WO2018173968A1 - シクロペンテン開環共重合体及びその製造方法 - Google Patents
シクロペンテン開環共重合体及びその製造方法 Download PDFInfo
- Publication number
- WO2018173968A1 WO2018173968A1 PCT/JP2018/010569 JP2018010569W WO2018173968A1 WO 2018173968 A1 WO2018173968 A1 WO 2018173968A1 JP 2018010569 W JP2018010569 W JP 2018010569W WO 2018173968 A1 WO2018173968 A1 WO 2018173968A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cyclopentene
- ring
- cyclopentene ring
- opening copolymer
- group
- Prior art date
Links
- 0 CCCC(*(C)C(*)CC)C1*(C)CC(C)C1C Chemical compound CCCC(*(C)C(*)CC)C1*(C)CC(C)C1C 0.000 description 1
- DJEQZVQFEPKLOY-UHFFFAOYSA-N CCCCN(C)C Chemical compound CCCCN(C)C DJEQZVQFEPKLOY-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L65/00—Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
- B60C1/0016—Compositions of the tread
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
- B60C1/0025—Compositions of the sidewalls
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/02—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
- C08G61/04—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
- C08G61/06—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
- C08G61/08—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
- C08L9/06—Copolymers with styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/12—Copolymers
- C08G2261/122—Copolymers statistical
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/13—Morphological aspects
- C08G2261/132—Morphological aspects branched or hyperbranched
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/13—Morphological aspects
- C08G2261/135—Cross-linked structures
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/14—Side-groups
- C08G2261/141—Side-chains having aliphatic units
- C08G2261/1414—Unsaturated aliphatic units
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/16—End groups
- C08G2261/164—End groups comprising organic end groups
- C08G2261/1644—End groups comprising organic end groups comprising other functional groups, e.g. OH groups, NH groups, COOH groups or boronic acid
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/33—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
- C08G2261/332—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
- C08G2261/3321—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from cyclopentene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/33—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
- C08G2261/332—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
- C08G2261/3323—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from other monocyclic systems
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/33—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
- C08G2261/332—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
- C08G2261/3324—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from norbornene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/40—Polymerisation processes
- C08G2261/41—Organometallic coupling reactions
- C08G2261/418—Ring opening metathesis polymerisation [ROMP]
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/70—Post-treatment
- C08G2261/76—Post-treatment crosslinking
Definitions
- the present invention relates to a cyclopentene ring-opening copolymer and a production method thereof.
- a cyclopentene ring-opening polymer is known as one of synthetic rubbers that have been studied as an alternative material for butadiene rubber.
- the cyclopentene ring-opening polymer is obtained as a linear rubber polymer having no branch in the main chain by subjecting cyclopentene to ring-opening metathesis polymerization. Further, it is possible to modify the terminal of the main chain by adding a terminal modifier as a chain transfer agent during the polymerization. Therefore, the cyclopentene ring-opening polymer can provide a rubber cross-linked product excellent in low heat build-up (low fuel consumption) and wet grip.
- Patent Document 1 discloses a technique for obtaining a cyclopentene ring-opening copolymer having improved hot flow properties by copolymerizing cyclopentene and a compound having a vinyl group. ing.
- An object of the present invention is to provide a cyclopentene ring-opening copolymer excellent in hot flow property while maintaining low exothermic property of a rubber cross-linked product.
- one embodiment of the present invention is a cyclopentene ring-opening copolymer having a branched structure, and includes a structure in which at least four cyclopentene ring-opening polymer chains are linked via a branched structural unit, It is a cyclopentene ring-opening copolymer in which at least a part of the cyclopentene ring-opening polymer chain is terminal-modified.
- FIG. 3 is a diagram showing a spectrum obtained by reducing the intensity axis of one-dimensional NMR corresponding to the F1 axis in FIG. 2.
- the cyclopentene ring-opening copolymer according to the present embodiment is a cyclopentene ring-opening copolymer having a branched structure, and includes a structure in which at least four cyclopentene ring-opening polymer chains are linked via a branched structural unit.
- the cyclopentene ring-opening copolymer is a copolymer containing a repeating unit formed by ring-opening polymerization of cyclopentene constituting the main chain of the cyclopentene ring-opening copolymer (hereinafter referred to as cyclopentene-derived structural unit).
- the proportion of the structural units derived from cyclopentene is preferably 86 mol% or more, more preferably 92 mol% or more, further preferably 96.4 mol, based on all repeating units. % Or more. Moreover, it is preferably 99.99 mol% or less, more preferably 99.95 mol% or less, and still more preferably 99.90 mol% or less with respect to all repeating units.
- At least a part of the cyclopentene ring-opening polymer chain constituting the cyclopentene ring-opening polymer is terminal-modified.
- the term “end-modified cyclopentene ring-opened polymer chain” means that the end of the cyclopentene ring-opened polymer chain is modified with a modifying group.
- a modifying group is not particularly limited, but a modifying group containing an atom selected from the group consisting of a nitrogen atom, an oxygen atom, a silicon atom, a phosphorus atom, and a sulfur atom is preferable.
- a modifying group containing an atom selected from the group consisting of a nitrogen atom, an oxygen atom and a silicon atom is more preferred, and a modifying group containing a silicon atom is more preferred.
- Examples of the modifying group containing a nitrogen atom include an amino group, a pyridyl group, an imino group, an amide group, a nitro group, a urethane linking group, or a hydrocarbon group containing these groups.
- Examples of the modifying group containing an oxygen atom include a hydroxyl group, a carboxyl group, an ether group, an ester group, a carbonyl group, an aldehyde group, an epoxy group, or a hydrocarbon group containing these groups.
- Examples of the modifying group containing a silicon atom include an alkylsilyl group, an oxysilyl group, or a hydrocarbon group containing these groups.
- Examples of the modifying group containing a phosphorus atom include a phosphoric acid group, a phosphino group, and a hydrocarbon group containing these groups.
- Examples of the modifying group containing a sulfur atom include a sulfonyl group, a thiol group, a thioether group, or a hydrocarbon group containing these groups.
- the modifying group may be a modifying group containing a plurality of the groups described above.
- an amino group, a pyridyl group, an imino group, an amide group, a hydroxyl group, a carboxyl group, an aldehyde group from the viewpoint that the low heat build-up property of the rubber crosslinked product obtained by crosslinking the rubber composition can be improved.
- An epoxy group, an oxysilyl group, or a hydrocarbon group containing these groups is preferred, and an oxysilyl group is particularly preferred.
- the oxysilyl group is a group having a silicon-oxygen bond.
- the oxysilyl group include an alkoxysilyl group, an aryloxysilyl group, an acyloxysilyl group, an alkylsiloxysilyl group, an arylsiloxysilyl group, or a hydroxysilyl group.
- an alkoxysilyl group is preferable from the viewpoint of high introduction effect into the cyclopentene ring-opening polymer chain.
- the alkoxysilyl group is a group in which one or more alkoxy groups are bonded to a silicon atom.
- Specific examples of the alkoxysilyl group include trimethoxysilyl group, (dimethoxy) (methyl) silyl group, (methoxy) (dimethyl) silyl group, triethoxysilyl group, (diethoxy) (methyl) silyl group, (ethoxy) ( Examples include dimethyl) silyl group, (dimethoxy) (ethoxy) silyl group, (methoxy) (diethoxy) silyl group, tripropoxysilyl group, and tributoxysilyl group.
- the introduction ratio of the modifying group that terminally modifies at least a part of the cyclopentene ring-opening polymer chain is not particularly limited, but is the number of cyclopentene ring-opening polymer chain terminals into which the modifying group has been introduced / the total number of cyclopentene ring-opening polymer chain terminals.
- the percentage value is preferably 80% or more, more preferably 85% or more, and still more preferably 90% or more.
- the method for measuring the introduction ratio of the modifying group to the end of the polymer chain is not particularly limited.
- the peak area ratio corresponding to the modifying group determined by 1 H-NMR spectrum measurement and the gel permeation chromatography It can be determined from the number average molecular weight determined from the graph.
- the cyclopentene ring-opening copolymer of this embodiment is excellent in hot flow properties because it contains a structure in which at least four cyclopentene ring-opening polymer chains are linked via a branched structural unit.
- the cyclopentene ring-opening copolymer of the present embodiment has a good affinity with a filler or the like because at least a part of the cyclopentene ring-opening polymer chain is terminal-modified. Low exothermic property can be improved.
- the branched structural unit is composed of a structural unit derived from a polycyclic olefin compound having at least two ring structures having one double bond (hereinafter sometimes abbreviated as “polycyclic olefin compound”). It is preferable.
- the structural unit derived from this polycyclic olefin compound is a structural unit formed by ring-opening copolymerization of a polycyclic olefin compound having at least two ring structures having one double bond with cyclopentene.
- Such a polycyclic olefin compound is not particularly limited as long as it is a compound having a structure having at least two ring structures having one double bond in one molecule.
- the following general formula (1) And the compounds shown in the upper part of (D) to (H) in the following formula (2), and the copolymerization ratio at the time of polymerization can be easily controlled. It is the compound shown.
- the compounds represented by the following general formula (1) the compounds represented by the upper part of the following formula (2) (A) to (C) are more preferred, and the upper part of the following formula (2) (A).
- the norbornadiene shown is particularly preferred.
- the upper compounds of the following general formula (1) and the following formula (2) (A) to (H) each may have an arbitrary substituent.
- the said polycyclic olefin compound may respectively be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- a structural unit represented by the following general formula (3) can be provided.
- the compounds shown in the upper part of (A) to (C) in the above formula (2) which are specific examples of the compound represented by the above general formula (1), undergo ring-opening copolymerization with cyclopentene, and the above formula (2) ) Of the structural units shown in the lower part of (A) to (C).
- n is 0-2.
- the polycyclic olefin compound preferably has 7 to 20 carbon atoms, more preferably 7 to 17 carbon atoms, from the viewpoints of cost and handleability.
- the content of structural units derived from the polycyclic olefin compound is preferably 0.01 mol% or more, more preferably 0.05 mol%, based on all repeating units. As mentioned above, More preferably, it is 0.1 mol% or more. Moreover, it is 4.0 mol% or less with respect to all the repeating units, More preferably, it is 3.0 mol% or less, More preferably, it is 2.6 mol% or less. If the content of the structural unit derived from the polycyclic olefin compound is too small, sufficient hot flow property may not be obtained. Moreover, when there is too much content, the cyclopentene ring-opening copolymer obtained may gelatinize and there exists a possibility that workability may be inferior.
- the cyclopentene ring-opening copolymer includes a structure in which four cyclopentene ring-opening polymer chains are linked via a branched structural unit, and at least a part of the cyclopentene ring-opening polymer chain is Since it is terminal-modified, a cyclopentene ring-opening copolymer excellent in hot flow properties can be obtained while maintaining the low exothermic property of the rubber cross-linked product.
- the cyclopentene ring-opening copolymer of this embodiment contains repeating units derived from cyclopentene and other monomers polymerizable with the above polycyclic olefin compound as long as the characteristics of the cyclopentene ring-opening copolymer are maintained. It may be.
- the proportion of repeating units derived from other copolymerizable monomers is preferably 10 mol% or less, more preferably 5 mol% or less, and even more preferably 1 mol% or less, based on all repeating units.
- Examples of other monomers copolymerizable with cyclopentene and the above polycyclic olefin compound include monocyclic olefins other than cyclopentene and the above polycyclic olefin compounds, monocyclic dienes, monocyclic trienes, polycyclic cyclic olefins, and polycycles. Cyclic diene, polycyclic cyclic triene, and the like.
- Examples of the monocyclic olefin other than cyclopentene and the above polycyclic olefin compound include cyclopentene having a substituent and cyclooctene optionally having a substituent.
- Examples of the monocyclic diene include 1,5-cyclooctadiene which may have a substituent.
- Examples of the monocyclic triene include 1,5,9-cyclododecatriene which may have a substituent.
- Polycyclic olefin, polycyclic diene, and polycyclic triene include 2-norbornene, 1,4-methano-1,4,4a, 9a-tetrahydro-9H-fluorene, tetracyclo [6 2.1.1 3,6 .
- Examples include norbornene compounds which may have a substituent such as 0 2,7 ] dodec-4-ene.
- the molecular weight of the cyclopentene ring-opening copolymer is not particularly limited, but the weight average molecular weight (Mw) in terms of polystyrene measured by gel permeation chromatography is 100,000 to 1,000,000. Is more preferable, more preferably 150,000 to 900,000, still more preferably 200,000 to 800,000. When the cyclopentene ring-opening copolymer has such a molecular weight, a crosslinked rubber having excellent mechanical strength can be obtained.
- the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) in terms of polystyrene as measured by gel permeation chromatography of the cyclopentene ring-opening copolymer is not particularly limited, Preferably it is 4.0 or less, More preferably, it is 3.5 or less, More preferably, it is 3.0 or less, Preferably it is 1.2 or more, More preferably, it is 1.5 or more. By having such Mw / Mn, the mechanical properties of the rubber cross-linked product can be further improved.
- the cis / trans ratio is not particularly limited, but is preferably set in the range of 10/90 to 90/10.
- the range is preferably 10/90 to 49/51, and more preferably 10/90 to 45/55.
- the method for adjusting the cis / trans ratio of the cyclopentene ring-opening copolymer is not particularly limited.
- the glass transition temperature (Tg) of the cyclopentene ring-opening copolymer is not particularly limited, but is preferably ⁇ 90 ° C. or less, more preferably ⁇ 95 ° C. from the viewpoint of exhibiting excellent characteristics at low temperatures. Hereinafter, it is more preferably ⁇ 98 ° C. or lower, and usually ⁇ 130 ° C. or higher.
- the glass transition temperature of the cyclopentene ring-opening copolymer can be adjusted, for example, by adjusting the cis / trans ratio in the double bond present in the repeating unit.
- the method for producing a cyclopentene ring-opening copolymer in the present embodiment uses cycloolefin and a ring having one double bond, using an olefinic hydrocarbon containing a modifying group that modifies the end of the cyclopentene ring-opening polymer chain. Ring-opening copolymerization with a polycyclic olefin compound having at least two structures.
- cyclopentene that can be a cyclopentene ring-opening copolymer by the above-described ring-opening polymerization can be used.
- polycyclic olefin compound copolymerized with cyclopentene a polycyclic olefin compound having at least two ring structures having one double bond as described above can be used.
- the amount of the polycyclic olefin compound used is preferably 0.005 to 0.95 mol%, more preferably 0.01 to 0.9 mol%, more preferably 0.04 to 0, based on cyclopentene. More preferably, it is 8 mol%. If the amount of the polycyclic olefin compound used is too small, the content of the structural unit derived from the polycyclic olefin compound is too small, and sufficient hot flow properties may not be obtained. Moreover, when there is too much usage-amount, content of the structural unit derived from a polycyclic olefin compound will increase too much, and the obtained cyclopentene ring-opening copolymer may gelatinize and there exists a possibility that workability may be inferior.
- An olefinic hydrocarbon containing a modifying group that modifies the end of the cyclopentene ring-opening polymer chain present in a reaction system for copolymerizing cyclopentene and a polycyclic olefin compound (hereinafter abbreviated as a modifying group-containing olefinic hydrocarbon).
- a modified group-containing olefinically unsaturated hydrocarbon (hereinafter referred to as a modified group-containing olefinic group) having the above-mentioned modifying group and having one metathesis-reactive olefinic carbon-carbon double bond. May be abbreviated as unsaturated hydrocarbon).
- an oxysilyl group-containing olefinically unsaturated hydrocarbon may be present in the polymerization reaction system.
- Examples of such oxysilyl group-containing olefinically unsaturated hydrocarbons include vinyl (trimethoxy) silane, vinyl (triethoxy) silane, allyl (trimethoxy) silane, allyl (methoxy) (dimethyl) silane, allyl (triethoxy) silane, Allyl (ethoxy) (dimethyl) silane, styryl (trimethoxy) silane, styryl (triethoxy) silane, 2-styrylethyl (triethoxy) silane, allyl (triethoxysilylmethyl) ether, allyl (triethoxysilylmethyl) (ethyl) amine 1,2-bis (triethoxysilyl) ethylene, 1,4-bis (trimethoxysilyl) -2-butene, 1,4-bis (triethoxysilyl) -2-butene, 1,4-bis (tri Methoxysilylmethoxy)
- aryloxysilane compounds such as vinyl (triphenoxy) silane, allyl (triphenoxy) silane, allyl (phenoxy) (dimethyl) silane, 1,4-bis (triphenoxysilyl) -2-butene; vinyl (tri Acyloxysilane compounds such as acetoxy) silane, allyl (triacetoxy) silane, allyl (diacetoxy) methylsilane, allyl (acetoxy) (dimethyl) silane, 1,4-bis (triacetoxysilyl) -2-butene; allyltris (trimethyl) Alkylsiloxysilane compounds such as siloxy) silane, 1,4-bis [tris (trimethylsiloxy) silyl] -2-butene; allyltris (triphenylsiloxy) silane, 1,4-bis [tris (triphenylsiloxy) silyl] -2-butene Aryl
- the amount of the modified group-containing olefinically unsaturated hydrocarbon such as an oxysilyl group-containing olefinically unsaturated hydrocarbon may be appropriately selected according to the molecular weight of the cyclopentene ring-opening copolymer to be produced.
- the molar ratio is preferably in the range of 1/100 to 1 / 100,000, more preferably in the range of 1/200 to 1 / 50,000, and still more preferably in the range of 1/500 to 1 / 10,000.
- the modified group-containing olefinically unsaturated hydrocarbon acts as a molecular weight modifier in addition to the effect of introducing the modified group at the end of the cyclopentene ring-opening polymer chain.
- a metathesis polymerization catalyst can be used according to a conventional method.
- the metathesis polymerization catalyst used in the present embodiment is not particularly limited, but preferably contains a periodic table Group 6 transition metal compound as a main catalyst and an organometallic compound as a promoter.
- Period table group 6 transition metal compound As a main catalyst, The halide, alcoholate, arylate, oxydide, etc. of a periodic table group 6 transition metal atom are mentioned, Among these, polymerization activity is mentioned. From the viewpoint of high, a halide is preferable.
- the periodic table (long-period periodic table, the same shall apply hereinafter)
- Group 6 transition metal atom is preferably Mo or W.
- Group 6 transition metal compounds of the periodic table include molybdenum compounds such as molybdenum pentachloride, molybdenum oxotetrachloride, and molybdenum (phenylimide) tetrachloride; tungsten hexachloride, tungsten oxotetrachloride, tungsten (phenyl). Imido) tetrachloride, monocatecholate tungsten tetrachloride, tungsten compounds such as bis (3,5-ditertiarybutyl) catecholate tungsten dichloride, bis (2-chloroetherate) tetrachloride, tungsten oxotetraphenolate; It is done.
- molybdenum compounds such as molybdenum pentachloride, molybdenum oxotetrachloride, and molybdenum (phenylimide) tetrachloride
- the amount of the Group 6 transition metal compound used in the periodic table is usually 1: 100 to 1: 200,000, preferably 1: 200 to 1: 1, in terms of the molar ratio of the Group 6 transition metal atom to the cyclopentene in the metathesis polymerization catalyst.
- the range is 150,000, more preferably 1: 500 to 1: 100,000.
- organometallic compound as a co-catalyst examples include organometallic compounds of Group 1, 2, 12, 13, and 14 metal atoms of a periodic table having a hydrocarbon group having 1 to 20 carbon atoms.
- organometallic compounds of Group 1, 2, 12, 13, and 14 metal atoms of a periodic table having a hydrocarbon group having 1 to 20 carbon atoms examples include organometallic compounds of Group 1, 2, 12, 13, and 14 metal atoms of a periodic table having a hydrocarbon group having 1 to 20 carbon atoms.
- organic lithium, organic magnesium, organic zinc, organic aluminum, and organic tin are preferable
- organic lithium, organic tin, and organic aluminum are more preferable
- organic aluminum is particularly preferable.
- Organic lithium includes n-butyllithium, methyllithium, phenyllithium, neopentyllithium, neophyllithium and the like.
- organic magnesium examples include butylethylmagnesium, butyloctylmagnesium, dihexylmagnesium, ethylmagnesium chloride, n-butylmagnesium chloride, allylmagnesium bromide, neopentylmagnesium chloride, neophyllmagnesium chloride and the like.
- Organic zinc includes dimethyl zinc, diethyl zinc, diphenyl zinc and the like.
- organic tin examples include tetramethyltin, tetra (n-butyl) tin, and tetraphenyltin.
- organic aluminum examples include trialkylaluminum such as trimethylaluminum, triethylaluminum, and triisobutylaluminum; alkylaluminum halide such as diethylaluminum chloride, ethylaluminum sesquichloride, and ethylaluminum dichloride; The compound which is made is mentioned.
- R 1 and R 2 represent a hydrocarbon group having 1 to 20 carbon atoms, and x is 0 ⁇ x ⁇ 3.
- R 1 and R 2 include methyl group, ethyl group, isopropyl group, n-propyl group, isobutyl group, n-butyl group, t-butyl group, and n-hexyl group.
- alkyl groups such as cyclohexyl group; aryl groups such as phenyl group, 4-methylphenyl group, 2,6-dimethylphenyl group, 2,6-diisopropylphenyl group, naphthyl group; and the like.
- R 1 and R 2 may be the same or different from each other, but in the present embodiment, R 1 is more preferable because the cis ratio of the resulting cyclopentene ring-opening copolymer can be increased.
- R 2 at least R 2 is preferably an alkyl group in which 4 or more carbon atoms are continuously bonded, and in particular, an n-butyl group, a 2-methyl-pentyl group, and an n-hexyl group.
- a cyclohexyl group, an n-octyl group, and an n-decyl group are preferable.
- x is 0 ⁇ x ⁇ 3. That is, in the general formula (4), R 1 and OR 2 can take arbitrary values in the ranges of 0 ⁇ 3-x ⁇ 3 and 0 ⁇ x ⁇ 3, respectively, but the polymerization activity X is preferably 0.5 ⁇ x ⁇ 1.5 from the viewpoint that the cis ratio of the resulting cyclopentene ring-opening copolymer can be increased.
- Such an organoaluminum compound represented by the above general formula (4) can be synthesized, for example, by a reaction between a trialkylaluminum and an alcohol as shown in the following general formula (5).
- x can be arbitrarily controlled by defining the reaction ratio of the corresponding trialkylaluminum and alcohol as shown in the general formula (5).
- the amount of the organometallic compound used varies depending on the type of organometallic compound used, but is preferably 0.1 to 100 times the transition table Group 6 transition metal atom constituting the Periodic Table Group 6 transition metal compound.
- the molar ratio is more preferably 0.2 to 50 times mol, and still more preferably 0.5 to 20 times mol. If the amount of the organometallic compound used is too small, the polymerization activity may be insufficient. If the amount is too large, side reactions tend to occur during ring-opening polymerization.
- the production method of the cyclopentene ring-opening copolymer in the present embodiment includes the above-described modifying group-containing olefin hydrocarbon, the main catalyst (Group 6 transition metal compound of the periodic table) of the ring-opening metathesis catalyst, and the promoter (organic). Ring-opening copolymerization of cyclopentene and the above-mentioned polycyclic olefin compound.
- the method for initiating ring-opening copolymerization is not particularly limited. For example, by adding a Group 6 transition metal compound of the periodic table in the presence of cyclopentene, the above polycyclic olefin compound, the above-mentioned modifying group-containing olefinic hydrocarbon and an organometallic compound, Ring-opening copolymerization can be initiated. In addition, by mixing the Group 6 transition metal compound and the organometallic compound in advance, and adding the cyclopentene, the polycyclic olefin compound, and the modified group-containing olefin hydrocarbon to the mixture, Ring-opening copolymerization of cyclopentene and the polycyclic olefin compound may be performed.
- the ring-opening copolymerization reaction may be performed without a solvent or in a solvent.
- the solvent used when the ring-opening copolymerization reaction is carried out in a solvent is inactive in the polymerization reaction, contains cyclopentene used for the ring-opening copolymerization, a monomer containing the polycyclic olefin compound, and contains the modifying group
- Any solvent capable of dissolving the olefinic hydrocarbon and the metathesis polymerization catalyst may be used.
- a solvent is not particularly limited, but, for example, a hydrocarbon solvent is preferably used.
- hydrocarbon solvent examples include, for example, aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene; aliphatic hydrocarbons such as n-hexane, n-heptane, and n-octane; cyclohexane, cyclopentane, and methyl And cycloaliphatic hydrocarbons such as cyclohexane.
- the polymerization reaction temperature is preferably ⁇ 100 ° C. or higher, more preferably ⁇ 50 ° C. or higher, further preferably ⁇ 20 ° C. or higher, and particularly preferably 0 ° C. or higher.
- the upper limit of the polymerization reaction temperature is not particularly limited, but is preferably less than 100 ° C, more preferably less than 90 ° C, still more preferably less than 80 ° C, and particularly preferably less than 70 ° C.
- the polymerization reaction time is preferably 1 minute to 72 hours, more preferably 10 minutes to 20 hours.
- a cyclopentene and the above polycyclic are obtained by using a periodic table group 6 transition metal compound, an organometallic compound, and the above-described modified group-containing olefin hydrocarbon. It is possible to produce a cyclopentene ring-opening copolymer by carrying out ring-opening copolymerization with an olefin compound, and after the polymerization conversion rate reaches a predetermined value, a known polymerization terminator is added to the polymerization system and stopped. it can.
- a ruthenium carbene complex is used as a polymerization catalyst, and in the presence of a ruthenium carbene complex, cyclopentene, and A cyclopentene ring-opening copolymer can also be produced by a method of ring-opening polymerization of a monomer containing the above polycyclic olefin compound.
- the ruthenium carbene complex is not particularly limited as long as it serves as a ring-opening polymerization catalyst for cyclopentene.
- Specific examples of the ruthenium carbene complex preferably used include bis (tricyclohexylphosphine) benzylidene ruthenium dichloride, bis (triphenylphosphine) -3,3-diphenylpropenylidene ruthenium dichloride, (3-phenyl-1H-indene-1 -Ylidene) bis (tricyclohexylphosphine) ruthenium dichloride, bis (tricyclohexylphosphine) t-butylvinylidene ruthenium dichloride, bis (1,3-diisopropylimidazoline-2-ylidene) benzylidene ruthenium dichloride, bis (1,3-dicyclohexyl imidazoline) -2-ylidene) benzy
- the amount of the ruthenium carbene complex used is preferably a molar ratio of ruthenium metal to cyclopentene in the catalyst, preferably 1: 2,000 to 1: 2,000,000, more preferably 1: 5,000 to 1: 1.
- the range is 500,000, more preferably from 1: 10,000 to 1: 1,000,000. If the amount of ruthenium carbene complex used is too small, the polymerization reaction may not proceed sufficiently. On the other hand, if the amount is too large, removal of the catalyst residue from the resulting cyclopentene ring-opening copolymer becomes difficult, and various properties may be deteriorated when a rubber cross-linked product is obtained.
- the ring-opening polymerization reaction may be performed without a solvent or in a solution.
- the solvent used when the ring-opening polymerization reaction is performed in a solution the same solvent as that in the case of using the above-described polymerization catalyst containing a Group 6 transition metal compound and an organometallic compound in the periodic table can be used.
- the polymerization reaction temperature and the polymerization reaction time when using a ruthenium carbene complex as a polymerization catalyst are also the same as the polymerization reaction temperature and polymerization reaction when using the above-mentioned polymerization catalyst containing a Group 6 transition metal compound and an organometallic compound in the periodic table. Similar to time.
- a ruthenium carbene complex is used as a polymerization catalyst instead of the polymerization catalyst containing the above-mentioned periodic table Group 6 transition metal compound and an organometallic compound
- a ruthenium carbene complex and the above-mentioned modifying group-containing olefinic hydrocarbon a ring-opening copolymerization of cyclopentene and the above polycyclic olefin compound is started, and after the polymerization conversion rate reaches a predetermined value, it is known
- a cyclopentene ring-opening copolymer can be produced by adding the polymerization terminator in the polymerization system to terminate the polymerization.
- an anti-aging agent such as a phenol-based stabilizer, a phosphorus-based stabilizer, or a sulfur-based stabilizer may be added to the obtained cyclopentene ring-opening copolymer as desired. What is necessary is just to determine suitably the addition amount of an anti-aging agent according to the kind etc. Furthermore, in this embodiment, you may mix
- a method for obtaining a polymer from a polymer solution may be a known method, and is not particularly limited. For example, after separating the solvent by steam stripping or the like, it is possible to employ a method in which a solid is filtered and further dried to obtain a solid rubber.
- the content of the structural unit (four-branched structural unit) in which all of the two olefin sites are opened is preferably 45 to 70%. It is preferable that the content of the structural unit (unbranched structural unit) in which only the ring is opened is 55 to 30%.
- the cyclopentene ring-opening copolymer obtained by the polymerization reaction of the above reaction formula (6) includes a structure in which the above four cyclopentene ring-opening polymer chains are linked via a branched structural unit, and is linked via a branched structural unit. Since all of the four cyclopentene ring-opened polymer chains can be terminally modified, the affinity with a filler or the like is good. Therefore, the cyclopentene ring-opening copolymer obtained by the above reaction formula (6) is excellent in hot flow properties, and can improve the low heat buildup of the resulting rubber cross-linked product.
- the polymerization reaction represented by the following reaction formula (7) is a polymerization reaction in the prior art (Patent Document 1).
- the cyclopentene ring-opening copolymer represented by the right side of the above reaction formula (7) includes a structure in which three cyclopentene ring-opening polymer chains are linked via a branched structural unit, and includes three cyclopentene ring-opening polymer chains. Of these, only two cyclopentene ring-opening polymer chains are end-modified, and the remaining cyclopentene ring-opening polymer chain ends are not modified. In the cyclopentene ring-opening copolymer obtained by the reaction formula (7), the vinyl group moiety introduced as a long chain branch is not terminally modified.
- Patent Document 1 the hot flow property can be improved, there is a possibility that the low heat build-up property cannot be sufficiently obtained as a rubber cross-linked product.
- the rubber composition according to this embodiment preferably contains a rubber component containing a cyclopentene ring-opening copolymer and a filler.
- the rubber composition of this embodiment contains a cyclopentene ring-opening copolymer as a rubber component, and the above-described cyclopentene ring-opening copolymer can be used as the cyclopentene ring-opening copolymer.
- the rubber component of the rubber composition of the present embodiment may contain other rubbers other than the cyclopentene ring-opening copolymer.
- examples of other rubbers include natural rubber, polyisoprene rubber, emulsion-polymerized styrene-butadiene copolymer rubber, solution-polymerized styrene-butadiene copolymer rubber, and polybutadiene rubber (high cis-BR and low cis-BR may be used).
- natural rubber polyisoprene rubber, polybutadiene rubber, solution polymerized styrene-butadiene copolymer rubber, ethylene-propylene diene rubber, and ethylene-propylene rubber are preferable.
- These other rubbers can be used alone or in combination of two or more.
- the content of the cyclopentene ring-opening copolymer is preferably 10% by weight or more, more preferably 20% by weight or more, based on the total rubber component. More preferably, it is 30% by weight or more.
- the content of rubber other than the cyclopentene ring-opening copolymer is preferably 90% by weight or less, more preferably 80% by weight or less, still more preferably 70% by weight or less, based on the total rubber component. is there.
- the rubber composition according to the embodiment of the present invention includes a filler in the rubber component containing the above-described cyclopentene ring-opening copolymer.
- both organic particles and inorganic particles can be used.
- metal powder such as aluminum powder; carbon black, hard clay, talc, calcium carbonate, titanium oxide, calcium sulfate, calcium carbonate, aluminum hydroxide
- Inorganic powder such as starch; powder such as organic powder such as starch and polystyrene; short fiber such as glass fiber (milled fiber), carbon fiber, aramid fiber, potassium titanate whisker; silica, mica;
- These fillers are used alone or in combination of two or more.
- Either organic particles or inorganic particles can be used, but inorganic particles are preferable, and among these, silica and carbon black are preferable. By blending such a filler, the mechanical strength of the resulting rubber cross-linked product can be increased.
- the silica to be used is not particularly limited, and examples thereof include dry method white carbon, wet method white carbon, colloidal silica, and precipitated silica.
- a carbon-silica dual phase filler in which silica is supported on the carbon black surface may be used.
- wet method white carbon mainly containing hydrous silicic acid is preferable. These can be used alone or in combination of two or more.
- the nitrogen adsorption specific surface area of silica is preferably 50 to 300 m 2 / g, more preferably 80 to 220 m 2 / g, and still more preferably 100 to 170 m 2 / g.
- the pH of the silica is preferably less than 7, more preferably 5 to 6.9.
- the nitrogen adsorption specific surface area can be measured by the BET method in accordance with ASTM D3037-81.
- the amount of silica is preferably 1 to 150 parts by weight, more preferably 10 to 120 parts by weight, still more preferably 15 to 100 parts by weight, particularly preferably 20 parts per 100 parts by weight of the rubber component in the rubber composition. ⁇ 80 parts by weight.
- a silane coupling agent is preferably further blended for the purpose of further improving the affinity between the cyclopentene ring-opening copolymer and silica.
- the silane coupling agent include vinyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, bis (3- (Triethoxysilyl) propyl) tetrasulfide, bis (3- (triethoxysilyl) propyl) disulfide and the like, and ⁇ -trimethoxysilylpropyldimethylthiocarbamyl tetrasulfide described in JP-A-6-248116, Mention may be made of tetrasulfides such as ⁇ -trimethoxysilylpropylbenzothiazyl
- silane coupling agents can be used alone or in combination of two or more.
- the amount of the silane coupling agent is preferably 0.1 to 30 parts by weight, more preferably 1 to 15 parts by weight with respect to 100 parts by weight of silica.
- the rubber composition of the present embodiment is blended with a crosslinking agent, a crosslinking accelerator, a crosslinking activator, an anti-aging agent, a surfactant, a process oil, a plasticizer, a wax and the like according to a conventional method.
- a crosslinking agent e.g., a crosslinking accelerator, a crosslinking activator, an anti-aging agent, a surfactant, a process oil, a plasticizer, a wax and the like.
- Each agent can be blended in the required amount.
- crosslinking agent examples include sulfur, sulfur halides, organic peroxides, quinone dioximes, organic polyvalent amine compounds, zinc acrylates, alkylphenol resins having a methylol group, and the like. Among these, sulfur is preferably used.
- the amount of the crosslinking agent is preferably 0.5 to 5 parts by weight, more preferably 0.7 to 4 parts by weight, and still more preferably 1 to 3 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. It is.
- crosslinking accelerator examples include N-cyclohexyl-2-benzothiazolylsulfenamide, Nt-butyl-2-benzothiazolylsulfenamide, N-oxyethylene-2-benzothiazolylsulfenamide, Sulfenamide-based crosslinking accelerators such as N, N′-diisopropyl-2-benzothiazolylsulfenamide; guanidines such as 1,3-diphenylguanidine, 1,3-dioltolylguanidine, 1-ortho-tolylbiguanidine Thiourea crosslinking accelerators; thiazole crosslinking accelerators; thiuram crosslinking accelerators; dithiocarbamic acid crosslinking accelerators; xanthogenic acid crosslinking accelerators; Among these, those containing a sulfenamide-based crosslinking accelerator are particularly preferable. These crosslinking accelerators may be used alone or in combination of two or more. The amount of the amount
- crosslinking activator examples include higher fatty acids such as stearic acid and zinc oxide.
- the blending amount of the crosslinking activator is not particularly limited, but the blending amount when a higher fatty acid is used as the crosslinking activator is preferably 0.05 to 15 with respect to 100 parts by weight of the rubber component in the rubber composition. Parts by weight, more preferably 0.5 to 5 parts by weight.
- zinc oxide is used as a crosslinking activator, the amount is preferably 0.05 parts per 100 parts by weight of the rubber component in the rubber composition. -15 parts by weight, more preferably 0.5-5 parts by weight.
- Mineral oil or synthetic oil may be used as process oil.
- mineral oil aroma oil, naphthenic oil, paraffin oil and the like can be used.
- the method for obtaining the rubber composition of the present embodiment is not particularly limited, and each component may be kneaded according to a conventional method.
- a compounding agent such as a filler excluding a crosslinking agent and a crosslinking accelerator and a rubber component such as a cyclopentene ring-opening copolymer are kneaded, and then the kneaded product is mixed with the crosslinking agent and the crosslinking accelerator to obtain a desired composition.
- the kneading temperature of the compounding agent excluding the crosslinking agent and the crosslinking accelerator and the rubber component is preferably 70 to 200 ° C., more preferably 100 to 180 ° C.
- the kneading time is preferably 30 seconds to 30 minutes.
- Mixing of the kneaded product with the crosslinking agent and the crosslinking accelerator can be performed at 100 ° C. or lower, preferably after cooling to 80 ° C. or lower.
- the rubber cross-linked product according to the embodiment of the present invention is obtained by cross-linking the rubber composition of the present embodiment described above.
- the crosslinking method for crosslinking the rubber composition of the present embodiment is not particularly limited, and may be selected according to the shape, size, etc. of the rubber crosslinked product.
- the crosslinking of the rubber composition is performed by heating the rubber composition.
- a method for heating the rubber composition a general method used for crosslinking of rubber such as press heating, steam heating, oven heating, hot air heating and the like may be appropriately selected.
- the rubber composition may be filled in a mold and heated to be crosslinked simultaneously with molding, or a previously molded rubber composition may be heated to be crosslinked.
- the crosslinking temperature is 120 to 200 ° C., preferably 140 to 180 ° C., and the crosslinking time is about 1 to 120 minutes.
- secondary cross-linking may be performed by heating.
- the rubber cross-linked product of the present embodiment thus obtained is excellent in low heat buildup.
- the rubber cross-linked product of the present invention makes use of such characteristics, for example, in tires, materials for each part of the tire such as tread, carcass, sidewall, bead, etc .; hose, belt, mat, anti-vibration rubber, and other various industries It can be used for various applications such as article materials; resin impact resistance improvers; resin film buffers; shoe soles; rubber shoes; golf balls;
- the tire according to the present embodiment includes the above-described rubber cross-linked product, the tire is obtained as a tire excellent in low heat generation. Therefore, the tire according to the present embodiment can be applied to the use of a fuel-efficient tire.
- the ratio of the integrated value was obtained, and based on the ratio of the peak integrated value and the measured value of the number average molecular weight (Mn) by GPC, the introduction rate of the oxysilyl group [(the cyclopentene ring-opened polymer chain terminal having an oxysilyl group introduced) Number / percentage of cyclopentene ring-opening polymer chain ends)).
- Glass transition temperature (Tg) The glass transition temperature (Tg) was measured from ⁇ 150 ° C. to 40 ° C. at a temperature increase of 10 ° C./min using a differential scanning calorimeter (DSC, Hitachi High-Tech Science Co., Ltd. X-DSC7000).
- This cyclopentene / norbornadiene ring-opening copolymer has a peak derived from an allylic proton in a norbornadiene structural unit in which only one olefin moiety is opened by 1 H-NMR spectrum measurement and various two-dimensional NMR spectrum measurements. It was observed at around 3.50 to 3.62 ppm. In addition, a peak derived from an allylic proton in the norbornadiene structural unit in which all the olefinic sites of the two rings were opened to form a branched structure was observed in the vicinity of 3.19 to 3.30 ppm.
- the cyclopentene ring-opening polymer main chain was confirmed to be a branched polymer having a branched structure derived from norbornadiene. Further, in the structure derived from all norbornadiene, the content ratio of the structural unit (four-branched structural unit) in which all of the two olefin sites are opened is 53%, and the structural unit in which only one olefin site is opened. It was also confirmed that the content ratio of (unbranched structural unit) was 47% (see FIGS. 1 to 3).
- the molecular weight, the proportion of structural units derived from the polycyclic olefin compound (copolymerization component), the cis / trans ratio, the oxysilyl group introduction rate, and the glass transition temperature ( Tg) was measured.
- the results are shown in Table 1.
- the cyclopentene / norbornadiene ring-opening copolymer obtained in Synthesis Examples 2 to 8 is a branched polymer having a norbornadiene-derived branched structure in the main chain of the cyclopentene ring-opening polymer, as in Synthesis Example 1. I confirmed that there was.
- methanol was added in an amount corresponding to 2 moles of n-butyllithium used in the polymerization reaction to obtain a solution containing a modified styrene butadiene rubber.
- 0.2 parts of 2,4-bis (n-octylthiomethyl) -6-methylphenol was added as an anti-aging agent per 100 parts of the rubber component of the solution containing the modified styrene butadiene rubber.
- the solvent was removed by steam stripping, and the solid rubber was recovered, dehydrated on a roll, and further dried with a hot air dryer to obtain a modified solution-polymerized styrene butadiene rubber.
- the resulting modified solution-polymerized styrene butadiene rubber has a bound styrene content of 21% by weight, a vinyl bond content in the butadiene unit portion of 63% by weight, a Mooney viscosity (ML 1 + 4 , 100 ° C.) 62, a glass transition temperature. (Tg) ⁇ 25 ° C.
- Example 1 With respect to the cyclopentene ring-opening copolymer obtained in Synthesis Example 1, the hot flow property was evaluated according to the above method. Further, 30 parts of the cyclopentene ring-opening copolymer obtained in Synthesis Example 1 and 70 parts of the modified solution-polymerized styrene butadiene rubber obtained in Synthesis Example 14 were masticated with a Banbury mixer having a volume of 250 ml, and then silica (trade name) “Zeosil 1165MP”, manufactured by Solvay, “ZEOSIL” is a registered trademark, nitrogen adsorption specific surface area (BET method): 163 m 2 / g, 50 parts, process oil (trade name “Aromax T-DAE”, Nippon Oil Corporation "Aromax” is a registered trademark) 25 parts, and a silane coupling agent (bis (3- (triethoxysilyl) propyl) tetrasulfide, trade name "Si
- silica trade name “Zeosil 1165MP”, manufactured by Solvay
- 3 parts of zinc oxide zinc flower No. 1
- stearic acid trade name “SA-300”, Asahi Denka Kogyo Co., Ltd.
- anti-aging agent N-phenyl-N ′-(1,3-dimethylbutyl) -p-phenylenediamine, trade name “NOCRACK 6C”, manufactured by Ouchi Shinsei Chemical Co., Ltd., “NOCRACK” was added 2 parts, and kneaded for 3 minutes, and the kneaded product was discharged from the Banbury mixer.
- the temperature of the rubber composition at the end of kneading was 150 ° C. And after cooling the obtained kneaded material to room temperature, after kneading again for 3 minutes in a Banbury mixer, the kneaded material was discharged from the Banbury mixer.
- Example 2 With respect to the cyclopentene ring-opening copolymer obtained in Synthesis Example 2, the hot flow property was evaluated according to the above method. Further, in place of the cyclopentene ring-opening copolymer obtained in Synthesis Example 1, a sheet-like shape was obtained in the same manner as in Example 1 except that 30 parts of the cyclopentene ring-opening copolymer obtained in Synthesis Example 2 was used. A rubber composition was obtained. The resulting rubber composition was evaluated for low heat build-up according to the above method. The results are shown in Table 1.
- Example 3 With respect to the cyclopentene ring-opening copolymer obtained in Synthesis Example 3, the hot flow property was evaluated according to the above method. Further, in place of the cyclopentene ring-opening copolymer obtained in Synthesis Example 1, a sheet-like shape was obtained in the same manner as in Example 1 except that 30 parts of the cyclopentene ring-opening copolymer obtained in Synthesis Example 3 was used. A rubber composition was obtained. The resulting rubber composition was evaluated for low heat build-up according to the above method. The results are shown in Table 1.
- Example 4 With respect to the cyclopentene ring-opening copolymer obtained in Synthesis Example 4, the hot flow property was evaluated according to the above method. Further, in place of the cyclopentene ring-opening copolymer obtained in Synthesis Example 1, a sheet-like shape was obtained in the same manner as in Example 1 except that 30 parts of the cyclopentene ring-opening copolymer obtained in Synthesis Example 4 was used. A rubber composition was obtained. The resulting rubber composition was evaluated for low heat build-up according to the above method. The results are shown in Table 1.
- Example 5 With respect to the cyclopentene ring-opening copolymer obtained in Synthesis Example 5, the hot flow property was evaluated according to the above method. Further, in place of the cyclopentene ring-opening copolymer obtained in Synthesis Example 1, a sheet-like shape was obtained in the same manner as in Example 1 except that 30 parts of the cyclopentene ring-opening copolymer obtained in Synthesis Example 5 was used. A rubber composition was obtained. The resulting rubber composition was evaluated for low heat build-up according to the above method. The results are shown in Table 1.
- Example 6 With respect to the cyclopentene ring-opening copolymer obtained in Synthesis Example 6, the hot flow property was evaluated according to the above method. Further, in place of the cyclopentene ring-opening copolymer obtained in Synthesis Example 1, a sheet-like shape was obtained in the same manner as in Example 1 except that 30 parts of the cyclopentene ring-opening copolymer obtained in Synthesis Example 6 was used. A rubber composition was obtained. The resulting rubber composition was evaluated for low heat build-up according to the above method. The results are shown in Table 1.
- Example 7 The cyclopentene ring-opening copolymer obtained in Synthesis Example 7 was evaluated for hot flow properties according to the above method. Further, in place of the cyclopentene ring-opening copolymer obtained in Synthesis Example 1, 30 parts of the cyclopentene ring-opening copolymer obtained in Synthesis Example 7 was used. A rubber composition was obtained. The resulting rubber composition was evaluated for low heat build-up according to the above method. The results are shown in Table 1.
- Example 8 With respect to the cyclopentene ring-opening copolymer obtained in Synthesis Example 8, the hot flow property was evaluated according to the above method. Further, in place of the cyclopentene ring-opening copolymer obtained in Synthesis Example 1, a sheet-like shape was obtained in the same manner as in Example 1 except that 30 parts of the cyclopentene ring-opening copolymer obtained in Synthesis Example 8 was used. A rubber composition was obtained. The resulting rubber composition was evaluated for low heat build-up according to the above method. The results are shown in Table 1.
- a polycyclic olefin compound having at least two cyclopentenes and a ring structure having one double bond is obtained using an olefinic hydrocarbon containing a modifying group for modifying the terminal of a cyclopentene ring-opening polymer chain.
- the cyclopentene ring-opening copolymer obtained by ring-opening copolymer gave rubber cross-linked products having excellent hot flow properties and low heat build-up (Examples 1 to 8).
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Tires In General (AREA)
Abstract
Description
本実施形態に係るシクロペンテン開環共重合体は、分岐構造を有するシクロペンテン開環共重合体であり、少なくとも4つのシクロペンテン開環重合体鎖が分岐構造単位を介して連結した構造を含み、該シクロペンテン開環重合体鎖の少なくとも一部が末端変性されているシクロペンテン開環共重合体である。
本実施形態におけるシクロペンテン開環共重合体の製造方法は、シクロペンテン開環重合体鎖の末端を変性する変性基を含有するオレフィン系炭化水素を用いて、シクロペンテンと、二重結合を1つ有する環構造を少なくとも2つ有する多環状オレフィン化合物とを開環共重合させるものである。
本実施形態に係るゴム組成物は、シクロペンテン開環共重合体を含有するゴム成分と、充填剤とを含有してなることが好ましい。本実施形態のゴム組成物は、ゴム成分としてシクロペンテン開環共重合体を含有し、このシクロペンテン開環共重合体には、上述のシクロペンテン開環共重合体を用いることができる。
本発明の実施形態に係るゴム架橋物は、上述した本実施形態のゴム組成物を架橋することにより得られる。本実施形態のゴム組成物を架橋する架橋方法は、特に限定されず、ゴム架橋物の形状、大きさ等に応じて選択すればよい。
本実施形態に係るタイヤは、上述したゴム架橋物を含むことから、低発熱性に優れるタイヤとして得られる。そのため、本実施形態に係るタイヤは、低燃費タイヤの用途に適用することができる。
重量平均分子量(Mw)、および分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレン換算の分子量に基づくチャートを得て、そのチャートに基づいて求めた。なお、ゲルパーミエーションクロマトグラフィーの具体的な測定条件は、以下の通りである。
測定器:HLC-8320 EcoSCE(東ソー社製)
カラム:GMH-HR-H(東ソー社製)2本を直列に連結した。
検出器:示差屈折計RI-8020(東ソー社製)
溶離液:テトラヒドロフラン
カラム温度:40℃
シクロペンテン開環共重合体中の単量体組成比を、1H-NMRスペクトル測定から求めた(図1~図3参照)。
シクロペンテン開環共重合体のシス/トランス比を、13C-NMRスペクトル測定から求めた。
1H-NMRスペクトル測定により、オキシシリル基に由来する3.8ppm付近のピーク積分値とシクロペンテン開環共重合体主鎖中の炭素-炭素二重結合に由来する5.0~6.0ppmのピーク積分値との比率を求め、このピーク積分値の比率とGPCによる数平均分子量(Mn)の測定値に基づいて、オキシシリル基の導入率〔(オキシシリル基が導入されたシクロペンテン開環重合体鎖末端数/シクロペンテン開環重合体鎖末端全数)の百分率〕を計算した。
ガラス転移温度(Tg)を、示差走査熱量計(DSC、日立ハイテクサイエンス社製X-DSC7000)を用いて、-150℃~40℃までを10℃/分の昇温で測定した。
得られたシクロペンテン開環共重合体について、粘弾性測定装置(商品名「RUBBER PROCESS ANALYZER RPA2000」、ALPHA TECHNOLOGIES社製)を用い、周波数0.1Hzの条件での108℃における貯蔵弾性率G’を測定した。この値は、比較例1の試料の測定値を100とする指数とした。この指数が大きいものほど、ホットフロー性に優れるといえる。
試料となるゴム組成物を、160℃で20分間プレス架橋して架橋された試験片を作製し、この試験片について、粘弾性測定装置(商品名「EPLEXOR」、GABO社製)を用い、初期歪み0.5%、動的歪み1%、10Hzの条件で60℃におけるtanδを測定した。この値は、比較例1の試料の測定値を100とする指数とした。この指数が小さいものほど、低発熱性に優れるといえる。
ジイソブチルアルミニウムモノメトキシド/トルエン溶液(2.5重量%)の調製
窒素雰囲気下、攪拌子の入ったガラス容器に、トルエン61部、および25.4重量%のトリイソブチルアルミニウム/n-ヘキサン溶液(東ソー・ファインケム社製)7.8部を加えた。次いで、容器を-45℃に冷却し、激しく攪拌しながら、メタノール0.32部(トリイソブチルアルミニウムに対して当モル量)をゆっくりと滴下した。その後、攪拌しながら室温になるまで放置し、ジイソブチルアルミニウムモノメトキシド/トルエン溶液(2.5重量%)を調製した。
窒素雰囲気下、攪拌機付き耐圧ガラス反応容器にシクロペンテン500部、ノルボルナジエン(NBD)0.34部、1,2-ビス(トリエトキシシリル)エチレン1.42部、および調製例1で調製した2.5重量%のジイソブチルアルミニウムモノメトキシド/トルエン溶液10部を加え、50℃に加熱した。ここに、1.0重量%のWCl6/トルエン溶液29部を加え、50℃で4時間重合反応を行った。4時間の重合反応後、耐圧ガラス反応容器に、過剰のエチルアルコールを加えて重合を停止した後、耐圧ガラス反応容器内の溶液を、2,6-ジ-t-ブチル-p-クレゾール(BHT)を含む大過剰のエチルアルコールに注いだ。次いで、沈殿したポリマーを回収し、エチルアルコールで洗浄後、40℃で3日間、真空乾燥することにより、210部のシクロペンテン/ノルボルナジエン開環共重合体を得た。このシクロペンテン/ノルボルナジエン開環共重合体は、1H-NMRスペクトル測定および各種2次元NMRスペクトル測定により、1つの環のオレフィン部位のみが開環したノルボルナジエン構造単位中のアリル位プロトンに由来するピークが3.50~3.62ppm付近に観測された。また、2つの環のオレフィン部位が全て開環して分岐状構造になったノルボルナジエン構造単位中のアリル位プロトンに由来するピークが3.19~3.30ppm付近に観測された。これらの観測結果から、シクロペンテン開環重合体主鎖中にノルボルナジエン由来の分岐構造を有する分岐ポリマーであることを確認した。また、全ノルボルナジエン由来の構造中、2つの環のオレフィン部位が全て開環した構造単位(4分岐構造単位)の含有割合が53%であり、1つの環のオレフィン部位のみが開環した構造単位(非分岐構造単位)の含有割合が47%であることも確認した(図1~図3参照)。得られたシクロペンテン/ノルボルナジエン開環共重合体について、上記方法に従い、分子量、多環状オレフィン化合物(共重合成分)由来の構造単位の割合、シス/トランス比、オキシシリル基導入率、およびガラス転移温度(Tg)を測定した。結果を表1に示す。
ノルボルナジエンの使用量を1.6部に変更した以外は合成例1と同様にして重合反応を行い、202部のシクロペンテン/ノルボルナジエン開環共重合体を得た。得られたシクロペンテン/ノルボルナジエン開環共重合体について、合成例1と同様にして各測定を行った。結果を表1に示す。
ノルボルナジエンの使用量を2.2部に変更した以外は合成例1と同様にして重合反応を行い、224部のシクロペンテン/ノルボルナジエン開環共重合体を得た。得られたシクロペンテン/ノルボルナジエン開環共重合体について、合成例1と同様にして各測定を行った。結果を表1に示す。
ノルボルナジエンの使用量を1.6部、2.5重量%のジイソブチルアルミニウムモノメトキシド/トルエン溶液を2.5部、1.0重量%のWCl6/トルエン溶液を7.3部に変更した以外は合成例1と同様にして重合反応を行い、31部のシクロペンテン/ノルボルナジエン開環共重合体を得た。得られたシクロペンテン/ノルボルナジエン開環共重合体について、合成例1と同様にして各測定を行った。結果を表1に示す。
ノルボルナジエンの使用量を2.2部、2.5重量%のジイソブチルアルミニウムモノメトキシド/トルエン溶液を2.5部、1.0重量%のWCl6/トルエン溶液を7.3部に変更した以外は合成例1と同様にして重合反応を行い、20部のシクロペンテン/ノルボルナジエン開環共重合体を得た。得られたシクロペンテン/ノルボルナジエン開環共重合体について、合成例1と同様にして各測定を行った。結果を表1に示す。
ノルボルナジエンの使用量を3.2部、2.5重量%のジイソブチルアルミニウムモノメトキシド/トルエン溶液を2.5部、1.0重量%のWCl6/トルエン溶液を7.3部に変更した以外は合成例1と同様にして重合反応を行い、32部のシクロペンテン/ノルボルナジエン開環共重合体を得た。得られたシクロペンテン/ノルボルナジエン開環共重合体について、合成例1と同様にして各測定を行った。結果を表1に示す。
ノルボルナジエンの使用量を3.8部、2.5重量%のジイソブチルアルミニウムモノメトキシド/トルエン溶液を2.5部、1.0重量%のWCl6/トルエン溶液を7.3部に変更した以外は合成例1と同様にして重合反応を行い、77部のシクロペンテン/ノルボルナジエン開環共重合体を得た。得られたシクロペンテン/ノルボルナジエン開環共重合体について、合成例1と同様にして各測定を行った。結果を表1に示す。
ノルボルナジエンの使用量を5.4部、2.5重量%のジイソブチルアルミニウムモノメトキシド/トルエン溶液を2.5部、1.0重量%のWCl6/トルエン溶液を7.3部に変更した以外は合成例1と同様にして重合反応を行い、86部のシクロペンテン/ノルボルナジエン開環共重合体を得た。得られたシクロペンテン/ノルボルナジエン開環共重合体について、合成例1と同様にして各測定を行った。結果を表1に示す。
ノルボルナジエンを使用していない以外は合成例1と同様にして重合反応を行い、166部のシクロペンテン開環重合体を得た。得られたシクロペンテン開環重合体について、合成例1と同様にして各測定を行った。結果を表1に示す。
ノルボルナジエンに代えて5-ビニル-2-ノルボルネン(VN)0.088部を使用した以外は合成例1と同様にして重合反応を行い、138部のシクロペンテン/5-ビニル-2-ノルボルネン開環共重合体を得た。得られたシクロペンテン/5-ビニル-2-ノルボルネン開環共重合体について、合成例1と同様にして各測定を行った。結果を表1に示す。
ノルボルナジエンに代えて5-ビニル-2-ノルボルネン0.49部を使用した以外は合成例1と同様にして重合反応を行い、132部のシクロペンテン/5-ビニル-2-ノルボルネン開環共重合体を得た。得られたシクロペンテン/5-ビニル-2-ノルボルネン開環共重合体について、合成例1と同様にして各測定を行った。結果を表1に示す。
ノルボルナジエンに代えて2-ノルボルネン1.66部を使用した以外は合成例1と同様にして重合反応を行い、151部のシクロペンテン/2-ノルボルネン開環共重合体を得た。得られたシクロペンテン/2-ノルボルネン開環共重合体について、合成例1と同様にして各測定を行った。結果を表1に示す。
ノルボルナジエンに代えて1,5-シクロオクタジエン1.91部を使用した以外は合成例1と同様にして重合反応を行い、139部のシクロペンテン/1,5-シクロオクタジエン開環共重合体を得た。得られたシクロペンテン/1,5-シクロオクタジエン開環共重合体について、合成例1と同様にして各測定を行った。結果を表1に示す。
攪拌機付きオートクレーブに、窒素雰囲気下、シクロヘキサン5670g、スチレン170g、1,3-ブタジエン430g、及びテトラメチルエチレンジアミン10.0mmolを仕込んだ後、n-ブチルリチウムを、シクロヘキサン、スチレン、1,3-ブタジエンに含まれる重合を阻害する不純物の中和に必要な量を添加した。その後、n-ブチルリチウムを重合反応に用いる分として5.6mmolを加え、40℃で重合を開始した。重合を開始してから10分経過後、スチレン40g、1,3-ブタジエン360gを60分間かけて連続的に添加した。重合反応中の最高温度は70℃であった。連続添加終了後、さらに10分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、カップリング剤として四塩化錫0.278mmolを20重量%シクロへキサン溶液の状態で加え、65℃で10分間反応させた。次に、変性剤として下記式(8)で表されるポリオルガノシロキサン0.024mmolを40重量%キシレン溶液の状態で添加し、65℃で20分間反応させた。
合成例1で得られたシクロペンテン開環共重合体について、上記方法に従いホットフロー性を評価した。また、合成例1で得られたシクロペンテン開環共重合体30部および合成例14で得られた変性溶液重合スチレンブタジエンゴム70部を容積250mlのバンバリーミキサーで素練りし、次いで、シリカ(商品名「Zeosil 1165MP」、ソルベイ社製、「ZEOSIL」は登録商標、窒素吸着比表面積(BET法):163m2/g)50部、プロセスオイル(商品名「アロマックス T-DAE」、新日本石油社製、「アロマックス」は登録商標)25部、およびシランカップリング剤(ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド、商品名「Si69」、デグッサ社製、「Si69」は登録商標)4.1部を添加して、110℃を開始温度として1.5分間混練した。次いで、得られた混練物に、シリカ(商品名「Zeosil 1165MP」、ソルベイ社製)25部、酸化亜鉛(亜鉛華1号)3部、ステアリン酸(商品名「SA-300」、旭電化工業社製)2部、および老化防止剤(N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン、商品名「ノクラック6C」、大内新興化学工業社製、「ノクラック」は登録商標)2部を添加し、3分間混練して、バンバリーミキサーから混練物を排出させた。混練終了時のゴム組成物の温度は150℃であった。そして、得られた混練物を、室温まで冷却した後、再度バンバリーミキサー中で、3分間混練した後、バンバリーミキサーから混練物を排出させた。次いで、50℃のオープンロールで、得られた混練物と、硫黄1.4部、および架橋促進剤(シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(大内新興化学工業社製、商品名「ノクセラーCZ-G」)1.2部と、1,3-ジフェニルグアニジン(商品名「ノクセラーD」、大内新興化学工業社製)1.4部との混合物、「ノクセラー」は登録商標)2.6部とを混練した後、シート状のゴム組成物を取り出した。そして、得られたゴム組成物について、上記方法に従い低発熱性を評価した。結果を表1に示す。
合成例2で得られたシクロペンテン開環共重合体について、上記方法に従いホットフロー性を評価した。また、合成例1で得られたシクロペンテン開環共重合体に代えて、合成例2で得られたシクロペンテン開環共重合体30部を用いたこと以外は実施例1と同様に、シート状のゴム組成物を得た。得られたゴム組成物について、上記方法に従い低発熱性を評価した。結果を表1に示す。
合成例3で得られたシクロペンテン開環共重合体について、上記方法に従いホットフロー性を評価した。また、合成例1で得られたシクロペンテン開環共重合体に代えて、合成例3で得られたシクロペンテン開環共重合体30部を用いたこと以外は実施例1と同様に、シート状のゴム組成物を得た。得られたゴム組成物について、上記方法に従い低発熱性を評価した。結果を表1に示す。
合成例4で得られたシクロペンテン開環共重合体について、上記方法に従いホットフロー性を評価した。また、合成例1で得られたシクロペンテン開環共重合体に代えて、合成例4で得られたシクロペンテン開環共重合体30部を用いたこと以外は実施例1と同様に、シート状のゴム組成物を得た。得られたゴム組成物について、上記方法に従い低発熱性を評価した。結果を表1に示す。
合成例5で得られたシクロペンテン開環共重合体について、上記方法に従いホットフロー性を評価した。また、合成例1で得られたシクロペンテン開環共重合体に代えて、合成例5で得られたシクロペンテン開環共重合体30部を用いたこと以外は実施例1と同様に、シート状のゴム組成物を得た。得られたゴム組成物について、上記方法に従い低発熱性を評価した。結果を表1に示す。
合成例6で得られたシクロペンテン開環共重合体について、上記方法に従いホットフロー性を評価した。また、合成例1で得られたシクロペンテン開環共重合体に代えて、合成例6で得られたシクロペンテン開環共重合体30部を用いたこと以外は実施例1と同様に、シート状のゴム組成物を得た。得られたゴム組成物について、上記方法に従い低発熱性を評価した。結果を表1に示す。
合成例7で得られたシクロペンテン開環共重合体について、上記方法に従いホットフロー性を評価した。また、合成例1で得られたシクロペンテン開環共重合体に代えて、合成例7で得られたシクロペンテン開環共重合体30部を用いたこと以外は実施例1と同様に、シート状のゴム組成物を得た。得られたゴム組成物について、上記方法に従い低発熱性を評価した。結果を表1に示す。
合成例8で得られたシクロペンテン開環共重合体について、上記方法に従いホットフロー性を評価した。また、合成例1で得られたシクロペンテン開環共重合体に代えて、合成例8で得られたシクロペンテン開環共重合体30部を用いたこと以外は実施例1と同様に、シート状のゴム組成物を得た。得られたゴム組成物について、上記方法に従い低発熱性を評価した。結果を表1に示す。
合成例9で得られたシクロペンテン開環重合体について、上記方法に従いホットフロー性を評価した。また、合成例1で得られたシクロペンテン開環共重合体に代えて、合成例9で得られたシクロペンテン開環共重合体30部を用いたこと以外は実施例1と同様に、シート状のゴム組成物を得た。得られたゴム組成物について、上記方法に従い低発熱性を評価した。結果を表1に示す。
合成例10で得られたシクロペンテン開環共重合体について、上記方法に従いホットフロー性を評価した。また、合成例1で得られたシクロペンテン開環共重合体に代えて、合成例10で得られたシクロペンテン開環共重合体30部を用いたこと以外は実施例1と同様に、シート状のゴム組成物を得た。得られたゴム組成物について、上記方法に従い低発熱性を評価した。結果を表1に示す。
合成例11で得られたシクロペンテン開環共重合体について、上記方法に従いホットフロー性を評価した。また、合成例1で得られたシクロペンテン開環共重合体に代えて、合成例11で得られたシクロペンテン開環共重合体30部を用いたこと以外は実施例1と同様に、シート状のゴム組成物を得た。得られたゴム組成物について、上記方法に従い低発熱性を評価した。結果を表1に示す。
合成例12で得られたシクロペンテン開環共重合体について、上記方法に従いホットフロー性を評価した。また、合成例1で得られたシクロペンテン開環共重合体に代えて、合成例12で得られたシクロペンテン開環共重合体30部を用いたこと以外は実施例1と同様に、シート状のゴム組成物を得た。得られたゴム組成物について、上記方法に従い低発熱性を評価した。結果を表1に示す。
合成例13で得られたシクロペンテン開環共重合体について、上記方法に従いホットフロー性を評価した。また、合成例1で得られたシクロペンテン開環共重合体に代えて、合成例13で得られたシクロペンテン開環共重合体30部を用いたこと以外は実施例1と同様に、シート状のゴム組成物を得た。得られたゴム組成物について、上記方法に従い低発熱性を評価した。結果を表1に示す。
Claims (8)
- 分岐構造を有するシクロペンテン開環共重合体であって、
少なくとも4つのシクロペンテン開環重合体鎖が分岐構造単位を介して連結した構造を含み、
前記シクロペンテン開環重合体鎖の少なくとも一部が、末端変性されている、シクロペンテン開環共重合体。 - 前記分岐構造単位が、二重結合を1つ有する環構造を少なくとも2つ有する多環状オレフィン化合物に由来する構造単位である、請求項1に記載のシクロペンテン開環共重合体。
- 前記多環状オレフィン化合物に由来する構造単位を、全繰返し単位に対して、0.01~4.0モル%含有する、請求項2に記載のシクロペンテン開環共重合体。
- 請求項1乃至3のいずれか1項に記載のシクロペンテン開環共重合体を含有するゴム成分と、充填剤とを含有してなるゴム組成物。
- 請求項4に記載のゴム組成物を架橋してなるゴム架橋物。
- 請求項5に記載のゴム架橋物を含んでなるタイヤ。
- シクロペンテン開環重合体鎖の末端を変性する変性基を含有するオレフィン系炭化水素を用いて、シクロペンテンと、二重結合を1つ有する環構造を少なくとも2つ有する多環状オレフィン化合物とを開環共重合する、シクロペンテン開環共重合体の製造方法。
- 前記シクロペンテンに対して、0.005~0.95モル%の前記多環状オレフィン化合物を開環共重合させる、請求項7に記載のシクロペンテン開環共重合体の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880012937.7A CN110312749B (zh) | 2017-03-24 | 2018-03-16 | 环戊烯开环共聚物及其制造方法 |
JP2019507640A JP7010284B2 (ja) | 2017-03-24 | 2018-03-16 | シクロペンテン開環共重合体及びその製造方法 |
US16/487,011 US11286339B2 (en) | 2017-03-24 | 2018-03-16 | Cyclopentene ring-opening copolymer and method of producing the same |
EP18771445.6A EP3604378B1 (en) | 2017-03-24 | 2018-03-16 | Cyclopentene ring-opening copolymer and method for producing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017059937 | 2017-03-24 | ||
JP2017-059937 | 2017-03-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018173968A1 true WO2018173968A1 (ja) | 2018-09-27 |
Family
ID=63585349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/010569 WO2018173968A1 (ja) | 2017-03-24 | 2018-03-16 | シクロペンテン開環共重合体及びその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11286339B2 (ja) |
EP (1) | EP3604378B1 (ja) |
JP (1) | JP7010284B2 (ja) |
CN (1) | CN110312749B (ja) |
WO (1) | WO2018173968A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019081840A (ja) * | 2017-10-30 | 2019-05-30 | 日本ゼオン株式会社 | 高反発材料 |
JP2019081839A (ja) * | 2017-10-30 | 2019-05-30 | 日本ゼオン株式会社 | ゴム架橋物 |
WO2020013076A1 (ja) * | 2018-07-13 | 2020-01-16 | 日本ゼオン株式会社 | 開環共重合体組成物 |
WO2021113503A1 (en) | 2019-12-04 | 2021-06-10 | Exxonmobil Chemical Patents Inc. | Polymers prepared by ring opening metathesis polymerization |
WO2021126691A1 (en) * | 2019-12-16 | 2021-06-24 | Exxonmobil Chemical Patents. Inc. | Tire tread compounds |
WO2021178235A1 (en) | 2020-03-03 | 2021-09-10 | Exxonmobil Chemical Patents Inc. | Rubber compounds for heavy-duty truck and bus tire treads and methods relating thereto |
WO2021188337A1 (en) | 2020-03-19 | 2021-09-23 | Exxonmobil Chemical Patents Inc. | Pentavalent dimeric group 6 transition metal complexes and methods for use thereof |
WO2021188335A1 (en) | 2020-03-19 | 2021-09-23 | Exxonmobil Chemical Patents Inc. | Improved ring opening metathesis catalyst systems for cyclic olefin polymerization |
EP4079781A4 (en) * | 2019-12-17 | 2024-01-17 | Zeon Corporation | RING-OPENED COPOLYMER |
US11912861B2 (en) | 2020-10-29 | 2024-02-27 | ExxonMobil Engineering & Technology Co. | Rubber composition for lighter weight tires and improved wet traction |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4114896A1 (en) * | 2020-03-03 | 2023-01-11 | ExxonMobil Chemical Patents Inc. | Rubber compounds for passenger tire treads and methods relating thereto |
CN113292707B (zh) * | 2021-06-01 | 2022-07-15 | 上海交通大学 | 一种端基功能化超支化聚烯烃的制备方法 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3707520A (en) * | 1969-03-27 | 1972-12-26 | Bayer Ag | Polymers of cyclopentene obtained by polymerizing to a predetermined conversion and adding mono or diolefin thereto |
JPS4826399B1 (ja) * | 1969-12-10 | 1973-08-09 | ||
JPS5021000B1 (ja) * | 1970-07-27 | 1975-07-18 | ||
JPS5324400A (en) * | 1976-08-19 | 1978-03-07 | Kanegafuchi Chem Ind Co Ltd | Preparation of dicyclopentadiene ring opening polymers and copolymers |
JPS5776015A (en) * | 1980-10-30 | 1982-05-12 | Kanegafuchi Chem Ind Co Ltd | Vinyl polymeric emulsion |
JPH06248116A (ja) | 1993-02-23 | 1994-09-06 | Bridgestone Corp | タイヤ用ゴム組成物 |
JP2011126966A (ja) | 2009-12-16 | 2011-06-30 | Nippon Zeon Co Ltd | シクロペンテン開環重合体の製造方法 |
WO2011087072A1 (ja) * | 2010-01-14 | 2011-07-21 | 日本ゼオン株式会社 | シクロペンテン開環重合体およびその製造方法 |
CN103224578A (zh) * | 2013-01-29 | 2013-07-31 | 富阳经略化工技术有限公司 | 一种三元乙丙橡胶及其制备方法 |
WO2014133028A1 (ja) * | 2013-02-26 | 2014-09-04 | 日本ゼオン株式会社 | シクロペンテン開環共重合体、その製造方法およびゴム組成物 |
WO2015194637A1 (ja) * | 2014-06-19 | 2015-12-23 | 日本ゼオン株式会社 | シクロペンテン開環重合体およびその製造方法、重合体組成物、ならびに重合体架橋物 |
WO2016031847A1 (ja) * | 2014-08-27 | 2016-03-03 | 日本ゼオン株式会社 | 環状オレフィン系ゴムおよびその製造方法、ならびに、ゴム組成物、ゴム架橋物およびタイヤ |
WO2016158676A1 (ja) * | 2015-03-31 | 2016-10-06 | 日本ゼオン株式会社 | ゴム組成物、ゴム架橋物およびタイヤ |
JP2017059937A (ja) | 2015-09-15 | 2017-03-23 | 株式会社Jvcケンウッド | 固体撮像装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3681300A (en) | 1970-07-27 | 1972-08-01 | Phillips Petroleum Co | Copolymers of cyclic monoolefins and omega-alkenyl-polycycloalkene compounds |
JPS524158B2 (ja) | 1971-08-09 | 1977-02-01 | ||
JPS5647124B2 (ja) | 1973-06-26 | 1981-11-07 | ||
US9045617B2 (en) | 2010-01-14 | 2015-06-02 | Zeon Corporation | Ring-opening polymer of cyclopentene and method of production of same |
WO2016158677A1 (ja) | 2015-03-31 | 2016-10-06 | 日本ゼオン株式会社 | シクロオレフィン開環共重合体およびその製造方法 |
US11390709B2 (en) * | 2017-09-29 | 2022-07-19 | Zeon Corporation | Liquid copolymer formed by ring-opening copolymerization of cyclopentene, crosslinkable composition, and crosslinked rubber object |
-
2018
- 2018-03-16 JP JP2019507640A patent/JP7010284B2/ja active Active
- 2018-03-16 EP EP18771445.6A patent/EP3604378B1/en active Active
- 2018-03-16 US US16/487,011 patent/US11286339B2/en active Active
- 2018-03-16 WO PCT/JP2018/010569 patent/WO2018173968A1/ja active Application Filing
- 2018-03-16 CN CN201880012937.7A patent/CN110312749B/zh active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3707520A (en) * | 1969-03-27 | 1972-12-26 | Bayer Ag | Polymers of cyclopentene obtained by polymerizing to a predetermined conversion and adding mono or diolefin thereto |
JPS4826399B1 (ja) * | 1969-12-10 | 1973-08-09 | ||
JPS5021000B1 (ja) * | 1970-07-27 | 1975-07-18 | ||
JPS5324400A (en) * | 1976-08-19 | 1978-03-07 | Kanegafuchi Chem Ind Co Ltd | Preparation of dicyclopentadiene ring opening polymers and copolymers |
JPS5776015A (en) * | 1980-10-30 | 1982-05-12 | Kanegafuchi Chem Ind Co Ltd | Vinyl polymeric emulsion |
JPH06248116A (ja) | 1993-02-23 | 1994-09-06 | Bridgestone Corp | タイヤ用ゴム組成物 |
JP2011126966A (ja) | 2009-12-16 | 2011-06-30 | Nippon Zeon Co Ltd | シクロペンテン開環重合体の製造方法 |
WO2011087072A1 (ja) * | 2010-01-14 | 2011-07-21 | 日本ゼオン株式会社 | シクロペンテン開環重合体およびその製造方法 |
CN103224578A (zh) * | 2013-01-29 | 2013-07-31 | 富阳经略化工技术有限公司 | 一种三元乙丙橡胶及其制备方法 |
WO2014133028A1 (ja) * | 2013-02-26 | 2014-09-04 | 日本ゼオン株式会社 | シクロペンテン開環共重合体、その製造方法およびゴム組成物 |
WO2015194637A1 (ja) * | 2014-06-19 | 2015-12-23 | 日本ゼオン株式会社 | シクロペンテン開環重合体およびその製造方法、重合体組成物、ならびに重合体架橋物 |
WO2016031847A1 (ja) * | 2014-08-27 | 2016-03-03 | 日本ゼオン株式会社 | 環状オレフィン系ゴムおよびその製造方法、ならびに、ゴム組成物、ゴム架橋物およびタイヤ |
WO2016158676A1 (ja) * | 2015-03-31 | 2016-10-06 | 日本ゼオン株式会社 | ゴム組成物、ゴム架橋物およびタイヤ |
JP2017059937A (ja) | 2015-09-15 | 2017-03-23 | 株式会社Jvcケンウッド | 固体撮像装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3604378A4 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7006136B2 (ja) | 2017-10-30 | 2022-01-24 | 日本ゼオン株式会社 | ゴム架橋物 |
JP2019081839A (ja) * | 2017-10-30 | 2019-05-30 | 日本ゼオン株式会社 | ゴム架橋物 |
JP2019081840A (ja) * | 2017-10-30 | 2019-05-30 | 日本ゼオン株式会社 | 高反発材料 |
JP7009920B2 (ja) | 2017-10-30 | 2022-01-26 | 日本ゼオン株式会社 | 高反発材料 |
WO2020013076A1 (ja) * | 2018-07-13 | 2020-01-16 | 日本ゼオン株式会社 | 開環共重合体組成物 |
JP7359148B2 (ja) | 2018-07-13 | 2023-10-11 | 日本ゼオン株式会社 | 開環共重合体組成物 |
JPWO2020013076A1 (ja) * | 2018-07-13 | 2021-08-02 | 日本ゼオン株式会社 | 開環共重合体組成物 |
WO2021113503A1 (en) | 2019-12-04 | 2021-06-10 | Exxonmobil Chemical Patents Inc. | Polymers prepared by ring opening metathesis polymerization |
WO2021126691A1 (en) * | 2019-12-16 | 2021-06-24 | Exxonmobil Chemical Patents. Inc. | Tire tread compounds |
EP4079781A4 (en) * | 2019-12-17 | 2024-01-17 | Zeon Corporation | RING-OPENED COPOLYMER |
WO2021178235A1 (en) | 2020-03-03 | 2021-09-10 | Exxonmobil Chemical Patents Inc. | Rubber compounds for heavy-duty truck and bus tire treads and methods relating thereto |
JP2023516712A (ja) * | 2020-03-03 | 2023-04-20 | エクソンモービル ケミカル パテンツ インコーポレイテッド | 大型トラックおよびバスタイヤトレッドのためのゴム配合物ならびにそれに関する方法 |
WO2021188335A1 (en) | 2020-03-19 | 2021-09-23 | Exxonmobil Chemical Patents Inc. | Improved ring opening metathesis catalyst systems for cyclic olefin polymerization |
WO2021188337A1 (en) | 2020-03-19 | 2021-09-23 | Exxonmobil Chemical Patents Inc. | Pentavalent dimeric group 6 transition metal complexes and methods for use thereof |
US11912861B2 (en) | 2020-10-29 | 2024-02-27 | ExxonMobil Engineering & Technology Co. | Rubber composition for lighter weight tires and improved wet traction |
Also Published As
Publication number | Publication date |
---|---|
US11286339B2 (en) | 2022-03-29 |
CN110312749A (zh) | 2019-10-08 |
JPWO2018173968A1 (ja) | 2020-01-30 |
JP7010284B2 (ja) | 2022-01-26 |
EP3604378B1 (en) | 2024-08-28 |
EP3604378A1 (en) | 2020-02-05 |
EP3604378A4 (en) | 2020-12-23 |
US20200231744A1 (en) | 2020-07-23 |
CN110312749B (zh) | 2022-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018173968A1 (ja) | シクロペンテン開環共重合体及びその製造方法 | |
JP5640994B2 (ja) | シクロペンテン開環重合体およびその製造方法 | |
JP5640995B2 (ja) | シクロペンテン開環重合体およびその製造方法 | |
JP5733315B2 (ja) | シクロペンテン開環重合体およびその製造方法 | |
US10400060B2 (en) | Cyclopentene ring-opening polymer and method of production of same, polymer composition, and cross-linked polymer | |
JP6624059B2 (ja) | 環状オレフィン系ゴムおよびその製造方法、ならびに、ゴム組成物、ゴム架橋物およびタイヤ | |
US20180244837A1 (en) | Cyclopentene ring-opening copolymer | |
JP6702312B2 (ja) | ゴム組成物、ゴム架橋物およびタイヤ | |
JP2016037585A (ja) | ゴム架橋物 | |
JP6701892B2 (ja) | 重荷重タイヤ用ゴム組成物 | |
JP6613887B2 (ja) | ゴム組成物、ゴム架橋物およびタイヤの製造方法 | |
JP2017119751A (ja) | ゴム組成物、ゴム架橋物およびタイヤ | |
JP2017119752A (ja) | ゴム組成物、ゴム架橋物およびタイヤ | |
JP7556361B2 (ja) | 開環共重合体 | |
JP2016190984A (ja) | ランフラットタイヤ用ゴム組成物 | |
JP2016190986A (ja) | 防振ゴム用組成物 | |
CN109312144A (zh) | 橡胶交联物 | |
JP2018076414A (ja) | 防振ゴム用重合体組成物、ゴム架橋物、および防振ゴム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18771445 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019507640 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018771445 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2018771445 Country of ref document: EP Effective date: 20191024 |