WO2018176472A1 - 车载雷达的扫描方法、装置和控制车辆的系统 - Google Patents

车载雷达的扫描方法、装置和控制车辆的系统 Download PDF

Info

Publication number
WO2018176472A1
WO2018176472A1 PCT/CN2017/079308 CN2017079308W WO2018176472A1 WO 2018176472 A1 WO2018176472 A1 WO 2018176472A1 CN 2017079308 W CN2017079308 W CN 2017079308W WO 2018176472 A1 WO2018176472 A1 WO 2018176472A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
vehicle
scanning
radar
obstacle information
Prior art date
Application number
PCT/CN2017/079308
Other languages
English (en)
French (fr)
Inventor
邵云峰
薛希俊
曹彤彤
薛常亮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/079308 priority Critical patent/WO2018176472A1/zh
Priority to CN201780089196.8A priority patent/CN110476077B/zh
Publication of WO2018176472A1 publication Critical patent/WO2018176472A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified

Definitions

  • the present application relates to the field of in-vehicle devices, and more particularly to a scanning method, apparatus, and system for controlling a vehicle.
  • the vehicle radar can be installed on the vehicle to detect obstacles in the area around the vehicle.
  • the obstacle can refer to any object around the vehicle, including moving and non-movable.
  • the vehicle radar can work in millimeter waves and centimeter waves. Or light wave and other bands, wherein the millimeter wave is between the centimeter wave and the light wave, and has the advantages of microwave guidance and photoelectric guidance.
  • the vehicle radar can include the following components: a waveform generator, a transmitting antenna, a receiving antenna, and a signal processor.
  • the waveform generator is used to generate a waveform signal, and then transmitted through a transmitting antenna.
  • the normally transmitted signal is a linear modulated signal with a carrier frequency. After the transmitted signal is reflected by an obstacle near the vehicle, it can be received by the receiving antenna, and the received signal is relatively The signal has a certain delay, and the signal processor can process the transmitted signal and the received signal to obtain information such as the speed and distance of the obstacle.
  • the vehicle-mounted radar has a problem of low energy consumption or low scanning accuracy. Therefore, a scanning method of the vehicle-mounted radar is needed to solve the above problem.
  • the embodiment of the present application provides a method, a device, and a system for controlling a vehicle-mounted radar.
  • the control radar adopts different scanning strategies according to different scenarios in which the vehicle is located.
  • a method for scanning a vehicle-mounted radar includes: acquiring reference obstacle information, the reference obstacle information is used to indicate obstacle information of a surrounding area of the vehicle; and determining the location according to the reference obstacle information Scanning parameters of the vehicle's onboard radar; scanning the surrounding area of the vehicle using the scan parameters.
  • the scanning method of the vehicle-mounted radar can determine the scanning parameter for scanning the surrounding area of the vehicle according to the reference obstacle information, that is, the obstacle information of the surrounding area of the vehicle, and then use the scanning parameter to the surrounding area of the vehicle.
  • Scanning therefore, it is possible to adaptively adjust the scanning parameters of the radar signal according to the obstacle situation in the surrounding area of the vehicle, instead of scanning with a fixed scanning parameter, thereby being able to meet the radar performance requirements of different road conditions, thereby enabling comprehensive consideration The detection accuracy of the obstacle and the power consumption of the radar.
  • the method may be performed by an onboard radar, including an antenna, a signal generator, a signal receiver, a radar controller, and a processor, and specifically, obtaining reference obstacle information, and determining scan parameters may be
  • the processor of the radar system performs a process of scanning the area around the vehicle.
  • the radar controller controls the signal generator to generate a radar signal, and transmits the radar signal through the antenna to implement scanning of the area around the vehicle.
  • the reference obstacle information may include obstacle information of a surrounding area of the vehicle within a time period before the current time, and may also include statistical information about the road condition around the road where the vehicle is currently located, that is,
  • the reference obstacle information may be information of an obstacle in a section before the current time on the travel route of the vehicle, or may be history information of the area in the history.
  • the reference obstacle information may include information such as a speed of an obstacle in a surrounding area of the vehicle, a density of the obstacle, a type of the obstacle, or the like, or may divide the speed of the obstacle into a plurality of levels, and the density of the obstacle Also It is divided into a plurality of levels, and the reference obstacle information may include information such as a speed grade of an obstacle in a surrounding area of the vehicle, or a density level.
  • different scenarios correspond to different scanning parameters, and different obstacle conditions may be considered as different scenarios. Therefore, according to the reference obstacle information, the scenario corresponding to the surrounding area of the vehicle may be determined, and the scanning parameter corresponding to the scenario may be further determined. .
  • the obtaining reference obstacle information includes:
  • the obtaining reference obstacle information includes:
  • the reference obstacle information includes obstacle information and/or historical reference information of a surrounding area of the vehicle during a previous time period of the current time.
  • the method further includes: dividing a surrounding area of the vehicle into at least two partitions; and determining the vehicle based on the reference obstacle information
  • the scan parameters of the onboard radar include: determining at least two sets of scan parameters according to the reference obstacle information, each set of scan parameters corresponding to one partition; the using the scan parameters to Scanning the surrounding area of the vehicle includes scanning each of the partitions using a set of scan parameters corresponding to each of the at least two partitions.
  • the scanning method of the vehicle-mounted radar of the embodiment of the present application divides the surrounding area of the vehicle into at least two partitions, each of which has different requirements for scanning parameters of the radar signal, and therefore, according to each partition in the reference obstacle information
  • the obstacle information determines the scan parameters corresponding to each partition, so that each partition is scanned using the scan parameters corresponding to each partition.
  • the method further includes: determining, based on the first obstacle information, predicted obstacle information, the predicted obstacle information indicating a predicted current time Obstacle information of a region around the vehicle, the predicted obstacle information including a first region where the obstacle may appear and/or a second region where the obstacle is unlikely to occur.
  • the predicted plurality of obstacles may have multiple regions at present, and any two of the plurality of regions may overlap partially or completely, that is, The areas where two obstacles may appear may be partially identical or identical, the multiple areas respectively corresponding to a plurality of obstacles, that is to say the first area may comprise a plurality of areas, any two of the plurality of areas
  • the plurality of regions may respectively overlap or overlap, and the plurality of regions respectively correspond to the plurality of obstacles, and the predicted obstacle information may be used to determine which of the scan data are the determined obstacles and which are the obstacles to be determined, wherein the obstacles may be determined. As a basis for avoiding obstacles.
  • the method further includes: acquiring scan data obtained by scanning the surrounding area of the vehicle using the scan parameter; determining that the scan data is greater than a preset The first type of data of the filtering threshold; obtaining, according to the first type of data and the predicted obstacle information, the determined obstacle information, the predicted obstacle information including a position where the predicted obstacle may appear, the determining the obstacle information Information including an obstacle of the first type of data appearing at a corresponding position in the predicted obstacle information.
  • the first type of data can be understood as scanning data for removing interference information, and the reliability of obtaining obstacle information that can be used as an obstacle avoidance basis from the first type of data is higher.
  • the predicted obstacle information may include a plurality of regions corresponding to the plurality of obstacles, if In the first type of data, part or all of the plurality of obstacles appear in the corresponding area, and the obstacle appearing in the predicted area where the obstacle may appear may be determined as the determined obstacle, for example,
  • the predicted obstacle information includes a first area in which the first obstacle may appear, and a second area in which the second obstacle may appear, and in the first type of data, the first obstacle appears in the first area, The second obstacle does not appear in the second area, and the first obstacle is an obstacle, and the second obstacle is not yet determined.
  • the determined obstacle information includes information of an obstacle of a corresponding area in the first type of data appearing in the predicted obstacle information, the to-be-determined obstacle information including the first type of data Information of an obstacle of a corresponding area in the predicted obstacle information or information of an obstacle appearing in the obstacle information in the previous period of time and not appearing in the first type of data is not present.
  • the determination of the obstacle and the obstacle to be determined may have such a conversion relationship: if it is determined that the obstacle is not scanned again, for example, determining that the obstacle appears in the obstacle information in the previous period of time, but in the scan data If it does not appear, it can be converted into an obstacle to be determined, and if the obstacle to be determined is scanned again, it is converted into an obstacle.
  • the method further includes: if the ratio of the first type of data to the scan data is less than the preset detection rate threshold, reducing the pre- And setting a filtering threshold to re-determine the first type of data from the scan data.
  • the preset filtering threshold is decreased, and the first is determined from the scan data. Class data.
  • the method further comprises: determining predicted obstacle information based on the reference obstacle information, the predicted obstacle information indicating a predicted surrounding area of the vehicle Obstacle information; determining a measurement deviation according to the scan data and the predicted obstacle information; adjusting a conversion matrix between the radar coordinate system and the vehicle coordinate system according to the measurement deviation, the conversion matrix being used for Conversion between obstacle information in the radar coordinate system and obstacle information in the vehicle coordinate system, the radar coordinate system is a coordinate system with the radar as a carrier, and the vehicle coordinate system is the vehicle Is the coordinate system of the carrier.
  • the scanning device of the vehicle-mounted radar can also adjust the conversion matrix between the vehicle coordinate system and the radar coordinate system in real time according to the actually scanned obstacle information and the predicted obstacle information, thereby facilitating reduction of collisions.
  • Factors such as bumps and bumps cause changes in the installation position or installation angle of the radar on the vehicle, which ultimately leads to inaccurate conversion matrices.
  • the method further includes: determining, in the plurality of scanning strategies, a first scanning policy for an area in which the predicted obstacle may appear, the The number of beams of the radar signal indicated by a scanning strategy is greater than a threshold number of beams, or the beam width is smaller than a beam width threshold, or the scanning density is greater than a scanning density threshold, or the scanning frequency is greater than a scanning frequency threshold, or the scanning mode is an electrical scanning mode;
  • the first scanning policy scans the first area.
  • the scanning device of the vehicle-mounted radar can predict an area where an obstacle may appear, and a plurality of beam numbers, or a narrow beam width, or a large scanning density can be used for an area where an obstacle may appear. Or a fine scan frequency for fine scanning.
  • the scanning device of the onboard radar can also predict an area where an obstacle cannot occur, and record it as a second area, and the obstacle appearing in the second area can be regarded as an obstacle to be determined.
  • the scanning device of the onboard radar may also adopt more beam numbers, or a narrow beam width, or a larger scanning density for the second region, or Higher scanning frequency for fine A fine scan is performed to further determine which of the obstacle information to be determined can be converted into a certain obstacle or into a non-obstacle.
  • the method further includes determining the determined obstacle information and/or the to-be-determined obstacle information as a reference obstacle for the next scan time Information.
  • the obstacle information at the current time can be determined as the reference obstacle information of the next scanning time, that is, the scanning parameter of the next scanning time can be determined according to the obstacle information at the current time.
  • the method further comprises merging any two of the at least two partitions into one partition, wherein the barriers in any two of the partitions The difference in the density of the objects is less than the density threshold, or the difference in the velocity of the obstacle is less than the speed threshold, or the obstacle type is the same; determining at least the obstacle density, the speed of the obstacle, and the obstacle type of each of the merged partitions Determining, according to at least one of an obstacle density of each of the partitions, a speed of the obstacle, and an obstacle type, determining a target scanning policy corresponding to each of the partitions, including: according to each of the merged A target scanning policy corresponding to each of the merged partitions is determined by at least one of a partitioned obstacle density, an obstacle speed, and an obstacle type.
  • the scanning device of the vehicle-mounted radar can be partitioned according to the obstacle information in the surrounding area of the vehicle, and the obstacle information is different, that is, the scene type is different, and the scanning parameters of the radar signal are different, and therefore, according to the obstacle information. Partitioning, the area with similar obstacle information can be divided into the same partition, so that the same scanning strategy can be used for scanning, and the area with large difference of obstacle information is divided into two partitions, which are scanned by using different scanning strategies. It can meet the needs of radar performance in different scenarios. For example, the obstacles of the lane move faster, and the obstacles of the tunnel have a slower speed. Therefore, the time-resolving ability of the scanning lane for the radar signal is higher, and the time resolution of the radar for the radar is relatively lower. Therefore, when scanning a lane, a higher scanning frequency, or a higher scanning density, may be used, and a lower scanning frequency or a lower scanning density may be used when scanning the sidewalk.
  • the scanning parameters of the radar signal comprise at least one of the following:
  • the radar operates in a millimeter wave band.
  • the method further comprising: acquiring scan data obtained by scanning the surrounding area of the vehicle using the scan parameter; controlling the vehicle based on the scan data Complete the obstacle avoidance action.
  • the method further comprises: determining, based on the reference obstacle information, among a plurality of pre-configured scan strategies for scanning a surrounding area of the vehicle Target scanning strategy.
  • the determining, according to the reference obstacle information, a target scanning policy for scanning a surrounding area of the vehicle among a plurality of pre-configured scanning strategies includes: determining, according to the reference obstacle information, a target scene type to which the surrounding area of the vehicle belongs in a plurality of pre-configured scene types; determining, according to the target scene type, the target in a plurality of pre-configured scan policies
  • the target scanning policy corresponding to the scenario type, the multiple scene types are in one-to-one correspondence with the plurality of scanning policies, and each of the plurality of scanning strategies corresponds to a corresponding obstacle condition.
  • each scene type may correspond to a corresponding obstacle condition.
  • Barrier The obstruction condition may be at least one of an obstacle density, a speed of the obstacle, and an obstacle type.
  • each scene type may correspond to a corresponding obstacle density range or obstacle density threshold, or a range of obstacle speeds or obstacle speed thresholds, or obstacle types.
  • the pre-configured plurality of scene types may also be characterized by at least one of an obstacle density level, a speed level of the obstacle, and an obstacle type, that is, each scene type may correspond to a corresponding obstacle. The density level, or the speed level of the obstacle, or the type of obstacle.
  • the determining, according to the reference obstacle information, a target scene type to which the surrounding area of the vehicle belongs in the pre-configured plurality of scene types including: The obstacle information of each partition in the reference obstacle information determines a target scene type corresponding to each partition.
  • the determining, according to the target scenario type, the target scanning policy corresponding to the target scenario type in a plurality of pre-configured scan policies including: according to the Referring to the target scene type of each partition in the obstacle information, a target scanning policy corresponding to each partition is determined among the plurality of scanning strategies.
  • a scanning device for a vehicle-mounted radar for performing the method of any of the first aspect and the first aspect, wherein the device may include the first aspect and the A unit of a method in any of the possible implementations on the one hand.
  • a third aspect provides a scanning device for a vehicle-mounted radar, comprising a memory and a processor, the memory for storing a computer program, the processor for calling and running the computer program from the memory, so that the scanning device of the vehicle-mounted radar performs the first In one aspect and the method of any of the possible implementations of the first aspect.
  • a computer readable storage medium in a fourth aspect, storing a program that causes a scanning device of an onboard radar to perform the first aspect or any one of the possible implementations of the first aspect The method in .
  • a computer program product comprising: computer program code, when the computer program code is run by a processor of a scanning device of the vehicle radar, causing the scanning device of the vehicle radar to perform the first Aspect or method of any of the possible implementations of the first aspect.
  • a system for controlling a vehicle comprising: a scanning device for an in-vehicle radar of the second aspect or the third aspect, and a control device for scanning an area around the vehicle to obtain Scanning the data may further process the scan data to obtain obstacle avoidance information, and the control device may control the vehicle to complete the obstacle avoidance action according to the obstacle avoidance information.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 2 is a structural diagram of a radar system according to an embodiment of the present application.
  • Figure 3 is a schematic illustration of the azimuth and distance resolution of a radar system.
  • FIG. 4 is a schematic flow chart of a scanning method of an in-vehicle radar according to an embodiment of the present application.
  • FIG. 5 is an overall flowchart of a scanning method of an in-vehicle radar according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a processing procedure of scan data by a scanning device according to an embodiment of the present application.
  • Fig. 7 is a schematic diagram showing a conversion relationship between an obstacle and a obstacle to be determined.
  • FIG. 8 is a schematic flowchart of a scanning method of an in-vehicle radar according to another embodiment of the present application.
  • Fig. 9 is a schematic diagram of each partition after dividing a surrounding area of the vehicle.
  • FIG. 10 is a schematic block diagram of a scanning device of an in-vehicle radar according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a scanning device of an in-vehicle radar according to another embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a system for controlling a vehicle according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • the vehicle 110 is equipped with a radar system 120 that can be mounted at the top end of the vehicle, or at the front end of the vehicle, or at the rear end of the vehicle, for detecting obstacle information in the area around the vehicle.
  • a radar system 120 can be mounted at the top end of the vehicle, or at the front end of the vehicle, or at the rear end of the vehicle, for detecting obstacle information in the area around the vehicle.
  • the radar system 120 can operate in a millimeter wave band, or a centimeter wave band, or a light wave band. If the radar system 120 operates in a millimeter wave band, the operating frequency of the radar system 120 is generally in the range of 30 to 300 GHz. For example, the 77 GHz band.
  • the radar system 120 can also operate in the 24 GHz band. Although the wavelength of 24 GHz exceeds 1 cm, it is 12.5 mm long. Generally, the radar near this wavelength is called microwave radar, also called millimeter wave radar.
  • the 24 GHz radar is less linear than the 77 GHz, but the surrounding metal objects are also detectable.
  • the vehicle detection around the vehicle can use 24 Ghz, and the front vehicle detection can use 77 GHz. This embodiment of the present application does not limit this.
  • a carrier coordinate system including two coordinate systems and a radar system 120 as a carrier is simply referred to as a radar coordinate system, and the X-axis, the Y-axis, and the Z-axis indicated by the solid line in FIG. 1 are three of the radar coordinate system.
  • the coordinate axes, and the carrier coordinate system with the vehicle 110 as a carrier are simply referred to as the vehicle coordinate system, and the x-axis, the y-axis, and the z-axis shown by the broken lines in FIG. 1 are the three coordinate axes of the vehicle coordinate system.
  • the radar system 120 can be used to scan obstacle information around the vehicle 110. Since the scan data obtained by the radar system 120 is scan data in the radar coordinate system, when the vehicle is controlled, data corresponding to the obstacle information in the vehicle coordinates is required. It is therefore necessary to convert the scan data obtained by the radar system 120 into scan data in the vehicle coordinate system, and therefore, it is necessary to determine a conversion matrix between the radar coordinate system and the vehicle coordinate system. The conversion matrix can be determined based on the mounting position and mounting angle of the radar system 120 at the vehicle 110.
  • the installation position and the installation angle of the radar system 120 may be measured when the radar system 120 is mounted on the vehicle 110, and according to the measured value, a conversion matrix between the radar coordinate system and the vehicle coordinate system may be determined, according to which the conversion matrix may The data in the radar coordinate system is converted to data in the vehicle coordinate system, or the data in the vehicle coordinate system can also be converted into data in the radar coordinate system.
  • the installation position of the radar system 120 in the vehicle coordinate system is (x R , y R , z R ), and the installation angle is ( ⁇ Rx , ⁇ Ry , ⁇ Rz ), and the obstacle can be obtained from the radar coordinate system according to formula (1).
  • the position of the object is converted to the obstacle position in the vehicle coordinate system:
  • TV can be determined according to formula (3):
  • RM can be determined according to formula (4):
  • the obstacle information in the vehicle coordinate system If it is necessary to convert the obstacle information in the vehicle coordinate system into the obstacle information in the radar coordinate system, simply multiply the obstacle position in the vehicle coordinate system by the inverse transformation matrix TF -1 of TF, and no further description is provided here. . That is to say, the obstacle information between the vehicle coordinate system and the radar coordinate system can be converted to each other through the conversion matrix.
  • the radar system 120 can include an antenna, a signal generator, a signal receiver, a signal processor, a radar controller, and the like.
  • 2 is a structural diagram of an exemplary radar system. As shown in FIG. 2, the radar system may include two antennas, an antenna A and an antenna B.
  • the antenna A and the antenna B may be respectively mounted on the front end of the vehicle and the vehicle. The top of the.
  • the signal generator is configured to generate a transmission signal, and then transmit through an antenna
  • the signal receiver is configured to receive a signal that is transmitted by the obstacle
  • the radar controller is configured to control the number of beams, the beam width, the scanning frequency, the scanning density, or Scanning parameters, such as scanning mode
  • the radar controller may be further configured to determine a scanning parameter of a radar signal for scanning an area around the vehicle according to a type of the scene in which the vehicle is located
  • the signal processor is configured to process the radar signal received by the signal receiver To get information such as the distance and speed of the obstacle.
  • the radar controller and the signal processor may be the same physical entity.
  • the functions of the radar controller and the signal processor may be performed by one processor, or may be independent physical entities, for example, the radar.
  • the functions of the controller and signal processor can be performed by two processors.
  • the signal processor or radar controller can be a general purpose processor or a digital signal processor. (Digital Signal Processor, DSP), Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component .
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the signal processing can be accomplished by integrated logic of the hardware in the signal processor, or instructions in software, or a combination of hardware and software.
  • the scanning mode of the radar signal may include an electric scanning mode and a mechanical scanning mode.
  • the mechanical scanning mode drives the antenna to rotate to the beam pointing position, and then emits electromagnetic waves to obtain a reflected signal.
  • the electric scanning method may include phased array radar or digital beamforming, wherein the phased array radar method is to achieve the position of the beam pointing by changing the initial phase and working state of each antenna unit and synthesizing beam widths of different widths, the digital beam
  • the formation method is to obtain data equivalent to different beam pointing and beam width of the phased array by giving different phases to the data sampled by each antenna unit.
  • FIG. 2 exemplarily shows two antennas, an antenna A and an antenna B.
  • the embodiment of the present application does not limit the number of antennas included in the radar system, and the radar system may include more antennas, or only An antenna is included, and the embodiment of the present application does not limit the installation position of the antenna.
  • Both the antenna A and the antenna B may be installed at the front end of the vehicle, or may be installed at the top end of the vehicle.
  • the radar signal's ability to resolve the position of the object is divided into range resolution and azimuth resolution.
  • the range resolution can also be called time resolution.
  • the azimuth resolution can also be called spatial resolution.
  • the distance resolution ⁇ R is expressed by the formula (8):
  • D represents the antenna size and ⁇ represents the wavelength.
  • the azimuth resolution is determined by the antenna size and the wavelength of the signal.
  • the distance between B1 and B4 or the distance between B2 and B3 represents the distance resolution
  • the distance between B1 and B2 or the distance between B3 and B4 represents the azimuth resolution
  • B1 and B2 or the distance between B3 and B4 represents the azimuth resolution
  • B1 and B2 or the distance between B3 and B4 represents the azimuth resolution
  • B1 and B2 or the distance between B3 and B4 represents the azimuth resolution
  • the wavelength of the signal can be shortened, that is, a signal with a higher frequency is used, but as the frequency of the hardware system increases, the design and implementation difficulty increases, and the cost also increases greatly.
  • Another method is to increase the antenna size and increase the azimuth resolution by increasing the antenna size.
  • the azimuth resolution is improved, that is, the beam width is narrowed, and the range in which the azimuth is observable becomes smaller.
  • the direction of the distance direction can be adjusted during observation, and the direction of the change direction can be changed by mechanically changing the antenna. Pointing or by means of electrical scanning (eg phased array or digital beamforming).
  • the embodiment of the present application proposes a scanning method of a vehicle-mounted radar, which can adaptively control radar scanning parameters according to different scenarios, and can control the resolution parameters of the vehicle radar by controlling the scanning parameters of the radar signal.
  • the purpose is to be able to meet different scenes and requirements for radar performance.
  • FIG. 4 is a schematic flowchart of a scanning method 400 of an on-board radar according to an embodiment of the present application.
  • the method 400 may be performed by a scanning device of an on-board radar.
  • the scanning device of the in-vehicle radar may be as shown in FIG. 1 .
  • Radar system 120 may be as shown in FIG. 1 .
  • FIG. 4 is a schematic flowchart of a method for scanning a vehicle-mounted radar according to an embodiment of the present application, showing detailed steps or operations of the method, but the steps or operations are merely examples, and the embodiment of the present invention may also be performed. Other operations or variations of the various operations in FIG. Moreover, the various steps in FIG. 4 may be performed in a different order than that presented in FIG. 4, and it is possible that not all operations in FIG. 4 are to be performed.
  • the method 400 includes:
  • the S410 may be performed by a scanning device of an in-vehicle radar, and the scanning device of the in-vehicle radar may be the radar system 120 shown in FIG. 1.
  • the S410 may be executed by a signal processor in the radar system.
  • the reference obstacle information may include obstacle information of a surrounding area of the vehicle within a time period before the current time, that is, the reference obstacle information may include a surrounding area of the vehicle on the travel route before the current time.
  • the obstacle information for example, during the first time period, the vehicle travels from the A position to the B position, and the reference obstacle information may include information of surrounding obstacles on the route from the A position to the B position.
  • the reference obstacle information may also include road condition information around the road where the vehicle is currently located in the statistical history, that is, the reference obstacle information may include statistically significant obstacle information of the road on which the current vehicle is located.
  • the reference obstacle information may also be historical reference information, for example, the vehicle currently travels to the A area, and the historical reference information may include statistical historical path information of the A area.
  • the reference obstacle information may include information such as the speed of the obstacle in the area around the vehicle, the density of the obstacle, the type of the obstacle, and the like.
  • the reference obstacle information may include information such as position information of the obstacle in the first time period, speed information of the obstacle, and type of the obstacle, or the reference obstacle information may also be included.
  • Information such as speed information of obstacles in the area, density information of obstacles, and types of obstacles.
  • the position information of the obstacle may include information such as the distance of the obstacle from the vehicle, and the type information of the obstacle may include a person, a bicycle, a building, a traveling vehicle, or the like.
  • the speed of the obstacle and the density of the obstacle may be divided into a plurality of levels, and the reference obstacle information may include information such as a speed grade of the obstacle in the surrounding area of the vehicle, or a density level.
  • the reference obstacle information may include information such as a speed grade of an obstacle in a surrounding area of the vehicle during a first time period, or a density level.
  • the reference obstacle information may include information such as a speed grade, a density level, and the like of an obstacle of the area in history.
  • the first obstacle information may be acquired from a scanning device of the onboard radar, that is, the first obstacle information may be scan data of a period of time before the scanning device of the onboard radar.
  • the scanning device of the onboard radar may scan the surrounding area on the travel route of the vehicle in the first time period to obtain scan data, and the first obstacle information may be in the first time period. Scan the data.
  • the first obstacle information may also be obtained from sensors (eg, radar) on other vehicles. That is to say, the first obstacle information may be obstacle information of a surrounding area of the vehicle during a first time period collected by sensors on other vehicles. For example, during the first time period, the vehicle travels from the C area to the D area, and the first obstacle information may be information of obstacles around the area from the C area to the D area collected by other vehicles.
  • sensors eg, radar
  • the first obstacle information may also be obtained from a camera.
  • the vehicle travels from the C area to the D area
  • the first obstacle information may be information of obstacles around the area from the C area to the D area acquired from the camera, the present application
  • the embodiment does not limit the manner in which the first obstacle information is acquired.
  • the historical reference information may be obtained from a third party in real time, or may be stored in a storage medium of the vehicle-mounted radar.
  • the manner in which the historical reference information is acquired is not limited in the embodiment of the present application.
  • the obstacle information of the surrounding area of the vehicle may be described by the type of the scene to which the surrounding area of the vehicle belongs.
  • the scene type may be another way of expressing obstacle information in the area around the vehicle. Therefore, the type of the scene to which the area around the vehicle belongs can be determined based on the reference obstacle information.
  • the scanning device of the vehicle-mounted radar can determine the type of the scene to which the surrounding area of the vehicle belongs according to the speed of the obstacle in the surrounding area of the vehicle.
  • a first speed threshold may be preset, and when it is greater than the first speed threshold, it is determined to belong to a high speed scene. If the speed of the obstacle in the surrounding area of the vehicle is determined to be greater than the first speed threshold according to the reference obstacle information, the current vehicle may be determined.
  • the roads that travel are high-speed scenes.
  • the scanning device of the onboard radar may determine the type of scene described in the area around the vehicle based on the density of the obstacle. For example, a first density threshold may be preset, and when the first density threshold is greater than the first density threshold, the high density scene is determined. If the density of the obstacle in the surrounding area of the vehicle is determined to be greater than the first density threshold according to the reference obstacle information, the current vehicle may be determined.
  • the roads that travel are high-density scenes.
  • the scanning device of the onboard radar can also determine the type of scene to which the area surrounding the vehicle belongs according to the speed and density of the obstacle.
  • the scanning device of the onboard radar can determine the type of scene of the area around the vehicle based on at least one of the speed of the obstacle, the density of the obstacle, or the type of obstacle.
  • the obstacle density of the area around the vehicle can be determined according to formula (10):
  • the speed of the obstacle in the area around the vehicle can be determined according to formula (11):
  • the obstacle type of each area can be determined according to the motion law of the obstacle.
  • the type of obstacle may include a fixed obstacle, a car, a bicycle, a pedestrian, and the like.
  • the scanning device of the vehicle-mounted radar may pre-configure a plurality of scene types for describing obstacle information of a surrounding area of the vehicle.
  • the pre-configured plurality of scene types may include a conventional scene. , high-speed scenes, high-density scenes, parking or starting scenes, several or all of high-risk scenes.
  • each scene type may correspond to a corresponding obstacle density, or an obstacle speed, or an obstacle type.
  • each scene type may correspond to a corresponding obstacle density range or obstacle density threshold, or a range of speed of the obstacle or a threshold of the speed of the obstacle, or an obstacle type. That is, each scene type has a correspondence relationship with an obstacle density range or an obstacle density threshold, a range of speeds of obstacles, or a threshold of obstacle speeds and obstacle types.
  • the speed of the obstacle, the density of the obstacle, or the type of the obstacle of the area around the vehicle may be determined according to the reference obstacle information, and then according to the speed of the obstacle, the density of the obstacle, or the type of the obstacle,
  • the scene type determines the type of scene to which the area around the vehicle belongs.
  • the pre-configured plurality of scene types may also be characterized by at least one of an obstacle density level, a speed grade of the obstacle, and an obstacle type. That is to say, each scene type can correspond to a corresponding obstacle density level, or an obstacle speed level, or an obstacle type.
  • the obstacle density may include P levels, P is an integer greater than 1, the speed of the obstacle may include Q levels, and Q is an integer greater than one.
  • the obstacle density level p of the surrounding area of the vehicle and the speed level q of the obstacle can be determined, so that the area surrounding the vehicle can be determined The type of scene.
  • the conventional scene, the high-density scene, the high-speed scene, the parking/starting scene, and the high-risk scene are taken as an example to introduce each scene type and the obstacle density level, or the speed level of the obstacle, or the distance.
  • the distance range or threshold of the vehicle, or the correspondence of the obstacle types can be set as shown in Table 2:
  • Scene type Obstacle density level Speed grade Obstacle type Distance from the vehicle Regular scene p ⁇ p 1 q ⁇ q 1 High density scene P ⁇ p 1 High speed scene Q ⁇ q 1 High risk scene People or bicycles Parking/starting scene L ⁇ distance range, or L ⁇ L max
  • the area around the vehicle belongs to the conventional scene.
  • the surrounding area of the vehicle belongs to a high density scene.
  • the area around the vehicle belongs to a high speed scene.
  • the area around the vehicle belongs to a high-risk scene.
  • the distance L of the obstacle around the vehicle from the vehicle belongs to a certain distance range or is smaller than the distance threshold L max , the surrounding area of the vehicle belongs to a parking or starting scene.
  • scenario type and the determination condition shown in Table 2 is only an example and is not limited.
  • the embodiment of the present application may further include more scenario types, or may include fewer scenario types.
  • the number of scene types is not limited, and the determination condition corresponding to each scene type can be determined according to actual conditions.
  • both S420 and S430 can be performed by a scanning device of an onboard radar, and the scanning device of the in-vehicle radar can be the radar system 120 shown in FIG. 1.
  • the S420 can be used by a signal in the radar system.
  • the processor or radar controller executes or can be executed jointly by the signal processor and the radar controller.
  • the signal processor can be used to determine the scanning parameters of the radar signal
  • the radar controller can control the scanning parameters of the radar signal transmitted by the signal generator
  • the signal generator can transmit the radar signal
  • the radar signal can be transmitted through the antenna.
  • the S430 can be jointly executed by a module such as a radar controller, a signal generator, an antenna, and a signal processor.
  • the scanning strategy can be another way of expressing scanning parameters for scanning the area around the vehicle.
  • different obstacle conditions may correspond to different scanning parameters
  • the scanning device of the vehicle radar may determine an obstacle condition in a surrounding area of the vehicle according to the foregoing reference obstacle information, thereby determining a scanning parameter for scanning an area around the vehicle.
  • the scanning device of the onboard radar may pre-configure a plurality of scanning strategies, which may be used to scan the scanning parameters of the radar signals used in the surrounding area of the vehicle in different obstacle situations. That is to say, the plurality of scanning strategies can correspond to different obstacle conditions. For example, each of the plurality of scanning strategies may correspond to a speed, an obstacle density, or an obstacle type of the corresponding obstacle.
  • the obstacle speed, the obstacle density or the obstacle type of the surrounding area of the vehicle may be determined according to the reference obstacle information, and then determined according to the obstacle speed, the obstacle density or the obstacle type, among the plurality of scanning strategies A target scanning strategy for scanning an area around the vehicle, thereby scanning the area around the vehicle using the target scanning strategy, that is, scanning the area around the vehicle using scanning parameters corresponding to the target scanning strategy.
  • the scanning parameters of the onboard radar may include at least one of the following: number of beams, beam width, beam direction, scanning density, scanning frequency, and scanning mode.
  • the scanning device of the vehicle radar can set K beam number schemes, and the corresponding number of beams is k 1 , k 2 ..., k K , and the number of waveforms increases in turn.
  • the corresponding beam widths are w 1 , w 2 ..., w w , and the beam widths are sequentially increased.
  • the corresponding scanning densities are d 1 , d 2 ..., d D , respectively, and the scanning density is sequentially increased.
  • the corresponding scanning frequencies are f 1 , f 2 ..., f F , respectively, and the scanning frequency is sequentially increased.
  • Two scanning methods mechanical scanning and electrical scanning (for example, phased array or digital beamforming).
  • the scanning device of the vehicle radar can establish different obstacle information, and at least one of the K beam number scheme, the W beamwidth scheme, the D scanning density scheme, the F scanning frequency scheme, and the two scanning modes.
  • the mapping relationship of the item For example, when the obstacle speed can satisfy the first obstacle condition, the scanning parameters used include k 2 , w 2 , d 2 , f 3 , and the electric scan, that is, the scan used when the obstacle speed satisfies the first obstacle condition.
  • the parameters are: k 2 beams, the beam width is w 2 , the beam density is d 2 , the scanning frequency is f 3 , and the scanning mode is the electric scanning mode. That is to say, different obstacle conditions and scanning parameters used, that is, the correspondence relationship of the scanning strategies, can be established.
  • each scene type corresponds to at least one of a corresponding number of beams, a beam width, a scanning density, a scanning frequency, and a scanning mode.
  • the pre-configured multiple scene types may include a scene type such as a normal scene, a high-density scene, a high-speed scene, a parking/starting scene, and a high-risk scene, and the number of beams corresponding to the scene type, or a beam may be set. Width, or scan density, or scan frequency, or scan mode.
  • the obstacle information is described by multiple scene types, and the scanning parameters of the radar signal include the number of beams, the beam width, the scanning density, the scanning frequency, and the scanning mode as an example, and the multiple scanning strategies and multiple scene types are introduced.
  • Table 3 is an exemplary correspondence.
  • Scene type Number of beams Beamwidth Scanning density scanning frequency scanning method Regular scene Medium number Medium width Medium range Medium range Electrical scanning High density scene More Narrower Higher Higher Electrical scanning High speed scene Small amount width low low Electrical scanning High risk scene many narrow high high Mechanical scanning Parking/starting scene Super Ultra narrow Super high Super high Electrical scanning
  • high-density scenes for example, urban streets
  • high-risk scenes, and parking/starting scenes have more obstacles, and the obstacles have smaller spacing
  • the spatial resolution capability is higher than the conventional scene. Therefore, as shown in Table 3
  • the number of beams corresponding to the high-density scene, the high-risk scene, and the parking/starting scene can be set more than the number of beams corresponding to the conventional scene.
  • high-speed scenes for example, highways
  • there are fewer obstacles and the obstacles are larger.
  • the requirements for the spatial resolution of the radar system are lower than those of the conventional scene.
  • high-speed scenes can be set.
  • the number of beams is smaller than the number of beams corresponding to the conventional scene.
  • the beam width corresponding to the high-density scene, the high-risk scene, and the parking/starting scene can be set smaller than the beam width corresponding to the conventional scene, and the beam width corresponding to the high-speed scene is larger than the beam width corresponding to the conventional scene.
  • the scan parameters corresponding to each scene type listed in Table 3 have only a relative concept.
  • the specific range of each scene type is not limited by the embodiment of the present application, and the specific range of the scan parameters corresponding to each scene type may be based on A large amount of data is statistically determined. For example, for a scene, by scanning different scanning parameters, for example, different waveform numbers, or beam widths, an estimated value of the position of the obstacle in the scene can be obtained, according to the estimated values under different scanning parameters. Determine the optimal number of waveforms and beamwidth for this scenario.
  • the correspondence between different obstacle information and different scanning policies may also be given by a function or a table.
  • the multiple scanning policies and the multiple scene types may also be given by a function or a table, which is not limited by the embodiment of the present application.
  • the scanning method of the vehicle-mounted radar can determine the scanning parameter for scanning the surrounding area of the vehicle according to the reference obstacle information, that is, the obstacle information of the surrounding area of the vehicle, and then use the scanning parameter to the surrounding area of the vehicle. Scan. Therefore, it is possible to adaptively adjust the scanning parameters of the radar signal according to the obstacle situation in the surrounding area of the vehicle, instead of using a fixed scanning parameter for scanning, thereby being able to satisfy different road conditions, or different scenarios, requirements for radar performance. It can comprehensively consider the detection accuracy of radar power consumption and obstacles.
  • the scanning device of the vehicle-mounted radar can also be partitioned according to the obstacle information of the surrounding area of the vehicle.
  • the method 400 can further include:
  • the S420 can further include:
  • the S430 can further include:
  • Each of the partitions is scanned using a set of scan parameters corresponding to each of the at least two partitions.
  • the surrounding area of the vehicle may include an area such as a lane, a side road on both sides of the lane, and an area outside the side of the road, and the obstacle information corresponding to the different areas may be different.
  • the speed of obstacles on the lane is relatively large, and the speed of obstacles on the road is small.
  • the type of obstacles on the lane is mainly vehicles.
  • the types of obstacles on the road are mainly people or bicycles. Therefore, different areas are for radar.
  • the requirements for the scanning parameters of the signal are different.
  • the scanning device of the onboard radar can divide the surrounding area of the vehicle into at least two partitions.
  • the scanning device of the onboard radar may divide the area around the vehicle into four partitions according to the area division strategy.
  • the lane may be divided into two partitions, the front side of the vehicle is the first partition, and the rear of the vehicle is the second partition.
  • the access road on both sides of the lane may be the third partition, and the area outside the access road is the fourth partition.
  • the scanning device of the vehicle-mounted radar may divide the surrounding area of the vehicle into at least two partitions according to other area division methods.
  • the method for segmenting the area is not limited in the embodiment of the present application.
  • the partition may be divided into: N*M grids are divided into N*M grids, and each grid corresponds to one partition, where N, M are integers greater than zero, and each grid is (x n , y m ) is a rectangle with a side length of L.
  • each of the networks is a circle having a radius R of (x n , y m ) as the center, and (x n , y m ) may be arbitrarily selected, or may be uniformly selected in the area around the vehicle, which is not limited in the embodiment of the present application.
  • the scanning device of the onboard radar may determine at least two sets of scanning parameters according to the obstacle information of each partition in the reference obstacle information, and each set of scanning parameters corresponds to one Partitions, that is, each partition corresponds to a corresponding scanning policy, and then each of the partitions is scanned using a set of scanning parameters corresponding to each partition.
  • the method for determining the scan strategy corresponding to each partition may refer to the foregoing method for determining the scan parameters of the vehicle-mounted radar according to the reference obstacle information, that is, S420, for the sake of brevity, no longer Narration.
  • the scanning method of the vehicle-mounted radar of the embodiment of the present application divides the surrounding area of the vehicle into at least two partitions, each of which has different requirements for scanning parameters of the radar signal, and therefore, according to each partition in the reference obstacle information
  • the obstacle information determines the scan parameters corresponding to each partition, so that each partition is scanned using the scan parameters corresponding to each partition.
  • determining the at least two sets of scan parameters according to the reference obstacle information including:
  • a target scanning policy corresponding to each of the partitions is determined according to at least one of an obstacle density of each of the partitions, a speed of the obstacle, and an obstacle type.
  • each of the plurality of scanning strategies may correspond to a corresponding obstacle condition.
  • each scanning strategy corresponds to a corresponding obstacle density, or the speed of the obstacle, or the type of obstacle.
  • the scanning device of the onboard radar may determine the obstacle density of each partition, or the speed of the obstacle, or the obstacle type according to at least one of the first obstacle information and the historical reference information, and then corresponding to the plurality of scanning strategies according to the plurality of scanning strategies.
  • the obstacle density, or the speed of the obstacle, or the type of obstacle determines the target scanning strategy used to scan each partition.
  • each scanning strategy corresponds to a corresponding obstacle density
  • the obstacle density of each partition may be determined according to at least one of the first obstacle information and the historical reference information, thereby determining a target scanning strategy for scanning each partition.
  • each scan strategy corresponds to the speed of the corresponding obstacle, and then the speed of the obstacle of each partition may be determined according to at least one of the first obstacle information and the historical reference information, thereby determining the target corresponding to each partition. Scanning strategy.
  • the obstacle information of each partition may be described by the scene type of each partition, and the scene type and the scanning policy may have corresponding relationships. Therefore, the scanning policy of each partition may be determined according to the scene type of each partition. . For example, according to the correspondence shown in Table 2, the scenario type to which each partition belongs may be determined, and then according to the correspondence shown in Table 3, the scan policy corresponding to each partition is determined.
  • the scanning device of the vehicle-mounted radar may further perform a merging process according to the obstacle information of the at least two partitions, which may specifically include:
  • the difference in obstacle density in the at least two partitions is less than the density threshold, or the difference in speed of the obstacle is less than the speed threshold, or different partitions of the same obstacle type are merged into the same partition.
  • Determining a target scanning policy corresponding to each partition according to at least one of an obstacle density of each of the partitions, a speed of the obstacle, and an obstacle type including:
  • a target scanning policy corresponding to each of the merged partitions is determined according to at least one of an obstacle density of each of the merged partitions, a speed of the obstacle, and an obstacle type.
  • the difference in the density of the obstacles is relatively small, or the areas in which the obstacle types are similar or the speed difference of the obstacles is relatively small are merged into the same partition, even if the regions are not adjacent regions. It is also possible to merge. For example, roads on both sides of a road can be considered to belong to the same zone. Optionally, different regions that belong to the same scene type in history may be merged into the same partition according to historical reference information or statistical results of other vehicles. After that, the on-board radar scanning device can count the obstacle density and obstacles of the combined partitions. Information such as the speed of the object and the type of obstacle.
  • the specific statistical method may refer to formula (10) and formula (11), and then determine each of the merged ones according to at least one of obstacle density, obstacle speed, and obstacle type of each merged partition.
  • the target scan policy corresponding to the partition so that each merged partition is scanned using the target scan policy corresponding to each partition.
  • the radar scanning device may perform partitioning according to the obstacle information, so that the area similar to the obstacle information may be divided into the same partition, and the area with the difference of the obstacle information is divided into two partitions. And then use the same scanning strategy, that is, the same group of scanning parameters scan the obstacle information similar to the region, respectively, using different scanning strategies, that is, different scanning parameters to scan the partitions with large differences in obstacles, so as to be able to meet different scenarios for radar
  • the performance requirements For example, the obstacles of the lane move faster, and the obstacles of the tunnel have a slower speed. Therefore, the time-resolving ability of the scanning lane for the radar signal is higher, and the time resolution of the radar for the radar is relatively lower. Therefore, when scanning a lane, a higher scanning frequency, or a higher scanning density, may be used, and a lower scanning frequency or a lower scanning density may be used when scanning the sidewalk.
  • FIG. 5 is an overall flowchart of a method 500 for scanning a vehicle-mounted radar according to an embodiment of the present application. As shown in FIG. 5, the method may include:
  • the scanning device of the onboard radar acquires reference obstacle information
  • the scanning device of the vehicle radar determines the scene type of the area around the vehicle according to the reference obstacle information
  • the scanning device of the vehicle radar scans the surrounding area of the vehicle according to the scanning strategy corresponding to the scene type, and obtains scan data;
  • the scanning device of the onboard radar can further process the scanned data to obtain the first type of data.
  • the first type of data is scan data for filtering out interference signals, and the first type of data may be used by the scanning device of the onboard radar to obtain information for determining an obstacle from the first type of data, the determining
  • the obstacle information is information of an obstacle that needs to be obstacle-avoided determined by the scanning device of the vehicle-mounted radar, and the scanning device of the vehicle-mounted radar may use the determined obstacle information as an obstacle avoidance basis, and the information about the obstacle is determined.
  • the obstacle in the obstacle performs the obstacle avoidance action.
  • the scan data obtained in S530 is the scan data in the radar coordinate system
  • controlling the vehicle needs to convert the scan data into scan data in the vehicle coordinate system, so the scan data can be converted using Equation (1).
  • the scanning device of the vehicle radar may first convert the scan data into scan data in a vehicle coordinate system, and then process the converted scan data, or may first scan the data in a radar coordinate system. Processing is performed, and then the processed data is subjected to coordinate system conversion.
  • the conversion of the two coordinate systems is required.
  • the timing of the coordinate system conversion is not limited in the embodiment of the present application, and may be performed before processing.
  • the conversion of the coordinate system can also be performed after the coordinate system is converted, or the coordinate system can be converted during the processing.
  • the following mainly introduces how to process scan data, eliminating the process of coordinate system conversion of scan data, but does not mean that the process is not executed.
  • the scanning device of the vehicle radar can preset a filtering threshold for filtering the scanned data, which is greater than the filtering
  • the scan data of the wave threshold is determined as the first type of data.
  • the scanning device of the onboard radar may perform a Fast Fourier Transform (FFT) on the scan data, and the preset filter threshold is used to filter the scan data after the FFT, which is smaller than the preset filter.
  • the scan data of the threshold may be regarded as some interference information, filtering out the interference information lower than the preset filtering threshold, and determining the reliability of the obstacle information for the obstacle avoidance based on the scan data larger than the preset filtering threshold.
  • the scanning device of the vehicle radar can preset the detection rate threshold. If the ratio of the first type of data to the scan data is less than the preset detection rate threshold, that is, the scan data obtained by the filtering does not reach the preset detection rate threshold. The flow proceeds to 543, otherwise, the flow proceeds to S545.
  • the filtering threshold is lowered, and the first type of data is re-determined from the scan data, that is, S541 is re-executed.
  • the method 500 may further include:
  • the scanning device of the onboard radar may further determine the predicted obstacle information according to the first obstacle information.
  • the scanning device of the in-vehicle radar can predict the obstacle information at the next sampling time (ie, the current time), that is, the predicted obstacle information, based on the first obstacle information.
  • the first obstacle information may include obstacle information in a first time period before the current time, and the first obstacle information may include information such as speed, position information, and the like of the obstacle in the first time period, the onboard radar
  • the scanning device may predict, according to the first obstacle information and the traveling speed of the vehicle, a first area where an obstacle may appear at the current time, and/or a second area that may not occur, and optionally, the predicted obstacle information may Includes a first area where each obstacle may appear, and/or a second area that may not.
  • the scanning means comprising a first obstacle information of the vehicle-mounted radar in time t 1 acquires obstacle information
  • the vehicle speed of the vehicle relative to the ground coordinate system is ( ⁇ vx, ⁇ vy)
  • the obstacle The position in the vehicle coordinate system is (x 1 , y 1 )
  • the speed of the obstacle relative to the ground in the vehicle coordinate system is ( ⁇ Tx , ⁇ Ty )
  • the position at which the obstacle may appear at a sampling instant t 2 is (x 2 , y 2 ):
  • the scanning device of the onboard radar may determine a certain area near the position where the obstacle may appear as the first area where the obstacle may appear. For example, a range of a square area having a side length L may be determined as a first area centering on a position where an obstacle may appear, or a position where an obstacle may appear as a center, and a range of a circle having a radius R may be determined as The first area, the second area may be other areas than the first area, or the second area may also be a distance from the first area.
  • a plurality of obstacles may be included around the vehicle. Therefore, the predicted plurality of obstacles may have multiple regions at present, and the multiple regions respectively correspond to multiple obstacles. Things.
  • the Any two of the plurality of regions may overlap partially or completely, that is, the regions in which the two obstacles may appear may be partially identical or identical, that is, the first region may include a plurality of regions in which the plurality of regions Any two areas can overlap partially or completely.
  • the onboard radar scanning device may also perform a fine scan on the area where the predicted obstacle may appear, for example, using more beams, or Fine scan with narrow beamwidth, or large scan density, or higher scan frequency.
  • the scanning device of the onboard radar may further acquire the determined obstacle information in the first type of data according to the predicted obstacle information, where the determined obstacle information is determined by the scanning device of the vehicle radar Information about obstacles that need to be avoided.
  • the scanning device of the onboard radar may perform the obstacle avoidance action on the obstacle in the information of the determined obstacle by using the determined obstacle information as an obstacle avoidance basis.
  • the scanning device of the vehicle-mounted radar may output the determined obstacle information as output data to the control device of the vehicle, and the control device controls the vehicle to complete the obstacle avoidance operation according to the determined obstacle information.
  • the scanning device of the onboard radar may display the determined obstacle information to a driver of the vehicle for the driver to control the vehicle to complete the obstacle avoidance action according to the determined obstacle information.
  • the predicted obstacle information includes information of a region in which the predicted obstacle may appear
  • the scanning device of the onboard radar may compare the first type of data with the predicted obstacle information if the predicted obstacle is A possible position where a corresponding obstacle appears in the first type of data, and an obstacle appearing at the predicted corresponding position is determined as the determined obstacle. For example, it is predicted that the first obstacle may appear in the first area, and the second obstacle may appear in the second area, and in the first type of data, the first obstacle appears in the first area, the first If the second obstacle does not appear in the second area, then the first obstacle is an obstacle, and the second obstacle is an obstacle to be determined.
  • the predicted obstacle information may further include information of an area where an obstacle is unlikely to occur, and an obstacle appearing in an area where the predicted obstacle is unlikely to occur may be regarded as an obstacle to be determined.
  • the scanning device of the onboard radar can also perform fine scanning on a region where obstacles are unlikely to occur, or a narrow beam width, or a larger scanning density, or a higher scanning frequency. Determining the condition of the obstacle to be determined in the obstacle information to be determined.
  • the conversion relationship between the obstacle and the obstacle to be determined is determined: if it is determined that the obstacle is not scanned again, for example, the obstacle is determined to appear in the obstacle information in the previous period of time, but in the scan data. If it does not appear, it can be converted into an obstacle to be determined, and if the obstacle to be determined is scanned again, it is converted into an obstacle.
  • the scanning device of the vehicle-mounted radar may output the information of the obstacle to be determined, in addition to outputting the obstacle information.
  • the obstacle information to be determined may further be used to further determine a situation of the obstacle to be determined at the next scan time. If the obstacle to be determined is further determined to be an obstacle, the information may be used as an obstacle avoidance basis. Otherwise, the obstacle is not used as an obstacle avoidance. Based on information.
  • the predicted obstacle information can also be used for online calibration of the conversion matrix of the vehicle coordinate system and the radar coordinate system.
  • the specific implementation process is introduced.
  • the method 500 may further include:
  • the radar coordinate system is a coordinate system with the radar as a carrier
  • the vehicle coordinate system is a coordinate system with the vehicle as a carrier.
  • coordinate conversion is required from the radar coordinate system to the vehicle coordinate system, and the conversion matrix for coordinate conversion can be determined according to the initial installation position and installation angle of the radar on the vehicle, but the radar is usually on the outer casing of the vehicle due to Factors such as collisions, bumps, etc. may result in changes in mounting position or mounting angle, which requires a re-determination of the transformation matrix.
  • the scanning device of the onboard radar may determine whether there is a consistent measurement deviation according to the scan data, or the first type of data, or the obstacle information and the obstacle information to be determined and the predicted obstacle information. Or continuous loss, if any, can re-determine the transformation matrix between the two coordinate systems based on the measurement bias.
  • the scanning device of the onboard radar may also determine whether there is a consistency deviation or a persistent loss according to the scan data and the detection results of other sensors.
  • the position in the camera is (0,10.1). , 0), (0, 19.9, 0), (0, 20.0, 0), and the position measured in the radar of the vehicle is (0, 10.5, 0), (0, 20.6, 0), (0, 30.4 , 0), the statistics found that the radar and other sensors produce a consistent deviation (0,0.5,0), (0,0.6,0), (0,0.4,0) for the same obstacle measurement. Therefore, it is determined that the position of the radar in the vehicle changes.
  • the position of the radar at the time of installation relative to the vehicle coordinate system is (0, 1, 0)
  • the positional parameter of the radar can be modified to be (0, 1.5, 0)
  • the conversion matrix of the radar coordinate system to the vehicle coordinate system can be determined according to formulas (1) to (7).
  • FIG. 8 is a schematic flowchart of a scanning method of an in-vehicle radar according to another embodiment of the present application, which may also be performed by a scanning device of an in-vehicle radar. Executing, for example, the scanning device of the onboard radar in Fig. 2, Fig. 4, Fig. 5 or Fig. 6. As shown in FIG. 8, the method includes the following steps:
  • the area surrounding the vehicle is divided according to the area division strategy, as shown in FIG. 9 is a schematic diagram of each partition after the real road condition is divided, the partition A1 is a building area on both sides of the road, and the partition A2 is a side road on both sides of the road.
  • the partition A3 is the front area where the vehicle is traveling on the lane, and the partition A4 is the rear area where the vehicle is traveling on the lane.
  • Partition A1 Obstacle density: 0/unit area
  • partition A2 obstacle density: 2/unit area
  • partition A3 obstacle density: 1/unit area
  • partition A4 obstacle density: 1 / unit area.
  • Partition A1 None
  • Partition A2 Obstacle speed: 1 m/s (m/s)
  • Partition A3 Obstacle speed: 20 m/s
  • Partition A4 Obstacle speed: 19 m/s.
  • Partition A1 Unobstructed; Section A2: Pedestrian; Partition A3: Vehicle; Partition A4: Vehicle.
  • the partition A3 and the partition A4 can be merged into the same partition, which is recorded as the partition A5.
  • the partitions may be merged with reference to the historical reference information.
  • the historical reference information it is determined that A3 and A4 belong to the same scene, and A1, A2, and A5 belong to different scenarios. Therefore, A3 and A4 may be divided into the same partition. A1, A2, and A5 are divided into different partitions.
  • Partition A1 Obstacle density: 0 / unit area
  • partition A2 obstacle density: 2 / unit area
  • partition A5 obstacle density: 1 / unit area.
  • Partition A1 None
  • Partition A2 The speed of the obstacle is: 1 m/s (m/s)
  • the partition A5 The speed of the obstacle is: 19.5 m/s.
  • Partition A1 no obstacles
  • partition A2 pedestrians
  • partition A5 vehicles.
  • a scan strategy corresponding to each partition is determined based on the density of obstacles, the speed of the obstacle, or the type of obstacle of each of the merged partitions.
  • the execution process of the 705 may refer to the execution process of the S330.
  • the execution process of the S330 may refer to the execution process of the S330.
  • the density of the obstacle may be divided into three levels, each level corresponding to a corresponding obstacle density range or threshold:
  • Level 1 Less than 2 / unit area
  • Level 2 2 / unit area to 5 / unit area;
  • Level 3 Greater than 5 / unit area
  • the speed of the obstacle can also be divided into 3 levels, each level corresponding to the corresponding obstacle speed range or threshold:
  • Level 1 less than 5m/s
  • the density level p new and the speed grade q new of the obstacles of each partition are determined:
  • the obstacle density level p old of each partition in the historical reference information and the speed level q old of the obstacle may also be counted, so that p old and q old in the historical reference information may be combined.
  • the density level p and the speed level q of the obstacles of each partition are determined, and the obstacle density level p of each partition and the speed level q of the obstacle can be determined according to formula (14) and formula (15):
  • the scale factor ⁇ can be fixed or can be changed according to the latest obstacle information, for example, if The continuously measured obstacle density level and the speed grade of the obstacle are stable, and ⁇ can be increased, otherwise ⁇ is decreased.
  • the density level, speed grade, and obstacle type of the obstacle of each partition are as follows:
  • the density level, the speed grade, and the obstacle type of the obstacle of each partition are determined.
  • the scene in which the vehicle is located may be described in a normal scene, a high-density scene, a high-speed scene, and a parking/starting scene.
  • Each scene corresponds to a corresponding density level, speed level, and obstacle type, and the correspondence is as follows:
  • the self-vehicle speed is less than 5m/s, and the closest distance to the surrounding obstacle is less than the threshold value of 1m;
  • the scene type of each partition can be determined as follows:
  • Partition A1 regular scene
  • Partition A2 High-risk scenario
  • Partition A5 High speed scene.
  • the system is pre-configured with three waveform schemes, corresponding to three waveforms, four waveforms, and five waveforms; two beam widths, respectively, 1/25 radians and 1/50 radians; and 2 scan densities , respectively, interval 1/25 radians and 1/50 radians; there are two scanning methods, mechanical scanning and electrical scanning.
  • A1 4 waveforms, 1/25 radians, 1/25 radians;
  • A2 5 waveforms, 1/50 radians, 1/50 radians;
  • A3-4 3 waveforms, 1/25 radians, 1/25 radians.
  • the first obstacle information may include a motion parameter such as a position and a speed of the obstacle relative to the vehicle, and therefore, an obstacle may be predicted according to the motion parameter of the vehicle and the motion parameter of the obstacle. s position.
  • the observation time is recorded as 0s
  • the motion parameters of the acquired obstacle are as follows:
  • Obstacle 1 Coordinate (10m, 10m) speed: (0m / s, 20m / s);
  • Obstacle 2 Coordinate (15m, 50m) speed: (0m / s, 19m / s);
  • Obstacle 3 Coordinate (5m, 30m) speed: (0m / s, -1m / s);
  • Obstacle 4 Coordinate (20m, 10m) speed: (0m / s, 1m / s);
  • Obstacle 1 coordinates (10m, 15m);
  • Obstacle 2 coordinates (15m, 54m);
  • Obstacle 3 coordinates (5m, 14m);
  • Obstacle 4 coordinates (20m, -4m).
  • the predicted obstacle information is obstacle information in the vehicle coordinate system, it needs to be converted into obstacle information in the radar coordinate system. It is assumed that the radar is installed directly in front of the vehicle, and the installation position is (0, 1, 0), and the installation is performed. The angle is positive forward (0,0,0), then the position of the obstacle in the radar coordinate system is as follows:
  • Obstacle 1 coordinates (10m, 14m)
  • Obstacle 2 coordinates (15m, 53m)
  • Obstacle 3 coordinates (5m, 13m)
  • Obstacle 4 coordinates (20m, -5m)
  • Obstacle N1 coordinates (10.5m, 14.3m);
  • Obstacle N2 coordinates (15.2m, 53.1m);
  • Obstacle N3 coordinates (15m, 20m);
  • Obstacle N4 coordinates (20.1 m, -5.1 m).
  • the obstacles N1, N2, N4 can be determined as the obstacles to be determined, and the obstacles N3 and 3 are determined as the obstacles to be determined.
  • FIG. 10 shows a schematic block diagram of a scanning device 1000 of an onboard radar according to an embodiment of the present application, which may correspond to (eg, may be configured or itself) a scanning device of the onboard radar described in the above method 400, Or the scanning device of the vehicle radar in the method shown in FIG. 5, FIG. 6, or FIG.
  • the apparatus 1000 can include:
  • the acquiring unit 1010 is configured to acquire reference obstacle information, where the reference obstacle information indicates obstacle information of a surrounding area of the radar-equipped vehicle;
  • a determining unit 1020 configured to determine, according to the reference obstacle information, a scan parameter of the onboard radar of the vehicle;
  • the scanning unit 1030 is configured to scan a surrounding area of the vehicle by using the scanning parameter.
  • the apparatus 1000 may correspond to a scanning apparatus of the onboard radar in the scanning method 400 of the onboard radar according to an embodiment of the present application, and the apparatus 1000 may include the method 400 for performing the method of FIG. 4, or FIG. 5, FIG. 6 or The physical unit of the method performed by the scanning device of the onboard radar in the method shown in FIG. Moreover, the respective physical units in the device 1000 and the other operations and/or functions described above are respectively implemented in order to implement the corresponding process in the method 400 of FIG. 4 or the method shown in FIG. 5, FIG. 6, or FIG. No longer.
  • FIG. 11 is a schematic block diagram of another scanning device 1100 for vehicle-mounted radar according to an embodiment of the present application.
  • the device 1100 includes a memory 1110, a processor 1120, and a transceiver 1130.
  • the processor 1120 Used to execute the code in the memory 1110.
  • the processor 1120 can implement the scanning device of the vehicle radar described in the method embodiment in FIG. 4, FIG. 5, FIG. 6, or FIG. Method, for the sake of simplicity, I won't go into details here.
  • the transceiver 1130 can implement the communication-related functions of the scanning unit 1030 in FIG. 10, and the processor 1120 can implement the remaining functions other than the communication-related functions in FIG. 10, such as an acquisition unit. 1010.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM direct memory bus random access memory
  • FIG. 12 is a schematic block diagram of a system for controlling a vehicle according to an embodiment of the present application.
  • the system includes: a scanning device 1201 for a vehicle-mounted radar and a control device 1202.
  • the scanning device 1201 of the vehicle-mounted radar may be The scanning device of the vehicle radar in Fig. 10 or Fig. 11.
  • the scanning device 1201 of the vehicle-mounted radar can scan the surrounding area of the vehicle to obtain scan data. Further, the scan data can be processed to obtain obstacle avoidance information for controlling the operation of the vehicle.
  • the control device 1202 can control the running route of the vehicle according to the obstacle avoidance information, and specifically, can control the vehicle to complete the obstacle avoiding action for the obstacle in the obstacle avoidance information.
  • the embodiment of the present application further provides a computer readable storage medium storing one or more programs, the one or more programs including instructions, when the portable electronic device is included in a plurality of applications When executed, the portable electronic device can be caused to perform the method of the embodiment shown in FIG. 4, FIG. 5, FIG. 6, or FIG.
  • the embodiment of the present application also provides a computer program product.
  • the computer program product includes the ability to be executed by a computer A program code of a line for performing the method of the embodiment shown in FIG. 4, FIG. 5, FIG. 6, or FIG.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种车载雷达(120)的扫描方法和装置,根据车辆(110)所处的不同的场景,控制雷达(120)采用不同的扫描策略,因此能够实现雷达(120)功耗和障碍物的检测精度的折中。方法包括:获取参考障碍物信息,参考障碍物信息用于指示车辆(110)的周围区域的障碍物信息(S410);根据参考障碍物信息,确定车辆(110)的车载雷达(120)的扫描参数(S420);使用扫描参数对车辆(110)的周围区域进行扫描(S430)。

Description

车载雷达的扫描方法、装置和控制车辆的系统 技术领域
本申请涉及车载设备领域,并且更具体地,涉及车载雷达的扫描方法、装置和控制车辆的系统。
背景技术
车载雷达可以安装在车辆上,对车辆周围区域的障碍物进行检测,其中,该障碍物可以指车辆周围的任何物体,包括移动的和不可以移动的,车载雷达可以工作在毫米波、厘米波或光波等波段,其中,毫米波介于厘米波和光波之间,兼具微波制导和光电制导的优点。
车载雷达可以包括以下几个组成部分:波形生成器、发射天线、接收天线,信号处理器。其中,波形生成器用于生成波形信号,然后通过发射天线进行发射,通常发射信号为带有载频的线性调制信号,发射信号经车辆附近的障碍物反射后,可以被接收天线接收,接收信号相对于发射信号具有一定的延时,信号处理器可以对发射信号和接收信号进行处理,得到障碍物的速度和距离等信息。
但是现有技术中,车载雷达存在耗能或扫描精度不高的问题,因此,需要一种车载雷达的扫描方法,能够解决上述问题。
发明内容
本申请实施例提供一种车载雷达的扫描方法、装置和控制车辆的系统,根据车辆所处的不同的场景,控制雷达采用不同的扫描策略。
第一方面,提供了一种车载雷达的扫描方法,包括:获取参考障碍物信息,所述参考障碍物信息用于指示车辆的周围区域的障碍物信息;根据所述参考障碍物信息,确定所述车辆的车载雷达的扫描参数;使用所述扫描参数对所述车辆的周围区域进行扫描。
因此,本申请实施例的车载雷达的扫描方法,能够根据参考障碍物信息,即车辆周围区域的障碍物信息,确定用于扫描车辆周围区域的扫描参数,然后使用该扫描参数对该车辆周围区域进行扫描,因此,能够根据车辆周围区域的障碍物情况,自适应调整雷达信号的扫描参数,而不是采用固定的扫描参数进行扫描,从而能够满足不同的路况对雷达性能的需求,从而能够综合考虑障碍物的检测精度和雷达的功耗。
可选地,该方法可以由车载雷达执行,该车载雷达包括天线,信号发生器,信号接收器,雷达控制器和处理器等模块,具体的,获取参考障碍物信息,和确定扫描参数可以由雷达系统的处理器执行,对车辆周围区域进行扫描的过程可以由雷达控制器控制信号发生器产生雷达信号,并通过天线发射该雷达信号,以实现对车辆周围区域的扫描。
可选地,该参考障碍物信息可以包括当前时刻之前的一个时间段内的车辆周围区域的障碍物信息,也可以包括统计的历史上该车辆目前所处道路的周围的路况信息,也就是说,参考障碍物信息可以为车辆行驶路线上的当前时刻之前的一段区域的障碍物的信息,也可以为历史上该区域的路况信息。
可选地,该参考障碍物信息可以包括车辆周围区域的障碍物的速度、障碍物的密度、障碍物的类型等信息,或者也可以将障碍物的速度分为多个等级,障碍物的密度也可以 分为多个等级,该参考障碍物信息可以包括车辆周围区域的障碍物的速度等级,或密度等级等信息。
可选地,不同的场景对应不同的扫描参数,不同的障碍物条件可以认为是不同的场景,因此,根据参考障碍物信息,可以确定车辆周围区域对应的场景,进一步确定该场景对应的扫描参数。
结合第一方面,在第一方面的某些实现方式中,所述获取参考障碍物信息包括:
获取当前时刻的前一时间段内所述车辆的周围区域的障碍物信息。
结合第一方面,在第一方面的某些实现方式中,所述获取参考障碍物信息包括:
获取所述车辆的位置,并获取所述位置对应的历史参考信息。
也就是说,所述参考障碍物信息包括当前时刻的前一时间段内所述车辆的周围区域的障碍物信息和/或历史参考信息。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:将所述车辆的周围区域划分为至少两个分区;所述根据所述参考障碍物信息,确定所述车辆的车载雷达的扫描参数,包括:根据所述参考障碍物信息确定至少两组扫描参数,所述两组扫表参数中每一组扫描参数对应一个分区;所述使用所述扫描参数对所述车辆的周围区域进行扫描,包括:使用与所述至少两个分区中每个分区对应的一组扫描参数对所述每个分区进行扫描。
因此,本申请实施例的车载雷达的扫描方法,将该车辆周围区域划分为至少两个分区,每个分区对雷达信号的扫描参数的要求不同,因此,根据参考障碍物信息中的每个分区的障碍物信息,确定每个分区对应的扫描参数,从而使用每个分区对应的扫描参数扫描每个分区。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:根据所述第一障碍物信息,确定预测障碍物信息,所述预测障碍物信息指示预测的当前时刻所述车辆周围区域的障碍物信息,所述预测障碍物信息包括障碍物可能出现的第一区域和/或障碍物不可能出现的第二区域。
应理解,车辆周围可能包括多个障碍物,因此,预测的该多个障碍物当前时刻可能出现的区域也可以有多个,该多个区域中的任意两个区域可以部分或全部重叠,即两个障碍物可能出现的区域可能部分相同或完全相同,该多个区域分别对应该多个障碍物,也就是说该第一区域可以包括多个区域,该多个区域中的任意两个区域可以部分重叠或全部重叠,该多个区域分别对应多个障碍物,所述预测障碍物信息可以用于确定扫描数据中哪些是确定障碍物,哪些是待确定障碍物,其中,确定障碍物可以作为避障依据信息。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:获取使用所述扫描参数扫描所述车辆的周围区域得到的扫描数据;在所述扫描数据中确定大于预设的滤波阈值的第一类数据;根据所述第一类数据和预测障碍物信息,获取确定障碍物信息,所述预测障碍物信息包括预测的障碍物可能出现的位置,所述确定障碍物信息包括所述第一类数据中出现在所述预测障碍物信息中的对应位置的障碍物的信息。
应理解,所述第一类数据可以理解为去除干扰信息的扫描数据,从所述第一类数据中获取可以作为避障依据的障碍物信息的可靠性更高。
例如,所述预测障碍物信息可以包括多个区域,所述多个区域对应多个障碍物,若 在所述第一类数据中所述多个障碍物中的部分或全部出现在对应的区域,则可以将出现在预测的该障碍物可能出现的区域的障碍物确定为确定障碍物,例如,预测障碍物信息中包括第一障碍物可能出现的第一区域,第二障碍物可能出现的第二区域,若在所述第一类数据中,所述第一障碍物出现在第一区域,所述第二障碍物未出现在第二区域,则所述第一障碍物为确定障碍物,所述第二障碍物未待确定障碍物。
也就是说,所述确定障碍物信息包括所述第一类数据中出现在所述预测障碍物信息中的对应区域的障碍物的信息,所述待确定障碍物信息包括所述第一类数据中未出现在所述预测障碍物信息中的对应区域的障碍物的信息或出现在所述前一段时间内的障碍物信息中且未出现在所述第一类数据中的障碍物的信息。
应理解,确定障碍物和待确定障碍物可以具有这样的转换关系:若确定障碍物没有再次被扫描到,例如,确定障碍物在前一段时间内的障碍物信息中出现,但是在扫描数据中没有出现,可以转换为待确定障碍物,若待确定障碍物再次被扫描到,则转换为确定障碍物。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:若所述第一类数据占所述扫描数据的比例小于所述预设的检测率阈值,降低所述预设的滤波阈值,重新从所述扫描数据中确定所述第一类数据。
或者,若根据所述第一类数据确定出来的确定障碍物的数量或比例小于预设的检测率阈值,则降低所述预设的滤波阈值,重新从所述扫描数据中确定所述第一类数据。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:根据所述参考障碍物信息,确定预测障碍物信息,所述预测障碍物信息指示预测的所述车辆周围区域的障碍物信息;根据所述扫描数据和所述预测障碍物信息,确定测量偏差;根据所述测量偏差,调整雷达坐标系和车辆坐标系之间的转换矩阵,所述转换矩阵用于所述雷达坐标系下的障碍物信息与所述车辆坐标系下的障碍物信息之间的转换,所述雷达坐标系为以所述雷达为载体的坐标系,所述车辆坐标系为以所述车辆为载体的坐标系。
因此,本申请实施例的车载雷达的扫描装置,还可以根据实际扫描的障碍物信息,以及预测障碍物信息,实时调整车辆坐标系和雷达坐标系之间的转换矩阵,从而有利于减少由于碰撞、颠簸等因素导致雷达在车辆上的安装位置或安装角度发生变化,最终导致转换矩阵不准的问题。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:在所述多个扫描策略中确定用于预测的障碍物可能出现的区域的第一扫描策略,所述第一扫描策略指示的雷达信号的波束个数大于波束个数阈值,或波束宽度小于波束宽度阈值,或扫描密度大于扫描密度阈值,或扫描频率大于扫描频率阈值,或扫描方式为电扫描方式;使用所述第一扫描策略对所述第一区域进行扫描。
也就是说,该车载雷达的扫描装置可以预测障碍物可能出现的区域,对障碍物可能出现的区域,可以采用较多的波束个数,或较窄的波束宽度,或较大的扫描密度,或较高的扫描频率进行精细扫描。
可选地,在本申请实施例中,所述车载雷达的扫描装置还可以预测障碍物不可能出现的区域,记为第二区域,出现在第二区域的障碍物可以认为是待确定障碍物,为了进一步确定第二区域的待确定障碍物的信息,该车载雷达的扫描装置也可以对第二区域采用较多的波束个数,或较窄的波束宽度,或较大的扫描密度,或较高的扫描频率进行精 细扫描,从而进一步确定这些待确定障碍物信息哪些可以转变为确定障碍物,或者转变为非障碍物。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:将所述确定障碍物信息和/或所述待确定障碍物信息确定为所述下一扫描时刻的参考障碍物信息。
也就是说,可以将当前时刻的障碍物信息,确定为下一扫描时刻的参考障碍物信息,也就是说,可以根据当前时刻的障碍物信息,确定下一扫描时刻的扫描参数。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:将所述至少两个分区中的任何两个分区合并为一个分区,其中所述任何两个分区中的障碍物密度的差值小于密度阈值,或障碍物的速度的差值小于速度阈值,或障碍物类型相同;确定合并后的每个分区的障碍物密度、障碍物的速度和障碍物类型中的至少一项;所述根据所述每个分区的障碍物密度、障碍物的速度和障碍物类型中的至少一项,确定所述每个分区对应的目标扫描策略,包括:根据合并后的每个分区的障碍物密度、障碍物的速度和障碍物类型中的至少一项,确定所述合并后的每个分区对应的目标扫描策略。
因此,该车载雷达的扫描装置可以根据车辆的周围区域的障碍物信息进行分区,障碍物信息不同,也就是场景类型不同,对雷达信号的扫描参数的要求也不同,因此,根据障碍物信息进行分区,可以将障碍物信息类似的区域划分为同一分区,从而能够使用同一个扫描策略进行扫描,将障碍物信息差异较大的区域分为两个分区,分别使用不同的扫描策略进行扫描,从而能够满足不同的场景对雷达的性能的需求。例如,车道的障碍物的运动速度较快,便道的障碍物的运动速度较慢,因此,扫描车道对雷达信号的时间分辨能力要求较高,而扫描便道对雷达的时间分辨能力要求相对较低,因此,对车道进行扫描时,可以使用较高的扫描频率,或较高的扫描密度,对便道进行扫描时采用较低的扫描频率,或较低的扫描密度。
结合第一方面,在第一方面的某些实现方式中,所述雷达信号的扫描参数包括以下中的至少一项:
波束个数、波束宽度、波束方向、扫描密度、扫描频率、扫描方式。
结合第一方面,在第一方面的某些实现方式中,所述雷达工作在毫米波频段。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:获取使用所述扫描参数扫描所述车辆的周围区域得到的扫描数据;根据所述扫描数据,控制所述车辆完成避障动作。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:根据所述参考障碍物信息,在预配置的多个扫描策略中确定用于扫描所述车辆的周围区域的目标扫描策略。
结合第一方面,在第一方面的某些实现方式中,所述根据所述参考障碍物信息,在预配置的多个扫描策略中确定用于扫描所述车辆的周围区域的目标扫描策略,包括:根据所述参考障碍物信息,在预配置的多个场景类型中确定所述车辆周围区域所属的目标场景类型;根据所述目标场景类型,在预配置的多个扫描策略确定所述目标场景类型对应的目标扫描策略,所述多个场景类型与所述多个扫描策略一一对应,所述多个扫描策略中的每个扫描策略对应相应的障碍物条件。
也就是说,可以用车辆周围区域所属的场景类型来描述车辆周围区域的障碍物信息,可选地,可选地,在该多个场景类型中,每个场景类型可以对应相应的障碍物条件,障 碍物条件可以为障碍物密度、障碍物的速度和障碍物类型中的至少一项。例如,该每个场景类型可以对应相应的障碍物密度范围或障碍物密度门限,或障碍物的速度的范围或障碍物的速度的门限,或障碍物类型。或者,该预配置的多个场景类型也可以是由障碍物密度等级、障碍物的速度等级、和障碍物类型中的至少一项表征,也就是说,每个场景类型可以对应相应的障碍物密度等级,或障碍物的速度等级,或障碍物类型。
结合第一方面,在第一方面的某些实现方式中,所述根据所述参考障碍物信息,在预配置的多个场景类型中确定所述车辆周围区域所属的目标场景类型,包括:根据所述参考障碍物信息中每个分区的障碍物信息,确定所述每个分区对应的目标场景类型。
结合第一方面,在第一方面的某些实现方式中,所述根据所述目标场景类型,在预配置的多个扫描策略确定所述目标场景类型对应的目标扫描策略,包括:根据所述参考障碍物信息中每个分区的目标场景类型,在所述多个扫描策略中确定每个分区对应的目标扫描策略。
第二方面,提供了一种车载雷达的扫描装置,用于执行第一方面及第一方面的任一种可能实现方式中的方法,具体地,该装置可以包括用于执行第一方面及第一方面的任一种可能的实现方式中的方法的单元。
第三方面,提供了一种车载雷达的扫描装置,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得车载雷达的扫描装置执行第一方面及第一方面的任一种可能实现方式中的方法。
第四方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得车载雷达的扫描装置执行第一方面或第一方面的任一种可能的实现方式中的方法。
第五方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被车载雷达的扫描装置的处理器运行时,使得车载雷达的扫描装置执行第一方面或第一方面的任一种可能的实现方式中的方法。
第六方面,提供了一种控制车辆的系统,包括第二方面或第三方面中的车载雷达的扫描装置,和控制装置,所述车载雷达的扫描装置用于对车辆周围区域进行扫描,得到扫描数据,还可以对扫描数据进一步处理,得到避障依据信息,所述控制装置能够根据所述避障依据信息控制车辆完成避障动作。
附图说明
图1是本申请实施例的一种应用场景的示意图。
图2是本申请实施例的一种雷达系统的结构图。
图3是雷达系统的方位向和距离向分辨率的示意图。
图4是根据本申请实施例的车载雷达的扫描方法的示意性流程图。
图5是根据本申请实施例的车载雷达的扫描方法的整体流程图。
图6是根据本申请实施例的扫描装置对扫描数据的处理过程的示意图。
图7是根据确定障碍物和待确定障碍物的转换关系的示意图。
图8是根据本申请另一实施例的车载雷达的扫描方法的示意性流程图。
图9是对车辆周围区域进行分割后的各分区的示意图。
图10是根据本申请实施例的车载雷达的扫描装置的示意性框图。
图11是根据本申请另一实施例的车载雷达的扫描装置的示意性框图。
图12是根据本申请实施例的控制车辆的系统的示意性框图。
具体实施方式
下面结合附图,对本申请实施例中的技术方案进行描述。
图1是本申请实施例的一种应用场景的示意图。
如图1所示,车辆110上装有雷达系统120,该雷达系统120可以安装于车辆的顶端,或车辆的前端,或车辆的尾端等位置,用于检测车辆周围区域的障碍物信息。
可选地,该雷达系统120可以工作在毫米波波段,或厘米波波段,或光波波段,若该雷达系统120工作在毫米波波段,该雷达系统120的工作频率一般在30~300GHz范围内,例如,77GHz频段。雷达系统120还可以工作在24GHz频段,24GHz的波长虽超过了1cm,有12.5mm长,一般这个波长附近的雷达叫微波雷达,也叫做毫米波雷达。24GHz雷达和77GHz相比,直线性差一些,但周围的金属物也是能够检测出来的,车辆周围的车辆检测可以使用24Ghz,前方车辆检测可以使用77GHz。本申请实施例对此不作限定。
如图1所示,包括两个坐标系,以雷达系统120为载体的载体坐标系,简称为雷达坐标系,图1实线所示的X轴、Y轴和Z轴为雷达坐标系的三个坐标轴,以及以车辆110为载体的载体坐标系,简称为车辆坐标系,图1虚线所示的x轴、y轴和z轴为车辆坐标系的三个坐标轴。
雷达系统120可以用于扫描车辆110周围的障碍物信息,由于雷达系统120得到的扫描数据是雷达坐标系下的扫描数据,对车辆进行控制时,需要车辆坐标下障碍物的信息对应的数据,从而需要将该雷达系统120获得的扫描数据转换为车辆坐标系下的扫描数据,因此,需要确定雷达坐标系和车辆坐标系之间的转换矩阵。该转换矩阵可以根据该雷达系统120在车辆110的安装位置和安装角度确定。雷达系统120的安装位置和安装角度可以在该雷达系统120安装在该车辆110上时进行测量,根据该测量值可以确定雷达坐标系和车辆坐标系之间的转换矩阵,根据该转换矩阵,可以将雷达坐标系下的数据转换到车辆坐标系下的数据,或者也可以将车辆坐标系下的数据转换为雷达坐标系下的数据。
以下,详细介绍如何实现雷达坐标系下的障碍物信息和车辆坐标系下的障碍物信息的转换。
雷达系统120在车辆坐标系下的安装位置为(xR,yR,zR),安装角度为(θRxRyRz),可以根据公式(1)从雷达坐标系下的障碍物位置转换为车辆坐标系下的障碍物位置:
Figure PCTCN2017079308-appb-000001
其中,(xV,yV,zV)表示车辆坐标系下的障碍物位置,(xS,yS,zS)表示雷达坐标系下的障碍物位置,TF为从雷达坐标系到车辆坐标系的转换矩阵,TF可以根据公式(2)确 定:
Figure PCTCN2017079308-appb-000002
其中,TV可以根据公式(3)确定:
Figure PCTCN2017079308-appb-000003
RM可以根据公式(4)确定:
RM=RzRyRx       (4)
其中,Rz,Ry和Rx可以分别通过公式(5),公式(6)和公式(7)确定:
Figure PCTCN2017079308-appb-000004
Figure PCTCN2017079308-appb-000005
Figure PCTCN2017079308-appb-000006
若需要将车辆坐标系下的障碍物信息转换成雷达坐标系下的障碍物信息,只需将车辆坐标系下的障碍物位置乘以TF的逆变换矩阵TF-1即可,这里不再赘述。也就是说,车辆坐标系和雷达坐标系之间的障碍物信息可以通过转换矩阵互相转换。
以下,介绍雷达系统120具体可以包括哪些功能模块。
具体的,该雷达系统120可以包括天线、信号发生器、信号接收器,信号处理器、雷达控制器等模块。图2是示例性的一种雷达系统的结构图,如图2所示,雷达系统可以包括两个天线,天线A和天线B,例如,天线A和天线B可以分别安装于车辆的前端和车辆的顶端。该信号发生器用于产生发射信号,然后通过天线进行发射,信号接收器用于接收发射信号经障碍物反射的信号,雷达控制器用于控制发射信号的波束个数、波束宽度、扫描频率、扫描密度或扫描方式等扫描参数,该雷达控制器还可以用于根据车辆所处的场景类型,确定用于扫描车辆周围区域的雷达信号的扫描参数,该信号处理器用于处理信号接收器接收到的雷达信号,从而得到障碍物的距离和速度等信息。
应理解,该雷达控制器和信号处理器可以是同一物理实体,例如,该雷达控制器和信号处理器的功能可以由一个处理器来执行,或者也可以是独立的物理实体,例如,该雷达控制器和信号处理器的功能可以由两个处理器执行。
在实际应用中,信号处理器或雷达控制器可以是通用处理器,或数字信号处理器 (Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。信号处理过程可以通过该信号处理器中的硬件的集成逻辑电路,或软件形式的指令,或硬件和软件组合完成。
图2中,实线所示为数据信号,虚线所示为控制信号。其中,雷达信号的扫描方式可以包括电扫描方式和机械扫描方式,机械扫描方式是通过电机带动天线转动到波束指向位置,然后发射电磁波,获取反射信号。电扫描方式可以包括相控阵雷达或数字波束形成,其中,相控阵雷达方式是通过改变的各天线单元的初始相位和工作状态达到波束指向需要的位置并合成不同宽度的波束宽度,数字波束形成方式是通过对各天线单元采样后的数据给予不同的相位得到等同于相控阵不同波束指向和波束宽度的数据。
应理解,图2示例性的示出了两个天线,天线A和天线B,本申请实施例并不限定雷达系统包括的天线的个数,该雷达系统可以包括更多个天线,也可以只包括一个天线,并且,本申请实施例也不限定天线的安装位置,天线A和天线B可以都安装在车辆的前端,也可以都安装在车辆的顶端。
雷达信号对物体位置分辨能力分为距离向分辨率和方位向分辨率,距离向分辨率也可以称为时间分辨率,方位向分辨率也可以称为空间分辨率。距离向分辨率ρR由公式(8)表示:
Figure PCTCN2017079308-appb-000007
其中,c表示光速,从公式(8)可以看出距离向分辨率由信号带宽Bsw决定。
方位向分辨率ρA由公式(9)表示:
Figure PCTCN2017079308-appb-000008
其中,D表示天线尺寸,λ表示波长。
从公式(9)可以看出方位向分辨率由天线尺寸和信号的波长决定。
如图3所示,B1与B4之间的距离或B2与B3之间的距离表示距离向分辨率,B1与B2之间的距离或B3与B4之间的距离表示方位向分辨率,B1、B2、B3和B4围成的区域为一个分辨单元,分辨单元内的物体T1和T2无法区分。
由公式(9)可知,要提高方位向分辨率,可以缩短信号的波长,即采用更高频率的信号,但硬件系统随着频率的增加,设计、实现难度增加,成本也大幅增加。另外一个方法是增加天线尺寸,通过增加天线尺寸可以提高方位向分辨率。方位向分辨率提升,即波束宽度变窄,则在方位向可观测的范围变小,为了增加观测范围,可以在观测时调整距离向的指向,改变距离向的指向可以通过机械的改变天线的指向或通过电扫描(例如,相控阵或数字波束形成)的方式实现。
但是,不同的场景,比如,障碍物处于高速低密度的高速公路,或障碍物处于低速高密度的市区街道,或障碍物处于极低速状态的堵车时跟车或进出停车位,对雷达信号的空间分辨率、时间分辨率、滤除虚假目标的能力的需求不同,表1示例性的列出了几种场景对雷达信号的空间分辨率、时间分辨率和滤除虚假目标的能力的要求。
表1
Figure PCTCN2017079308-appb-000009
有鉴于此,本申请实施例提出了一种车载雷达的扫描方法,能够根据不同的场景,自适应的控制雷达扫描参数,通过控制雷达信号的扫描参数,可以达到调整车载雷达的分辨率参数的目的,从而能够满足不同的场景,对雷达性能的要求。
图4示出了根据本申请实施例的车载雷达的扫描方法400的示意性流程图,该方法400可以由车载雷达的扫描装置执行,例如,该车载雷达的扫描装置可以为图1所示的雷达系统120。
应理解,图4是本申请实施例的车载雷达的扫描方法的示意性流程图,示出了该方法的详细的步骤或操作,但这些步骤或操作仅是示例,本发明实施例还可以执行其它操作或者图4中的各种操作的变形。此外,图4中的各个步骤可以分别按照与图4所呈现的不同的顺序来执行,并且有可能并非要执行图4中的全部操作。
如图4所示,该方法400包括:
S410,获取参考障碍物信息,该参考障碍物信息指示装有雷达的车辆的周围区域的障碍物信息。
在本申请实施例中,该S410可以由车载雷达的扫描装置执行,该车载雷达的扫描装置可以为图1所示的雷达系统120,例如,该S410可以由雷达系统中的信号处理器执行。
具体而言,该参考障碍物信息可以包括当前时刻之前的一个时间段内的车辆周围区域的障碍物信息,也就是说,该参考障碍物信息可以包括当前时刻之前的车辆行驶路线上车辆周围区域的障碍物信息,例如,在第一时间段内,该车辆从A位置行驶到B位置,该参考障碍物信息可以包括从A位置到B位置这一段路线上的周围障碍物的信息。
或者,该参考障碍物信息也可以包括统计的历史上该车辆目前所处道路的周围的路况信息,也就是说,该参考障碍物信息可以包括具有统计意义的当前车辆所处道路的障碍物信息,或者说,所述参考障碍物信息也可以为历史参考信息,例如,车辆当前行驶至A区域,该历史参考信息可以包括统计的历史上A区域的路径信息。
可选地,该参考障碍物信息可以包括车辆周围区域的障碍物的速度、障碍物的密度、障碍物的类型等信息。例如,所述参考障碍物信息可以包括第一时间段内的障碍物的位置信息、障碍物的速度信息和障碍物的类型等信息,或者,该参考障碍物信息也可以包 括历史上该区域的障碍物的速度信息、障碍物的密度信息和障碍物的类型等信息。该障碍物的位置信息可以包括障碍物距离车辆的距离等信息,障碍物的类型信息可以包括人、自行车、建筑物或行驶的车辆等。
或者,在本申请实施例中,也可以将障碍物的速度和障碍物的密度分为多个等级,该参考障碍物信息可以包括车辆周围区域的障碍物的速度等级,或密度等级等信息。例如,所述参考障碍物信息可以包括第一时间段内车辆周围区域的障碍物的速度等级,或密度等级等信息。或者,所述参考障碍物信息可以包括历史上该区域的障碍物的速度等级、密度等级等信息。
以下,详细介绍如何获取参考障碍物信息,也就是如何获取当前时刻的前一时间段(为便于区分和描述,记为第一时间段)内所述车辆的周围区域的障碍物信息(为便于区分和描述,记为第一障碍物信息)和/或历史参考信息。
具体地,该第一障碍物信息可以是从该车载雷达的扫描装置获取的,也就是说,该第一障碍物信息可以为该车载雷达的扫描装置前一段时间内的扫描数据。
例如,在第一时间段内该车载雷达的扫描装置可以对第一时间段内的车辆行驶路线上的周围区域进行扫描得到扫描数据,该第一障碍物信息可以为该第一时间段内的扫描数据。
或者,该第一障碍物信息也可以是从其他车辆上的传感器(例如,雷达)获取的。也就是说,该第一障碍物信息可以是其他车辆上的传感器采集的第一时间段内的车辆周围区域的障碍物信息。例如,在第一时间段内,该车辆从C区域行驶到D区域,该第一障碍物信息可以为其他车辆采集的从C区域到D区域这一段区域周围的障碍物的信息。
或者,该第一障碍物信息也可以是从摄像头中获取的。例如,在第一时间段内,该车辆从C区域行驶到D区域,该第一障碍物信息可以为从摄像头获取的从C区域到D区域这一段区域的周围的障碍物的信息,本申请实施例对于该第一障碍物信息的获取方式不作限定。
在本申请实施例中,该历史参考信息可以实时的从第三方获取,也可以保存在车载雷达的存储介质中,本申请实施例对于所述历史参考信息的获取方式不作限定。
需要说明的是,在本申请实施例中,可以用车辆周围区域所属的场景类型来描述车辆周围区域的障碍物信息。换句话说,场景类型可以是车辆周围区域的障碍物信息的另一种表达方式。因此,可以根据参考障碍物信息,确定车辆周围区域所属的场景类型。
在本申请实施例中,该车载雷达的扫描装置可以根据车辆周围区域的障碍物的速度,确定车辆周围区域所属的场景类型。例如,可以预设第一速度阈值,大于该第一速度阈值时确定属于高速度场景,若根据参考障碍物信息,确定该车辆周围区域的障碍物的速度大于第一速度阈值,可以确定当前车辆行驶的道路属于高速度场景。
或者,该车载雷达的扫描装置也可以根据障碍物的密度,确定车辆周围区域所述的场景类型。例如,可以预设第一密度阈值,大于该第一密度阈值时确定属于高密度场景,若根据参考障碍物信息,确定该车辆周围区域的障碍物的密度大于第一密度阈值,可以确定当前车辆行驶的道路属于高密度场景。
可选地,该车载雷达的扫描装置还可以结合障碍物的速度和密度,确定车辆周围区域所属的场景类型。换句话说,该车载雷达的扫描装置可以根据障碍物的速度、障碍物的密度或障碍物类型中的至少一项,确定车辆周围区域的场景类型。
在本申请实施例中,车辆周围区域的障碍物密度可以根据公式(10)确定:
Figure PCTCN2017079308-appb-000010
车辆周围区域的障碍物的速度可以根据公式(11)确定:
Figure PCTCN2017079308-appb-000011
在本申请实施例中,可以根据障碍物的运动规律确定每个区域的障碍物类型。例如,障碍物类型可以包括固定障碍物、车、自行车、行人等类型。或者,还可以通过其它传感器,如摄像头获取的光学图像,辅助区分障碍物类型。
在本申请实施例中,该车载雷达的扫描装置可以预配置多个场景类型来用于描述车辆周围区域的障碍物信息,作为示例而非限定,该预配置的多个场景类型可以包括常规场景、高速度场景、高密度场景、停车或起步场景、高危场景中的几种或全部。
或者,在该多个场景类型中,每个场景类型可以对应相应的障碍物密度,或障碍物的速度,或障碍物类型。具体的,该每个场景类型可以对应相应的障碍物密度范围或障碍物密度门限,或障碍物的速度的范围或障碍物的速度的门限,或障碍物类型。即每个场景类型与障碍物密度范围或障碍物密度门限、障碍物的速度的范围或障碍物的速度的门限和障碍物类型中的至少一项具有对应关系。因此,可以根据参考障碍物信息,确定该车辆周围区域的障碍物的速度、障碍物的密度或障碍物类型,然后根据该障碍物的速度、障碍物的密度或障碍物类型,在该多个场景类型中确定车辆周围区域所属的场景类型。
或者,该预配置的多个场景类型也可以是由障碍物密度等级、障碍物的速度等级、和障碍物类型中的至少一项表征。也就是说,每个场景类型可以对应相应的障碍物密度等级,或障碍物的速度等级,或障碍物类型。例如,障碍物密度可以包括P个等级,P为大于1的整数,障碍物的速度可以包括Q个等级,Q为大于1的整数。根据参考障碍物信息中该车辆周围区域的障碍物密度和障碍物的速度等信息,可以确定该车辆周围区域的障碍物密度等级p,以及障碍物的速度等级q,从而可以确定车辆周围区域所属的场景类型。
以下,以该多个场景类型包括常规场景、高密度场景、高速度场景、停车/起步场景和高危场景为例,介绍每个场景类型和障碍物密度等级,或障碍物的速度等级,或距离该车辆的距离范围或门限,或障碍物类型的对应关系,可以设置该对应关系如表2所示:
表2
场景类型 障碍物密度等级 速度等级 障碍物类型 距离车辆的距离
常规场景 p<p1 q<q1    
高密度场景 p≥p1      
高速度场景   q≥q1    
高危场景     人或自行车  
停车/起步场景       L∈距离范围,或L<Lmax
从表2可以看出,若根据参考障碍物信息,确定车辆周围区域的障碍物密度等级满 足p<p1,障碍物速度等级满足q<q1,则车辆周围区域属于常规场景。或者,若根据参考障碍物信息,确定车辆周围区域的障碍物密度满足等级p≥p1,则车辆周围区域属于高密度场景。或者,若根据参考障碍物信息,确定车辆周围区域的障碍物速度等级满足q≥q1,则车辆周围区域属于高速度场景。或者,若根据参考障碍物信息,确定车辆周围区域的障碍物类型为人或自行车,则车辆周围区域属于高危场景。或者若根据参考障碍物信息,确定车辆周围区域的障碍物距离车辆的距离L属于某个距离范围,或者小于距离阈值Lmax,则车辆周围区域属于停车或起步场景。
应理解,表2所示的场景类型与判定条件的对应关系仅为示例而非限定,本申请实施例还可以包括更多个场景类型,或者可以包括更少个场景类型,本申请实施例对场景类型的数量不作限定,并且每个场景类型对应的判定条件可以根据实际情况确定。
S420,根据所述参考障碍物信息,确定所述车辆的车载雷达的扫描参数;
S430,使用所述扫描参数对所述车辆的周围区域进行扫描。
在本申请实施例中,该S420和S430都可以由车载雷达的扫描装置执行,该车载雷达的扫描装置可以为图1所示的雷达系统120,具体的,该S420可以由雷达系统中的信号处理器或雷达控制器执行,或者也可以由信号处理器和雷达控制器共同执行。例如,信号处理器可以用于确定雷达信号的扫描参数,雷达控制器可以控制信号发生器发射的雷达信号的扫描参数,进一步的,信号发生器可以发射雷达信号,雷达信号可以通过天线发射出去,也就是说,该S430可以由雷达控制器、信号发生器、天线和信号处理器等模块共同执行。
需要说明的是,由于车辆周围区域所属的场景类型可能不同,因此,对雷达信号的扫描参数的要求也不同。因此,可以理解为不同的场景类型可以对应不同的扫描参数,可以用扫描策略来描述用于扫描车辆周围区域的扫描参数。换句话说,扫描策略可以是用于扫描车辆周围区域的扫描参数的另一种表达方式。
具体的,不同的障碍物情况可以对应不同的扫描参数,车载雷达的扫描装置可以根据前述的参考障碍物信息,确定车辆周围区域的障碍物情况,从而确定用于扫描车辆周围区域的扫描参数。
可选地,车载雷达的扫描装置可以预配置多个扫描策略,该多个扫描策略可以用于不同的障碍物情况下,扫描车辆周围区域使用的雷达信号的扫描参数。也就是说,该多个扫描策略可以对应不同的障碍物条件。例如,该多个扫描策略中的每个扫描策略可以对应相应的障碍物的速度、障碍物密度或障碍物类型。因此,可以根据参考障碍物信息,确定该车辆周围区域的障碍物速度、障碍物密度或障碍物类型,然后根据该障碍物速度、障碍物密度或障碍物类型,在该多个扫描策略中确定用于扫描车辆周围区域的目标扫描策略,从而使用该目标扫描策略对该车辆周围区域进行扫描,即使用所述目标扫描策略对应的扫描参数对车辆周围区域进行扫描。
可选地,车载雷达的扫描参数可以包括以下中的至少一项:波束个数、波束宽度、波束方向、扫描密度、扫描频率和扫描方式。
例如,车载雷达的扫描装置可以设置K个波束个数方案,对应的波束个数分别为k1,k2...,kK,波形个数依次增多。
W个波束宽度方案,对应的波束宽度分别为w1,w2...,ww,波束宽度依次增加。
D个扫描密度方案,对应的扫描密度分别为d1,d2...,dD,扫描密度依次增加。
F个扫描频率方案,对应的扫描频率分别为f1,f2...,fF,扫描频率依次增加。
两种扫描方式,机械扫描和电扫描(例如,相控阵或数字波束形成)。
该车载雷达的扫描装置可以建立不同的障碍物信息,与该K个波束个数方案、W个波束宽度方案、D个扫描密度方案、该F个扫描频率方案和两种扫描方式中的至少一项的映射关系。例如,可以设置障碍物速度满足第一障碍物条件时,使用的扫描参数包括k2,w2,d2,f3,电扫描,即障碍物速度满足第一障碍物条件时,使用的扫描参数为:k2个波束,波束宽度为w2,波束密度为d2,扫描频率为f3,扫描方式为电扫描方式。也就是说,可以建立不同的障碍物条件和使用的扫描参数,即扫描策略的对应关系。
可选地,若障碍物信息用场景类型表征,那么可以建立不同的场景类型与该K个波束个数方案、W个波束宽度方案、D个扫描密度方案、该F个扫描频率方案和两种扫描方式中的至少一项的映射关系。即每个场景类型对应相应的波束个数、波束宽度、扫描密度、扫描频率和扫描方式中的至少一项。或者说,可以设置每个场景类型对应的波束个数,或波束宽度,或扫描密度,或扫描频率,或扫描方式。可选地,该预配置的多个场景类型可以包括常规场景、高密度场景、高速度场景、停车/起步场景和高危场景等场景类型,可以设置该上述场景类型对应的波束个数,或波束宽度,或扫描密度,或扫描频率,或扫描方式。
以下,以障碍物信息用多个场景类型来描述,雷达信号的扫描参数包括波束个数、波束宽度、扫描密度、扫描频率和扫描方式为例,介绍该多个扫描策略与多个场景类型的对应关系,表3是一种示例性的对应关系。
表3
场景类型 波束个数 波束宽度 扫描密度 扫描频率 扫描方式
常规场景 中等个数 中等宽度 中等范围 中等范围 电扫描
高密度场景 较多 较窄 较高 较高 电扫描
高速度场景 少量 电扫描
高危场景 机械扫描
停车/起步场景 超多 超窄 超高 超高 电扫描
从表1可以看出,不同的场景(或者说,不同的障碍物条件)对雷达信号的空间分辨能力和时间分辨能力的要求不同,因此,可以根据不同场景对雷达信号的扫描参数的需求,确定扫描不同场景使用的雷达信号的扫描参数。
例如,高密度场景(例如,市区街道)、高危场景和停车/起步场景中障碍物较多,并且障碍物的间距较小,对空间分辨能力的要求高于常规场景,因此,如表3所示,可以设置高密度场景、高危场景和停车/起步场景对应的波束个数多于常规场景对应的波束个数。而高速度场景(例如,高速公路)中障碍物较少,并且障碍物的间距较大,对雷达系统的空间分辨能力的要求低于常规场景,如表3所示,可以设置高速度场景对应的波束个数小于常规场景对应的波束个数。
类似地,高密度场景、高危场景和停车/起步场景对时间分辨能力的要求低于常规场景,而高速度场景对时间分辨能力的要求高于常规场景。因此,如表3所示,可以设置高密度场景、高危场景和停车/起步场景对应的波束宽度小于常规场景对应的波束宽度,高速度场景对应的波束宽度大于常规场景对应的波束宽度。
应理解,表3列举的每个场景类型对应的扫描参数只具有相对的概念,本申请实施例不限定每个场景类型对应的具体范围,每个场景类型对应的扫描参数的具体范围可以根据对大量的数据进行统计确定。例如,对于一个场景,可以通过设置不同扫描参数,例如,不同的波形个数,或波束宽度进行扫描,得到对这个场景下障碍物的位置的估计值,根据不同的扫描参数下的估计值,确定这种场景下的最佳的波形个数和波束宽度。
需要说明的是,在本申请实施例中,不同的障碍物信息和不同的扫描策略的对应关系也可以通过函数或表的方式给出,同样地,该多个扫描策略和该多个场景类型的对应关系也可以通过函数或表的方式给出,本申请实施例对此不做限定。
因此,本申请实施例的车载雷达的扫描方法,能够根据参考障碍物信息,即车辆周围区域的障碍物信息,确定用于扫描车辆周围区域的扫描参数,然后使用该扫描参数对该车辆周围区域进行扫描。因此,能够根据车辆周围区域的障碍物情况,自适应调整雷达信号的扫描参数,而不是采用固定的扫描参数进行扫描,从而能够满足不同的路况,或者说,不同的场景,对雷达性能的需求,能够综合考虑雷达功耗和障碍物的检测精度问题。
由于,障碍物信息不同,也就是场景类型不同,对雷达信号的扫描参数的要求也不同。因此,该车载雷达的扫描装置还可以根据车辆的周围区域的障碍物信息进行分区,此情况下,该方法400还可以包括:
将该车辆的周围区域划分为至少两个分区;
该S420可以进一步包括:
根据所述参考障碍物信息确定至少两组扫描参数,所述两组扫描参数中每一组扫描参数对应一个分区;
该S430可以进一步包括:
使用与所述至少两个分区中每个分区对应的一组扫描参数对所述每个分区进行扫描。
具体而言,车辆周围区域可以包括车道、车道两边的便道以及便道外侧的区域等区域,不同的区域对应的障碍物信息可能不同。例如,车道上的障碍物的速度较大,便道上的障碍物的速度较小,车道上的障碍物类型主要为车辆,便道上的障碍物类型主要为人或自行车,因此,不同的区域对雷达信号的扫描参数的要求不同。
那么,该车载雷达的扫描装置可以将该车辆的周围区域划分为至少两个分区。例如,该车载雷达的扫描装置可以根据区域分割策略将该车辆周围的区域划分为四个分区,例如,可以将车道划分为两个分区,车辆前方为第一分区,车辆后方为第二分区,车道两边的便道可以为第三分区,便道外侧的区域为第四分区。
可选地,该车载雷达的扫描装置也可以根据其他区域分割方法将车辆周围区域划分为至少两个分区,本申请实施例对于区域的分割方法不作限定。例如,可以采用如下方式划分分区:将车辆周围区域划分为N*M个网格,每个网格对应一个分区,其中,N,M为大于零的整数,每个网格为以(xn,ym)为中心的边长为L的长方形。或者每个网络为以(xn,ym)为中心半径为R的圆形,(xn,ym)可以任意选取,也可以在车辆周围区域均匀选取,本申请实施例不作限定。
将该车辆周围区域划分为至少两个分区后,该车载雷达的扫描装置可以根据该参考障碍物信息中每个分区的障碍物信息,确定至少两组扫描参数,每组扫描参数对应一个 分区,即每个分区对应相应的扫描策略,然后使用每个分区对应的一组扫描参数扫描该每个分区。根据每个分区的障碍物信息,确定每个分区对应的扫描策略的方法可以参考前述根据参考障碍物信息,确定所述车辆的车载雷达的扫描参数的方法,即S420,为了简洁,这里不再赘述。
因此,本申请实施例的车载雷达的扫描方法,将该车辆周围区域划分为至少两个分区,每个分区对雷达信号的扫描参数的要求不同,因此,根据参考障碍物信息中的每个分区的障碍物信息,确定每个分区对应的扫描参数,从而使用每个分区对应的扫描参数扫描每个分区。
可选地,该根据所述参考障碍物信息确定至少两组扫描参数,包括:
根据该第一障碍物信息和/或该历史参考信息,确定该至少两个分区中的每个分区的障碍物密度、障碍物的速度和障碍物类型中的至少一项;
根据该每个分区的障碍物密度、障碍物的速度和障碍物类型中的至少一项,确定该每个分区对应的目标扫描策略。
具体而言,多个扫描策略中的每个扫描策略可以对应相应的障碍物条件。例如,每个扫描策略对应相应的障碍物密度,或障碍物的速度,或障碍物类型。车载雷达的扫描装置可以根据第一障碍物信息和历史参考信息中的至少一项,确定每个分区的障碍物密度,或障碍物的速度,或障碍物类型,然后根据该多个扫描策略对应的障碍物密度,或障碍物的速度,或障碍物类型,确定用于扫描每个分区的目标扫描策略。例如,每个扫描策略对应相应的障碍物密度,那么可以根据第一障碍物信息和历史参考信息中的至少一项,确定每个分区的障碍物密度,从而确定扫描每个分区的目标扫描策略。或者,每个扫描策略对应相应的障碍物的速度,那么可以根据第一障碍物信息和历史参考信息中的至少一项,确定每个分区的障碍物的速度,从而确定每个分区对应的目标扫描策略。
可选地,每个分区的障碍物信息可以用每个分区的场景类型来描述,场景类型和扫描策略可以具有对应关系,因此,可以根据每个分区的场景类型,确定每个分区的扫描策略。例如,可以根据表2所示的对应关系,确定每个分区所属的场景类型,然后根据表3所示的对应关系,确定每个分区对应的扫描策略。
进一步地,该车载雷达的扫描装置还可以根据至少两个分区的障碍物信息进行合并处理,具体可以包括:
将该至少两个分区中的障碍物密度的差值小于密度阈值,或障碍物的速度的差值小于速度阈值,或障碍物类型相同的不同分区合并为同一个分区。
确定合并后的每个分区的障碍物密度、障碍物的速度和障碍物类型中的至少一项;
该根据该每个分区的障碍物密度、障碍物的速度和障碍物类型中的至少一项,确定该每个分区对应的目标扫描策略,包括:
根据合并后的每个分区的障碍物密度、障碍物的速度和障碍物类型中的至少一项,确定该合并后的每个分区对应的目标扫描策略。
也就是说,在本申请实施例中,可以将障碍物密度差异相对较小,或障碍物类型相似或障碍物的速度差异相对较小的区域合并为同一分区,即使这些区域不是相邻区域,也可以进行合并。例如,公路两边的便道可以认为属于同一分区。可选地,还可以根据历史参考信息或其他车辆的统计结果,将历史上属于同一场景类型的不同区域合并为同一分区。之后,该车载雷达的扫描装置可以统计合并后的各个分区的障碍物密度、障碍 物的速度和障碍物类型等信息。具体的统计方法可以参考公式(10)和公式(11),然后根据合并后的每个分区的障碍物密度、障碍物的速度和障碍物类型中的至少一项,确定该合并后的每个分区对应的目标扫描策略,从而使用每个分区对应的目标扫描策略,扫描合并后的每个分区。
因此,在本申请实施例中,该雷达扫描的装置可以根据障碍物信息进行分区,从而可以将障碍物信息类似的区域划分为同一分区,将障碍物信息差异较大的区域分为两个分区,然后使用同一个扫描策略,即同一组扫描参数扫描障碍物信息类似的区域,分别使用不同的扫描策略,即不同的扫描参数扫描障碍物差异较大的分区,从而能够满足不同的场景对雷达的性能的需求。例如,车道的障碍物的运动速度较快,便道的障碍物的运动速度较慢,因此,扫描车道对雷达信号的时间分辨能力要求较高,而扫描便道对雷达的时间分辨能力要求相对较低,因此,对车道进行扫描时,可以使用较高的扫描频率,或较高的扫描密度,对便道进行扫描时采用较低的扫描频率,或较低的扫描密度。
图5所示为根据本申请实施例的车载雷达的扫描方法500的整体流程图,如图5所示,该方法可以包括:
在S510中,车载雷达的扫描装置获取参考障碍物信息;
在S520中,车载雷达的扫描装置根据参考障碍物信息,确定车辆周围区域的场景类型;
在S530中,车载雷达的扫描装置根据场景类型对应的扫描策略对车辆周围区域进行扫描,得到扫描数据;
具体的,该S510~S530的具体实现步骤可以参考S410~S430中的相关描述,为了简洁,这里不再赘述。
在S540中,车载雷达的扫描装置可以对扫描数据进一步处理,得到第一类数据。
所述第一类数据为滤除干扰信号的扫描数据,所述第一类数据可以用于所述车载雷达的扫描装置可以从所述第一类数据中获取确定障碍物的信息,所述确定障碍物信息为所述车载雷达的扫描装置确定的需要避障的障碍物的信息,所述车载雷达的扫描装置可以以所述确定障碍物信息为避障依据,对所述确定障碍物的信息中的障碍物执行避障动作。
由于在S530中获得的扫描数据为雷达坐标系下的扫描数据,对车辆进行控制需要将该扫描数据转换为车辆坐标系下的扫描数据,因此可以采用公式(1)对该扫描数据进行转换。获取该扫描数据后,该车载雷达的扫描装置可以先将该扫描数据转换为车辆坐标系下的扫描数据,然后对转换后的扫描数据进行处理,或者也可以先对雷达坐标系下的扫描数据进行处理,然后将处理后的数据进行坐标系转换。
应理解,从雷达坐标系下的扫描数据到可以用于控制车辆的障碍物信息,需要进行两个坐标系的转换,本申请实施例对于进行坐标系的转换的时机不作限定,可以处理前进行坐标系的转换,也可以处理后进行坐标系的转换,或者也可以在处理过程中进行坐标系的转换。下文主要介绍如何处理扫描数据,省去扫描数据的坐标系转换的过程,但并不表示不执行该过程。
以下,结合图6,详细介绍该S540具体可以包括哪些步骤:
S541,确定扫描数据中大于预设的滤波阈值的第一类数据。
该车载雷达的扫描装置可以预设用于对该扫描数据进行滤波的滤波阈值,将大于滤 波阈值的扫描数据确定为第一类数据。具体地,该车载雷达的扫描装置可以先对扫描数据进行快速傅里叶变换(Fast Fourier Transform,FFT),该预设的滤波阈值用于对FFT后的扫描数据进行滤波,小于预设的滤波阈值的扫描数据可以认为是一些干扰信息,过滤掉低于预设的滤波阈值的干扰信息,从大于预设的滤波阈值的扫描数据中确定用于避障依据的障碍物信息的可靠性更高。
在S542中,确定第一类数据占扫描数据的比例是否大于预设的检测率阈值;
该车载雷达的扫描装置可以预设检测率阈值,若第一类数据占扫描数据的比例小于预设的检测率阈值,也就是说,通过滤波得到的扫描数据没有达到预设的检测率阈值,流程进行到543,否则,流程进行到S545。
在S543中,判断预设的滤波阈值是否达到下限,若未达到下限,流程进行到S544,否则,流程进行到S545。
在S544中,降低滤波阈值,重新从扫描数据中确定第一类数据,即重新执行S541。
在S545中,得到第一类数据。
以上,介绍了所述车载雷达的扫描装置对扫描数据进行处理得到第一类数据的过程,以下,详细介绍在第一类数据中确定可以用于避障依据的障碍物信息的过程。
首先结合图5介绍如何确定预测障碍物信息。
如图5所示,该方法500还可以包括:
S550,所述车载雷达的扫描装置还可以根据第一障碍物信息,确定预测障碍物信息。
具体而言,车载雷达的扫描装置可以根据第一障碍物信息,预测下一采样时刻(即当前时刻)的障碍物信息,即预测障碍物信息。由于该第一障碍物信息为当前时刻之前的第一时间段内的障碍物信息,该第一障碍物信息可以包括第一时间段内的障碍物的速度、位置信息等信息,该车载雷达的扫描装置可以根据该第一障碍物信息和该车辆的行驶速度,预测当前时刻障碍物可能出现的第一区域,和/或不可能出现的第二区域,可选地,该预测障碍物信息可以包括每个障碍物可能出现的第一区域,和/或不可能出现的第二区域。
举例来说,该第一障碍物信息包括该车载雷达的扫描装置在t1时刻获取的障碍物信息,车辆在车辆坐标系下相对于地面的速度为(νvxvy),障碍物在车辆坐标系下的位置为(x1,y1),障碍物在车辆坐标系下相对于地面的速度为(νTxTy),那么可以根据公式(12)和公式(13)确定下一采样时刻t2障碍物可能出现的位置为(x2,y2):
x2=x1+(vTx-vVx)(t2-t1)        (12)
y2=y1+(vTy-vVy)(t2-t1)      (13)
可选地,该车载雷达的扫描装置可以将障碍物可能出现的位置附近的一定区域确定为障碍物可能出现的第一区域。例如,可以将以障碍物可能出现的位置为中心,边长为L的正方形区域范围确定为第一区域,或者也可以以障碍物可能出现的位置为圆心,半径为R的圆的范围确定为第一区域,该第二区域可以为第一区域以外的其他区域,或者该第二区域也可以为距离第一区域一定距离的区域。
应理解,在本申请实施例中,车辆周围可能包括多个障碍物,因此,预测的该多个障碍物当前时刻可能出现的区域也可以有多个,该多个区域分别对应该多个障碍物。该 多个区域中的任意两个区域可以部分或全部重叠,即两个障碍物可能出现的区域可能部分相同或完全相同,也就是说该第一区域可以包括多个区域,该多个区域中的任意两个区域可以部分重叠或全部重叠。
为了进一步确定障碍物是否会出现在预测的可能出现的区域,所述车载雷达扫描的装置还可以对预测的障碍物可能出现的区域进行精细扫描,例如,采用较多的波束个数,或较窄的波束宽度,或较大的扫描密度,或较高的扫描频率进行精细扫描。
进一步的,在S560中,所述车载雷达的扫描装置还可以根据预测障碍物信息,在该第一类数据中获取确定障碍物信息,该确定障碍物信息为所述车载雷达的扫描装置确定的需要避障的障碍物的信息。
可选地,所述车载雷达的扫描装置可以以所述确定障碍物信息为避障依据,对所述确定障碍物的信息中的障碍物执行避障动作。或者,所述车载雷达的扫描装置还可以将所述确定障碍物信息作为输出数据,输出给车辆的控制装置,由控制装置根据所述确定障碍物信息控制车辆完成避障动作。或者,所述车载雷达的扫描装置可以将所述确定障碍物信息显示给车辆的驾驶员,以供驾驶员根据所述确定障碍物信息控制车辆完成避障动作。
以下,介绍所述车载雷达的扫描装置如何根据预测障碍物信息,在所述第一类数据中获取确定障碍物信息。
如前面所述,该预测障碍物信息包括预测的障碍物可能出现的区域的信息,该车载雷达的扫描装置可以对比所述第一类数据和所述预测障碍物信息,若对于预测的障碍物可能出现的位置,在该第一类数据中出现了相应的障碍物,将出现在预测的相应位置的障碍物确定为确定障碍物。例如,预测第一障碍物可能出现在第一区域,第二障碍物可能出现在第二区域,若在所述第一类数据中,所述第一障碍物出现在第一区域,所述第二障碍物未出现在第二区域,则所述第一障碍物为确定障碍物,所述第二障碍物为待确定障碍物。
可选地,在本申请实施例中,所述预测障碍物信息还可以包括障碍物不可能出现的区域的信息,出现在预测的障碍物不可能出现的区域的障碍物可以认为是待确定障碍物,该车载雷达的扫描装置也可以对障碍物不可能出现的区域采用较多的波束个数,或较窄的波束宽度,或较大的扫描密度,或较高的扫描频率进行精细扫描,以确定该待确定障碍物信息中的待确定障碍物的情况。
如图7所示为确定障碍物和待确定障碍物的转换关系:若确定障碍物没有再次被扫描到,例如,确定障碍物在前一段时间内的障碍物信息中出现,但是在扫描数据中没有出现,可以转换为待确定障碍物,若待确定障碍物再次被扫描到,则转换为确定障碍物。
在本申请实施例中,所述车载雷达的扫描装置除了可以输出确定障碍物信息,还可以输出待确定障碍物信息。所述待确定障碍物信息还可以用于在下一扫描时刻进一步确定待确定障碍物的情况,若待确定障碍物进一步确定为确定障碍物,则可以作为避障依据信息,否则,不作为避障依据信息。
在本申请实施例中,该预测障碍物信息还可以用于对车辆坐标系和雷达坐标系的转换矩阵进行在线定标,以下,介绍具体实现过程。
可选地,作为一个实施例,所述方法500还可以包括:
根据该扫描数据,以及该预测障碍物信息,确定存在测量偏差;
根据该测量偏差,重新确定雷达坐标系和车辆坐标系之间的转换矩阵,该转换矩阵用于该雷达坐标系下的障碍物信息与该车辆坐标系下的障碍物信息之间的转换,该雷达坐标系为以该雷达为载体的坐标系,该车辆坐标系为以该车辆为载体的坐标系。
具体而言,从雷达坐标系到车辆坐标系需要进行坐标转换,用于坐标转换的转换矩阵可以根据雷达在车辆上的初始安装位置和安装角度确定,但是雷达通常按照在车辆的外壳上,由于碰撞、颠簸等因素可能会产生安装位置或安装角度的变化,这就需要重新确定转换矩阵。
在本申请实施例中,该车载雷达的扫描装置可以根据扫描数据,或第一类数据,或确定障碍物信息和待确定障碍物信息以及预测障碍物信息,确定是否存在一致性的测量偏差,或持续性丢失,若存在,可以根据测量偏差,重新确定两个坐标系之间的转换矩阵。
可选地,本申请实施例中,该车载雷达的扫描装置也可以根据该扫描数据,结合其他传感器的检测结果,确定是否存在一致性的偏差,或持续性丢失。
例如,若障碍物在其他车辆的雷达中测量的位置依次为(0,10,0),(0,20,0),(0,30,0),在摄像头中的位置为(0,10.1,0),(0,19.9,0),(0,20.0,0),而该车辆的雷达中测量的位置为(0,10.5,0),(0,20.6,0),(0,30.4,0),统计发现该雷达和其它传感器对同一个障碍物的测量产生一致性偏差(0,0.5,0),(0,0.6,0),(0,0.4,0)。因此,确定雷达在车辆中的位置发生变化,因此,安装时的雷达相对于车辆坐标系的位置为(0,1,0),那么可以修改雷达的位置参数为(0,1.5,0),根据修正后的位置参数,可以重新根据公式(1)~公式(7)确定雷达坐标系到车辆坐标系的转换矩阵。
以下,结合具体示例,介绍本申请实施例的车载雷达的扫描方法,图8是根据本申请另一实施例的车载雷达的扫描方法的示意性流程图,该方法也可以由车载雷达的扫描装置执行,例如,图2、图4、图5或图6中的车载雷达的扫描装置。如图8所示,该方法包括以下步骤:
S801,将车辆周围区域分割为至少两个分区;
具体的,根据区域分割策略将车辆周围区域进行区域分割,如图9所示为真实路况分割后的各分区的示意图,分区A1为道路两侧的建筑物区域,分区A2为道路两侧的便道区域,分区A3为车道上车辆行驶的前方区域,分区A4为车道上车辆行驶的后方区域。
S802,根据第一障碍物信息,统计分割后的每个分区的障碍物的密度、障碍物的速度或障碍物类型;
(a)根据公式(10)统计各分区的障碍物的密度:
分区A1:障碍物密度为:0个/单位面积,分区A2:障碍物密度为:2个/单位面积,分区A3:障碍物密度为:1个/单位面积,分区A4:障碍物密度为:1个/单位面积。
(b)根据公式(11)统计各分区的障碍物的速度:
分区A1:无,分区A2:障碍物的速度为:1m/s(米/秒),分区A3:障碍物的速度为:20m/s,分区A4:障碍物的速度为:19m/s。
(c)根据障碍物的运动规律推断障碍物类型:
分区A1:无障碍物;分区A2:行人;分区A3:车辆;分区A4:车辆。
S803,根据统计的每个分区的障碍物的密度、障碍物的速度或障碍物类型,合并分区;
由于分区A3和分区A4的障碍物类型都为车辆,且速度差值较小,可以将分区A3和分区A4合并为同一个分区,记为分区A5。
可选地,也可以参考历史参考信息对分区进行合并,根据历史参考信息,确定A3和A4属于同一场景,A1,A2,A5属于不同的场景,因此,可以将A3和A4划分为同一分区,A1,A2,A5划分为不同的分区。
S804,根据第一障碍物信息,统计合并后的每个分区的障碍物的密度、障碍物的速度或障碍物类型;
(a)根据公式(10)统计各分区的障碍物的密度:
分区A1:障碍物密度为:0个/单位面积,分区A2:障碍物密度为:2个/单位面积,分区A5:障碍物密度为:1个/单位面积。
(b)根据公式(11)统计各分区的障碍物的速度:
分区A1:无,分区A2:障碍物的速度为:1m/s(米/秒),分区A5:障碍物的速度为:19.5m/s。
(c)根据障碍物的运动规律推断障碍物类型:
分区A1:无障碍物;分区A2:行人;分区A5:车辆。
在805中,根据合并后的每个分区的障碍物的密度、障碍物的速度或障碍物类型,确定每个分区对应的扫描策略。
具体的,该705的执行过程可以参考S330的执行过程,为了简洁,这里不再赘述。
可选地,进一步地,障碍物的密度可以分为3个等级,每个等级对应相应的障碍物密度范围或门限:
等级1:少于2个/单位面积;
等级2:2个/单位面积到5个/单位面积;
等级3:大于5个/单位面积
障碍物的速度也可以分成3个等级,每个等级对应相应的障碍物速度范围或门限:
等级1:小于5m/s;
等级2:5m/s到17m/s;
等级3:大于17m/s。
根据合并后的各分区的障碍物的密度和速度,确定各分区的障碍物的密度等级pnew和速度等级qnew
A1:pnew=1,qnew=1,建筑物;
A2:pnew=1,qnew=1,行人;
A5:pnew=1,qnew=3,车辆。
可选地,在本申请实施例中,还可以统计历史参考信息中每个分区的障碍物密度等级pold和障碍物的速度等级qold,从而可以结合历史参考信息中的pold和qold,确定各分区的障碍物的密度等级p和速度等级q,每个分区的障碍物密度等级p和障碍物的速度等级q可以根据公式(14)和公式(15)确定:
p=αpnew+(1-α)pold        (14)
q=αqnew+(1-α)qold         (15)
其中,比例因子α可以为固定的,也可以根据最新的障碍物信息变化,例如,若连 续测量的障碍物密度等级和障碍物的速度等级稳定,可以增大α,否则就减小α。
对于上述实施例,历史参考信息中,各分区的障碍物的密度等级、速度等级和障碍物类型如下:
分区A1:pold=1,qold=1,建筑物;
分区A2:pold=1,qold=1,行人;
分区A5:pold=1,qold=3,车辆。
根据公式(14)和公式(15),确定各分区的障碍物的密度等级、速度等级和障碍物类型。
分区A1:p=1,q=1,建筑物;
分区A2:p=1,q=1,行人;
分区A5:p=1,q=3,车辆。
可选地,进一步地,可以常规场景、高密度场景、高速度场景、停车/起步场景描述车辆所处的场景。每个场景对应相应的密度等级、速度等级和障碍物类型,该对应关系如下:
常规场景:障碍物密度等级p<3,障碍物速度等级q<3;
高密度场景:障碍物密度等级p≥3;
高速度场景:障碍物速度等级q≥3;
停车/起步场景:自车速度小于5m/s,且与周围障碍物最近距离小于阈值1m;
高危场景:人或自行车。
根据上述对应关系,可以确定每个分区的场景类型如下:
分区A1:常规场景;
分区A2:高危场景;
分区A5:高速度场景。
可选地,假设系统预配置有3个波形方案,分别对应3个波形,4个波形,5个波形;2个波束宽度,分别为1/25弧度和1/50弧度;有2个扫描密度,分别为间隔1/25弧度和1/50弧度;有两种扫描方式,机械扫描和电扫描。
可以给上述各分区设置这样的扫描策略:
A1:4个波形,1/25弧度,1/25弧度;
A2:5个波形,1/50弧度,1/50弧度;
A3-4:3个波形,1/25弧度,1/25弧度。
可选地,在本申请实施例中,第一障碍物信息可以包括障碍物的相对车辆的位置和速度等运动参数,因此,可以根据车辆的运动参数和障碍物的运动参数预测障碍物可能出现的位置。
例如,观测时刻记为0s,获取的障碍物的运动参数如下:
障碍物1:坐标(10m,10m)速度:(0m/s,20m/s);
障碍物2:坐标(15m,50m)速度:(0m/s,19m/s);
障碍物3:坐标(5m,30m)速度:(0m/s,-1m/s);
障碍物4:坐标(20m,10m)速度:(0m/s,1m/s);
车辆速度(0m/s,15m/s)。
则观测时刻之后的1s,障碍物可能出现的位置为:
障碍物1:坐标(10m,15m);
障碍物2:坐标(15m,54m);
障碍物3:坐标(5m,14m);
障碍物4:坐标(20m,-4m)。
由于预测障碍物信息是车辆坐标系下的障碍物信息,因此,需要转换为雷达坐标系下的障碍物信息,假设雷达安装在车辆的正前方,安装位置为(0,1,0),安装角度为正前视(0,0,0),则障碍物在雷达坐标系中的位置如下:
障碍物1:坐标(10m,14m)
障碍物2:坐标(15m,53m)
障碍物3:坐标(5m,13m)
障碍物4:坐标(20m,-5m)
若扫描得到的障碍物信息如下:
障碍物N1:坐标(10.5m,14.3m);
障碍物N2:坐标(15.2m,53.1m);
障碍物N3:坐标(15m,20m);
障碍物N4:坐标(20.1m,-5.1m)。
则可以将障碍物N1,N2,N4确定为确定障碍物,障碍物N3和障碍物3确定为待确定障碍物。
上文结合图4至图9,详细描述了本申请的方法实施例,下文结合图10至图12,描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图10示出了根据本申请实施例的车载雷达的扫描装置1000的示意性框图,该装置1000可以对应(例如,可以配置于或本身即为)上述方法400中描述的车载雷达的扫描装置,或图5、图6或图8所示的方法中的车载雷达的扫描装置。
如图10所示,该装置1000可以包括:
获取单元1010,用于获取参考障碍物信息,该参考障碍物信息指示装有雷达的车辆的周围区域的障碍物信息;
确定单元1020,用于根据所述参考障碍物信息,确定所述车辆的车载雷达的扫描参数;
扫描单元1030,用于使用所述扫描参数对所述车辆的周围区域进行扫描。
具体地,该装置1000可对应于根据本申请实施例的车载雷达的扫描方法400中的车载雷达的扫描装置,该装置1000可以包括用于执行图4中方法400,或图5、图6或图8所示的方法中车载雷达的扫描装置执行的方法的实体单元。并且,该装置1000中的各实体单元和上述其他操作和/或功能分别为了实现图4中方法400,或图5、图6或图8所示的方法中的相应流程,为了简洁,在此不再赘述。
图11是本申请实施例提出的另一种车载雷达的扫描装置1100的示意性框图,如图11所示,该装置1100包括:存储器1110,处理器1120和收发器1130,所述处理器1120用于执行所述存储器1110中的代码。
可选地,当所述存储器1110中的代码被执行时,所述处理器1120能够实现上述图4、图5、图6或图8中的方法实施例中所述车载雷达的扫描装置执行的方法,为了简洁, 这里不再赘述。
在一些实施例中,收发器1130能够实现图10中的扫描单元1030的与通信相关的功能,处理器1120能够实现图10中的除所述通信相关的功能之外的剩余功能,如获取单元1010、确定单元1020和分割单元和控制单元相应的功能。
应注意,上述方法实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图12是本申请实施例提出的一种控制车辆的系统的示意性框图,如图12所示,该系统包括:车载雷达的扫描装置1201和控制装置1202,该车载雷达的扫描装置1201可以为图10或图11中的车载雷达的扫描装置。
所述车载雷达的扫描装置1201可以对车辆周围区域进行扫描得到扫描数据,进一步的,还可以对所述扫描数据进行处理,得到用于控制车辆运行的避障依据信息。
所述控制装置1202可以根据所述避障依据信息控制车辆的运行路线,具体的,可以控制车辆对避障依据信息中的障碍物完成避障动作。
本申请实施例还提出了一种计算机可读存储介质,该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行图4、图5、图6或图8所示实施例的方法。
本申请实施例还提供一种计算机程序产品。该计算机程序产品包括能够被计算机执 行的程序代码,该程序代码用来执行如图4、图5、图6或图8所示实施例的方法。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种车载雷达的扫描方法,其特征在于,包括:
    获取参考障碍物信息,所述参考障碍物信息用于指示车辆的周围区域的障碍物信息;
    根据所述参考障碍物信息,确定所述车辆的车载雷达的扫描参数;
    使用所述扫描参数对所述车辆的周围区域进行扫描。
  2. 根据权利要求1所述的方法,其特征在于,所述获取参考障碍物信息包括:
    获取当前时刻的前一时间段内所述车辆的周围区域的障碍物信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述获取参考障碍物信息包括:
    获取所述车辆的位置,并获取所述位置对应的历史参考信息。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    将所述车辆的周围区域划分为至少两个分区;
    所述根据所述参考障碍物信息,确定所述车辆的车载雷达的扫描参数,包括:
    根据所述参考障碍物信息确定至少两组扫描参数,所述两组扫描参数中每一组扫描参数对应一个分区;
    所述使用所述扫描参数对所述车辆的周围区域进行扫描,包括:
    使用与所述至少两个分区中每个分区对应的一组扫描参数对所述每个分区进行扫描。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述参考障碍物信息确定至少两组扫描参数,所述两组扫描参数中每一组扫描参数对应一个分区,包括:
    根据所述参考障碍物信息,在多个场景类型中确定所述至少两个分区分别对应的场景类型;
    根据所述至少两个分区分别对应的场景类型,在多个扫描策略中确定所述至少两个分区分别对应的扫描策略,其中,所述多个扫描策略中的每个扫描策略对应一组扫描参数,所述多个场景类型与所述多个扫描策略一一对应。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述参考障碍物信息包括障碍物密度、障碍物的速度和障碍物类型中的至少一种。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    将所述至少两个分区中的任何两个分区合并为一个分区,其中所述任何两个分区中的障碍物密度的差值小于密度阈值,或障碍物的速度的差值小于速度阈值,或障碍物类型相同。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述参考障碍物信息,确定预测障碍物信息,所述预测障碍物信息指示预测的所述车辆周围区域的障碍物信息;
    根据所述扫描数据和所述预测障碍物信息,确定测量偏差;
    根据所述测量偏差,调整雷达坐标系和车辆坐标系之间的转换矩阵,所述转换矩阵用于所述雷达坐标系下的障碍物信息与所述车辆坐标系下的障碍物信息之间的转换,所述雷达坐标系为以所述雷达为载体的坐标系,所述车辆坐标系为以所述车辆为载体的坐标系。
  9. 一种车载雷达的扫描装置,其特征在于,包括:
    获取单元,用于获取参考障碍物信息,所述参考障碍物信息用于指示车辆的周围区 域的障碍物信息;
    确定单元,用于根据所述参考障碍物信息,确定所述车辆的车载雷达的扫描参数;
    扫描单元,用于使用所述扫描参数对所述车辆的周围区域进行扫描。
  10. 根据权利要求9所述的装置,其特征在于,所述获取单元具体用于:
    获取当前时刻的前一时间段内所述车辆的周围区域的障碍物信息。
  11. 根据权利要求9或10所述的装置,其特征在于,所述获取单元具体用于:
    获取所述车辆的位置,并获取所述位置对应的历史参考信息。
  12. 根据权利要求9至11中任一项所述的装置,其特征在于,所述装置还包括:
    分割单元:用于将所述车辆的周围区域划分为至少两个分区;
    所述确定单元具体用于:
    根据所述参考障碍物信息确定至少两组扫描参数,所述两组扫表参数中每一组扫描参数对应一个分区;
    所述扫描单元具体用于:
    使用与所述至少两个分区中每个分区对应的一组扫描参数对所述每个分区进行扫描。
  13. 根据权利要求12所述的装置,其特征在于,所述确定单元具体用于:
    根据所述参考障碍物信息,在多个场景类型中确定所述至少两个分区分别对应的场景类型;
    根据所述至少两个分区分别对应的场景类型,在多个扫描策略中确定所述至少两个分区分别对应的扫描策略,其中,所述多个扫描策略中的每个扫描策略对应一组扫描参数,所述多个场景类型与所述多个扫描策略一一对应。
  14. 根据权利要求9至13中任一项所述的装置,其特征在于,所述参考障碍物信息包括障碍物密度、障碍物的速度和障碍物类型中的至少一种。
  15. 根据权利要求14所述的装置,其特征在于,所述分割单元还用于:
    将所述至少两个分区中的任何两个分区合并为一个分区,其中所述任何两个分区中的障碍物密度的差值小于密度阈值,或障碍物的速度的差值小于速度阈值,或障碍物类型相同。
  16. 根据权利要求9至15中任一项的装置,其特征在于,所述确定还用于:
    根据所述参考障碍物信息确定预测障碍物信息,所述预测障碍物信息指示预测的所述车辆周围区域的障碍物信息;
    根据所述扫描数据和所述预测障碍物信息,确定测量偏差;
    根据所述测量偏差,调整雷达坐标系和车辆坐标系之间的转换矩阵,所述转换矩阵用于所述雷达坐标系下的障碍物信息与所述车辆坐标系下的障碍物信息之间的转换,所述雷达坐标系为以所述雷达为载体的坐标系,所述车辆坐标系为以所述车辆为载体的坐标系。
  17. 一种控制车辆的系统,其特征在于,包括:
    如权利要求9至权利要求16所述的车载雷达的扫描装置,和控制装置;
    所述车载雷达的扫描装置用于对车辆周围区域进行扫描得到扫描数据;
    所述控制装置,用于根据所述扫描数据,控制车辆完成避障动作。
PCT/CN2017/079308 2017-04-01 2017-04-01 车载雷达的扫描方法、装置和控制车辆的系统 WO2018176472A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/079308 WO2018176472A1 (zh) 2017-04-01 2017-04-01 车载雷达的扫描方法、装置和控制车辆的系统
CN201780089196.8A CN110476077B (zh) 2017-04-01 2017-04-01 车载雷达的扫描方法、装置和控制车辆的系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/079308 WO2018176472A1 (zh) 2017-04-01 2017-04-01 车载雷达的扫描方法、装置和控制车辆的系统

Publications (1)

Publication Number Publication Date
WO2018176472A1 true WO2018176472A1 (zh) 2018-10-04

Family

ID=63674446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079308 WO2018176472A1 (zh) 2017-04-01 2017-04-01 车载雷达的扫描方法、装置和控制车辆的系统

Country Status (2)

Country Link
CN (1) CN110476077B (zh)
WO (1) WO2018176472A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111258320A (zh) * 2020-02-14 2020-06-09 广东博智林机器人有限公司 一种机器人避障的方法及装置、机器人、可读存储介质
CN111289979A (zh) * 2020-02-20 2020-06-16 北京小马慧行科技有限公司 车载雷达的控制方法及装置、运载工具
CN112649013A (zh) * 2020-12-29 2021-04-13 天津天瞳威势电子科技有限公司 一种可通行区域的确定方法、装置及电子设备
CN112835045A (zh) * 2021-01-05 2021-05-25 北京三快在线科技有限公司 一种雷达探测方法、装置、存储介质及电子设备
CN114944078A (zh) * 2022-05-10 2022-08-26 阿波罗智联(北京)科技有限公司 信息处理方法、装置、设备、存储介质及计算机程序产品
US11513526B2 (en) * 2018-08-30 2022-11-29 Elta Systems Ltd. Method of navigating a vehicle and system thereof
US11512975B2 (en) 2017-02-23 2022-11-29 Elta Systems Ltd. Method of navigating an unmanned vehicle and system thereof
WO2023005986A1 (zh) * 2021-07-30 2023-02-02 武汉万集光电技术有限公司 一种感知系统的感知方法、感知系统、设备及存储介质
CN117008122A (zh) * 2023-08-04 2023-11-07 江苏苏港智能装备产业创新中心有限公司 基于多雷达融合定位工程机械设备周围物体的方法和系统
CN111316126B (zh) * 2018-12-28 2024-07-09 深圳市卓驭科技有限公司 目标探测方法、雷达、车辆以及计算机可读存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113341417B (zh) * 2021-06-09 2024-04-19 深圳市九洲电器有限公司 基于探测雷达的路面障碍检测方法、车辆及存储介质
CN115311850A (zh) * 2022-07-15 2022-11-08 重庆长安汽车股份有限公司 一种基于众包模式的抛洒物识别与预警方法及系统
CN116559896B (zh) * 2023-07-10 2023-10-27 深圳市欢创科技有限公司 调整激光雷达测距精度的方法、装置及激光雷达

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1791806A (zh) * 2003-05-22 2006-06-21 罗伯特.博世有限公司 一种探测汽车周围目标的方法和装置
US7298247B2 (en) * 2004-04-02 2007-11-20 Denso Corporation Vehicle periphery monitoring system
CN101187706A (zh) * 2006-11-20 2008-05-28 罗伯特·博世有限公司 距离测量方法和距离测量装置
CN101598793A (zh) * 2008-06-05 2009-12-09 罗伯特·博世有限公司 用于确定物体相对机动车的距离和/或速度的方法及装置
CN104007441A (zh) * 2014-05-12 2014-08-27 格利尔数码科技股份有限公司 一种车载全景雷达监测方法及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139594A (ja) * 2005-11-18 2007-06-07 Omron Corp 物体検出装置
US7400290B2 (en) * 2005-12-30 2008-07-15 Valeo Raytheon Systems, Inc. Vehicle radar system having multiple operating modes
DE102007046648A1 (de) * 2007-09-28 2009-04-02 Robert Bosch Gmbh Radarsensor zur Erfassung des Verkehrsumfelds in Kraftfahrzeugen
CN102508246B (zh) * 2011-10-13 2013-04-17 吉林大学 车辆前方障碍物检测跟踪方法
JP6331195B2 (ja) * 2014-09-29 2018-05-30 パナソニックIpマネジメント株式会社 レーダ装置
CN105897324B (zh) * 2016-05-12 2018-09-21 西南交通大学 一种毫米波波束赋形与探测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1791806A (zh) * 2003-05-22 2006-06-21 罗伯特.博世有限公司 一种探测汽车周围目标的方法和装置
US7298247B2 (en) * 2004-04-02 2007-11-20 Denso Corporation Vehicle periphery monitoring system
CN101187706A (zh) * 2006-11-20 2008-05-28 罗伯特·博世有限公司 距离测量方法和距离测量装置
CN101598793A (zh) * 2008-06-05 2009-12-09 罗伯特·博世有限公司 用于确定物体相对机动车的距离和/或速度的方法及装置
CN104007441A (zh) * 2014-05-12 2014-08-27 格利尔数码科技股份有限公司 一种车载全景雷达监测方法及系统

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11512975B2 (en) 2017-02-23 2022-11-29 Elta Systems Ltd. Method of navigating an unmanned vehicle and system thereof
US11513526B2 (en) * 2018-08-30 2022-11-29 Elta Systems Ltd. Method of navigating a vehicle and system thereof
CN111316126B (zh) * 2018-12-28 2024-07-09 深圳市卓驭科技有限公司 目标探测方法、雷达、车辆以及计算机可读存储介质
CN111258320B (zh) * 2020-02-14 2023-06-06 广东博智林机器人有限公司 一种机器人避障的方法及装置、机器人、可读存储介质
CN111258320A (zh) * 2020-02-14 2020-06-09 广东博智林机器人有限公司 一种机器人避障的方法及装置、机器人、可读存储介质
CN111289979B (zh) * 2020-02-20 2022-07-01 北京小马慧行科技有限公司 车载雷达的控制方法及装置、运载工具
CN111289979A (zh) * 2020-02-20 2020-06-16 北京小马慧行科技有限公司 车载雷达的控制方法及装置、运载工具
CN112649013A (zh) * 2020-12-29 2021-04-13 天津天瞳威势电子科技有限公司 一种可通行区域的确定方法、装置及电子设备
CN112835045A (zh) * 2021-01-05 2021-05-25 北京三快在线科技有限公司 一种雷达探测方法、装置、存储介质及电子设备
WO2023005986A1 (zh) * 2021-07-30 2023-02-02 武汉万集光电技术有限公司 一种感知系统的感知方法、感知系统、设备及存储介质
CN114944078A (zh) * 2022-05-10 2022-08-26 阿波罗智联(北京)科技有限公司 信息处理方法、装置、设备、存储介质及计算机程序产品
CN114944078B (zh) * 2022-05-10 2024-01-16 阿波罗智联(北京)科技有限公司 信息处理方法、装置、设备、存储介质及计算机程序产品
CN117008122A (zh) * 2023-08-04 2023-11-07 江苏苏港智能装备产业创新中心有限公司 基于多雷达融合定位工程机械设备周围物体的方法和系统

Also Published As

Publication number Publication date
CN110476077A (zh) 2019-11-19
CN110476077B (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
WO2018176472A1 (zh) 车载雷达的扫描方法、装置和控制车辆的系统
US11027653B2 (en) Apparatus, system and method for preventing collision
TWI834771B (zh) 相機與雷達訊框之早期融合
TWI834772B (zh) 雷達深度學習
US10101446B2 (en) Object detection device and object detection method
TWI685672B (zh) 用於對象偵測的基於顯著性的波束成形
JP4115638B2 (ja) 物体認識装置
JP4850898B2 (ja) レーダ装置
KR20150017976A (ko) 차량용 레이더 및 그 운용 방법
JP4281632B2 (ja) 物標検出装置
CN112230193A (zh) 雷达数据处理设备和局部行程分辨力调整方法
CN111002979A (zh) 碰撞避让设备和碰撞避让方法
CN111699404B (zh) 行驶辅助目标获取方法与装置、雷达、行驶系统与车辆
KR101764570B1 (ko) 전파간섭 회피를 위한 레이더 장치 및 그를 위한 방법
US20190072659A1 (en) Artificial-Intelligence Controlled Adaptive Multi-Purpose Beam Forming Automobile Radar
KR20210082946A (ko) 레이더 신호 처리 장치 및 방법
EP3749977A1 (en) Method and apparatus for object detection using a beam steering radar and convolutional neural network system
JP7361804B2 (ja) 通信方法および通信装置
JP7111181B2 (ja) 検知装置、移動体システム、及び検知方法
Jasteh et al. Low-THz imaging radar for outdoor applications
CN113906308A (zh) 波束转向雷达中用于分辨率改进的保护带天线
US11709261B2 (en) Radar device for vehicle, controlling method of radar device and radar system for vehicle
WO2022183408A1 (zh) 车道线检测方法和车道线检测装置
WO2021024562A1 (ja) 物標検出装置
CN113960590A (zh) 雷视融合系统、终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17904307

Country of ref document: EP

Kind code of ref document: A1