WO2018174152A1 - 芳香族ビニル-共役ジエン共重合体及び重合体組成物 - Google Patents

芳香族ビニル-共役ジエン共重合体及び重合体組成物 Download PDF

Info

Publication number
WO2018174152A1
WO2018174152A1 PCT/JP2018/011383 JP2018011383W WO2018174152A1 WO 2018174152 A1 WO2018174152 A1 WO 2018174152A1 JP 2018011383 W JP2018011383 W JP 2018011383W WO 2018174152 A1 WO2018174152 A1 WO 2018174152A1
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic vinyl
conjugated diene
copolymer
mass
unit
Prior art date
Application number
PCT/JP2018/011383
Other languages
English (en)
French (fr)
Inventor
紘 青嶋
並河 正明
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2018174152A1 publication Critical patent/WO2018174152A1/ja

Links

Definitions

  • the present invention relates to an aromatic vinyl-conjugated diene copolymer and a polymer composition.
  • polymer compositions used for automobile tires are also required to have excellent fuel economy, and in terms of safety, excellent wet grip performance is required. It has been demanded.
  • a polymer composition for automobile tires a polymer composition containing a conjugated diene polymer such as polybutadiene or styrene-butadiene copolymer and a filler such as carbon black or silica is used. .
  • Patent Documents 1 to 3 disclose styrene-butadiene copolymers having improved characteristics such as wet skid resistance, rebound resilience, and road surface graspability.
  • JP-A-4-252242 Japanese Patent Laid-Open No. 1-197541 JP-A-61-268710
  • Aromatic vinyl-conjugated diene copolymers used in automobile tires are required to achieve both fuel saving and wet grip performance. Accordingly, an object of the present invention is to provide an aromatic vinyl-conjugated diene copolymer having an excellent balance between wet grip performance and fuel saving performance.
  • the present invention is an aromatic vinyl-conjugated diene copolymer having an aromatic vinyl unit based on an aromatic vinyl compound and a conjugated diene unit based on a conjugated diene compound, and based on the total amount of the aromatic vinyl unit,
  • the present invention relates to an aromatic vinyl-conjugated diene copolymer comprising 80% or more of isolated aromatic vinyl units and having a glass transition temperature range ( ⁇ Tg) in differential scanning calorimetry of greater than 10 ° C. and less than 20 ° C.
  • an aromatic vinyl-conjugated diene copolymer having an excellent balance between wet grip performance and fuel saving performance can be provided.
  • the aromatic vinyl-conjugated diene copolymer of the present embodiment has an aromatic vinyl unit based on an aromatic vinyl compound and a conjugated diene unit based on a conjugated diene compound, and is based on the total amount of the aromatic vinyl unit. It contains 80% or more of isolated aromatic vinyl units, and the glass transition temperature width in differential scanning calorimetry is greater than 10 ° C. and less than 20 ° C.
  • the “isolated aromatic vinyl unit” means a structural unit in which the repeating aromatic vinyl unit in the copolymer chain is 1, that is, a structural unit in which the aromatic vinyl units are not continuously bonded to each other. Say. The greater the content of the isolated aromatic vinyl unit, the more the aromatic vinyl unit is present alone in the copolymer chain.
  • a structural unit in which the number of repeating aromatic vinyl units in the copolymer chain is 2 or more, that is, a structural unit in which aromatic vinyl units are continuously bonded to each other is referred to as “long-chain aromatic vinyl”. When the long chain aromatic vinyl is increased, the aromatic vinyl unit tends to be unevenly distributed in a part of the copolymer chain.
  • the content ratio of the isolated aromatic vinyl unit is preferably 80 to 95%, more preferably 80 to 90% based on the total amount of the aromatic vinyl unit.
  • the proportion of the aromatic vinyl unit present alone in the copolymer chain increases.
  • this ratio is 80% or more, the wet grip performance of the copolymer In addition, fuel saving performance can be improved.
  • the content ratio of the isolated aromatic vinyl unit in the copolymer chain can be determined by measuring 1 H-NMR of the copolymer. Specifically, the content ratio of the isolated aromatic vinyl unit can be calculated by analyzing the sequence state of the aromatic vinyl unit in the NMR spectrum.
  • the content ratio of the isolated aromatic vinyl unit can be adjusted by, for example, a method for controlling the polymerization reaction temperature or a method for continuously introducing a conjugated diene compound.
  • a method for controlling the polymerization reaction temperature it is preferable to adjust the polymerization temperature so that the reaction rate of the aromatic vinyl compound and the reaction rate of the conjugated diene compound are kept equal.
  • a copolymer produced by reducing the initial supply amount of the conjugated diene compound and starting the reaction and then continuously supplying the remaining conjugated diene compound It is preferable to appropriately adjust the ratio of the isolated aromatic vinyl units in the chain.
  • the glass transition temperature width ( ⁇ Tg) of the copolymer according to this embodiment is narrower, the aromatic vinyl units are uniformly distributed in the copolymer chain, and as ⁇ Tg is wider, the aromatic vinyl unit is the copolymer chain.
  • the structure is densely distributed somewhere. If ⁇ Tg is large, the aromatic vinyl units are too ubiquitous anywhere in the copolymer chain, and it is difficult to obtain the fuel savings required in automotive tire applications. If ⁇ Tg is too small, the aromatic vinyl units The distribution width is small and the wet grip performance is not sufficiently improved. From the viewpoint of further improving the balance between the wet grip performance and the fuel saving performance, the ⁇ Tg of the copolymer according to this embodiment is preferably 11 to 19 ° C., more preferably 11 to 15 ° C.
  • ⁇ Tg can be measured using a differential scanning calorimeter (DSC). Specifically, in DSC measurement, after the measurement sample was cooled to ⁇ 100 ° C. in a nitrogen atmosphere, the temperature was raised from ⁇ 100 ° C. to 100 ° C. at 10 ° C./min. , ⁇ Tg can be calculated. ⁇ Tg is the difference between the extrapolation start point and extrapolation end point of the baseline shift due to the transition of the heat flow curve, that is, the temperature difference between the inflection points in the glass transition temperature range.
  • DSC differential scanning calorimeter
  • the Mooney viscosity (ML 1 + 4 ) of the copolymer according to this embodiment is preferably 10 or more, more preferably 20 or more, from the viewpoint of strength.
  • the Mooney viscosity of the copolymer is preferably 200 or less, more preferably 150 or less, from the viewpoint of processability.
  • the Mooney viscosity (ML 1 + 4 ) is measured at 125 ° C. according to JIS K6300 (1994).
  • the content of the aromatic vinyl unit of the copolymer according to this embodiment is preferably 100% by mass based on the total amount of the conjugated diene unit and the aromatic vinyl unit from the viewpoint of the balance between wet grip performance and fuel efficiency. Is 10 mass% or more and 50 mass% or less. Further, the vinyl bond content of the conjugated diene in the copolymer is preferably 10 mol% or more and 80 mol% or less, with the content of the conjugated diene unit being 100 mol% from the viewpoint of the balance between wet grip performance and fuel saving performance. It is.
  • the content of aromatic vinyl units in the copolymer is less than 30% by mass and the amount of vinyl bonds is 50 mol% or more, and applications where further wet grip performance is required. Then, it is more preferable that the content of the aromatic vinyl unit in the copolymer is 30% by mass or more and the vinyl bond content is less than 50 mol%. In applications where wet grip performance is more important, the copolymer may have an aromatic vinyl unit content of 30% by mass or more and a vinyl bond content of 50% by mol or more.
  • the vinyl bond amount is determined from the absorption intensity in the vicinity of 910 cm ⁇ 1, which is the absorption peak of the vinyl group, by infrared spectroscopy.
  • the molecular weight distribution of the copolymer according to the present embodiment is preferably 1 to 5, more preferably 1 to 3, and further preferably 1 to 2 from the viewpoint of fuel economy.
  • the molecular weight distribution is obtained by measuring the number average molecular weight (Mn) and the weight average molecular weight (Mw) by gel permeation chromatography (GPC) method and dividing Mw by Mn.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • Mw weight average molecular weight
  • the Mw of the aromatic vinyl-conjugated diene copolymer is preferably 1 million or more, more preferably 1 million to 3 million, and still more preferably 1 million to 200, from the viewpoint of wet grip performance and wear resistance.
  • Ten thousand. Mw and Mn can be measured by, for example, “Prominence” manufactured by Shimadzu Corporation.
  • As the column for example, “PLgel” manufactured by Agilent can be used.
  • the molecular weight standard substance for example, standard
  • the copolymer according to the present embodiment can be produced by copolymerizing an aromatic vinyl compound and a conjugated diene compound using a polymerization initiator.
  • conjugated diene compound examples include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, 1,3-hexadiene, myrcene and farnesene.
  • the conjugated diene compound is preferably 1,3-butadiene or isoprene.
  • aromatic vinyl compound examples include styrene, ⁇ -methylstyrene, vinyl toluene, vinyl naphthalene, divinyl benzene, trivinyl benzene and divinyl naphthalene.
  • aromatic vinyl compound styrene is preferable.
  • polymerization initiator examples include a complex of an alkali metal and a polar compound, an oligomer having an alkali metal, an organic alkali metal compound, a Ziegler-Natta catalyst, and a metallocene catalyst.
  • an organic alkali metal compound is preferable.
  • the polymerization initiators may be used alone or in combination of two or more.
  • organic alkali metal compound examples include ethyl lithium, n-propyl lithium, isopropyl lithium, n-butyl lithium, sec-butyl lithium, tert-butyl lithium, tert-octyl lithium, n-decyl lithium, phenyl lithium, 2- Naphthyl lithium, 2-butylphenyl lithium, 4-phenylbutyl lithium, cyclohexyl lithium, cyclopentyl lithium, 1,4-dilithio-2-butene, 1,3,3-trilithiooctyne, sodium naphthalenide, sodium biphenylide and Organic alkali metal compounds having a hydrocarbyl group such as potassium naphthalenide; methylaminopropyllithium, diethylaminopropyllithium, tert-butyldimethylsilyloxypropyllithium, N- Isoprene is added to ruphorinopropy
  • the amount of the polymerization initiator used is preferably 0.01 mmol to 15 mmol per 100 g of the total amount of the aromatic vinyl compound and the conjugated diene compound.
  • the copolymerization of the aromatic vinyl compound and the conjugated diene compound is preferably performed in a solvent.
  • a solvent that does not deactivate the polymerization initiator may be used, and a hydrocarbon solvent is preferable.
  • hydrocarbon solvent aliphatic hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, and the like can be used.
  • a solvent may be used individually or in combination of 2 or more types, and the mixture of aliphatic hydrocarbons and alicyclic hydrocarbons like industrial hexane may be used.
  • Examples of the aliphatic hydrocarbon include propane, n-butane, iso-butane, n-pentane, iso-pentane, 2-methylpentane, 3-methylpentane, n-hexane, propene, 1-butene and iso-butene. , Trans-2-butene, cis-2-butene, 1-pentene, 2-pentene, 1-hexene and 2-hexene.
  • Examples of the aromatic hydrocarbon include benzene, toluene, xylene, and ethylbenzene.
  • Examples of the alicyclic hydrocarbon include cyclopentane, cyclohexane, and methylcyclopentane.
  • the copolymer has a unit based on a modifier having a hetero atom and / or a silicon atom at least at the start end, in the chain, or at the stop end of the copolymer. May be.
  • the preparation of the copolymer according to the present embodiment includes an agent that adjusts the vinyl bond amount of the conjugated diene unit, an agent that adjusts the distribution of the conjugated diene unit and the aromatic vinyl unit in the copolymer chain (hereinafter, generic name). And may be carried out in the presence of “regulator”.
  • ether compounds examples include cyclic ethers such as tetrahydrofuran, tetrahydropyran, and 1,4-dioxane; aliphatic monoethers such as diethyl ether and dibutyl ether; ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and ethylene glycol dibutyl ether.
  • Aliphatic diethers such as diethylene glycol diethyl ether and diethylene glycol dibutyl ether; aromatic ethers such as diphenyl ether, anisole, 1,2-dimethoxybenzene, and 3,4-dimethoxytoluene.
  • aliphatic triethers such as diethylene glycol diethyl ether and diethylene glycol dibutyl ether
  • aromatic ethers such as diphenyl ether, anisole, 1,2-dimethoxybenzene, and 3,4-dimethoxytoluene.
  • tertiary amine include triethylamine, tripropylamine, tributylamine, 1,1,2,2-tetramethylethylenediamine, N, N-diethylaniline, pyridine and quinoline.
  • phosphine compound include trimethylphosphine, triethylphosphine, and triphenylphosphine.
  • alkali metal alkoxide examples include sodium-tert-butoxide, potassium-tert-butoxide, sodium-tert-pentoxide and potassium-tert-pentoxide.
  • alkali metal phenoxide examples include sodium phenoxide and potassium phenoxide. You may use these individually or in combination of 2 or more types.
  • a polymer composition may be prepared by blending a reinforcing material with the aromatic vinyl-conjugated diene copolymer of the present embodiment.
  • the polymer composition according to the present embodiment can contain an aromatic vinyl-conjugated diene copolymer and a reinforcing material.
  • the reinforcing material examples include silica, calcium silicate, aluminum silicate, aluminum hydroxide, and carbon black. You may use a reinforcing material individually or in combination of 2 or more types.
  • silica examples include dry silica (anhydrous silicic acid), wet silica (hydrous silicic acid), colloidal silica, and precipitated silica.
  • the BET specific surface area of silica is preferably 50 m 2 / g to 250 m 2 / g.
  • the BET specific surface area is measured according to ASTM D1993-03.
  • Commercially available silica products include Evonik's trade name “Ultrasil VN3-G”, Tosoh Silica's trade names “VN3”, “AQ”, “ER”, “RS-150”, and Rhodia Product names such as “Zeosil 1115MP”, “Zeosil 1165MP”, etc. can be used.
  • Silica may be used alone or in combination of two or more.
  • Examples of carbon black include furnace black, acetylene black, thermal black, channel black, and graphite.
  • Examples of channel black include EPC, MPC, and CC.
  • Examples of the furnace carbon black include SAF, ISAF, HAF, MAF, FEF, SRF, GPF, APF, FF, CF, SCF, and ECF.
  • Examples of the thermal black include FT and MT. Carbon blacks may be used alone or in combination of two or more.
  • the nitrogen adsorption specific surface area (N 2 SA) of carbon black is preferably 5 m 2 / g to 200 m 2 / g.
  • the amount of dibutyl phthalate (DBP) absorbed by carbon black is preferably 5 mL / 100 g to 300 mL / 100 g.
  • the nitrogen adsorption specific surface area can be measured according to ASTM D4820-93, and the DBP absorption amount can be measured according to ASTM D2414-93.
  • Commercially available carbon black products are trade names “Dia Black N339” manufactured by Mitsubishi Chemical Corporation, “Seast 6”, “Seast 7HM”, “Seast KH” manufactured by Tokai Carbon, and “ CK 3 "," Special Black 4A ", etc. can be used.
  • the content of the reinforcing material in the polymer composition is 10 parts by mass or more, preferably 20 parts by mass or more, more preferably from the viewpoint of improving wet grip performance with respect to 100 parts by mass of the copolymer. 30 parts by mass or more.
  • content of a reinforcing material is 150 mass parts or less, Preferably it is 120 mass parts or less, More preferably, it is 100 mass parts or less.
  • the copolymer according to this embodiment may be further blended with other polymer components, additives and the like to prepare a polymer composition.
  • polystyrene-butadiene copolymer rubber examples include conventional styrene-butadiene copolymer rubber, polybutadiene rubber, butadiene-isoprene copolymer rubber, butyl rubber, natural rubber, ethylene-propylene copolymer, and ethylene-octene copolymer. Can be mentioned. These polymer components may be used alone or in combination of two or more.
  • the content of the copolymer according to the present embodiment in the polymer composition is determined from the total amount of polymer components (aromatic vinyl-conjugated diene copolymer) from the viewpoint of improving wet grip performance.
  • the amount is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, and still more preferably 30 parts by mass or more with respect to 100 parts by mass).
  • the content of the copolymer according to this embodiment in the polymer composition may be 95 parts by mass or less, or 90 parts by mass or less with respect to 100 parts by mass of the total amount of the polymer components.
  • additives can be used, such as sulfur vulcanizing agents; thiazole vulcanization accelerators, thiuram vulcanization accelerators, sulfenamide vulcanization accelerators, guanidine vulcanization accelerators.
  • sulfur vulcanizing agents such as sulfur vulcanizing agents; thiazole vulcanization accelerators, thiuram vulcanization accelerators, sulfenamide vulcanization accelerators, guanidine vulcanization accelerators.
  • vulcanization accelerators such as stearic acid and zinc oxide; organic peroxides; silane coupling agents; extension oils; processing aids;
  • silane coupling agent examples include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and ⁇ -glycidoxypropyltrimethoxy.
  • Silane ⁇ -methacryloxypropyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, N-phenyl- ⁇ -Aminopropyltrimethoxysilane, ⁇ -chloropropyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, bis (3- (triethoxysilyl) propyl) disulfide, bis (3- (tri Ethoxysil ) Propyl) tetrasulfide, .gamma.-trimethoxysilylpropyl dimethylthiocarbamoyl tetrasulfide and .gamma.-trimethoxysilylprop
  • the compounding amount of the silane coupling agent is preferably 1 to 20 parts by mass, more preferably 2 to 15 parts by mass, and further preferably 5 to 10 parts by mass with respect to 100 parts by mass of the reinforcing material.
  • the extending oil examples include aromatic mineral oil (viscosity specific gravity constant (VGC value) 0.900 to 1.049), naphthenic mineral oil (VGC value 0.850). To 0.899) and paraffinic mineral oil (VGC value 0.790 to 0.849).
  • the polycyclic aromatic content of the extender oil is preferably less than 3% by mass, more preferably less than 1% by mass. The polycyclic aromatic content is measured according to the British Petroleum Institute 346/92 method.
  • the aromatic compound content (CA) of the extender oil is preferably 20% by mass or more.
  • the extension oils may be used alone or in combination of two or more.
  • vulcanization accelerator examples include thiazole vulcanization accelerators such as 2-mercaptobenzothiazole, dibenzothiazyl disulfide, and N-cyclohexyl-2-benzothiazylsulfenamide; tetramethylthiuram monosulfide, tetramethyl Thiuram vulcanization accelerators such as thiuram disulfide; N-cyclohexyl-2-benzothiazole sulfenamide, Nt-butyl-2-benzothiazole sulfenamide, N-oxyethylene-2-benzothiazole sulfenamide, Sulfenamide vulcanization accelerators such as N-oxyethylene-2-benzothiazole sulfenamide and N, N′-diisopropyl-2-benzothiazole sulfenamide; Include guanidine-based vulcanization accelerator. Vulcanization accelerators may be used alone or in combination of two or more.
  • the blending amount of the vulcanization accelerator is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 3 parts by mass with respect to 100 parts by mass of the polymer component.
  • a known method for example, a method of kneading each component with a known mixer such as a roll or a Banbury mixer may be used.
  • the kneading temperature is usually 50 to 200 ° C., preferably 80 to 190 ° C., and the kneading time is usually 30 seconds. -30 minutes, and preferably 1-30 minutes.
  • the kneading temperature is usually 100 ° C. or lower, preferably room temperature to 80 ° C.
  • a composition containing a vulcanizing agent and a vulcanization accelerator is usually used after being subjected to a vulcanization treatment such as press vulcanization.
  • the vulcanization temperature is usually 120 to 200 ° C, preferably 140 to 180 ° C.
  • the polymer composition according to the present embodiment has a balance between excellent wet grip performance and fuel economy, and is suitably used for automobile tires.
  • the physical properties were evaluated by the following method. 1. Mooney viscosity (ML 1 + 4 ) According to JIS K6300 (1994), the initial Mooney viscosity of the copolymer was measured at 125 ° C.
  • Vinyl bond amount (unit: mol%) The amount of vinyl bond of the conjugated diene in the copolymer was determined from the absorption intensity around 910 cm ⁇ 1, which is the absorption peak of the vinyl group, by infrared spectroscopy.
  • Styrene unit content (unit: mass%) According to JIS K6383 (1995), the content of styrene units in the copolymer was determined from the refractive index.
  • Weight average molecular weight (Mw) Mw was measured by the gel permeation chromatograph (GPC) method under the following conditions (1) to (8).
  • Equipment Prominence made by Shimadzu Corporation
  • Separation columns Agilent PLgel 5 ⁇ m 10 5 ⁇ , PLgel 5 ⁇ m 10 6 ⁇ (each one connected)
  • Carrier Tetrahydrofuran
  • Flow rate 1.0 mL / min (6)
  • Injection volume 100 ⁇ L
  • Detector Differential refraction (8)
  • Molecular weight standard Standard polystyrene
  • Content ratio of isolated styrene units 400 MHz 1 H-NMR (AL400 manufactured by JEOL Ltd.) was measured using deuterated chloroform as a solvent, and the structure of the copolymer was analyzed. From the obtained NMR spectrum, the sequence state of the styrene unit was determined from the integrated value in the following range.
  • the content ratio of the isolated styrene unit is the total of the integrated values of (a) to (c) below, and from the integrated value of (a) below, the meta position of the aromatic ring determined from (b) and (c) and It was set as the ratio of the integral value which subtracted the calculated value of the para-position proton.
  • A Isolated styrene unit, 2 to 3 chain styrene, 4 or more chain styrene: integrated value of peak between 7.6 to 7.0 ppm.
  • B 2 to 3 chain styrene (ortho proton): integrated value of peak between 7.0 and 6.9 ppm.
  • C 4 or more chain styrene (ortho position proton): integrated value of peak between 6.9 and 6.0 ppm.
  • Fuel-saving performance A strip-shaped test piece having a width of 1 mm or 2 mm and a length of 40 mm was punched out from the sheet-like vulcanized molded article and used for the test. The measurement was performed by measuring the loss tangent (tan ⁇ (70 ° C.)) of the test piece at a temperature of 70 ° C. under the conditions of a strain of 1% and a frequency of 10 Hz using a viscoelasticity measuring device (manufactured by Ueshima Seisakusho). The smaller this value, the better the fuel saving performance.
  • Example 1 ⁇ Preparation of aromatic vinyl-conjugated diene copolymer> A stainless polymerization reactor with an internal volume of 20 L equipped with a stirrer was washed and dried, and the atmosphere inside the polymerization reactor was replaced with dry nitrogen. Next, 7.65 kg of industrial hexane (manufactured by Sumitomo Chemical Co., Ltd., trade name: hexane (general product), density 0.68 g / mL), 2.93 kg of cyclohexane, 240 g of 1,3-butadiene, 510 g of styrene, 8. 8 mL and ethylene glycol dibutyl ether 0.9 mL were charged into the polymerization reactor.
  • industrial hexane manufactured by Sumitomo Chemical Co., Ltd., trade name: hexane (general product), density 0.68 g / mL)
  • 2.93 kg of cyclohexane 240 g of 1,3-buta
  • n-butyllithium (n-BuLi) hexane solution was introduced into the polymerization reactor as a scavenger, and then n-BuLi.
  • Polymerization reaction was performed for 4 hours and 10 minutes. During the polymerization reaction, the temperature in the polymerization reactor is adjusted to 65 ° C., and the solution in the polymerization reactor is stirred at a stirring speed of 100 rpm. In the polymerization reactor, after 20 minutes from the start of polymerization, it takes 3 hours and 20 minutes. 660 g of 1,3-butadiene and 90 g of styrene were continuously fed. Next, while maintaining the polymerization reactor temperature at 65 ° C., the obtained polymerization solution was stirred in the polymerization reactor at a stirring speed of 100 rpm, and 0.25 mmol of silicon tetrachloride was added to the polymerization solution and stirred for 15 minutes. Next, 5 mL of a hexane solution containing 0.8 mL of methanol was charged into the polymerization reactor, and the polymerization solution was stirred for 5 minutes.
  • the vinyl bond content, styrene unit content, ⁇ Tg, and isolated styrene unit content were measured.
  • ⁇ Preparation of polymer composition 110 parts by weight of copolymer 1, 20 parts by weight of polybutadiene rubber (trade name: Buna CB24, manufactured by LANXESS), 75.0 parts by weight of silica (trade name: Ultrasil VN3-G, manufactured by Evonik), silane 6.0 parts by mass of coupling agent (Evonik, trade name: Si75), 10.0 parts by weight of carbon black (Mitsubishi Chemical, trade name: Diamond Black N339), extension oil (manufactured by Japan Energy, Product name: 10.0 parts by mass of JOMO process NC-140), 2.0 parts by mass of anti-aging agent (manufactured by Sumitomo Chemical Co., Ltd., product name: Antigen 6C), wax (manufactured by Ouchi Shinsei Chemical Co., Ltd., product name) : Sunnock N) 2.0 parts by mass, Wax (trade name: EF44, trade name: EF44) 1.0 parts by mass, stearic acid 2.0 parts by mass
  • ⁇ Preparation of vulcanized sheet> To 241 parts by mass of the polymer composition, 1.5 parts by mass of a vulcanization accelerator (manufactured by Sumitomo Chemical Co., Ltd., trade name: Soxinol CZ), vulcanization accelerator (manufactured by Sumitomo Chemical Co., Ltd., trade name: Soxinol D) 2.0 Part by mass and 1.5 parts by mass of sulfur were added, formed into a sheet with a 6-inch roll, and the sheet was heated and vulcanized at 160 ° C. for 40 minutes to prepare a vulcanized sheet.
  • a vulcanization accelerator manufactured by Sumitomo Chemical Co., Ltd., trade name: Soxinol CZ
  • Soxinol D vulcanization accelerator
  • Polymerization reaction was performed for 4 hours and 10 minutes. During the polymerization reaction, the temperature in the polymerization reactor is adjusted to 65 ° C., and the solution in the polymerization reactor is stirred at a stirring speed of 130 rpm. In the polymerization reactor, after 20 minutes from the start of polymerization, it takes 3 hours and 20 minutes. 630 g of 1,3-butadiene and 66 g of styrene were continuously fed. Next, while maintaining the polymerization reactor temperature at 65 ° C., the obtained polymerization solution was stirred in the polymerization reactor at a stirring speed of 130 rpm, 0.27 mmol of silicon tetrachloride was added to the polymerization solution, and the mixture was stirred for 15 minutes. Next, 5 mL of a hexane solution containing 0.8 mL of methanol was charged into the polymerization reactor, and the polymer solution was stirred for 5 minutes.
  • the vinyl bond content, styrene unit content, ⁇ Tg, and isolated styrene unit content were measured.
  • Polymerization reaction was performed for 4 hours and 10 minutes. During the polymerization reaction, the temperature in the polymerization reactor is adjusted to 65 ° C., and the solution in the polymerization reactor is stirred at a stirring speed of 130 rpm. In the polymerization reactor, after 20 minutes from the start of polymerization, it takes 3 hours and 20 minutes. 480 g of 1,3-butadiene and 120 g of styrene were continuously fed. Next, while maintaining the polymerization reactor temperature at 65 ° C., the obtained polymerization solution was stirred in the polymerization reactor at a stirring speed of 130 rpm, 0.24 mmol of silicon tetrachloride was added to the polymerization solution, and the mixture was stirred for 15 minutes. Next, 5 mL of a hexane solution containing 0.8 mL of methanol was charged into the polymerization reactor, and the polymer solution was stirred for 5 minutes.
  • the vinyl bond content, styrene unit content, ⁇ Tg, and isolated styrene unit content were measured.
  • Polymerization reaction was performed for 4 hours and 10 minutes. During the polymerization reaction, the temperature in the polymerization reactor was adjusted to 65 ° C., the solution in the polymerization reactor was stirred at a stirring speed of 130 rpm, and 1,3-butadiene 540 g and styrene 360 g were put in the polymerization reactor for 2 hours. Feeded continuously over 30 minutes. Next, while maintaining the polymerization reactor temperature at 65 ° C., the obtained polymerization solution was stirred in the polymerization reactor at a stirring speed of 130 rpm, and 0.25 mmol of silicon tetrachloride was added to the polymerization solution and stirred for 15 minutes. Next, 5 mL of a hexane solution containing 0.8 mL of methanol was charged into the polymerization reactor, and the polymer solution was stirred for 5 minutes.
  • the vinyl bond content, styrene unit content, ⁇ Tg, and isolated styrene unit content were measured.

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明の芳香族ビニル-共役ジエン共重合体は、芳香族ビニル化合物に基づく芳香族ビニル単位と、共役ジエン化合物に基づく共役ジエン単位とを有し、芳香族ビニル単位の全量を基準として、孤立芳香族ビニル単位を80%以上含み、示差走査熱量測定におけるガラス転移温度幅が、10℃より大きく20℃未満である。

Description

芳香族ビニル-共役ジエン共重合体及び重合体組成物
 本発明は、芳香族ビニル-共役ジエン共重合体及び重合体組成物に関する。
 近年、環境問題への関心の高まりから、自動車用タイヤに用いる重合体組成物に対しても、省燃費性に優れることが求められており、さらに安全性の面からは優れたウェットグリップ性能が求められている。自動車タイヤ用の重合体組成物としては、ポリブタジエン、スチレン-ブタジエン共重合体等の共役ジエン系重合体と、カーボンブラック、シリカ等の充填材とを含有する重合体組成物などが用いられている。
 例えば、特許文献1~3には、ウェットスキッド抵抗性、反発弾性、路面把握性等の特性を改善したスチレン-ブタジエン共重合体が開示されている。
特開平4-252242号公報 特開平1-197541号公報 特開昭61-268710号公報
 自動車タイヤに用いられる芳香族ビニル-共役ジエン共重合体には、省燃費性とウェットグリップ性能との両立が求められている。そこで、本発明は、ウェットグリップ性能と省燃費性能とのバランスに優れる芳香族ビニル-共役ジエン共重合体を提供することを目的とする。
 本発明は、芳香族ビニル化合物に基づく芳香族ビニル単位と、共役ジエン化合物に基づく共役ジエン単位とを有する芳香族ビニル-共役ジエン共重合体であって、芳香族ビニル単位の全量を基準として、孤立芳香族ビニル単位を80%以上含み、示差走査熱量測定におけるガラス転移温度幅(ΔTg)が、10℃より大きく20℃未満である、芳香族ビニル-共役ジエン共重合体に関する。
 本発明によれば、ウェットグリップ性能と省燃費性能とのバランスに優れる芳香族ビニル-共役ジエン共重合体を提供することができる。
 本実施形態について詳細に説明する。なお、本発明は以下の実施形態に限定されるものではない。
[芳香族ビニル-共役ジエン共重合体]
 本実施形態の芳香族ビニル-共役ジエン共重合体は、芳香族ビニル化合物に基づく芳香族ビニル単位と、共役ジエン化合物に基づく共役ジエン単位とを有し、芳香族ビニル単位の全量を基準として、孤立芳香族ビニル単位を80%以上含み、示差走査熱量測定におけるガラス転移温度幅が、10℃より大きく20℃未満である。
 ここで、「孤立芳香族ビニル単位」とは、共重合体鎖中の芳香族ビニル単位の繰り返しが1である構造単位、すなわち、芳香族ビニル単位同士が連続して結合していない構造単位をいう。孤立芳香族ビニル単位の含有割合が多いほど、芳香族ビニル単位は、共重合体鎖中に単独で存在している。また、共重合体鎖中の芳香族ビニル単位の繰り返しが2以上である構造単位、すなわち、芳香族ビニル単位同士が連続して結合している構造単位を「長連鎖芳香族ビニル」という。長連鎖芳香族ビニルが多くなると、芳香族ビニル単位は、共重合体鎖の一部に偏在する傾向にある。
 本実施形態に係る共重合体において、孤立芳香族ビニル単位の含有割合は、芳香族ビニル単位の全量を基準として80~95%であることが好ましく、80~90%であることが更に好ましい。孤立芳香族ビニル単位の含有割合が多いほど共重合体鎖中に芳香族ビニル単位が単独で存在している割合が多くなり、この割合が80%以上であると、共重合体のウェットグリップ性能及び省燃費性能を向上することができる。
 共重合体鎖中の孤立芳香族ビニル単位の含有割合は、共重合体のH-NMRを測定することで求めることができる。具体的には、NMRスペクトルにおける芳香族ビニル単位のシークエンスの状態を解析することで、孤立芳香族ビニル単位の含有割合を算出することができる。
 孤立芳香族ビニル単位の含有割合は、例えば、重合反応温度を制御する方法、共役ジエン化合物を連続的に導入する方法等によって調節することができる。重合反応温度を制御する方法の場合、芳香族ビニル化合物の反応速度と共役ジエン化合物の反応速度とが同等に保たれるように重合温度を調節することが好ましい。共役ジエン化合物を連続的に導入する方法の場合、共役ジエン化合物の初期の供給量を減らして反応を開始させた後、残りの共役ジエン化合物を連続的に供給して、製造される共重合体鎖中の孤立芳香族ビニル単位の割合を適切に調節することが好ましい。
 本実施形態に係る共重合体のガラス転移温度幅(ΔTg)が狭いほど、芳香族ビニル単位が共重合体鎖中に均一に分布し、ΔTgが広いほど、芳香族ビニル単位が共重合体鎖のどこかに密に偏在した構造となる。ΔTgが大きいと、芳香族ビニル単位が共重合体鎖のどこかに密に遍在し過ぎ、自動車タイヤ用途において求められる省燃費性が得られ難く、ΔTgが小さすぎると、芳香族ビニル単位の分布幅が小さく、ウェットグリップ性能が十分に改良されない。ウェットグリップ性能と省燃費性能とのバランスをより向上する観点から、本実施形態に係る共重合体のΔTgは、好ましくは11~19℃、更に好ましくは11~15℃である。
 ΔTgは、示差走査熱量計(DSC)を用いて測定することができる。具体的には、DSC測定において、測定試料を窒素雰囲気下で-100℃まで冷却した後に、10℃/分で-100℃から100℃まで昇温し、昇温時の温度と熱流の変化から、ΔTgを算出することができる。ΔTgは、熱流曲線の転移によるベースラインシフトの外挿開始点と外挿終了点との差、すなわち、ガラス転移温度域での変曲点間の温度差である。
 本実施形態に係る共重合体のムーニー粘度(ML1+4)は、強度の観点から、好ましくは10以上であり、より好ましくは20以上である。また、共重合体のムーニー粘度は、加工性の観点から、好ましくは200以下であり、より好ましくは150以下である。ムーニー粘度(ML1+4)は、JIS K6300(1994)に従って、125℃にて測定される。
 本実施形態に係る共重合体の芳香族ビニル単位の含有量は、ウェットグリップ性能と省燃費性能とのバランスの観点から、共役ジエン単位と芳香族ビニル単位との総量を100質量%として、好ましくは10質量%以上50質量%以下である。また、共重合体における共役ジエンのビニル結合量は、ウェットグリップ性能と省燃費性能とのバランスの観点から、共役ジエン単位の含有量を100モル%として、好ましくは10モル%以上80モル%以下である。省燃費性能が更に求められる用途では、共重合体の芳香族ビニル単位の含有量を30質量%未満、ビニル結合量を50モル%以上とすることがより好ましく、ウェットグリップ性能を更に求められる用途では、共重合体の芳香族ビニル単位の含有量を30質量%以上、ビニル結合量を50モル%未満とすることがより好ましい。また、ウェットグリップ性能がより重視される用途では、共重合体の芳香族ビニル単位の含有量を30質量%以上、ビニル結合量を50モル%以上としてもよい。該ビニル結合量は、赤外分光分析法により、ビニル基の吸収ピークである910cm-1付近の吸収強度より求められる。
 本実施形態に係る共重合体の分子量分布は、省燃費性の観点から、好ましくは1~5であり、より好ましくは1~3であり、更に好ましくは1~2である。分子量分布は、ゲルパーミエイションクロマトグラフ(GPC)法により、数平均分子量(Mn)及び重量平均分子量(Mw)を測定し、MwをMnで除すことにより求められる。芳香族ビニル-共役ジエン共重合体のMwは、ウェットグリップ性能及び耐摩耗性能の観点から、好ましくは100万以上であり、より好ましくは100万~300万であり、更に好ましくは100万~200万である。Mw及びMnは、例えば、島津製作所製の「Prominence」等により測定することができる。カラムとしては、例えば、Agilent社製の「PLgel」等を用いることができる。分子量標準物質としては、例えば、東ソー(株)製の標準ポリスチレンを用いることができる。
 以下、本実施形態に係る共重合体の作製に用いることができる各成分について、説明する。本実施形態に係る共重合体は、芳香族ビニル化合物と共役ジエン化合物とを重合開始剤を使用して共重合することで作製することができる。
 共役ジエン化合物としては、例えば、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ヘキサジエン、ミルセン及びファルネセンが挙げられる。共役ジエン化合物として、好ましくは1,3-ブタジエン又はイソプレンである。
 芳香族ビニル化合物としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、ビニルナフタレン、ジビニルベンゼン、トリビニルベンゼン及びジビニルナフタレンが挙げられる。芳香族ビニル化合物として、好ましくはスチレンである。
 重合開始剤としては、例えば、アルカリ金属と極性化合物との錯体、アルカリ金属を有するオリゴマー、有機アルカリ金属化合物、チーグラーナッタ触媒及びメタロセン触媒が挙げられる。重合開始剤として、好ましくは、有機アルカリ金属化合物である。重合開始剤は、単独で又は2種以上を組み合わせて用いてもよい。
 有機アルカリ金属化合物としては、例えば、エチルリチウム、n-プロピルリチウム、イソプロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、tert-オクチルリチウム、n-デシルリチウム、フェニルリチウム、2-ナフチルリチウム、2-ブチルフェニルリチウム、4-フェニルブチルリチウム、シクロヘキシルリチウム、シクロペンチルリチウム、1,4-ジリチオ-2-ブテン、1,3,3-トリリチオオクチン、ナトリウムナフタレニド、ナトリウムビフェニリド及びカリウムナフタレニド等のヒドロカルビル基を有する有機アルカリ金属化合物;メチルアミノプロピルリチウム、ジエチルアミノプロピルリチウム、tert-ブチルジメチルシリロキシプロピルリチウム、N-モルホリノプロピルリチウム、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピペリジド、リチウムヘプタメチレンイミド、リチウムドデカメチレンイミド、3-(ジメチルアミノ)プロピルリチウム又は3-(ジエチルアミノ)プロピルリチウムに、イソプレンを反応させて得られる化合物等の窒素原子を含有する基を有する有機アルカリ金属化合物が挙げられる。有機アルカリ金属化合物として、好ましくはn-ブチルリチウムである。
 重合開始剤の使用量は、芳香族ビニル化合物及び共役ジエン化合物の総量100gあたり、好ましくは0.01mmol~15mmolである。
 芳香族ビニル化合物と共役ジエン化合物との共重合は、溶媒中で行われることが好ましい。溶媒としては、重合開始剤を失活させない溶媒を用いればよく、炭化水素溶媒が好ましい。炭化水素溶媒としては、脂肪族炭化水素、芳香族炭化水素、脂環族炭化水素等を用いることができる。溶媒は、単独で又は2種以上を組み合わせて用いてもよく、工業用ヘキサンのような脂肪族炭化水素及び脂環族炭化水素の混合物を用いてもよい。
 脂肪族炭化水素としては、例えば、プロパン、n-ブタン、iso-ブタン、n-ペンタン、iso-ペンタン、2-メチルペンタン、3-メチルペンタン、n-ヘキサン、プロペン、1-ブテン、iso-ブテン、トランス-2-ブテン、シス-2-ブテン、1-ペンテン、2-ペンテン、1-ヘキセン及び2-ヘキセンが挙げられる。芳香族炭化水素としては、例えば、ベンゼン、トルエン、キシレン及びエチルベンゼンが挙げられる。脂環族炭化水素としては、例えば、シクロペンタン、シクロヘキサン及びメチルシクロペンタンが挙げられる。
 また、省燃費性能や耐摩耗性能を向上させる観点から、共重合体の開始末端、鎖中、停止末端の少なくともいずれかにヘテロ原子及び/又はケイ素原子を有する変性剤に基づく単位を有していてもよい。
 本実施形態に係る共重合体の作製は、共役ジエン単位のビニル結合量を調整する剤、共重合体鎖中での共役ジエン単位と芳香族ビニル単位との分布を調整する剤(以下、総称して「調整剤」と記す。)の存在下で行ってもよい。
 調整剤としては、エーテル化合物、第三級アミン、ホスフィン化合物、アルカリ金属アルコキシド、アルカリ金属フェノキシド等を用いることができる。エーテル化合物としては、例えば、テトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサン等の環状のエーテル;ジエチルエーテル、ジブチルエーテル等の脂肪族モノエーテル;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル等の脂肪族ジエーテル;ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル等の脂肪族トリエーテル;ジフェニルエーテル、アニソール、1,2-ジメトキシベンゼン、3,4-ジメトキシトルエン等の芳香族エーテルが挙げられる。第三級アミンとしては、例えば、トリエチルアミン、トリプロピルアミン、トリブチルアミン、1,1,2,2-テトラメチルエチレンジアミン、N,N-ジエチルアニリン、ピリジン及びキノリンが挙げられる。ホスフィン化合物として、例えば、トリメチルホスフィン、トリエチルホスフィン及びトリフェニルホスフィンが挙げられる。アルカリ金属アルコキシドとしては、例えば、ナトリウム-tert-ブトキシド、カリウム-tert-ブトキシド、ナトリウム-tert-ペントキシド及びカリウム-tert-ペントキシドが挙げられる。アルカリ金属フェノキシドとしては、例えば、ナトリウムフェノキシド及びカリウムフェノキシドが挙げられる。これらは、単独で又は2種以上を組み合わせて用いてもよい。
[重合体組成物]
 本実施形態の芳香族ビニル-共役ジエン共重合体に、補強材を配合して、重合体組成物を調製してもよい。本実施形態に係る重合体組成物は、芳香族ビニル-共役ジエン共重合体と、補強材とを含有することができる。
 補強材としては、例えば、シリカ、ケイ酸カルシウム、ケイ酸アルミニウム、水酸化アルミニウム及びカーボンブラックが挙げられる。補強材は、単独で又は2種以上を組み合わせて用いてもよい。
 シリカとしては、例えば、乾式シリカ(無水ケイ酸)、湿式シリカ(含水ケイ酸)、コロイダルシリカ及び沈降シリカが挙げられる。シリカのBET比表面積は、好ましくは、50m/g~250m/gである。該BET比表面積は、ASTM D1993-03に従って測定される。シリカの市販品としては、エボニック社製の商品名「ウルトラシルVN3-G」、東ソー・シリカ社製の商品名「VN3」、「AQ」、「ER」、「RS-150」、Rhodia社製の商品名「Zeosil 1115MP」、「Zeosil 1165MP」等を用いることができる。シリカは、単独で又は2種以上を組み合わせて用いてもよい。
 カーボンブラックとしては、例えば、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック及びグラファイトが挙げられる。チャンネルブラックとしては、例えば、EPC、MPC及びCCが挙げられる。ファーネスカーボンブラックとしては、例えば、SAF、ISAF、HAF、MAF、FEF、SRF、GPF、APF、FF、CF、SCF及びECFが挙げられる。サーマルブラックとしては、例えば、FT及びMTが挙げられる。カーボンブラックは、単独で又は2種以上組み合わせて用いてもよい。
 カーボンブラックの窒素吸着比表面積(NSA)は、好ましくは、5m/g~200m/gである。カーボンブラックのジブチルフタレート(DBP)吸収量は、好ましくは、5mL/100g~300mL/100gである。窒素吸着比表面積は、ASTM D4820-93に従って測定することができ、DBP吸収量は、ASTM D2414-93に従って測定することができる。カーボンブラックの市販品としては、三菱化学社製の商品名「ダイヤブラックN339」、東海カーボン社製の商品名「シースト6」、「シースト7HM」、「シーストKH」、エボニック社製の商品名「CK 3」、「Special Black 4A」等を用いることができる。
 重合体組成物における補強材の含有量は、共重合体100質量部に対して、ウェットグリップ性能を向上する観点から、10質量部以上であり、好ましくは20質量部以上であり、より好ましくは30質量部以上である。また、補強材の含有量は、補強性を高めるために、150質量部以下であり、好ましくは120質量部以下であり、より好ましくは100質量部以下である。
 本実施形態に係る共重合体には、他の重合体成分、添加剤等を更に配合して、重合体組成物を調製してもよい。
 他の重合体成分としては、例えば、従来のスチレン-ブタジエン共重合体ゴム、ポリブタジエンゴム、ブタジエン-イソプレン共重合体ゴム、ブチルゴム、天然ゴム、エチレン-プロピレン共重合体及びエチレン-オクテン共重合体が挙げられる。これらの重合体成分は、単独で又は2種以上組み合わせて用いてもよい。
 他の重合体成分を配合する場合、重合体組成物における本実施形態に係る共重合体の含有量は、ウェットグリップ性能を高める観点から、重合体成分の総量(芳香族ビニル-共役ジエン共重合体を含む)100質量部に対して、好ましくは10質量部以上であり、より好ましくは20質量部以上であり、更に好ましくは30質量部以上である。重合体組成物における本実施形態に係る共重合体の含有量は、重合体成分の総量100質量部に対して、95質量部以下、又は90質量部以下であってもよい。
 添加剤としては、公知のものを用いることができ、硫黄等の加硫剤;チアゾール系加硫促進剤、チウラム系加硫促進剤、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤等の加硫促進剤;ステアリン酸、酸化亜鉛等の加硫活性化剤;有機過酸化物;シランカップリング剤;伸展油;加工助剤;老化防止剤;滑剤を例示することができる。
 シランカップリング剤としては、例えば、ビニルトリクロルシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、ビス(3-(トリエトキシシリル)プロピル)ジスルフィド、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド、γ-トリメトキシシリルプロピルジメチルチオカルバミルテトラスルフィド及びγ-トリメトキシシリルプロピルベンゾチアジルテトラスルフィドが挙げられる。シランカップリング剤は、単独で又は2種以上組み合わせて用いてもよい。市販品としては、エボニック社製の商品名「Si69」、「Si75」等を用いることができる。
 シランカップリング剤の配合量は、補強材100質量部に対して、好ましくは1~20質量部であり、より好ましくは2~15質量部であり、更に好ましくは5~10質量部である。
 伸展油としては、例えば、アロマチック系鉱物油(粘度比重恒数(V.G.C.値)0.900~1.049)、ナフテン系鉱物油(V.G.C.値0.850~0.899)及びパラフィン系鉱物油(V.G.C.値0.790~0.849)が挙げられる。伸展油の多環芳香族含有量は、好ましくは3質量%未満であり、より好ましくは1質量%未満である。多環芳香族含有量は、英国石油学会346/92法に従って測定される。伸展油の芳香族化合物含有量(CA)は、好ましくは20質量%以上である。伸展油は、単独で又は2種以上組み合わされて用いてもよい。
 加硫促進剤としては、例えば、2-メルカプトベンゾチアゾール、ジベンゾチアジルジサルファイド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド等のチアゾール系加硫促進剤;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド等のチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド等のスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジン等のグアニジン系加硫促進剤が挙げられる。加硫促進剤は、単独で又は2種以上組み合わされて用いてもよい。
 加硫促進剤の配合量は、重合体成分100質量部に対して、好ましくは0.1~5質量部、より好ましくは0.2~3質量部である。
 本実施形態に係る重合体組成物を製造する方法としては、公知の方法、例えば、各成分をロール、バンバリーミキサー等の公知の混合機で混練する方法を用いてもよい。
 混練条件としては、加硫剤及び加硫促進剤以外の添加剤を配合する場合、混練温度は、通常50~200℃であり、好ましくは80~190℃であり、混練時間は、通常30秒~30分であり、好ましくは1分~30分である。加硫剤、加硫促進剤を配合する場合、混練温度は、通常100℃以下であり、好ましくは室温~80℃である。また、加硫剤、加硫促進剤を配合した組成物は、通常、プレス加硫等の加硫処理を行って用いられる。加硫温度としては、通常120~200℃、好ましくは140~180℃である。
 本実施形態に係る重合体組成物は、優れたウェットグリップ性能と省燃費性とのバランスを有し、自動車タイヤに好適に用いられる。
 以下、実施例により本発明を更に詳細に説明するが、本発明はこれら実施例に限定されない。
 物性評価は次の方法で行った。
1.ムーニー粘度(ML1+4
 JIS K6300(1994)に従って、125℃にて共重合体の初期のムーニー粘度を測定した。
2.ビニル結合量(単位:mol%)
 赤外分光分析法により、ビニル基の吸収ピークである910cm-1付近の吸収強度より、共重合体における共役ジエンのビニル結合量を求めた。
3.スチレン単位の含有量(単位:質量%)
 JIS K6383(1995)に従って、屈折率から共重合体中のスチレン単位の含有量を求めた。
4.重量平均分子量(Mw)
 下記の条件(1)~(8)でゲルパーミエイションクロマトグラフ(GPC)法により、Mwを測定した。
(1)装置:島津製作所製 Prominence
(2)分離カラム:Agilent社製 PLgel 5μm 10Å、PLgel 5μm 10Å(各1本を連結)
(3)測定温度:40℃
(4)キャリア:テトラヒドロフラン
(5)流量:1.0mL/分
(6)注入量:100μL
(7)検出器:示差屈折
(8)分子量標準:標準ポリスチレン
4.孤立スチレン単位の含有割合(単位:%)
 重クロロホルムを溶媒として用い、400MHzのH-NMR(日本電子製 AL400)を測定し、共重合体の構造解析を行った。得られたNMRスペクトルより、スチレン単位のシークエンスの状態を以下の範囲の積分値から求めた。孤立スチレン単位の含有割合は、下記(a)~(c)の積分値の合計に対して、下記(a)の積分値から、(b)と(c)より求められる芳香環のメタ位及びパラ位プロトンの計算値を引いた積分値の割合とした。
(a)孤立スチレン単位、2~3連鎖スチレン、4連鎖以上スチレン:7.6~7.0ppm間のピークの積分値。
(b)2~3連鎖スチレン(オルト位プロトン):7.0~6.9ppm間のピークの積分値。
(c)4連鎖以上スチレン(オルト位プロトン):6.9~6.0ppm間のピークの積分値。
5.ガラス転移温度幅(ΔTg)
 株式会社日立ハイテクサイエンス製の示差走査熱分析装置DSC7020を用い、共重合体を窒素雰囲気下で-100℃まで冷却した後に10℃/分で100℃まで昇温する条件で測定した。得られる熱流曲線の転移によるベースラインシフトの外挿開始点と外挿終了点との差をΔTgとして読み取った。
6.ウェットグリップ性能
 シート状の加硫成形体から幅1mm又は2mm、長さ40mmの短冊状試験片を打ち抜き、試験に供した。測定は、粘弾性測定装置(上島製作所社製)によって、歪み2.5%及び周波数10Hzの条件下で、温度0℃での試験片の損失正接(tanδ(0℃))を測定した。この値が大きいほど、ウェットグリップ性能に優れる。
7.省燃費性能
 シート状の加硫成形体から幅1mm又は2mm、長さ40mmの短冊状試験片を打ち抜き、試験に供した。測定は、粘弾性測定装置(上島製作所社製)によって、歪み1%及び周波数10Hzの条件下で、温度70℃での試験片の損失正接(tanδ(70℃))を測定した。この値が小さいほど、省燃費性能に優れる。
[実施例1]
<芳香族ビニル-共役ジエン共重合体の作製>
 内容積20Lの撹拌装置付きステンレス製重合反応器を、洗浄及び乾燥し、当該重合反応器の内部の雰囲気を乾燥窒素に置換した。次に、工業用ヘキサン(住友化学社製、商品名:ヘキサン(一般品)、密度0.68g/mL)7.65kg、シクロヘキサン2.93kg、1,3-ブタジエン240g、スチレン510g、テトラヒドロフラン8.8mL及びエチレングリコールジブチルエーテル0.9mLを重合反応器内に投入した。次に、重合開始剤の失活に作用する不純物を予め無毒化させるために、スカベンジャーとして少量のn-ブチルリチウム(n-BuLi)のヘキサン溶液を重合反応器内に投入した後、n-BuLiを3.12mmol含有するn-ヘキサン溶液を重合反応器内に投入し、重合反応を開始した。
 重合反応を4時間10分行った。重合反応中、重合反応器内の温度を65℃に調整し、重合反応器内の溶液を撹拌速度100rpmで攪拌し、重合反応器内には、重合開始20分後から3時間20分かけて1,3-ブタジエン660gとスチレン90gとを連続的に供給した。次いで、重合反応器温度を65℃に保ちながら、得られた重合溶液を重合反応器内で100rpmの撹拌速度で撹拌し、四塩化ケイ素0.25mmolを重合溶液に添加し、15分間撹拌した。次いで、メタノール0.8mLを含むヘキサン溶液5mLを重合反応器内に投入し、重合溶液を5分間撹拌した。
 重合反応器内の撹拌物を抜き出し、該撹拌物の一部を、常温24時間で乾燥し、揮発分の大部分を蒸発させ、更に55℃で12時間減圧乾燥して得られた共重合体のビニル結合量、スチレン単位の含有量、ΔTg及び孤立スチレン単位の含有割合を測定した。
 該撹拌物に2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(住友化学社製、商品名:スミライザーGM)6.0g、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(住友化学社製、商品名:スミライザーTP-D)3.0g及び伸展油(ジャパンエナジー社製、商品名:JOMOプロセスNC-140)562.5gを加え、混合物を得た。次に、該混合物中の揮発分の大部分を、常温、24時間で蒸発させ、更に55℃で12時間減圧乾燥し、芳香族ビニル-共役ジエン共重合体1を得た。
<重合体組成物の調製>
 共重合体1を110質量部、ポリブタジエンゴム(ランクセス社製、商品名:Buna CB24)を20質量部、シリカ(エボニック社製、商品名:ウルトラシルVN3-G)を75.0質量部、シランカップリング剤(エボニック社製、商品名:Si75)を6.0質量部、カーボンブラック(三菱化学社製、商品名:ダイヤブラックN339)を10.0質量部、伸展油(ジャパンエナジー社製、商品名:JOMOプロセスNC-140)を10.0質量部、老化防止剤(住友化学社製、商品名:アンチゲン6C)を2.0質量部、ワックス(大内新興化学工業社製、商品名:サンノックN)を2.0質量部、ワックス(ストラクトール社製、商品名:EF44)を1.0質量部、ステアリン酸を2.0質量部、亜鉛華を3.0質量部、ラボプラストミルにて混練して、重合体組成物を調製した。
<加硫シートの作製>
 重合体組成物241質量部に、加硫促進剤(住友化学社製、商品名:ソクシノールCZ)1.5質量部、加硫促進剤(住友化学社製、商品名:ソクシノールD)2.0質量部及び硫黄1.5質量部を添加し、6インチロールでシートに成形し、該シートを160℃で40分加熱して加硫させ、加硫シートを作製した。
[実施例2]
<芳香族ビニル-共役ジエン共重合体の作製>
 内容積20Lの撹拌装置付きステンレス製重合反応器を、洗浄及び乾燥し、当該重合反応器の内部の雰囲気を乾燥窒素に置換した。次に、「ヘキサン(一般品)」7.65kg、シクロヘキサン2.93kg、1,3-ブタジエン298g、スチレン553g、テトラヒドロフラン8.8mL及びエチレングリコールジブチルエーテル0.9mLを重合反応器内に投入した。次に、n-BuLiのヘキサン溶液を重合反応器内に投入した後、n-BuLiを3.06mmol含有するn-ヘキサン溶液を重合反応器内に投入し、重合反応を開始した。
 重合反応を4時間10分行った。重合反応中、重合反応器内の温度を65℃に調整し、重合反応器内の溶液を撹拌速度130rpmで攪拌し、重合反応器内には、重合開始20分後から3時間20分かけて1,3-ブタジエン630gとスチレン66gを連続的に供給した。次いで、重合反応器温度を65℃に保ちながら、得られた重合溶液を重合反応器内で130rpmの撹拌速度で撹拌し、四塩化ケイ素0.27mmolを重合溶液に添加し、15分間撹拌した。次いで、メタノール0.8mLを含むヘキサン溶液5mLを重合反応器内に投入し、重合体溶液を5分間撹拌した。
 重合反応器内の撹拌物を抜き出し、該撹拌物の一部を、常温24時間で乾燥し、揮発分の大部分を蒸発させ、更に55℃で12時間減圧乾燥して得られた共重合体のビニル結合量、スチレン単位の含有量、ΔTg及び孤立スチレン単位の含有割合を測定した。
 該撹拌物に「スミライザーGM」6.2g及び「スミライザーTP-D」3.1g及び「JOMOプロセスNC-140」580gを加え、混合物を得た。次に、該混合物中の揮発分の大部分を、常温、24時間で蒸発させ、更に55℃で12時間減圧乾燥し、共役ジエン系共重合体2を得た。
<重合体組成物の調製及び加硫シートの作製>
 共重合体2を用いた以外は実施例1と同様にして、重合体組成物を調製し、加硫シートを作製した。
[比較例1]
<芳香族ビニル-共役ジエン共重合体の作製>
 内容積20Lの撹拌装置付きステンレス製重合反応器を、洗浄及び乾燥し、当該重合反応器の内部の雰囲気を乾燥窒素に置換した。次に、「ヘキサン(一般品)」7.65kg、シクロヘキサン2.93kg、1,3-ブタジエン240g、スチレン360g、テトラヒドロフラン8.8mL及びエチレングリコールジブチルエーテル0.9mLを重合反応器内に投入した。次に、n-BuLiのヘキサン溶液を重合反応器内に投入した後、n-BuLiを2.64mmol含有するn-ヘキサン溶液を重合反応器内に投入し、重合反応を開始した。
 重合反応を4時間10分行った。重合反応中、重合反応器内の温度を65℃に調整し、重合反応器内の溶液を撹拌速度130rpmで攪拌し、重合反応器内には、重合開始20分後から3時間20分かけて1,3-ブタジエン480gとスチレン120gを連続的に供給した。次いで、重合反応器温度を65℃に保ちながら、得られた重合溶液を重合反応器内で130rpmの撹拌速度で撹拌し、四塩化ケイ素0.24mmolを重合溶液に添加し、15分間撹拌した。次いで、メタノール0.8mLを含むヘキサン溶液5mLを重合反応器内に投入し、重合体溶液を5分間撹拌した。
 重合反応器内の撹拌物を抜き出し、該撹拌物の一部を、常温24時間で乾燥し、揮発分の大部分を蒸発させ、更に55℃で12時間減圧乾燥して得られた共重合体のビニル結合量、スチレン単位の含有量、ΔTg及び孤立スチレン単位の含有割合を測定した。
 該撹拌物に「スミライザーGM」7.2g及び「スミライザーTP-D」3.6g及び「JOMOプロセスNC-140」450gを加え、混合物を得た。次に、該混合物中の揮発分の大部分を、常温、24時間で蒸発させ、更に55℃で12時間減圧乾燥し、共役ジエン系共重合体C1を得た。
<重合体組成物の調製及び加硫シートの作製>
 共重合体C1を用いた以外は実施例1と同様にして、重合体組成物を調製し、加硫シートを作製した。
[比較例2]
<芳香族ビニル-共役ジエン共重合体の作製>
 内容積20Lの撹拌装置付きステンレス製重合反応器を、洗浄及び乾燥し、当該重合反応器の内部の雰囲気を乾燥窒素に置換した。次に、「ヘキサン(一般品)」7.65kg、シクロヘキサン2.93kg、1,3-ブタジエン240g、スチレン360g、テトラヒドロフラン8.8mL及びエチレングリコールジブチルエーテル0.9mLを重合反応器内に投入した。次に、n-BuLiのヘキサン溶液を重合反応器内に投入した後、n-BuLiを3.12mmol含有するn-ヘキサン溶液を重合反応器内に投入し、重合反応を開始した。
 重合反応を4時間10分行った。重合反応中、重合反応器内の温度を65℃に調整し、重合反応器内の溶液を撹拌速度130rpmで攪拌し、重合反応器内には、1,3-ブタジエン540gとスチレン360gを2時間30分かけて連続的に供給した。次いで、重合反応器温度を65℃に保ちながら、得られた重合溶液を重合反応器内で130rpmの撹拌速度で撹拌し、四塩化ケイ素0.25mmolを重合溶液に添加し、15分間撹拌した。次いで、メタノール0.8mLを含むヘキサン溶液5mLを重合反応器内に投入し、重合体溶液を5分間撹拌した。
 重合反応器内の撹拌物を抜き出し、該撹拌物の一部を、常温24時間で乾燥し、揮発分の大部分を蒸発させ、更に55℃で12時間減圧乾燥して得られた共重合体のビニル結合量、スチレン単位の含有量、ΔTg及び孤立スチレン単位の含有割合を測定した。
 該撹拌物に「スミライザーGM」8.0g及び「スミライザーTP-D」4.0g及び「JOMOプロセスNC-140」562.5gを加え、混合物を得た。次に、該混合物中の揮発分の大部分を、常温、24時間で蒸発させ、更に55℃で12時間減圧乾燥し、共役ジエン系共重合体C2を得た。
<重合体組成物の調製及び加硫シートの作製>
 共重合体C2を用いた以外は実施例1と同様にして、重合体組成物を調製し、加硫シートを作製した。
 実施例及び比較例で得られた共重合体のビニル結合量、スチレン単位の含有量、伸展油添加前のΔTg、孤立スチレン単位の含有割合、加硫シートのウェットグリップ性能及び省燃費性能の評価結果を表1に示す。ウェットグリップ性能及び省燃費性能は、比較例1を100とした相対値であり、この数値が大きいほど、ウェットグリップ性能及び省燃費性能にそれぞれ優れる。
Figure JPOXMLDOC01-appb-T000001

Claims (4)

  1.  芳香族ビニル化合物に基づく芳香族ビニル単位と、共役ジエン化合物に基づく共役ジエン単位と、を有する芳香族ビニル-共役ジエン共重合体であって、
     前記芳香族ビニル単位の全量を基準として、孤立芳香族ビニル単位を80%以上含み、
     示差走査熱量測定におけるガラス転移温度幅が、10℃より大きく20℃未満である、芳香族ビニル-共役ジエン共重合体。
  2.  重量平均分子量が100万以上である、請求項1に記載の芳香族ビニル-共役ジエン共重合体。
  3.  前記芳香族ビニル単位の含有量が、前記共役ジエン単位と前記芳香族ビニル単位との総量を100質量%として、10質量%以上50質量%以下であり、前記共重合体における共役ジエンのビニル結合量が、前記共役ジエン単位の含有量を100モル%として、10モル%以上80モル%以下である、請求項1又は2に記載の芳香族ビニル-共役ジエン共重合体。
  4.  請求項1~3のいずれか一項に記載の芳香族ビニル-共役ジエン共重合体と、補強材とを含有する、重合体組成物。
PCT/JP2018/011383 2017-03-24 2018-03-22 芳香族ビニル-共役ジエン共重合体及び重合体組成物 WO2018174152A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017059199A JP2018162353A (ja) 2017-03-24 2017-03-24 芳香族ビニル−共役ジエン共重合体
JP2017-059199 2017-03-24

Publications (1)

Publication Number Publication Date
WO2018174152A1 true WO2018174152A1 (ja) 2018-09-27

Family

ID=63585552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011383 WO2018174152A1 (ja) 2017-03-24 2018-03-22 芳香族ビニル-共役ジエン共重合体及び重合体組成物

Country Status (2)

Country Link
JP (1) JP2018162353A (ja)
WO (1) WO2018174152A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190184746A1 (en) * 2017-12-18 2019-06-20 Sumitomo Rubber Industries, Ltd. Rubber composition for tires and pneumatic tire
US20190185645A1 (en) * 2017-12-18 2019-06-20 Sumitomo Rubber Industries, Ltd. Rubber composition for tires and pneumatic tire
US20190185643A1 (en) * 2017-12-18 2019-06-20 Sumitomo Rubber Industries, Ltd. Rubber composition for tires and pneumatic tire
US20190184745A1 (en) * 2017-12-18 2019-06-20 Sumitomo Rubber Industries, Ltd. Rubber composition for tires and pneumatic tire
CN115298232A (zh) * 2020-11-16 2022-11-04 株式会社Lg化学 改性共轭二烯类聚合物和包含其的橡胶组合物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7043828B2 (ja) * 2017-12-18 2022-03-30 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179212A (en) * 1981-04-28 1982-11-04 Asahi Chem Ind Co Ltd Styrene-butadiene copolymer rubber
JPS6137806A (ja) * 1984-07-31 1986-02-22 Nippon Erasutomaa Kk ランダムスチレン−ブタジエン共重合体ゴム
JPS61268710A (ja) * 1985-01-16 1986-11-28 Nippon Erasutomaa Kk タイヤ用ゴム組成物
JPS62220536A (ja) * 1986-03-24 1987-09-28 Japan Synthetic Rubber Co Ltd ブタジエン系ゴム組成物
JPS6330502A (ja) * 1986-07-25 1988-02-09 Nippon Erasutomaa Kk 新規なランダムスチレン−ブタジエン共重合体およびその組成物
JPH01197541A (ja) * 1988-02-01 1989-08-09 Japan Synthetic Rubber Co Ltd ゴム組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179212A (en) * 1981-04-28 1982-11-04 Asahi Chem Ind Co Ltd Styrene-butadiene copolymer rubber
JPS6137806A (ja) * 1984-07-31 1986-02-22 Nippon Erasutomaa Kk ランダムスチレン−ブタジエン共重合体ゴム
JPS61268710A (ja) * 1985-01-16 1986-11-28 Nippon Erasutomaa Kk タイヤ用ゴム組成物
JPS62220536A (ja) * 1986-03-24 1987-09-28 Japan Synthetic Rubber Co Ltd ブタジエン系ゴム組成物
JPS6330502A (ja) * 1986-07-25 1988-02-09 Nippon Erasutomaa Kk 新規なランダムスチレン−ブタジエン共重合体およびその組成物
JPH01197541A (ja) * 1988-02-01 1989-08-09 Japan Synthetic Rubber Co Ltd ゴム組成物

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190184746A1 (en) * 2017-12-18 2019-06-20 Sumitomo Rubber Industries, Ltd. Rubber composition for tires and pneumatic tire
US20190185645A1 (en) * 2017-12-18 2019-06-20 Sumitomo Rubber Industries, Ltd. Rubber composition for tires and pneumatic tire
US20190185643A1 (en) * 2017-12-18 2019-06-20 Sumitomo Rubber Industries, Ltd. Rubber composition for tires and pneumatic tire
US20190184745A1 (en) * 2017-12-18 2019-06-20 Sumitomo Rubber Industries, Ltd. Rubber composition for tires and pneumatic tire
CN115298232A (zh) * 2020-11-16 2022-11-04 株式会社Lg化学 改性共轭二烯类聚合物和包含其的橡胶组合物
EP4098668A4 (en) * 2020-11-16 2023-08-16 LG Chem, Ltd. MODIFIED CONJUGATE DIEN-BASED POLYMER AND RUBBER COMPOSITION THEREOF

Also Published As

Publication number Publication date
JP2018162353A (ja) 2018-10-18

Similar Documents

Publication Publication Date Title
JP5287606B2 (ja) 共役ジエン系重合体、共役ジエン系重合体組成物及び共役ジエン系重合体の製造方法
JP5177050B2 (ja) 共役ジエン系重合体及び共役ジエン系重合体組成物
JP5287605B2 (ja) 共役ジエン系重合体、共役ジエン系重合体組成物及び共役ジエン系重合体の製造方法
JP5262905B2 (ja) 共役ジエン系重合体の製造方法
JP5287608B2 (ja) 共役ジエン系重合体、共役ジエン系重合体組成物及び共役ジエン系重合体の製造方法
WO2018174152A1 (ja) 芳香族ビニル-共役ジエン共重合体及び重合体組成物
JP5316459B2 (ja) 共役ジエン系重合体、共役ジエン系重合体組成物、及び、共役ジエン系重合体の製造方法
US8497334B2 (en) Conjugated diene polymer, conjugated diene polymer composition, and method for producing conjugated diene polymer
JP6192461B2 (ja) 変性共役ジエン系重合体の製造方法、重合体組成物の製造方法
JP6720080B2 (ja) 共役ジエン重合体及び共役ジエン重合体組成物
JP2014019841A (ja) 共役ジエン系重合体変性物、該変性物の製造方法、及び該変性物を含有する重合体組成物
JP6715771B2 (ja) 共役ジエン重合体及び共役ジエン重合体組成物
US11377539B2 (en) Conjugated diene-based polymer, conjugated diene-based polymer composition, and method for producing conjugated diene-based polymer
JP7280664B2 (ja) 共役ジエン系重合体、共役ジエン系重合体組成物及び共役ジエン系重合体の製造方法
WO2013147109A1 (ja) 共役ジエン系重合体、重合体組成物、及び、共役ジエン系重合体の製造方法
WO2016039388A1 (ja) 共役ジエン重合体組成物
KR20090104728A (ko) 공액 디엔계 중합체, 그의 제조 방법, 및 공액 디엔계 중합체 조성물 및 가황물
JP2014031475A (ja) トレッド用ゴム組成物及び空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18772156

Country of ref document: EP

Kind code of ref document: A1