WO2018174467A1 - 반투명 유기 태양전지 모듈 - Google Patents

반투명 유기 태양전지 모듈 Download PDF

Info

Publication number
WO2018174467A1
WO2018174467A1 PCT/KR2018/003051 KR2018003051W WO2018174467A1 WO 2018174467 A1 WO2018174467 A1 WO 2018174467A1 KR 2018003051 W KR2018003051 W KR 2018003051W WO 2018174467 A1 WO2018174467 A1 WO 2018174467A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
organic solar
poly
hole transport
semi
Prior art date
Application number
PCT/KR2018/003051
Other languages
English (en)
French (fr)
Inventor
이원희
구자람
문정열
갈진하
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Publication of WO2018174467A1 publication Critical patent/WO2018174467A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • H10K30/352Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles the inorganic nanostructures being nanotubes or nanowires, e.g. CdTe nanotubes in P3HT polymer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/85Layers having high electron mobility, e.g. electron-transporting layers or hole-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/86Layers having high hole mobility, e.g. hole-transporting layers or electron-blocking layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a semi-transparent organic solar cell module.
  • a solar cell is a photovoltaic cell manufactured for converting solar energy into electrical energy, and refers to a semiconductor device that converts light energy generated from the sun into electrical energy.
  • Such solar cells are expected to be an energy source that can solve future energy problems due to their low pollution, infinite resources and a semi-permanent lifetime.
  • Solar cells may be divided into inorganic solar cells and organic solar cells according to materials constituting the photoactive layer among the internal components.
  • Inorganic solar cells are made of inorganic materials, mainly monocrystalline silicon. These monocrystalline silicon-based solar cells are excellent in efficiency and stability and occupy most of the solar cells that are currently mass-produced, but are currently secured by raw materials, light weight, flexible, high efficiency and low price. There is a limit to the development of technology.
  • organic solar cells use organic materials such as small molecules (also expressed as single molecules) or organic semiconductor materials of polymers, they are much cheaper than inorganic materials used in inorganic solar cells, and various synthetic and It is possible to improve productivity because it can be processed.
  • the process proceeds to a solution-based process at a relatively lower temperature than other semiconductor technologies, the manufacturing process can be simplified, speeded up, and large area can be achieved.
  • researches on organic solar cells have been actively conducted because they have an advantage that they can be applied to various substrates such as low-cost glass or plastic that may be a problem during high temperature treatment.
  • FIG. 1 is a cross-sectional view illustrating a unit cell structure of a conventional organic solar cell.
  • the existing organic solar cell 50 has a lower electrode 11, 21, an electron transport layer 12, 22, a photoactive layer 13, 23, a hole transport layer 14, 24, and an upper electrode on a substrate 10. 15, 25) are stacked in this order.
  • the lower electrodes 11 and 21 are cathodes
  • the upper electrodes 15 and 25 are anodes.
  • Each unit cell is electrically connected, and the upper electrode 15 of the cell 1 is electrically connected to the lower electrode 21 of the cell 2.
  • the upper electrodes 15 and 25 of the organic solar cell 50 having the structure as shown in FIG. 1 use metal electrodes. That is, it manufactures by the method of drying after apply
  • the metal material such as silver is used as the upper electrodes 15 and 25, an organic solar cell 50 having a light transmittance of 0% is typically opaque.
  • Korean Patent Laid-Open Publication No. 2009-0111725 discloses a transparent organic thin film solar cell in which an organic thin film solar cell including a lower electrode, an electron transport layer, a photoactive layer, and an upper electrode can adjust light transmittance according to the thickness of the electrode. Doing.
  • Korean Patent Laid-Open Publication No. 2015-0036342 discloses a method of improving permeability of an organic solar cell by forming an upper electrode in a multi-layer structure and specifying the composition and thickness of each layer and varying deposition methods. It is starting.
  • the present inventors have conducted various studies to solve the above problems, and as a result, a highly conductive hole transport layer is formed on the photoactive layer to enable driving of the battery without installing an upper electrode such as a conventional Ag, and at the same time, The present invention was completed by ensuring that the transmittance was secured, and that the efficiency of the battery could be increased without increasing the resistance by replacing the conventional electrical connection between the unit cells consisting of the upper electrode with the auxiliary electrode.
  • an object of the present invention is to provide a translucent organic solar cell having a light transmittance of a predetermined level or more.
  • the present invention is a substrate;
  • the organic solar cell module having a plurality of unit cells formed on the substrate,
  • the unit cell includes a lower electrode, an electron transport layer, a photoactive layer, and a hole transport layer including a hole transport material and conductive nanowires,
  • a semi-transparent organic solar cell module having an auxiliary electrode in a region between unit cells for electrical connection between the unit cells.
  • the auxiliary electrode is electrically conductive oxide including ITO, SnO 2 , In 2 O 3 , ZnO and MgZnO; Electrically conductive nitrides including TiN, CrN, InGaN, GaN, InN, AlGaN and AlInGaN; At least one metal containing Au, Ag, Pt, Cu, Ni, Fe, Pd, Rh, Ir, Co, Sn, Zn and Mo is included.
  • the hole transport layer is characterized in that the conductive nanowires form a three-dimensional network structure in a matrix containing a hole transport material.
  • the semi-transparent organic solar cell according to the present invention can drive the battery without removing the upper electrode, and improves the performance and lifespan of the organic solar cell by improving the resistance between unit cells.
  • the organic solar cell can be easily applied to a roll-to-roll process, which enables the production of a large-area organic solar cell as well as a small organic solar cell.
  • FIG. 1 is a cross-sectional view showing a unit cell structure of a conventional translucent organic solar cell.
  • FIG. 2 is a cross-sectional view illustrating a unit cell structure of a semi-transparent organic solar cell according to one embodiment of the present invention.
  • each unit cell is disposed at a predetermined distance and separated.
  • the unit cell has a voltage characteristic of about 0.8V, and the unit cells are electrically connected to each other to control the number and arrangement of the unit cells to adjust the output voltage of the finally obtained organic solar cell.
  • the extension of the upper electrode is usually made through the extension of the upper electrode as shown in FIG.
  • another layer for example, a hole transport layer
  • the existing hole transport layer does not have a sufficient level of electrical conductivity for electrical connection. This greatly increases the series resistance between unit cells, resulting in a current loss of the organic solar cell. Therefore, the upper electrode should be made of an essential configuration, it is not easy to implement a semi-transparent organic solar cell due to the decrease in the light transmittance according to the use of the upper electrode.
  • the present invention implements a semi-transparent organic solar cell by securing a light transmittance (or transparency, transparency) of a predetermined level or more, but a semi-transparent structure of a new structure that can lower the series resistance between unit cells even if the upper electrode is excluded to secure the light transmittance.
  • a light transmittance or transparency, transparency
  • the translucent organic solar cell according to the present invention changes the composition of the hole transport layer so as not to use the upper electrode made of a metal material that reduces light transmittance, and introduces an auxiliary electrode for lowering series resistance due to electrical connection between unit cells.
  • FIG. 2 is a cross-sectional view illustrating a unit cell structure of a semi-transparent organic solar cell according to one embodiment of the present invention.
  • the lower electrodes 101 and 201 are positioned on the substrate 100, and the electron transport layers 102 and 202, the photoactive layers 103 and 203, and the hole transport layers 104 and 204 are sequentially disposed thereon. It is stacked to have a structure excluding the upper electrode.
  • Each of the unit cells Cell 1 and Cell 2 is formed at a predetermined distance apart from each other, and the unit cells are electrically connected through the auxiliary electrodes 301 and 302.
  • the auxiliary electrodes 301 and 302 may be any materials as long as the materials have high electrical conductivity.
  • electrically conductive oxides such as ITO, SnO 2 , In 2 O 3 , ZnO, MgZnO, and the like; Electrically conductive nitrides such as TiN, CrN, InGaN, GaN, InN, AlGaN, AlInGaN and the like; Metals such as Au, Ag, Pt, Cu, Ni, Fe, Pd, Rh, Ir, Co, Sn, Zn and Mo may be used.
  • the electrically conductive oxide and the electrically conductive nitride have the advantage of having a high light transmittance, and the metal has the advantage of having excellent electrical conductivity, and each of them can be used or used in combination.
  • a metal material is used to reduce the series resistance between the unit cells due to high electrical conductivity. Use silver.
  • the auxiliary electrodes 301 and 302 may include one side portion of the unit cell Cell 1 and include a portion of the lower electrode 201 of the unit cell Cell 2 adjacent thereto.
  • the auxiliary electrodes 301 and 302 may have a multilayer structure of two or more layers, and may be used in the form of an alloy or a mixture of two or more kinds.
  • the hole transport layers 104 and 204 having high conductivity so as to simultaneously serve as the upper electrode and the hole transport layer.
  • the hole transport layers 104 and 204 in accordance with the present invention comprise a hole transport material and conductive nanowires.
  • the lifespan of organic solar cells can be extended because problems caused by solvents and impurities in the pastes do not occur.
  • the conductive nanowires and the hole transporting material are dispersed in the solution, the coating method can be used as well as the roll-to-roll process.
  • the hole transport layers 104 and 204 of the present invention serve as a single layer at the same time as the conventional hole transport layer and the anode, it is possible to thin the translucent organic solar cell and to reduce the number of depositions in terms of processes.
  • hole transport layers 104 and 204 are connected to each other by forming a three-dimensional network structure of conductive nanowires in a matrix including a hole transport material, photoelectric conversion of a semi-transparent organic solar cell is facilitated as hole movement becomes smoother. The efficiency can be improved.
  • the hole transport material is used for the generation and delivery of holes, polymers; Organic compounds; At least one selected from the group consisting of minerals is possible.
  • the polymer for hole transport is poly (3,4-ethylenedioxythiophene) (PEDOT), poly (styrenesulfonate) (PSS), polyaniline, phthalocyanine, pentacene, polydiphenyl acetylene, poly (t- Butyl) diphenylacetylene, poly (trifluoromethyl) diphenylacetylene, copper phthalocyanine (Cu-PC) poly (bistrifluoromethyl) acetylene, polybis (t-butyldiphenyl) acetylene, poly (trimethylsilyl) Diphenylacetylene, poly (carbazole) diphenylacetylene, polydiacetylene, polyphenylacetylene, polypyridineacetylene, polymethoxyphenylacetylene, polymethylphenylacetylene, poly (t-butyl) phenylacetylene, polynitrophenylacetylene, poly (Trifluoromethyl
  • organic compounds for hole transport include NPB (4,4′-bis (N-phenyl-1-naphthylamino) biphenyl, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] bi Phenyl); TPD (N, N′-Bis (3-methylphenyl) -N, N′-diphenylbenzidine, N, N′-bis (3-methylphenyl) -N, N′-diphenylbenzidine), MTDATA (4,4 ′, 4 ′′ -Tris [phenyl (m-tolyl) amino] triphenylamine, 4,4 ′, 4 ′′ -tris [(3-methylphenyl) phenylamino] triphenylamine), TAPC (4,4′-Cyclohexylidenebis [N, N -bis (4-methylphenyl) benzenamine], 4,4′-cyclohexylidene bis [N, N, N
  • inorganic materials for hole transport include MoO 3 , MoO 2 , WO 3 , V 2 O 5 , ReO 3 , NiO, Mo (tfd) 3 , HAT-CN (Hexaazatriphenylenehexacarbonitrile, hexaazatriphenylene hexacarbonitrile) and F4 -TCNQ (7,7,8,8-Tetracyano-2,3,5,6-tetrafluoroquinodimethane, 7,7,8,8-tetracyano-2,3,5,6-tetrafluoroquinodimethane) At least one selected from the group consisting of is possible, and preferably MoO 3 is used.
  • the conductive nanowires may serve as anodes of organic solar cells and include one or more selected from the group consisting of metal-based nanowires and carbon-based nanowires.
  • the metal-based nanowires may be formed of at least one metal element selected from the group consisting of Au, Ag, Pt, Cu, Ni, Fe, Pd, Rh, Ir, Co, Sn, Zn, and Mo. May be made of silver (Ag).
  • Carbon-based nanowires that can be used in the present invention may include one or more selected from the group consisting of carbon nanotubes, carbon nanofibers and graphene, preferably carbon nanotubes.
  • a shape of a conductive nanowire there is no restriction
  • the average length of the major axes of the conductive nanowires is 1 ⁇ m or more, preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, for example, 1 to 1000 ⁇ m, specifically 5 to 100 ⁇ m. If the length of the conductive nanowire is less than 1 ⁇ m, there is a fear that the junction point is reduced between the nanowires and the resistance increases.
  • the uniaxial average length (diameter) of the conductive nanowires is 1 to 200 nm, preferably 5 to 100 nm, more preferably 10 to 50 nm. If the diameter of the said nanowire is too small, there exists a possibility that the heat resistance of a nanowire may fall. On the contrary, if the diameter is too large, haze due to scattering may be increased, and the light transmittance and visibility of the hole transport layers 104 and 204 containing conductive nanowires may be deteriorated.
  • the content of the conductive nanowires in the hole transport layers 104 and 204 is not particularly limited, it is not preferable that the content is too high for dispersibility and light transmittance. Therefore, the content of the conductive nanowires may be 0.1 to 10% by weight, preferably 1 to 10% by weight. If the content of the conductive nanowire is less than the above range, it may not function as an electrode. If the content of the conductive nanowire exceeds the above range, the dispersibility and light transmittance may be greatly reduced, and the content of the hole transport material (eg, PEDOT: PSS) may be relatively low. Since this also causes a problem that the photoelectric conversion efficiency is reduced, it is suitably used within the above range.
  • the hole transport material eg, PEDOT: PSS
  • the hole transport layers 104 and 204 may have a thickness of about 0.1 ⁇ m to about 5 ⁇ m.
  • the hole transporting layer forms a thickness of 0.1 to 10 ⁇ m and an anode of 5 to 20 ⁇ m.
  • the thicknesses of the hole transport layers 104 and 204 of the present invention are 0.1 to 5 ⁇ m, preferably 0.1 to 2 ⁇ m, thereby significantly reducing the thickness of the final translucent organic solar cell.
  • the other configuration of the module of the organic solar cell of the present invention shown in Figure 2 is not particularly limited, it is well known.
  • the substrate 100 can be used without particular limitation as long as it has transparency.
  • the substrate 100 may be a transparent inorganic substrate such as quartz or glass, or polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polystyrene (PS), polypropylene (PP), or poly 1 type of transparent selected from the group consisting of mead (PI), polyethylenesulfonate (PES), polyoxymethylene (POM), polyetheretherketone (PEEK), polyethersulfone (PES) and polyetherimide (PEI)
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • PS polystyrene
  • PP polypropylene
  • PI poly 1 type of transparent selected from the group consisting of mead (PI), polyethylenesulfonate (PES), polyoxymethylene (POM), polyetheretherketone (PEEK), polyethersulfone (PES) and polyetherimide (PEI)
  • PI mead
  • PES
  • the substrate 100 may have a light transmittance of at least 70% or more, preferably 80% or more at a visible light wavelength of about 400 to 750 nm.
  • the thickness of the substrate 100 is not particularly limited and may be appropriately determined depending on the intended use, but may be 1 to 500 ⁇ m.
  • the lower electrodes 101 and 201 are cathodes and are formed on the substrate 100 described above.
  • the lower electrodes 101 and 201 are paths through which the light passing through the substrate 100 reaches the photoactive layers 103 and 203, the lower electrodes 101 and 201 have a high light transmittance and a conductive material having a high work function of about 4.5 eV or more and a low resistance. It is preferable to use.
  • the lower electrodes 101 and 201 include indium tin oxide (ITO), indium zinc oxide (IZO), fluorine-doped tin oxide (FTO), and ZnO-Ga.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • FTO fluorine-doped tin oxide
  • ZnO-Ga ZnO-Ga.
  • a metal oxide transparent electrode selected from the group consisting of 2 O 3 , ZnO-Al 2 O 3 , SnO 2 -Sb 2 O 3, and a combination thereof;
  • Organic transparent electrodes such as conductive polymers, graphene thin films, graphene oxide thin films, and carbon nanotube thin films;
  • an organic-inorganic bonded transparent electrode such as a carbon nanotube thin film bonded to a metal may be used.
  • the lower electrodes 101 and 201 may have a thickness of about 10 nm to about 3000 nm.
  • the electron transport layers 102 and 202 are positioned on the lower electrodes 101 and 201 as described above, and serve to enhance the efficiency of the semi-transparent organic solar cell 500 by increasing the transport capacity of electrons. In addition, it is possible to block the oxygen and moisture introduced from the outside to prevent affecting the photoactive layer (104,204).
  • the electron transport layers 102 and 202 may be formed of a metal oxide and an organic material, and the metal oxide may be titanium (Ti), zinc (Zn), silicon (Si), manganese (Mn), strontium (Sr), indium (In), Barium (Ba), Potassium (K), Niobium (Nb), Iron (Fe), Tantalum (Ta), Tungsten (W), Bismuth (Bi), Nickel (Ni), Copper (Cu), Molybdenum (Mo) , Cerium (Ce), platinum (Pt), silver (Ag) and rhodium (Rh) may include an oxide of at least one metal selected from the group consisting of.
  • the metal oxide thin film layer may be formed of zinc oxide (ZnO) having a wide band gap and semiconductor properties
  • the organic material may be polyethyleneimine (PEI), ethoxylated polyethylenimine (PEIE), or the like.
  • the metal oxide included in the electron transport layers 102 and 202 may have an average particle diameter of 10 nm or less, specifically 1 to 8 nm, and more specifically 3 to 7 nm.
  • the electron transport layers 102 and 202 may be formed by coating, and the coating process may include slot die coating, spin coating, spray coating, screen printing, bar coating, doctor blade coating, gravure printing, and the like. Although it can be used, any method that can coat the metal oxide can be used without being limited thereto. In particular, it may be advantageous for the electron transport layers 102, 202 to use a slot die coating.
  • the thicknesses of the electron transporting layers 102 and 202 may be 1 to 100 nm, and the electron transporting ability may be degraded when the electron transporting layers 102 and 202 are out of the prescribed thickness range.
  • the photoactive layers 103 and 203 are positioned on the electron transport layers 102 and 202 described above, and have a bulk heterojunction structure in which a hole acceptor and an electron acceptor are mixed.
  • the hole acceptor includes an organic semiconductor such as an electrically conductive polymer or an organic low molecular semiconductor material.
  • the electrically conductive polymer may be at least one selected from the group consisting of polythiophene, polyphenylenevinylene, polyfluorene, polypyrrole, and copolymers thereof.
  • the organic low molecular weight semiconductor material includes at least one selected from the group consisting of pentacene, anthracene, tetratracene, perylene, oligothiophene, and derivatives thereof. can do.
  • the hole receptor is poly-3-hexylthiophene (P3HT), poly-3-octylthiophene (P3OT), polyparaphenylenevinylene (poly-p -phenylenevinylene; PPV), poly (9,9'-dioctylfluorene), poly (2-methoxy-5- (2-ethyl-hexyloxy) -1 , 4-phenylenevinylene) (poly (2-methoxy-5- (2-ethyl-hexyloxy) -1,4-phenylenevinylene; MEH-PPV) and poly (2-methyl-5- (3 ′, 7 ′ -Dimethyloctyloxy))-1,4-phenylenevinylene (poly (2-methyl-5- (3 ', 7'-dimethyloctyloxy))-1,4-phenylene vinylene; MDMOPPV) selected from the group consisting of It may include one or more.
  • P3HT poly
  • the electron acceptor may include one or more selected from the group consisting of fullerenes (fullerene, C60), C70, C76, C78, C80, C82, C84, fullerene derivatives, CdS, CdSe, CdTe and ZnSe.
  • the electron acceptor is (6,6) -phenyl-C61-butyric acid methyl ester ((6,6) -phenyl-C61-butyric acid methyl ester; PCBM), (6,6) -phenyl-C71- Butyric acid methyl ester ((6,6) -phenyl-C71-butyric acid methyl ester; C70-PCBM), (6,6) -thienyl-C61-butyric acid methyl ester ((6,6) -thienyl It may include one or more selected from the group consisting of -C61-butyric acid methyl ester (ThCBM) and carbon nanotubes.
  • ThiCBM -C61-butyric acid methyl ester
  • the photoactive layers 103 and 203 may more preferably include a mixture of P3HT as a hole acceptor and PCBM as an electron acceptor, and the mixing weight ratio of P3HT and PCBM may be 1: 0.1 to 1: 2.
  • the thickness of the photoactive layers 103 and 203 may be 10 to 1000 nm, specifically 100 to 500 nm. When the thickness of the photoactive layers 103 and 203 is less than the above range, sunlight cannot be absorbed sufficiently, and the photocurrent is lowered, so the efficiency is expected to be lowered. Degradation problems can occur.
  • the translucent organic solar cell 500 of the present invention may be provided between the lower electrodes 101 and 201 and the photoactive layers 103 and 203 (except for the electron transport layer), between the lower electrodes 101 and 201 and the electron transport layers 102 and 202, or A metal oxide thin film layer (not shown) is included between the electron transporting layers 102 and 202 and the photoactive layers 103 and 203.
  • the metal oxide thin film layer enables the operation of the organic solar cell 500 by increasing the movement speed of electrons as a negative electrode, and blocks oxygen and moisture that penetrates from the outside to prevent the polymer contained in the photoactive layers 103 and 203 from oxygen. By preventing deterioration due to moisture and can improve the life of the organic solar cell 500.
  • the metal oxide thin film layer may have a thickness of 10 to 500 nm, preferably 20 to 300 nm, more preferably 20 to 200 nm.
  • the thickness of the metal oxide thin film layer is within the above range, it is possible to effectively prevent oxygen and moisture from penetrating from outside and affecting the photoactive layer 40 and the hole transport layer 50 while improving the movement speed of electrons.
  • the metal oxide included in the metal oxide thin film layer may have an average particle diameter of 10 nm or less, preferably 1 to 8 nm, and more preferably 3 to 7 nm.
  • the metal oxide is Ti, Zn, Si, Mn, Sr, In, Ba, K, Nb, Fe, Ta, W, Sa, Bi, Ni, Cu, Mo, Ce, Pt, Ag, Rh and combinations thereof It may be an oxide of any one metal selected from the group consisting of, preferably ZnO.
  • the ZnO has a wide band gap and has a semiconductor property, and when used together with the lower electrodes 101 and 201, the movement of electrons may be further improved.
  • the translucent organic solar cell 500 according to the present invention as described above can be manufactured according to a known method.
  • the method of manufacturing the translucent organic solar cell 500 of the present invention includes the step of coating the coating solution with a coating solution while transferring the substrate 100 in a roll-to-roll manner to form a thin film layer.
  • the thin film layer may be at least one selected from the group consisting of electron transport layers 102 and 202, photoactive layers 103 and 203, and hole transport layers 104 and 204, and the coating solution may include the above-described composition for forming a thin film layer and a solvent.
  • the lower electrodes 101 and 201 are cathodes.
  • a substrate 100 is prepared, and cathodes are formed on the substrate 100 using lower electrodes 101 and 201.
  • the cathode may be formed on the prepared substrate 100 according to a conventional method. Specifically, the cathode may be formed on one surface of the substrate 100 by thermal vapor deposition, electron beam deposition, RF or magnetron sputtering, chemical vapor deposition or the like.
  • the coating solution is coated to form a thin film layer while transferring the substrate on which the lower electrodes 101 and 201 are formed in a roll-to-roll manner.
  • the thin film layers are electron transport layers 102 and 202, photoactive layers 103 and 203, and hole transport layers 104 and 204.
  • the coating solution includes a material and a solvent included in each thin film layer.
  • the coating solution may be a composition for forming the electron transport layers 102 and 202, a composition for forming the photoactive layers 103 and 203, and a composition for forming the hole transport layers 104 and 204.
  • the electron transport layers 102 and 202 may be formed on the lower electrodes 101 and 201 using the composition for forming the electron transport layers 102 and 202.
  • the composition for forming the electron transport layers 102 and 202 is prepared by dissolving the above-described metal oxide in a solvent and applying the same to form a coating film.
  • the solvent may be used without particular limitation as long as it can dissolve or disperse the metal oxide, and may be used, for example, water, 2-ethylhexanol, 2-butoxyhexanol, n-propyl alcohol, isopropyl alcohol, At least one selected from the group consisting of ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol and dipropylene glycol may be used.
  • the solvent may be included in the amount of the balance in the composition for forming the electron transport layer (102,202), specifically, may be included in 1 to 95% by weight based on the total weight of the composition for forming the electron transport layer (102,202).
  • the content of the solvent exceeds 95% by weight, it is difficult to obtain the desired coating layer function, and when the content of the solvent is less than 1% by weight, it is difficult to form a thin film having a uniform thickness.
  • the coating is performed by conventional coating methods such as slot die coating, spin coating, gravure coating, bar coating, Meyer bar coating, spraying, dip coating, comma coating, curtain coating, doctor blading and the like.
  • slot die coating or spin coating may be performed.
  • a post-treatment process of drying or heat treatment on the coated substrate 10 may be selectively performed.
  • the drying may be carried out by hot air drying, NIR drying, or UV drying for 1 to 30 minutes at 50 to 400 °C, specifically 70 to 200 °C.
  • the photoactive layers 103 and 203 may be formed on the electron transport layers 102 and 202 using the composition for forming the photoactive layers 103 and 203.
  • the composition for forming the photoactive layers 103 and 203 is prepared by dissolving the above-described hole acceptor and electron acceptor in a solvent and applying the same to form a coating film.
  • the solvent may be used without particular limitation as long as it can dissolve or disperse the electron acceptor and the hole acceptor.
  • the solvent is water; Alcohols such as ethanol, methanol, propanol, isopropyl alcohol, butanol; Or acetone, pentane, toluene, benzene, diethyl ether, methylbutyl ether, N-methylpyrrolidone, tetrahydrofuran, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, carbon tetrachloride, dichloromethane, dichloroethane, Organic solvents such as trichloroethylene, chloroform, chlorobenzene, dichlorobenzene, trichlorobenzene, cyclohexane, cyclopentanone, cyclohexanone, dioxane, terpineol, methyl ether ketone, or mixtures thereof, In preparing the composition for forming
  • the coating is performed by conventional coating methods such as slot die coating, spin coating, gravure coating, bar coating, Meyer bar coating, spraying, dip coating, comma coating, curtain coating, doctor blading and the like.
  • slot die coating or spin coating may be performed.
  • a post-treatment process of drying or heat-treating the coated substrate 100 may be selectively performed.
  • the drying may be carried out by hot air drying, NIR drying, or UV drying for 1 to 30 minutes at 50 to 400 °C, specifically 70 to 200 °C.
  • the photoactive layers 103 and 203 may be subjected to a post-treatment process of drying and heat-treating for 5 to 145 minutes at 25 to 150 ° C. after the coating process.
  • a post-treatment process of drying and heat-treating for 5 to 145 minutes at 25 to 150 ° C. after the coating process.
  • the heat treatment effect may be insignificant, when the heat treatment temperature exceeds 150 °C performance due to deterioration of the electron acceptor Can be degraded.
  • the heat treatment time is less than 5 minutes, the mobility of the electron acceptor and the hole acceptor is low, so the heat treatment effect may be insignificant, and when the heat treatment time exceeds 145 minutes, the performance may decrease due to deterioration of the electron acceptor. Can be.
  • the hole transport layers 104 and 204 are formed on the photoactive layers 103 and 203 using the composition for forming the hole transport layers 104 and 204.
  • the composition for forming the hole transport layers 104 and 204 is a paste including the above-described hole transport material and a solvent, and is patterned on the substrate 100 using a printing method.
  • the solvent included in the composition for forming the hole transport layers 104 and 204 is used to uniformly mix the hole transport material and to control the viscosity, and may be used without particular limitation as long as it is commonly used in the art to form a paste.
  • the solvent is water; Alcohol solvents such as methanol, ethanol, propanol, isopropanol, butanol and isobutanol; Ether solvents such as diethyl ether, dipropyl ether, dibutyl ether, butyl ethyl ether and tetrahydrofuran; Alcohol ether solvents such as ethylene glycol, propylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and ethylene glycol monobutyl ether; Ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; Amide solvents such as N-methyl-2-pyridyridone, 2-pyridyridone, N-methylformamide and N, N-dimethylformamide; Sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide; Sulfone
  • the composition for forming the hole transport layer (104,204) is preferably optimized to suit the printing process.
  • the composition for forming the hole transport layer (104,204) may have a viscosity of 300 to 10,000 cps range. If the viscosity of the composition for forming the hole transport layer (104,204) is less than the above range may cause a spread of the pattern, on the contrary, if it exceeds the above range, it is difficult to uniformly disperse the hole transport material and the printability may be deteriorated. have.
  • the printing method in the present invention may be applied to various printing processes commonly used.
  • the printing may be any one of inkjet printing, aerosol jet printing, EHD jet printing, gravure printing, gravure offset printing, imprinting, flexographic printing or screen printing, preferably screen printing.
  • NIR lamp Near Infra Red lamp
  • hot air and NIR lamp can be dried and fired simultaneously.
  • surface treatment using the surface treating agent as described above is performed on the hole transport layers 104 and 204.
  • This surface treatment is not an essential process and can be optionally performed.
  • auxiliary electrodes 301 and 302 are formed to include one side of the thin film layers together with the upper one side of the hole transport layer 104 and to include a portion of the lower electrode of the neighboring unit cell.
  • the auxiliary electrodes 301 and 302 may be formed by screen printing, gravure printing, gravure offset printing, thermal vapor deposition, electron beam deposition, RF or magnetron sputtering, chemical deposition, and the like, instead of coating.
  • the lamination of each layer on the substrate 100 may be performed in a roll-to-roll manner.
  • the speed of transferring the substrate 100 in a roll-to-roll manner may be 0.01 m / min to 20 m / min, preferably 0.1 m / min to 5 m / min.
  • the transfer speed can be used to optimize the coating and drying speed of the individual layer using the roll-to-roll equipment.
  • the process using the roll-to-roll equipment is easy to mass-produce a semi-transparent organic solar cell, and can be easily applied to a large-area substrate with the advantage that a continuous process can be performed.
  • Solar cells can be manufactured.
  • the semi-transparent organic solar cell manufactured through the above step may implement an organic solar cell having a translucent state by having a light transmittance of 40% or more as the light transmittance increases as the upper electrode is excluded.
  • Such translucent organic solar cells can be applied to various fields such as building exterior materials, for example, exterior walls, roofs, windows, as well as clothing, wrapping paper, wallpaper, and automotive glass.
  • ZnO-containing coating liquid Zn (OAC) 2 2H 2 O, 126 mg, and 1-butanol
  • Zn (OAC) 2 2H 2 O, 126 mg, and 1-butanol ZnO-containing coating liquid
  • the line speed was 12 mm / sec
  • the slot die height was 1300 ⁇ m
  • the coating liquid flow rate was 0.4 ml / min.
  • the ZnO coating solution for the optically active layer formed on the metal oxide thin film layer (lisicon ® SP001 (Merck Ltd.) 15 mg, lisicon ® A- 600 ( Merck Ltd.), a mixture of 12 mg and 1,2-dichlorobenzene (Dichlorobenzene) 1 ml Prepared) and slot die coated and dried at 120 °C to prepare a photoactive layer.
  • the line speed was 12 mm / sec
  • the slot die height was 1500 ⁇ m
  • the coating liquid flow rate was 1.2 ml / min.
  • the optically active layer on a PEDOT: PSS (Orgacon ® EL- P 5010, agfa , Inc.) and about 30 nm diameter and an aspect ratio of 1000: 1 is a nanowire 9:
  • the hole transport layer-forming composition containing a weight ratio of 1 slot When die coating, the line speed was 5 mm / sec, the slot die height was 800 ⁇ m, the coating liquid flow rate was 3.0 ml / min, and the slot die coating was dried at 120 ° C. (thickness 700 nm).
  • a semi-transparent organic solar cell was manufactured in the same manner as in Example 1, except that the ITO layer was formed as the auxiliary electrode.
  • ZnO-containing coating liquid Zn (OAC) 2 2H 2 O, 126 mg, and 1-butanol
  • Zn (OAC) 2 2H 2 O, 126 mg, and 1-butanol ZnO-containing coating liquid
  • the line speed was 12 mm / sec
  • the slot die height was 1300 ⁇ m
  • the coating liquid flow rate was 0.4 ml / min.
  • the ZnO coating solution for the optically active layer formed on the metal oxide thin film layer (lisicon ® SP001 (Merck Ltd.) 15 mg, lisicon ® A- 600 ( Merck Ltd.), a mixture of 12 mg and 1,2-dichlorobenzene (Dichlorobenzene) 1 ml Prepared) and slot die coated and dried at 120 °C to prepare a photoactive layer.
  • the line speed was 12 mm / sec
  • the slot die height was 1500 ⁇ m
  • the coating liquid flow rate was 1.2 ml / min.
  • the optically active layer on a PEDOT the PSS (Orgacon ® EL P-5010, agfa, Inc.) for the hole transport layer-forming composition and slot-die coating, and dried at 120 °C hole transport layer (thickness: 700 nm) containing the form.
  • the line speed was 5 mm / sec
  • the slot die height was 800 ⁇ m
  • the coating liquid flow rate was 3.0 ml / min.
  • an Ag electrode (thickness 10 ⁇ m) was printed on the hole transport layer using a screen printer to fabricate an organic solar cell.
  • the current-voltage characteristics of the organic solar cell were measured using a solar simulator (Newport 66984).
  • the solar head was used a 300W xenon lamp (Newport 6258) and AM1.5G filter (Newport 81088A), the light intensity was set to 100 mW / cm2.
  • the series resistance was measured using a 2-probe measuring method, and the light transmittance was determined for the visible light transmittance having a wavelength of 380 to 780 nm in accordance with Japanese Industrial Standards (JIS R 3106).
  • the organic solar cells of Examples 1 and 2 in which the auxiliary electrode is used according to the present invention can be used as a semi-transparent organic solar cell compared to Comparative Example 1 as the light transmittance is 100%.
  • the organic solar cells of Examples 1 and 2 showed equivalent results or more than the cells of Comparative Example 1 without using the upper electrode.
  • the semi-transparent organic solar cell according to the present invention exhibits excellent light transmittance, lifetime and performance, and enables the mass production of semi-transparent organic solar cells by simplifying the manufacturing process, and building exterior materials, for example, exterior walls, roofs, windows, as well as fashion outdoor goods. It can be applied to various fields such as wrapping paper, wallpaper, automobile glass, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 종래 광투과도의 저하를 야기하던 상부 전극, 즉 금속 전극을 배제하더라도 유기 태양전지의 성능을 가지며, 높은 광투과도를 갖는 반투명 유기 태양전지에 관한 것이다.

Description

반투명 유기 태양전지 모듈
본 출원은 2017년 3월 20일자 한국 특허 출원 제10-2017-0034650호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.
본 발명은 반투명 유기 태양전지 모듈에 관한 것이다.
일반적으로 태양전지는 태양 에너지를 전기 에너지로 변환할 목적으로 제작된 광전지로, 태양으로부터 생성된 빛 에너지를 전기 에너지로 바꾸는 반도체 소자를 의미한다. 이러한 태양전지는 공해가 적고 자원이 무한적이며 반영구적인 수명을 가지고 있어 미래 에너지 문제를 해결할 수 있는 에너지원으로 기대되고 있다.
최근에 태양전지에 관한 기술은 발전 단가를 낮추는 저가형 태양전지에 대한 연구와 변환 효율을 높이는 고효율 태양전지에 대한 연구가 동시에 진행되고 있다.
태양전지는 내부 구성 물질 중 광활성층을 구성하는 물질에 따라 무기 태양전지와 유기 태양전지로 나뉠 수 있다.
무기 태양전지는 무기물, 주로 단결정 실리콘이 사용되는데, 이러한 단결정 실리콘계 태양전지는 효율 및 안정성 면에서 우수하고 현재 양산이 이루어지고 있는 태양전지의 대부분을 차지하고 있지만 현재 원자재 확보, 경량화, 유연화, 고효율화 및 저가격화 기술의 개발에 한계를 나타내고 있다.
한편, 유기 태양전지는 저분자(small molecule; 단분자로도 표현)나 고분자(polymer)의 유기 반도체 재료와 같은 유기물을 이용하기 때문에 무기 태양전지에 사용된 무기물에 비해 가격이 월등히 저렴하고 다양한 합성과 가공이 가능하여 생산성 향상이 용이하다. 또한, 여타 반도체 기술에 비해 상대적으로 낮은 온도에서 용액 기반의 공정으로 진행되기 때문에 제조과정의 단순화, 고속화 및 대면적화가 가능하다. 특히, 고온처리시 문제가 될 수 있는 저가형 유리 또는 플라스틱 등 다양한 기판에 적용될 수 있는 이점을 가져 유기 태양전지에 대해 연구가 활발히 진행되고 있다.
도 1은 종래 유기 태양전지의 단위 셀 구조를 나타낸 단면도이다.
기존 유기 태양전지(50)는 기판(10)상에, 하부 전극(11,21), 전자 수송층(12,22), 광활성층(13,23), 정공 수송층(14,24) 및 상부 전극(15,25)이 순차적으로 적층된 구조를 갖는다. 일반적으로, 상기 하부 전극(11,21)은 음극이고, 상부 전극(15,25)은 양극이다.
각각의 단위 셀은 전기적으로 연결되되, 셀 1의 상부 전극(15)이 셀 2의 하부 전극(21)과 통전되는 구조를 갖는다.
도 1과 같은 구조의 유기 태양전지(50)의 상부 전극(15,25)은 금속 전극을 사용한다. 즉, 은(Ag) 페이스트를 이용하여 도포 후 건조하는 방식으로 제조한다. 상기 은과 같은 금속 재질을 상부 전극(15,25)으로 이용할 경우 광투과도가 통상 0%로서 불투명한 유기 태양전지(50)가 제작된다.
최근 건물 일체형 태양광 발전(Building integrated photovoltaic; BIPV) 시스템에 대한 관심이 높아지면서, 건물의 외벽뿐 아니라 창문을 유기 태양전지로 이용하기 위한 연구가 진행되고 있다. 유기 태양전지를 건물의 외관 또는 창문으로 이용하기 위해서는 빛을 일부 투과시켜야 하기 때문에 일정 수준 이상의 광투과도를 갖는 반투명 유기 태양전지가 사용되고 있다.
그러나 상기 금속 재질을 상부 전극(15,25)으로 이용할 경우 광투과도를 전혀 확보할 수 없다.
이에 유기 태양전지의 투명성을 개선하기 위한 다양한 방법들이 연구되고 있다.
일례로, 대한민국 공개특허 제2009-0111725호는 하부 전극, 전자 수송층, 광활성층 및 상부 전극을 포함하는 유기 박막 태양전지에 있어서, 전극의 두께에 따라 광투과도를 조절 가능한 투명 유기 박막 태양전지를 개시하고 있다.
또한, 대한민국 공개특허 제2015-0036342호는 상부 전극이 다중층(multi-layer) 구조로 이루어지며 각각의 층의 조성과 두께를 특정하고 증착 방법을 달리함으로써 유기 태양전지의 투과성을 향상시키는 방법을 개시하고 있다.
이들 특허들은 유기 태양전지의 투명성을 어느 정도 개선하였으나 그 효과가 충분치 않고 공정의 변경 또는 추가로 인해 많은 시간과 비용이 요구된다.
따라서, 간단한 공정을 통해 우수한 성능을 가지는 반투명 유기 태양전지의 개발이 더욱 필요한 실정이다.
[선행기술문헌]
[특허문헌]
대한민국 공개특허 제2009-0111725호(2009.10.27), 투명 유기 박막 태양전지
대한민국 공개특허 제2015-0036342호(2015.04.07), 광전자 소자용 투명 전극
이에 본 발명자들은 상기한 문제점을 해결하고자 다각적으로 연구를 수행한 결과, 광활성층 상에 고전도성의 정공 수송층을 형성하여 종래 Ag와 같은 상부 전극을 설치하지 않고도 전지 구동을 가능케 함과 동시에 전지의 광투과도를 확보하고, 종래 상부 전극으로 이루어진 단위 셀 간의 전기적 연결을 보조 전극으로 대체하여 저항의 상승 없이도 전지의 효율을 높일 수 있음을 확인하여 본 발명을 완성하였다.
이에 본 발명의 목적은 일정 수준 이상의 광투과도를 갖는 반투명 유기 태양전지를 제공하는데 있다.
상기 목적을 달성하기 위해, 본 발명은 기판; 및 상기 기판 상에 형성된 복수 개의 단위 셀을 구비한 유기 태양전지 모듈에 있어서,
상기 단위 셀은 하부 전극, 전자 수송층, 광활성층 및 정공 수송 물질과 전도성 나노와이어를 포함하는 정공 수송층을 포함하고,
상기 단위 셀 간 전기적 연결을 위해 단위 셀 사이 영역에 보조 전극을 구비한 반투명 유기 태양전지 모듈을 제공한다.
이때 상기 보조 전극은 ITO, SnO2, In2O3, ZnO 및 MgZnO를 포함하는 전기 전도성 산화물; TiN, CrN, InGaN, GaN, InN, AlGaN 및 AlInGaN를 포함하는 전기 전도성 질화물; Au, Ag, Pt, Cu, Ni, Fe, Pd, Rh, Ir, Co, Sn, Zn 및 Mo를 포함하는 금속을 1종 이상 포함한다.
또한, 상기 정공 수송층은 정공 수송 물질을 포함하는 매트릭스 내에 전도성 나노와이어가 3차원 네트워크 구조를 형성하는 것을 특징으로 한다.
본 발명에 따른 반투명 유기 태양전지는 상부 전극을 배제하고도 전지 구동이 가능하고, 단위 셀 간 저항을 개선하여 유기 태양전지의 성능과 수명을 향상시킨다.
또한, 상기 유기 태양전지는 롤투롤 공정으로의 적용이 용이하며 이는 소형의 유기 태양전지뿐만 아니라 대면적의 유기 태양전지의 생산을 가능케 한다.
도 1은 종래 반투명 유기 태양전지의 단위 셀 구조를 나타낸 단면도이다.
도 2는 본 발명의 일 구현예에 따른 반투명 유기 태양전지의 단위 셀 구조를 나타낸 단면도이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 구현예에 대하여 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예에 한정되지 않는다. 또한, 도면에서 동일한 참조번호는 동일한 구성 요소를 지칭하며, 각 구성 요소의 크기나 두께는 설명의 편의를 위해 과장되어 있을 수 있다.
본 명세서에서 어떤 부재가 다른 부재 “상에” 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에서 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기판이 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
종래 유기 태양전지는 상부 전극으로 금속 페이스트를 이용하여 형성하고 있으며, 상기 금속 페이스트로 제조된 금속 전극으로 인해 유기 태양전지의 광투과도(즉, 광투과도 또는 가시광선 투과율)를 저하시킨다. 이에 상부의 금속 전극을 제외한 구성이 제안되었다. 그러나 통상 상부 전극이 단위 셀 간 전기적 연결 기능을 동시에 수행하고 있어, 상기 상부 전극의 배제로 인해 전기적 연결의 구현이 불가능하였다. 이에 유기 태양전지의 최상층의 구성인 정공 수송층을 이용하여 단위 셀 간 전기적 연결을 시도하였으나, 단위 셀 간 직렬 저항(series resistance)이 크게 걸려 유기 태양전지의 전류 손실이 발생하였다.
구체적으로 설명하면, 슬롯 다이 공정을 이용하여 유기 태양전지를 제작할 경우 각 단위 셀은 일정 거리의 간격으로 배치되어 분리가 이루어진다. 이때 단위 셀은 약 0.8V의 전압 특성을 가지며, 상기 단위 셀끼리 전기적으로 연결하여 이들의 개수 및 배치를 조절하여 최종 얻어지는 유기 태양전지의 출력 전압을 조절한다.
단위 셀의 전기적 연결은 도 1에 나타낸 바와 같이 통상 상부 전극의 연장을 통해 이루어진다. 이때 상기 상부 전극을 제외한 구조인 경우 다른 층(예, 정공 수송층)이 그 역할을 수행하여야 하는데, 기존 정공 수송층의 경우 전기적 연결을 위해 충분한 수준의 전기 전도도를 갖지 못한다. 이로 인해 단위 셀 간 직렬 저항이 크게 증가하고, 결과적으로 유기 태양전지의 전류 손실이 발생하게 된다. 따라서, 상부 전극이 필수적인 구성으로 이루어져야 하는데, 상기 상부 전극의 사용에 따른 광투과도 저하로 인해 반투명 유기 태양전지의 구현이 용이하지 않다.
이에 본 발명에서는 일정 수준 이상의 광투과도(또는 투명도, 투명성)를 확보하여 반투명 유기 태양전지를 구현하되, 상기 광투과도 확보를 위해 상부 전극을 제외하더라도 단위 셀 간 직렬 저항을 낮출 수 있는 새로운 구조의 반투명 유기 태양전지를 제시한다.
구체적으로, 본 발명에 따른 반투명 유기 태양전지는 광투과도를 저하시키는 금속 재질의 상부 전극을 사용하지 않도록 정공 수송층의 조성을 변화시키고, 단위 셀 간 전기적 연결로 인한 직렬 저항을 낮추기 위한 보조 전극을 도입한 구조를 갖는다.
도 2는 본 발명의 일 구현예에 따른 반투명 유기 태양전지의 단위 셀 구조를 나타낸 단면도이다.
도 2를 참조하면, 반투명 유기 태양전지의 단위 셀은 기판(100) 상에 하부 전극(101,201)이 위치하고, 그 상부로 전자 수송층(102,202), 광활성층(103,203) 및 정공 수송층(104,204)이 순차적으로 적층되며, 상부 전극을 배제한 구조를 갖는다.
각각의 단위 셀(Cell 1, Cell 2)은 소정 거리 이격하여 형성되고, 이때 상기 단위 셀은 보조 전극(301,302)을 통해 전기적 연결이 이루어진다.
보조 전극(301,302)은 전기 전도성이 높은 재질이면 그 어떤 재질이라도 가능하다.
일례로, ITO, SnO2, In2O3, ZnO, 또는 MgZnO 등과 같은 전기 전도성 산화물; TiN, CrN, InGaN, GaN, InN, AlGaN, 또는 AlInGaN 등과 같은 전기 전도성 질화물; Au, Ag, Pt, Cu, Ni, Fe, Pd, Rh, Ir, Co, Sn, Zn 및 Mo등과 같은 금속이 사용될 수 있다. 상기 전기 전도성 산화물 및 전기 전도성 질화물은 높은 광투과도를 갖는다는 이점이 있으며, 금속은 전기 전도도가 우수하다는 이점이 있어, 이들 각각을 사용하거나 조합하여 사용이 가능하다.
바람직하기로, 전기전도도가 낮을 경우 단위 셀 간 저항이 증가하여 반투명 유기 태양전지 모듈의 효율이 낮아질 수 있으므로 전기 전도도가 높아 단위 셀 간 직렬 저항을 낮출 수 있도록 금속 재질을 사용하고, 가장 바람직하기로는 은을 사용한다.
이러한 보조 전극(301,302)은 단위 셀(Cell 1)의 일측 측면부를 포함하되, 이와 이웃한 단위 셀(Cell 2)의 하부 전극(201)의 일부를 포함하도록 형성한다.
필요한 경우 보조 전극(301,302)은 2층 이상의 다층 구조를 가질 수 있으며, 2종 이상을 혼합하는 합금 또는 혼합물 형태로도 사용이 가능하다.
더불어, 본 발명은 상부 전극을 배제한 구조를 확보하기 위해, 상부 전극과 정공 수송층의 역할을 동시에 할 수 있도록 고전도성을 갖는 정공 수송층(104,204)을 형성하는 것이 바람직하다.
구체적으로, 본 발명에 따른 정공 수송층(104,204)은 정공 수송 물질과 전도성 나노와이어를 포함한다.
기존의 양극 형성을 위한 금속 페이스트 대신 전도성 나노와이어를 사용하기 때문에 페이스트가 함유하는 용매 및 불순물로 인한 문제가 발생하지 않아 유기 태양전지의 수명을 늘릴 수 있다. 또한, 전도성 나노와이어와 정공 수송 물질이 용액 상에 분산되어 있기 때문에 코팅법을 이용할 수 있을 뿐 아니라 롤투롤 공정에 적용이 가능하다.
본 발명의 정공 수송층(104,204)은 단일층으로 기존의 정공 수송층과 양극의 역할을 동시에 수행하기 때문에 반투명 유기 태양전지의 박막화가 가능하며 공정 측면에서도 적층 횟수를 줄일 수 있다는 이점을 가진다.
이에 더해서, 상기 정공 수송층(104,204)은 정공 수송 물질을 포함하는 매트릭스 내에 전도성 나노와이어가 3차원 네트워크 구조를 형성하여 서로가 연결되기 때문에 정공의 이동이 보다 원활해짐에 따라 반투명 유기 태양전지의 광전변환 효율을 향상시킬 수 있다.
상기 정공 수송 물질은 정공의 생성 및 전달을 위해 사용되며, 고분자; 유기 화합물; 무기물로 이루어진 군에서 선택된 1종 이상이 가능하다.
구체적으로, 정공 수송을 위한 고분자는 폴리(3,4-에틸렌디옥시티오펜)(PEDOT), 폴리(스티렌설포네이트)(PSS), 폴리아닐린, 프탈로시아닌, 펜타센, 폴리디페닐 아세틸렌, 폴리(t-부틸)디페닐아세틸렌, 폴리(트리플루오로메틸)디페닐아세틸렌, 구리 프탈로시아닌(Cu-PC) 폴리(비스트리플루오로메틸)아세틸렌, 폴리비스(t-부틸디페닐)아세틸렌, 폴리(트리메틸실릴) 디페닐아세틸렌, 폴리(카르바졸)디페닐아세틸렌, 폴리디아세틸렌, 폴리페닐아세틸렌, 폴리피리딘아세틸렌, 폴리메톡시페닐아세틸렌, 폴리메틸페닐아세틸렌, 폴리(t-부틸)페닐아세틸렌, 폴리니트로페닐아세틸렌, 폴리(트리플루오로메틸)페닐아세틸렌, 폴리(트리메틸실릴)페닐아세틸렌, 이들의 유도체 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나의 정공전달물질을 포함할 수 있으며, 바람직하게는 상기 PEDOT와 PSS의 혼합물을 포함할 수 있다.
또한, 정공 수송을 위한 유기 화합물은 NPB(4,4′-bis(N-phenyl-1-naphthylamino)biphenyl, 4,4′-비스[N-(1-나프틸)-N-페닐아미노]바이페닐); TPD(N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine, N,N′-비스(3-메틸페닐)-N,N′-디페닐벤지딘), MTDATA(4,4′,4″-Tris[phenyl(m-tolyl)amino]triphenylamine, 4,4′,4″-트리스[(3-메틸페닐)페닐아미노]트라이페닐아민), TAPC(4,4′-Cyclohexylidenebis[N,N-bis(4-methylphenyl)benzenamine], 4,4′-사이클로헥실리덴 비스[N,N-비스(4-메틸페닐)벤젠아밀]), TCTA(Tris(4-carbazoyl-9-ylphenyl)amine, 트리스(4-카바조일-9-일페닐)아민), CBP(4,4′-Bis(N-carbazolyl)-1,1′-biphenyl, 4,4′-비스(N-카바졸릴)-1,1′-바이페닐), Alq3, mCP(9,9′-(1,3-Phenylene)bis-9H-carbazol, 9,9′-(1,3-페닐렌)비스-9H-카바졸) 및 2-TNATA(4,4′,4″-Tris[2-naphthyl(phenyl)amino]triphenylamine, 4,4′,4″-트리스(N-(2-나프틸)-N-페닐아미노)트리페닐아민) 중 적어도 1종을 사용할 수 있다.
또한, 정공 수송을 위한 무기물은 MoO3, MoO2, WO3, V2O5, ReO3, NiO, Mo(tfd)3, HAT-CN(Hexaazatriphenylenehexacarbonitrile, 헥사아자트리페닐렌 헥사카르보니트릴) 및 F4-TCNQ(7,7,8,8-Tetracyano-2,3,5,6-tetrafluoroquinodimethane, 7,7,8,8-테트라시아노-2,3,5,6-테트라플루오로퀴노디메탄)로 이루어진 군에서 선택된 1종 이상이 가능하고, 바람직하기로 MoO3를 사용한다.
상기 전도성 나노와이어는 유기 태양전지의 양극 역할을 하며 금속계 나노와이어 및 탄소계 나노와이어로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
본 발명에 사용될 수 있는 금속계 나노와이어로는, 통상의 금속계 나노와이어를 특별한 제한없이 사용할 수 있다. 일례로 상기 금속계 나노와이어는 Au, Ag, Pt, Cu, Ni, Fe, Pd, Rh, Ir, Co, Sn, Zn 및 Mo로 이루어진 군에서 선택되는 1종 이상의 금속 원소로 이루어질 수 있고, 바람직하게는 은(Ag)으로 이루어질 수 있다.
본 발명에 사용될 수 있는 탄소계 나노와이어로는 탄소나노튜브, 탄소 나노섬유 및 그래핀으로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있으며 바람직하게는 탄소나노튜브일 수 있다.
전도성 나노와이어의 형상으로는, 특별히 제한은 없고, 목적에 따라 적절히 선택할 수 있으며, 예를 들어, 원주 형상, 직육면체 형상, 단면이 다각형인 기둥 형상 등의 임의의 형상을 가질 수 있다.
또한, 전도성 나노와이어의 장축 평균 길이는, 1 ㎛ 이상, 바람직하게는 5 ㎛ 이상, 더욱 바람직하게는 10 ㎛ 이상, 예를 들면, 1 내지 1000 ㎛, 구체적으로는 5 내지 100 ㎛이다. 상기 전도성 나노와이어의 길이가, 1 ㎛ 미만이면, 나노와이어 사이에 접합점이 감소되어 저항이 증가할 우려가 있다. 또한, 상기 전도성 나노와이어의 단축 평균 길이(직경)은 1 내지 200 nm, 바람직하게는 5 내지 100 nm, 더욱 바람직하게는 10 내지 50 nm이다. 상기 나노와이어의 직경이 너무 작으면, 나노와이어의 내열성이 저하될 우려가 있다. 이와 반대로, 상기 직경이 너무 크면 산란에 의한 헤이즈가 증가되어, 전도성 나노와이어를 함유하는 정공 수송층(104,204)의 광선 투과성 및 시인성이 저하될 우려가 있다.
상기 정공 수송층(104,204) 내 전도성 나노와이어의 함량은 특별히 한정하지는 않으나 분산성 및 광투과도을 위해 너무 높은 함량으로 포함되는 것은 바람직하지 않다. 따라서, 상기 전도성 나노와이어의 함량은 0.1 내지 10 중량%, 바람직하게는 1 내지 10 중량%일 수 있다. 만약, 전도성 나노와이어의 함량이 상기 범위 미만이면 전극으로서의 기능을 수행할 수 없고, 상기 범위를 초과하면 분산성과 광투과도이 크게 저하될 뿐만아니라 상대적으로 정공 수송 물질(예, PEDOT:PSS)의 함량이 줄어들어 이 또한 광전변환효율이 감소하는 문제가 발생하므로, 상기 범위 내에서 적절히 사용한다.
상기 정공 수송층(104,204)의 두께는 0.1 내지 5 ㎛일 수 있다. 종래 유기 태양전지의 경우 정공 수송층은 0.1 내지 10 ㎛, 양극을 5 내지 20 ㎛의 두께로 형성한다. 이와 비교하여 본 발명의 정공 수송층(104,204)의 두께는 0.1 내지 5 ㎛, 바람직하게는 0.1 내지 2 ㎛이기 때문에 최종 반투명 유기 태양전지의 두께를 현저히 감소시킬 수 있다.
한편, 도 2에서 제시하는 본 발명의 유기 태양전지의 모듈의 다른 구성은 특별히 한정하지 않으며, 공지된 바를 따른다.
기판(100)은 투명성을 갖는 것이라면 특별히 한정되지 않고 사용할 수 있다.
일례로 상기 기판(100)은 석영 또는 유리와 같은 투명 무기 기판이거나, 폴리에틸렌테레프탈레이트(PET), 폴리에틸렌나프탈레이트(PEN), 폴리카보네이트(PC), 폴리스티렌(PS), 폴리프로필렌(PP), 폴리이미드(PI), 폴리에틸렌설포네이트(PES), 폴리옥시메틸렌(POM), 폴리에테르에테르케톤(PEEK), 폴리에테르설폰(PES) 및 폴리에테르이미드(PEI)로 이루어진 군에서 선택되는 1종의 투명 플라스틱 기판을 사용할 수 있다. 이중에서 유연하면서도 높은 화학적 안정성, 기계적 강도 및 광투과도를 가지는 필름 형태의 투명 플라스틱 기판을 사용하는 것이 바람직하다.
또한, 상기 기판(100)은 약 400 내지 750 ㎚의 가시광 파장에서 적어도 70% 이상, 바람직하게는 80% 이상의 광투과도를 갖는 것이 좋다.
상기 기판(100)의 두께는 특별히 한정되지 않으며 사용 용도에 따라 적절히 결정될 수 있는데 일례로 1 내지 500 ㎛일 수 있다.
하부 전극(101,201)은 음극으로, 전술한 기판(100) 상에 형성된다.
상기 하부 전극(101,201)은 기판(100)을 통과한 빛이 광활성층(103,203)에 도달할 수 있도록 하는 경로가 되므로 높은 광투과도를 가지고 약 4.5 eV 이상의 높은 일함수와 낮은 저항을 갖는 전도성 물질을 사용하는 것이 바람직하다.
일례로, 상기 하부 전극(101,201)으로는 인듐 주석 산화물(Indium tin oxide; ITO), 인듐 아연 산화물(Indium zinc oxide; IZO), 불소도핑 산화주석(fluorine-doped tin oxide; FTO), ZnO-Ga2O3, ZnO-Al2O3, SnO2-Sb2O3 및 이들의 조합으로 이루어진 군에서 선택되는 금속산화물 투명 전극; 전도성 고분자, 그래핀 박막, 그래핀 산화물 박막, 탄소나노튜브 박막과 같은 유기 투명전극; 또는 금속이 결합된 탄소나노튜브 박막과 같은 유-무기 결합 투명전극 등을 사용할 수 있다.
상기 하부 전극(101,201)의 두께는 10 내지 3000 ㎚일 수 있다.
전자 수송층(102,202)은 전술한 하부 전극(101,201) 상에 위치하며, 전자의 수송 능력을 높여 반투명 유기 태양전지(500)의 효율을 높이는 역할을 한다. 또한, 외부로부터 유입된 산소와 수분을 차단하여 광활성층(104,204)에 영향을 주는 것을 방지할 수 있다.
전자 수송층(102,202)은 금속산화물과 유기물로 형성될 수 있으며, 상기 금속산화물은 티타늄(Ti), 아연(Zn), 규소(Si), 망간(Mn), 스트론튬(Sr), 인듐(In), 바륨(Ba), 칼륨(K), 니오븀(Nb), 철(Fe), 탄탈럼(Ta), 텅스텐(W), 비스무트(Bi), 니켈(Ni), 구리(Cu), 몰리브덴(Mo), 세륨(Ce), 백금(Pt), 은(Ag) 및 로듐(Rh)으로 이루어진 군에서 선택되는 1종 이상의 금속의 산화물을 포함할 수 있다. 구체적으로, 상기 금속산화물 박막층은 밴드갭이 넓고 반도체적 성질을 가지고 있는 산화아연(ZnO)으로 이루어질 수 있으며, 유기물은 PEI(polyethyleneimine), PEIE(ethoxylatedpolyethylenimine)등일 수 있다.
또한, 전자 수송층(102,202)에 포함되는 금속산화물은 평균 입경이 10 nm 이하이고, 구체적으로 1 내지 8 nm이고, 더욱 구체적으로 3 내지 7 nm일 수 있다.
전자 수송층(102,202)은 코팅을 통해 형성될 수 있으며, 코팅 과정은 슬롯다이 코팅, 스핀 코팅법, 스프레이 코팅법, 스크린 인쇄법, 바(bar) 코팅법, 닥터블레이드 코팅법, 그라비아 프린팅법 등을 사용할 수 있으나, 금속 산화물을 코팅할 수 있는 방법이면 이에 제한되지 않고 사용할 수 있다. 특히, 전자 수송층(102,202)은 슬롯다이 코팅을 이용하는 것이 유리할 수 있다.
전자 수송층(102,202)의 두께는 1 내지 100 nm일 수 있으며, 이와 같이 규정된 두께 범위를 벗어날 경우 전자의 수송 능력이 저하될 수 있다.
광활성층(103,203)은 전술한 전자 수송층(102,202) 상에 위치하며, 정공수용체와 전자수용체가 혼합된 벌크 이종접합 구조를 가진다.
상기 정공수용체는 전기 전도성 고분자 또는 유기 저분자 반도체 물질 등과 같은 유기 반도체를 포함한다. 상기 전기 전도성 고분자는 폴리티오펜(polythiophene), 폴리페닐렌비닐렌(polyphenylenevinylene), 폴리플루오렌(polyfluorene), 폴리피롤(polypyrrole) 및 이들의 공중합체로 이루어진 군에서 선택되는 1종 이상일 수 있다. 상기 유기 저분자 반도체 물질은 펜타센(pentacene), 안트라센(anthracene), 테트라센(tetracene), 퍼릴렌(perylene), 올리고티오펜(oligothiophene) 및 이들의 유도체로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다.
구체적으로 상기 정공수용체는 폴리-3-헥실티오펜(poly-3-hexylthiophene; P3HT), 폴리-3-옥틸티오펜(poly-3-octylthiophene; P3OT), 폴리파라페닐렌비닐렌(poly-p-phenylenevinylene; PPV), 폴리(9,9′- 디옥틸플루오렌)(poly(9,9′-dioctylfluorene)), 폴리(2-메톡시-5-(2-에틸-헥실옥시)-1,4-페닐렌비닐렌)(poly(2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylenevinylene; MEH-PPV) 및 폴리(2-메틸-5-(3′, 7′-디메틸옥틸옥시))-1,4-페닐렌비닐렌(poly(2-methyl-5-(3′, 7′-dimethyloctyloxy))-1,4-phenylene vinylene; MDMOPPV)으로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다.
상기 전자수용체는 풀러렌(fullerene, C60), C70, C76, C78, C80, C82, C84등의 풀러렌 유도체, CdS, CdSe, CdTe 및 ZnSe으로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다.
구체적으로 상기 전자수용체는 (6,6)-페닐-C61-부티릭에시드 메틸에스테르((6,6)-phenyl-C61-butyric acid methyl ester; PCBM), (6,6)-페닐-C71-부티릭에시드 메틸에스테르((6,6)-phenyl-C71-butyric acid methyl ester; C70-PCBM), (6,6)-티에닐-C61-부티릭에시드 메틸에스테르((6,6)-thienyl-C61-butyric acid methyl ester; ThCBM) 및 탄소나노튜브로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다.
이때 광활성층(103,203)은 정공수용체로서 P3HT와 전자수용체로서 PCBM의 혼합물을 포함하는 것이 더욱 바람직하고, 이때 상기 P3HT와 PCBM의 혼합 중량 비율은 1:0.1 내지 1:2일 수 있다.
광활성층(103,203)의 두께는 10 내지 1000 ㎚, 구체적으로는 100 내지 500 ㎚일 수 있다. 상기 광활성층(103,203)의 두께가 상기 범위 미만인 경우 태양빛을 충분히 흡수할 수가 없어, 광전류가 낮아져 효율 저하가 예상되며, 반대로 상기 범위를 초과하는 경우 여기된 전자와 정공이 전극으로 이동할 수 없어 효율 저하 문제가 발생할 수 있다.
추가로, 본 발명의 반투명 유기 태양전지(500)는 하부 전극(101,201)과 상기 광활성층(103,203) 사이(전자 수송층을 제외할 경우), 하부 전극(101,201)과 전자 수송층(102,202) 사이, 또는 전자 수송층(102,202)과 광활성층(103,203) 사이에 금속산화물 박막층(미도시)을 포함한다. 상기 금속산화물 박막층은 부 전극으로서 전자의 이동 속도를 증가시켜 유기 태양전지(500)의 작동을 가능하게 하고, 외부로부터 침투하는 산소와 수분을 차단하여 상기 광활성층(103,203)에 포함된 고분자가 산소와 수분에 의하여 열화되는 것을 방지하여 유기 태양전지(500)의 수명을 향상시킬 수 있다.
상기 금속산화물 박막층은 두께가 10 내지 500 ㎚, 바람직하게 20 내지 300 ㎚, 더욱 바람직하게 20 내지 200 ㎚일 수 있다. 상기 금속산화물 박막층의 두께가 상기 범위 내인 경우 전자의 이동 속도를 향상시키면서도 외부로부터 산소와 수분이 침투하여 광활성층(40) 및 정공 수송층(50)에 영향을 주는 것을 효과적으로 방지할 수 있다.
또한, 상기 금속산화물 박막층에 포함되는 금속산화물은 평균 입경이 10 ㎚ 이하이고, 바람직하게 1 내지 8 ㎚이고, 더욱 바람직하게 3 내지 7 ㎚일 수 있다.
상기 금속산화물은 Ti, Zn, Si, Mn, Sr, In, Ba, K, Nb, Fe, Ta, W, Sa, Bi, Ni, Cu, Mo, Ce, Pt, Ag, Rh 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나의 금속의 산화물일 수 있으며, 바람직하게 ZnO일 수 있다. 상기 ZnO는 밴드갭이 넓고 반도체적 성질을 가지고 있어, 상기 하부 전극(101,201)과 함께 사용하는 경우 전자의 이동을 더욱 향상시킬 수 있다.
전술한 바의 본 발명에 따른 반투명 유기 태양전지(500)는 공지된 바의 방법에 따라 제조가 가능하다.
본 발명의 반투명 유기 태양전지(500)의 제조 방법은 기판(100)을 롤투롤 방식으로 이송시키면서 코팅 용액으로 코팅하여 박막층을 형성하는 단계를 포함한다. 이때 상기 박막층은 전자 수송층(102,202), 광활성층(103,203) 및 정공 수송층(104,204)으로 이루어진 군에서 선택되는 적어도 어느 하나 이상일 수 있으며, 상기 코팅 용액은 상기한 박막층 형성용 조성물 및 용매를 포함한다. 이하 본 설명에서는 하부 전극(101,201)은 음극이다.
우선, 기판(100)을 준비하고 상기 기판(100) 상에 하부 전극(101,201)으로 음극을 형성한다.
준비된 기판(100) 상에 음극은 통상의 방법에 따라 형성될 수 있다. 구체적으로 상기 음극은 기판(100)의 일면에 음극 형성용 조성물을 열 기상 증착, 전자 빔 증착, RF 또는 마그네트론 스퍼터링, 화학적 증착 또는 이와 유사한 방법을 통해 형성할 수 있다.
이때 상기 음극의 형성에 앞서 선택적으로 기재에 대하여 O2 플라즈마 처리법, UV/오존 세척, 산 또는 알칼리 용액을 이용한 표면 세척, 질소 플라즈마 처리법 및 코로나 방전 세척으로 이루어진 군에서 선택되는 적어도 어느 하나의 방법을 이용하여 상기 기재의 표면을 전처리할 수도 있다.
이어서 상기 하부 전극(101,201)이 형성된 기재를 롤투롤 방식으로 이송시키면서 코팅 용액을 코팅하여 박막층을 형성하는 단계를 포함한다. 이때 상기 박막층은 전자 수송층(102,202), 광활성층(103,203) 및 정공 수송층(104,204)이다.
상기 코팅 용액은 각 박막층에 포함되는 물질 및 용매를 포함한다.
구체적으로 상기 코팅 용액은 전자 수송층(102,202) 형성용 조성물, 광활성층(103,203) 형성용 조성물 및 정공 수송층(104,204) 형성용 조성물일 수 있다.
다음으로, 하부 전극(101,201) 상에 전자 수송층(102,202) 형성용 조성물을 이용하여 전자 수송층(102,202)을 형성할 수 있다.
상기 전자 수송층(102,202) 형성용 조성물은 전술한 금속산화물을 용매에 용해시켜 제조하며 이를 도포하여 도막을 형성한다.
상기 용매는 금속산화물을 용해시키거나 분산시킬 수 있는 것이라면 특별히 한정되지 않고 사용할 수 있으며, 예를 들어, 물, 2-에틸헥산올, 2-부톡시헥산올, n-프로필알코올, 이소프로필알코올, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 테트라에틸렌글리콜, 프로필렌글리콜 및 디프로필렌글리콜로 이루어진 군으로부터 선택되는 1종 이상이 사용될 수 있다.
상기 용매는 상기 전자 수송층(102,202) 형성용 조성물 중 잔부의 양으로 포함될 수 있으며, 구체적으로는 상기 전자 수송층(102,202) 형성용 조성물 총 중량에 대하여 1 내지 95 중량%로 포함될 수 있다. 용매의 함량이 95 중량%를 초과할 경우 원하는 코팅층의 기능을 얻기 어렵고, 용매의 함량이 1 중량% 미만일 경우 균일한 두께의 박막 형성이 어렵다.
상기 도포는 슬롯다이 코팅, 스핀 코팅, 그라비어 코팅, 바(bar) 코팅, 메이어 바(Meyer bar) 코팅, 스프레잉, 딥 코팅, 콤마 코팅, 커튼 코팅, 닥터 블레이딩 등의 통상의 코팅 방법에 의해 실시될 수 있으며, 구체적으로는 슬롯다이 코팅 또는 스핀 코팅이 수행될 수 있다.
상기 전자 수송층(102,202) 형성용 조성물로 도막을 형성한 이후, 코팅된 기판(10)에 대해 건조 또는 열처리하는 후처리 공정이 선택적으로 실시될 수 있다. 상기 건조는 50 내지 400℃, 구체적으로는 70 내지 200℃에서 1 내지 30분 동안 열풍건조, NIR 건조, 또는 UV 건조를 통하여 실시될 수 있다.
다음으로, 전자 수송층(102,202) 상에 광활성층(103,203) 형성용 조성물을 이용하여 광활성층(103,203)을 형성할 수 있다.
상기 광활성층(103,203) 형성용 조성물은 전술한 정공수용체와 전자수용체를 용매에 용해시켜 제조하며 이를 도포하여 도막을 형성한다.
상기 용매는 전자수용체와 정공수용체를 용해시키거나 분산시킬 수 있는 것이 라면 특별한 제한없이 사용할 수 있다. 일례로, 상기 용매는 물; 에탄올, 메탄올, 프로판올, 이소프로필알코올, 부탄올 등의 알코올; 또는 아세톤, 펜탄, 톨루엔, 벤젠, 디에틸에테르, 메틸부틸에테르, N-메틸피롤리돈, 테트라하이드로퓨란, 디메틸포름아마이드, 디메틸아세트아마이드, 디메틸술폭사이드, 카본테트라클로라이드, 디클로로메탄, 디클로로에탄, 트리클로로에틸렌, 클로로포름, 클로로벤젠, 디클로로벤젠, 트리클로로벤젠, 사이클로헥산, 사이클로펜타논, 사이클로헥사논, 디옥산, 터피네올, 메틸에텔케톤 등의 유기 용매, 또는 이들의 혼합물일 수 있으며, 상기 전자 수송층(102,202) 형성용 조성물 제조시 대상 물질의 종류에 따라 상기한 용매 중에서 적절히 선택하여 사용하는 것이 바람직하다.
상기 도포는 슬롯다이 코팅, 스핀 코팅, 그라비어 코팅, 바(bar) 코팅, 메이어 바(Meyer bar) 코팅, 스프레잉, 딥 코팅, 콤마 코팅, 커튼 코팅, 닥터 블레이딩 등의 통상의 코팅 방법에 의해 실시될 수 있으며, 구체적으로는 슬롯다이 코팅 또는 스핀 코팅이 수행될 수 있다.
상기 광활성층(103,203) 형성용 조성물로 도막을 형성한 이후, 코팅된 기판(100)에 대해 건조 또는 열처리하는 후처리 공정이 선택적으로 실시될 수 있다. 상기 건조는 50 내지 400℃, 구체적으로는 70 내지 200℃에서 1 내지 30분 동안 열풍건조, NIR 건조, 또는 UV 건조를 통하여 실시될 수 있다.
일례로, 광활성층(103,203)의 경우 코팅 공정 후 25 내지 150℃에서 5 내지 145분 동안 건조 및 열처리하는 후처리 공정을 실시할 수 있다. 상기 건조 공정과 열처리 공정의 적절한 조절에 의하여 상기 전자수용체와 상기 정공수용체 사이에 적절한 상분리를 유도할 수 있고, 상기 전자수용체의 배향을 유도할 수 있다.
상기 열처리 공정의 경우, 온도가 25℃ 미만인 경우 상기 전자수용체 및 상기 정공수용체의 이동도가 낮아서 열처리 효과가 미미할 수 있고, 상기 열처리 온도가 150℃를 초과하는 경우 상기 전자수용체의 열화로 인하여 성능이 저하될 수 있다. 또한, 상기 열처리 시간이 5분 미만인 경우 상기 전자수용체 및 상기 정공수용체의 이동도가 낮아서 열처리 효과가 미미할 수 있고, 상기 열처리 시간이 145분을 초과하는 경우 상기 전자수용체의 열화로 인하여 성능이 저하될 수 있다.
다음으로, 상기 광활성층(103,203) 상에 정공 수송층(104,204) 형성용 조성물을 이용하여 정공 수송층(104,204)을 형성한다.
상기 정공 수송층(104,204) 형성용 조성물은 전술한 정공 수송 물질 및 용매를 포함하는 페이스트이며, 이를 인쇄 방법을 이용하여 기판(100) 상에 패턴화시킨다.
상기 정공 수송층(104,204) 형성용 조성물에 포함되는 용매는 정공 수송 물질을 균일하게 혼합하고 점도를 조절하기 위해 사용되며 해당 기술분야에서 페이스트 형성시 통상적으로 사용되는 것이라면 특별히 한정되지 않고 사용할 수 있다.
바람직하기로, 상기 용매로는 물; 메탄올, 에탄올, 프로판올, 이소프로판올, 부탄올, 이소부탄올 등의 알코올 용매; 디에틸에테르, 디프로필에테르, 디부틸에테르, 부틸에틸에테르, 테트라하이드로퓨란 등의 에테르 용매; 에틸렌글리콜, 프로필렌글리콜, 에틸렌글리콜모노메틸에테르, 에틸렌글리콜모노에틸에테르, 에틸렌글리콜모노부틸에테르 등의 알콜 에테르 용매; 아세톤, 메틸에틸케톤, 메틸이소부틸케톤, 시클로헥사논 등의 케톤 용매; N-메틸-2-피릴리디논, 2-피릴리디논, N-메틸포름아미드, N,N-디메틸포름아미드 등의 아미드 용매; 디메틸술폭사이드, 디에틸술폭사이드등의 술폭사이드 용매; 디에틸술폰, 테트라메틸렌 술폰등의 술폰 용매; 아세토니트릴, 벤조니트릴등의 니트릴 용매; 알킬아민, 사이클릭아민, 아로마틱아민 등의 아민 용매; 메틸부티레이트, 에틸부티레이트, 프로필프로피오네이트 등의 에스테르 용매; 에틸 아세테이트, 부틸아세테이트 등의 카르복실산 에스테르 용매; 벤젠, 에틸벤젠, 클로로벤젠, 톨루엔, 자일렌 등의 방향족 탄화수소 용매; 헥산, 헵탄, 시클로헥산 등의 지방족 탄화수소 용매; 클로로포름, 테트라클로로에틸렌, 카본테트라클로라이드, 디클로로메탄, 디클로로에탄과 같은 할로겐화된 탄화수소 용매; 프로필렌 카보네이트, 에틸렌 카보네이트, 디메틸카보네이트, 디부틸카보네이트, 에틸메틸카보네이트, 디부틸카보네이트, 니트로메탄, 니트로벤젠 등의 유기 용매;로 이루어진 군에서 선택된 1종 또는 그 이상의 혼합 용매가 사용될 수 있다.
상기 정공 수송층(104,204) 형성용 조성물은 인쇄 공정에 적합하도록 최적화되는 것이 바람직하다. 구체적으로, 상기 정공 수송층(104,204) 형성용 조성물은 점도가 300 내지 10,000 cps 범위일 수 있다. 상기 정공 수송층(104,204) 형성용 조성물의 점도가 상기 범위 미만인 경우 패턴의 퍼짐 현상이 야기될 수 있으며, 이와 반대로 상기 범위를 초과하는 경우 정공 수송 물질의 균일한 분산이 어렵고 인쇄성이 저하될 우려가 있다.
본 발명에서 인쇄 방법은 통상적으로 사용되는 다양한 인쇄 공정이 적용될 수 있다. 예를 들어 상기 인쇄는 잉크젯 인쇄, 에어로졸젯 인쇄, EHD젯 인쇄, 그라비아 인쇄, 그라비아옵셋 인쇄, 임프린팅, 플렉소 인쇄 또는 스크린 인쇄 중 어느 하나의 방법이 사용될 수 있으며, 바람직하게는 스크린 인쇄이다.
상기 인쇄 공정을 수행한 후, 당분야에서 통상적으로 사용되는 건조 및 소성 방법에 따라 소성될 수 있으며, 바람직하게는 질소, 산소 또는 아르곤 열풍 단독, NIR(Near Infra Red) 램프, 또는 열풍과 NIR 램프를 동시에 사용하여 건조 및 소성될 수 있다.
다음으로, 상기 정공 수송층(104,204) 상에 전술한 바의 표면 처리제를 이용한 표면 처리를 수행한다. 본 표면 처리는 반드시 필요한 공정은 아니며, 선택적으로 수행이 가능하다.
표면 처리는 정공 수송층(104,204) 전면에 걸쳐 처리하며, 표면 처리제의 도포 이후 상기 제시한 건조 방법을 통해 건조를 수행한다.
다음으로, 상기 정공 수송층(104)의 상부 일측과 함께 박막층들의 일측을 포함하고, 이웃한 단위 셀의 하부 전극의 일부를 포함하도록 보조 전극(301,302)을 형성한다.
상기 보조 전극(301,302)은 도포가 아닌 스크린 프린팅, 그라비어 프린팅, 그라비어 오프셋(Gravure-offset) 프린팅, 열 기상 증착, 전자 빔 증착, RF 또는 마그네트론 스퍼터링, 화학적 증착 등의 방법을 통하여 형성될 수 있다.
상기한 단계를 거쳐 본 발명에 따른 반투명 유기 태양전지(500)를 제작한다.
이때 기판(100) 상에 각층의 적층은 롤투롤 방식으로 진행될 수 있다.
구체적으로, 기판(100)을 롤투롤 방식으로 이송시키는 속도는 0.01 m/min 내지 20 m/min일 수 있고, 바람직하게 0.1 m/min 내지 5 m/min 일 수 있다. 상기 이송 속도는 롤투롤 장비를 이용한 개별층의 코팅 및 건조 속도에 따라 최적화하여 사용할 수 있다.
이러한 롤투롤 장비를 이용한 공정은 반투명 유기 태양전지의 대량 생산이 용이하고, 연속 공정이 가능하다는 이점과 함께 대면적의 기판에도 용이하게 적용이 가능함에 따라 그 크기에 상관없이 소형에서부터 대형의 반투명 유기 태양전지를 제작할 수 있다.
또한, 상기 단계를 거쳐 제조된 반투명 유기태양전지는 상부 전극을 배제함에 따라 광투과도가 증가하여 전체적으로 40% 이상의 광투과도를 가져 반투명 상태의 유기 태양전지를 구현할 수 있다.
더불어, 기존의 반투명 유기 태양전지와 동등한 수준의 효율을 가지고 전체적인 전지 두께의 감소, 즉 박막화를 달성할 수 있다.
이러한 반투명 유기 태양전지는 건물 외장재, 예를 들어 외벽, 지붕, 창문뿐만 아니라 의류, 포장지, 벽지, 자동차 유리 등 다양한 분야에 적용 가능하다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 비교예 : 유기 태양전지의 제조
[실시예 1]
ITO층이 형성된 기판 필름을 롤투롤 방식으로 이송시키면서 상기 ITO층 위에 ZnO 함유 코팅액(Zn(OAC)22H2O 247 ㎎, KOH 126 ㎎ 및 1-부탄올(1-Butanol) 1 ㎖를 혼합하여 제조함)을 스트라이프 형태로 슬롯다이 코팅한 후 120℃에서 건조하여 ZnO의 금속산화물 박막층을 형성하였다. 상기 슬롯다이 코팅시 라인 속도(line speed)는 12 ㎜/sec, 슬롯다이 높이는 1300 ㎛, 코팅액 유량(flow rate)은 0.4 ㎖/min으로 하였다.
이어서 상기 ZnO 금속산화물 박막층 위에 광활성층 형성용 코팅용액(lisicon® SP001(머크사제) 15 ㎎, lisicon® A-600(머크사제) 12 ㎎ 및 1,2-디클로로벤젠(Dichlorobenzene) 1 ㎖를 혼합하여 제조함)을 슬롯 다이 코팅하고 120℃에서 건조하여 광활성층을 제조하였다. 상기 슬롯 다이 코팅시 라인 속도는 12 ㎜/sec, 슬롯다이 높이는 1500 ㎛, 코팅액 유량은 1.2 ㎖/min로 하였다.
상기 광활성층 위에 PEDOT:PSS(Orgacon® EL-P 5010, agfa사제)와 직경이 약 30 ㎚이고 종횡비가 1000:1인 은 나노와이어를 9:1의 중량비로 포함하는 정공 수송층 형성용 조성물을 슬롯 다이 코팅시 라인 속도는 5 ㎜/sec, 슬롯다이 높이는 800 ㎛, 코팅액 유량은 3.0 ㎖/min으로 슬롯 다이 코팅하고, 120℃에서 건조하였다(두께 700 ㎚).
이어서, 각 단위 셀 사이의 영역에 Ag 보조 전극을 증착하여 반투명 유기 태양전지를 제조하였다.
[실시예 2]
보조 전극으로 ITO층을 형성한 것을 제외하고, 상기 실시예 1과 동일하게 수행하여 반투명 유기 태양전지를 제조하였다.
[비교예 1]
ITO층이 형성된 기판 필름을 롤투롤 방식으로 이송시키면서 상기 ITO층 위에 ZnO 함유 코팅액(Zn(OAC)22H2O 247 ㎎, KOH 126 ㎎ 및 1-부탄올(1-Butanol) 1 ㎖를 혼합하여 제조함)을 스트라이프 형태로 슬롯다이 코팅한 후 120℃에서 건조하여 ZnO의 금속산화물 박막층을 형성하였다. 상기 슬롯다이 코팅시 라인 속도(line speed)는 12 ㎜/sec, 슬롯다이 높이는 1300 ㎛, 코팅액 유량(flow rate)은 0.4 ㎖/min으로 하였다.
이어서 상기 ZnO 금속산화물 박막층 위에 광활성층 형성용 코팅용액(lisicon® SP001(머크사제) 15 ㎎, lisicon® A-600(머크사제) 12 ㎎ 및 1,2-디클로로벤젠(Dichlorobenzene) 1 ㎖를 혼합하여 제조함)을 슬롯 다이 코팅하고 120℃에서 건조하여 광활성층을 제조하였다. 상기 슬롯 다이 코팅시 라인 속도는 12 ㎜/sec, 슬롯다이 높이는 1500 ㎛, 코팅액 유량은 1.2 ㎖/min로 하였다.
상기 광활성층 위에 PEDOT:PSS(Orgacon® EL-P 5010, agfa사제)를 포함하는 정공 수송층 형성용 조성물을 슬롯 다이 코팅하고, 120℃에서 건조하여 정공 수송층(두께 700 nm)을 형성하였다. 상기 슬롯 다이 코팅시 라인 속도는 5 ㎜/sec, 슬롯다이 높이는 800 ㎛, 코팅액 유량은 3.0 ㎖/min로 하였다.
이후, 스크린 프린터를 이용하여 상기 정공 수송층 위에 Ag 전극(두께 10 ㎛)을 프린팅하여 유기 태양전지를 제작하였다.
실험예 1: 유기 태양전지의 성능 평가
상기 실시예 및 비교예에서 제조된 유기 태양전지의 전류-전압 특성을 측정하였고, 그 결과를 하기 표 1에 나타내었다.
유기 태양 전지를 태양모사장치(solar simulator, Newport사 66984) 를 이용하여 전류-전압 특성을 측정하였다. 상기 태양 모사장치는 300W 제논램프(Newport사 6258)와 AM1.5G 필터(Newport사 81088A)를 사용하였고, 빛의 세기는 100 ㎽/㎠로 설정하였다.
또한, 직렬저항은 2-탐침(2-probe) 측정 방법을 이용하여 측정하였고, 광투과도는 일본 공업 규격(JIS R 3106)에 따라 380 내지 780 ㎚ 파장의 가시광 투과율을 구하였다.
Voc1 )(V) Isc2 )(A) FF3)(%) Eff4 )(%) SR5)(Ω) AT6)(%)
실시예 1 6.81 0.07 36 2.28 60.8 100%
실시예 2 6.81 0.0001 18.9 0.0019 510446 100%
비교예 1 7.66 0.09 45 4.64 32.6 0%
1) Voc: open-circuit voltage, 개방전압2) Isc: short-circuit current, 단락전류3) FF: fill factor, 필팩터4) Eff: power conversion efficiency, 광전환효율5) SR: series reisistance, 직렬저항6) AT: Anode Transmittance, 광투과도
상기 표 1을 참조하면, 본 발명에 따라 보조 전극이 사용된 실시예 1 및 2의 유기 태양전지의 경우 광투과도가 100%로서 비교예 1 대비 반투명 유기 태양전지로서 사용 가능함을 알 수 있다.
또한, 전압, 전류 특성에 있어서도, 실시예 1 및 2의 유기 태양전지는 상부 전극을 사용하지 않고도 비교예 1의 전지 대비 동등 이상의 결과를 보였다.
또한, 실시예 1 및 2의 유기 태양전지를 비교하여 보면, 상부 전극의 배제로 인해 높은 광투과도를 갖더라도 보조 전극으로 금속 재질인 Ag를 사용할 경우(실시예 1) ITO를 사용한 경우 보다(실시예 2) 직렬저항(SR) 면에서 유리하고, 이는 곧 필팩터 및 광전환 효율 면에서 좀더 유리함을 확인하였다.
[부호의 설명]
10,100: 기판
11,21,101,201: 하부 전극
12,22,102,202: 전자 수송층
13,23,103,203: 광활성층
14,24,104,204: 정공 수송층
15,25: 상부 전극
301,302: 보조 전극
50,500: 반투명 유기 태양전지
본 발명에 따른 반투명 유기 태양전지는 우수한 광투과도, 수명 및 성능을 나타내며 제조 공정을 단순화하여 반투명 유기 태양전지의 대량 생산이 가능하며 건물 외장재, 예를 들어 외벽, 지붕, 창문 뿐만 아니라 패션 아웃도어 용품, 포장지, 벽지, 자동차 유리 등 다양한 분야에 적용 가능하다.

Claims (8)

  1. 기판; 및 상기 기판 상에 형성된 복수 개의 단위 셀을 구비한 유기 태양전지 모듈에 있어서,
    상기 단위 셀은 하부 전극, 전자 수송층, 광활성층 및 정공 수송 물질과 전도성 나노와이어를 포함하는 정공 수송층을 포함하고,
    상기 단위 셀 간 전기적 연결을 위해 단위 셀 사이 영역에 보조 전극을 구비한 반투명 유기 태양전지 모듈.
  2. 제1항에 있어서,
    상기 보조 전극은 ITO, SnO2, In2O3, ZnO 및 MgZnO를 포함하는 전기 전도성 산화물; TiN, CrN, InGaN, GaN, InN, AlGaN 및 AlInGaN를 포함하는 전기 전도성 질화물; Au, Ag, Pt, Cu, Ni, Fe, Pd, Rh, Ir, Co, Sn, Zn 및 Mo를 포함하는 금속;으로 이루어진 군에서 선택된 1종 이상을 포함하는 반투명 유기 태양전지 모듈.
  3. 제1항에 있어서,
    상기 정공 수송층은 정공 수송 물질을 포함하는 매트릭스 내에 전도성 나노와이어가 3차원 네트워크 구조를 형성한 반투명 유기 태양전지 모듈.
  4. 제1항에 있어서,
    상기 정공 수송 물질은 폴리(3,4-에틸렌디옥시티오펜)(PEDOT), 폴리(스티렌설포네이트)(PSS), 폴리아닐린, 프탈로시아닌, 펜타센, 폴리디페닐 아세틸렌, 폴리(t-부틸)디페닐아세틸렌, 폴리(트리플루오로메틸)디페닐아세틸렌, 구리 프탈로시아닌(Cu-PC) 폴리(비스트리플루오로메틸)아세틸렌, 폴리비스(t-부틸디페닐)아세틸렌, 폴리(트리메틸실릴) 디페닐아세틸렌, 폴리(카르바졸)디페닐아세틸렌, 폴리디아세틸렌, 폴리페닐아세틸렌, 폴리피리딘아세틸렌, 폴리메톡시페닐아세틸렌, 폴리메틸페닐아세틸렌, 폴리(t-부틸)페닐아세틸렌, 폴리니트로페닐아세틸렌, 폴리(트리플루오로메틸)페닐아세틸렌, 및 폴리(트리메틸실릴)페닐아세틸렌를 포함하는 고분자; NPB(4,4′-비스[N-(1-나프틸)-N-페닐아미노]바이페닐); TPD(N,N′-비스(3-메틸페닐)-N,N′-디페닐벤지딘), MTDATA(4,4′,4″-트리스[(3-메틸페닐)페닐아미노]트라이페닐아민), TAPC(4,4′-사이클로헥실리덴 비스[N,N-비스(4-메틸페닐)벤젠아밀]), TCTA(트리스(4-카바조일-9-일페닐)아민), CBP(4,4′-비스(N-카바졸릴)-1,1′-바이페닐), Alq3, mCP(9,9′-(1,3-페닐렌)비스-9H-카바졸) 및 2-TNATA(4,4′,4″-트리스(N-(2-나프틸)-N-페닐아미노)트리페닐아민)을 포함하는 유기 화합물; MoO3, MoO2, WO3, V2O5, ReO3, NiO, Mo(tfd)3, HAT-CN(헥사아자트리페닐렌 헥사카르보니트릴) 및 F4-TCNQ(7,7,8,8-테트라시아노-2,3,5,6-테트라플루오로퀴노디메탄)를 포함하는 무기물;로 이루어진 군에서 선택된 1종 이상을 포함하는 반투명 유기 태양전지 모듈.
  5. 제1항에 있어서,
    상기 전도성 나노와이어는 금속계 나노와이어 및 탄소계 나노와이어로 이루어진 군으로부터 선택된 1종 이상을 포함하는 반투명 유기 태양전지 모듈.
  6. 제5항에 있어서,
    상기 금속계 나노와이어는 Au, Ag, Pt, Cu, Ni, Fe, Pd, Rh, Ir, Co, Sn, Zn 및 Mo로 이루어진 군에서 선택되는 1종 이상을 포함하는 반투명 유기 태양전지 모듈.
  7. 제5항에 있어서,
    상기 탄소계 나노와이어는 탄소나노튜브, 탄소 나노섬유 및 그래핀으로 이루어진 군에서 선택되는 1종 이상을 포함하는 반투명 유기 태양전지 모듈.
  8. 제1항에 있어서,
    상기 반투명 유기 태양전지 모듈은 광투과도가 40% 이상인 반투명 유기 태양전지 모듈.
PCT/KR2018/003051 2017-03-20 2018-03-15 반투명 유기 태양전지 모듈 WO2018174467A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170034650A KR102113536B1 (ko) 2017-03-20 2017-03-20 반투명 유기 태양전지 모듈
KR10-2017-0034650 2017-03-20

Publications (1)

Publication Number Publication Date
WO2018174467A1 true WO2018174467A1 (ko) 2018-09-27

Family

ID=63585876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003051 WO2018174467A1 (ko) 2017-03-20 2018-03-15 반투명 유기 태양전지 모듈

Country Status (2)

Country Link
KR (1) KR102113536B1 (ko)
WO (1) WO2018174467A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113270550A (zh) * 2021-05-17 2021-08-17 中国科学院长春应用化学研究所 一种全高分子活性层室内光伏模组及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120057174A (ko) * 2010-11-26 2012-06-05 광주과학기술원 1차원 나노구조를 갖는 전하수송층을 구비하는 유기태양전지 및 그 제조방법
KR20130033803A (ko) * 2011-09-27 2013-04-04 건국대학교 산학협력단 태양전지 모듈의 제조방법 및 이에 의하여 제조된 태양전지 모듈
KR101440607B1 (ko) * 2013-04-15 2014-09-19 광주과학기술원 태양전지 모듈 및 이의 제조방법
JP2015527732A (ja) * 2012-07-02 2015-09-17 ヘリアテク ゲゼルシャフト ミット ベシュレンクテル ハフツングHeliatek Gmbh 光電子デバイス用透明電極
KR20160150412A (ko) * 2015-06-22 2016-12-30 성균관대학교산학협력단 표면 개질된 그래핀 투명 전극 및 이의 제조 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090111725A (ko) 2008-04-22 2009-10-27 재단법인서울대학교산학협력재단 투명 유기박막 태양전지
JP5359132B2 (ja) * 2008-09-05 2013-12-04 コニカミノルタ株式会社 透明電極及び該透明電極を有する有機エレクトロルミネッセンス素子
KR101356034B1 (ko) * 2011-12-21 2014-01-29 한국과학기술원 유기 태양전지 모듈 제조방법 및 이에 의해 제조된 유기 태양전지 모듈

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120057174A (ko) * 2010-11-26 2012-06-05 광주과학기술원 1차원 나노구조를 갖는 전하수송층을 구비하는 유기태양전지 및 그 제조방법
KR20130033803A (ko) * 2011-09-27 2013-04-04 건국대학교 산학협력단 태양전지 모듈의 제조방법 및 이에 의하여 제조된 태양전지 모듈
JP2015527732A (ja) * 2012-07-02 2015-09-17 ヘリアテク ゲゼルシャフト ミット ベシュレンクテル ハフツングHeliatek Gmbh 光電子デバイス用透明電極
KR101440607B1 (ko) * 2013-04-15 2014-09-19 광주과학기술원 태양전지 모듈 및 이의 제조방법
KR20160150412A (ko) * 2015-06-22 2016-12-30 성균관대학교산학협력단 표면 개질된 그래핀 투명 전극 및 이의 제조 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113270550A (zh) * 2021-05-17 2021-08-17 中国科学院长春应用化学研究所 一种全高分子活性层室内光伏模组及其制备方法与应用

Also Published As

Publication number Publication date
KR102113536B1 (ko) 2020-05-21
KR20180106394A (ko) 2018-10-01

Similar Documents

Publication Publication Date Title
KR101269256B1 (ko) 헤테로 원자를 갖는 위치 규칙적 폴리(3-치환 티오펜)를 포함하는 전기발광 소자
WO2015163679A1 (ko) 유-무기 하이브리드 태양 전지
WO2014109610A1 (ko) 고효율 무-유기 하이브리드 태양전지의 제조 방법
WO2013180361A1 (ko) 아민기를 갖는 비공액 고분자를 포함하는 유기전자소자용 기능층 및 이를 포함하는 유기전자소자
WO2012002694A4 (ko) 유기 태양 전지 및 이의 제조 방법
WO2019039779A1 (ko) 유기 태양전지
WO2014200312A1 (ko) 유기태양전지 및 이의 제조방법
WO2014171615A1 (ko) 태양전지 모듈 및 이의 제조방법
KR20150074704A (ko) 역구조 유기 전자소자 및 그의 제조방법
WO2014200309A1 (ko) 유기태양전지 및 이의 제조방법
WO2018012825A1 (ko) 유무기 복합 태양전지
WO2015167225A1 (ko) 유기태양전지 및 이의 제조방법
WO2015167285A1 (ko) 태양 전지 및 이의 제조 방법
US8071414B2 (en) Organic photovoltaic device with improved power conversion efficiency and method of manufacturing same
WO2017217727A1 (ko) 유기 태양전지 및 이의 제조 방법
WO2015163658A1 (ko) 적층형 유기태양전지
KR20190000174A (ko) 유기 태양전지
WO2019039907A2 (ko) 유기전자소자 및 이의 제조 방법
WO2018174467A1 (ko) 반투명 유기 태양전지 모듈
US20160268532A1 (en) Solar cell module and method for manufacturing the same
KR20180076202A (ko) 유기 태양전지 및 이의 제조 방법
WO2011139006A1 (ko) 전하 주입성을 향상시킨 유기박막트랜지스터 및 이의 제조방법
WO2011101993A1 (ja) 太陽電池およびその製造方法
WO2013154355A1 (ko) 일체형 전도성 기판 및 이를 채용한 전자 소자
US10468616B2 (en) Photoelectric conversion device and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18770998

Country of ref document: EP

Kind code of ref document: A1