WO2014171615A1 - 태양전지 모듈 및 이의 제조방법 - Google Patents

태양전지 모듈 및 이의 제조방법 Download PDF

Info

Publication number
WO2014171615A1
WO2014171615A1 PCT/KR2013/012267 KR2013012267W WO2014171615A1 WO 2014171615 A1 WO2014171615 A1 WO 2014171615A1 KR 2013012267 W KR2013012267 W KR 2013012267W WO 2014171615 A1 WO2014171615 A1 WO 2014171615A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
solar cell
cell module
photoactive layer
transport layer
Prior art date
Application number
PCT/KR2013/012267
Other languages
English (en)
French (fr)
Inventor
이광희
강홍규
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority to US14/784,578 priority Critical patent/US10468546B2/en
Priority to CN201380075678.XA priority patent/CN105164774B/zh
Publication of WO2014171615A1 publication Critical patent/WO2014171615A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2081Serial interconnection of cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0475PV cell arrays made by cells in a planar, e.g. repetitive, configuration on a single semiconductor substrate; PV cell microarrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell module and a method of manufacturing the same, and more particularly, to improve the structure and performance of the connection between the individual solar cells by forming a conductive channel between the opposite electrode between the individual solar cells constituting the solar cell module It relates to a solar cell module and a method of manufacturing the same.
  • the most widely used conventional organic solar cell module includes a patterned first electrode, a patterned first charge transport layer (hole transport layer or electron transport layer), a patterned active layer, and a patterned second charge on a substrate.
  • the transport layer (electron transport layer or hole transport layer) and the patterned second electrode are sequentially stacked.
  • each layer in order to connect the opposite electrodes of each solar cell continuously, each layer must be shifted slightly to form a thin film. At this time, if the opposite electrode of each solar cell has a contact with each other does not operate as a module.
  • the existing organic solar cell module must pattern not only the first electrode and the second electrode but also the first charge transport layer, the photoactive layer and the second charge transport layer, which are the first electrode and the second electrode of the first organic solar cell. This means that the second electrode of the organic solar cell directly contacts without disturbing another layer.
  • the thin film in the fabrication of such an existing module, the thin film must be patterned while gradually shifting each layer slightly. Therefore, a high level pattern technology for alignment of the thin film is required in the fabrication of the pattern thin film. This makes it difficult to increase the price of the organic solar cell module.
  • an active area which is a portion where the first electrode and the second electrode of each solar cell overlap, is reduced, and at the same time, the electrode The non-overlapping portion of the inactive area is increased.
  • the problem to be solved by the present invention is to provide a solar cell module that does not require a high pattern technology for the alignment of the thin film (Align).
  • Another object of the present invention is to provide a solar cell module with improved module efficiency by increasing the active area of each solar cell.
  • Another object of the present invention is to provide a method of manufacturing such a solar cell module.
  • Such a solar cell module may include a plurality of solar cells including a substrate and a photoactive layer disposed on the substrate and positioned between the first electrode, the second electrode, and the first electrode and the second electrode. .
  • at least a part of the second electrode may be positioned on the photoactive layer of the neighboring solar cell, and a conductive channel may be located between the second electrode and the first electrode of the neighboring solar cell.
  • This conductive channel may be located in a layer between the second electrode and the first electrode of the neighboring solar cell.
  • nanostructures may be further included in the photoactive layer to induce efficient formation of conductive channels.
  • Another aspect of the present invention to achieve the above object provides a solar cell module manufacturing method.
  • the solar cell module manufacturing method includes the steps of forming a plurality of first electrodes spaced apart on a substrate, forming a photoactive layer on the entire surface of the substrate on which the first electrode is formed, and a plurality of spaced apart on the photoactive layer. Forming a plurality of solar cells by forming a second electrode, wherein at least a portion of the second electrode is positioned on the photoactive layer of the neighboring solar cell; and the solar cell neighboring the second electrode. And applying an electric field to the first electrode of the to form a conductive channel.
  • unlike the conventional solar cell module can provide a solar cell module having a structure that forms a thin film on the entire surface except the electrode.
  • FIG. 1 is a cross-sectional view showing a solar cell module according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a solar cell module according to another embodiment of the present invention.
  • 3 to 5 are cross-sectional views illustrating a method of manufacturing a solar cell module according to an embodiment of the present invention, according to process steps.
  • first, second, etc. may be used to describe various elements, components, regions, layers, and / or regions, such elements, components, regions, layers, and / or regions It will be understood that it should not be limited by these terms.
  • FIG. 1 is a cross-sectional view showing a solar cell module according to an embodiment of the present invention.
  • the solar cell module is positioned on the substrate 100 and the substrate 100, and includes the first electrode 200, the second electrode 600, and the first electrode 200 and the second electrode ( It includes a plurality of solar cells including a photoactive layer 400 positioned between 600.
  • the second electrode 600 is positioned on the photoactive layer 400 of the neighboring solar cell, and is conductive between the second electrode 600 and the first electrode 200 of the neighboring solar cell. Characterized in that the channel 700 is located.
  • each solar cell is classified based on the region of the first electrode.
  • a portion where the first electrode and the second electrode of each solar cell overlap with each other is defined as an active area, and a portion where the second electrode of the solar cell adjacent to the first electrode of the solar cell overlaps. Defined as a connective area.
  • an entire area of the solar cell module is defined as an inactive area except for an active area of each solar cell.
  • the first charge transport layer 300 may be further included between the first electrode 200 and the photoactive layer 400.
  • the second charge transport layer 500 may be further included between the photoactive layer 400 and the second electrode 600.
  • the first charge transport layer 300 or the second charge transport layer 500 may be omitted.
  • the substrate 100 may be a transparent inorganic substrate selected from glass, quartz, Al 2 O 3 or SiC, or polyethylene terephthlate (PET), polyethersulfone (PES), polystyrene (PS), polycarbonate (PC), polyimide (PI), It may be a transparent organic substrate selected from polyethylene naphthalate (PEN) or polyarylate (PAR).
  • PET polyethylene terephthlate
  • PES polyethersulfone
  • PS polystyrene
  • PC polycarbonate
  • PI polyimide
  • PEN polyethylene naphthalate
  • PAR polyarylate
  • the plurality of first electrodes 200 are positioned on the substrate 100. In this case, the plurality of first electrodes 200 may be spaced apart from each other on the substrate 100.
  • the first electrode 200 may serve as a cathode or an anode according to the type of the charge transport layer 300 disposed on the first electrode 200.
  • the first electrode 200 serves as an anode for collecting holes generated in the photoactive layer 400. Can be done.
  • the first electrode 200 may serve as a cathode for collecting electrons generated in the photoactive layer 400. Can be.
  • the first electrode 200 is preferably a material having transparency to transmit light.
  • the first electrode 200 may be formed of a carbon allotrope such as carbon nanotube (CNT), graphene, transparent conductive oxide (TCO) such as ITO, doped ZnO, MgO, or the like.
  • CNT carbon nanotube
  • TCO transparent conductive oxide
  • conductive polymer materials such as polyacetylene, polyaniline, polythiophene, polypyrrole, and the like may be used, and metal grid wiring printed by deposition or ink to improve the conductivity of these materials may be used. Can be added.
  • the first charge transport layer 300 is located on the first electrode 200.
  • the first charge transport layer 300 may be entirely located on the substrate 100 on which the plurality of first electrodes 200 are located. That is, the first charge transport layer 300 does not require a pattern process for series connection between each solar cell as in the prior art.
  • the first charge transport layer 300 captures electrons or holes separated from the photoactive layer 400 and transports the electrons or holes to the first electrode 200.
  • the first charge transport layer 300 may be a hole transport layer or an electron transport layer.
  • such a hole transport layer may be PEDOT: PSS (poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate)), polythioophenylenevinylene , Polyvinylcarbazole, polyparaphenylenevinylene, and derivatives thereof.
  • PSS poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate)
  • polythioophenylenevinylene polyvinylcarbazole
  • polyparaphenylenevinylene polyparaphenylenevinylene
  • the present invention is not limited thereto, and various types of organic materials that may increase the work function of the first electrode 200 in contact with the hole transport layer may be used.
  • molybdenum oxide, vanadium oxide, tungsten oxide, or the like, which is a metal oxide semiconductor doped with p-type may be used.
  • the electron transport layer may be a fullerene (C60, C70, C80) or a fullerene derivative PCBM ([6,6] -phenyl-C61 butyric acid methyl ester) (PCBM (C60)). , PCBM (C70), PCBM (C80)).
  • PCBM C60
  • PCBM PCBM
  • PCBM PCBM
  • PCBM PCBM
  • C80 PCBM
  • the present invention is not limited thereto, and various types of organic materials capable of reducing the work function of the first electrode 200 in contact with the electron transport layer may be used.
  • titanium oxide (TiO x ) or zinc oxide (ZnO), which is a metal oxide semiconductor doped with n-type may be used.
  • the photoactive layer 400 is located on the first charge transport layer 300.
  • the photoactive layer 400 may be entirely located on the first charge transport layer 300. That is, the photoactive layer 400 of the present invention does not require a pattern process for series connection between each solar cell, unlike the prior art.
  • the photoactive layer 400 when the first charge transport layer 300 is omitted, the photoactive layer 400 will be located entirely on the substrate 100 on which the plurality of first electrodes 200 are located.
  • the photoactive layer 400 absorbs light irradiated to the solar cell and forms an electron hole pair, that is, an exciton, in an excited state.
  • the photoactive layer 400 may have a bulk hetero junctuin structure or a bilayer structure of an electron donor material and an electron acceptor material.
  • the electron donor material may include an organic material that absorbs light.
  • the electron donor material is poly-3-hexylthiophene (P3HT), poly-3-poly-3-octylthiophene (poly-3-octylthiophene, P3OT), polyparaphenylenevinylene [poly-p-phenylenevinylene, PPV], poly (dioctylfluorene) [poly (9,9'-dioctylfluorene)], poly (2-methoxy, 5- (2-ethyl-hexyloxy) -1, 4-phenylenevinylene) [poly (2-methoxy, 5- (2-ethyle-hexyloxy) -1,4-phenylenevinylene, MEH-PPV] or poly (2-methyl, 5- (3 ', 7'- Dimethyloctyloxy))-1,4-phenylenevinylene [poly (2-methyl, 5- (3 ', 7'-
  • the electron acceptor is a fullerene (C60, C70, C80) or a fullerene derivative PCBM ([6,6] -phenyl-C61 butyric acid methyl ester) (PCBM (C60), PCBM (C70), PCBM (C80) ), May be an organic material including carbon nanotubes or graphene, and may be an inorganic material including metal oxides such as ZnO, TiO 2 , SnO 2, and the like.
  • the present invention is not limited thereto, and various materials capable of receiving electrons from the photoactivated electron donor material may be used.
  • the nanostructure 410 may be further included in the photoactive layer 400.
  • the nanostructure 410 may include metal nanoparticles, metal nanowires, CNTs, or graphene.
  • the photoactive layer 400 may further include silver nanoparticles.
  • the nanostructure 410 serves to efficiently form the conductive channel 700 between the second electrode 600 and the first electrode 300 of the neighboring solar cell.
  • the conductive channel 700 may be formed between the opposite electrodes of neighboring solar cells by applying an electric field by connecting the opposite electrodes of each solar cell.
  • the nanostructure 410 is further included in the photoactive layer 400 positioned between the opposite electrodes of the neighboring solar cell, thereby inducing the conductive channel 700 to be formed more efficiently.
  • the nanostructure 410 may minimize the problem of device destruction that may occur when a strong electric field is applied to form the conductive channel 700.
  • the second charge transport layer 500 is located on the photoactive layer 400.
  • the second charge transport layer 500 may be entirely located on the photoactive layer 400. That is, unlike the related art, the second charge transport layer 500 does not require a pattern process for series connection between each solar cell.
  • the second charge transport layer 500 captures electrons or holes separated from the photoactive layer 400 and transports them to the second electrode 600.
  • the second charge transport layer 500 may be a hole transport layer or an electron transport layer.
  • the same material as the hole transport layer or the electron transport layer of the first charge transport layer 300 may be used as the hole transport layer or the electron transport layer.
  • the plurality of second electrodes 600 is positioned on the second charge transport layer 500. In this case, the plurality of second electrodes 600 may be spaced apart from the second charge transport layer 500.
  • the first electrode 200a, 200b, 200c, the second electrode 600a, 600b, 600c and the first electrode 200a, 200b, 200c and the second electrode (600a, 600b, 600c) is located between A plurality of solar cells including the first charge transport layer 300, the photoactive layer 400, and the second charge transport layer 500 may be formed.
  • the second electrode 600 may be located on the second charge transport layer 500 of the neighboring solar cell.
  • part of the second electrode 600b may be located on the second charge transport layer 500 of the solar cell, and part of the second electrode 600b may be located on the second charge transport layer 500 of the neighboring solar cell.
  • the overlapping portion of the second electrode 600 and the first electrode 200 of the neighboring solar cell is formed so that the second electrode 600 is electrically connected to the first electrode 200 of the neighboring solar cell.
  • the conductive channel 700 may be formed between the second electrode 600 and the first electrode 200 of the neighboring solar cell.
  • the second charge transport layer 500 when the second charge transport layer 500 is omitted, at least a portion of the second electrode 600 will be located on the photoactive layer 400 of the neighboring solar cell.
  • the second electrode 600 may serve as a cathode or an anode according to the type of the second charge transport layer 500.
  • the second electrode 600 serves as an anode for collecting holes generated in the photoactive layer, and the second charge transport layer 500 is an electron transport layer.
  • the second electrode 600 may serve as a cathode for collecting electrons generated in the photoactive layer.
  • the second electrode 600 may be any one metal electrode selected from Al, Au, Cu, Pt, Ag, W, Ni, Zn, or Ti and alloys thereof.
  • conductive polymer materials such as polyacetylene, polyaniline, polythiophene, polypyrrole, or the like may be used.
  • the first electrode 200 and the second electrode 600 described above may be used in reverse.
  • a metal electrode may be disposed as the first electrode 200, and in this case, when a conductive film having transparency is disposed as the second electrode 600, the metal electrode may operate as a solar cell that receives light from the top.
  • the conductive channel 700 is positioned between the second electrode 600 and the first electrode 200 of the neighboring solar cell. Thus, the conductive channel 700 electrically connects the second electrode 600 to the first electrode 200 of the neighboring solar cell.
  • the conductive channel may be located in a layer between the second electrode 600 and the first electrode 200 of the neighboring solar cell.
  • the conductive channel 700a may be located in a layer between the second electrode 600b and the first electrode 200a of the neighboring solar cell. That is, the conductive channel 700 may be formed through the layer between the second electrode 600 and the first electrode 600 of the neighboring solar cell.
  • the first charge transport layer 300, the photoactive layer 400, and the second charge transport layer 500 are sequentially positioned between the second electrode 600 and the first electrode 200 of the neighboring solar cell.
  • the conductive channel 700 may be located through the first charge transport layer 300, the photoactive layer 400, and the second charge transport layer 500.
  • the present invention is not limited thereto, and the conductive channel 700 may be formed only in the photoactive layer 400.
  • the conductive channel 700 may be located in the photoactive layer 400. Can be.
  • FIG. 2 is a cross-sectional view showing a solar cell module according to another embodiment of the present invention.
  • a solar cell module may include a stacked solar cell in which a substrate 100 and a plurality of photoactive layers 400 are stacked.
  • the present invention is a structure in which the entire thin film is formed without patterning all the layers except the electrode, when the method is applied to the stacked solar cell, the module efficiency can be further maximized.
  • 3 to 5 are cross-sectional views illustrating a method of manufacturing a solar cell module according to an embodiment of the present invention, according to process steps.
  • a plurality of first electrodes 200 constituting each solar cell spaced apart from the substrate 100 are formed.
  • the second electrode 600 may be formed using various methods such as thermal evaporation, sputtering, or printing using a metal ink or a conductive material.
  • the ITO may be coated on the entire surface of the substrate 100 using a sputtering method, and may be etched at a predetermined interval to form a plurality of first electrodes 200.
  • the first charge transport layer 300, the photoactive layer 400, and the second charge transport layer 500 are formed on the substrate 100 on which the plurality of first electrodes 200 are formed. In some cases, the first charge transport layer 300 or the second charge transport layer 500 may be omitted.
  • the first charge transport layer 300 and the second charge transport layer 500 may be performed by appropriately selecting a solution process such as slot die printing, screen printing, inkjet printing, gravure printing, or offset printing as necessary. have.
  • the photoactive layer 400 may be appropriately selected from the coating or printing process, such as slot die printing, screen printing, inkjet printing, gravure printing, offset printing, doctor blade coating, knife edge coating, dip coating, spray coating, etc. as necessary Can be carried out, and processes such as deposition can be carried out.
  • coating or printing process such as slot die printing, screen printing, inkjet printing, gravure printing, offset printing, doctor blade coating, knife edge coating, dip coating, spray coating, etc. as necessary Can be carried out, and processes such as deposition can be carried out.
  • the number of patterns can be reduced to minimize the inactive area required for the pattern.
  • the photoactive layer 400 at this time may further include a nanostructure (410).
  • the nanostructure 410 may include metal nanoparticles, metal nanowires, CNTs, or graphene.
  • the photoactive layer 400 may further include silver nanoparticles.
  • the formation of the conductive channel 700 can be induced more efficiently. Furthermore, it is possible to minimize the problem of device destruction that may occur when a strong electric field is applied to form the conductive channel 700.
  • a plurality of second electrodes 600 spaced apart from each other on the photoactive layer 400 is formed to form a plurality of solar cells.
  • the second electrode 600 may be formed using a variety of methods such as thermal evaporation, sputtering, or printing using a metal ink or a conductive material.
  • a plurality of second electrodes 600 may be formed by thermally depositing and patterning Al on the photoactive layer 400 using a metal mask.
  • At least a part of the second electrode 600 may be formed on the first electrode 200 of the neighboring solar cell.
  • the second electrode 600b overlaps with the first electrode 200a of the neighboring solar cell.
  • the conductive channel 700 is formed by applying an electric field to the first electrode 200 of the solar cell neighboring the second electrode 600.
  • the conductive channel may be formed by applying a program voltage or a predetermined high voltage between the second electrode and the first electrode of the neighboring solar cell.
  • conductive filaments are formed inside the organic material when a reverse voltage is applied to opposite electrodes between neighboring solar cells to exceed a predetermined voltage. This is similar in principle to electrical breakdown.
  • the conductive filaments thus formed may be described as conductive channels.
  • the conductive channel 700 may be formed in the charge transport layer 500.
  • the electrical post-treatment may be used to perform a series connection between solar cells without patterning the first charge transport layer 300, the photoactive layer 400, and the second charge transport layer 500.
  • the number of patterns can be reduced to minimize the area for series connection between solar cells, thereby minimizing the inactive area of the solar cell module.
  • the efficiency of the solar cell module can be increased by increasing the geometric fill factor of the solar cell module.
  • a solar cell module sample was prepared according to an embodiment of the present invention.
  • the ITO electrode is applied to the entire surface by using a sputter on the glass substrate, and the pattern is etched at a predetermined interval to form three first electrodes spaced apart, and the PEDOT on the glass substrate on which the first electrode is located:
  • the first charge transport layer was formed entirely on the PSS through spin coating.
  • PC 70 BM which is a mixture of conjugated polymer as electron donor and PC 70 BM as electron acceptor, was spin coated on the first charge transport layer to form a photoactive layer on the entire surface.
  • the aluminum electrode was patterned by vacuum thermal deposition using a metal mask on the photoactive layer to form three second electrodes spaced apart from each other to form three solar cells.
  • the second electrode was disposed such that at least a part thereof was positioned on the photoactive layer of the neighboring solar cell.
  • the first charge transport layer and the photoactive layer are positioned between the ITO electrode and the aluminum electrode in the connection region where the opposite electrodes between the solar cells overlap.
  • a positive voltage is connected to the aluminum electrode of one solar cell and a negative voltage to the ITO electrode of the solar cell neighboring the one solar cell, and an electric field is applied to the aluminum electrode.
  • a conductive channel was formed between the ITO electrodes.
  • a conductive channel is formed by connecting an opposite electrode between neighboring solar cells to form a conductive channel to form a series connection between the solar cells.
  • the current-voltage curve of the solar cell module manufactured by Preparation Example 1 was analyzed.
  • an open voltage VOC is 1.9 V and a short circuit current density J sc is 2.7 mA / cm 2 .
  • the fill factor (FF) is 0.37 and the light conversion efficiency (Efficiency) is 1.9%.
  • V oc is 0.63 V in a single solar cell of the photoactive material, and 1.9 V comes out because three solar cells are connected in series. Therefore, it can be seen that the series connection between the solar cells is effectively made.
  • a solar cell module sample was prepared according to an embodiment of the present invention.
  • a small amount of silver nanoparticles was added to the photoactive layer, and the solar cell module was manufactured in the same manner as in Preparation Example 1 except that the TiO x layer was formed as the second charge transport layer on the photoactive layer.
  • the current-voltage curve of the solar cell module manufactured by Preparation Example 2 was analyzed.
  • Table 1 is a table analyzing the current-voltage curve of the solar cell module manufactured by Preparation Example 2.
  • ⁇ A is the efficiency considering only the active area and ⁇ M is the efficiency of the solar cell module, which is a product of ⁇ A multiplied by the active area / total area. to be.
  • the finally completed solar cell module exhibits a high light conversion efficiency of 5.57% by applying an electric field to form a conductive channel.
  • the solar cell module according to the present invention does not require the patterning process of layers except for the electrode, the number of patterns is reduced to minimize the inactive area required for the pattern, thereby increasing the geometric fill factor.
  • the solar cell module efficiency can be increased.
  • substrate 200, 200a, 200b, 200c first electrode
  • nanostructure 500 second charge transport layer
  • 700, 700a, 700b, 700c conductive channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

태양전지 모듈 및 이의 제조방법을 제공한다. 태양전지 모듈은 기판 및 상기 기판 상에 위치하되, 제1 전극, 제2 전극 및 상기 제1 전극과 상기 제2 전극 사이에 위치하는 광활성층을 포함하는 다수의 태양전지 셀을 포함하고, 상기 제2 전극의 적어도 일부는 이웃하는 태양전지 셀의 광활성층 상에 위치하고, 상기 제2 전극과 이웃하는 태양전지 셀의 제1 전극 사이에 전도성 채널이 위치한다. 따라서, 전극을 제외한 모든 층을 전면적으로 박막을 형성시키는 구조의 태양전지 모듈을 제공할 수 있다. 또한, 각 태양전지 셀의 활성 영역을 증가시켜 모듈 효율이 향상된 태양전지 모듈을 제공할 수 있다.

Description

태양전지 모듈 및 이의 제조방법
본 발명은 태양전지 모듈 및 이의 제조방법에 관한 것으로, 보다 상세하게는 태양전지 모듈을 구성하는 개별 태양전지 셀간의 반대전극 사이에 전도성 채널을 형성하여 개별 태양전지 셀간 직렬 연결시킨 구조 및 성능이 개선된 태양전지 모듈 및 이의 제조방법에 관한 것이다.
유기 태양전지의 단위소자(혹은 셀, cell) 효율이 상용화 가능할 정도로 증가됨에 따라, 태양전지 셀을 연속적으로 연결한 유기 태양전지 모듈에 대한 연구가 활발히 진행되고 있다.
또한, 유기물의 용액공정이 가능하다는 장점 때문에, 유기 태양전지 모듈 제작에 프린팅 공정을 도입하여 저가의 유기 태양전지 모듈을 제작하는 연구가 특히 각광받고 있다.
가장 널리 사용되는 기존의 유기 태양전지 모듈은 기판(Substrate) 위에 패턴된 제1 전극, 패턴된 제1 전하 수송층(정공 수송층 또는 전자 수송층), 패턴된 광활성 층(Active layer), 패턴된 제2 전하 수송층(전자 수송층 또는 정공 수송층) 및 패턴된 제2 전극이 차례로 적층된 형태이다.
기존의 유기 태양전지 모듈에서는 각 태양전지 셀의 반대전극을 연속적으로 연결시키기 위해 약간씩 각층을 이동(Shift)시켜 박막을 형성시켜야 한다. 이때, 각 태양전지 셀이 가지고 있는 스스로의 반대전극끼리 맞닿으면 모듈로써 작동하지 않게 된다.
따라서, 기존의 유기 태양전지 모듈은 제1 전극 및 제2 전극 뿐만 아니라 제1 전하 수송층, 광활성층 및 제2 전하 수송층도 패턴을 해야 하는데, 이는 제1 유기 태양전지 셀의 제1 전극과 제2 유기 태양전지 셀의 제2 전극이 다른 층의 장애 없이 바로 맞닿는 것을 의미한다.
그러나, 이러한 기존 모듈의 제작에 있어서 각 층을 약간씩 점진적으로 이동(shift)시키면서 박막을 패턴 해야 하므로, 이러한 패턴박막 제작 시에 박막의 정렬(Align)을 위한 고도의 패턴 기술이 요구되어 모듈제작을 어렵게 만들고, 결국 유기태양전지 모듈의 가격을 증가 시킬 수 있다.
또한, 이러한 패턴공정의 수가 증가함에 따라 각 태양전지 셀의 제1 전극과 제2 전극이 겹쳐지는 부분인 활성 영역(Active Area: 실제적으로 전기에너지를 형성시킬 수 있는 영역)을 감소시키고, 동시에 전극이 겹쳐지지 않는 부분인 비활성 영역(Inactive Area)을 증가시킨다.
따라서, 전체 태양전지 면적에서 데드 존(Dead Zone: 실제적으로 전기에너지를 형성시킬 수 없는 영역)을 증가시켜 태양전지 모듈 효율의 감소를 초래하는 문제점이 있다.
본 발명이 해결하고자 하는 과제는 박막의 정렬(Align)을 위한 고도의 패턴 기술이 요구되지 않는 태양전지 모듈을 제공함에 있다.
본 발명이 해결하고자 하는 다른 과제는 각 태양전지 셀의 활성 영역을 증가시켜 모듈 효율이 향상된 태양전지 모듈을 제공함에 있다.
본 발명이 해결하고자 하는 다른 과제는 이러한 태양전지 모듈의 제조방법을 제공함에 있다.
상기 과제를 이루기 위하여 본 발명의 일 측면은 태양전지 모듈을 제공한다. 이러한 태양전지 모듈은 기판 및 상기 기판 상에 위치하되, 제1 전극, 제2 전극 및 상기 제1 전극과 상기 제2 전극 사이에 위치하는 광활성층을 포함하는 다수의 태양전지 셀을 포함할 수 있다. 이 때, 상기 제2 전극의 적어도 일부는 이웃하는 태양전지 셀의 광활성층 상에 위치하고, 상기 제2 전극과 이웃하는 태양전지 셀의 제1 전극 사이에 전도성 채널이 위치할 수 있다.
이러한 전도성 채널은 제2 전극과 이웃하는 태양전지 셀의 제1 전극 사이의 층 내에 위치할 수 있다.
또한, 전도성 채널의 효율적인 형성을 유도하기 위하여 광활성층 내에 나노 구조체를 더 포함할 수 있다.
상기 과제를 이루기 위하여 본 발명의 다른 측면은 태양전지 모듈 제조방법을 제공한다.
이러한 태양전지 모듈 제조방법은 기판 상에 이격 배치된 다수의 제1 전극을 형성하는 단계, 상기 제1 전극이 형성된 기판 상에 전면적으로 광활성층을 형성하는 단계, 상기 광활성층 상에 이격 배치된 다수의 제2 전극을 형성하여 다수의 태양전지 셀을 형성하되, 상기 제2 전극의 적어도 일부는 이웃하는 태양전지 셀의 광활성층 상에 위치하도록 형성하는 단계 및 상기 제2 전극과 이웃하는 태양전지 셀의 제1 전극에 전기장을 인가하여 전도성 채널을 형성하는 단계를 포함할 수 있다.
본 발명에 따르면, 기존의 태양전지 모듈과 달리 전극을 제외한 모든 층을 전면적으로 박막을 형성시키는 구조의 태양전지 모듈을 제공할 수 있다.
따라서, 패턴공정에 필요한 비활성 영역을 감소시키고, 각 태양전지 셀의 활성 영역을 증가시켜 모듈 효율이 향상된 태양전지 모듈을 제공할 수 있다.
또한, 박막의 정렬(Align)을 위한 고도의 패턴 기술이 요구되지 않는 태양전지 모듈 제조방법을 제공할 수 있다.
본 발명의 기술적 효과들은 이상에서 언급한 것들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 태양전지 모듈을 나타낸 단면도이다.
도 2는 본 발명의 다른 실시예에 따른 태양전지 모듈을 나타낸 단면도이다.
도 3 내지 도 5는 본 발명의 일 실시예에 따른 태양전지 모듈의 제조방법을 공정단계에 따라 나타낸 단면도들이다.
도 6은 본 발명의 제조예 1에 따른 태양전지 모듈의 전류-전압 곡선 그래프이다.
도 7은 본 발명의 제조예 2에 따른 태양전지 모듈의 전류-전압 곡선 그래프이다.
이하, 첨부된 도면을 참고하여 본 발명에 의한 실시예를 상세히 설명하면 다음과 같다.
본 발명이 여러 가지 수정 및 변형을 허용하면서도, 그 특정 실시예들이 도면들로 예시되어 나타내어지며, 이하에서 상세히 설명될 것이다. 그러나 본 발명을 개시된 특별한 형태로 한정하려는 의도는 아니며, 오히려 본 발명은 청구항들에 의해 정의된 본 발명의 사상과 합치되는 모든 수정, 균등 및 대용을 포함한다.
층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다.
비록 제1, 제2 등의 용어가 여러 가지 요소들, 성분들, 영역들, 층들 및/또는 지역들을 설명하기 위해 사용될 수 있지만, 이러한 요소들, 성분들, 영역들, 층들 및/또는 지역들은 이러한 용어에 의해 한정되어서는 안 된다는 것을 이해할 것이다.
도 1은 본 발명의 일 실시예에 따른 태양전지 모듈을 나타낸 단면도이다.
도 1을 참조하면, 태양전지 모듈은 기판(100) 및 이러한 기판(100) 상에 위치하되, 제1 전극(200), 제2 전극(600) 및 제1 전극(200)과 제2 전극(600) 사이에 위치하는 광활성층(400)을 포함하는 다수의 태양전지 셀을 포함한다.
이 때, 제2 전극(600)의 적어도 일부는 이웃하는 태양전지 셀의 광활성층(400) 상에 위치하고, 제2 전극(600)과 이웃하는 태양전지 셀의 제1 전극(200) 사이에 전도성 채널(700)이 위치하는 것을 특징으로 한다.
한편, 각 태양전지 셀은 제1 전극의 영역을 기준으로 구분한다. 또한, 각 태양전지 셀의 제1 전극과 제2 전극이 겹치는 부분을 활성 영역(active area)으로 정의하고, 당해 태양전지 셀의 제1 전극과 이웃하는 태양전지 셀의 제2 전극이 겹치는 부분을 연결 영역(connective area)으로 정의한다.
또한, 전체 태양전지 모듈에서 각 태양전지 셀의 활성 영역(active area)을 제외한 나머지 영역을 비활성 영역(inactive area)으로 정의한다.
한편, 제1 전극(200) 및 광활성층(400) 사이에 위치하는 제1 전하 수송층(300)을 더 포함할 수 있다. 또한, 광활성층(400) 및 제2 전극(600) 사이에 위치하는 제2 전하 수송층(500)을 더 포함할 수 있다. 다만, 경우에 따라 제1 전하 수송층(300) 또는 제2 전하 수송층(500)은 생략할 수 있다.
기판(100)은 유리, 석영(quartz), Al2O3 또는 SiC 등에서 선택된 투명 무기물 기판 또는 PET(polyethylene terephthlate), PES(polyethersulfone), PS(polystyrene), PC(polycarbonate), PI(polyimide), PEN(polyethylene naphthalate) 또는 PAR(polyarylate) 등에서 선택된 투명 유기물 기판일 수 있다.
다수의 제1 전극(200)은 기판(100) 상에 위치한다. 이 때, 다수의 제1 전극(200)은 기판(100) 상에 서로 이격되어 배치될 수 있다.
이러한 제1 전극(200)은 제1 전극(200) 상에 배치되는 전하 수송층(300)의 종류에 따라 음극(cathode) 또는 양극(anode)의 역할을 수행할 수 있다.
예컨대, 상기 제1 전극(200) 상에 전하 수송층(300)으로서 정공 수송층이 배치되는 경우, 상기 제1 전극(200)은 광활성층(400)에서 발생한 정공을 수집하는 양극(anode)의 역할을 수행할 수 있다.
또한, 제1 전극(200) 상에 전하 수송층(300)으로서 전자 수송층이 배치되는 경우, 제1 전극(200)은 광활성층(400)에서 발생한 전자를 수집하는 음극(cathode)의 역할을 수행할 수 있다.
이러한 제1 전극(200)은 광을 투과시키기 위해 투명성을 가지는 물질인 것이 바람직하다. 예컨대, 제1 전극(200)은 탄소나노튜브(CNT), 그래핀 등의 탄소동소체, ITO, 도핑된 ZnO, MgO 등과 같은 투명성 전도성 산화물(TCO)로 구성될 수 있다.
또한, 폴리아세틸렌(polyacetylene), 폴리아닐린(polyaniline), 폴리티오펜(polythiophene), 폴리피롤(polypyrrole) 등과 같은 전도성 고분자 물질을 사용할 수 있으며, 이들 물질의 전도도 개선을 위하여 증착 또는 잉크로 인쇄된 금속 그리드 배선이 추가될 수 있다.
제1 전하 수송층(300)은 제1 전극(200) 상에 위치한다. 이러한 제1 전하 수송층(300)은 다수의 제1 전극(200)이 위치하는 기판(100) 상에 전면적으로 위치할 수 있다. 즉, 제1 전하 수송층(300)은 종래와 같이 각 태양전지 셀간의 직렬연결을 위한 패턴공정이 요구되지 않는다.
이러한 제1 전하 수송층(300)은 광활성층(400)에서 분리된 전자 또는 정공을 포착하여 제1 전극(200)으로 수송하는 기능을 수행한다.
이러한 제1 전하 수송층(300)은 정공 수송층 또는 전자 수송층일 수 있다.
제1 전하 수송층(300)이 정공 수송층인 경우, 이러한 정공 수송층은 PEDOT:PSS(폴리(3,4-에틸렌디옥시티오펜):폴리(스티렌설포네이트)), 폴리티오페닐렌비닐렌(polyhiophenylenevinylene), 폴리비닐카바졸(polyvinylcarbazole), 폴리파라페닐렌비닐렌(poly-p-phenylenevinylene) 및 이들의 유도체일 수 있다. 다만, 이에 한정되는 것은 아니며, 정공 수송층과 접하는 제1 전극(200)의 일함수를 증가시킬 수 있는 다양한 형태의 유기물이 사용될 수 있다. 또한, p-타입으로 도핑된 금속산화물 반도체인 몰리브덴 옥사이드, 바나듐 옥사이드 또는 텅스텐 옥사이드 등이 사용될 수 있다.
제1 전하 수송층(300)이 전자 수송층인 경우, 이러한 전자 수송층은 풀러렌(C60, C70, C80) 또는 풀러렌 유도체인 PCBM([6,6]-phenyl-C61 butyric acid methyl ester)(PCBM(C60), PCBM(C70), PCBM(C80))일 수 있다. 다만, 이에 한정되는 것은 아니며, 상기 전자 수송층과 접하는 제1 전극(200)의 일함수를 감소시킬 수 있는 다양한 형태의 유기물이 사용될 수 있다. 또한, n-타입으로 도핑된 금속산화물 반도체인 타이타늄 옥사이드(TiOx) 또는 아연 옥사이드(ZnO) 등이 사용될 수 있다.
광활성층(400)은 제1 전하 수송층(300) 상에 위치한다. 이러한 광활성층(400)은 제1 전하 수송층(300) 상에 전면적으로 위치할 수 있다. 즉, 본발명의 광활성층(400)은 종래와 달리 각 태양전지 셀간의 직렬연결을 위한 패턴공정이 요구되지 않는다. 한편, 제1 전하 수송층(300)이 생략된 경우, 광활성층(400)은 다수의 제1 전극(200)이 위치하는 기판(100) 상에 전면적으로 위치될 것이다.
이러한 광활성층(400)은 태양전지에 조사된 광을 흡수하며 여기 상태의 전자정공 쌍 즉, 엑시톤(exiton)을 형성하는 역할을 수행한다.
이러한 광활성층(400)은 전자주게 물질과 전자받게 물질의 벌크 헤테로 접합(bulk hetero junctuin) 구조 또는 이중층(bilayer)구조일 수 있다.
전자주게 물질은 광을 흡수하는 유기물을 포함할 수 있다. 예컨대, 전자주게 물질은 폴리-3-헥실티오펜[poly-3-hexylthiophene, P3HT], 폴리-3-폴리-3-옥틸티오펜[poly-3-octylthiophene, P3OT], 폴리파라페닐렌비닐렌[poly-p-phenylenevinylene, PPV], 폴리(디옥틸플루오렌)[poly(9,9'-dioctylfluorene)], 폴리(2-메톡시,5-(2-에틸-헥실옥시)-1,4-페닐렌비닐렌)[poly(2-methoxy,5-(2-ethyle-hexyloxy)-1,4-phenylenevinylene, MEH-PPV] 또는 폴리(2-메틸,5-(3',7'-디메틸옥틸옥시))-1,4-페닐렌비닐렌[poly(2-methyl,5-(3',7'-dimethyloctyloxy))-1,4-phenylene vinylene, MDMO-PPV] 등과 이들의 변형물을 포함하는 공액고분자 또는 CuPc, ZnPc 등을 포함하는 유기 단분자를 사용할 수 있다.
또한, 상기 전자받게 물질은 풀러렌(C60, C70, C80) 또는 풀러렌 유도체인 PCBM([6,6]-phenyl-C61 butyric acid methyl ester)(PCBM(C60), PCBM(C70), PCBM(C80)), 탄소나노튜브 또는 그래핀을 포함하는 유기물일 수 있으며, ZnO, TiO2, SnO2 등의 금속산화물을 포함하는 무기물일 수 있다. 그러나, 이에 한정되는 것은 아니며, 광활성화된 전자주게 물질로부터 전자를 전달받을 수 있는 다양한 물질을 사용할 수 있다.
이러한 광활성층(400) 내에 나노 구조체(410)를 더 포함할 수 있다. 이러한 나노 구조체(410)는 금속 나노입자, 금속 나노와이어, CNT 또는 그래핀을 포함할 수 있다. 예를 들어, 광활성층(400)은 은 나노입자를 더 포함할 수 있다.
이러한 나노 구조체(410)는 제2 전극(600)과 이웃하는 태양전지 셀의 제1 전극(300) 사이에 전도성 채널(700)을 효율적으로 형성하도록 유도하는 역할을 한다.
예를 들어, 각 태양전지 셀의 반대전극을 연결하여 전기장(Electric Field)을 가해줌으로써 이웃하는 태양전지 셀의 반대전극 사이에 전도성 채널(700)을 형성할 수 있다. 이 때, 이웃하는 태양전지 셀의 반대전극 사이에 위치하는 광활성층(400) 내에 나노 구조체(410)를 더 포함시킴으로써, 전도성 채널(700)이 보다 효율적으로 형성되도록 유도할 수 있다.
나아가, 이러한 나노 구조체(410)는 전도성 채널(700)을 형성하기 위해 강한 전기장을 인가시에 발생될 수 있는 소자 파괴 현상의 문제점을 최소화할 수 있다.
제2 전하 수송층(500)은 광활성층(400) 상에 위치한다. 이러한 제2 전하 수송층(500)은 광활성층(400) 상에 전면적으로 위치할 수 있다. 즉, 제2 전하 수송층(500)은 종래와 달리 각 태양전지 셀간의 직렬연결을 위한 패턴공정이 요구되지 않는다.
이러한 제2 전하 수송층(500)은 광활성층(400)에서 분리된 전자 또는 정공을 포착하여 제2 전극(600)으로 수송하는 기능을 수행한다.
이러한 제2 전하 수송층(500)은 정공 수송층 또는 전자 수송층일 수 있다. 이 때의 정공 수송층 또는 전자 수송층은 상술한 제1 전하 수송층(300)의 정공 수송층 또는 전자 수송층과 동일한 물질을 사용할 수 있다.
다수의 제2 전극(600)은 제2 전하 수송층(500) 상에 위치한다. 이 때의 다수의 제2 전극(600)은 제2 전하 수송층(500) 상에 이격하여 배치될 수 있다.
따라서, 제1 전극(200a, 200b, 200c), 제2 전극(600a, 600b, 600c) 및 제1 전극(200a, 200b, 200c) 및 제2 전극(600a, 600b, 600c) 사이에 위치하는 제 1 전하수송층(300), 광활성층(400) 및 제2 전하수송층(500)을 포함하는 다수의 태양전지 셀을 형성할 수 있다.
한편, 제2 전극(600)의 적어도 일부는 이웃하는 태양전지 셀의 제2 전하 수송층(500) 상에 위치할 수 있다. 예를 들어, 제2 전극(600b)의 일부는 당해 태양전지 셀의 제2 전하 수송층(500) 상에 위치하고, 일부는 이웃하는 태양전지 셀의 제2 전하 수송층(500) 상에 위치할 수 있다.
이는 결국 제2 전극(600b)의 적어도 일부가 이웃하는 태양전지 셀의 제1 전극(200a)과 겹쳐지는 부분이 형성됨을 의미한다.
이렇게 제2 전극(600)과 이웃하는 태양전지 셀의 제1 전극(200)이 겹쳐지는 부분이 형성됨으로써, 제2 전극(600)과 이웃하는 태양전지 셀의 제1 전극(200)에 전기적 후처리를 통하여 제2 전극(600)과 이웃하는 태양전지 셀의 제1 전극(200) 사이에 전도성 채널(700)을 형성할 수 있게 된다.
한편, 제2 전하 수송층(500)이 생략되는 경우, 제2 전극(600)의 적어도 일부는 이웃하는 태양전지 셀의 광활성층(400) 상에 위치할 것이다.
이러한 제2 전극(600)은 제2 전하 수송층(500)의 종류에 따라 음극(cathode) 또는 양극(anode)의 역할을 수행할 수 있다.
예컨대, 제2 전하 수송층(500)이 정공 수송층인 경우, 제2 전극(600)은 광활성층에서 발생한 정공을 수집하는 양극(anode)의 역할을 수행하며, 제2 전하 수송층(500)이 전자 수송층인 경우, 제2 전극(600)은 광활성층에서 발생한 전자를 수집하는 음극(cathode)의 역할을 수행할 수 있다.
이러한 제2 전극(600)은 Al, Au, Cu, Pt, Ag, W, Ni, Zn 또는 Ti 및 이들의 합금 중에서 선택되는 어느 하나의 금속 전극일 수 있다. 또한, 폴리아세틸렌(polyacetylene), 폴리아닐린(polyaniline), 폴리티오펜(polythiophene), 폴리피롤(polypyrrole) 등과 같은 전도성 고분자 물질을 사용할 수 있다.
상술한 제1 전극(200)과 제2 전극(600)은 반대로도 사용될 수 있다. 예컨대, 제1 전극(200)으로 금속 전극이 배치될 수 있으며, 이 때 제2 전극(600)으로 투명성을 가지는 전도막이 배치되는 경우 상부에서 수광하는 태양전지로 동작할 수 있다.
전도성 채널(700)은 제2 전극(600)과 이웃하는 태양전지 셀의 제1 전극(200) 사이에 위치한다. 따라서, 전도성 채널(700)은 제2 전극(600)과 이웃하는 태양전지 셀의 제1 전극(200)을 전기적으로 연결한다.
이 때, 전도성 채널은 제2 전극(600)과 이웃하는 태양전지 셀의 제1 전극(200) 사이의 층 내에 위치할 수 있다.
예들 들어, 도시된 바와 같이 전도성 채널(700a)은 제2 전극(600b)과 이웃하는 태양전지 셀의 제1 전극(200a) 사이의 층 내에 위치할 수 있다. 즉, 전도성 채널(700)은 제2 전극(600)과 이웃하는 태양전지 셀의 제1 전극(600) 사이의 층을 관통하여 형성될 수 있다.
예를 들어, 제2 전극(600)과 이웃하는 태양전지 셀의 제1 전극(200) 사이에 제1 전하 수송층(300), 광활성층(400) 및 제2 전하 수송층(500)이 차례로 위치하는 경우, 전도성 채널(700)은 이러한 제1 전하 수송층(300), 광활성층(400) 및 제2 전하 수송층(500)을 관통하여 위치될 수 있다. 다만, 이에 한정되지 않고, 전도성 채널(700)은 광활성층(400) 내에만 형성될 수도 있다.
다른 예로써, 제2 전극(600)과 이웃하는 태양전지 셀의 제1 전극(200) 사이에 광활성층(400)이 위치하는 경우, 전도성 채널(700)은 이러한 광활성층(400) 내에 위치될 수 있다.
도 2는 본 발명의 다른 실시예에 따른 태양전지 모듈을 나타낸 단면도이다.
도 2를 참조하면, 본 발명의 일 실시예에 따른 태양전지 모듈은 기판(100) 및 복수개의 광활성층(400)이 적층된 적층형 태양전지 셀을 포함할 수 있다.
이는 제1 전하 수송층(300), 광활성층(400) 및 제2 전하 수송층(500)을 복수회 반복 적층한 것을 제외하고는 도 1에서 설명한 내용과 동일하다.
이는 본 발명이 전극을 제외한 모든 층을 패턴하지 않고 전면적 박막을 형성시킨 구조이기 때문에, 이러한 방식을 적층형 태양전지에 적용할 경우, 모듈 효율 향상 면에서 더욱 극대화 될 수 있다.
도 3 내지 도 5는 본 발명의 일 실시예에 따른 태양전지 모듈의 제조방법을 공정 단계에 따라 나타낸 단면도들이다.
도 3을 참조하면, 기판(100) 상에 이격 배치된 각 태양전지 셀을 구성하는 다수의 제1 전극(200)을 형성한다.
이러한 제 2 전극(600)은 금속잉크나 전도성 물질 등을 이용하여 열증차, 스퍼터링법 또는 프린팅 기법 등을 다양한 방법을 이용하여 형성할 수 있다.
예를 들어, 기판(100) 상에 ITO를 스퍼터링법을 이용하여 전면에 도포시키고, 이를 일정 간격으로 에칭하여 다수의 제1 전극(200)을 형성할 수 있다.
그 다음에 다수의 제1 전극(200)이 형성된 기판(100) 상에 제1 전하 수송층(300), 광활성층(400) 및 제2 전하수송층(500)을 전면적으로 형성한다. 경우에 따라 제1 전하 수송층(300) 또는 제2 전하수송층(500)은 생략할 수 있다.
이러한 제1 전하수송층(300) 및 제2 전하수송층(500)은 슬롯다이 프린팅, 스크린 프린팅, 잉크젯 프린팅, 그라비아 프린팅 또는 오프셋 프린팅 등과 같은 용액 공정(solution process)을 필요에 따라 적절히 선택하여 수행할 수 있다.
또한, 광활성층(400)은 슬롯다이 프린팅, 스크린 프린팅, 잉크젯 프린팅, 그라비아 프린팅, 오프셋 프린팅, 닥터블레이드 코팅, 나이프 에지 코팅, 딥 코팅, 스프레이 코팅 등의 코팅 또는 프린팅 공정을 필요에 따라 적절히 선택하여 수행할 수 있으며, 증착과 같은 공정을 수행할 수 있다.
따라서, 제1 전하수송층(300), 광활성층(400) 및 제2 전하수송층(500)의 형성 시 별도의 패턴 공정이 요구 되지 않아 공정의 단순화를 꾀할 수 있는 이점이 있다.
또한, 패턴수가 감소되어 패턴에 필요한 비활성 영역(inactive area)을 최소화할 수 있다.
한편, 이 때의 광활성층(400)은 나노 구조체(410)를 더 포함할 수 있다. 이러한 나노 구조체(410)는 금속 나노입자, 금속 나노와이어, CNT 또는 그래핀을 포함할 수 있다. 예를 들어, 광활성층(400)은 은 나노입자를 더 포함할 수 있다.
이렇게 광활성층(400)에 나노 구조체가 더 포함됨으로써, 더 효율적으로 전도성 채널(700)의 형성을 유도할 수 있다. 나아가, 전도성 채널(700)을 형성하기 위해 강한 전기장을 인가 시에 발생될 수 있는 소자 파괴 현상의 문제점을 최소화할 수 있다.
그 다음에 광활성층(400) 상에 이격 배치된 다수의 제2 전극(600)을 형성하여 다수의 태양전지 셀을 형성한다.
이러한 제 2 전극(600)은 금속잉크나 전도성 물질 등을 이용하여 열증착, 스퍼터링법 또는 프린팅 기법 등을 다양한 방법을 이용하여 형성할 수 있다.
예를 들어, 광활성층(400) 상에 Al을 금속마스크를 이용하여 열증착하여 패턴함으로써 다수의 제 2전극(600)을 형성할 수 있다.
이 때, 제2 전극(600)의 적어도 일부는 이웃하는 태양전지 셀의 제1 전극(200)에 상에 위치하도록 형성할 수 있다.
따라서, 도시된 바와 같이 제2 전극(600b)의 적어도 일부가 이웃하는 태양전지 셀의 제1 전극(200a)과 겹쳐지는 부분이 형성된다.
도 4 및 도 5를 참조하면, 제2 전극(600)과 이웃하는 태양전지 셀의 제1 전극(200)에 전기장을 인가하여 전도성 채널(700)을 형성한다. 예를 들어, 제2 전극과 이웃하는 태양전지 셀의 제1 전극 사이에 프로그램 전압 또는 소정의 고전압을 인가하여 전도성 채널을 형성할 수 있다.
이는 이웃하는 태양전지 셀간의 반대 전극에 역 바이어스(reverse bias)를 인가하여 일정 전압을 상회하는 경우 유기물 내부에 도전성 필라멘트가 형성되는 것으로 설명될 수 있다. 이는 절연파괴현상(electrical breakdown)과 유사한 원리이다. 따라서, 이렇게 형성된 도전성 필라멘트가 전도성 채널로 설명될 수 있을 것이다.
예를 들어, 도 5에 도시된 바와 같이 제2 전극(600)과 이웃하는 태양전지 셀의 제1 전극(200) 사이에 위치하는 제1 전하 수송층(300), 광활성층(400) 및 제2 전하 수송층(500) 내에 전도성 채널(700)이 형성될 수 있다.
따라서, 이러한 전기적 후처리를 이용하여 제1 전하 수송층(300), 광활성층(400) 및 제2 전하 수송층(500)의 패턴 공정 없이 태양전지 셀 간의 직렬 연결을 수행할 수 있다.
나아가, 패턴수를 감소시켜 태양전지 셀간의 직렬연결을 위한 면적을 최소화하여 태양전지 모듈의 비활성 영역(inactive area)를 최소화할 수 있다. 결국 태양전지 모듈의 기하학적 충진율(Geometric Fill Factor)을 증가시켜 태양전지 모듈의 효율을 증가시킬 수 있다.
제조예 1
본 발명의 일 실시예에 따른 태양전지 모듈 샘플을 제조하였다.
먼저 유리 기판 상에 ITO 전극을 Sputter를 이용하여 전면에 도포시키고 이를 일정간격으로 에칭하여 패턴함으로써, 이격 배치된 3개의 제1 전극을 형성하고, 이러한 제1 전극이 위치하는 유리 기판 상에 PEDOT:PSS를 스핀코팅을 통해 전면적으로 제1 전하 수송층을 형성하였다.
그리고, 제1 전하 수송층 상에 전자주게로서 공액 폴리머(Conjugated Polymer)와 전자받게로서 PC70BM의 혼합물인 PTB:PC70BM를 스핀 코팅하여 전면적으로 광활성층을 형성하였다.
그 다음에, 광활성층 상에 알루미늄 전극을 금속 마스크를 이용하여 진공 열증착하여 패턴함으로써, 이격 배치된 3개의 제2 전극을 형성하여 3개의 태양전지 셀을 형성하였다. 이 때, 제2 전극은 적어도 일부가 이웃하는 태양전지 셀의 광활성층 상에 위치하도록 배치하였다.
이렇게 제작된 태양전지 모듈은 태양전지 셀간의 반대전극이 겹치는 연결 영역에서 ITO 전극과 알루미늄 전극 사이에 제1 전하 수송층과 광활성층이 위치하고 있다.
그 다음에 일 태양전지 셀의 알루미늄 전극에 (+) 전압을, 일 태양전지 셀에 이웃하는 태양전지 셀의 ITO 전극에 (-) 전압을 연결하여 전기장을 가하여 절연파괴현상을 이용하여 알루미늄 전극과 ITO 전극 사이에 전도성 채널을 형성하였다.
즉, 이웃하는 태양전지 셀간의 반대 전극을 연결하여 전기장을 가해 전도성 채널을 형성시켜 태양전지 셀간의 직렬 연결을 형성하였다.
실험예 1
제조예 1에 의해 제조된 태양전지 모듈의 전류-전압 곡선을 분석하였다.
도 6은 본 발명의 제조예 1에 따른 태양전지 모듈의 전류-전압 곡선 그래프이다.
도 6을 참조하면, 개방전압(Open Circuit Voltage, Voc)는 1.9 V이고 단락회로전류밀도(Jsc)는 2.7 mA/cm2이다. 또한, FF(Fill Factor)는 0.37이고 광전환 효율(Efficiency)는 1.9%이다.
따라서, 광활성 물질의 단일 태양전지 셀에서의 Voc는 0.63 V이고, 3개의 태양전지 셀이 직렬 연결되었으므로, 1.9 V가 나옴을 알 수 있다. 따라서, 효과적으로 태양전지 셀 간의 직렬 연결이 이루어졌음을 알 수 있다.
제조예 2
본 발명의 일 실시예에 따른 태양전지 모듈 샘플을 제조하였다.
광활성층 내에 은 나노입자를 소량 첨가하고, 이러한 광활성층 상에 제2 전하 수송층으로서 TiOx층을 형성한 것을 제외하고 상술한 제조예 1과 동일하게 수행하여 태양전지 모듈을 제조하였다.
실험예 2
제조예 2에 의해 제조된 태양전지 모듈의 전류-전압 곡선을 분석하였다.
도 7은 본 발명의 제조예 2에 따른 태양전지 모듈의 전류-전압 곡선 그래프이다.
표 1
Voc(V) Jsc(mA/cm2) FF ηA (%) ηM (%)
전기장 인가 전 0.68 3.53 0.29 0.70 0.63
전기장 인가 후 2.07 4.82 0.62 6.19 5.57
상기 표 1은 제조예 2에 의해 제조된 태양전지 모듈의 전류-전압 곡선을 분석한 표이다.
도 7 및 표 1을 참조하면, ηA는 활성 영역(Active Area)만을 고려한 효율이고 ηM은 태양전지 모듈의 효율로써 활성 영역(Active Area)/전체 면적(Total Area)을 ηA에 곱한 값이다.
따라서, 전기장(Electric Field)을 가하여 전도성 채널을 형성함으로써 최종적으로 완성된 태양전지 모듈은 5.57%의 높은 광전환 효율을 보임을 알 수 있다.
따라서, 광활성층 내에 은 나노입자를 추가함으로써 전도성 채널이 좀 더 효율적으로 유도되어 직렬 연결 되었음을 알 수 있다.
상술한 바와 같이 본 발명에 따른 태양전지 모듈은 전극을 제외한 층들의 패턴공정이 요구되지 않으므로, 패턴수가 감소되어 패턴에 필요한 비활성 영역(inactive area)을 최소화하여 기하학적 충진율(geometric fill factor)을 증가시키고 태양전지 모듈 효율을 증가시킬 수 있다.
한편, 본 명세서와 도면에 개시된 본 발명의 실시 예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시 예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.
[부호의 설명]
100: 기판 200, 200a, 200b, 200c: 제1 전극
300: 제1 전하수송층 400: 광활성층
410: 나노구조체 500: 제2 전하수송층
600, 600a, 600b, 600c: 제2 전극
700, 700a, 700b, 700c: 전도성 채널

Claims (14)

  1. 기판; 및
    상기 기판 상에 위치하되, 제1 전극, 제2 전극 및 상기 제1 전극과 상기 제2 전극 사이에 위치하는 광활성층을 포함하는 다수의 태양전지 셀을 포함하고,
    상기 제2 전극의 적어도 일부는 이웃하는 태양전지 셀의 광활성층 상에 위치하고,
    상기 제2 전극과 이웃하는 태양전지 셀의 제1 전극 사이에 전도성 채널이 위치하는 태양전지 모듈.
  2. 제1항에 있어서,
    상기 전도성 채널은 제2 전극과 이웃하는 태양전지 셀의 제1 전극 사이의 층 내에 위치하는 것을 특징으로 하는 태양전지 모듈.
  3. 제1항에 있어서,
    상기 전도성 채널은 제2 전극과 이웃하는 태양전지 셀의 제1 전극에 전기장을 인가하여 형성된 것을 특징으로 하는 태양전지 모듈.
  4. 제1항에 있어서,
    상기 광활성층은 상기 제1 전극이 위치하는 기판 상에 전면적으로 위치하는 것을 특징으로 하는 태양전지 모듈.
  5. 제1항에 있어서,
    상기 광활성층은 전자주게 물질과 전자받게 물질의 벌크 헤테로 접합(bulk hetero junctuin) 구조인 것을 특징으로 하는 태양전지 모듈.
  6. 제1항에 있어서,
    상기 광활성층 내에 나노 구조체를 더 포함하는 것을 특징으로 하는 태양전지 모듈.
  7. 제6항에 있어서,
    상기 나노 구조체는 금속 나노입자, 금속 나노와이어, CNT 또는 그래핀을 포함하는 태양전지 모듈.
  8. 제1항에 있어서, 상기 태양전지 셀은,
    상기 제1 전극 및 상기 광활성층 사이에 위치하는 제1 전하 수송층을 더 포함하는 것을 특징으로 하는 태양전지 모듈.
  9. 제1항에 있어서, 상기 태양전지 셀은,
    상기 광활성층 및 상기 제2 전극 사이에 위치하는 제2 전하 수송층을 더 포함하는 것을 특징으로 하는 태양전지 모듈.
  10. 제1항에 있어서,
    상기 태양전지 셀은 복수개의 광활성층이 적층된 적층형 태양전지 셀인 것을 특징으로 하는 태양전지 모듈.
  11. 기판 상에 이격 배치된 다수의 제1 전극을 형성하는 단계;
    상기 제1 전극이 형성된 기판 상에 전면적으로 광활성층을 형성하는 단계;
    상기 광활성층 상에 이격 배치된 다수의 제2 전극을 형성하여 다수의 태양전지 셀을 형성하되, 상기 제2 전극의 적어도 일부는 이웃하는 태양전지 셀의 광활성층 상에 위치하도록 형성하는 단계; 및
    상기 제2 전극과 이웃하는 태양전지 셀의 제1 전극에 전기장을 인가하여 전도성 채널을 형성하는 단계를 포함하는 태양전지 모듈 제조방법.
  12. 제11항에 있어서,
    상기 전도성 채널은 상기 제2 전극과 이웃하는 태양전지 셀의 제1 전극 사이의 층 내에 형성되는 것을 특징으로 하는 태양전지 모듈 제조방법.
  13. 제11항에 있어서,
    상기 광활성층은 나노 구조체를 더 포함하는 것을 특징으로 하는 태양전지 모듈 제조방법.
  14. 제13항에 있어서,
    상기 나노 구조체는 금속 나노입자, 금속 나노와이어, CNT 또는 그래핀을 포함하는 태양전지 모듈 제조방법.
PCT/KR2013/012267 2013-04-15 2013-12-27 태양전지 모듈 및 이의 제조방법 WO2014171615A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/784,578 US10468546B2 (en) 2013-04-15 2013-12-27 Solar cell module and method for manufacturing the same
CN201380075678.XA CN105164774B (zh) 2013-04-15 2013-12-27 太阳能电池模块及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0040876 2013-04-15
KR1020130040876A KR101440607B1 (ko) 2013-04-15 2013-04-15 태양전지 모듈 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2014171615A1 true WO2014171615A1 (ko) 2014-10-23

Family

ID=51731527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/012267 WO2014171615A1 (ko) 2013-04-15 2013-12-27 태양전지 모듈 및 이의 제조방법

Country Status (4)

Country Link
US (1) US10468546B2 (ko)
KR (1) KR101440607B1 (ko)
CN (1) CN105164774B (ko)
WO (1) WO2014171615A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160268532A1 (en) * 2015-03-09 2016-09-15 Kabushiki Kaisha Toshiba Solar cell module and method for manufacturing the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101539959B1 (ko) * 2015-01-06 2015-07-30 성안기계 (주) 유기 태양 전지 제조 방법
WO2017164690A1 (ko) * 2016-03-25 2017-09-28 코오롱인더스트리 주식회사 유기태양전지 및 이의 제조방법
KR102113536B1 (ko) * 2017-03-20 2020-05-21 코오롱인더스트리 주식회사 반투명 유기 태양전지 모듈
EP3493274A1 (de) * 2017-12-04 2019-06-05 Bengbu Design & Research Institute for Glass Industry Dünnschichtsolarmodul mit verbessertem shunt-widerstand
JP2019165073A (ja) * 2018-03-19 2019-09-26 株式会社リコー 太陽電池モジュール
CN108666426A (zh) * 2018-06-30 2018-10-16 中国科学院上海硅酸盐研究所 一种钙钛矿太阳能电池模块及其制备方法
CN112789728B (zh) * 2019-02-18 2024-04-12 爱普施恩有限公司 太阳能电池层压
KR102638380B1 (ko) * 2021-11-04 2024-02-19 고려대학교 산학협력단 태양전지 및 이를 포함하는 태양전지 모듈

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080107470A (ko) * 2006-03-18 2008-12-10 솔린드라, 인크. 비평면 태양 전지들의 모놀리식 집적
US20100065099A1 (en) * 2008-09-18 2010-03-18 General Electric Company Monolithically connected photovoltaic devices on flexible substrates
US20100236607A1 (en) * 2008-06-12 2010-09-23 General Electric Company Monolithically integrated solar modules and methods of manufacture
JP4975528B2 (ja) * 2007-06-25 2012-07-11 パナソニック株式会社 集積形太陽電池
WO2012106360A1 (en) * 2011-02-01 2012-08-09 EncoreSolar, Inc. Monolithic integration of super-strate thin film photovoltaic modules

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3483038A (en) * 1967-01-05 1969-12-09 Rca Corp Integrated array of thin-film photovoltaic cells and method of making same
US4517403A (en) * 1983-05-16 1985-05-14 Atlantic Richfield Company Series connected solar cells and method of formation
US7777128B2 (en) * 2004-06-01 2010-08-17 Konarka Technologies, Inc. Photovoltaic module architecture
GB0519599D0 (en) * 2005-09-26 2005-11-02 Imp College Innovations Ltd Photovoltaic cells
KR20080112250A (ko) * 2006-04-13 2008-12-24 시바 홀딩 인코포레이티드 광전지
JP2007317868A (ja) 2006-05-25 2007-12-06 Honda Motor Co Ltd カルコパイライト型太陽電池およびその製造方法
CN100524846C (zh) * 2007-01-26 2009-08-05 财团法人工业技术研究院 透光型薄膜太阳能电池模块及其制造方法
WO2008094517A1 (en) * 2007-01-30 2008-08-07 Solasta, Inc. Photovoltaic cell and method of making thereof
US20100243022A1 (en) 2007-11-02 2010-09-30 Nippon Kayaku Kabushiki Kaisha Dye-Sensitized Solar Cell Module
FR2954856B1 (fr) * 2009-12-30 2012-06-15 Saint Gobain Cellule photovoltaique organique et module comprenant une telle cellule
KR20120001045A (ko) * 2010-06-29 2012-01-04 코오롱인더스트리 주식회사 유기 태양 전지
KR101258185B1 (ko) * 2011-07-22 2013-04-25 광주과학기술원 태양전지 모듈 및 이의 제조방법
KR101815284B1 (ko) * 2011-09-27 2018-01-05 건국대학교 산학협력단 태양전지 모듈의 제조방법 및 이에 의하여 제조된 태양전지 모듈

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080107470A (ko) * 2006-03-18 2008-12-10 솔린드라, 인크. 비평면 태양 전지들의 모놀리식 집적
JP4975528B2 (ja) * 2007-06-25 2012-07-11 パナソニック株式会社 集積形太陽電池
US20100236607A1 (en) * 2008-06-12 2010-09-23 General Electric Company Monolithically integrated solar modules and methods of manufacture
US20100065099A1 (en) * 2008-09-18 2010-03-18 General Electric Company Monolithically connected photovoltaic devices on flexible substrates
WO2012106360A1 (en) * 2011-02-01 2012-08-09 EncoreSolar, Inc. Monolithic integration of super-strate thin film photovoltaic modules

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160268532A1 (en) * 2015-03-09 2016-09-15 Kabushiki Kaisha Toshiba Solar cell module and method for manufacturing the same

Also Published As

Publication number Publication date
CN105164774B (zh) 2017-12-05
US20160118522A1 (en) 2016-04-28
KR101440607B1 (ko) 2014-09-19
US10468546B2 (en) 2019-11-05
CN105164774A (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
WO2014171615A1 (ko) 태양전지 모듈 및 이의 제조방법
WO2014200312A1 (ko) 유기태양전지 및 이의 제조방법
WO2013015496A1 (ko) 태양전지 모듈 및 이의 제조방법
WO2013180361A1 (ko) 아민기를 갖는 비공액 고분자를 포함하는 유기전자소자용 기능층 및 이를 포함하는 유기전자소자
US10468599B2 (en) Patterned organic semiconductor layers
JP5663264B2 (ja) 有機薄膜太陽電池モジュールの製造方法
JP2013034033A (ja) 光起電性構成部材とその製造方法
WO2015167225A1 (ko) 유기태양전지 및 이의 제조방법
WO2018012825A1 (ko) 유무기 복합 태양전지
WO2011062457A2 (ko) 유기-무기 하이브리드 태양전지 및 그 제조방법
WO2014200309A1 (ko) 유기태양전지 및 이의 제조방법
WO2013012271A2 (ko) 태양전지용 광흡수층의 제조방법, 광흡수층을 포함하는 태양전지 및 이의 제조방법
WO2019039779A1 (ko) 유기 태양전지
WO2017217727A1 (ko) 유기 태양전지 및 이의 제조 방법
US20130333739A1 (en) Photovoltaic modules
KR102264457B1 (ko) 인쇄된 광전지 모듈 제조 방법
WO2015163658A1 (ko) 적층형 유기태양전지
KR101565338B1 (ko) 유기 태양 전지 및 이의 제조방법
WO2017069546A1 (ko) 금속 산화물 전자수집층의 일함수 저감용 조성물, 이를 이용한 역구조 유기 태양전지 및 상기 역구조 유기 태양전지의 제조방법
US20160268532A1 (en) Solar cell module and method for manufacturing the same
KR20090121314A (ko) 유기 전기 발광 반도체 소자 및 유기 전기 발광 반도체 소자의 수리 방법
WO2018174467A1 (ko) 반투명 유기 태양전지 모듈
WO2017155362A1 (ko) 유기 태양전지 및 이의 제조방법
WO2014086778A1 (en) Carbon nanotube material, devices and methods
WO2022169259A1 (ko) 역구조 유기태양전지 및 이의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380075678.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14784578

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.02.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13882318

Country of ref document: EP

Kind code of ref document: A1