀在衬底基板上的有机材料的面积较大,蒸镀的阴影(shadow)也较大,造成用于蒸镀不同颜色的有机材料会发生在蒸镀区域重叠的现象,即产生混色现象,影响有效显示区边缘正常发光。
以上两种情况均能导致显示面板中的有效显示区边缘发生异常现象。
本公开的实施例提供一种用于蒸镀的掩模板及其制作方法。该掩模板包括掩模基板,掩模基板上包括掩模区,掩模区包括有效区以及位于有效区周边的虚设区,在有效区和虚设区内均设置有贯穿掩模基板的多个通孔,其中,设置在虚设区的多个通孔填充遮挡材料。该掩模板对设置在虚设区的通孔填充遮挡材料,一方面可以阻挡蒸镀材料蒸镀到待蒸镀的衬底基板上,另一方面可以促进掩模区达到张力平衡以及改善有效区边缘刻蚀不良的现象,从而避免了采用该掩模板蒸镀形成的有效显示区边缘显示异常的现象,提升了产品的良率。
下面结合附图对本公开实施例提供的掩模板及其制作方法进行说明。
实施例一
本实施例提供一种用于蒸镀的掩模板,图3a为本公开一实施例提供的掩模板示意图,图3b为图3a所示的掩模板沿AB线(平行于X方向)所截的截面示意图。如图3a和图3b所示,该掩模板包括掩模基板100,掩模基板100上包括掩模区110,掩模区110包括有效区120以及位于有效区120周边的虚设区130,在有效区120和虚设区130内均设置有贯穿掩模基板100的多个通孔101。需要说明的是,本实施例中的掩模区中既包括多个通孔,也包括相邻通孔之间的未被刻蚀的掩模基板(即如图2a所示的金属桥)。
例如,掩模区110在图3a中为虚线矩形框内包围的整体为矩形的区域。在该示例中,掩模区110是掩模基板100的部分区域。然而,根据本公开的实施例不限于此,掩模区也可以占据掩模基板的整个区域。
例如,掩模基板100的材料为金属材料或树脂材料。例如,金属材料可选自不锈钢、镍、钴、镍合金、镍钴合金等中的一种或多种,本公开的实施例不限于此。例如,掩模基板100的材料的耐受温度大于等于200℃,从而在高温蒸镀过程中,能够避免蒸镀温度过高而减少掩模基板的使用寿命。
例如,如图3a所示,有效区120为锯齿多边形虚线框圈出的区域。需要说明的是,图3a为示例性示意图,实际工艺中应用的掩模区中的通孔的数量较多且尺寸较小,因此,该锯齿多边形虚线框近似为圆形,即有效区120的形状为圆形(近似圆形,非标准圆形)。该有效区120对应于待形成的圆形显示面板中的圆形有效显示区,即有效区120与待形成的圆形显示面板中的圆形有效显示区的形状及尺寸相同。
例如,如图3a所示,有效区120中的多个通孔101为白色,表示该区域的通孔101可以透过蒸镀材料,对待蒸镀的衬底基板,例如,有机发光二极管显示面板的衬底基板上与通孔101对应的区域进行蒸镀。本实施例中的掩模板上的有效区120即为一般掩模板上的掩模图案区域(即图1a中的掩模图案区域011),该有效区120的形状及尺寸与显示面板上的有效显示区的形状及尺寸均相同。本实施例以对有机发光二极管的衬底基板蒸镀发光层为例进行描述,但并不限于此,还可以是其他基板或其它层。
例如,掩模板包括至少一个有效区120,图3a以掩模板上包括四个有效区120为例进行描述,但本实施不限于此。例如,掩模板上的有效区的个数还可以是一个、两个或更多个。
例如,如图3a所示,虚设区130为位于有效区120周边的区域,且设置在虚设区130的多个通孔101填充遮挡材料200,以防止蒸镀材料蒸镀到衬底基板上不需要蒸镀材料的位置,即非蒸镀区域。需要说明的是,这里的“设置在虚设区130的多个通孔101填充遮挡材料200”可以包括位于虚设区130的多个通孔101内以及相邻通孔101之间的未被刻蚀的掩模基板(即如图2a所示的金属桥013)上都设置遮挡材料200(即如图3b所示)。本实施例包括但不限于此,例如,还可以包括仅在位于虚设区130的多个通孔101内填充遮挡材料200。本实施例中的掩模基板100上的虚设区130对应于一般掩模基板上围绕掩模图案区域周围的未被刻蚀的区域(如图1a所示)。
例如,如图3a所示的通孔101上覆盖的阴影表示填充的遮挡材料200,而图中在通孔101上覆盖阴影的区域表示虚设区130。图3a中的虚设区130为矩形虚线框中的只覆盖阴影的区域。例如,虚设区130为掩模区110中除有效区120之外的所有区域。
例如,遮挡材料200包括聚酰亚胺、聚碳酸酯和聚丙烯酸酯中的任一种或组合等具有较好弹性的材料,即设置在虚设区130的多个通孔101填充的遮挡材料200为弹性材料以避免掩模板在张网过程中产生翘曲,促进掩模区110达到张力平衡,从而改善利用该掩模板形成的显示面板上的有效显示区边缘颜色异常的现象。例如,遮挡材料包括热膨胀系数较低的材料以防止该掩模板在用于蒸镀时发生热膨胀而变形。
例如,如图3a所示,掩模板上的掩模区110的整体形状为矩形,即有效区120与虚设区130共同组成的区域为矩形。这里的掩模区110中的有效区120与虚设区130可以看成是互补的两个区域,即有效区120为蒸镀区,蒸镀源通过有效区120中的通孔101将蒸镀材料蒸镀到对应于待蒸镀的衬底基板上的像素单元的位置;虚设区130为遮挡区,阻挡蒸镀材料蒸镀到衬底基板上的不需要蒸镀材料的位置。本实施例中的掩模区的整体形状采用矩形形状,不同于待形成的显示面板的圆形形状,可以避免掩模板在张网过程中由于受力不均而产生褶皱,有助于张网褶皱的控制,从而改善待形成的显示面板上的有效显示区边缘颜色异常的现象。
例如,图3a示出的有效区120完全被虚设区130包围,即有效区120边缘的通孔101的外侧分布至少一圈处于虚设区130的通孔101。在虚设区130设置的通孔101,可以将由于刻蚀药液不均匀导致有效区120边缘通孔101刻 蚀形貌异常的区域移动到虚设区130边缘的通孔101所在位置处,即本实施例中的有效区120边缘的通孔101不再处于掩模区110的通孔101的边缘位置。本实施例包括但不限于此,例如,有效区还可以不完全被虚设区包围,即有效区可以被虚设区半包围等。本实施例提供的掩模板可以有效防止有效区边缘通孔刻蚀异常现象的发生,从而改善待形成的显示面板中的有效显示区边缘发生颜色异常的现象,可以有效提高产品良率。
例如,如图3a所示,设置在有效区120的多个通孔101均匀排布,本实施例不限于此。需要说明的是,有效区120的多个通孔101对应于待形成的显示面板的像素单元的位置,因此有效区120的多个通孔101尺寸大小及排布情况根据待形成的显示面板的像素单元的尺寸大小及分布位置而定。
例如,设置在虚设区130的多个通孔101均匀排布,本实施例不限于此,例如,设置在虚设区130的多个通孔101的排布情况还可以为非均匀排布。
例如,如图3a所示,设置在有效区120的多个通孔101的分布密度与设置在虚设区130的多个通孔101的分布密度基本相同,即设置在有效区120的多个通孔101与设置在虚设区130的多个通孔101呈阵列排布。本实施例包括但不限于此,例如,设置在有效区的多个通孔101的分布密度与设置在虚设区的多个通孔的分布密度还可以不相同。本实施例中采用设置在有效区的多个通孔的分布密度与设置在虚设区的多个通孔的分布密度基本相同的方式,可以有效促进掩模板在张网过程中保持受力均衡,有效区达到受力平衡,以防止有效区产生褶皱而导致待形成的显示面板出现有效显示区边缘颜色异常的现象。这里的“基本相同”包括完全相同以及近似相同的情况。需要说明的是,后续说明书中的“相同”均包括完全相同以及近似相同的情况。
例如,如图3a所示,设置在有效区120的多个通孔101的排布方式与设置在虚设区130的多个通孔101的排布方式相同。本实施例包括但不限于此,例如,设置在有效区120的多个通孔101的排布方式与设置在虚设区130的多个通孔101的排布方式也可以不相同。本实施例中采用设置在有效区的多个通孔的排布方式与设置在虚设区的多个通孔的排布方式相同的方式,可以有效促进掩模板在张网过程中保持受力均衡。
例如,多个通孔101的每个沿平行于掩模基板100截取的横截面的形状为多边形,图3a以矩形为例进行描述,本实施例不限于此,还可以是其他多边形。
例如,如图3a所示,设置在有效区120的多个通孔101的每个与设置在虚设区130的多个通孔101的每个沿平行于掩模基板100截取的横截面的形状及尺寸相同。本实施例包括但不限于此,例如,设置在有效区的多个通孔的每个沿平行于掩模基板截取的横截面的形状及尺寸均相同,但有效区的多个通孔的每个的形状及尺寸与虚设区的多个通孔的每个沿平行于掩模基板截取的横截面的形状及尺寸不相同。本实施例中采用设置在有效区的多个通孔的每个与设置在虚设区的多个通孔的每个沿平行于掩模基板截取的横截面的形状及尺寸相同的方式,可以有效促进掩模基板在张网过程中保持受力均衡,以防止有效区边缘产生褶皱现象。
例如,设置在有效区的多个通孔的每个沿平行于掩模基板截取的横截面的尺寸不完全相同,即该有效区的多个通孔对应的待形成的显示面板的像素单元的尺寸不完全相同,也就是说该掩模板的有效区可以用于蒸镀形成呈pentile排列的像素结构。
图3c为利用有限元分析软件(ANSYS)仿真如图3a所示的高精细金属掩模板的张网过程的效果示意性示意图,如图3c所示,四个白色圆形区域对应于图3a中的有效区120中的圆形区域。不同于图1b所示,图3c示出的圆形区域的周边区域的颜色相同,即均为白色,并且周边区域的颜色与圆形区域的颜色也相同,即均为白色,则图3c示出的情况表示有效区边缘应力分布均匀,且掩模区整体应力分布均匀,因此本实施提供的掩模板在张网过程中保持受力均衡,从而可以改善待形成的显示面板上的有效显示区边缘颜色异常的现象,可以有效提高产品良率。
图4为本实施例的另一示例提供的一种掩模板示意图,如图4所示,每个有效区120的形状可以为椭圆形(近似椭圆形,非标准椭圆形)。本实施例包括但不限于此,例如,有效区的形状还可以为多边形、扇形、无规则图形或矩形等规则图形。
图5为本实施例的另一示例提供的一种掩模板示意图,如图5所示,多个通孔101的每个沿平行于掩模板截取的横截面的形状可以为圆形,本实施例对此不作限制。
实施例二
本实施例提供一种用于蒸镀的掩模板的制作方法,该掩模板制作方法的具体步骤如图6所示,包括:
S201:在掩模基板的掩模区内形成贯穿掩模基板的多个通孔,掩模区包括有效区以及位于有效区周边的虚设区,在有效区和虚设区内均设置有通孔。
例如,掩模基板的材料为金属材料或树脂材料。例如,金属材料可选自不锈钢、镍、钴、镍合金、镍钴合金等中的一种或多种,本实施例不限于此。
例如,在掩模基板上形成贯穿掩模基板的多个通孔包括:在掩模基板上通过湿法刻蚀的方法形成多个通孔。例如,可以采用药液刻蚀的方法将掩模基板上的金属材料或树脂材料刻蚀掉,以形成本实施例需要的多个通孔。本实施例不限于湿法刻蚀,例如,还可以采用干法刻蚀等刻蚀形成多个通孔。
例如,掩模区包括有效区以及位于有效区周边的虚设区。例如,形成的有效区完全被虚设区包围,即有效区边缘的通孔的外侧分布至少一圈处于虚设区的通孔。在虚设区设置的通孔,可以将由于刻蚀药液不均匀导致有效区边缘通孔刻蚀形貌异常的区域移动到虚设区边缘的通孔所在位置处,即本实施中的有效区边缘的通孔不再处于掩模区的通孔的边缘位置。本实施例不限于有效区完全被虚设区包围,例如,有效区还可以不完全被虚设区包围,即有效区可以被虚设区半包围等。本实施例提供的掩模板可以有效防止有效区边缘通孔刻蚀异常现象的发生,从而改善待形成的显示面板上的有效显示区边缘发生颜色异常的现象,提高产品良率。
例如,掩模板中掩模区包括的有效区为蒸镀区,采用蒸镀源对待蒸镀的衬底基板进行蒸镀时,蒸镀源可以通过有效区中的通孔将蒸镀材料蒸镀到对应于待蒸镀的衬底基板上的像素单元的位置。本实施例中的掩模板上的有效区即为一般掩模板上的掩模图案区域(即图1a中的掩模图案区域011),该有效区的形状及尺寸与显示面板上的有效显示区的形状及尺寸均相同。本实施例以对有机发光二极管的衬底基板蒸镀发光层为例进行描述,但并不限于此,还可以是其他基板或其它层。
例如,形成的有效区的形状可以包括圆形、椭圆形、多边形、扇形或无规则图形。本实施例包括但不限于此,例如,有效区的形状还可以为矩形等规则形状。本实施例以待形成的显示面板的形状为圆形为例进行描述,例如,掩模板上的有效区对应于待形成的圆形显示面板上的圆形有效显示区,即有效区形状及尺寸与待形成的圆形显示面板上的圆形有效显示区的形状及尺寸均相同。
例如,形成在有效区的多个通孔均匀排布,本实施例不限于此。需要说明的是,有效区的多个通孔对应于待形成的显示面板的像素单元的位置,因此有 效区的多个通孔尺寸大小及排布情况根据待形成的显示面板的像素单元的尺寸大小及分布位置而定。
例如,形成在虚设区的多个通孔均匀排布,本实施例不限于此,例如,设置在虚设区的多个通孔的排布情况还可以为非均匀排布。
例如,形成在有效区的多个通孔的分布密度与形成在虚设区的多个通孔的分布密度相同,即形成在有效区的多个通孔与形成在虚设区的多个通孔呈阵列排布。本实施例不限于此,例如,形成在有效区的多个通孔的分布密度与形成在虚设区的多个通孔的分布密度还可以不相同。本实施例中采用形成在有效区的多个通孔的分布密度与形成在虚设区的多个通孔的分布密度相同的方式,可以有效促进掩模板在张网过程中保持受力均衡,有效区达到受力平衡,以防止有效区产生褶皱而导致待形成的显示面板出现有效显示区边缘颜色异常的现象。
例如,形成在有效区的多个通孔的排布方式与形成在虚设区的多个通孔的排布方式相同。本实施例包括但不限于此,例如,形成在有效区的多个通孔的排布方式与形成在虚设区的多个通孔的排布方式也可以不相同。本实施例中采用形成在有效区的多个通孔的排布方式与形成在虚设区的多个通孔的排布方式相同的方式,可以有效促进掩模板在张网过程中保持受力均衡。
例如,形成的多个通孔的每个沿平行于掩模基板截取的横截面的形状为多边形或圆形,本实施例对此不作限制。
例如,形成在有效区的多个通孔的每个与形成在虚设区的多个通孔的每个沿平行于掩模基板截取的横截面的形状及尺寸均相同。本实施例包括但不限于此,例如,形成在有效区的多个通孔的每个沿平行于掩模基板截取的横截面的形状及尺寸均相同,但有效区的多个通孔的每个的形状及尺寸与虚设区的多个通孔的每个沿平行于掩模基板截取的横截面的形状及尺寸不相同。本实施例中采用形成在有效区的多个通孔的每个与形成在虚设区的多个通孔的每个沿平行于掩模基板截取的横截面的形状及尺寸相同的方式,可以有效促进掩模板在张网过程中保持受力均衡,以防止有效区产生褶皱现象。
例如,形成在有效区的多个通孔的每个沿平行于掩模基板截取的横截面的尺寸不完全相同,即该有效区的多个通孔对应的待形成的显示面板的像素单元的尺寸不完全相同,也就是说该掩模板的有效区可以用于蒸镀形成呈pentile排列的像素结构。
例如,形成的掩模板包括至少一个有效区,即可以包括一个或更多个有效区,本实施例对掩模板中形成的有效区的个数不作限制。
例如,形成的掩模区的整体形状为矩形,即有效区与虚设区共同组成的区域为矩形,这里掩模区中的有效区与虚设区可以看成是互补的两个区域。本实施例中的掩模区的整体形状采用矩形形状,不同于待形成的显示面板的圆形形状,可以避免掩模板在张网过程中由于受力不均而产生褶皱,有助于张网褶皱的控制,从而改善显示面板上的有效显示区边缘颜色异常的现象,提高产品良率。
S202:对虚设区的多个通孔填充遮挡材料。
例如,对虚设区的多个通孔填充遮挡材料可以防止蒸镀材料蒸镀到衬底基板上不需要蒸镀材料的位置,即虚设区为非蒸镀区域。需要说明的是,这里的“对虚设区的多个通孔填充遮挡材料”可以包括在位于虚设区的多个通孔内以及相邻通孔之间的未被刻蚀的掩模基板上都涂敷遮挡材料(即如图3b所示)。本实施例包括但不限于此,例如,还可以包括仅对位于虚设区的多个通孔内涂敷填充遮挡材料。本实施例中的掩模基板上的虚设区对应于一般掩模基板上围绕掩模图案区域周围未被刻蚀的区域(如图1a所示)。
例如,遮挡材料包括聚酰亚胺、聚碳酸酯和聚丙烯酸酯的任一种或组合等具有较好弹性的材料,即设置在虚设区的多个通孔填充的遮挡材料为弹性材料以避免掩模板在张网过程中产生翘曲,促进掩模区达到张力平衡,从而改善待形成显示面板上的有效显示区边缘颜色异常的现象,可以有效提高产品的良率。
有以下几点需要说明:
(1)除非另作定义,本公开实施例以及附图中,同一标号代表同一含义。
(2)本公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(3)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域被放大。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到 变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种用于蒸镀的掩模板,包括:
    掩模基板,所述掩模基板上包括掩模区,所述掩模区包括有效区以及位于所述有效区周边的虚设区,在所述有效区和所述虚设区内均设置有贯穿所述掩模基板的多个通孔,
    其中,设置在所述虚设区的多个通孔填充遮挡材料。
  2. 根据权利要求1所述的用于蒸镀的掩模板,其中,所述遮挡材料包括聚酰亚胺、聚碳酸酯和聚丙烯酸酯的任一种或组合。
  3. 根据权利要求1或2所述的用于蒸镀的掩模板,其中,所述掩模区的整体形状为矩形。
  4. 根据权利要求1-3任一项所述的用于蒸镀的掩模板,其中,所述掩模板包括至少一个所述有效区,且每个所述有效区的形状包括圆形、椭圆形、多边形、扇形或不规则图形。
  5. 根据权利要求1-4任一项所述的用于蒸镀的掩模板,其中,所述有效区完全被所述虚设区包围。
  6. 根据权利要求1-5任一项所述的用于蒸镀的掩模板,其中,设置在所述有效区的多个通孔均匀排布。
  7. 根据权利要求1-6任一项所述的用于蒸镀的掩模板,其中,设置在所述有效区的多个通孔的分布密度与设置在所述虚设区的多个通孔的分布密度基本相同。
  8. 根据权利要求1-7任一项所述的用于蒸镀的掩模板,其中,设置在所述有效区的多个通孔的每个与设置在所述虚设区的多个通孔的每个沿平行于所述掩模基板截取的横截面的形状及尺寸基本相同。
  9. 根据权利要求1-8任一项所述的用于蒸镀的掩模板,其中,设置在所述有效区的多个通孔的排布方式与设置在所述虚设区的多个通孔的排布方式基本相同。
  10. 根据权利要求1-9任一项所述的用于蒸镀的掩模板,其中,所述多个通孔的每个沿平行于所述掩模板截取的横截面的形状为多边形或圆形。
  11. 一种用于蒸镀的掩模板的制作方法,包括:
    在掩模基板的掩模区内形成贯穿所述掩模基板的多个通孔,所述掩模区包 括有效区以及位于所述有效区周边的的虚设区,在所述有效区和所述虚设区内均设置有所述通孔;
    对所述虚设区的多个通孔填充遮挡材料。
  12. 根据权利要求11所述的用于蒸镀的掩模板的制作方法,其中,形成贯穿所述掩模基板的多个通孔包括:
    在所述掩模基板上通过湿法刻蚀形成所述多个通孔。
  13. 根据权利要求11或12所述的用于蒸镀的掩模板的制作方法,其中,对所述虚设区的多个通孔填充遮挡材料包括:
    对位于所述虚设区的通孔以及掩模基板涂覆所述遮挡材料。
  14. 根据权利要求11-13任一项所述的用于蒸镀的掩模板的制作方法,其中,所述遮挡材料包括聚酰亚胺、聚碳酸酯和聚丙烯酸酯的任一种或组合。
  15. 根据权利要求11-14任一项所述的用于蒸镀的掩模板的制作方法,其中,形成的所述掩模区的整体形状为矩形。
  16. 根据权利要求11-15任一项所述的用于蒸镀的掩模板的制作方法,其中,形成的所述掩模板包括至少一个所述有效区,且每个所述有效区的形状包括圆形、椭圆形、多边形、扇形或无规则图形。
  17. 根据权利要求11-16任一项所述的用于蒸镀的掩模板的制作方法,其中,形成的所述有效区完全被所述虚设区包围。
  18. 根据权利要求11-17任一项所述的用于蒸镀的掩模板的制作方法,其中,形成在所述有效区的多个通孔的分布密度与形成在所述虚设区的多个通孔的分布密度基本相同。
  19. 根据权利要求11-18任一项所述的用于蒸镀的掩模板的制作方法,其中,形成在所述有效区的多个通孔的每个与形成在所述虚设区的多个通孔的每个沿平行于所述掩模基板截取的横截面的形状及尺寸基本相同。
  20. 根据权利要求11-19任一项所述的用于蒸镀的掩模板的制作方法,其中,形成在所述有效区的多个通孔的排布方式与形成在所述虚设区的多个通孔的排布方式基本相同。
PCT/CN2017/110766 2017-03-27 2017-11-14 用于蒸镀的掩模板及其制作方法 WO2018176848A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/781,873 US20200270740A1 (en) 2017-03-27 2017-11-14 Evaporation mask and manufacturing method thereof
EP17875066.7A EP3605628A4 (en) 2017-03-27 2017-11-14 MASK PLATE FOR EVAPORATION AND ITS MANUFACTURING PROCESS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710188795.7A CN108666420B (zh) 2017-03-27 2017-03-27 掩模板及其制作方法
CN201710188795.7 2017-03-27

Publications (1)

Publication Number Publication Date
WO2018176848A1 true WO2018176848A1 (zh) 2018-10-04

Family

ID=63675219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110766 WO2018176848A1 (zh) 2017-03-27 2017-11-14 用于蒸镀的掩模板及其制作方法

Country Status (4)

Country Link
US (1) US20200270740A1 (zh)
EP (1) EP3605628A4 (zh)
CN (1) CN108666420B (zh)
WO (1) WO2018176848A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020114036A1 (zh) * 2018-12-04 2020-06-11 京东方科技集团股份有限公司 阵列基板的制备方法、显示面板及蒸镀装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107400851B (zh) * 2017-09-25 2019-11-05 京东方科技集团股份有限公司 一种掩膜板图形的制备方法及掩膜板
CN107740041B (zh) * 2017-11-24 2019-08-02 上海天马微电子有限公司 掩膜板的制作方法及掩膜板
CN109207920B (zh) * 2018-11-12 2021-02-09 京东方科技集团股份有限公司 掩模版
CN110699637B (zh) * 2019-10-17 2021-03-23 昆山国显光电有限公司 掩膜版的制作方法、掩膜版和显示面板的制作方法
CN114107897A (zh) * 2021-11-29 2022-03-01 合肥维信诺科技有限公司 掩膜板及掩膜组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323888A (ja) * 2003-04-23 2004-11-18 Dainippon Printing Co Ltd 蒸着マスク及び蒸着方法
CN103911583A (zh) * 2012-12-29 2014-07-09 上海天马微电子有限公司 Amoled金属掩膜板
CN104593721A (zh) * 2013-10-30 2015-05-06 昆山国显光电有限公司 一种蒸镀用精密金属掩膜板的张网方法及其获得的掩膜板
CN106521412A (zh) * 2016-11-30 2017-03-22 京东方科技集团股份有限公司 一种蒸镀掩模板及蒸镀方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100525819B1 (ko) * 2003-05-06 2005-11-03 엘지전자 주식회사 유기 이엘 디스플레이 패널 제조용 새도우 마스크
JP2006092752A (ja) * 2004-09-21 2006-04-06 Sony Corp コンビネーションマスクの製造方法
KR102418817B1 (ko) * 2013-04-12 2022-07-08 다이니폰 인사츠 가부시키가이샤 증착 마스크, 증착 마스크 준비체, 증착 마스크의 제조 방법 및 유기 반도체 소자의 제조 방법
JP2015074826A (ja) * 2013-10-11 2015-04-20 株式会社ブイ・テクノロジー 成膜マスク及びその製造方法
JP6538394B2 (ja) * 2015-03-25 2019-07-03 株式会社ソノコム ダミーパターンを使用したサスペンドメタルマスクおよびダミーパターンを使用したサスペンドメタルマスクの製造方法
KR102404576B1 (ko) * 2015-04-24 2022-06-03 삼성디스플레이 주식회사 마스크 프레임 조립체, 그 제조 방법 및 표시 장치의 제조 방법
US20180138408A1 (en) * 2015-08-05 2018-05-17 Applied Materials, Inc. A shadow mask for organic light emitting diode manufacture
CN106086781B (zh) * 2016-06-15 2018-09-11 京东方科技集团股份有限公司 掩膜组件及其制造方法、显示装置
CN105839052A (zh) * 2016-06-17 2016-08-10 京东方科技集团股份有限公司 掩膜板以及掩膜板的组装方法
CN106086785B (zh) * 2016-07-29 2019-02-01 京东方科技集团股份有限公司 掩膜板及其制作方法、掩膜组件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323888A (ja) * 2003-04-23 2004-11-18 Dainippon Printing Co Ltd 蒸着マスク及び蒸着方法
CN103911583A (zh) * 2012-12-29 2014-07-09 上海天马微电子有限公司 Amoled金属掩膜板
CN104593721A (zh) * 2013-10-30 2015-05-06 昆山国显光电有限公司 一种蒸镀用精密金属掩膜板的张网方法及其获得的掩膜板
CN106521412A (zh) * 2016-11-30 2017-03-22 京东方科技集团股份有限公司 一种蒸镀掩模板及蒸镀方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3605628A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020114036A1 (zh) * 2018-12-04 2020-06-11 京东方科技集团股份有限公司 阵列基板的制备方法、显示面板及蒸镀装置
US11495625B2 (en) 2018-12-04 2022-11-08 Ordos Yuansheng Optoelectronics Co., Ltd. Method for preparing array substrate, display panel and evaporation apparatus
US11688746B2 (en) 2018-12-04 2023-06-27 Ordos Yuansheng Optoelectronics Co., Ltd. Method for preparing array substrate, display panel and evaporation apparatus

Also Published As

Publication number Publication date
CN108666420B (zh) 2021-01-22
US20200270740A1 (en) 2020-08-27
EP3605628A1 (en) 2020-02-05
CN108666420A (zh) 2018-10-16
EP3605628A4 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
WO2018176848A1 (zh) 用于蒸镀的掩模板及其制作方法
JP6987261B2 (ja) 画素配列構造
US10079272B2 (en) Substrate assembly and manufacturing method thereof and display device
US8701592B2 (en) Mask frame assembly, method of manufacturing the same, and method of manufacturing organic light-emitting display device using the mask frame assembly
WO2016004698A1 (zh) Oled显示器件及其制备方法、显示装置和蒸镀用掩模板
US11104984B2 (en) Evaporation mask and evaporation method
WO2015192479A1 (zh) 一种有机发光二极管显示面板及其制备方法、掩膜板
KR20110021090A (ko) 유기전계 발광소자 제조 용 쉐도우 마스크
US11066742B2 (en) Vapor deposition mask
WO2019196336A1 (zh) Oled面板
JP6977140B2 (ja) マスク及びその製作方法
CN109950285B (zh) 一种阵列基板及其制作方法、显示装置
US20170040388A1 (en) Electroluminescent display and display device
CN106384744B (zh) 有机发光显示器件的制造方法
WO2019085108A1 (zh) Oled显示器及其制作方法
WO2016050010A1 (zh) Oled显示基板、oled显示装置和掩膜板
WO2019033856A1 (zh) 一种掩膜版、oled显示基板、显示装置及制作方法
KR101097305B1 (ko) 더미 슬릿부를 차단하는 차단부를 구비한 고정세 증착 마스크, 상기 고정세 증착 마스크를 이용한 유기 발광 소자의 제조 방법, 및 상기 제조 방법에 의해 제조된 유기 발광 소자
US9269752B2 (en) Organic electroluminescence display
TWM597497U (zh) 陣列基板、顯示面板以及顯示裝置
US10522775B2 (en) El display device including island shaped hole injection layer and island shaped electron injection layer and method of manufacturing the same
US9768236B2 (en) Organic light emitting diode display panel and manufacturing method thereof
WO2016127308A1 (zh) 一种显示面板
KR100814818B1 (ko) 유기 발광 표시 장치 제조용 마스크
KR20110108049A (ko) 유기전계발광소자 및 이의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017875066

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017875066

Country of ref document: EP

Effective date: 20180522

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE