WO2018174087A1 - マグネシウム二次電池及び無機材料付きマグネシウム二次電池用負極 - Google Patents

マグネシウム二次電池及び無機材料付きマグネシウム二次電池用負極 Download PDF

Info

Publication number
WO2018174087A1
WO2018174087A1 PCT/JP2018/011172 JP2018011172W WO2018174087A1 WO 2018174087 A1 WO2018174087 A1 WO 2018174087A1 JP 2018011172 W JP2018011172 W JP 2018011172W WO 2018174087 A1 WO2018174087 A1 WO 2018174087A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
group
inorganic material
secondary battery
magnesium
Prior art date
Application number
PCT/JP2018/011172
Other languages
English (en)
French (fr)
Inventor
史洋 嵯峨根
智矢 枡谷
昭則 昆野
Original Assignee
国立大学法人静岡大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人静岡大学 filed Critical 国立大学法人静岡大学
Priority to JP2019507705A priority Critical patent/JP7111937B2/ja
Publication of WO2018174087A1 publication Critical patent/WO2018174087A1/ja

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a magnesium secondary battery and a negative electrode for a magnesium secondary battery with an inorganic material.
  • Lithium-ion secondary batteries have a high energy density (product of operating voltage and storage capacity), so they have a major position as power sources for small devices such as mobile phones and smartphones, large devices such as hybrid vehicles and electric vehicles. is occupying.
  • the lithium ion battery has a risk of heat generation and ignition depending on the use conditions, there is a risk of lithium deposition due to overcharge, the energy density is close to the theoretical value, a transition metal used for a lithium source, an electrode, etc. There are many issues such as high costs. Therefore, a magnesium secondary battery using magnesium instead of lithium has been proposed.
  • Magnesium metal has a low standard electrode potential and a large capacity because it becomes divalent ions. For this reason, it is an electrode material with high energy density and stable in the atmosphere.
  • secondary batteries using magnesium metal are expected to be inexpensive secondary batteries.
  • the magnesium secondary battery for example, a positive electrode that reversibly holds and releases magnesium cations, a negative electrode that is disposed to face the positive electrode via a separator, and includes metal magnesium or a magnesium alloy that is a negative electrode active material, The thing provided with electrolyte solution is proposed (for example, refer patent document 1).
  • Patent Document 1 describes that the electrolytic solution is composed of a solution containing a magnesium cation, a monovalent anion, and a polyether compound (glyme compound) represented by the formula (I).
  • R 1 —O (CH 2 CH 2 O) n —R 2 (I) (Wherein R 1 and R 2 are each independently a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, and n represents an integer of 1 to 8)
  • Non-Patent Document 1 describes an electrolytic solution containing a glyme compound (a symmetric glycol diether compound), an ionic liquid, and a magnesium cation.
  • Kitada et.al. “Room Temperature Magnesium Electrodeposition from Glyme-Coordinated Ammonium Amide Electrolytes” Journal of The Electrochemical Society 162 (8) D389-D396 (2015)
  • the magnesium secondary battery using the electrolytic solution containing the glyme compound described in Patent Document 1 and Non-Patent Document 1 is excellent in ion conductivity, oxidation resistance, and chemical stability.
  • the magnesium secondary battery including the electrolytic solution described in Patent Document 1 and Non-Patent Document 1 has a problem that the overvoltage of the negative electrode reaction is large, and in particular, the dissolution overvoltage of the negative electrode reaction is large.
  • the problem to be solved by one embodiment of the present invention is to provide a magnesium secondary battery in which overvoltage of the negative electrode reaction is suppressed and a negative electrode for a magnesium secondary battery with an inorganic material.
  • Means for solving the above problems include the following aspects.
  • a magnesium secondary battery comprising a negative electrode and an inorganic material in contact with at least part of the surface of the negative electrode.
  • R 1 and R 2 each independently represents a hydrocarbon group having 1 to 12 carbon atoms, and n represents an integer of 1 to 8) ⁇ 3>
  • ⁇ 4> The magnesium secondary battery according to ⁇ 2> or ⁇ 3>, wherein the electrolytic solution further includes an anion represented by the following general formula (2).
  • each R N independently represents a halogen atom, having 1 to 8 halogenated alkyl group carbon atoms or, 2 to 8 halogenated alkenyl group carbon atoms.
  • the inorganic material is at least one of aluminum oxide and silicon oxide.
  • the inorganic material is activated alumina.
  • the magnesium secondary battery according to any one of ⁇ 1> to ⁇ 6>, further comprising a positive electrode including at least one selected from the above.
  • a separator positioned between the positive electrode and the negative electrode is further provided, the inorganic material is disposed on at least a part of the surface of the separator, and at least a part of the inorganic material is in contact with the surface of the negative electrode.
  • a magnesium secondary battery comprising: a negative electrode; and an inorganic material that is in contact with at least a part of the surface of the negative electrode and has at least one of an acidic group and a basic group.
  • a negative electrode for a magnesium secondary battery with an inorganic material comprising: a negative electrode; and an inorganic material at least partially in contact with the surface of the negative electrode.
  • a negative electrode for a magnesium secondary battery with an inorganic material comprising: a negative electrode; and an inorganic material that is in contact with at least a part of the surface of the negative electrode and has at least one of an acidic group and a basic group.
  • a magnesium secondary battery in which an overvoltage of the negative electrode reaction is suppressed and a negative electrode for a magnesium secondary battery with an inorganic material.
  • FIG. 1 is a schematic view showing an electrochemical cell used in Examples 1, 3 to 5.
  • FIG. 2 is a result of confirming electrochemical deposition and dissolution by cyclic voltammetry in Example 1.
  • FIG. 2 is an electron microscopic image of a precipitate in Example 1.
  • FIG. 2 is an X-ray diffraction pattern of a precipitate in Example 1.
  • FIG. It is the schematic which shows the electrochemical cell (magnesium secondary battery which concerns on an example of this invention) used in Example 2.
  • FIG. It is a result of the constant current charging / discharging test in Example 2.
  • FIG. 4 is a result of confirming electrochemical deposition and dissolution by cyclic voltammetry in Example 3.
  • Example 4 is a result of confirming electrochemical deposition and dissolution by cyclic voltammetry in Example 4.
  • FIG. 7 is a result of confirming electrochemical deposition and dissolution by cyclic voltammetry in Example 5.
  • FIG. 3 is a result of confirming electrochemical deposition and dissolution by cyclic voltammetry in Comparative Example 1.
  • FIG. It is a result of the constant current charging / discharging test in Example 6. It is a result of the constant current charging / discharging test in the comparative example 2.
  • Example 7 it is a graph which shows the particle size distribution of the acidic activated alumina after grinding
  • FIG. 7 is a result of confirming electrochemical precipitation and dissolution by cyclic voltammetry in Example 7.
  • FIG. (A) is an X-ray diffraction pattern of basic activated alumina
  • (b) is an X-ray diffraction pattern of basic activated alumina after high-temperature heat treatment. 7 is a result of confirming electrochemical deposition and dissolution by cyclic voltammetry in Example 8.
  • the “magnesium secondary battery” refers to a secondary battery in which charging / discharging is realized by precipitation reaction and dissolution reaction of at least one of magnesium and magnesium alloy in the negative electrode, and the behavior in the positive electrode is not particularly limited. Therefore, for example, a hybrid capacitor using at least one of magnesium and a magnesium alloy as a negative electrode active material and using activated carbon as a positive electrode active material is also included in the “magnesium secondary battery” of the present invention.
  • the magnesium secondary battery according to the present disclosure includes a negative electrode and an inorganic material at least partially in contact with the surface of the negative electrode.
  • the magnesium secondary battery of the present disclosure may further include an electrolyte solution including a magnesium cation and a solvent represented by the following general formula (1), a positive electrode, and the like.
  • the magnesium secondary battery of the present disclosure includes an inorganic material that partially contacts the surface of the negative electrode, overvoltage of the negative electrode reaction is suppressed, and in particular, dissolution overvoltage of the negative electrode reaction is suppressed. Further, in the magnesium secondary battery including the electrolytic solution and the positive electrode, since the inorganic material is insoluble in the electrolytic solution, adverse effects on the positive electrode caused by the inorganic material are suppressed.
  • the discharge voltage can be set to 1.0 V or higher, preferably 1.5 V or higher.
  • the negative electrode is one in which the negative electrode active material is reversibly deposited and desorbed by a charge / discharge reaction.
  • An electrode including at least one of metallic magnesium and a magnesium alloy as a negative electrode active material may be used. That is, the negative electrode may be an electrode in which a negative electrode material containing at least one of metallic magnesium and a magnesium alloy as a negative electrode active material is supported on a current collector described later, and does not include a current collector and has a current collecting function. It may be a negative electrode active material that also serves as a current collector, or may be a current collector on which at least one of metallic magnesium and magnesium alloy, which are negative electrode active materials, is deposited by a charging reaction.
  • the magnesium alloy is not particularly limited, and examples thereof include an alloy of magnesium and aluminum, an alloy of magnesium and zinc, and an alloy of magnesium and manganese.
  • the negative electrode may be an electrode in which metallic magnesium or a magnesium alloy is supported on a current collector, and is an electrode obtained by forming metallic magnesium or a magnesium alloy into a shape (for example, a plate shape) suitable for the electrode. There may be.
  • the negative electrode material contains a negative electrode active material, and may further contain a conductive additive and a binder described later.
  • the inorganic material is at least partially in contact with the negative electrode surface.
  • examples of inorganic materials include oxides and nitrides. More specifically, oxides such as aluminum oxide, silicon oxide, gallium oxide, zinc oxide, indium oxide, tin oxide, boron oxide, and titanium oxide, aluminum nitride, silicon nitride, gallium nitride, zinc nitride, indium nitride, and nitride Examples thereof include nitrides such as tin, boron nitride, and titanium nitride. As an inorganic material, only 1 type may be used and 2 or more types may be used.
  • the inorganic material is preferably at least one of aluminum oxide and silicon oxide, more preferably aluminum oxide, from the viewpoint of suppressing overvoltage of the negative electrode reaction.
  • the inorganic material may be at least one of activated alumina and silicon oxide, which will be described later, from the viewpoint of suppressing the overvoltage of the negative electrode reaction.
  • the inorganic material is preferably an inorganic material having at least one of an acidic group and a basic group from the viewpoint of suppressing an overvoltage of the negative electrode reaction.
  • examples of the inorganic material include an acidic inorganic material having an acidic group, a basic inorganic material having a basic group, and a neutral inorganic material having an acidic group and a basic group.
  • the acidic inorganic material may have both acidic group and basicity, and the influence of the acidic group may be larger.
  • the basic inorganic material has both acidic group and basicity. The effect of the basic group may be larger.
  • the aluminum oxide which has at least one of an acidic group and a basic group is more preferable.
  • an acidic group when an oxide that is an inorganic material is expressed as MO x , in addition to a portion of M n + (n represents a positive number) on the surface, a carboxy group, a sulfonic acid group, a phenol Include a functional hydroxyl group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a sulfuric acid group, and a sulfinic acid group.
  • the basic group include an amino group, an amide group, a hydrazide group, and the like in addition to a portion that becomes M-OH on the surface when an oxide that is an inorganic material is expressed as MO x .
  • the pH of the acidic inorganic material is preferably 3.0 to 5.0, more preferably 3.5 to 4.5.
  • the pH of the neutral inorganic material is preferably 6.0 to 8.0, more preferably 6.8 to 7.8, and still more preferably 7.0 to 7.8.
  • the pH of the basic inorganic material is preferably more than 8.0 and 11 or less, more preferably 8.5 to 10.5, and still more preferably 8.5 to 10.
  • pH of an acidic inorganic material, a neutral inorganic material, and a basic inorganic material means the pH (25 degreeC) of the water which disperse
  • an inorganic material is activated alumina from the point which suppresses the overvoltage of a negative electrode reaction efficiently.
  • the activated alumina is at least one of acidic activated alumina (pH 3.0 to 5.0), neutral activated alumina (pH 6.0 to 8.0) and basic activated alumina (pH 8.0 to about 11 or less).
  • acidic activated alumina include the activated alumina having the aforementioned acidic group
  • examples of the neutral activated alumina include the activated alumina having the aforementioned acidic group and basic group.
  • Examples of the basic activated alumina include the aforementioned active alumina. Examples include activated alumina having a basic group.
  • the acidic activated alumina may have both acidic groups and basicity, and the influence of acidic groups may be greater.
  • the basic activated alumina has both acidic groups and basicity, The influence of the sex group may be greater.
  • the activated alumina is porous aluminum oxide.
  • the activated alumina is produced, for example, by dehydrating an aluminum oxide hydrate gel at 300 ° C. to 500 ° C.
  • the pH of the acidic activated alumina is preferably 3.0 to 5.0, more preferably 3.5 to 4.5.
  • the pH of the neutral activated alumina is preferably 6.0 to 8.0, more preferably 6.8 to 7.8, and still more preferably 7.0 to 7.8.
  • the pH of the basic activated alumina is preferably more than 8.0 and 11 or less, more preferably 8.5 to 10.5, and still more preferably 8.5 to 10.
  • pH of acidic activated alumina, neutral activated alumina, and basic activated alumina means pH (25 ° C.) of water in which 10% by mass of each activated alumina is dispersed.
  • the inorganic material only needs to be in contact with at least a part of the surface of the negative electrode, and is preferably in contact with a part of the surface of the negative electrode that is in contact with the electrolytic solution. Further, the inorganic material may be configured to be filled in an electrolytic solution storage chamber in which an electrolytic solution is stored and a positive electrode and a negative electrode are arranged in a magnesium secondary battery.
  • the inorganic material is preferably in contact with 50% or more of the portion in contact with the electrolyte solution on the surface of the negative electrode, more preferably in contact with 80% or more, from the viewpoint of suppressing overvoltage of the negative electrode reaction. More preferably, it is in contact with 90% or more. In addition, it is particularly preferable that the inorganic material is in contact with 100% of the portion of the negative electrode surface that contacts the electrolytic solution, that is, covers the portion of the negative electrode surface that contacts the electrolytic solution.
  • the inorganic material may be in the form of particles or film. Moreover, it is preferable that an inorganic material is a particulate form from the point which is excellent in suppression of the overvoltage of negative electrode reaction, and the filling property to an electrolyte solution storage chamber. In addition, the film-like inorganic material may be porous from the viewpoint of excellent suppression of overvoltage of the negative electrode reaction. Further, the inorganic material may be other than the negative electrode, for example, an inorganic material may be disposed on at least a part of the surface of the separator described later, and at least a part of the inorganic material may be in contact with the surface of the negative electrode. The inorganic material may be in contact with the surface of the negative electrode in a state where at least a part of the surface of the separator is coated or a state where it is supported on at least a part of the surface of the separator.
  • the average particle size of the inorganic material is preferably 0.001 ⁇ m to 500 ⁇ m, more preferably 0.001 ⁇ m to 200 ⁇ m, and further preferably 0.001 ⁇ m to 1 ⁇ m. preferable.
  • the average particle diameter of the inorganic material is the particle diameter (D50) when the accumulation from the small diameter side becomes 50% in the volume-based particle size distribution measured by the laser diffraction method.
  • the inorganic material may be pulverized using a ball mill, mortar, jet mill or the like.
  • the average particle size of the inorganic material may be 1 ⁇ m to 500 ⁇ m, 10 ⁇ m to 400 ⁇ m, or 30 ⁇ m to 300 ⁇ m.
  • the average particle size of the inorganic material may be 0.001 ⁇ m to 10 ⁇ m, 0.005 ⁇ m to 1 ⁇ m, or 0.01 ⁇ m It may be up to 0.5 ⁇ m.
  • the average particle size of the inorganic material is preferably 0.001 ⁇ m to 10 ⁇ m, more preferably 0.005 ⁇ m to 1 ⁇ m, and 0.01 ⁇ m to 0.5 ⁇ m. More preferably.
  • a positive electrode is not specifically limited, You may use the positive electrode used for a conventionally well-known secondary battery.
  • the positive electrode is preferably an electrode in which a positive electrode material containing a positive electrode active material that reversibly holds and releases magnesium cations is supported on a current collector, for example.
  • the positive electrode may be a positive electrode active material that does not include a current collector and also has a current collecting function.
  • the positive electrode material preferably contains a positive electrode active material and further contains a conductive additive and a binder.
  • positive electrode active materials include sulfides that can reversibly hold and release magnesium cations, oxides that can reversibly hold and release magnesium cations, and reversibly hold and release magnesium cations. Organic compounds that can be used.
  • the positive electrode active material V 2 O 5 , MgCo 2 O 4 , MgMnSiO 4 , MgFeSiO 4 , MnO 2 , MoO 3 , NiCo 2 O 4 , Co 3 O 4 , ZnCo 2 O 4 , graphite And activated carbon.
  • a positive electrode active material only 1 type may be used and 2 or more types may be used.
  • the current collector may be a current collector made of an electrochemically stable material.
  • Examples of the material constituting the current collector include aluminum, nickel, stainless steel, and tungsten, but are not particularly limited.
  • Conductive aid Although it does not specifically limit as a conductive support agent, for example, carbon materials, such as acetylene black, graphite, and carbon black, etc. are mentioned. Since the content of the conductive auxiliary in the positive electrode material varies depending on the type of the positive electrode active material, the type of the conductive auxiliary, and the like, it is preferable to appropriately determine according to the type of the positive electrode active material, the type of the conductive auxiliary, and the like. .
  • the binder is not particularly limited, and examples thereof include fluorine resins such as polytetrafluoroethylene and polyvinylidene fluoride; polyolefin resins such as polyethylene and polypropylene. Since the binder content in the positive electrode material varies depending on the type of the positive electrode active material, the type of the binder, and the like, it is preferable to determine appropriately according to the type of the positive electrode active material, the type of the binder, and the like.
  • the magnesium secondary battery of the present disclosure may include a separator positioned between the positive electrode and the negative electrode, preferably a separator that separates the positive electrode and the negative electrode and holds the electrolytic solution.
  • the material constituting the separator is not particularly limited, and examples thereof include fluorine resins such as polytetrafluoroethylene, polyolefin resins such as polyethylene and polypropylene, glass, and ceramics.
  • the magnesium secondary battery of the present disclosure may further include an electrolytic solution containing a magnesium cation and a solvent represented by the following general formula (1).
  • an electrolytic solution containing a solvent represented by the following general formula (1) When an electrolytic solution containing a solvent represented by the following general formula (1) is used in a magnesium secondary battery, it tends to have better oxidation resistance than a magnesium secondary battery using an electrolytic solution containing a Grignard reagent or the like.
  • the overvoltage of the negative electrode reaction is larger than that of a magnesium secondary battery using an electrolytic solution containing a Grignard reagent, In particular, the dissolution overvoltage of the negative electrode reaction may increase.
  • the magnesium secondary battery of the present disclosure includes the inorganic material that is partially in contact with the surface of the negative electrode as described above, the overvoltage of the negative electrode reaction is suppressed.
  • the molar concentration Amol / L of the magnesium cation with respect to the total amount of the electrolytic solution is preferably 0.1 mol / L to 2.0 mol / L, preferably 0.3 mol / L to 1.0 mol / L is more preferable.
  • the molar concentration Amol / L with respect to the total amount of the magnesium cation electrolyte is measured by density measurement and the mass of magnesium hydroxide precipitated in an aqueous sodium hydroxide solution.
  • the magnesium cation can be electrolyzed by, for example, adding a magnesium salt to a solvent represented by the following general formula (1) or a mixed solution of a solvent represented by the following general formula (1) and another solvent. Added to the liquid.
  • the magnesium salt is not particularly limited, and may be an inorganic salt or an organic salt, and is preferably an organic salt from the viewpoint of electrochemical precipitation and dissolution of magnesium.
  • Examples of the inorganic salt of magnesium include Mg (PF 6 ) 2 , Mg (BF 4 ) 2 , Mg (ClO 4 ) 2 , Mg (AsF 6 ) 2 and the like.
  • Examples of the organic salt of magnesium include magnesium citrate, magnesium oxalate, and a salt with an anion represented by the following general formula (2). From the viewpoint of dissociation and oxidation resistance, the following general formula (2) Salts with the represented sulfonium amide anions are preferred. By using a salt with a sulfonium amide anion represented by the following general formula (2), an electrolytic solution having excellent ion conductivity and excellent oxidation resistance can be obtained.
  • the electrolytic solution may contain a solvent represented by the following general formula (1) together with the magnesium cation.
  • R 1 and R 2 each independently represent a hydrocarbon group having 1 to 12 carbon atoms, n represents an integer of 1 to 8.
  • R 1 and R 2 are preferably each independently a hydrocarbon group having 1 to 8 carbon atoms.
  • hydrocarbon group having 1 to 12 carbon atoms examples include an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, and 7 to 12 carbon atoms.
  • alkyl group having 1 to 12 carbon atoms examples include an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, and 7 to 12 carbon atoms.
  • alkenyl group having 2 to 12 carbon atoms examples include an alkenyl group having 2 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, and 7 to 12 carbon atoms.
  • aryl group having 6 to 12 carbon atoms examples include exemplified.
  • alkyl group having 1 to 12 carbon atoms examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, and nonyl.
  • Straight chain or branched alkyl groups such as a group, decyl group, undecyl group, dodecyl group; cycloaliphatic alkyl groups such as cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, norbornyl group, adamantyl group, etc. .
  • a methyl group and an ethyl group are preferable, and a methyl group is more preferable.
  • alkenyl group having 2 to 12 carbon atoms examples include a vinyl group, an allyl group, a butenyl group, a pentenyl group, and a hexenyl group.
  • Examples of the aryl group having 6 to 12 carbon atoms include a phenyl group and a naphthyl group.
  • Examples of the aralkyl group having 7 to 12 carbon atoms include a benzyl group, a phenylethyl group, a methylbenzyl group, and a naphthylmethyl group.
  • the compound represented by the general formula (I) is preferably a symmetric glycol diether from the viewpoint of efficiently performing a precipitation dissolution reaction of magnesium.
  • n is 2 or more and 4 It is preferably the following integer, more preferably 2 or 3.
  • the compound represented by the general formula (I) is more preferably at least one of glyme, diglyme, triglyme and tetraglyme, and is at least one of diglyme, triglyme and tetraglyme. Is more preferable.
  • diglyme, triglyme and tetraglyme are obtained from the viewpoint of ensuring ease of handling in a high temperature environment, efficiently performing charge / discharge reaction, and suppressing voltage loss. And at least one of diglyme and triglyme is more preferred.
  • the electrolytic solution preferably further contains an anion represented by the following general formula (2) from the viewpoint of ion conductivity and oxidation resistance.
  • each R N independently, a halogen atom, having 1 to 8 halogenated alkyl group carbon atoms or represents a halogenated alkenyl group having 2 to 8 carbon atoms.
  • halogen atom in R N is not particularly limited, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a fluorine atom is preferable from the viewpoint of securing an appropriate electronegativity.
  • the carbon number of the halogenated alkyl group having 1 to 8 carbon atoms in R N is 1 or more, easy to handle solubility, in order to ensure the viscosity and melting point, is 8 or less .
  • the halogenated alkyl group having 1 to 8 carbon atoms is not particularly limited, and examples thereof include a perfluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, and a perfluoroheptyl group.
  • Fluoroalkyl groups having 1 to 8 carbon atoms such as perfluorooctyl group; perchloromethyl group, perchloroethyl group, perchloropropyl group, perchlorobutyl group, perchloropentyl group, perchloroheptyl group, perchloro A chloroalkyl group having 1 to 8 carbon atoms, such as an octyl group; A bromoalkyl group having 1 to 8 carbon atoms such as perbromomethyl group, perbromoethyl group, perbromopropyl group, perbromobutyl group, perbromopentyl group, perbromoheptyl group, perbromooctyl group; And an iodoalkyl group having 1 to 8 carbon atoms such as a group, periodioethyl group, periodiopropyl group, periodiobutyl group, periodiopentyl group
  • perfluoroalkyl groups having 1 to 8 carbon atoms are preferred from the viewpoint of ensuring solubility, viscosity, and melting point that are easy to handle. Is more preferable.
  • the carbon number of the halogenated alkenyl group having 2 to 8 carbon atoms in R N is 2 or more, easy to handle solubility, in order to ensure the viscosity and melting point, is 8 or less .
  • C2-C8 halogenated alkenyl group For example, C2-C8, such as a perfluorovinyl group, a perfluoroallyl group, a perfluorobutenyl group, a perfluoropentenyl group, etc. Examples include a fluoroalkenyl group.
  • halogenated alkenyl groups having 2 to 8 carbon atoms a fluoroalkenyl group having 2 to 8 carbon atoms is preferable, and a fluoroallyl group is more preferable from the viewpoint of ensuring solubility, viscosity, and melting point that are easy to handle. preferable.
  • sulfonylamide anion represented by the general formula (2) examples include a bis (trifluoromethylsulfonyl) amide anion, a fluorosulfonyl (trifluoromethylsulfonyl) amide anion, and a bis (fluorosulfonyl) amide anion.
  • the present invention is not limited to such examples.
  • sulfonylamide anions represented by the general formula (2) a bis (trifluoromethylsulfonyl) amide anion and a bis (fluorosulfonyl) amide anion are preferable from the viewpoint of ensuring solubility that is easy to handle.
  • the electrolytic solution may further contain another solvent other than the solvent represented by the general formula (1).
  • solvents are not particularly limited, but sulfolane, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyl-1,3-dioxolane, dimethylsulfone, diethylsulfone And ethyl methyl sulfone.
  • the following compound is mentioned, for example.
  • the negative electrode for a magnesium secondary battery with an inorganic material includes a negative electrode and an inorganic material at least partially in contact with the surface of the negative electrode.
  • Example 1 ⁇ Preparation of electrolyte>
  • Mg (TFSA) 2 Mg [N (SO 2 CF 3 ) 2 ] 2
  • diglyme in the general formula (1), R 1 and R 2 was a methyl group, and n was 2) so that Mg (TFSA) 2 was 0.5 mol / L to prepare an electrolytic solution.
  • FIG. 1 is a schematic view of an electrochemical cell 100 used in Example 1, in which a counter electrode 14 and a reference electrode 20 are arranged in a storage chamber for storing an electrolytic solution, and a surface is exposed from an opening at the bottom of the storage chamber. Thus, the working electrode 12 was arranged.
  • the inorganic material 22 was arrange
  • the reference electrode 20 has a silver wire 18 immersed in a solution in a glass tube. Details of each component used in this example are as follows. Working electrode: mirror-polished platinum plate Counter electrode: polished magnesium plate Reference electrode: silver wire immersed in a triglyme solution containing 0.01 mol / L silver nitrate and 0.1 mol / L Mg (TFSA) 2 . In order to avoid the solution of the reference electrode from being mixed with the electrolyte, a glass tube having a porous glass at the tip was used.
  • Electrolyte solution prepared as described above-Inorganic material Acid-activated alumina (Product name: Aluminum oxide 90-active acid type, manufactured by Merck), vacuum-dried at 250 ° C for 12 hours as a pretreatment
  • Electrochemical measurement As an electrochemical measurement device, HSV-110 manufactured by Hokuto Denko Co., Ltd. was used, and cyclic voltammetry was performed from the reduction direction in a scanning range of ⁇ 4 V to 0 V (relative to the reference electrode). The scanning speed was 5 mV / s. The measurement was performed using a sealed container filled with an argon atmosphere and performed at room temperature. The results are shown in FIG.
  • Example 1 in which the inorganic material 22 is disposed so as to be in contact with the surface of the working electrode 12, the precipitation and dissolution of magnesium are repeated.
  • the dissolution overvoltage was about 0.2V.
  • the precipitate contains metallic magnesium.
  • Example 1 An electrolyte solution was prepared in the same manner as in Example 1. Next, an electrochemical cell was constructed in the same manner as in Example 1 except that the inorganic material 22 was not disposed, and electrochemical deposition and dissolution were confirmed under the same conditions as in Example 1. The results are shown in FIG.
  • Example 1 From the results of Example 1 and Comparative Example 1, the overvoltage of the working electrode reaction, particularly the dissolving overvoltage of the working electrode reaction, is suppressed by arranging the inorganic material so as to be in contact with the surface of the working electrode that repeats precipitation and dissolution of magnesium. It was shown that it can be done. From this result, it is presumed that, in the magnesium secondary battery, by arranging the inorganic material so as to be in contact with the surface of the negative electrode that repeats precipitation and dissolution of magnesium, the overvoltage of the negative electrode reaction, particularly the dissolution overvoltage of the negative electrode reaction can be suppressed.
  • Example 2 An electrolyte solution was prepared in the same manner as in Example 1.
  • FIG. 5 is a schematic view of the electrochemical cell 200 used in Example 2, in which the electrolytic solution 16 is filled between the working electrode (positive electrode) 12 and the counter electrode (negative electrode) 14, and the reference electrode 20 is the electrolytic solution 16. Is placed inside.
  • the reference electrode 20 has a silver wire 18 immersed in a solution in a glass tube. Further, the electrolytic solution 16 is stored in the entire storage chamber and filled with the inorganic material 22, and the inorganic material 22 is disposed so as to be in contact with the surface of the counter electrode 14.
  • Working electrode an electrode on which an Al current collector carries a polished magnesium plate.
  • Counter electrode an electrode on which an Al current collector carries a polished magnesium plate.
  • Reference electrode 0.01 mol / L A silver wire immersed in a triglyme solution containing silver nitrate and 0.1 mol / L Mg (TFSA) 2 . In order to avoid the solution of the reference electrode from being mixed with the electrolyte, a glass tube having a porous glass at the tip was used.
  • Electrolyte solution prepared as described above-Inorganic material Acid-activated alumina (Product name: Aluminum oxide 90-active acid type, manufactured by Merck), vacuum-dried at 250 ° C for 12 hours as a pretreatment
  • the electrochemical cell (magnesium secondary battery according to an example of the present invention) was constructed by replacing the electrode applied to the electric body. This operation was carried out in a glove box maintained in an argon atmosphere with a dew point of ⁇ 80 ° C. or lower.
  • Example 3 An electrolyte solution was prepared in the same manner as in Example 1.
  • Electrolyte solution prepared as described above-Inorganic material Acid activated alumina (Merck, product name: Aluminum oxide 90 activated acid type), Neutral activated alumina (Merck, product name: Aluminum oxide 90 activated type) ) And basic activated alumina (manufactured by Merck & Co., Ltd., product name: aluminum oxide 90 activated basic), each vacuum-dried at 250 ° C. for 12 hours as a pretreatment
  • Electrochemical measurement As an electrochemical measurement device, HSV-110 manufactured by Hokuto Denko Co., Ltd. was used, and cyclic voltammetry was performed from the reduction direction in a scanning range of ⁇ 4 V to 0 V (relative to the reference electrode). The scanning speed was 5 mV / s. The measurement was performed using a sealed container filled with an argon atmosphere and performed at room temperature. The results are shown in FIG.
  • Example 3 precipitation and dissolution of magnesium are repeated regardless of the type of alumina. Moreover, it turns out from the result of the elemental analysis shown in Table 2 that a deposit contains metallic magnesium. Moreover, in the alumina example 3 using basic activity, the Coulomb efficiencies in the first and fifth cycles were 45.9% and 24.7%, respectively.
  • Example 4 An electrolyte solution was prepared in the same manner as in Example 1.
  • Electrolyte solution Electrolyte solution prepared as described above
  • Inorganic material Silica (manufactured by Aldrich, product name Silica nanopowder, particle size 12 nm), each vacuum-dried at 250 ° C. for 12 hours as a pretreatment
  • Electrochemical measurement As an electrochemical measurement device, HSV-110 manufactured by Hokuto Denko Co., Ltd. was used, and cyclic voltammetry was performed from the reduction direction in a scanning range of ⁇ 4 V to 0 V (relative to the reference electrode). The scanning speed was 5 mV / s. The measurement was performed using a sealed container filled with an argon atmosphere and performed at room temperature. The results are shown in FIG.
  • Example 8 that the precipitation and dissolution of magnesium are repeated in Example 4. Further, it was confirmed that the overvoltage was reduced as compared with Comparative Example 1.
  • Example 5 ⁇ Preparation of electrolyte>
  • Mg (TFSA) 2 Mg [N (SO 2 CF 3 ) 2 ] 2
  • triglyme in the general formula (1), R 1 and R 2 was a methyl group, and n was 3) so that Mg (TFSA) 2 was 0.5 mol / L to prepare an electrolytic solution.
  • the electrochemical cell shown in FIG. 1 was constructed.
  • the cell was constructed in a glove box maintained in an argon atmosphere with a dew point of ⁇ 80 ° C. or lower.
  • the electrochemical deposition and dissolution were confirmed by cyclic voltammetry in the same manner as in Example 1 except that the electrolytic solution used in Example 1 was changed to the electrolytic solution prepared in this example. The results are shown in FIG.
  • Example 9 that the precipitation and dissolution of magnesium are repeated in Example 5. Further, it was confirmed that the overvoltage was reduced as compared with Comparative Example 1.
  • Example 6 An electrolyte solution was prepared in the same manner as in Example 1.
  • Example 2 the electrochemical cell shown in FIG. 5 was constructed. The cell was constructed in a glove box maintained in an argon atmosphere with a dew point of ⁇ 80 ° C. or lower. Details of each component used in this example are as follows.
  • Working electrode positive electrode
  • Counter electrode negative electrode
  • electrode electrode having a polished magnesium plate supported on a stainless steel current collector
  • Reference electrode 0.01 mol / L
  • Electrolyte solution prepared as described above-Inorganic material Acid-activated alumina (Product name: Aluminum oxide 90-active acid type, manufactured by Merck), vacuum-dried at 250 ° C for 12 hours as a pretreatment
  • the electrochemical cell (magnesium secondary battery according to an example of the present invention) was constructed by replacing the electrode applied to the body. This operation was carried out in a glove box maintained in an argon atmosphere with a dew point of ⁇ 80 ° C. or lower.
  • the energy density (theoretical value) of the magnesium secondary battery of this example is about 1.5 times the energy density (theoretical value) of the lithium ion secondary battery.
  • Example 2 An electrolyte solution was prepared in the same manner as in Example 1. Next, an electrochemical cell was constructed in the same manner as in Example 6 except that no inorganic material was disposed, and electrochemical deposition and dissolution were confirmed under the same conditions as in Example 6.
  • the overvoltage of the negative electrode reaction was large at the time of discharge, and immediately reached the lower voltage limit. Further, since the discharge reaction hardly occurred, the subsequent charge reaction did not occur, and the charge / discharge at the second cycle could not be performed.
  • Example 6 and Comparative Example 2 From the results of Example 6 and Comparative Example 2 described above, it is possible to reduce the overvoltage of the negative electrode reaction by bringing the inorganic material into contact with the surface of the negative electrode, and the influence on charging / discharging of the electrochemical cell is very large. It has been shown.
  • Example 7 An electrolyte solution was prepared in the same manner as in Example 1.
  • FIG. 1 The electrochemical cell shown in FIG. 1 was constructed. The cell was constructed in a glove box maintained in an argon atmosphere with a dew point of ⁇ 80 ° C. or lower. Details of each component used in this example are as follows. In this example, as the inorganic material, acidic activated alumina, neutral activated alumina, and basic activated alumina were pulverized separately, and the effect of the type of alumina was confirmed.
  • FIG. 13 shows the particle size distributions of the acidic activated alumina, neutral activated alumina and basic activated alumina after pulverization. Further, as shown in FIG.
  • the median diameters (D50, volume average particle diameter) of acid activated alumina, neutral activated alumina and basic activated alumina are 1.42 ⁇ m, 0.95 ⁇ m and 1. It was 74 ⁇ m.
  • Working electrode mirror-polished platinum plate
  • Counter electrode polished magnesium plate
  • Reference electrode silver wire immersed in a triglyme solution containing 0.01 mol / L silver nitrate and 0.1 mol / L Mg (TFSA) 2 . In order to avoid the solution of the reference electrode from being mixed with the electrolyte, a glass tube having a porous glass at the tip was used.
  • Electrolyte solution prepared as described above-Inorganic material Acid activated alumina (Merck, product name: Aluminum oxide 90 activated acid type), Neutral activated alumina (Merck, product name: Aluminum oxide 90 activated type) ) And basic activated alumina (product name, manufactured by Merck & Co., Ltd., product name: aluminum oxide 90-activated basic), each of which is vacuum-dried at 250 ° C.
  • Electrochemical measurement As an electrochemical measurement device, HSV-110 manufactured by Hokuto Denko Co., Ltd. was used, and cyclic voltammetry was performed from the reduction direction in a scanning range of ⁇ 4 V to 0 V (relative to the reference electrode). The scanning speed was 5 mV / s. The measurement was performed using a sealed container filled with an argon atmosphere and performed at room temperature. The results are shown in FIG.
  • Example 7 the precipitation and dissolution of magnesium are repeated regardless of the type of alumina.
  • Table 3 shows the results of the Coulomb efficiency (current during discharging ⁇ time / current during charging ⁇ time) during the first, fifth, and tenth cycles.
  • Example 7 using basic activated alumina As shown in FIG. 14 and Table 3, in Example 7 using basic activated alumina, the overvoltage of the negative electrode reaction could be more suitably reduced, and the Coulomb efficiency was excellent. Furthermore, compared with Example 3, by making the particle diameter of activated alumina smaller in Example 7, the overvoltage of the negative electrode reaction could be more suitably reduced, and the Coulomb efficiency was excellent.
  • Example 8 An experiment similar to that of Example 7 was performed, except that the basic active alumina used in Example 3 was vacuum-dried at 1200 ° C. for 12 hours as the inorganic material. At this time, the change in crystal structure of the basic activated alumina before and after the high temperature heat treatment was analyzed by X-ray diffraction. The results are shown in FIG. In FIG. 15, (a) is an X-ray diffraction pattern in basic activated alumina before high-temperature heat treatment, and (b) is an X-ray diffraction pattern in basic activated alumina after high-temperature heat treatment. From FIG.
  • FIG. 16 shows the results of electrochemical measurement performed under the same conditions as in Example 7. From the results shown in FIG. 16, it can be seen that in Example 8, precipitation and dissolution of magnesium are repeated regardless of the type of alumina.

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

負極と、前記負極の表面と少なくとも一部が接触する酸化アルミニウム及び酸化ケイ素の少なくとも一方である無機材料と、を備えるマグネシウム二次電池。

Description

マグネシウム二次電池及び無機材料付きマグネシウム二次電池用負極
 本発明は、マグネシウム二次電池及び無機材料付きマグネシウム二次電池用負極に関する。
 リチウムイオン二次電池は高いエネルギー密度(作動電圧と蓄電容量の積)を有することより、携帯電話、スマートフォン等の小型機器、ハイブリッド自動車、電気自動車等の大型デバイスなどの動力源として主要な地位を占めている。
 しかしながら、リチウムイオン電池には、使用条件によっては発熱及び発火の危険がある、過充電によりリチウム析出のおそれがある、エネルギー密度が理論値に近づいている、リチウム源、電極等に用いる遷移金属のコストが高い、など課題も多い。
 そこで、リチウムの替わりにマグネシウムを用いたマグネシウム二次電池が提案されている。
 マグネシウム金属は標準電極電位が低く、2価イオンとなるため容量が大きい。このため、エネルギー密度が高く、かつ、大気中で安定な電極材料である。また、マグネシウム資源は地表近くに豊富に存在することから、マグネシウム金属を用いた二次電池は安価な二次電池となることが期待される。
 マグネシウム二次電池としては、例えば、マグネシウムカチオンを可逆的に保持および放出する正極と、前記正極とセパレータを介して対向して配置され、負極活物質である金属マグネシウムまたはマグネシウム合金を含む負極と、電解液とを備えるものが提案されている(例えば、特許文献1参照)。更に特許文献1では、電解液は、マグネシウムカチオンと、1価のアニオンと、式(I)で表されるポリエーテル化合物(グライム化合物)とを含有する溶液からなることが記載されている。
 R-O(CHCHO)-R   (I)
(式中、RおよびRはそれぞれ独立して置換基を有していてもよい炭素数1~12の炭化水素基、nは1~8の整数を示す)
 また、非特許文献1には、グライム化合物(対称グリコールジエーテル化合物)と、イオン液体と、マグネシウムカチオンとを含む電解液が記載されている。
特開2014-186940号公報
Kitada, et.al. "Room Temperature Magnesium Electrodeposition from Glyme-Coordinated Ammonium Amide Electrolytes"Journal of The Electrochemical Society 162(8) D389-D396 (2015)
 特許文献1及び非特許文献1に記載のグライム化合物を含む電解液を用いたマグネシウム二次電池は、イオン伝導性、耐酸化性及び化学安定性に優れている。
 しかしながら、特許文献1及び非特許文献1に記載の電解液を備えるマグネシウム二次電池では、負極反応の過電圧が大きく、特に負極反応の溶解過電圧が大きいという問題がある。
 本発明の一形態が解決しようとする課題は、負極反応の過電圧が抑制されたマグネシウム二次電池及び無機材料付きマグネシウム二次電池用負極を提供することである。
 上記課題を解決するための手段には、以下の態様が含まれる。
<1> 負極と、前記負極の表面と少なくとも一部が接触する無機材料と、を備えるマグネシウム二次電池。
<2> マグネシウムカチオンと、下記一般式(1)で表される溶媒と、を含む電解液を更に備える<1>に記載のマグネシウム二次電池。
Figure JPOXMLDOC01-appb-C000003
(一般式(1)中、R及びRはそれぞれ独立に、炭素数1以上12以下の炭化水素基を表し、nは1以上8以下の整数を表す。)
<3> 一般式(1)中、nは2以上4以下の整数である<2>に記載のマグネシウム二次電池。
<4> 前記電解液は、下記一般式(2)で表されるアニオンを更に含む<2>又は<3>に記載のマグネシウム二次電池。
Figure JPOXMLDOC01-appb-C000004
(一般式(2)中、Rはそれぞれ独立に、ハロゲン原子、炭素数1以上8以下のハロゲン化アルキル基、又は、炭素数2以上8以下のハロゲン化アルケニル基を表す。)
<5> 前記無機材料は、酸化アルミニウム及び酸化ケイ素の少なくとも一方である<1>~<4>のいずれか1つに記載のマグネシウム二次電池。
<6> 前記無機材料は、活性アルミナである<1>~<4>のいずれか1つに記載のマグネシウム二次電池。
<7> 正極活物質としてV、MgCo、MgMnSiO、MgFeSiO、MnO、MoO、NiCo、Co、ZnCo、グラファイト及び活性炭からなる群より選択される少なくとも一つを含む正極を更に備える<1>~<6>のいずれか1つに記載のマグネシウム二次電池。
<8> 前記正極と前記負極との間に位置するセパレータを更に備え、前記セパレータの表面の少なくとも一部に前記無機材料が配置され、当該無機材料の少なくとも一部が前記負極の表面と接触する<7>に記載のマグネシウム二次電池。
<9> 負極と、前記負極の表面と少なくとも一部が接触し、酸性基及び塩基性基の少なくとも一方を有する無機材料と、を備えるマグネシウム二次電池。
<10> 負極と、前記負極の表面と少なくとも一部が接触する無機材料と、を備える無機材料付きマグネシウム二次電池用負極。
<11> 負極と、前記負極の表面と少なくとも一部が接触し、酸性基及び塩基性基の少なくとも一方を有する無機材料と、を備える無機材料付きマグネシウム二次電池用負極。
 本発明の一形態によれば、負極反応の過電圧が抑制されたマグネシウム二次電池及び無機材料付きマグネシウム二次電池用負極を提供することができる。
実施例1、3~5において使用した電気化学セルを示す概略図である。 実施例1におけるサイクリックボルタンメトリーによる電気化学的析出及び溶解の確認結果である。 実施例1における析出物の電子顕微鏡像である。 実施例1における析出物のエックス線回折パターンである。 実施例2において使用した電気化学セル(本発明の一例に係るマグネシウム二次電池)を示す概略図である。 実施例2における定電流充放電試験の結果である。 実施例3におけるサイクリックボルタンメトリーによる電気化学的析出及び溶解の確認結果である。 実施例4におけるサイクリックボルタンメトリーによる電気化学的析出及び溶解の確認結果である。 実施例5におけるサイクリックボルタンメトリーによる電気化学的析出及び溶解の確認結果である。 比較例1におけるサイクリックボルタンメトリーによる電気化学的析出及び溶解の確認結果である。 実施例6における定電流充放電試験の結果である。 比較例2における定電流充放電試験の結果である。 実施例7において、粉砕後の酸性活性アルミナ、中性活性アルミナ及び塩基性活性アルミナの粒度分布を示すグラフである。 実施例7におけるサイクリックボルタンメトリーによる電気化学的析出及び溶解の確認結果である。 (a)は塩基性活性アルミナのエックス線回折パターンであり、(b)は高温熱処理後の塩基性活性アルミナのエックス線回折パターンである。 実施例8におけるサイクリックボルタンメトリーによる電気化学的析出及び溶解の確認結果である。
 以下、本開示について詳細に説明する。
 なお、本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 また、本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 本開示において、一般式で表される化合物における基の表記に関して、置換あるいは無置換を記していない場合、上記基が更に置換基を有することが可能な場合には、他に特に規定がない限り、無置換の基のみならず置換基を有する基も包含する。例えば、一般式において、「Rはアルキル基を表す」との記載があれば、「Rは無置換アルキル基又は置換基を有するアルキル基を表す」ことを意味する。なお、置換基としては、特に限定されず、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシル基などが挙げられる。なお、置換基における炭素数は、アルキル基の炭素数に含めないものとする。
 本開示において、「マグネシウム二次電池」とは、負極におけるマグネシウム及びマグネシウム合金の少なくとも一方の析出反応と溶解反応により充放電が実現される二次電池をいい、正極における挙動は特に限定されない。そのため、例えば、負極活物質であるマグネシウム及びマグネシウム合金の少なくとも一方を用い、かつ正極活物質である活性炭等を用いたハイブリッドキャパシタも本発明の「マグネシウム二次電池」に包含される。
[マグネシウム二次電池]
 本開示のマグネシウム二次電池は、負極と、前記負極の表面と少なくとも一部が接触する無機材料と、を備える。本開示のマグネシウム二次電池は、更に、マグネシウムカチオンと、後述の一般式(1)で表される溶媒と、を含む電解液、正極等を備えていてもよい。
 本開示のマグネシウム二次電池は、負極の表面と一部が接触する無機材料を備えているため、負極反応の過電圧が抑制され、特に負極反応の溶解過電圧が抑制される。更に、電解液及び正極を備えるマグネシウム二次電池において、無機材料は電解液に不溶であるため、無機材料による正極への悪影響が抑制される。
 また、本開示のマグネシウム二次電池では、負極反応の溶解過電圧が抑制されるため、放電電圧の低下が抑制され、放電電圧を高めることができる。その結果、充電電圧と放電電圧との差が小さくなり、エネルギー損失を小さくすることができる。
 例えば、本開示のマグネシウム二次電池では、放電電圧を1.0V以上、好ましくは1.5V以上とすることができる。
<負極>
 負極は、充放電反応により負極活物質が可逆的に析出及び脱離するものである。負極活物質である金属マグネシウム及びマグネシウム合金の少なくとも一方を含む電極であってもよい。即ち、負極は、負極活物質である金属マグネシウム及びマグネシウム合金の少なくとも一方を含む負極材料を後述する集電体に担持させた電極であってもよく、集電体を備えず、集電機能を兼ねた負極活物質であってもよく、充電反応により負極活物質である金属マグネシウム及びマグネシウム合金の少なくとも一方が析出する集電体であってもよい。
 マグネシウム合金としては、特に限定されず、例えば、マグネシウムとアルミニウムとの合金、マグネシウムと亜鉛との合金、マグネシウムとマンガンとの合金などが挙げられる。
 負極は、集電体に金属マグネシウム又はマグネシウム合金を担持させた電極であってもよく、金属マグネシウム又はマグネシウム合金を電極に適した形状(例えば、板状など)に成形して得られた電極であってもよい。
 前記負極材料は、負極活物質を含み、後述する導電助剤及びバインダを更に含有していてもよい。
<無機材料>
 無機材料は、負極の表面と少なくとも一部が接触する。無機材料としては、酸化物、窒化物等が挙げられる。より具体的には、酸化アルミニウム、酸化ケイ素、酸化ガリウム、酸化亜鉛、酸化インジウム、酸化錫、酸化ホウ素、酸化チタン等の酸化物、窒化アルミニウム、窒化ケイ素、窒化ガリウム、窒化亜鉛、窒化インジウム、窒化錫、窒化ホウ素、窒化チタン等の窒化物が挙げられる。
 無機材料としては、1種のみを用いてもよく、2種以上を用いてもよい。
 無機材料は、負極反応の過電圧を抑制する点から、酸化アルミニウム及び酸化ケイ素の少なくとも一方であることが好ましく、酸化アルミニウムであることがより好ましい。また、無機材料は、負極反応の過電圧を抑制する点から、後述の活性アルミナ及び酸化ケイ素の少なくとも一方であってもよい。
 無機材料は、負極反応の過電圧を抑制する点から、酸性基及び塩基性基の少なくとも一方を有する無機材料であることが好ましい。このとき、無機材料としては、酸性基を有する酸性の無機材料、塩基性基を有する塩基性の無機材料及び酸性基及び塩基性基を有する中性の無機材料が挙げられる。
 なお、酸性の無機材料としては、酸性基及び塩基性を共に有し、酸性基の影響がより大きいものであってもよく、塩基性の無機材料としては、酸性基及び塩基性を共に有し、塩基性基の影響がより大きいものであってもよい。
 また、無機材料としては、酸性基及び塩基性基の少なくとも一方を有する酸化アルミニウムがより好ましい。
 酸性基としては、具体的には、無機材料である酸化物をMOと表記した場合、表面においてMn+の部分(nは正の数を表す)のほか、カルボキシ基、スルホン酸基、フェノール性水酸基、リン酸基、ホスホン酸基、ホスフィン酸基、硫酸基、スルフィン酸基、等が挙げられる。
 塩基性基としては、具体的には、無機材料である酸化物をMOと表記した場合、表面においてM-OHとなる部分のほか、アミノ基、アミド基、ヒドラジド基、等が挙げられる。
 酸性の無機材料のpHは、3.0~5.0が好ましく、3.5~4.5がより好ましい。また、中性の無機材料のpHは、6.0~8.0が好ましく、6.8~7.8がより好ましく、7.0~7.8が更に好ましい。塩基性の無機材料のpHは、8.0超11以下が好ましく、8.5~10.5がより好ましく、8.5~10が更に好ましい。
 なお、酸性の無機材料、中性の無機材料及び塩基性の無機材料のpHは、各無機材料を10質量%分散させた水のpH(25℃)を意味する。
 また、無機材料は、負極反応の過電圧を効率よく抑制する点から、活性アルミナであることが好ましい。活性アルミナは、酸性活性アルミナ(pH3.0~5.0程度)、中性活性アルミナ(pH6.0~8.0程度)及び塩基性活性アルミナ(pH8.0超11以下程度)の少なくともいずれか1種であることがより好ましい。
 酸性活性アルミナとしては、前述の酸性基を有する活性アルミナが挙げられ、中性活性アルミナとしては、前述の酸性基及び塩基性基を有する活性アルミナが挙げられ、塩基性活性アルミナとしては、前述の塩基性基を有する活性アルミナが挙げられる。
 なお、酸性活性アルミナとしては、酸性基及び塩基性を共に有し、酸性基の影響がより大きいものであってもよく、塩基性活性アルミナとしては、酸性基及び塩基性を共に有し、塩基性基の影響がより大きいものであってもよい。
 なお、活性アルミナは、多孔質の酸化アルミニウムである。また、活性アルミナは、例えば、酸化アルミニウムの水和物ゲルを300℃~500℃で脱水することにより製造される。
 酸性活性アルミナのpHは、3.0~5.0が好ましく、3.5~4.5がより好ましい。また、中性活性アルミナのpHは、6.0~8.0が好ましく、6.8~7.8がより好ましく、7.0~7.8が更に好ましい。塩基性活性アルミナのpHは、8.0超11以下が好ましく、8.5~10.5がより好ましく、8.5~10が更に好ましい。
 なお、酸性活性アルミナ、中性活性アルミナ及び塩基性活性アルミナのpHは、各活性アルミナを10質量%分散させた水のpH(25℃)を意味する。
 無機材料は、負極の表面と少なくとも一部が接触していればよく、負極の表面における電解液と接触する部分と接触していることが好ましい。また、無機材料は、マグネシウム二次電池において、電解液が貯留され、かつ正極及び負極が配置される電解液貯留室内に充填される構成であってもよい。
 無機材料は、負極反応の過電圧を抑制する点から、負極の表面における電解液と接触する部分の50%以上と接触していることが好ましく、80%以上と接触していることがより好ましく、90%以上と接触していることが更に好ましい。また、無機材料は、負極の表面における電解液と接触する部分の100%と接触している、すなわち、負極の表面における電解液と接触する部分を覆っていることが特に好ましい。
 無機材料は、粒子状、膜状であってもよい。また、負極反応の過電圧の抑制及び電解液貯留室内への充填性に優れる点から、無機材料は、粒子状であることが好ましい。また、負極反応の過電圧の抑制に優れる点から、膜状の無機材料は多孔質であってもよい。
 また、無機材料は、負極以外、例えば後述するセパレータの表面の少なくとも一部に無機材料が配置され、この無機材料の少なくとも一部が負極の表面と接触していてもよく、より具体的には、無機材料は、セパレータの表面の少なくとも一部を被覆した状態、又は、セパレータの表面の少なくとも一部に担持された状態にて負極の表面と接触していてもよい。
 無機材料が粒子状の場合、無機材料の平均粒子径としては、0.001μm~500μmであることが好ましく、0.001μm~200μmであることがより好ましく、0.001μm~1μmであることが更に好ましい。
 無機材料の平均粒子径は、レーザー回折法により測定される体積基準の粒度分布において小径側からの累積が50%となるときの粒子径(D50)である。
 無機材料は、ボールミル、乳鉢、ジェットミル等を用いて粉砕したものを用いてもよい。
 無機材料が酸化アルミニウム、好ましくは活性アルミナである場合、無機材料の平均粒子径としては、1μm~500μmであってもよく、10μm~400μmであってもよく、30μm~300μmであってもよい。また、無機材料が酸化アルミニウム、好ましくは活性アルミナである場合、無機材料の平均粒子径としては、0.001μm~10μmであってもよく、0.005μm~1μmであってもよく、0.01μm~0.5μmであってもよい。
 無機材料が酸化ケイ素である場合、無機材料の平均粒子径としては、0.001μm~10μmであることが好ましく、0.005μm~1μmであることがより好ましく、0.01μm~0.5μmであることが更に好ましい。
<正極>
 正極は、特に限定されず、従来公知の二次電池に用いられる正極を使用してもよい。正極としては、例えば、マグネシウムカチオンを可逆的に保持及び放出する正極活物質を含む正極材料を集電体に担持させた電極であることが好ましい。あるいは、正極は、集電体を備えず、集電機能を兼ねた正極活物質であってもよい。
 前記正極材料は、正極活物質を含み、導電助剤及びバインダを更に含有することが好ましい。
 正極活物質としては、例えば、マグネシウムカチオンを可逆的に保持及び放出することができる硫化物、マグネシウムカチオンを可逆的に保持及び放出することができる酸化物、マグネシウムカチオンを可逆的に保持及び放出することができる有機化合物などが挙げられる。
 正極活物質としては、より具体的には、V、MgCo、MgMnSiO、MgFeSiO、MnO、MoO、NiCo、Co、ZnCo、グラファイト及び活性炭が挙げられる。正極活物質としては、1種のみを用いてもよく、2種以上を用いてもよい。
〔集電体〕
 集電体は、電気化学的に安定な物質からなる集電体であればよい。かかる集電体を構成する物質としては、例えば、アルミニウム、ニッケル、ステンレス、タングステンなどが挙げられるが、特に限定されない。
〔導電助剤〕
 導電助剤としては、特に限定されないが、例えば、アセチレンブラック、黒鉛、カーボンブラックなどの炭素材料などが挙げられる。
 正極材料中における導電助剤の含有率は、正極活物質の種類、導電助剤の種類などによって異なることから、正極活物質の種類、導電助剤の種類などに応じて適宜決定することが好ましい。
〔バインダ〕
 バインダとしては、特に限定されず、例えば、ポリテトラフルオロエチレン、ポリビニリデンフルオライドなどのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂などが挙げられる。
 正極材料中におけるバインダの含有率は、正極活物質の種類、バインダの種類などによって異なることから、正極活物質の種類、バインダの種類などに応じて適宜決定することが好ましい。
<セパレータ>
 本開示のマグネシウム二次電池は、正極と負極との間に位置するセパレータ、好ましくは正極と負極とを分離し電解液を保持するセパレータを備えていてもよい。セパレータを構成する材料としては、特に限定されないが、例えば、ポリテトラフルオロエチレンなどのフッ素樹脂、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂、ガラス、セラミックスなどが挙げられる。
<電解液>
 本開示のマグネシウム二次電池は、マグネシウムカチオンと、下記一般式(1)で表される溶媒と、を含む電解液を更に備えていてもよい。下記一般式(1)で表される溶媒を含む電解液をマグネシウム二次電池に用いた場合、グリニャール試薬などを含む電解液を用いたマグネシウム二次電池よりも耐酸化性に優れる傾向にある。
 一方、下記一般式(1)で表される溶媒を含む電解液をマグネシウム二次電池に用いた場合、グリニャール試薬などを含む電解液を用いたマグネシウム二次電池よりも負極反応の過電圧が大きく、特に負極反応の溶解過電圧が大きくなるおそれがある。しかしながら、本開示のマグネシウム二次電池において、前述のように負極の表面と一部が接触する無機材料を備えているため、負極反応の過電圧が抑制される。
 更に、Mg(BH、MgCl等の添加剤を電解液に添加することにより、負極反応の過電圧を抑制する方法も考えられるが、高電位にて電解液の酸化分解が発生しやすくなり、耐酸化性が低下してしまうという問題がある。本開示のマグネシウム二次電池では、電解液に前述の添加剤を添加せずとも、負極反応の過電圧の抑制と、耐酸化性の低下の抑制との両立を図ることができる。
 電解液におけるマグネシウムの電気化学的析出及び溶解の点から、マグネシウムカチオンの電解液の全量に対するモル濃度Amol/Lは、0.1mol/L~2.0mol/Lであることが好ましく、0.3mol/L~1.0mol/Lであることがより好ましい。
 マグネシウムカチオンの電解液の全量に対するモル濃度Amol/Lは、密度測定及び水酸化ナトリウム水溶液中で沈殿する、水酸化マグネシウムの質量により測定される。
 マグネシウムカチオンは、例えば、マグネシウム塩を、下記一般式(1)で表される溶媒、又は、下記一般式(1)で表される溶媒とその他の溶媒との混合液に添加することにより、電解液中に添加される。
 マグネシウム塩としては、特に制限されず、無機塩であっても有機塩であってもよく、マグネシウムの電気化学的析出及び溶解の観点から、有機塩であることが好ましい。
 マグネシウムの無機塩としては、Mg(PF、Mg(BF、Mg(ClO、Mg(AsF等が挙げられる。
 マグネシウムの有機塩としては、クエン酸マグネシウム、シュウ酸マグネシウム、下記一般式(2)で表されるアニオンとの塩が挙げられ、解離性及び耐酸化性の観点から、下記一般式(2)で表されるスルホニウムアミドアニオンとの塩が好ましい。
 下記一般式(2)で表されるスルホニウムアミドアニオンとの塩を用いることにより、イオン伝導性に優れ、かつ、耐酸化性に優れた電解液が得られる。
 電解液は、前述のように、マグネシウムカチオンとともに下記一般式(1)で表される溶媒を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000005
 一般式(1)中、R及びRはそれぞれ独立に、炭素数1以上12以下の炭化水素基を表し、nは1以上8以下の整数を表す。
 一般式(1)中、R及びRはそれぞれ独立に、炭素数1以上8以下の炭化水素基であることが好ましい。
 炭素数1以上12以下の炭化水素基としては、例えば、炭素数1以上12以下のアルキル基、炭素数2以上12以下のアルケニル基、炭素数6以上12以下のアリール基、炭素数7以上12以下のアラルキル基などが挙げられる。
 炭素数1以上12以下のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基等の直鎖又は分岐のアルキル基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ノルボルニル基、アダマンチル基等の脂環式アルキル基などが挙げられる。中でも、メチル基及びエチル基が好ましく、メチル基がより好ましい。
 炭素数2以上12以下のアルケニル基としては、例えば、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基などが挙げられる。
 炭素数6以上12以下のアリール基としては、例えば、フェニル基、ナフチル基などが挙げられる。
 炭素数7以上12以下のアラルキル基としては、例えば、ベンジル基、フェニルエチル基、メチルベンジル基、ナフチルメチル基などが挙げられる。
 一般式(I)で表される化合物としては、マグネシウムの析出溶解反応を効率よく行う点から、対称グリコールジエーテルであることが好ましく、また、一般式(1)中、nは、2以上4以下の整数であることが好ましく、2又は3であることがより好ましい。具体的には、一般式(I)で表される化合物としては、グライム、ジグライム、トリグライム及びテトラグライムの少なくとも1種であることがより好ましく、ジグライム、トリグライム及びテトラグライムの少なくとも1種であることが更に好ましい。
 一般式(I)で表される化合物としては、高温環境下での取り扱いの容易性を確保するとともに、充放電反応を効率よく行い、電圧のロスを抑制する点から、ジグライム、トリグライム及びテトラグライムの少なくとも1種が好ましく、ジグライム及びトリグライムの少なくとも1種がより好ましい。
 電解液は、前述のように、イオン伝導性及び耐酸化性の点から、下記一般式(2)で表されるアニオンを更に含むことが好ましい。
Figure JPOXMLDOC01-appb-C000006
 一般式(2)中、Rはそれぞれ独立に、ハロゲン原子、炭素数1以上8以下のハロゲン化アルキル基、又は、炭素数2以上8以下のハロゲン化アルケニル基を表す。
 一般式(2)中、Rにおけるハロゲン原子としては、特に限定されず、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられる。これらのハロゲン原子の中でも、適切な電気陰性度を確保する観点から、フッ素原子が好ましい。
 一般式(2)中、Rにおける炭素数1以上8以下のハロゲン化アルキル基の炭素数は、1以上であり、取り扱いが容易な溶解度、粘性及び融点を確保する観点から、8以下である。
 炭素数1以上8以下のハロゲン化アルキル基としては、特に限定されないが、例えば、パーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘプチル基、パーフルオロオクチル基などの炭素数1以上8以下のフルオロアルキル基;パークロロメチル基、パークロロエチル基、パークロロプロピル基、パークロロブチル基、パークロロペンチル基、パークロロヘプチル基、パークロロオクチル基などの炭素数1以上8以下のクロロアルキル基;
 パーブロモメチル基、パーブロモエチル基、パーブロモプロピル基、パーブロモブチル基、パーブロモペンチル基、パーブロモヘプチル基、パーブロモオクチル基などの炭素数1以上8以下のブロモアルキル基;パーヨードメチル基、パーヨードエチル基、パーヨードプロピル基、パーヨードブチル基、パーヨードペンチル基、パーヨードヘプチル基、パーヨードオクチル基などの炭素数1以上8以下のヨードアルキル基などが挙げられる。
 これらの炭素数1以上8以下のハロゲン化アルキル基のなかでは、取り扱いが容易な溶解度、粘性及び融点を確保する観点から、炭素数1以上8以下のパーフルオロアルキル基が好ましく、パーフルオロメチル基がより好ましい。
 一般式(2)中、Rにおける炭素数2以上8以下のハロゲン化アルケニル基の炭素数は、2以上であり、取り扱いが容易な溶解度、粘性及び融点を確保する観点から、8以下である。
 炭素数2以上8以下のハロゲン化アルケニル基としては、特に限定されないが、例えば、パーフルオロビニル基、パーフルオロアリル基、パーフルオロブテニル基、パーフルオロペンテニル基などの炭素数2以上8以下のフルオロアルケニル基などが挙げられる。
 これらの炭素数2以上8以下のハロゲン化アルケニル基のなかでは、取り扱いが容易な溶解度、粘性及び融点を確保する観点から、炭素数2以上8以下のフルオロアルケニル基が好ましく、フルオロアリル基がより好ましい。
 一般式(2)で表されるスルホニルアミドアニオンの具体例としては、ビス(トリフルオロメチルスルホニル)アミドアニオン、フルオロスルホニル(トリフルオロメチルスルホニル)アミドアニオン、ビス(フルオロスルホニル)アミドアニオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
 一般式(2)で表されるスルホニルアミドアニオンのなかでは、取り扱いが容易な溶解度を確保する観点から、ビス(トリフルオロメチルスルホニル)アミドアニオン及びビス(フルオロスルホニル)アミドアニオンが好ましい。
 電解液は、前述の一般式(1)で表される溶媒以外のその他の溶媒を更に含んでいてもよい。その他の溶媒としては、特に限定されず、スルホラン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、3-メチル-1,3-ジオキソラン、ジメチルスルホン、ジエチルスルホン、エチルメチルスルホン等が挙げられる。
 更に、その他の溶媒としては、例えば、下記化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
[無機材料付きマグネシウム二次電池用負極]
 本開示の無機材料付きマグネシウム二次電池用負極は、負極と、前記負極の表面と少なくとも一部が接触する無機材料と、を備える。この無機材料付きマグネシウム二次電池用負極をマグネシウム二次電池に用いることにより、負極反応の過電圧を抑制することができる。
 なお、無機材料付きマグネシウム二次電池用負極における負極及び無機材料は、前述のマグネシウム二次電池における負極及び無機材料と同様であるため、その説明を省略する。
 以下、実施例により本開示を詳細に説明するが、本開示はこれらに限定されるものではない。なお、実施例1、3~5及び比較例1では、サイクリックボルタンメトリーにより、マグネシウム二次電池における負極反応の挙動を検討した。
[実施例1]
<電解液の調製>
 露点-80℃以下のアルゴン雰囲気に保たれたグローブボックス内で、Mg(TFSA)(Mg[N(SOCF)と、ジグライム(一般式(1)中、R及びRはメチル基、かつnは2)とをMg(TFSA)が0.5mol/Lとなるよう混合し、電解液を調製した。
<電気化学的析出及び溶解の確認>
〔電気化学セルの構築〕
 図1に記載の電気化学セルを構築した。セルの構築は露点-80℃以下のアルゴン雰囲気に保たれたグローブボックス内で行った。
 図1は実施例1において使用した電気化学セル100の概略図であり、対極14と参照極20とを電解液を貯留する貯留室内に配置し、貯留室の底部の開口部から表面が露出するように作用極12を配置した。更に、貯留室内を電解液16で満たし、貯留室の底部の開口部に作用極12の表面と接触するように無機材料22を配置した。
 参照極20は、ガラス管中にて溶液に浸された銀線18を有している。
 本実施例において用いた、各構成の詳細は下記の通りである。
・作用極:鏡面研磨した白金板
・対極:研磨したマグネシウム板
・参照極:0.01mol/Lの硝酸銀及び0.1mol/LのMg(TFSA)を含んだトリグライム溶液に浸した銀線。参照極の溶液が電解液と混ざり合うのを避けるため、先端に多孔質ガラスを設置したガラス管を用いた。
・電解液:上記のようにして調製した電解液
・無機材料:酸性活性アルミナ(メルク社製、品名 酸化アルミニウム90活性型酸性)、前処理として250℃にて12時間真空乾燥したもの
〔電気化学測定〕
 電気化学測定装置として、北斗電工社製 HSV-110を使用して、サイクリックボルタンメトリーを、走査範囲-4V~0V(参照極に対して)の範囲で還元方向から行った。走査速度は5mV/sとした。
 測定はアルゴン雰囲気に満たされた密閉容器を用いて行い、室温で行った。
 結果を図2に示す。
〔析出物の確認〕
 サイクリックボルタンメトリーの後、-4V(参照極に対して)で電位保持を3時間行い、作用極上に堆積物の有無を目視で確認した。
 堆積物が認められた場合は、それをエックス線回折測定及び走査型電子顕微鏡観察によって同定を行った。
 エックス線回折測定は、エックス線回折装置 リガク社製 UltimaIVを用いて大気中で測定した。試料は作用極(Pt)板ごと測定した。
 走査型電子顕微鏡観察は、走査型電子顕微鏡装置 日本電子社製JCM-6000を用いて行った。
 また、日本電子社製JCM-6000を用いたエネルギー分散型X線分析(EDX)により、元素分析を行った。
 結果を図3、4及び表1に示す。
Figure JPOXMLDOC01-appb-T000008
 図2に示す結果から、作用極12の表面と接触するように無機材料22を配置した実施例1においては、マグネシウムの析出及び溶解が繰り返されることがわかる。また、溶解過電圧が0.2V程度であった。
 また、図4に示すエックス線回折パターン及び表1に示す元素分析の結果により、析出物は金属マグネシウムを含むことがわかる。
[比較例1]
 実施例1と同様にして電解液の調製を行った。
 次に、無機材料22を配置していない点以外は実施例1と同様にして電気化学セルを構築し、実施例1と同様の条件で電気化学的析出及び溶解の確認を行った。
 結果を図10に示す。
 図10に示す結果から、無機材料22を配置していない比較例1においてもマグネシウムの析出及び溶解が繰り返されることがわかる。しかしながら、溶解過電圧が1.0V程度であり、実施例1と比較して非常に大きい値であった。
 実施例1及び比較例1の結果から、マグネシウムの析出及び溶解を繰り返す作用極の表面と接触するように無機材料を配置することにより、作用極反応の過電圧、特に作用極反応の溶解過電圧が抑制できることが示された。この結果から、マグネシウム二次電池において、マグネシウムの析出及び溶解を繰り返す負極の表面と接触するように無機材料を配置することにより、負極反応の過電圧、特に負極反応の溶解過電圧が抑制できることが推測される。
 また、比較例1においては、一周目のクーロン効率(放電時の電流×時間/充電時の電流×時間)が2%である一方、実施例1においては、一周目のクーロン効率が33%であり、大きく改善された。
[実施例2]
 実施例1と同様にして電解液の調製を行った。
〔電気化学セルの構築〕
 図5に記載の電気化学セルを構築した。セルの構築は露点-80℃以下のアルゴン雰囲気に保たれたグローブボックス内で行った。
 図5は実施例2において使用した電気化学セル200の概略図であり、作用極(正極)12と対極(負極)14の間に電解液16が満たされており、参照極20が電解液16中に配置されている。
 参照極20は、ガラス管中に溶液に浸された銀線18を有している。
 更に、貯留室内全体に電解液16が貯留されているとともに、無機材料22が充填されており、無機材料22が対極14の表面と接触するように配置された状態となっている。
 本実施例において用いた、各構成の詳細は下記の通りである。
・作用極(正極):Al集電体に研磨したマグネシウム板を担持させた電極
・対極(負極):Al集電体に研磨したマグネシウム板を担持させた電極
・参照極:0.01mol/Lの硝酸銀及び0.1mol/LのMg(TFSA)を含んだトリグライム溶液に浸した銀線。参照極の溶液が電解液と混ざり合うのを避けるため、先端に多孔質ガラスを設置したガラス管を用いた。
・電解液:上記のようにして調製した電解液
・無機材料:酸性活性アルミナ(メルク社製、品名 酸化アルミニウム90活性型酸性)、前処理として250℃にて12時間真空乾燥したもの
 前述のように構築した電気化学セル及び北斗電工社製 HSV-110を使用して、サイクリックボルタンメトリーを、走査範囲-4V~0V(参照極に対して)の範囲で還元方向から行い、マグネシウムの析出及び溶解を繰り返した。走査速度は5mV/sとした。
 次に、作用極(正極)12をAl集電体に研磨したマグネシウム板を担持させた電極からV:アセチレンブラック:ポリビニリデンフルオライド=80:10:10(質量比)がAl集電体に塗布された電極に取り替え、電気化学セル(本発明の一例に係るマグネシウム二次電池)を構築した。この操作は、露点-80℃以下のアルゴン雰囲気に保たれたグローブボックス内で行った。
〔定電流充放電試験〕
 次に、北斗電工社製 HJ-SD8を用いて定電流充放電試験を、電流値1μA、カットオフ電圧1.5V~3.3Vで行った。この試験は、露点-80℃以下のアルゴン雰囲気に保たれたグローブボックス内で室温にて行った。
 結果を図6に示す。
 図6に示すように、1~20サイクルにて充放電を安定して行うことが可能であった。また、二次電池としては、放電電圧が高く、かつ充電電圧が低いことが好ましく、また、過電圧が大きいほど充電電圧と放電電圧との差が大きくなり、エネルギー損失が大きくなる。そのため、過電圧を小さくしてエネルギーの無駄を削減することが好ましい。
 ここで、図6に示すように実施例2における電気化学セルでは、放電電圧が1.5V超である。一方、例えば、非特許文献(Niya Sa, et.al. “Structural Evolution of Reversible Mg Insertion into a Bilayer Structure of V2O5・nH2O Xerogel Material” Chem. Mater., 2016, 28 (9), pp 2962-2969)のFigure 1(a)では、放電電圧が1.0V以下である。
 したがって、実施例2では、無機材料22が作用極12の表面と接触するように配置された状態となっているため、過電圧が抑制されており、その結果、放電電圧が1.5V超と高い値となっている。
[実施例3]
 実施例1と同様にして電解液の調製を行った。
<電気化学的析出及び溶解の確認>
〔電気化学セルの構築〕
 図1に記載の電気化学セルを構築した。セルの構築は露点-80℃以下のアルゴン雰囲気に保たれたグローブボックス内で行った。
 本実施例において用いた、各構成の詳細は下記の通りである。なお、本実施例では、無機材料として、酸性活性アルミナ、中性活性アルミナ及び塩基性活性アルミナをそれぞれ単独で用い、アルミナの種類による影響を確認した。
・作用極:鏡面研磨した白金板
・対極:研磨したマグネシウム板
・参照極:0.01mol/Lの硝酸銀及び0.1mol/LのMg(TFSA)を含んだトリグライム溶液に浸した銀線。参照極の溶液が電解液と混ざり合うのを避けるため、先端に多孔質ガラスを設置したガラス管を用いた。
・電解液:上記のようにして調製した電解液
・無機材料:酸性活性アルミナ(メルク社製、品名 酸化アルミニウム90活性型酸性)、中性活性アルミナ(メルク社製、品名 酸化アルミニウム90活性型中性)及び塩基性活性アルミナ(メルク社製、品名 酸化アルミニウム90活性型塩基性)、それぞれ前処理として250℃にて12時間真空乾燥したもの
〔電気化学測定〕
 電気化学測定装置として、北斗電工社製 HSV-110を使用して、サイクリックボルタンメトリーを、走査範囲-4V~0V(参照極に対して)の範囲で還元方向から行った。走査速度は5mV/sとした。
 測定はアルゴン雰囲気に満たされた密閉容器を用いて行い、室温で行った。
 結果を図7に示す。
〔析出物の確認〕
 サイクリックボルタンメトリーの後、-4V(参照極に対して)で電位保持を3時間行い、作用極上に堆積物の有無を目視で確認した。
 堆積物が認められたため、日本電子社製JCM-6000を用いたエネルギー分散型X線分析(EDX)により元素分析を行った。
 結果を表2に示す。
Figure JPOXMLDOC01-appb-T000009
 図7に示す結果から、実施例3においては、アルミナの種類に関係なくマグネシウムの析出及び溶解が繰り返されることがわかる。また、表2に示す元素分析の結果により、析出物は金属マグネシウムを含むことがわかる。また、塩基性活性を用いたアルミナ実施例3では、一周目及び五周目のクーロン効率は、それぞれ45.9%及び24.7%であった。
[実施例4]
 実施例1と同様にして電解液の調製を行った。
<電気化学的析出及び溶解の確認>
〔電気化学セルの構築〕
 図1に記載の電気化学セルを構築した。セルの構築は露点-80℃以下のアルゴン雰囲気に保たれたグローブボックス内で行った。
 本実施例において用いた、各構成の詳細は下記の通りである。なお、本実施例では、無機材料として、シリカ(酸化ケイ素)を用いた。
・作用極:鏡面研磨した白金板
・対極:研磨したマグネシウム板
・参照極:0.01mol/Lの硝酸銀及び0.1mol/LのMg(TFSA)を含んだトリグライム溶液に浸した銀線。参照極の溶液が電解液と混ざり合うのを避けるため、先端に多孔質ガラスを設置したガラス管を用いた。
・電解液:上記のようにして調製した電解液
・無機材料:シリカ(アルドリッチ社製、品名 Silica nanopowder、粒子径12nm)、それぞれ前処理として250℃にて12時間真空乾燥したもの
〔電気化学測定〕
 電気化学測定装置として、北斗電工社製 HSV-110を使用して、サイクリックボルタンメトリーを、走査範囲-4V~0V(参照極に対して)の範囲で還元方向から行った。走査速度は5mV/sとした。
 測定はアルゴン雰囲気に満たされた密閉容器を用いて行い、室温で行った。
 結果を図8に示す。
 図8に示す結果から、実施例4において、マグネシウムの析出及び溶解が繰り返されることがわかる。また、比較例1よりも過電圧が減少していることが確認された。
[実施例5]
<電解液の調製>
 露点-80℃以下のアルゴン雰囲気に保たれたグローブボックス内で、Mg(TFSA)(Mg[N(SOCF)と、トリグライム(一般式(1)中、R及びRはメチル基、かつnは3)とをMg(TFSA)が0.5mol/Lとなるよう混合し、電解液を調製した。
<電気化学的析出及び溶解の確認>
 図1に記載の電気化学セルを構築した。セルの構築は露点-80℃以下のアルゴン雰囲気に保たれたグローブボックス内で行った。
 実施例1において使用した電解液を本実施例にて調製した電解液に変更したこと以外は実施例1と同様にして電気化学的析出及び溶解の確認をサイクリックボルタンメトリーにより行った。
 結果を図9に示す。
 図9に示す結果から、実施例5において、マグネシウムの析出及び溶解が繰り返されることがわかる。また、比較例1よりも過電圧が減少していることが確認された。
[実施例6]
 実施例1と同様にして電解液の調製を行った。
〔電気化学セルの構築〕
 実施例2と同様、図5に記載の電気化学セルを構築した。セルの構築は露点-80℃以下のアルゴン雰囲気に保たれたグローブボックス内で行った。
 本実施例において用いた、各構成の詳細は下記の通りである。
・作用極(正極):ステンレス集電体に研磨したマグネシウム板を担持させた電極
・対極(負極):ステンレス集電体に研磨したマグネシウム板を担持させた電極
・参照極:0.01mol/Lの硝酸銀及び0.1mol/LのMg(TFSA)を含んだトリグライム溶液に浸した銀線。参照極の溶液が電解液と混ざり合うのを避けるため、先端に多孔質ガラスを設置したガラス管を用いた。
・電解液:上記のようにして調製した電解液
・無機材料:酸性活性アルミナ(メルク社製、品名 酸化アルミニウム90活性型酸性)、前処理として250℃にて12時間真空乾燥したもの
 前述のように構築した電気化学セル及び北斗電工社製 HSV-110を使用して、サイクリックボルタンメトリーを、走査範囲-4V~0V(参照極に対して)の範囲で還元方向から行い、マグネシウムの析出及び溶解を繰り返した。走査速度は5mV/sとした。
 次に、作用極(正極)をステンレス集電体に研磨したマグネシウム板を担持させた電極からMgCo:アセチレンブラック:ポリビニリデンフルオライド=80:10:10(質量比)がタングステン集電体に塗布された電極に取り替え、電気化学セル(本発明の一例に係るマグネシウム二次電池)を構築した。この操作は、露点-80℃以下のアルゴン雰囲気に保たれたグローブボックス内で行った。
〔定電流充放電試験〕
 次に、北斗電工社製 HJ-SD8を用いて定電流充放電試験を、100℃、電流値5.2mA(活物質1g当たり)、カットオフ電圧1.0V~3.5Vで行った。この試験は、露点-80℃以下のアルゴン雰囲気に保たれたグローブボックス内で電気化学セルを構築し、次いで密閉容器内に電気化学セルを移し、そして、アルゴン雰囲気を保ったまま大気中に設置された恒温槽に移して行った。
 結果を図11に示す。
 図11に示すように、1サイクル目にて充放電を安定して行うことが可能であった。また、図11の結果から、本実施例のマグネシウム二次電池では、Mgの理論容量を2205mA h/g、MgCoの理論容量を260mA h/g及び作動電圧を2.2Vとしたとき、エネルギー密度(理論値)は、511mW・h/gであった。リチウムイオン二次電池では、黒鉛の理論容量を372mA h/g、コバルト酸リチウムの理論容量を140mA h/g及び作動電圧を3.6Vとしたとき、エネルギー密度(理論値)は、367mW・h/gである。そのため、本実施例のマグネシウム二次電池のエネルギー密度(理論値)は、リチウムイオン二次電池のエネルギー密度(理論値)の約1.5倍である。
[比較例2]
 実施例1と同様にして電解液の調製を行った。
 次に、無機材料を配置していない点以外は実施例6と同様にして電気化学セルを構築し、実施例6と同様の条件で電気化学的析出及び溶解の確認を行った。
 次に、作用極(正極)をステンレス集電体に研磨したマグネシウム板を担持させた電極からMgCo:アセチレンブラック:ポリビニリデンフルオライド=80:10:10(質量比)がタングステン集電体に塗布された電極に取り替え、実施例6と同様の方法及び条件にて電気化学セル(比較例に係るマグネシウム二次電池)を構築し、かつ、定電流充放電試験を行った。
 結果を図12に示す。
 図12に示すように、放電時は負極反応の過電圧が大きく、すぐに電圧下限に達した。また、放電反応がほとんど起こらなかったため、その後の充電反応も起こらず、2サイクル目の充放電ができなかった。
 前述の実施例6及び比較例2の結果より、無機材料を負極の表面と接触させることにより、負極反応の過電圧を低減することができ、電気化学セルの充放電への影響が非常に大きいことが示された。
[実施例7]
 実施例1と同様にして電解液の調製を行った。
<電気化学的析出及び溶解の確認>
〔電気化学セルの構築〕
 図1に記載の電気化学セルを構築した。セルの構築は露点-80℃以下のアルゴン雰囲気に保たれたグローブボックス内で行った。
 本実施例において用いた、各構成の詳細は下記の通りである。なお、本実施例では、無機材料として、酸性活性アルミナ、中性活性アルミナ及び塩基性活性アルミナを、それぞれ粉砕したものを単独で用い、アルミナの種類による影響を確認した。粉砕後の酸性活性アルミナ、中性活性アルミナ及び塩基性活性アルミナの粒度分布を図13に示す。また、図13に示すように、粉砕後にて、酸性活性アルミナ、中性活性アルミナ及び塩基性活性アルミナのメジアン径(D50、体積平均粒子径)は、それぞれ1.42μm、0.95μm及び1.74μmであった。
・作用極:鏡面研磨した白金板
・対極:研磨したマグネシウム板
・参照極:0.01mol/Lの硝酸銀及び0.1mol/LのMg(TFSA)を含んだトリグライム溶液に浸した銀線。参照極の溶液が電解液と混ざり合うのを避けるため、先端に多孔質ガラスを設置したガラス管を用いた。
・電解液:上記のようにして調製した電解液
・無機材料:酸性活性アルミナ(メルク社製、品名 酸化アルミニウム90活性型酸性)、中性活性アルミナ(メルク社製、品名 酸化アルミニウム90活性型中性)及び塩基性活性アルミナ(メルク社製、品名 酸化アルミニウム90活性型塩基性)、それぞれ前処理として250℃にて12時間真空乾燥した後に、メタノールを分散媒として1mmφのジルコニアビーズを用いて遊星型ボールミルで、200rpm(回転/分)、400rpm、600rpm及び800rpmの順でそれぞれ2分間の撹拌を30回繰り返して行うことにより粉砕したもの
〔電気化学測定〕
 電気化学測定装置として、北斗電工社製 HSV-110を使用して、サイクリックボルタンメトリーを、走査範囲-4V~0V(参照極に対して)の範囲で還元方向から行った。走査速度は5mV/sとした。
 測定はアルゴン雰囲気に満たされた密閉容器を用いて行い、室温で行った。
 結果を図14に示す。
 図14に示す結果から、実施例7においては、アルミナの種類に関係なくマグネシウムの析出及び溶解が繰り返されることがわかる。また、一周目、五周目及び十周目のクーロン効率(放電時の電流×時間/充電時の電流×時間)の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000010
 図14及び表3に示すように、塩基性活性アルミナを用いた実施例7にて負極反応の過電圧をより好適に低減することができ、かつクーロン効率に優れていた。更に、実施例3と比較すると、実施例7にて活性アルミナの粒子径をより小さくすることにより、負極反応の過電圧をより好適に低減することができ、かつクーロン効率に優れていた。
[実施例8]
 無機材料として実施例3で用いた塩基性活性アルミナを1200℃にて12時間真空乾燥したものを用いた以外は、実施例7と同様の実験を行った。このとき、塩基性活性アルミナについて高温熱処理の前後における結晶構造の変化を、エックス線回折法により分析した。結果を図15に示す。図15において、(a)は、高温熱処理前の塩基性活性アルミナにおけるエックス線回折パターンであり、(b)は、高温熱処理後の塩基性活性アルミナにおけるエックス線回折パターンである。図15から、塩基性活性アルミナの結晶構造が高温熱処理によりγ型(図15の(a))からα型(図15の(b))に変化していることがわかる。また、高温熱処理後の塩基性活性アルミナのpHを、高温熱処理後の塩基性活性アルミナを10質量%分散させた水のpH(25℃)をpH試験紙(pH 1~14)を用いて測定したところ、pHは約9であった。この結果から、高温熱処理後の塩基性活性アルミナ中に塩基性基が残存していることを確認した。
 次に、実施例7と同様の条件で行った電気化学測定の結果を図16に示す。図16に示す結果から、実施例8においては、アルミナの種類に関係なくマグネシウムの析出及び溶解が繰り返されることがわかる。
 2017年3月23日に出願された日本国特許出願2017-057318の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
12 作用極
14 対極
16 電解液
18 銀線
20 参照極
22 無機材料
100 電気化学セル
200 電気化学セル(本発明の一例に係るマグネシウム二次電池)

Claims (10)

  1.  負極と、
     前記負極の表面と少なくとも一部が接触する酸化アルミニウム及び酸化ケイ素の少なくとも一方である無機材料と、
     を備えるマグネシウム二次電池。
  2.  マグネシウムカチオンと、下記一般式(1)で表される溶媒と、を含む電解液を更に備える請求項1に記載のマグネシウム二次電池。
    Figure JPOXMLDOC01-appb-C000001

    (一般式(1)中、R及びRはそれぞれ独立に、炭素数1以上12以下の炭化水素基を表し、nは1以上8以下の整数を表す。)
  3.  一般式(1)中、nは2以上4以下の整数である請求項2に記載のマグネシウム二次電池。
  4.  前記電解液は、下記一般式(2)で表されるアニオンを更に含む請求項2又は請求項3に記載のマグネシウム二次電池。
    Figure JPOXMLDOC01-appb-C000002

    (一般式(2)中、Rはそれぞれ独立に、ハロゲン原子、炭素数1以上8以下のハロゲン化アルキル基、又は、炭素数2以上8以下のハロゲン化アルケニル基を表す。)
  5.  前記無機材料は、活性アルミナである請求項1~請求項4のいずれか1項に記載のマグネシウム二次電池。
  6.  正極活物質としてV、MgCo、MgMnSiO、MgFeSiO、MnO、MoO、NiCo、Co、ZnCo、グラファイト及び活性炭からなる群より選択される少なくとも一つを含む正極を更に備える請求項1~請求項5のいずれか1項に記載のマグネシウム二次電池。
  7.  前記正極と前記負極との間に位置するセパレータを更に備え、
     前記セパレータの表面の少なくとも一部に前記無機材料が配置され、当該無機材料の少なくとも一部が前記負極の表面と接触する請求項6に記載のマグネシウム二次電池。
  8.  負極と、
     前記負極の表面と少なくとも一部が接触し、酸性基及び塩基性基の少なくとも一方を有する無機材料と、
     を備えるマグネシウム二次電池。
  9.  負極と、
     前記負極の表面と少なくとも一部が接触する酸化アルミニウム及び酸化ケイ素の少なくとも一方である無機材料と、
     を備える無機材料付きマグネシウム二次電池用負極。
  10.  負極と、
     前記負極の表面と少なくとも一部が接触し、酸性基及び塩基性基の少なくとも一方を有する無機材料と、
     を備える無機材料付きマグネシウム二次電池用負極。
PCT/JP2018/011172 2017-03-23 2018-03-20 マグネシウム二次電池及び無機材料付きマグネシウム二次電池用負極 WO2018174087A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019507705A JP7111937B2 (ja) 2017-03-23 2018-03-20 マグネシウム二次電池及び無機材料付きマグネシウム二次電池用負極

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-057318 2017-03-23
JP2017057318 2017-03-23

Publications (1)

Publication Number Publication Date
WO2018174087A1 true WO2018174087A1 (ja) 2018-09-27

Family

ID=63586101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011172 WO2018174087A1 (ja) 2017-03-23 2018-03-20 マグネシウム二次電池及び無機材料付きマグネシウム二次電池用負極

Country Status (2)

Country Link
JP (1) JP7111937B2 (ja)
WO (1) WO2018174087A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008523211A (ja) * 2004-12-07 2008-07-03 ダラミック エルエルシー 微孔質材料およびその製造方法
US20100279174A1 (en) * 2009-04-30 2010-11-04 Young Edgar D Secondary batteries with treated bentonite cathodes
WO2014017461A1 (ja) * 2012-07-25 2014-01-30 国立大学法人京都大学 マグネシウム化合物、その製造方法、正極活物質、正極、及びマグネシウムイオン二次電池
JP2014186940A (ja) * 2013-03-25 2014-10-02 Kyoto Univ 電解液
JP2015209427A (ja) * 2014-04-28 2015-11-24 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド マグネシウム塩を調製する方法、マグネシウム電解質塩およびマグネシウム電池
WO2016069749A1 (en) * 2014-10-28 2016-05-06 University Of Maryland, College Park Interfacial layers for solid-state batteries methods of making same
JP2016081930A (ja) * 2014-10-16 2016-05-16 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド マグネシウム電池用カソードおよびマグネシウム電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015213082A (ja) * 2013-04-30 2015-11-26 大日本印刷株式会社 マグネシウムイオン二次電池及びこれを用いた電池パック、並びにマグネシウムイオン二次電池用電解液
JPWO2015105140A1 (ja) * 2014-01-08 2017-03-23 国立大学法人京都大学 二次電池
US9698448B2 (en) * 2015-04-20 2017-07-04 Uchicago Argonne, Llc Electrolytes for magnesium electrochemical cells

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008523211A (ja) * 2004-12-07 2008-07-03 ダラミック エルエルシー 微孔質材料およびその製造方法
US20100279174A1 (en) * 2009-04-30 2010-11-04 Young Edgar D Secondary batteries with treated bentonite cathodes
WO2014017461A1 (ja) * 2012-07-25 2014-01-30 国立大学法人京都大学 マグネシウム化合物、その製造方法、正極活物質、正極、及びマグネシウムイオン二次電池
JP2014186940A (ja) * 2013-03-25 2014-10-02 Kyoto Univ 電解液
JP2015209427A (ja) * 2014-04-28 2015-11-24 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド マグネシウム塩を調製する方法、マグネシウム電解質塩およびマグネシウム電池
JP2016081930A (ja) * 2014-10-16 2016-05-16 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド マグネシウム電池用カソードおよびマグネシウム電池
WO2016069749A1 (en) * 2014-10-28 2016-05-06 University Of Maryland, College Park Interfacial layers for solid-state batteries methods of making same

Also Published As

Publication number Publication date
JPWO2018174087A1 (ja) 2020-04-02
JP7111937B2 (ja) 2022-08-03

Similar Documents

Publication Publication Date Title
Walter et al. Challenges and benefits of post-lithium-ion batteries
Blanc et al. Scientific challenges for the implementation of Zn-ion batteries
Zhong et al. Self-recovery chemistry and cobalt-catalyzed electrochemical deposition of cathode for boosting performance of aqueous zinc-ion batteries
Nguyen et al. A high-performance magnesium triflate-based electrolyte for rechargeable magnesium batteries
JP5245108B2 (ja) マグネシウムイオン含有非水電解液及びその製造方法、並びに電気化学デバイス
JP6486901B2 (ja) 電気化学デバイスのための共溶媒電解質
Xia et al. Ionic liquid electrolytes for aluminium secondary battery: Influence of organic solvents
JP5956573B2 (ja) マグネシウム電池用電解液
JP5909024B2 (ja) マグネシウム電池用の電解液及びそれを含むマグネシウム電池
Fu et al. Advances of aluminum based energy storage systems
CN113921900B (zh) 一种锌基电化学储能器件
JP2014072031A (ja) 電解液、電解液の製造方法および電気化学デバイス
JP6911774B2 (ja) 水系電解液及び水系リチウムイオン二次電池
JP2013073839A (ja) 負極材料および電池
KR20130013310A (ko) 침전법을 이용한 산화망간/탄소 복합체의 제조방법, 상기 방법으로 제조된 산화망간/탄소 복합체 및 상기 복합체를 포함하는 리튬/공기 이차전지
JP2019046589A (ja) 水系電解液及び水系リチウムイオン二次電池
Qiu et al. A review on zinc electrodes in alkaline electrolyte: current challenges and optimization strategies
JP7219462B2 (ja) 亜鉛二次電池
Paul Materials and electrochemistry: present and future battery
JP5556618B2 (ja) リチウム空気電池
JP6917581B2 (ja) マグネシウム二次電池用非水電解液及びそれを用いたマグネシウム二次電池
Wu et al. Effect of copper to Selenium@ Microporous carbon cathode for Mg–Se batteries with nucleophilic electrolyte
JP7111937B2 (ja) マグネシウム二次電池及び無機材料付きマグネシウム二次電池用負極
WO2015105140A1 (ja) 二次電池
JP2014072078A (ja) 電解液用溶媒選定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772152

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507705

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18772152

Country of ref document: EP

Kind code of ref document: A1