WO2018173656A1 - 溶接パス情報の取得方法および溶接ロボットシステム - Google Patents
溶接パス情報の取得方法および溶接ロボットシステム Download PDFInfo
- Publication number
- WO2018173656A1 WO2018173656A1 PCT/JP2018/007372 JP2018007372W WO2018173656A1 WO 2018173656 A1 WO2018173656 A1 WO 2018173656A1 JP 2018007372 W JP2018007372 W JP 2018007372W WO 2018173656 A1 WO2018173656 A1 WO 2018173656A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- welding
- welded
- welding path
- lower plate
- path information
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K31/00—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
- B23K31/02—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
- B25J9/1664—Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K31/00—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
- B23K31/003—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to controlling of welding distortion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K37/00—Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
- B23K37/02—Carriages for supporting the welding or cutting element
- B23K37/0211—Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track
- B23K37/0229—Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track the guide member being situated alongside the workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K37/00—Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
- B23K37/02—Carriages for supporting the welding or cutting element
- B23K37/0211—Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track
- B23K37/0235—Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track the guide member forming part of a portal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/12—Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
- B23K9/127—Means for tracking lines during arc welding or cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/10—Programme-controlled manipulators characterised by positioning means for manipulator elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
- B25J9/1664—Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
- B25J9/1666—Avoiding collision or forbidden zones
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/4093—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/4097—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/18—Sheet panels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J15/00—Gripping heads and other end effectors
- B25J15/0019—End effectors other than grippers
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/35—Nc in input of data, input till input file format
- G05B2219/35134—3-D cad-cam
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/35—Nc in input of data, input till input file format
- G05B2219/35313—Display, validate tool path for boundary, surface interference
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/45—Nc applications
- G05B2219/45104—Lasrobot, welding robot
Definitions
- the present invention relates to a method for acquiring welding path information related to a welding path for welding at least two members to be welded, and a welding robot system.
- Patent Document 1 discloses a weld line creation method for rapidly extracting a weld line based on three-dimensional CAD data composed of many line segments including weld line candidates.
- the welding line creation method includes a step of designating a reference surface (first surface) of two surfaces of a member forming a weld line, and the other surface of the two surfaces of the member forming the weld line.
- a step of designating (a second surface which is a groove surface), a step of extracting a ridgeline, a step of selecting a ridgeline section that can be welded, and a step of creating weldline information by integrating ridgelines that can be welded And modifying the weld line information in accordance with the groove shape.
- Patent Document 2 discloses a teaching system that facilitates teaching work for a robot.
- the teaching system includes an image generation unit, a start point designation unit, a waypoint designation unit, and a generation unit.
- the image generation unit generates a virtual image including a closed processing line set on a member to be welded that is a processing target of the robot.
- the start point designation unit designates the start point at a position other than the processing line on the virtual image.
- the waypoint designation unit designates a waypoint on the processing line.
- the generation unit generates teaching data for the robot with respect to a route that traces the machining line from the start point via the via point and returns to the via point again.
- the present invention relates to a welding path information acquisition method and a welding robot system that also considers information on an object that may interfere with welding work with respect to one end of a member to be welded or a welding end.
- the present invention relates to a method for acquiring welding path information related to a welding pass construction condition for welding two welded members to be welded by a welding robot, and welding for welding two welded members from three-dimensional CAD data.
- a step of extracting a pass, a step of preparing a wall surface determination model having a predetermined three-dimensional shape, and a welding end that is at least one of a start point and an end point of the welding pass, and the outside of the welding pass Arranging the wall surface determination model in the extending direction toward the surface, and determining whether a wall surface defined by another member different from the two welded members interferes with the disposed wall surface determination model Steps.
- the present invention is a welding robot system including a welding robot for welding a member to be welded, and a computer for controlling the operation of the welding robot in accordance with a predetermined operation program, wherein the computer includes three-dimensional CAD data.
- the welding path for welding two members to be welded is extracted, a wall judgment model having a predetermined three-dimensional shape is prepared, and the welding end that is at least one of the start point and the end point of the welding pass is used as a reference.
- the wall surface determination model is arranged in the extending direction toward the outside of the welding path, and the wall surface defined by another member different from the two welded members interferes with the arranged wall surface determination model. It is determined whether or not, and the obtained welding path is taught to the welding robot.
- the present invention it is possible to determine whether or not there is interference of other members in the vicinity of the welding end of the welding path, and in particular, it is possible to smooth the welding operation at one end of the member to be welded. .
- FIG. 1 is a schematic configuration diagram of a welding robot system according to an embodiment of the present invention.
- FIG. 2 is a flowchart showing an outline of the operation of the control device.
- 3A and 3B show a lower plate and a standing plate that are welded members to be welded.
- FIG. 3A is a perspective view of the lower plate
- FIG. 3B is a perspective view of a state where the standing plate is attached to the lower plate. is there.
- FIG. 4 shows a wall surface determination model, (a) is a front view of the wall surface determination model, and (b) is a side view of the wall surface determination model.
- FIG. 1 is a schematic configuration diagram of a welding robot system according to an embodiment of the present invention.
- FIG. 2 is a flowchart showing an outline of the operation of the control device.
- 3A and 3B show a lower plate and a standing plate that are welded members to be welded.
- FIG. 3A is a perspective view of the lower plate
- FIG. 5 is a conceptual diagram showing a state in which it is determined whether or not a wall surface is present near one end of the member to be welded as an object that interferes with the member to be welded
- FIG. 3B shows a state when FIG. 3B is viewed from the side
- FIG. 3C shows a state in which one end of the standing plate overlaps with one end of the lower plate, and the starting point is one end of the standing plate and The example located in the end of a lower board is shown.
- FIG. 6 is a continuation of FIG.
- FIG. 7 is a conceptual diagram showing a state of determining whether or not scallop exists on the wall surface, (a) shows a scallop presence / absence determination model, and (b) shows FIG. FIG. 3B shows a state when viewed from the front, FIG. 3C shows a state when FIG. 3B when the scallop is not present is viewed from the side, and FIG. 3D when FIG. 3B when the scallop is present.
- FIG. 8 shows a conceptual diagram of the lower plate end determination
- (a) is an example in which the first distance between one end of the lower plate and the start point is 0, and (b) is one end of the standing plate. It is an example which exists in the main surface of a lower board
- (c) shows the example in which the end of a standing board exists in the outer side of a lower board.
- FIG. 9 shows a conceptual diagram of toe determination, (a) is an example in which the second distance X2 between one end of the standing plate and the start point is 0, and (b) shows X2 in FIG. This is an example.
- FIG. 10 shows a conceptual diagram of continuation determination, (a) shows an example in which one end of a standing plate and one end of a lower plate overlap each other, and (b) shows that one end of the standing plate is sufficient from one end of the lower plate.
- FIG. 11 is a conceptual diagram illustrating a situation in which a base material is disposed below the welding robot 1, a plurality of members to be welded are disposed on a plane of the base material, and welding is performed.
- FIG. 12 is a diagram showing the concept of welding pass pair determination, where (a) and (c) show examples that satisfy the pair requirements, and (b) and (d) show examples that do not satisfy the pair requirements. Show.
- FIG. 11 is a conceptual diagram illustrating a situation in which a base material is disposed below the welding robot 1, a plurality of members to be welded are disposed on a plane of the base material, and welding is performed.
- FIG. 12 is a diagram showing the concept of welding pass pair determination, where (a) and (c) show
- FIG. 13 shows a part of a table (leg length rule file) used when calculating the fillet leg length between two welded members.
- FIG. 14 is a table showing the concept of determining the orientation of the two to-be-welded members with respect to the to-be-welded member of the welding torch.
- a welding robot system 100 includes a welding robot 1 and a computer that is a control device 15 including a robot pendant 17 used as a teaching pendant, for example.
- the welding robot 1 is, for example, a twin welding robot apparatus having two welding torches.
- the welding robot 1 includes a support frame 2.
- This support frame 2 includes four support posts 2a, a pair of guide support beams 2b constructed between the tops of the support posts 2a having a large interval, and the support posts 2a having a narrow interval. It is comprised from a pair of flame
- a base end side of a plate-like guide support member 3 protruding in the direction of the opposing guide support beam 2b is fixed to the lower surface of the guide support beams 2b and 2b of the support frame 2.
- a linear guide 4 including a linear guide rail and a linear guide bearing guided by the linear guide rail so as to be reciprocally movable is fixed to the upper surfaces of the guide support members 3 in parallel with the guide support beam 2b. ing.
- the linear guide bearing of the linear guide 4 is configured so that the traveling carriage 5 having a configuration described later can reciprocate. That is, the traveling carriage 5 has a mounting bracket 5a, which is fixed to the upper surface of the base frame, attached to the linear guide bearing, at a position inside the guide support beams 2b and 2b and near the lower end. It is configured to reciprocate. That is, the traveling carriage 5 is configured to reciprocate at a position corresponding to the lower carriage frame of the traveling carriage according to the conventional example.
- a ⁇ -axis frame 6 that accommodates a ⁇ -axis (swivel axis) 6 a is attached to the center position in the width direction of the traveling carriage 5, and the ⁇ -axis 6 a protrudes from the ⁇ -axis frame 6 at the projecting end.
- a revolving frame 7 that revolves around the center in the longitudinal direction as a revolving center is attached horizontally.
- a 6-axis vertical articulated manipulator 8 having a welding torch attached to the tip is attached to each lower surface of the tip of the turning frame 7 so as to be able to turn around the vertical axis. Further, on the upper surface of the traveling carriage 5, two wire packs 9 for storing welding wires wound in a coil shape are mounted. Then, a cable bear (registered trademark) for operating the traveling carriage 5 and the manipulator 8 on the upper surface 10 of one guide support beam 2b of the pair of guide support beams 2b and supplying welding power. ) 11 is provided.
- the welding robot 1 is a twin welding robot apparatus having two welding torches, but the type of welding robot to which the present invention is applied is not particularly limited.
- a member to be welded W to be welded by the welding robot 1 is arranged, and the plurality of members to be welded W are connected to the manipulator 8. Welded with a welding torch.
- the member W to be welded is various metal members, and includes a lower plate 21 and a standing plate 22 which will be described later.
- the welding robot 1 of the embodiment includes a camera 12 that is a sensor that images the member W to be welded.
- the camera 12 captures an image of the member W to be welded and acquires an image of the member W to be welded. If the member to be welded W can be imaged, the type of sensor is not particularly limited, and the mounting position of the sensor is not particularly limited.
- the control device 15 is an object that may interfere with the welding operation with respect to the welding pass construction conditions for welding the two welded members to be welded, particularly the one end and the weld end (the start or end point of the weld pass) of the welded member.
- Welding path information related to the conditions is acquired.
- the control device 15 executes the welding path information acquisition method according to a predetermined program, and outputs an operation instruction to the welding robot 1, that is, the acquired welding path according to a previously taught program (teaching program). It is a computer which controls operation
- the control device 15 includes a control unit 16 including a processor that reads and executes a program, and other storage devices such as a memory for storing data and a hard disk.
- control device 15 stores a database of three-dimensional CAD data that is design data of the member W to be welded, and refers to the three-dimensional CAD data when controlling the operation of the welding robot 1.
- the database of the three-dimensional CAD data may be constructed by a server connected to the control device 15 via a network, and the location and format of the database are not particularly limited.
- FIG. 2 is a flowchart showing an outline of the operation of the control device 15.
- the control unit 16 of the control device 15 reads three-dimensional CAD data from a storage device (not shown) by the operation of the operator of the welding robot system 100 (step S1).
- the three-dimensional CAD data of the member to be welded W which is the object to be welded, is read.
- the control part 16 acquires the welding path
- control unit 16 obtains the coordinates of the member to be welded W from the image of the member to be welded W imaged by the camera 12, and compares the difference with the coordinates in the original three-dimensional CAD data of the member to be welded W. Based on the above, the operation program for controlling the operation of the welding robot 1 is corrected (step S3). Finally, the control unit 16 outputs a welding information file that records the final operation of the welding robot 1 (step S4). The welding robot 1 operates according to the welding information file.
- the control unit 16 extracts a welding path for welding the workpiece W to be welded with two pieces of three-dimensional CAD data.
- the lower plate 21 arranged horizontally as shown in FIG. 3A, and the main surface (largest surface) 21a of the lower plate 21 corresponds to one plate thickness surface (the thickness of the plate).
- a standing plate 22 (see FIG. 3B) to which the surface 22a is welded.
- a welding path E which is a path for welding the lower plate 21 and the upright plate 22, becomes a joint portion between the main surface of the lower plate 21 and the plate thickness surface of the upright plate 22.
- the welding work of one end of the member W to be welded is often a problem.
- Such information is not included in the three-dimensional CAD data in advance, and is a cause of hindering a smooth welding operation.
- welding path information relating to the construction conditions of the welding path for welding the two welded members W is acquired. More specifically, it is determined whether or not there is an object that may cause interference by placing a special model at a specific position with reference to the start point or end point of the welding pass. By making such a determination in advance, a smooth welding operation is ensured.
- FIG. 4 shows a wall surface determination model M1 for determining the presence of an object that may cause interference.
- 4A is a front view of the wall surface determination model M1
- FIG. 4B is a side view of the wall surface determination model M1.
- the wall surface determination model M1 has a width W, a height H, and a thickness D. It has a rectangular parallelepiped shape having a size.
- the wall surface determination model M1 is not an actually existing object, but a virtual model prepared in advance in a program for acquiring welding path information.
- the wall surface determination model M1 is a virtual model, but interference occurs when another object is placed in a region where the wall surface determination model M1 exists in the program.
- the sizes of the width W, the height H, and the thickness D are arbitrarily set according to the type of the member to be welded.
- the shape of the wall surface determination model is not limited to a rectangular parallelepiped, and may be a cube, a sphere, a polygonal column, or the like, as long as it has a predetermined three-dimensional shape.
- FIG. 5 is a conceptual diagram showing a state in which it is determined whether or not the wall surface 23 is present near one end of the member to be welded as an object that interferes with the member to be welded.
- 5A shows a state when FIG. 3B is viewed from the front
- FIG. 5B shows a state when FIG. 3B is viewed from the side.
- the control unit 16 extracts a welding path E that welds the lower plate 21 and the upright plate 22 at a joint portion between the lower plate 21 and the upright plate 22 which are two members to be welded.
- the welding path E always includes a starting point for starting welding and an ending point for ending welding, and the starting point C is shown in the drawing.
- the control unit 16 arranges the wall surface determination model M1 in the extending direction toward the outside of the welding path E when viewed from the welding path E side.
- the control unit 16 determines whether or not the wall surface 23 defined by another member different from the members to be welded of the lower plate 21 and the standing plate 22 interferes with the wall surface determination model M1 thus arranged.
- the wall surface determination model M ⁇ b> 1 arranged in the extending direction from the starting point C to the outside of the welding path E interferes with the wall surface 23.
- control unit 16 determines the interference and, for example, notifies the operator by some means (display on the display or the like), so that the operator can smoothly perform the welding operation at the welding end including the start point C. It is possible to take various measures to achieve this.
- one end of the upright plate 22 is not located at one end of the lower plate 21, but inside the lower plate 21 (one point in the main surface of the lower plate 21). That is, the start point C is located at one end of the upright plate 22 and not inside one end of the lower plate 21 but inside (one point in the main surface of the lower plate 21).
- the wall surface determination model M ⁇ b> 1 arranged in the extending direction from the start point C toward the outside of the welding path E when viewed from the welding path E side interferes with the wall surface 23.
- one end of the upright plate 22 is located not on one end of the lower plate 21, but outside the lower plate 21. That is, the starting point C is located at one end of the lower plate 21 and is located inside the standing plate 22 (one point in the main surface of the standing plate 21). Also in the example of FIG. 5C, the wall surface determination model M ⁇ b> 1 interferes with the wall surface 23.
- one end of the upright plate 22 is located not inside the lower plate 21 but inside the lower plate 21 (one point in the main surface of the lower plate 21). That is, the start point C is located at one end of the upright plate 22 and not inside one end of the lower plate 21 but inside (one point in the main surface of the lower plate 21). Also in the example of FIG. 6B, the wall surface determination model M ⁇ b> 1 interferes with the wall surface 23.
- one end of the upright plate 22 and one end of the lower plate 21 overlap each other.
- the starting point C is located inside the lower plate 21 and the upright plate 22 (one point in the main surface of the lower plate 21 and the upright plate 21).
- the wall surface determination model M ⁇ b> 1 interferes with the wall surface 23.
- FIG. 7A shows a scallop presence / absence determination model M2, which is another model for determining the presence of an object that may cause interference, and has a sector shape with a radius R and a length L in the longitudinal direction.
- the scallop is a fan-shaped notch provided in one welded member at a location where the two welded members intersect.
- the scallop presence / absence determination model M2 is used. That is, the presence or absence of scallops for determining whether or not there is a scallop that penetrates the wall surface 23 after it is determined that the wall surface 23 defined by another member different from the lower plate 21 and the standing plate 22 interferes with the wall surface determination model M1. A determination is made.
- a scallop presence / absence determination model M2 having a predetermined three-dimensional shape for determining whether there is a scallop that penetrates the wall surface 23 is prepared in advance. Similar to the wall surface determination model M1, the scallop presence / absence determination model M2 is not an actual object, but is a virtual model prepared in advance in a program for acquiring welding path information. The scallop presence / absence determination model M2 is a virtual model, but interference occurs when there is no scallop in the area where the scallop presence / absence determination model M2 exists in the program. The sizes of the radius R and the length L are arbitrarily set according to the type of the member to be welded. Further, the shape of the scallop presence / absence determination model is not limited to that shown in FIG. 7A, and may be a cube, a sphere, a polygonal column, or the like, as long as it has a predetermined three-dimensional shape.
- FIGS. 7B and 7C are conceptual diagrams showing a state in which it is determined whether or not scallop is present on the wall surface 23, and shows an example of scallop presence / absence determination using the scallop presence / absence determination model M2.
- FIG. 7B shows a state when FIG. 3B is viewed from the front
- FIG. 7C shows a state when FIG. 3B is viewed from the side.
- the control unit 16 uses the start point C that is the weld end as a reference, as shown in FIGS. 7B and 7C.
- the scallop presence / absence determination model M2 is arranged on the side where the wall surface 23 exists.
- the controller 16 determines whether or not the wall surface 23 interferes with the presence / absence determination model M2 thus arranged.
- the scallop presence / absence determination model M2 arranged in the extending direction from the starting point C to the outside of the welding path E, that is, on the side where the wall surface 23 exists interferes with the wall surface 23. ing.
- control unit 16 determines the interference and, for example, notifies the operator by some means (display on the display or the like), so that the operator can smoothly perform the welding operation at the welding end including the start point C. It is possible to take various measures to achieve this.
- FIGS. 7D and 7E show an example in which the scallop S is present on the wall surface 23.
- FIG. The arrangement of the scallop presence / absence determination model M2 is the same as in FIGS. 7B and 7C.
- the scallop presence / absence determination model M2 does not interfere with the wall surface 23, and the control unit 16 determines non-interference, for example, by notifying the operator by some means (display on a display, etc.), It is possible to take various measures for facilitating the welding operation at the welding end including the starting point C.
- the radius R of the cross section of the scallop presence / absence determination model M2 is set in advance smaller than the radius N of the sector scallop S (R ⁇ N).
- FIG. 8 is a conceptual diagram of lower plate end determination performed after it is determined by the wall surface determination for determining the presence or absence of the wall surface illustrated in FIGS. 5 and 6 that there is no wall surface 23 that interferes with the wall surface determination model M1.
- the “lower plate end” means a state in which one end of the upright plate 22 and one end of the lower plate 21 coincide with each other or are adjacent to each other.
- the wall surface determination model M ⁇ b> 1 does not interfere with the wall surface 23 as a result of the wall surface determination in FIGS. 5 and 6.
- the distance Z from one end of the upright plate 22 and one end of the lower plate 21 to the wall surface 23 is larger than the thickness D (see FIG. 4B) of the wall surface determination model M1 (Z> D).
- the control unit 16 measures a first distance X1 between one end (one end) of the lower plate 21 and a start point C which is a welding end.
- X1 0, and in FIG. 8B and FIG. 8C, X1 is shown.
- 8B, one end (one end) of the upright plate 22 exists in the main surface of the lower plate 21, and in FIG. 8C, one end of the upright plate 22 exists outside the lower plate 21,
- the first distance X1 is smaller than the first predetermined value T1 (X1 ⁇ T1).
- the control unit 16 performs a lower plate end determination that considers that one end of the lower plate 21 coincides with one end of the standing plate 22.
- FIG. 9 shows a toe determination performed after the lower plate end determination shown in FIG. 8 determines that it is not the lower plate end (the first distance X1 is not less than the first predetermined value T1; X1 ⁇ T1).
- the conceptual diagram of is shown.
- the “stop end” means a state where one end of the upright plate 22 is sufficiently separated from one end of the lower plate 21 and exists in the main surface of the lower plate 21.
- one end of the upright plate 22 coincides with the start point C that is a welding end, is sufficiently separated from one end of the lower plate 21, and exists in the main surface of the lower plate 21.
- FIG. 9B one end of the upright plate 22 does not coincide with the start point C that is a welding end, is sufficiently separated from one end of the lower plate 21, and exists in the main surface of the lower plate 21.
- the control part 16 measures the 2nd distance X2 between the one end of the standing board 22, and the starting point C which is a welding end after the lower-plate end determination of FIG.
- X2 0
- X2 is shown.
- the second distance X2 is smaller than the second predetermined value T2 (X2 ⁇ T2).
- the control unit 16 performs toe determination that assumes that one end of the upright plate 22 exists within a predetermined distance from one end of the lower plate 21.
- X1> T1 and X2 ⁇ T2 are established.
- FIG. 10 is a conceptual diagram of the continuation determination performed after it is determined that it is not a toe (second distance X2 is equal to or greater than a second predetermined value T2; X2 ⁇ T2) by the toe determination shown in FIG. Indicates. That is, it is a state that is neither the lower plate end nor the stop end, the first distance X1 is not less than the first predetermined value T1, and the second distance X2 is not less than the second predetermined value T2 (X1 ⁇ T1 and X2 ⁇ T2 are established).
- 10A one end of the standing plate 22 and one end of the lower plate 21 overlap each other, and in FIG. 10B, one end of the standing plate 22 is sufficiently separated from one end of the lower plate 21.
- the control unit 16 does not perform the lower plate end determination and the toe end determination.
- This state means a state in which the welding end at the start point or the end point exists at a position sufficiently away from one end of the lower plate 21 or the standing plate 22.
- the welding path is divided into a plurality of welding paths, and the welding robot 1 repeats a plurality of welding operations to perform welding, and further continues the welding operation at the start point or the end point.
- the toe determination shown in FIG. 9 is performed after the lower plate end determination shown in FIG. 8, the toe determination is not necessarily performed after the lower plate end determination, and wall surface determination (FIGS. 5 and 6). ) May be followed directly after.
- the welding robot 1 as shown in FIG. 1 is a twin welding robot apparatus having two welding torches in which a welding torch is provided in each of two manipulators 8. If each welding torch is regarded as one welding robot, it can be said that the welding robot 1 in FIG. 1 satisfies the condition (number of robots ⁇ 2). Therefore, an optimal welding sequence can be realized by assigning the number of each welding torch to the welding of each welding pass.
- control unit 16 can also determine whether or not the welding pass constitutes a pair of at least two sub welding passes. For example, two welding passes satisfy the following requirements: 1. ⁇ 6. It is determined by whether or not all of the above are satisfied.
- Two welding paths are in the relationship of the front and back of one standing plate. 2.
- the vectors (direction and length) of the two welding passes are the same.
- Two welding passes are in the positional relationship of the line object with respect to the intermediate line of one standing plate. 4).
- the welding positions, joint shapes, groove shapes, start side end shapes, and end side end shapes of the two welding passes are the same. 5).
- Condition 3 As for the target positional relationship, the values (absolute values) of “offset” and “parallel shift” are the same (symmetric). 6).
- the direction of the welding torch is the target (right and left pair).
- the welding paths E1 and E2 in FIG. 12 (a) satisfy the pair requirement, and the welding paths E3 and E4 in (b) do not satisfy the pair requirement.
- the welding paths E5 and E6 in FIG. 12C satisfy the pair requirement, and the welding paths E7E8 in FIG. 12D do not satisfy the pair requirement.
- the control unit 16 can perform welding simultaneously for two welding paths that satisfy the prediction of the welding pair, thereby reducing the welding work and reducing the time.
- FIG. 13 shows a part of a table (leg length rule file) used when calculating the fillet leg length between two welded members to be welded.
- the control unit 16 provides the leg length of the fillet in the welding pass E based on the thickness of the lower plate 21 and the thickness of the upright plate 22.
- appropriate fillet leg lengths are set in advance for each of the standing plate thickness t1 and lower plate thickness t2.
- the values of t1 and t2 are given every 1 mm, and the numerical value is a lower limit value every 1 mm.
- the thickness t1 of the standing plate is 5.5 mm and the thickness t2 of the lower plate is 7.5 mm
- this combination is an appropriate combination that matches the leg length rule in the table, and the control unit 16 sets the leg length “4 mm in the table.
- X4mm "is extracted and provided.
- the leg length is 4 mm ⁇ 4 mm
- the thickness t1 of the standing plate is 5.5 mm
- the thickness t2 of the lower plate is 9 mm.
- the leg length is 4 mm x 5 mm. If the input t1 and t2 values do not exist in the table, the control unit 16 determines that the combination is inappropriate and does not present the leg length, and the control device 15 issues a warning or the like. Do.
- FIG. 14 is a table showing a concept for determining the orientation of the two to-be-welded members to be welded with respect to the to-be-welded member of the welding torch.
- the two members to be welded are the lower plate 21 arranged horizontally as shown in FIG. 3 and the upright plate 22 in which one plate thickness surface 22a is welded to the main surface 21a of the lower plate 21, the control unit In 16, with respect to the welding direction of the welding path E, the control unit determines whether the upright plate 22 exists on the left side or the right side.
- the torch direction is defined as “left wall”
- the standing plate is on the right side with respect to the moving direction (welding direction) of the welding torch.
- the torch direction is defined as “right wall”.
- control unit 16 acquires the normal vector of the main surface of the lower plate 21 after acquiring the direction vector (start point ⁇ end point direction) of the welding path E, and acquires the direction vector of the welding path E. And calculate the outer product. Further, the control unit 16 acquires the normal vector of the upright plate 22 and compares the calculated outer product with the calculated outer product, thereby determining the torch direction of the upright plate 22. The judgment results are as shown in the table below.
- the welding robot system 100 includes a welding robot 1 and a computer that is a control device 15.
- the computer which is the control device 15 teaches the welding robot 1 a predetermined operation.
- the control device 15 as a computer extracts a welding path for welding two members to be welded from the three-dimensional CAD data, prepares a wall surface determination model M1 having a predetermined three-dimensional shape, and starts the welding path.
- the wall surface determination model M1 is arranged in the extending direction toward the outside of the welding path with reference to the welding end that is at least one of the end points, and two welded members with respect to the arranged wall surface determination model M1 It is determined whether or not the wall surfaces defined by other different members interfere with each other.
- the control device 15 teaches the welding robot 1 the welding path obtained by obtaining such steps.
- the welding robot system 100 acquires welding path information related to information on an object that can interfere with the welding operation with respect to one end or the welding end of the member to be welded in advance, and performs the welding operation in consideration of this information. As a result, the accuracy and quality of welding can be improved.
- Welding robot 15 Control device (computer) 16 Control unit 17 Robot pendant 21 Lower plate (member to be welded) 22 Vertical plate (member to be welded) 100 Welding robot system M1 Wall surface determination model M2 Scallop presence / absence determination model W Welded member
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Human Computer Interaction (AREA)
- Automation & Control Theory (AREA)
- Robotics (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Geometry (AREA)
- Manipulator (AREA)
- Numerical Control (AREA)
Abstract
溶接ロボットの溶接対象である二つのワークを溶接する溶接パスの施工条件に関する溶接パス情報の取得方法であって、3次元CADデータから、二つのワークを溶接する溶接パスを抽出するステップと、所定の3次元形状を有する壁面判定モデルを用意するステップと、溶接パスの開始点または終了点の少なくともいずれかである溶接端を基準として、当該溶接パスの外に向かう延長方向に、壁面判定モデルを配置するステップと、配置した壁面判定モデルに対し、二つのワークとは異なる他の部材によって画定される壁面が干渉するか否かを判定するステップと、を含む。
Description
本発明は、少なくとも二つの被溶接部材を溶接する溶接パスに関する溶接パス情報の取得方法および溶接ロボットシステムに関する。
現在、種々の産業分野でロボットが使用されている。このような産業用のロボットの代表的なものに溶接ロボットがある。溶接作業に至っては、各溶接対象に合わせ最適な溶接条件を設定しなければならず、溶接条件の設定においては多数の要素、パラメータ、これらの組み合わせが存在する。これらの中でも、溶接対象である被溶接部材を溶接する溶接パス(溶接線)の決定は、重要事項である。
特許文献1は、溶接線候補を含む多くの線分から構成される3次元CADデータに基づいて、溶接線を迅速に抽出する溶接線作成方法を開示している。この溶接線作成方法は、溶接線を形成する部材の2面のうち、基準となる面(第1の面)を指定するステップと、溶接線を形成する部材の2面のうち、他方の面(開先面である第2の面)を指定するステップと、稜線を抽出するステップと、溶接可能となる稜線区間を選択するステップと、溶接可能な稜線を統合し溶接線情報を作成するステップと、開先形状に応じて、溶接線情報を修正するステップとを含む。
特許文献2は、ロボットに対する教示作業を容易化するティーチングシステムを開示している。このティーチングシステムは、画像生成部と、始点指定部と、経由点指定部と、生成部とを備える。画像生成部は、ロボットの加工対象である被溶接部材上に設定された閉じた加工線を含む仮想画像を生成する。始点指定部は、仮想画像上で加工線以外の位置に始点を指定する。経由点指定部は、加工線上に経由点を指定する。生成部は、始点から経由点を経由して加工線をたどり再び経由点に戻る経路についてロボットに対する教示データを生成する。
ところで、溶接対象の被溶接部材の一端や、溶接の開始点または終了点を含む溶接端の溶接作業は問題になることが多い。被溶接部材の一端には別の被溶接部材や他の部材等が存在することもあり、これらの物が溶接作業の障害になることもあり得る。しかしながら、上述した特許文献を含む従来の技術は、予め被溶接部材の一端の状況を把握し、円滑な溶接作業をするための技術を提示していない。
本発明は、被溶接部材の一端や溶接端に関して溶接作業の干渉となり得る物体の情報も考慮した、溶接パス情報の取得方法、溶接ロボットシステムに関する。
本発明は、溶接ロボットの溶接対象である二つの被溶接部材を溶接する溶接パスの施工条件に関する溶接パス情報の取得方法であって、3次元CADデータから、二つの被溶接部材を溶接する溶接パスを抽出するステップと、所定の3次元形状を有する壁面判定モデルを用意するステップと、前記溶接パスの開始点または終了点の少なくともいずれかである溶接端を基準として、当該溶接パスの外に向かう延長方向に、前記壁面判定モデルを配置するステップと、前記配置した壁面判定モデルに対し、前記二つの被溶接部材とは異なる他の部材によって画定される壁面が干渉するか否かを判定するステップと、を含む。
本発明は、被溶接部材を溶接する溶接ロボットと、前記溶接ロボットの動作を、所定の動作プログラムに則って制御するコンピュータと、を含む溶接ロボットシステムであって、前記コンピュータは、3次元CADデータから、二つの被溶接部材を溶接する溶接パスを抽出し、 所定の3次元形状を有する壁面判定モデルを用意し、前記溶接パスの開始点または終了点の少なくともいずれかである溶接端を基準として、当該溶接パスの外に向かう延長方向に、前記壁面判定モデルを配置し、前記配置した壁面判定モデルに対し、前記二つの被溶接部材とは異なる他の部材によって画定される壁面が干渉するか否かを判定し、得られた溶接パスを前記溶接ロボットに教示する。
本発明によれば、溶接パスの溶接端の付近に、他の部材の干渉があるか否かを判定することができ、特に被溶接部材の一端における溶接作業を円滑ならしめることが可能となる。
以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。まず、本発明が適用される溶接ロボットシステムについて、述べることとする。
図1に示すように、溶接ロボットシステム100は、溶接ロボット1と、例えば教示ペンダントとして用いられるロボットペンダント17を含む制御装置15であるコンピュータと、を有している。
溶接ロボット1は、例えば二つの溶接トーチを持つツイン溶接ロボット装置である。溶接ロボット1は、支持フレーム2を備えている。この支柱フレーム2は、4本の支柱2aと、これら4本の支柱2aのうち、間隔が広い支柱2a同士の頂部間に架設されてなる一対のガイド支持梁2bと、間隔が狭い支柱2a同士の頂部間に架設されてなる一対のフレーム2cとから構成されている。この支持フレーム2のガイド支持梁2b、2bの下面には、相対するガイド支持梁2bの方向に突出する板状のガイド支持部材3の基端側が固着されている。また、これらガイド支持部材3の上面には、リニアガイドレールと、このリニアガイドレールにより往復移動自在に案内されるリニアガイドベアリングとからなるリニアガイド4が、前記ガイド支持梁2bと平行に固着されている。
そして、これらリニアガイド4のリニアガイドベアリングにより、後述する構成になる走行台車5が往復移動し得るように構成されている。即ち、この走行台車5は、台フレームの上面に基端側が固着されてなる取付けブラケット5aが前記リニアガイドベアリングに取り付けられて、前記ガイド支持梁2b、2bの内側で、かつ下端付近の位置で往復移動するように構成されている。つまり、この走行台車5は、従来例に係る走行台車の下部台フレームに相当する位置で往復移動するように構成されている。
そして、この走行台車5の幅方向の中央位置にはθ軸(旋回軸)6aを収容してなるθ軸フレーム6が取付けられており、θ軸6aのθ軸フレーム6からの突出端には、長手方向の中心を旋回中心として旋回する旋回フレーム7が水平に取付けられている。
旋回フレーム7の先端部の下面のそれぞれには、先端に溶接トーチが取付けられている6軸垂直多関節型のマニピュレータ8が垂直軸心回りに旋回可能なように取付けられている。また、前記走行台車5の上面には、コイル状に巻回されてなる溶接用ワイヤを収納する二つのワイヤパック9が搭載されている。そして、一対の前記ガイド支持梁2bのうちの一方のガイド支持梁2bの上面10の上に、走行台車5およびマニピュレータ8を作動させると共に、溶接用の電力を供給するためのケーブルベア(登録商標)11が設けられている。
本実施形態では、溶接ロボット1は、二つの溶接トーチを持つツイン溶接ロボット装置であるが、本発明が適用される溶接ロボットの種類は特に限定されない。
溶接ロボット1の下方、特に先端に溶接トーチが取付けられたマニピュレータ8の下方には、溶接ロボット1の溶接対象である被溶接部材Wが配置されており、複数の被溶接部材Wが、マニピュレータ8の溶接トーチによって溶接される。被溶接部材Wは種々の金属部材であり、後述する下板21、立板22などを含む。
また、実施形態の溶接ロボット1は、被溶接部材Wを撮像するセンサであるカメラ12を備えている。カメラ12は実際に配置された被溶接部材Wを撮像して被溶接部材Wの画像を取得する。被溶接部材Wを撮像できるならば、センサの種類は特に限定されないし、センサの取り付け位置も特に限定はされない。
制御装置15は、溶接対象である二つの被溶接部材を溶接する溶接パスの施工条件、特に被溶接部材の一端や溶接端(溶接パスの開始点または終了点)に関して溶接作業の干渉となり得る物体の条件に関する溶接パス情報を取得する。制御装置15は、この溶接パス情報の取得方法を所定のプログラムに従って実行するとともに、溶接ロボット1に対する動作指示、すなわち取得した溶接パスを予め教示されたプログラム(教示プログラム)に従って出力することで溶接ロボット1の動作を制御するコンピュータである。制御装置15は、プログラムを読み込んで実行するプロセッサからなる制御部16、その他データを記憶するメモリ、ハードディスクなどの記憶装置を含んでいる。特に制御装置15は、被溶接部材Wの設計データである3次元CADデータのデータベースを記憶しており、溶接ロボット1の動作を制御する際に、この3次元CADデータを参照する。3次元CADデータのデータベースは、ネットワークを介して制御装置15に接続されたサーバーなどで構築してもよく、データベースの場所、形式などは特に限定されない。
図2は、制御装置15の動作の概要を示すフローチャートである。制御装置15の制御部16は、溶接ロボットシステム100の操作者の操作により、図示せぬ記憶装置から3次元CADデータを読み込む(ステップS1)。ここでは特に溶接対象である被溶接部材Wの3次元CADデータが読み込まれる。そして、制御部16は、この3次元CADデータから複数の被溶接部材Wが溶接される溶接箇所の軌跡である溶接パスを取得する(ステップS2)。さらに、制御部16は、カメラ12が撮像した被溶接部材Wの画像から被溶接部材Wの座標を取得し、当該被溶接部材Wの元の3次元CADデータにおける座標と比較して、その差分に基づき、溶接ロボット1の動作を制御する動作プログラムを補正する(ステップS3)。最後に制御部16は、溶接ロボット1の最終的な動作を記録した溶接情報ファイルを出力する(ステップS4)。この溶接情報ファイルに従って、溶接ロボット1は動作する。
ステップS2の溶接パスの取得において、図2に示すように、制御部16は、3次元CADデータ二つの被溶接部材Wを溶接する溶接パスの抽出を行う。被溶接部材Wには、例えば図3(a)に示す水平に配置される下板21、下板21の主面(最も大きい面)21aに一つの板厚面(板の厚さに相当する面)22aが溶接される立板22(図3(b)参照)がある。破線に示すように下板21と立板22を溶接するパスである溶接パスEが、下板21の主面と立板22の板厚面との接合箇所となる。
ところで、溶接対象である被溶接部材Wの一端の溶接作業は問題になることが多い。被溶接部材Wの一端には別の被溶接部材や他の部材等が存在することもあり、これらの物が、例えばマニピュレータ8の溶接トーチと干渉するなどして溶接作業の障害になることもあり得る。このような情報は、3次元CADデータに予め盛り込まれているわけではなく、円滑な溶接作業を妨げる原因となっている。
そこで本発明では、二つの被溶接部材Wを溶接する溶接パスの施工条件に関する溶接パス情報を取得する。より具体的には、溶接パスの開始点または終了点を基準として、特定の位置に特殊なモデルを配置することにより、干渉となり得る物体が存在するか否かを判定する。予めこのような判定をすることにより、円滑な溶接作業を確保する。
図4は、干渉となり得る物体の存在を判定する壁面判定モデルM1を示す。図4(a)は壁面判定モデルM1の正面図であり、図4(b)は壁面判定モデルM1の側面図であって、壁面判定モデルM1は、幅W、高さH、厚さDのサイズを有する直方体の形状を有している。壁面判定モデルM1は、現実に存在する物体ではなく、溶接パス情報を取得するプログラムにおいて、予め用意された仮想的なモデルである。壁面判定モデルM1は仮想的なモデルであるが、プログラム中で壁面判定モデルM1が存在する領域に他の物体を配置させた場合には干渉が生ずる。幅W、高さH、厚さDの大きさは、被溶接部材の種類などに応じて任意に設定される。また、壁面判定モデルの形状は直方体には限定されず、立方体、球、多角柱、その他のものであって、所定の3次元形状を有するものであればよい。
図5は、被溶接部材に干渉する物体として壁面23が被溶接部材の一端付近に存在するか否かを判定する状態を示す概念図である。図5(a)は、図3(b)を正面から見た状態を示し、図5(b)は図3(b)を側面から見た状態を示す。制御部16は、二つの被溶接部材である下板21と立板22の接合箇所で、下板21と立板22を溶接する溶接パスEを抽出する。溶接パスEは、溶接を開始する開始点と溶接を終了する終了点を必ず含み、本図では開始点Cが示されている。そして、この開始点Cである溶接パスEの溶接端を基準として、制御部16は、溶接パスEの側から見て溶接パスEの外に向かう延長方向に、壁面判定モデルM1を配置する。制御部16は、こうして配置した壁面判定モデルM1に対し、下板21、立板22の被溶接部材とは異なる他の部材によって画定される壁面23が干渉するか否かを判定する。図5(a)、(b)の例では、開始点Cから溶接パスEの外に向かう延長方向に配置された壁面判定モデルM1が、壁面23と干渉している。この結果、制御部16は干渉を判定し、例えば操作者に対して何らかの手段(ディスプレイによる表示等)で通知をすることにより、操作者は、開始点Cを含む溶接端での溶接作業を円滑にするための種々の対策を施すことが可能となる。
図5(a)、(b)の例では、立板22の一端が下板21の一端ではなく、下板21の内部(下板21の主面内の一点)に位置している。すなわち、開始点Cが、立板22の一端に位置するとともに、下板21の一端ではなく、内部(下板21の主面内の一点)に位置している。一方、図5(c)の例では、立板22の一端と下板21の一端が重なり合っており、開始点Cが、立板22の一端および下板21の端部に位置している。図5(c)の例でも、溶接パスEの側から見て開始点Cから溶接パスEの外に向かう延長方向に配置された壁面判定モデルM1が、壁面23と干渉している。
図6(a)の例では、立板22の一端が下板21の一端ではなく、下板21の外部に位置している。すなわち、開始点Cが、下板21の一端に位置するとともに、立板22の内部(立板21の主面内の一点)に位置している。図5(c)の例でも、壁面判定モデルM1が、壁面23と干渉している。
図6(b)の例では、立板22の一端が下板21の一端ではなく、下板21の内部(下板21の主面内の一点)に位置している。すなわち、開始点Cが、立板22の一端に位置するとともに、下板21の一端ではなく、内部(下板21の主面内の一点)に位置している。図6(b)の例でも、壁面判定モデルM1が、壁面23と干渉している。
図6(c)の例では、立板22の一端と下板21の一端が重なり合っている。しかしながら、図5(c)の例とは異なり、開始点Cが、下板21および立板22の内部(下板21および立板21の主面内の一点)に位置している。図6(c)の例でも、壁面判定モデルM1が、壁面23と干渉している。
図7(a)は、干渉となり得る物体の存在を判定する他のモデルであるスカラップ有無判定モデルM2を示し、断面形状が半径Rの扇形で、長手方向の長さLを有している。スカラップは、二つの被溶接部材が交差する箇所において、一方の被溶接部材に設けられる扇型の切欠きであり、スカラップ有無判定モデルM2と被溶接部材が干渉する場合はスカラップなし、スカラップ有無判定モデルM2と被溶接部材が干渉しない場合はスカラップあり、と判定することができる。
図5、図6に示した壁面の有無を判定する壁面判定により、壁面23が存在すると判定された後、スカラップ有無判定モデルM2が使用される。すなわち下板21、立板22とは異なる他の部材によって画定される壁面23が壁面判定モデルM1に干渉すると判定された後、壁面23を貫通するスカラップが存在するか否かを判定するスカラップ有無判定が行われる。
図7(a)に示したように、壁面23を貫通するスカラップが存在するか否かを判定する所定の3次元形状を有するスカラップ有無判定モデルM2が予め用意されている。スカラップ有無判定モデルM2は、壁面判定モデルM1と同様に、現実に存在する物体ではなく、溶接パス情報を取得するプログラムにおいて、予め用意された仮想的なモデルである。スカラップ有無判定モデルM2は仮想的なモデルであるが、プログラム中でスカラップ有無判定モデルM2が存在する領域にスカラップが存在しない場合には干渉が生ずる。半径R、長さLの大きさは、被溶接部材の種類などに応じて任意に設定される。また、スカラップ有無判定モデルの形状は図7(a)のものには限定されず、立方体、球、多角柱、その他のものであって、所定の3次元形状を有するものであればよい。
図7(b)、(c)は、壁面23にスカラップが存在するか否かを判定する状態を示す概念図であり、スカラップ有無判定モデルM2を用いたスカラップ有無判定の一例を示す。図7(b)は、図3(b)を正面から見た状態を示し、図7(c)は図3(b)を側面から見た状態を示す。
図5、6に示した壁面判定により干渉する壁面23の存在が確認された後、制御部16は、図7(b)、(c)に示すように、溶接端である開始点Cを基準として、壁面23の存在する側にスカラップ有無判定モデルM2を配置する。制御部16は、こうして配置した有無判定モデルM2に対し、壁面23が干渉するか否かを判定する。図7(b)、(c)の例では、開始点Cから溶接パスEの外に向かう延長方向、すなわち壁面23の存在する側に配置されたスカラップ有無判定モデルM2が、壁面23と干渉している。この結果、制御部16は干渉を判定し、例えば操作者に対して何らかの手段(ディスプレイによる表示等)で通知をすることにより、操作者は、開始点Cを含む溶接端での溶接作業を円滑にするための種々の対策を施すことが可能となる。
図7(d)、(e)は、壁面23にスカラップSが存在する例を示す。スカラップ有無判定モデルM2の配置の仕方は、図7(b)、(c)と同じである。スカラップ有無判定モデルM2が、壁面23と干渉しておらず、制御部16は非干渉を判定し、例えば操作者に対して何らかの手段(ディスプレイによる表示等)で通知をすることにより、操作者は、開始点Cを含む溶接端での溶接作業を円滑にするための種々の対策を施すことが可能となる。尚、スカラップ有無判定モデルM2の断面の半径Rは、扇形のスカラップSの半径Nより予め小さく設定されている(R<N)。
図8は、図5、図6に示した壁面の有無を判定する壁面判定により、壁面判定モデルM1に干渉する壁面23が存在しないと判定された後に行われる下板端判定の概念図を示す。「下板端」とは、立板22の一端と下板21の一端が一致する、または隣接した位置関係にある状態を意味する。前提として図8(a)に示すように、図5、図6の壁面判定の結果、壁面判定モデルM1は壁面23に干渉していない。立板22の一端と下板21の一端から壁面23までの距離Zは、壁面判定モデルM1の厚さD(図4(b)参照)より大きい(Z>D)。
制御部16は、下板21の一端(一端)と溶接端である開始点Cの間の第1の距離X1を測定する。図8(a)の例ではX1=0であり、図8(b)、(c)では、X1が示されている。図8(b)では立板22の一端(一端)が下板21の主面内に存在し、図8(c)では立板22の一端が下板21の外側に存在するが、いずれの例でも、第1の距離X1が第1の所定値T1より小さくなっている(X1<T1)。この場合、制御部16は、下板21の一端が立板22の一端と一致するとみなす下板端判定を行う。
図9は、図8に示した下板端判定により、下板端でないと判定された(第1の距離X1が第1の所定値T1以上である;X1≧T1)後に行われる止端判定の概念図を示す。「止端」とは、立板22の一端が下板21の一端から十分離れ、かつ下板21の主面内に存在する位置関係にある状態を意味する。図9(a)では立板22の一端が、溶接端である開始点Cに一致するとともに、下板21の一端から十分離れ、下板21の主面内に存在する。図9(b)では立板22の一端が、溶接端である開始点Cに一致せず、下板21の端部一端から十分離れ、下板21の主面内に存在する。
制御部16は、図8の下板端判定の後、立板22の一端と溶接端である開始点Cの間の第2の距離X2を測定する。図9(a)の例ではX2=0であり、図9(b)ではX2が示されている。そして、いずれの例でも第2の距離X2が第2の所定値T2より小さくなっている(X2<T2)。この場合、制御部16は、立板22の一端が下板21の一端から所定の距離の範囲内に存在するとみなす止端判定を行う。ここでは、X1>T1かつX2<T2が成立している。
図10は、図9に示した止端判定により、止端でないと判定された(第2の距離X2が第2の所定値T2以上である;X2≧T2)後に行われる継続判定の概念図を示す。すなわち、下板端でなく止端でもない状態であり、第1の距離X1が第1の所定値T1以上であり、かつ、第2の距離X2が第2の所定値T2以上である(X1≧T1かつX2≧T2が成立)。図10(a)では、立板22の一端と下板21の一端が重なり合っており、図10(b)では、立板22の一端が下板21の一端から十分離れている。この場合は、制御部16は下板端判定および止端判定を行わない。この状態は、下板21または立板22の一端から十分に離れた位置に、開始点または終了点の溶接端が存在する状態を意味する。この場合は、溶接パスが複数の溶接パスに分割され、溶接ロボット1が複数の溶接動作を繰り返して、溶接を行い、開始点または終了点でさらも溶接作業を継続することを意味する。
尚、図9に示す止端判定は、図8に示した下板端判定後に行われているが、止端判定は必ずしも下板端判定の後に行う必要はなく、壁面判定(図5、6)の後に直接行ってもよい。
図11は、図1の溶接ロボット1の下方に基材18が配置され、基材18のxy座標の面(平面)上に被溶接部材W1~W3の三つが配置され、溶接される状況を示す。被溶接部材W1~W3を溶接するには、パス1~パス6の六つの複数の溶接パスが必要となる。制御部16は、これらの溶接パスを抽出した後、各溶接パスの相対的な位置から、各溶接パスの最適な溶接順序を決定し、この溶接順序に応じて、対応する溶接ロボットの番号を割り付ける処理を行う。下記表1は、溶接ロボットが1台の場合(ロボットの台数=1)と、ロボットが2台の場合(ロボットの台数≧2)のそれぞれにおける溶接パスの溶接順序と、溶接を担当する溶接ロボットの番号を示す。
図1に示したような溶接ロボット1は、二つのマニピュレータ8の各々に溶接トーチが設けられた二つの溶接トーチを持つツイン溶接ロボット装置である。各溶接トーチを一つの溶接ロボットとみなすと、図1の溶接ロボット1は、(ロボットの台数≧2)の条件を満たすということができる。よって、各溶接パスの溶接に各溶接トーチの番号を割り付けることにより、最適な溶接順序を実現することができる。
また、制御部16は、図12に示すように、溶接パスが、少なくとも二つのサブ溶接パスが対になって一組のペアを構成するか否かを判定することも可能である。このペアの要件を満たすか否かは、例えば二つの溶接パスが次の要件1.~6.のすべてを満たすか否かによって判定される。
1.二つの溶接パスが一つの立板の表裏の関係にある。
2.二つの溶接パスのベクトル(方向・長さ)が同じである。
3.二つの溶接パスが一つの立板の中間線に対して線対象の位置関係にある。
4.二つの溶接パスの溶接姿勢、継手形状、開先形状、開始側端部形状、終了側端部形状が同じである。
5.条件3.の対象位置関係について、「オフセット」、「平行シフト」の値(絶対値)が同一(対称)である。
6.溶接トーチの向きが対象(右と左のペア)である。
2.二つの溶接パスのベクトル(方向・長さ)が同じである。
3.二つの溶接パスが一つの立板の中間線に対して線対象の位置関係にある。
4.二つの溶接パスの溶接姿勢、継手形状、開先形状、開始側端部形状、終了側端部形状が同じである。
5.条件3.の対象位置関係について、「オフセット」、「平行シフト」の値(絶対値)が同一(対称)である。
6.溶接トーチの向きが対象(右と左のペア)である。
図12(a)の溶接パスE1、E2はペアの要件を満たし、(b)の溶接パスE3、E4はペアの要件を満たさない。図12(c)の溶接パスE5、E6はペアの要件を満たし、(d)の溶接パスE7E8はペアの要件を満たさない。制御部16は、溶接ペアの予見を満たす二つの溶接パスについて、同時に溶接を行い、溶接作業の軽減化、時間短縮を図ることができる。
図13は、溶接対象の二つの被溶接部材の間の隅肉の脚長を求める際に用いる表(脚長ルールファイル)の一部を示す。特に二つの被溶接部材が、図3に示した水平に配置される下板21と、下板21の主面21aに一つの板厚面22aが溶接される立板22である場合、制御部16は、下板21の厚みおよび立板22の厚みに基づき、溶接パスEにおけるすみ肉の脚長を提供する。図13の表(脚長ルールファイル)では、立板の厚みt1、下板の厚みt2それぞれが与えられた場合の適切な隅肉の脚長があらかじめ設定されている。t1、t2の値は1mmごとに与えられており、その数値は1mmごとの下限値である。例えば立板の厚みt1が5.5mm、下板の厚みt2が7.5mmの場合、この組み合わせは表の脚長ルールに合致する適切な組み合わせであり、制御部16は、表中の脚長「4mm×4mm」を抽出し、提供する。同じく、立板の厚みt1が5.5mm、下板の厚みt2が5mmの場合、脚長は4mm×4mmになり、立板の厚みt1が5.5mm、下板の厚みt2が9mmの場合、脚長は4mm×5mmになる。尚、入力したt1、t2の値が本表にない組み合わせのない場合は、制御部16は不適切な組み合わせと判定して脚長を提示せず、制御装置15は何らかの警告を出すなどの対処を行う。
図14は、溶接対象の二つの被溶接部材を溶接トーチの被溶接部材に対する向きを決定する概念を表した表である。特に二つの被溶接部材が、図3に示した水平に配置される下板21と、下板21の主面21aに一つの板厚面22aが溶接される立板22である場合、制御部16は、溶接パスEの溶接方向に対し、制御部は立板22が左側または右側のいずれに存在するかを判定する。ここで、溶接トーチの移動方向(溶接方向)に対し左側に立板22がある場合は、トーチ向きは「左壁」と定義され、溶接トーチの移動方向(溶接方向)に対し右側に立板22がある場合は、トーチ向きは「右壁」と定義される。
具体的には、制御部16は、溶接パスEの方向ベクトル(開始点→終了点の向き)を取得した後、下板21の主面の法線ベクトルを取得し、溶接パスEの方向ベクトルとの外積を算出する。 さらに制御部16は、立板22の法線ベクトルを取得し、算出した外積と比較する事で、立板22のトーチ向きを判定する。判定結果は以下の表の様になる。
実施形態の溶接ロボットシステム100は、溶接ロボット1と、制御装置15であるコンピュータと、を有している。制御装置15であるコンピュータは、溶接ロボット1に、所定の動作を教示する。ここでコンピュータとしての制御装置15は、3次元CADデータから、二つの被溶接部材を溶接する溶接パスを抽出し、所定の3次元形状を有する壁面判定モデルM1を用意し、溶接パスの開始点または終了点の少なくともいずれかである溶接端を基準として、当該溶接パスの外に向かう延長方向に、壁面判定モデルM1を配置し、配置した壁面判定モデルM1に対し、二つの被溶接部材とは異なる他の部材によって画定される壁面が干渉するか否かを判定する。制御装置15は、このようなステップを得て得られた溶接パスを溶接ロボット1に教示する。溶接ロボットシステム100は、予め被溶接部材の一端や溶接端に関して溶接作業の干渉となり得る物体の情報に関する溶接パス情報を取得し、この情報を考慮して溶接作業を行うので、溶接作業の効率性が向上するとともに、溶接の精度、品質を高めることが可能となる。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態には限定されない。本発明の精神及び範囲から逸脱することなく様々に変更したり代替態様を採用したりすることが可能なことは、当業者に明らかである。
本出願は、2017年3月21日出願の日本特許出願、特願2017-054687に基づくものであり、その内容はここに参照として取り込まれる。
1 溶接ロボット
15 制御装置(コンピュータ)
16 制御部
17 ロボットペンダント
21 下板(被溶接部材)
22 立板(被溶接部材)
100 溶接ロボットシステム
M1 壁面判定モデル
M2 スカラップ有無判定モデル
W 被溶接部材
15 制御装置(コンピュータ)
16 制御部
17 ロボットペンダント
21 下板(被溶接部材)
22 立板(被溶接部材)
100 溶接ロボットシステム
M1 壁面判定モデル
M2 スカラップ有無判定モデル
W 被溶接部材
Claims (13)
- 溶接ロボットの溶接対象である二つの被溶接部材を溶接する溶接パスの施工条件に関する溶接パス情報の取得方法であって、
3次元CADデータから、二つの被溶接部材を溶接する溶接パスを抽出するステップと、
所定の3次元形状を有する壁面判定モデルを用意するステップと、
前記溶接パスの開始点または終了点の少なくともいずれかである溶接端を基準として、当該溶接パスの外に向かう延長方向に、前記壁面判定モデルを配置するステップと、
前記配置した壁面判定モデルに対し、前記二つの被溶接部材とは異なる他の部材によって画定される壁面が干渉するか否かを判定するステップと、
を含む溶接パス情報の取得方法。 - 請求項1に記載の溶接パス情報の取得方法であって、
前記壁面が前記壁面判定モデルに干渉すると判定した場合、前記壁面を貫通するスカラップが存在するか否かを判定する所定の3次元形状を有するスカラップ有無判定モデルを用意するステップと、
前記溶接端を基準として、前記壁面の存在する側に前記スカラップ有無判定モデルを配置するステップと、
前記配置したスカラップ有無判定モデルに対し、前記壁面が干渉するか否かを判定するステップと、
を含む溶接パス情報の取得方法。 - 請求項1に記載の溶接パス情報の取得方法であって、
前記二つの被溶接部材が、水平に配置される下板および当該下板の主面に一つの板厚面が溶接される立板であり、
前記下板の一端と前記溶接端の間の第1の距離を測定するステップと、
前記第1の距離が第1の所定値より小さい場合は、前記下板の一端が前記立板の一端と一致するとみなす下板端判定を行うステップと、
を含む溶接パス情報の取得方法。 - 請求項3に記載の溶接パス情報の取得方法であって、
前記第1の距離が前記第1の所定値以上の場合に、前記立板の一端と前記溶接端の間の第2の距離を測定するステップと、
前記第2の距離が第2の所定値より小さい場合は、前記立板の一端が前記下板の一端から所定の距離の範囲内に存在するとみなす止端判定を行うステップと、
を含む溶接パス情報の取得方法。 - 請求項4に記載の溶接パス情報の取得方法であって、
前記第1の距離が前記第1の所定値以上であり、かつ、前記第2の距離が前記第2の所定値以上の場合は、前記下板端判定および前記止端判定を行わない、
溶接パス情報の取得方法。 - 請求項1に記載の溶接パス情報の取得方法であって、
前記二つの被溶接部材が、水平に配置される下板および当該下板の主面に一つの板厚面が溶接される立板であり、
前記立板の一端と前記溶接端の間の第2の距離を測定するステップと、
前記第2の距離が第2の所定値より小さい場合は、前記立板の一端が前記下板の一端から所定の距離の範囲内に存在するとみなす止端判定を行うステップと、
を含む溶接パス情報の取得方法。 - 請求項1に記載の溶接パス情報の取得方法であって、
複数の溶接パスを抽出するステップと、
各溶接パスの相対的な位置から、各溶接パスの溶接順序を決定するステップと、
前記溶接順序に応じて、対応する溶接ロボットの番号を割り付けるステップと、
を含む溶接パス情報の取得方法。 - 請求項1に記載の溶接パス情報の取得方法であって、
前記二つの被溶接部材が、水平に配置される下板および当該下板の主面に一つの板厚面が溶接される立板であり、
前記下板の厚みおよび前記立板の厚みに基づき、前記溶接パスにおけるすみ肉の脚長を提供するステップ、
を含む溶接パス情報の取得方法。 - 請求項1に記載の溶接パス情報の取得方法であって、
前記二つの被溶接部材が、水平に配置される下板および当該下板の主面に一つの板厚面が溶接される立板であり、
前記溶接パスの溶接方向に対し、前記立板が左側または右側のいずれに存在するかを判定するステップ、
を含む溶接パス情報の取得方法。 - 請求項1に記載の溶接パス情報の取得方法であって、
前記溶接パスが、少なくとも二つのサブ溶接パスが対になって一組のペアを構成するか否かを判定する、溶接パス情報の取得方法。 - 請求項1から10のいずれか1項に記載の溶接パス情報の取得方法をコンピュータに実行させるためのプログラム。
- 請求項1から10のいずれか1項に記載の溶接パス情報の取得方法により取得した溶接パスを前記溶接ロボットに教示するための教示プログラム。
- 被溶接部材を溶接する溶接ロボットと、
前記溶接ロボットの動作を、所定の動作プログラムに則って制御するコンピュータと、
を含む溶接ロボットシステムであって、
前記コンピュータは、
3次元CADデータから、二つの被溶接部材を溶接する溶接パスを抽出し、
所定の3次元形状を有する壁面判定モデルを用意し、
前記溶接パスの開始点または終了点の少なくともいずれかである溶接端を基準として、当該溶接パスの外に向かう延長方向に、前記壁面判定モデルを配置し、
前記配置した壁面判定モデルに対し、前記二つの被溶接部材とは異なる他の部材によって画定される壁面が干渉するか否かを判定し、
得られた溶接パスを前記溶接ロボットに教示する、
溶接ロボットシステム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020197027410A KR102221884B1 (ko) | 2017-03-21 | 2018-02-27 | 용접 패스 정보의 취득 방법 및 용접 로봇 시스템 |
CN201880019469.6A CN110431498B (zh) | 2017-03-21 | 2018-02-27 | 焊道信息的取得方法和焊接机器人系统 |
US16/486,749 US11345031B2 (en) | 2017-03-21 | 2018-02-27 | Method for acquiring weld pass information and welding robot system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-054687 | 2017-03-21 | ||
JP2017054687A JP6809948B2 (ja) | 2017-03-21 | 2017-03-21 | 溶接パス情報の取得方法および溶接ロボットシステム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018173656A1 true WO2018173656A1 (ja) | 2018-09-27 |
Family
ID=63586302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/007372 WO2018173656A1 (ja) | 2017-03-21 | 2018-02-27 | 溶接パス情報の取得方法および溶接ロボットシステム |
Country Status (5)
Country | Link |
---|---|
US (1) | US11345031B2 (ja) |
JP (1) | JP6809948B2 (ja) |
KR (1) | KR102221884B1 (ja) |
CN (1) | CN110431498B (ja) |
WO (1) | WO2018173656A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2582990A (en) * | 2019-04-08 | 2020-10-14 | Arrival Ltd | System and method for flexibly manufactured products |
CN113334387A (zh) * | 2021-06-30 | 2021-09-03 | 北京博清科技有限公司 | 焊接机器人的控制方法、装置、存储介质及焊接机器人 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3537412A1 (en) * | 2018-03-07 | 2019-09-11 | Seabery North America, S.L. | Systems and methods to simulate robotic joining operations |
WO2022016152A1 (en) | 2020-07-17 | 2022-01-20 | Path Robotics, Inc. | Real time feedback and dynamic adjustment for welding robots |
CN112621030A (zh) * | 2020-12-07 | 2021-04-09 | 重庆顺泰铁塔制造有限公司 | 一种用于输电塔节点焊接轨迹生成方法 |
WO2022182894A1 (en) | 2021-02-24 | 2022-09-01 | Path Robotics Inc. | Autonomous welding robots |
JP7201764B1 (ja) | 2021-09-24 | 2023-01-10 | 株式会社ダイヘン | 溶接プログラム作成システム及び溶接プログラム作成方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10187223A (ja) * | 1996-12-26 | 1998-07-14 | Nkk Corp | 溶接ロボット動作プログラムの自動生成システム |
JPH11291039A (ja) * | 1998-04-15 | 1999-10-26 | Hitachi Ltd | 溶接線の設定する機能を有するcadシステム及びシミュレーションシステム |
JP2002035939A (ja) * | 2000-07-24 | 2002-02-05 | Kawasaki Heavy Ind Ltd | 溶接線分割指示方法および溶接線分割指示システム |
JP2002137061A (ja) * | 2000-11-01 | 2002-05-14 | Kawasaki Heavy Ind Ltd | 溶接線端部付近の溶接処理自動決定方法および溶接処理自動決定システム |
JP2007272309A (ja) * | 2006-03-30 | 2007-10-18 | Komatsu Ltd | 作業ロボットのオフラインティーチング装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2606532B2 (ja) * | 1992-06-19 | 1997-05-07 | 日本鋼管株式会社 | コーナー部の溶接線不連続部の検出方法 |
JP3697081B2 (ja) * | 1998-09-25 | 2005-09-21 | 株式会社神戸製鋼所 | 溶接姿勢教示方法及びその装置 |
JP2007187223A (ja) | 2006-01-12 | 2007-07-26 | Canon Inc | 導電性弾性体ローラの製造方法 |
JP5578791B2 (ja) | 2009-02-13 | 2014-08-27 | 株式会社神戸製鋼所 | 溶接線選定方法 |
JP5360237B2 (ja) * | 2010-02-03 | 2013-12-04 | パナソニック株式会社 | ロボットシステムの制御方法 |
US20140367365A1 (en) * | 2013-06-13 | 2014-12-18 | Adaptive Intelligent Systems Llc | Method to make fillet welds |
JP6311421B2 (ja) | 2014-04-10 | 2018-04-18 | 株式会社安川電機 | ティーチングシステム、ロボットシステムおよびティーチング方法 |
GB201509964D0 (en) * | 2015-06-09 | 2015-07-22 | Rolls Royce Plc | An automated welding apparatus and computer-implemented method for filling a volume |
-
2017
- 2017-03-21 JP JP2017054687A patent/JP6809948B2/ja active Active
-
2018
- 2018-02-27 US US16/486,749 patent/US11345031B2/en active Active
- 2018-02-27 WO PCT/JP2018/007372 patent/WO2018173656A1/ja active Application Filing
- 2018-02-27 KR KR1020197027410A patent/KR102221884B1/ko active IP Right Grant
- 2018-02-27 CN CN201880019469.6A patent/CN110431498B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10187223A (ja) * | 1996-12-26 | 1998-07-14 | Nkk Corp | 溶接ロボット動作プログラムの自動生成システム |
JPH11291039A (ja) * | 1998-04-15 | 1999-10-26 | Hitachi Ltd | 溶接線の設定する機能を有するcadシステム及びシミュレーションシステム |
JP2002035939A (ja) * | 2000-07-24 | 2002-02-05 | Kawasaki Heavy Ind Ltd | 溶接線分割指示方法および溶接線分割指示システム |
JP2002137061A (ja) * | 2000-11-01 | 2002-05-14 | Kawasaki Heavy Ind Ltd | 溶接線端部付近の溶接処理自動決定方法および溶接処理自動決定システム |
JP2007272309A (ja) * | 2006-03-30 | 2007-10-18 | Komatsu Ltd | 作業ロボットのオフラインティーチング装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2582990A (en) * | 2019-04-08 | 2020-10-14 | Arrival Ltd | System and method for flexibly manufactured products |
US11353856B2 (en) | 2019-04-08 | 2022-06-07 | Arrival Limited | System and method for flexible manufacturing |
GB2582990B (en) * | 2019-04-08 | 2022-07-27 | Arrival Ltd | System and method for flexibly manufactured products |
CN113334387A (zh) * | 2021-06-30 | 2021-09-03 | 北京博清科技有限公司 | 焊接机器人的控制方法、装置、存储介质及焊接机器人 |
CN113334387B (zh) * | 2021-06-30 | 2024-06-04 | 北京博清科技有限公司 | 焊接机器人的控制方法、装置、存储介质及焊接机器人 |
Also Published As
Publication number | Publication date |
---|---|
US11345031B2 (en) | 2022-05-31 |
CN110431498A (zh) | 2019-11-08 |
JP2018153906A (ja) | 2018-10-04 |
KR102221884B1 (ko) | 2021-03-03 |
US20190375101A1 (en) | 2019-12-12 |
JP6809948B2 (ja) | 2021-01-06 |
KR20190121334A (ko) | 2019-10-25 |
CN110431498B (zh) | 2022-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018173656A1 (ja) | 溶接パス情報の取得方法および溶接ロボットシステム | |
EP3863791B1 (en) | System and method for weld path generation | |
JP5850958B2 (ja) | ワークを撮像するためのロボットプログラムを作成するロボットプログラミング装置 | |
WO2018173655A1 (ja) | 動作プログラム補正方法および溶接ロボットシステム | |
JP5578791B2 (ja) | 溶接線選定方法 | |
JP5980867B2 (ja) | ロボットをオフラインで教示するロボット教示装置 | |
JP6068423B2 (ja) | 加工動作をロボットに教示するロボットプログラミング装置 | |
JP2007164417A (ja) | 複数のロボット間のインターロック自動設定装置及び自動設定方法 | |
JP7011523B2 (ja) | 加工システム、溶接方法 | |
JP6469159B2 (ja) | 接触センサによるワーク位置検出プログラム生成機能を備えたオフラインプログラミング装置及び方法 | |
KR20230160276A (ko) | 오토노머스 웰딩 로봇 | |
KR100999303B1 (ko) | 가공용 빔 조사 장치의 조사 가능 영역 인식 방법 및 조사가능 영역 인식 장치 및 가공용 빔 조사 장치의 이동 경로설정 방법 | |
JP2012091304A (ja) | ティーチングデータ作成方法およびティーチングデータ作成装置 | |
JP3517529B2 (ja) | 画像入力型ロボットシステム | |
JP2010182210A (ja) | ロボット教示プログラム修正装置 | |
JP3089228B2 (ja) | 溶接ロボット用溶接手順ティーチング装置 | |
JPH09164483A (ja) | 溶接経路の自動決定システム | |
JP2006072673A (ja) | 溶接ロボットのポジショナ設定方法 | |
JP2021126694A (ja) | 造形物の製造方法、造形物の製造装置、及びプログラム | |
JP2017121649A (ja) | 溶接ロボットのティーチング装置 | |
JP2009045642A (ja) | 溶接作業装置 | |
CN117182264A (zh) | 焊接角度校正设备 | |
JPH1157999A (ja) | 開先切断装置および方法 | |
JPS63149075A (ja) | 画像処理機能を付加した多関接溶接ロボツト装置 | |
TW202313283A (zh) | 作業程式作成系統以及作業程式作成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18772653 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197027410 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18772653 Country of ref document: EP Kind code of ref document: A1 |