WO2018174277A1 - 燃料ガス製造装置の運転方法 - Google Patents

燃料ガス製造装置の運転方法 Download PDF

Info

Publication number
WO2018174277A1
WO2018174277A1 PCT/JP2018/011889 JP2018011889W WO2018174277A1 WO 2018174277 A1 WO2018174277 A1 WO 2018174277A1 JP 2018011889 W JP2018011889 W JP 2018011889W WO 2018174277 A1 WO2018174277 A1 WO 2018174277A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel gas
unit
gas
temperature
desulfurization
Prior art date
Application number
PCT/JP2018/011889
Other languages
English (en)
French (fr)
Inventor
阿曽沼飛昂
清水翼
諫田貴哉
Original Assignee
大阪瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪瓦斯株式会社 filed Critical 大阪瓦斯株式会社
Priority to KR1020197030302A priority Critical patent/KR102464918B1/ko
Priority to US16/494,406 priority patent/US10870811B2/en
Priority to CN201880019993.3A priority patent/CN110418833B/zh
Priority to EP18771137.9A priority patent/EP3604485B1/en
Publication of WO2018174277A1 publication Critical patent/WO2018174277A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/004Sulfur containing contaminants, e.g. hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/12Liquefied petroleum gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/001Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by thermal treatment
    • C10K3/003Reducing the tar content
    • C10K3/006Reducing the tar content by steam reforming
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/103Sulfur containing contaminants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/04Specifically adapted fuels for turbines, planes, power generation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/06Heat exchange, direct or indirect
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/08Drying or removing water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/10Recycling of a stream within the process or apparatus to reuse elsewhere therein
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/14Injection, e.g. in a reactor or a fuel stream during fuel production
    • C10L2290/148Injection, e.g. in a reactor or a fuel stream during fuel production of steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/542Adsorption of impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/58Control or regulation of the fuel preparation of upgrading process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/60Measuring or analysing fractions, components or impurities or process conditions during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/106Removal of contaminants of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a desulfurization unit that desulfurizes a raw material gas that is a heavy hydrocarbon gas, and a fuel gas containing methane as a main component by reforming the desulfurization source gas supplied from the desulfurization unit with steam.
  • a reforming section, a fuel gas return path for returning a part of the fuel gas from the reforming section to the desulfurization section, and a moisture removing section for removing moisture in the fuel gas from the reforming section It is related with the operating method of the fuel gas manufacturing apparatus provided with.
  • the fuel gas production apparatus reforms a heavy hydrocarbon gas such as propane and butane to produce a fuel gas containing methane as a main component.
  • the produced fuel gas is a gas engine, It will be used as fuel for internal combustion engines such as gas turbines (see, for example, Patent Document 1).
  • the reforming part is modified by desulfurization treatment using the hydrogen component contained in the fuel gas returned through the fuel gas return path.
  • the quality catalyst can be prevented from being poisoned by the sulfur component. Further, unnecessary moisture in the fuel gas is removed by the moisture removing unit, so that the occurrence of inconveniences such as malfunction of the internal combustion engine can be suppressed.
  • Patent Document 1 omits the description of the operation method when stopping the operation by stopping the supply of the raw material gas to the desulfurization section, but purges nitrogen gas as an inert gas when starting up. It is described that oxygen in the system is removed, and then the purged nitrogen gas is circulated through the desulfurization section and the reforming section, while the nitrogen gas and the reforming section circulated by the electric heater are heated. Therefore, when the supply of the source gas to the desulfurization section is stopped and the operation is stopped, it can be considered that the desulfurization section and the reforming section are cooled to a normal temperature state and the system is opened to the atmosphere.
  • the purged nitrogen is circulated through the desulfurization section and the reforming section. It is conceivable to maintain the desulfurization section and the reforming section at a high temperature while suppressing consumption of the raw material gas and water vapor by heating the nitrogen gas or the like with an electric heater. However, in this case, every time the operation is stopped, purging nitrogen is required, and since a small amount of oxygen is contained in nitrogen, it is necessary to suppress oxidation of the reforming catalyst and the like. Moreover, hydrogen gas for removing oxygen must be supplied, and there is an inconvenience that the equipment becomes complicated due to the need to provide equipment for storing nitrogen and hydrogen gas.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to operate the fuel gas production apparatus that stops the operation in a form that can quickly resume the operation while suppressing the complexity of the equipment. Is to provide
  • the present invention relates to a desulfurization unit that desulfurizes a raw material gas that is a heavy hydrocarbon gas, and a fuel gas containing methane as a main component by reforming the desulfurization source gas supplied from the desulfurization unit with steam.
  • a reforming section, a fuel gas return path for returning a part of the fuel gas from the reforming section to the desulfurization section, and a moisture removing section for removing moisture in the fuel gas from the reforming section The operation method of the fuel gas production apparatus provided with When stopping the operation by stopping the supply of the raw material gas to the desulfurization part, after stopping the supply of the raw material gas to the desulfurization part and the discharge of the fuel gas to the outside, In order to circulate and flow the entire amount of the fuel gas that has passed through the moisture removal unit so as to return to the desulfurization unit, and to heat the reforming unit to a temperature corresponding to the operating temperature when performing the reforming treatment, The fuel gas to be circulated is heated to a set standby temperature by a heating unit, and the fuel gas is circulated and flowed by a circulation drive unit, and the supply amount of the water vapor is carbon deposition by thermal decomposition of the fuel gas.
  • the stand-by operation process for continuing the supply of the water vapor is performed in
  • the heavy hydrocarbon gas in the present invention is a gaseous hydrocarbon having a molecular weight larger than that of methane, and includes propane, butane, ethane, and isobutane.
  • the main component is a component having a large content among the main active ingredients, and it is not necessary to contain more than 50%, and it is not necessary to be the component having the largest content. . However, if the content exceeds 50% as the main component, it is more preferable. If the content does not exceed 50%, the most preferable component is preferable.
  • the moisture removal section is passed through the circulation gas path. Circulating and flowing the entire amount of fuel gas that has passed through to the desulfurization unit, and setting the temperature of the fuel gas to be circulated and flowing so as to heat the reforming unit to a temperature corresponding to the operating temperature when the reforming process is performed.
  • the temperature of the reforming unit is maintained at the operating temperature when performing the operation for producing the fuel gas by performing the standby operation process in which the fuel gas is circulated and flowed by the circulation drive unit in the form of heating in the heating unit. It will be. Further, since the desulfurization part is heated by the circulating and flowing fuel gas, the temperature of the desulfurization part is also maintained at a temperature close to the temperature when the operation for producing the fuel gas is performed.
  • the supply of steam is performed in a state where the supply amount of water vapor is greater than or equal to the supply amount capable of preventing carbon deposition due to thermal decomposition of the fuel gas and less than the supply amount when performing the reforming process. Since the water vapor is continuously supplied in a state in which wasteful consumption is suppressed by reducing the supply amount when the reforming process is performed, carbon deposition due to thermal decomposition of the fuel gas occurs. Will be prevented.
  • the present inventors have found that carbon deposition due to thermal decomposition of fuel gas can be prevented by continuously supplying water vapor at a supply amount that can prevent carbon deposition due to thermal decomposition of fuel gas.
  • the temperature of the reforming unit is maintained at the operation temperature of the operation state for producing the fuel gas, and the temperature of the desulfurization unit is also close to the temperature of the operation state for producing the fuel gas. Since the temperature is maintained, when the operation for producing the fuel gas is resumed from the state where the standby operation process is performed, the operation can be resumed quickly without the trouble of raising the temperature of the reforming unit and the desulfurization unit. It will be a thing.
  • the operation can be stopped in a form in which the operation can be restarted quickly while suppressing the complexity of the equipment.
  • a further characteristic configuration of the operation method of the fuel gas production apparatus of the present invention is that the heating unit includes a first heating unit that heats the fuel gas returned from the reforming unit to the desulfurization unit, and the desulfurization unit. And a second heating unit that heats the fuel gas supplied to the reforming unit.
  • the fuel gas returned from the reforming unit to the desulfurization unit can be heated by the first heating unit, and the fuel gas supplied from the desulfurization unit to the reforming unit can be heated by the second heating unit.
  • the desulfurization part and the reforming part can be appropriately maintained in a high temperature state while suppressing condensation.
  • the fuel gas that flows through the reforming unit and flows into the desulfurization unit, and the fuel gas that passes through the desulfurization unit and flows into the reforming unit can be heated by the first heating unit and the second heating unit. Therefore, since the whole fuel gas that circulates and flows can be appropriately heated, the desulfurization part and the reforming part can be appropriately maintained at a high temperature while suppressing the dew condensation of water vapor.
  • the desulfurization section and the reforming section can be appropriately maintained at a high temperature while suppressing the condensation of water vapor.
  • a further characteristic configuration of the operation method of the fuel gas production apparatus of the present invention is to maintain the set standby temperature based on a detected temperature of a first temperature sensor that detects the temperature of the fuel gas discharged from the desulfurization unit.
  • the set standby temperature is maintained based on the detected temperature of the second temperature sensor that controls the heating operation of the first heating unit and detects the temperature of the fuel gas discharged from the reforming unit.
  • the heating operation of the second heating unit is controlled.
  • the temperature of the desulfurization unit is controlled by controlling the heating operation of the first heating unit so that the temperature of the fuel gas that has passed through the desulfurization unit is detected by the first temperature sensor and maintained at the set standby temperature.
  • the temperature of the fuel gas that has passed through the reforming unit is detected by the second temperature sensor and maintained at the set standby temperature.
  • the temperature of the desulfurization section and the fuel gas that has passed through the reforming section is close to the temperature of the operating state in which the fuel gas is produced. It will be possible to maintain the temperature appropriately.
  • the set standby temperature for the fuel gas that has passed through the desulfurization section is set to the fuel that has passed through the reforming section.
  • the set standby temperature for the gas may be set to a different temperature.
  • the temperature of the desulfurization section and the reforming section can be appropriately maintained in a state close to the temperature of the operation state in which the fuel gas is produced.
  • a further characteristic configuration of the operation method of the fuel gas production apparatus of the present invention is that the fuel gas from the reforming unit is supplied to a gas consuming unit mounted on a ship.
  • the fuel gas production apparatus is mounted on a ship, and the fuel gas from the reforming section is supplied to the gas consumption section mounted on the ship.
  • a transport ship that transports the source gas is suitable. And since it can change to the operation state which starts manufacture of fuel gas from the state which stopped manufacture of fuel gas quickly, supply of fuel gas to a gas consumption part can be restarted rapidly.
  • the gas consumption unit is an internal combustion engine such as an engine that drives an auxiliary device such as an air conditioner or a generator, the supply of fuel gas can be restarted quickly, so that the driving of the auxiliary device can be restarted quickly. it can.
  • the supply of the fuel gas to the gas consumption unit can be resumed quickly.
  • the fuel gas production apparatus includes a raw material gas supply unit 1 that supplies heavy hydrocarbon gas as a raw material gas F, and a raw material gas F that is supplied from the raw material gas supply unit 1 through a raw material gas supply line 2.
  • the desulfurization part 3 for desulfurizing the gas, and the desulfurization raw material gas supplied from the desulfurization part 3 through the desulfurization gas supply line 4 is reformed with steam J to obtain a fuel gas G containing methane as a main component.
  • the mass part 5, the product gas supply line 6 that supplies the fuel gas G reformed in the reforming part 5 to the gas consumption part N, and the water removal that removes the water in the fuel gas from the reforming part 5 Part H is provided.
  • the source gas supply unit 1 supplies a gas obtained by raising the temperature of the LPG as the source gas F, and the source gas supply line 2 includes A raw material gas compressor 7 for increasing the pressure of the raw material gas F to an appropriate pressure (for example, about 0.90 MPaG) is provided.
  • the gas consumption unit N corresponds to, for example, an internal combustion engine such as a gas engine that drives an auxiliary device such as an air conditioner or a generator.
  • An internal combustion engine for propulsion such as a gas engine may be used as the gas consuming part N to supply the fuel gas G.
  • a steam supply unit 8 that supplies steam J for reforming treatment is connected to the desulfurization gas supply line 4.
  • a steam valve 8 ⁇ / b> A is provided for intermittently supplying the steam J from the steam supply unit 8 and adjusting the supply amount.
  • the steam supply unit 8 employs a configuration that supplies steam J generated by an exhaust heat recovery boiler that recovers exhaust heat of various devices, for example. be able to.
  • a cooling unit that cools the fuel gas G from the reforming unit 5 is provided, and moisture in the fuel gas generated by the cooling is supplied to the moisture removing unit H. Will be removed.
  • the water removal part H can be comprised using a steam-water separator, a mist separator, etc.
  • a circulation gas path R for returning the entire amount of the fuel gas G from the reforming unit 5 and having passed through the moisture removal unit H to the desulfurization unit 3 is configured.
  • a circulation main gas passage 11 is provided in a state where the downstream side of the moisture removing portion H in the product gas supply line 6 and the upstream side of the raw material gas compressor 7 in the raw material gas supply line 2 are connected, The main gas passage 11 is provided with a circulation control valve 12 that adjusts the flow rate (circulation amount) of the fuel gas G and opens and closes the circulation main gas passage 11.
  • a fuel gas return path 9 for returning a part of the fuel gas G from the reforming unit 5 to the desulfurization unit 3 is provided at the downstream side of the moisture removing unit H in the product gas supply line 6 and the source gas in the source gas supply line 2. It is provided in a state where it is connected to a location upstream from the compressor 7, and the hydrogen component contained in the fuel gas G is supplied as hydrogen gas for desulfurization treatment.
  • the fuel gas return path 9 is provided with an adjustment valve 10 that adjusts the flow rate (return amount) of the fuel gas G.
  • the fuel gas return path 9 is formed in a state in which a part of the circulation main gas path 11 is also used.
  • the circulation gas path R for returning the entire amount of the fuel gas G from the reforming section 5 to the desulfurization section 3 is composed of the circulation main gas path 11 and the fuel gas return path 9. become.
  • the main gas passage 11 for circulation is provided in addition to the fuel gas return passage 9 because the amount of gas that can flow through the adjustment valve 10 can flow part of the fuel gas G from the reforming unit 5. This is because the entire amount of the fuel gas G from the reforming unit 5 cannot flow through the fuel gas return path 9.
  • a source gas valve 13 for intermittently supplying the source gas is provided at a location upstream of the connection location of the circulation main gas passage 11 in the source gas supply line 2, and in the standby operation state described later, It is comprised so that supply can be stopped.
  • a product gas valve 14 that opens and closes the product gas supply line 6 is provided on the downstream side of the connection point of the fuel gas return path 9 and the circulation main gas path 11 in the product gas supply line 6. The product gas supply line 6 is closed to stop the supply of the fuel gas G.
  • a first heating unit that heats the fuel gas G that is returned from the reforming unit 5 to the desulfurization unit 3 as a heating unit K that heats the fuel gas G that circulates and flows through the circulation gas path R.
  • K1 and a second heating unit K2 for heating the fuel gas G supplied from the desulfurization unit 3 to the reforming unit 5 are provided.
  • the first heating unit K1 and the second heating unit K2 are configured using an electric heater.
  • the raw material gas valve 13 and the product gas valve 14 are opened, the water vapor valve 8A is opened to supply water vapor, the adjustment valve 10 is opened, and the circulation control valve 12 is closed.
  • the raw material gas from the raw material gas supply unit 1 is desulfurized, the desulfurized raw material gas is reformed with steam J to produce the fuel gas G, and the produced fuel gas G is The gas is supplied to the gas consumption unit N through the product gas supply line 6.
  • the temperature on the inlet side of the desulfurization unit 3 is about 300 ° C.
  • the temperature on the inlet side of the reforming unit 5 is about 350 ° C.
  • the reforming reaction in the reforming unit 5 is an exothermic reaction.
  • the temperature on the outlet side of the reforming unit 5 is configured to be about 450 ° C.
  • a nickel-based or noble metal-based low-temperature steam reforming catalyst can be used, specifically, on the surface of a non-conductive porous body having fine pores.
  • One having a metal film selected from the group consisting of palladium, silver, nickel, cobalt and copper is preferably used.
  • the desulfurization catalyst equipped in the desulfurization section 3 is configured as a combination of, for example, a nickel-molybdenum-based or cobalt-molybdenum-based catalyst and zinc oxide as an adsorbent. That is, the sulfur content in the raw material gas is removed by reducing the inactive sulfur compound in the raw material gas to hydrogen sulfide by a hydrogenation reaction using a catalyst and adsorbing the reduced hydrogen sulfide to zinc oxide. .
  • the supply amount of the water vapor J from the water vapor supply unit 8 is adjusted so that the S / C (water vapor / carbon ratio) value is, for example, 0.4 to 0.8.
  • the supply amount of the raw material gas F is detected by the flow rate sensor, and an amount of water vapor J corresponding to the supply amount of the raw material gas F is supplied from the water vapor supply unit 8. Will do.
  • the entire amount of the fuel gas G that has passed through the moisture removal unit H through the circulation gas path R is circulated and returned to the desulfurization unit 3, and
  • the fuel gas G to be circulated is heated to the set standby temperature by the heating unit K in a circulating manner. Circulating and flowing with the raw material gas compressor 7 functioning as a section.
  • the supply amount of the water vapor J is equal to or higher than the supply amount that can prevent carbon deposition due to the thermal decomposition of the fuel gas G and less than the supply amount when the reforming process is performed.
  • the circulating fuel gas G is heated by the heating unit K, and the temperature of the reforming unit 4 and the temperature of the desulfurization unit 3 are maintained at a temperature close to the temperature of the operation state in which the fuel gas G is manufactured,
  • the supply amount of the water vapor J from the water vapor supply unit 8 is adjusted to an amount that is greater than or equal to the supply amount that can prevent carbon deposition due to thermal decomposition of the fuel gas G and that is less than the supply amount when the reforming process is performed.
  • the supply amount of the water vapor J is adjusted so that the S / C (water vapor / carbon ratio) value with respect to the circulated fuel gas G is, for example, 0.1 to 0.5.
  • the fuel gas return path 9 when the standby operation process is performed, the fuel gas return path 9 is maintained in an open state, and the entire amount of the fuel gas G from the reforming unit 5 is transferred to the circulation main gas path 11 and the fuel.
  • the fuel gas return path 9 when performing the standby operation processing, the fuel gas return path 9 is closed and the fuel gas G from the reforming unit 5 is passed through the circulation main gas path 11. You may make it make the whole quantity flow. That is, as the circulation gas path R, only the circulation main gas path 11 may function.
  • the heating unit K is supplied to the reforming unit 5 from the first heating unit K1 that heats the fuel gas G returned from the reforming unit 5 to the desulfurization unit 3 as described above.
  • the second heating unit K2 for heating the fuel gas G to be heated, the fuel gas G discharged from the desulfurization unit 3 is set to, for example, 300 ° C. as the first set standby temperature that is the set standby temperature.
  • the fuel gas G that is heated and discharged from the reforming unit 5 is configured to be heated to, for example, 400 ° C. as a second set standby temperature that is a set standby temperature.
  • a first temperature sensor S1 for detecting the temperature of the fuel gas G discharged from the desulfurization unit 3 is provided, and the fuel gas G discharged from the desulfurization unit 3 is based on the detected temperature of the first temperature sensor S1.
  • the heating operation of the first heating unit K1 is controlled so as to maintain the temperature at a first set standby temperature (for example, 300 ° C.).
  • a second temperature sensor S2 for detecting the temperature of the fuel gas G discharged from the reforming unit 5 is provided, and the fuel gas discharged from the reforming unit 5 based on the temperature detected by the second temperature sensor S2.
  • the heating operation of the second heating unit K2 is controlled so that the temperature of G is maintained at a second set standby temperature (for example, 400 ° C.).
  • the first set standby temperature (for example, 300 ° C.) is a temperature suitable for heating the desulfurization unit 3 to a temperature corresponding to the operation temperature when the desulfurization unit 3 performs the desulfurization process.
  • the standby temperature (for example, 400 ° C.) is a temperature suitable for heating the reforming unit 5 to a temperature corresponding to the operation temperature when the reforming unit 5 performs the reforming process.
  • control part which controls the heating action of the 1st heating part K1 or the 2nd heating part K2 is provided, and based on the detection information of the 1st temperature sensor S1 or the 2nd temperature sensor S2, the 1st heating part K1 or Although the heating operation of the second heating unit K2 is automatically controlled, detailed description is omitted in this embodiment.
  • the temperature of each of the desulfurization unit 3 and the reforming unit 5 is set.
  • the temperature will be set close to the normal operating temperature.
  • each of the desulfurization unit 3 and the reforming unit 5 is maintained at a temperature close to the temperature in the normal operation state, when the operation for producing the fuel gas G is resumed, the desulfurization unit 3 and the reforming unit 5 The trouble of raising the temperature of the part 5 is eliminated, and the operation for producing the fuel gas G can be resumed quickly. That is, when restarting the operation for producing the fuel gas G, for example, the procedure is to supply water vapor and then supply the raw material gas F, so that the desulfurization unit 3 and the reforming unit 5 are appropriately set. Since there is no need to raise the temperature, the operation for producing the fuel gas G can be resumed quickly.
  • the set standby temperature passes through the reforming unit 5
  • the set standby temperature for the fuel gas that has passed through the desulfurization unit 3 is set to the set standby temperature for the fuel gas that has passed through the desulfurization unit 3, and the fuel gas that has passed through the reforming unit 5
  • the set standby temperature for may be set to the same temperature.
  • the case where the first heating unit K1 and the second heating unit K2 are provided as the heating unit K has been exemplified.
  • the second heating unit K2 is provided and the first heating unit K1 is provided.
  • the specific configuration of the heating unit K can be changed.
  • the case where the source gas compressor 7 is provided in the source gas supply line 2 is exemplified.
  • a raw material gas supply blower can be provided in place of the gas compressor 7, and in this case, the circulation drive unit can be configured by the raw material gas supply blower.
  • the gas storage unit when a gas storage unit that stores the fuel gas G is provided and the pressure of the circulated fuel gas G is lower than an appropriate pressure in the standby operation state, the gas storage unit The fuel gas may be supplied to the circulation gas path R.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

設備の複雑化を抑制しながら、運転の再開を迅速に行える形態で運転を停止する燃料ガス製造装置の運転方法を提供する。 原料ガスの脱硫部3への供給を停止して運転を停止するときに、原料ガスの脱硫部3への供給及び燃料ガスGの外部への排出を停止した後に、循環用ガスR路を通して水分除去部Hを通過した燃料ガスGの全量を脱硫部3に戻すように循環流動させ、かつ、改質処理を行うときの運転温度に相当する温度に改質部5を加熱すべく、循環流動させる燃料ガスGを設定待機温度に加熱部にて加熱する形態で、燃料ガスGを循環駆動部7により循環流動させ、且つ、水蒸気Jの供給量を燃料ガスGの熱分解による炭素の析出を防止できる供給量以上でかつ改質処理を行うときの供給量よりも少なくする状態で、水蒸気Jの供給を継続する待機運転処理を行う。

Description

燃料ガス製造装置の運転方法
 本発明は、重質炭化水素ガスである原料ガスを脱硫処理する脱硫部と、当該脱硫部から供給される脱硫原料ガスを水蒸気にて改質処理して、メタンを主成分として含有する燃料ガスにする改質部と、当該改質部からの前記燃料ガスの一部を前記脱硫部に戻す燃料ガス戻し路と、前記改質部からの前記燃料ガス中の水分を除去する水分除去部とが設けられた燃料ガス製造装置の運転方法に関する。
 上記燃料ガス製造装置は、プロパン、ブタン等の重質炭化水素ガスを改質処理して、メタンを主成分として含有する燃料ガスを製造するものであり、製造された燃料ガスは、ガスエンジンやガスタービン等の内燃機関の燃料として用いられることになる(例えば、特許文献1参照。)
 ちなみに、上記燃料ガス製造装置においては、原料ガスに硫黄成分が含まれていても、燃料ガス戻し路を通して戻される燃料ガスに含まれる水素成分を用いて脱硫処理することにより、改質部の改質触媒が硫黄成分により被毒されること等を回避できるようになっている。
 また、水分除去部にて燃料ガス中の不要な水分を除去して、内燃機関の作動不良を招く等の不都合の発生を抑制できるようになっている。
 特許文献1には、原料ガスの脱硫部への供給を停止して運転を停止するときの運転方法についての記載は省略されているが、起動するときに、不活性ガスとしての窒素ガスをパージして系内の酸素を除去し、その後、パージした窒素ガスを脱硫部と改質部とを通して循環させながら、電気ヒータにて循環される窒素ガスや改質部を加熱することが記載されているので、原料ガスの脱硫部への供給を停止して運転を停止するときには、脱硫部や改質部を常温状態に冷却しかつ系内を大気開放するものであると考えることができる。
米国特許第7866161号明細書
 原料ガスの脱硫部への供給を停止して運転を停止するときに、脱硫部や改質部を常温状態に冷却すると、燃料ガスを製造する運転を再開する際に、脱硫部や改質部を昇温する時間が長くなり、運転の再開を迅速に行えない不都合がある。
 例えば、LPG(液化石油ガス)の輸送船において、空調装置や発電機等の補機を駆動する内燃機関に燃料を供給するシステムとして燃料製造装置を装備する場合には、補機の起動に合わせて迅速に燃料を供給できるようにすることが望まれるが、脱硫部や改質部が常温状態に冷却されていると、迅速に燃料ガスを供給できないものとなる。
 燃料ガスを製造する運転の再開を迅速に行えるようにするために、原料ガスの供給量を最小量に絞って運転を継続し続けることが考えられるが、この場合には、原料ガスや水蒸気を無駄に消費し続ける不都合があり、実用し難いものである。
 ちなみに、例えば、LPG(液化石油ガス)の輸送船においては、各種の排熱を利用する等により水蒸気が多量に供給できる場合があり、そのような場合においては、水蒸気を消費し続けることができるが、原料ガスを無駄に消費することは避ける必要がある。
 燃料ガスを製造する運転の再開を迅速に行えるようにするための別の運転方法として、系内を窒素でパージしたのち、パージした窒素を脱硫部と改質部とを通して循環させながら、循環される窒素ガス等を電気ヒータにて加熱することにより、原料ガスや水蒸気の消費を抑制しながら、脱硫部や改質部を高温状態に維持することが考えられる。
 しかしながら、この場合、運転を停止するごとに、パージ用の窒素を必要とするものであり、しかも、窒素中には微量の酸素が含まれているから、改質触媒等の酸化を抑制する必要上、酸素除去用の水素ガスを供給しなければならないことになり、窒素や水素ガスを保管する設備を設けなければならないことに起因して、設備が複雑になる不都合がある。
 ちなみに、例えば、LPGの輸送船等の船舶において、パージ用の窒素や酸素除去用の水素ガスを保管するタンクを装備するようにすると、船舶の設備が煩雑となるものであるから、LPGの輸送船等の船舶においては、この点からも実用し難いものである。
 本発明は、上記実状に鑑みて為されたものであって、その目的は、設備の複雑化を抑制しながら、運転の再開を迅速に行える形態で運転を停止する燃料ガス製造装置の運転方法を提供する点にある。
 本発明は、重質炭化水素ガスである原料ガスを脱硫処理する脱硫部と、当該脱硫部から供給される脱硫原料ガスを水蒸気にて改質処理して、メタンを主成分として含有する燃料ガスにする改質部と、当該改質部からの前記燃料ガスの一部を前記脱硫部に戻す燃料ガス戻し路と、前記改質部からの前記燃料ガス中の水分を除去する水分除去部とが設けられた燃料ガス製造装置の運転方法であって、その特徴構成は、
 前記原料ガスの前記脱硫部への供給を停止して運転を停止するときに、前記原料ガスの前記脱硫部への供給及び前記燃料ガスの外部への排出を停止した後に、循環用ガス路を通して前記水分除去部を通過した前記燃料ガスの全量を前記脱硫部に戻すように循環流動させ、かつ、前記改質処理を行うときの運転温度に相当する温度に前記改質部を加熱すべく、循環流動させる前記燃料ガスを設定待機温度に加熱部にて加熱する形態で、前記燃料ガスを循環駆動部により循環流動させ、且つ、前記水蒸気の供給量を前記燃料ガスの熱分解による炭素の析出を防止できる供給量以上でかつ前記改質処理を行うときの供給量よりも少なくする状態で、前記水蒸気の供給を継続する待機運転処理を行う点にある。
 尚、本発明における重質炭化水素ガスは、メタンに比べて分子量の大きなガス状の炭化水素であり、プロパン、ブタン、エタン、イソブタンを含むものである。また、主成分とは、主な有効成分の中で含有量の多い成分であり、特に50%を超えて含まれている必要があるものでもないし、含有量として最も多い成分である必要もない。但し、主成分として含有量が50%を超えて含まれていれば、より好ましく、含有量として50%を超えていない場合には、最も多い成分であることが好ましい。
 すなわち、原料ガスの脱硫部への供給を停止して運転を停止するときには、原料ガスの脱硫部への供給及び燃料ガスの外部への排出を停止した後に、循環用ガス路を通して水分除去部を通過した燃料ガスの全量を脱硫部に戻すように循環流動させ、かつ、改質処理を行うときの運転温度に相当する温度に改質部を加熱すべく、循環流動させる燃料ガスを設定待機温度に加熱部にて加熱する形態で、燃料ガスを循環駆動部により循環流動させる待機運転処理を行うことにより、改質部の温度を、燃料ガスを製造する運転を行うときの運転温度に維持させることになる。
 また、循環流動される燃料ガスにて脱硫部が加熱されることになるので、脱硫部の温度も燃料ガスを製造する運転を行うときの温度に近い温度に保たれることになる。
 そして、待機運転処理においては、水蒸気の供給量を前記燃料ガスの熱分解による炭素の析出を防止できる供給量以上でかつ改質処理を行うときの供給量よりも少なくする状態で、水蒸気の供給を継続するものであるから、改質処理を行うときの供給量よりも少なくして、無駄な消費を抑制した状態で、水蒸気が供給され続けられるため、燃料ガスの熱分解による炭素の析出が防止されることになる。
 ちなみに、待機運転処理を行うときにも、循環される燃料ガス中の水蒸気が水分除去部にて除去されるものとなるから、燃料ガスの熱分解による炭素の析出を防止するには、燃料ガス中の水蒸気の供給を継続させる必要がある。
 つまり、本発明者の鋭意研究によって、改質部や脱硫部の温度が燃料ガスを製造する運転を行うときの温度に近い温度に保たれているときに、改質処理を行うときの供給量よりも少ないものの、燃料ガスの熱分解による炭素の析出を防止できる供給量以上で水蒸気を供給し続けることによって、燃料ガスの熱分解による炭素の析出を防止できることを見出したのである。
 したがって、待機運転処理が行われている状態では、改質部の温度が燃料ガスを製造する運転状態の運転温度に維持され、脱硫部の温度も、燃料ガスを製造する運転状態の温度に近い温度に保たれることになるから、待機運転処理を行う状態から燃料ガスを製造する運転を再開するときには、改質部や脱硫部を昇温させる手間なく、迅速に運転を再開することができるものとなる。
 要するに、本発明の燃料ガス製造装置の運転方法の特徴構成によれば、設備の複雑化を抑制しながら、運転の再開を迅速に行える形態で運転を停止することができる。
 本発明の燃料ガス製造装置の運転方法の更なる特徴構成は、前記加熱部として、前記改質部から前記脱硫部に戻される前記燃料ガスを加熱する第1加熱部と、前記脱硫部から前記改質部に供給される前記燃料ガスを加熱する第2加熱部とが設けられている点にある。
 すなわち、改質部から脱硫部に戻される燃料ガスを、第1加熱部にて加熱し、脱硫部から改質部に供給される燃料ガスを、第2加熱部にて加熱できるため、水蒸気の結露を抑制しながら、脱硫部や改質部を高温状態に適切に維持できるものとなる。
 つまり、改質部を通過して脱硫部に流入する燃料ガスや、脱硫部を通過して改質部に流入する燃料ガスを、第1加熱部や第2加熱部にて加熱することができるから、循環流動する燃料ガスの全体を適切に加熱できるため、水蒸気の結露を抑制しながら、脱硫部や改質部を高温状態に適切に維持できるものとなる。
 要するに、本発明の燃料ガス製造装置の運転方法の更なる特徴構成によれば、水蒸気の結露を抑制しながら、脱硫部や改質部を高温状態に適切に維持できる。
 本発明の燃料ガス製造装置の運転方法の更なる特徴構成は、前記脱硫部から排出される前記燃料ガスの温度を検出する第1温度センサの検出温度に基づいて、前記設定待機温度に維持するように、前記第1加熱部の加熱作動を制御し、且つ、前記改質部から排出される前記燃料ガスの温度を検出する第2温度センサの検出温度に基づいて、前記設定待機温度に維持するように、前記第2加熱部の加熱作動を制御する点にある。
 すなわち、脱硫部を通過した燃料ガスの温度を第1温度センサに検出して、設定待機温度に維持するように、第1加熱部の加熱作動を制御することによって、脱硫部の温度を、燃料ガスを製造する運転状態の温度に近い温度に適切に維持できることになり、また、改質部を通過した燃料ガスの温度を第2温度センサに検出して、設定待機温度に維持するように、第2加熱部の加熱作動を制御することによって、改質部の温度を改質処理を行うときの運転温度に相当する温度に適切に維持できることになる。
 つまり、脱硫部を通過した燃料ガスや改質部を通過した燃料ガスの温度を設定待機温度にすることにより、脱硫部や改質部の温度を、燃料ガスを製造する運転状態の温度に近い温度に適切に維持できることになる。
 ちなみに、運転状態の脱硫部の温度と運転状態の改質部の温度とは、一般には異なるものであるから、脱硫部を通過した燃料ガスについての設定待機温度を、改質部を通過した燃料ガスについての設定待機温度とは、異なる温度に設定してもよい。
 要するに、本発明の燃料ガス製造装置の運転方法の更なる特徴構成によれば、脱硫部や改質部の温度を、燃料ガスを製造する運転状態の温度に近い状態に適切に維持できる。
 本発明の燃料ガス製造装置の運転方法の更なる特徴構成は、前記改質部からの前記燃料ガスが船舶に搭載したガス消費部に供給される点にある。
 すなわち、燃料ガス製造装置を船舶に搭載して、改質部からの燃料ガスを船舶に搭載したガス消費部に供給する。船舶としては、原料ガスを運搬する運搬船が好適である。
 そして、燃料ガスの製造を停止した状態から燃料ガスの製造を開始する運転状態への移行を迅速に行えるものであるから、ガス消費部への燃料ガスの供給を迅速に再開できる。
 したがって、ガス消費部が空調装置や発電機等の補機を駆動するエンジン等の内燃機関であっても、燃料ガスの供給を迅速に再開できるから、補機の駆動を迅速に再開することができる。
 ちなみに、原料ガスを運搬する運搬船等においては、各種の排熱等を利用して多量の水蒸気を生成することが行われているから、待機運転処理を行うときに、特別なエネルギーを消費することなく、水蒸気の供給を続けることができる。
 要するに、本発明の燃料ガス製造装置の運転方法の更なる特徴構成によれば、ガス消費部への燃料ガスの供給を迅速に再開できる。
は、燃料ガス製造装置のフロー図である。 は、通常運転状態のフロー図である。 は、待機運転状態のフロー図である。
 以下、本発明の実施形態を図面に基づいて説明する。
 〔燃料ガス製造装置の全体構成〕
 図1に示すように、燃料ガス製造装置には、重質炭化水素ガスを原料ガスFとして供給する原料ガス供給部1、原料ガス供給部1から原料ガス供給ライン2を通して供給される原料ガスFを脱硫処理する脱硫部3と、当該脱硫部3から脱硫ガス供給ライン4を通して供給される脱硫原料ガスを水蒸気Jにて改質処理して、メタンを主成分として含有する燃料ガスGにする改質部5と、当該改質部5にて改質された燃料ガスGをガス消費部Nに供給する製品ガス供給ライン6と、改質部5からの燃料ガス中の水分を除去する水分除去部Hとが備えられている。
 原料ガス供給部1は、例えば、LPG(液化石油ガス)の運搬船の場合には、LPGを昇温して気化させたガスを原料ガスFとして供給することになり、原料ガス供給ライン2には、原料ガスFを適正圧力(例えば、0.90MPaG程度)に昇圧する原料ガス圧縮機7が設けられている。
 ガス消費部Nとしては、LPG(液化石油ガス)の運搬船の場合には、例えば、空調装置や発電機等の補機を駆動するガスエンジン等の内燃機関が相当することになるが、推進用のガスエンジン等の推進用の内燃機関をガス消費部Nとして燃料ガスGを供給するようにしてもよい。
 脱硫ガス供給ライン4に、改質処理用の水蒸気Jを供給する水蒸気供給部8が接続されている。また、水蒸気供給部8からの水蒸気Jの供給を断続し且つ供給量を調節する水蒸気弁8Aが設けられている。
 この水蒸気供給部8は、LPG(液化石油ガス)の運搬船の場合には、例えば、種々の機器類の排熱を回収する排熱回収ボイラにて生成された水蒸気Jを供給する構成を採用することができる。
 図1には記載を省略するが、改質部5からの燃料ガスGを冷却する冷却部が設けられており、その冷却に伴って発生する燃料ガス中の水分が、水分除去部Hにて除去されることになる。
 ちなみに、水分除去部Hは、気水分離器やミストセパレータ等を用いて構成することができる。
 また、後述する待機運転状態において、改質部5からの燃料ガスGであって、水分除去部Hを通過した後の燃料ガスGの全量を脱硫部3に戻す循環用ガス路Rを構成する循環用主ガス路11が、製品ガス供給ライン6における水分除去部Hの下流側箇所と原料ガス供給ライン2における原料ガス圧縮機7よりも上流側箇所とを接続する状態で設けられ、循環用主ガス路11には、燃料ガスGの通流量(循環量)を調整しかつ循環用主ガス路11を開閉する循環制御バルブ12が設けられている。
 また、改質部5からの燃料ガスGの一部を脱硫部3に戻す燃料ガス戻し路9が、製品ガス供給ライン6における水分除去部Hの下流側箇所と原料ガス供給ライン2における原料ガス圧縮機7よりも上流側箇所とを接続する状態で設けられ、燃料ガスGに含まれる水素成分が、脱硫処理用の水素ガスとして供給されるように構成されている。
 尚、燃料ガス戻し路9には、燃料ガスGの通流量(戻し量)を調整する調整バルブ10が設けられている。
 ちなみに、本実施形態においては、燃料ガス戻し路9が、循環用主ガス路11の一部の流路部分を兼用する状態で形成されている。
 そして、本実施形態においては、改質部5からの燃料ガスGの全量を脱硫部3に戻す循環用ガス路Rが、循環用主ガス路11と燃料ガス戻し路9とから構成されることになる。
 尚、燃料ガス戻し路9に加えて循環用主ガス路11を設けるのは、調整バルブ10を通して流動できるガス量が、改質部5からの燃料ガスGの一部を流動させることができる量であり、改質部5からの燃料ガスGの全量を、燃料ガス戻し路9を通して流動させることができないからである。
 また、原料ガス供給ライン2における循環用主ガス路11の接続箇所よりも上流側箇所には、原料ガスの供給を断続する原料ガス弁13が設けられ、後述する待機運転状態において、原料ガスの供給を停止できるように構成されている。
 製品ガス供給ライン6における燃料ガス戻し路9や循環用主ガス路11の接続箇所よりも下流側には、当該製品ガス供給ライン6を開閉する製品ガス弁14が設けられ、後述する待機運転状態において、製品ガス供給ライン6を閉じて、燃料ガスGの供給を停止できるように構成されている。
 また、後述する待機運転状態において、循環用ガス路Rを通して循環流動させる燃料ガスGを加熱する加熱部Kとして、改質部5から脱硫部3に戻される燃料ガスGを加熱する第1加熱部K1と、脱硫部3から改質部5に供給される燃料ガスGを加熱する第2加熱部K2とが設けられている。
 第1加熱部K1及び第2加熱部K2が、本実施形態においては、電気ヒータを用いて構成されている。
 〔通常運転状態について〕
 通常運転状態においては、図2に示すように、原料ガス弁13及び製品ガス弁14を開き、水蒸気弁8Aを開いて水蒸気を供給し、かつ、調整バルブ10を開き、循環制御バルブ12を閉じるようにして、原料ガス供給部1からの原料ガスを脱硫処理し、脱硫処理された脱硫原料ガスを水蒸気Jにて改質処理して燃料ガスGを製造し、製造された燃料ガスGを、製品ガス供給ライン6を通してガス消費部Nに供給することになる。
 この通常運転状態においては、脱硫部3の入り口側の温度が300℃程度となり、改質部5の入口側の温度が350℃程度となり、改質部5における改質反応が発熱反応であるため、改質部5の出口側の温度が450℃程度となるように構成されている。
 ちなみに、改質部5に装備する改質触媒としては、例えば、ニッケル系あるいは貴金属系の低温水蒸気改質触媒が利用でき、具体的には、微細孔を有する非導電性多孔質体の表面に、パラジウム、銀、ニッケル、コバルトおよび銅の群から選ばれた1種の金属の膜を被着したものが好適に用いられる。
 また、脱硫部3に装備する脱硫触媒としては、例えば、ニッケル-モリブデン系、コバルトモリブデン系触媒と、吸着剤としての酸化亜鉛との組み合わせとして構成されることになる。つまり、原料ガス中の非活性硫黄化合物を触媒による水添反応により、硫化水素に還元し、還元された硫化水素を酸化亜鉛に吸着させることにより、原料ガス中の硫黄分を除去することになる。
 また、水蒸気供給部8からの水蒸気Jの供給量は、S/C(水蒸気/炭素比)値が、例えば、0.4~0.8となるように調整されることになる。ちなみに、本実施形態においては詳細な説明は省略するが、原料ガスFの供給量を流量センサにて検出して、原料ガスFの供給量に応じた量の水蒸気Jを水蒸気供給部8から供給することになる。
 (運転停止の運転方法について)
 原料ガスFの脱硫部3への供給を停止して運転を停止するとき、つまり、上述の通常運転状態から原料ガスFの脱硫部3への供給を停止して運転を停止するときは、原料ガス弁13及び製品ガス弁14を閉じて、原料ガスFの脱硫部3への供給及び燃料ガスGの外部への排出を停止した後に、待機運転処理を行うことになる。
 待機運転処理を行う待機運転状態においては、図3に示すように、循環用ガス路Rを通して水分除去部Hを通過した燃料ガスGの全量を脱硫部3に戻すように循環流動させ、かつ、改質処理を行うときの運転温度に相当する温度に改質部4を加熱すべく、循環流動させる燃料ガスGを設定待機温度に加熱部Kにて加熱する形態で、燃料ガスGを循環駆動部として機能する原料ガス圧縮機7により循環流動させる。
 加えて、水蒸気Jの供給量を燃料ガスGの熱分解による炭素の析出を防止できる供給量以上でかつ改質処理を行うときの供給量よりも少なくする状態で、水蒸気供給部8からの水蒸気Jの供給を継続する。
 説明を加えると、待機運転処理を行う際には、水蒸気供給部8からの水蒸気Jの供給を継続した状態で、且つ、調整バルブ10及び循環制御バルブ12を開いて循環用ガス路Rを通して水分除去部Hを通過した燃料ガスGの全量を脱硫部3に戻す形態で、燃料ガスGを循環駆動部として機能する原料ガス圧縮機7により循環流動させることになる。
 そして、循環する燃料ガスGを加熱部Kにて加熱して、改質部4の温度や脱硫部3の温度を、燃料ガスGを製造する運転状態の温度に近い温度に保つようにしながら、水蒸気供給部8からの水蒸気Jの供給量を、燃料ガスGの熱分解による炭素の析出を防止できる供給量以上でかつ改質処理を行うときの供給量よりも少なくする量に調節する。
 水蒸気Jの供給量としては、循環される燃料ガスGに対するS/C(水蒸気/炭素比)値が、例えば、0.1~0.5となるように調整される。
 ちなみに、本実施形態においては、待機運転処理を行う際に、燃料ガス戻し路9を開き状態に維持して、改質部5からの燃料ガスGの全量を、循環用主ガス路11と燃料ガス戻し路9とを通して循環流動させる場合を例示するが、待機運転処理を行う際には、燃料ガス戻し路9を閉じて、循環用主ガス路11を通して、改質部5からの燃料ガスGの全量を流動させるようにしてもよい。
 つまり、循環用ガス路Rとして、循環用主ガス路11のみを機能させる形態で実施してもよい。
 本実施形態においては、加熱部Kとして、上述の如く、改質部5から脱硫部3に戻される燃料ガスGを加熱する第1加熱部K1と、脱硫部3から改質部5に供給される燃料ガスGを加熱する第2加熱部K2とが設けられているから、脱硫部3から排出される燃料ガスGを、設定待機温度である第1設定待機温度としての、例えば、300℃に加熱し、改質部5から排出される燃料ガスGを、設定待機温度である第2設定待機温度としての、例えば、400℃に加熱するように構成されている。
 すなわち、脱硫部3から排出される燃料ガスGの温度を検出する第1温度センサS1が設けられ、その第1温度センサS1の検出温度に基づいて、脱硫部3から排出される燃料ガスGの温度を第1設定待機温度(例えば、300℃)に維持するように、第1加熱部K1の加熱作動を制御するように構成されている。
 また、改質部5から排出される燃料ガスGの温度を検出する第2温度センサS2が設けられ、その第2温度センサS2の検出温度に基づいて、改質部5から排出される燃料ガスGの温度を第2設定待機温度(例えば、400℃)に維持するように、第2加熱部K2の加熱作動を制御するように構成されている。
 そして、第1設定待機温度(例えば、300℃)は、脱硫部3が脱硫処理を行うときの運転温度に相当する温度に脱硫部3を加熱するのに適する温度であり、また、第2設定待機温度(例えば、400℃)は、改質部5が改質処理を行うときの運転温度に相当する温度に改質部5を加熱するのに適する温度である。
 尚、第1加熱部K1や第2加熱部K2の加熱作動を制御する制御部が設けられて、第1温度センサS1や第2温度センサS2の検出情報に基づいて、第1加熱部K1や第2加熱部K2の加熱作動が自動的に制御されることになるが、本実施形態では詳細な説明を省略する。
 このように、改質部5から排出される燃料ガスGや脱硫部3から排出される燃料ガスGを設定待機温度に維持することにより、脱硫部3及び改質部5の夫々についての温度を通常運転状態の温度に近い温度に設定することになる。
 従って、脱硫部3及び改質部5の夫々が通常運転状態の温度に近い温度に維持されることになるから、燃料ガスGを製造する運転を再開する際には、脱硫部3及び改質部5を昇温する手間がなくなり、燃料ガスGを製造する運転を迅速に再開することができる。
 つまり、燃料ガスGを製造する運転を再開する際には、例えば、水蒸気を供給し、その後、原料ガスFの供給を行う手順で行うことになり、脱硫部3及び改質部5を適正な温度に昇温する手間がなくなるため、燃料ガスGを製造する運転を迅速に再開することができる。
〔別実施形態〕
 次に、別実施形態を列記する。
(1)上記実施形態では、加熱部Kとして、第1加熱部K1と第2加熱部K2とを設ける場合において、設定待機温度として、脱硫部3を通過した燃料ガスについての設定待機温度(第1設定待機温度)と、改質部5を通過した燃料ガスについての設定待機温度(第2設定待機温度)とを、異なる温度に設定する場合を例示したが、例えば、改質部5を通過した燃料ガスについての設定待機温度を、脱硫部3を通過した燃料ガスについての設定待機温度にする等、脱硫部3を通過した燃料ガスについての設定待機温度と改質部5を通過した燃料ガスについての設定待機温度とを同じ温度に設定してもよい。
(2)上記実施形態では、加熱部Kとして、第1加熱部K1と第2加熱部K2とを設ける場合を例示したが、例えば、第2加熱部K2を設けて、第1加熱部K1を省略する等、加熱部Kの具体構成は変更できる。
(3)上記実施形態では、原料ガス供給ライン2に原料ガス圧縮機7を設ける場合を例示したが、原料ガス供給部1からの原料ガスが適正な圧力に昇圧されている場合には、原料ガス圧縮機7に代えて原料ガス供給ブロアを設けることができ、この場合には、原料ガス供給ブロアにて、循環駆動部を構成することができる。
(4)上記実施形態において、燃料ガスGを貯蔵するガス貯蔵部を設けて、待機運転状態において、循環される燃料ガスGの圧力が適正な圧力よりも低下した場合には、ガス貯蔵部の燃料ガスを循環用ガス路Rに補給するようにしてもよい。
(5)上記実施形態では、改質部5からの燃料ガスGをLPGの運搬船に搭載したガス消費部Nに供給する場合を例示したが、本発明は、原料ガスFを運搬する船舶等、種々の船舶に適用できるものである。
 尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
3   脱硫部
5   改質部
7   循環駆動部
9   燃料ガス戻し路
11  循環用主ガス路
F   原料ガス
G   燃料ガス
H   水分除去部
J   水蒸気
K   加熱部
K1  第1加熱部
K2  第2加熱部
R   循環用ガス路
S1  第1温度センサ
S2  第2温度センサ

Claims (4)

  1.  重質炭化水素ガスである原料ガスを脱硫処理する脱硫部と、当該脱硫部から供給される脱硫原料ガスを水蒸気にて改質処理して、メタンを主成分として含有する燃料ガスにする改質部と、当該改質部からの前記燃料ガスの一部を前記脱硫部に戻す燃料ガス戻し路と、前記改質部からの前記燃料ガス中の水分を除去する水分除去部とが設けられた燃料ガス製造装置の運転方法であって、
     前記原料ガスの前記脱硫部への供給を停止して運転を停止するときに、前記原料ガスの前記脱硫部への供給及び前記燃料ガスの外部への排出を停止した後に、循環用ガス路を通して前記水分除去部を通過した前記燃料ガスの全量を前記脱硫部に戻すように循環流動させ、かつ、前記改質処理を行うときの運転温度に相当する温度に前記改質部を加熱すべく、循環流動させる前記燃料ガスを設定待機温度に加熱部にて加熱する形態で、前記燃料ガスを循環駆動部により循環流動させ、且つ、前記水蒸気の供給量を前記燃料ガスの熱分解による炭素の析出を防止できる供給量以上でかつ前記改質処理を行うときの供給量よりも少なくする状態で、前記水蒸気の供給を継続する待機運転処理を行う燃料ガス製造装置の運転方法。
  2.  前記加熱部として、前記改質部から前記脱硫部に戻される前記燃料ガスを加熱する第1加熱部と、前記脱硫部から前記改質部に供給される前記燃料ガスを加熱する第2加熱部とが設けられている請求項1に記載の燃料ガス製造装置の運転方法。
  3.  前記脱硫部から排出される前記燃料ガスの温度を検出する第1温度センサの検出温度に基づいて、前記設定待機温度に維持するように、前記第1加熱部の加熱作動を制御し、且つ、前記改質部から排出される前記燃料ガスの温度を検出する第2温度センサの検出温度に基づいて、前記設定待機温度に維持するように、前記第2加熱部の加熱作動を制御する請求項2に記載の燃料ガス製造装置の運転方法。
  4.  前記改質部からの前記燃料ガスが船舶に搭載したガス消費部に供給される請求項1~3のいずれか1項に記載の燃料ガス製造装置の運転方法。
PCT/JP2018/011889 2017-03-23 2018-03-23 燃料ガス製造装置の運転方法 WO2018174277A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197030302A KR102464918B1 (ko) 2017-03-23 2018-03-23 연료 가스 제조 장치의 운전 방법
US16/494,406 US10870811B2 (en) 2017-03-23 2018-03-23 Method for operating fuel gas manufacturing device
CN201880019993.3A CN110418833B (zh) 2017-03-23 2018-03-23 燃料气体制造装置的运转方法
EP18771137.9A EP3604485B1 (en) 2017-03-23 2018-03-23 Method for operating fuel gas manufacturing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-057455 2017-03-23
JP2017057455A JP6707049B2 (ja) 2017-03-23 2017-03-23 燃料ガス製造装置の運転方法

Publications (1)

Publication Number Publication Date
WO2018174277A1 true WO2018174277A1 (ja) 2018-09-27

Family

ID=63585536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011889 WO2018174277A1 (ja) 2017-03-23 2018-03-23 燃料ガス製造装置の運転方法

Country Status (6)

Country Link
US (1) US10870811B2 (ja)
EP (1) EP3604485B1 (ja)
JP (1) JP6707049B2 (ja)
KR (1) KR102464918B1 (ja)
CN (1) CN110418833B (ja)
WO (1) WO2018174277A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111925835A (zh) * 2020-07-06 2020-11-13 福建省气柜设备安装有限公司 一种分离式煤气脱硫装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114471152A (zh) * 2022-01-25 2022-05-13 江苏恩威联合消防器材制造有限公司 罐体加工用尾气净化装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04159393A (ja) * 1990-10-23 1992-06-02 Hitachi Ltd 高カロリー都市ガスの製造方法
JPH0726271A (ja) * 1993-06-25 1995-01-27 Osaka Gas Co Ltd Sngの製造法
US7866161B2 (en) 2005-03-24 2011-01-11 Wärtsilä Finland Oy Method of operating a gas engine plant and fuel feeding system for a gas engine
WO2017150600A1 (ja) * 2016-03-01 2017-09-08 大阪瓦斯株式会社 燃料ガス供給装置および燃料ガス供給方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813977B2 (ja) * 1987-07-01 1996-02-14 東邦瓦斯株式会社 代替天然ガスの製造方法
JPH0686598B2 (ja) 1991-06-14 1994-11-02 西部瓦斯株式会社 高熱量都市ガスの製造方法
JPH0786161A (ja) 1993-09-10 1995-03-31 Hitachi Ltd 半導体の選択成長方法
JP2720374B2 (ja) * 1993-12-09 1998-03-04 レオン自動機株式会社 パン生地の品質測定方法および生産量定量化方法
JP4036607B2 (ja) * 2000-09-25 2008-01-23 三洋電機株式会社 燃料ガス改質装置及び燃料電池システム
US8349288B2 (en) * 2006-12-06 2013-01-08 The Regents Of The University Of California Process for enhancing the operability of hot gas cleanup for the production of synthesis gas from steam-hydrogasification producer gas
PL1890961T3 (pl) * 2005-06-06 2017-07-31 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Sposób jednoczesnego wytwarzania wodoru i monotlenku węgla
US8178247B2 (en) * 2006-01-06 2012-05-15 Toyota Jidosha Kabushiki Kaisha Fuel cell system and its operation stop method
WO2010033487A2 (en) * 2008-09-18 2010-03-25 Chevron U.S.A. Inc.X Systems and methods for producing a crude product
EP2233433A1 (en) * 2009-03-24 2010-09-29 Hydrogen Energy International Limited Process for generating electricity and for sequestering carbon dioxide
US9851052B2 (en) 2012-05-14 2017-12-26 Hyundai Heavy Industries Co., Ltd. Method and system for treating a liquefied gas
JP2014162306A (ja) * 2013-02-22 2014-09-08 Mitsubishi Heavy Ind Ltd 天然ガス燃料蒸発器、天然ガス燃料供給装置、船舶、原動機への天然ガス燃料の供給方法
JP6257256B2 (ja) * 2013-10-09 2018-01-10 大阪瓦斯株式会社 水蒸気改質反応装置および燃料電池発電装置
KR101694221B1 (ko) * 2014-12-24 2017-01-09 한국과학기술연구원 한계 가스전의 천연가스를 이용한 gtl-fpso 공정에 의한 합성연료의 제조방법과 그 제조장치
EP3330221B1 (de) * 2016-12-05 2019-09-11 L'air Liquide, Société Anonyme Pour L'Étude Et L'exploitation Des Procédés Georges Claude Verfahren und vorrichtung zum herstellen eines feedstroms für eine dampfreformierungsanlage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04159393A (ja) * 1990-10-23 1992-06-02 Hitachi Ltd 高カロリー都市ガスの製造方法
JPH0726271A (ja) * 1993-06-25 1995-01-27 Osaka Gas Co Ltd Sngの製造法
US7866161B2 (en) 2005-03-24 2011-01-11 Wärtsilä Finland Oy Method of operating a gas engine plant and fuel feeding system for a gas engine
WO2017150600A1 (ja) * 2016-03-01 2017-09-08 大阪瓦斯株式会社 燃料ガス供給装置および燃料ガス供給方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3604485A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111925835A (zh) * 2020-07-06 2020-11-13 福建省气柜设备安装有限公司 一种分离式煤气脱硫装置

Also Published As

Publication number Publication date
JP2018159007A (ja) 2018-10-11
US10870811B2 (en) 2020-12-22
KR102464918B1 (ko) 2022-11-07
EP3604485A4 (en) 2020-12-23
EP3604485A1 (en) 2020-02-05
KR20190126878A (ko) 2019-11-12
CN110418833A (zh) 2019-11-05
JP6707049B2 (ja) 2020-06-10
US20200048570A1 (en) 2020-02-13
CN110418833B (zh) 2021-06-25
EP3604485B1 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
US9252443B2 (en) Hydrogen generation apparatus, fuel cell system, and hydrogen generation apparatus operation method
US10597293B2 (en) Operation method for hydrogen production apparatus, and hydrogen production apparatus
CN111788731B (zh) 燃料电池系统和燃料电池系统的运转方法
JP6138378B2 (ja) 燃料電池システム
US9966620B2 (en) Hydrogen generator and fuel cell system
WO2018174277A1 (ja) 燃料ガス製造装置の運転方法
JP2006137649A (ja) 水素製造装置および燃料電池システムの起動停止方法
CN102177086A (zh) 氢生成装置、燃料电池系统以及氢生成装置的运行方法
CN101980954B (zh) 燃料处理装置、具备其的燃料电池系统和燃料处理装置的运转方法
JP6238842B2 (ja) 水素製造装置およびその運転方法
WO2018174276A1 (ja) 燃料ガス製造装置の運転方法
JP4153958B2 (ja) 燃料電池用改質装置およびその起動方法
JP6983088B2 (ja) 燃料ガス供給装置
JPH08100184A (ja) 一酸化炭素除去装置
JP2015157732A (ja) 水素生成装置、これを備えた燃料電池システム、水素生成装置の運転方法
JP2015022863A (ja) 燃料電池システム
JP2007191338A (ja) 水素製造装置の運転方法、水素製造装置および燃料電池発電装置
JP2021161906A (ja) 燃料ガス供給装置
JP2021161905A (ja) 燃料ガス供給装置
JP7126470B2 (ja) 水素製造装置の運転方法及び水素製造装置
JPH09190833A (ja) 燃料電池発電装置用の原燃料ガス供給装置
JP2004175617A (ja) ガス製造方法及び製造プラント

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197030302

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018771137

Country of ref document: EP

Effective date: 20191023