WO2018169428A1 - Procédé de production de matériaux nanocomposites à partir d'une matrice de cuivre - Google Patents

Procédé de production de matériaux nanocomposites à partir d'une matrice de cuivre Download PDF

Info

Publication number
WO2018169428A1
WO2018169428A1 PCT/RU2017/000133 RU2017000133W WO2018169428A1 WO 2018169428 A1 WO2018169428 A1 WO 2018169428A1 RU 2017000133 W RU2017000133 W RU 2017000133W WO 2018169428 A1 WO2018169428 A1 WO 2018169428A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
nanotubes
carbon nanotubes
metal
modified
Prior art date
Application number
PCT/RU2017/000133
Other languages
English (en)
Russian (ru)
Inventor
Виктор Владимирович РЯБЫХ
Original Assignee
Общество с ограниченной ответственностью "Карбон тех"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Карбон тех" filed Critical Общество с ограниченной ответственностью "Карбон тех"
Priority to PCT/RU2017/000133 priority Critical patent/WO2018169428A1/fr
Publication of WO2018169428A1 publication Critical patent/WO2018169428A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/14Making alloys containing metallic or non-metallic fibres or filaments by powder metallurgy, i.e. by processing mixtures of metal powder and fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Definitions

  • the invention relates to technologies for producing composite materials containing copper or its alloys, such as brass or bronze, as a matrix, and carbon nanotubes as a filler. It can be used in various industries, mainly in the chemical and metallurgical.
  • composite materials containing carbon nanotubes as a filler are widely used, which is explained by a significant improvement in the properties of the materials to which these nanotubes are added.
  • a copper-based nanocomposite material containing carbon nanotubes has higher strength, electrical conductivity, and other physical characteristics in comparison with copper.
  • composite materials based on a copper matrix are known, reinforced by the addition of 0.2, 5 and 10 vol. % single-walled carbon nanotubes and 5 and 10 vol. % multilayer carbon nanotubes [Shukla, A. K. Nayan, Niraj Murty, SVSN Sharma, SC Chandran, Prathap Bakshi, Srinivasa R. George, Koshy M. Processing of copper-carbon nanotube composites by vacuum hot pressing technique- MATERIALS SCIENCE AND ENGINEERING A - STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, p. 365-371, DOI: 10.1016 / j.msea.2012.09.09.080].
  • a known method of producing a nanocomposite material based on copper according to which multilayer carbon nanotubes is coated with copper by two-stage chemical activation in order to improve the surface strength of the metal matrix, then these copper-coated carbon nanotubes are mixed with a powder of metallic copper in an amount of 5-20 vol. % and use heating by microwaves for sintering [Rajkumar, K; Aravindan, S. Tribological studies on microwaves intered copper-carbon nanotube composites.-WEAR, v.2, p. 613-621, DOI: 10.1016 / j.wear.2011.01.01, Published: APR 4 2011].
  • modification is meant the coating of carbon nanotubes with layers of organic or inorganic substances, or the decoration of their surface with nanosized particles of various nature.
  • Modification allows you to change the nature of the surface of nanotubes.
  • grafting to the surface of nanotubes of various substances or functional groups ensures the compatibility of carbon nanotubes with the medium, which facilitates their introduction into this medium in the production of nanocomposite materials.
  • the method includes combining copper ions with multi-walled carbon nanotubes at the molecular level and the formation of spheres after the recovery, nucleation and growth of copper ions that attach to the surface of the nanotubes.
  • Composite spheres with implanted nanotubes allow nanotubes to avoid damage and effectively bind to the matrix. This unique spherical structure can serve as an excellent candidate as a powder for the production of a bulk composite reinforced with carbon nanotubes.
  • a known method of producing a composite material based on copper according to which nanocomposites powders multilayer carbon nanotubes-copper with different volume fractions of nanotubes is prepared by chemical deposition of copper on the surface of nanotubes [Daoush, Walid M., Lim, Byung K., Mo, Chan B ., Nam, Dong H., Hong, Soon H., MATERIALS SCIENCE AND ENGINEERING A - STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 513-14, 247-253, DOI: 10.1016 / j.msea.2009.01.073, JUL 15 2009 ].
  • nanotubes are preliminarily subjected to acid treatment, activation (sensitization), and chemical deposition of copper on their surface. Copper is deposited as a layer on the surface of the nanotube. Nanocomposite powder multi-walled carbon nanotube - copper is subjected to spark sintering by plasma.
  • the sintered composite material consists of modified nanotubes.
  • the prototype has the following disadvantages.
  • the final product obtained by the implementation of the method is sintered carbon nanotubes coated with copper, which means that the concentration of nanotubes in it is high, and it can only be used as a modifier, or ligature to obtain composite materials by adding it into the matrix material.
  • the invention solves the problem of creating a method for producing a composite material with high physical and mechanical properties based on a copper matrix, which can have a different concentration of carbon nanotubes and can be used as a finished nanocomposite material for further processing, including mechanical, or as a ligature for producing copper alloys.
  • a method for producing a composite material based on a copper matrix which includes modifying carbon nanotubes with metal and compacting them into solid arrays, according to which carbon nanotubes are modified with metal from the series: copper, or lead, or tin, or zinc, or aluminum or silver, while the modified carbon nanotubes are mixed with copper powder having a fraction size of 3-10 ⁇ m and subjected to this mechanical activation mixture, then the mechanically activated mixture is compacted in TV rdye compression arrays, arrays and then solid is heated to a melting temperature in the absence of oxygen, is melted and cooled.
  • modified carbon nanotubes means nanotubes with a changed surface nature, consisting of grafting ions of one or another of the named metals to the nanotube surface.
  • Carbon nanotubes can be modified by chemical deposition on their surface of a metal from the series: copper, or lead, or tin, or zinc, or aluminum, or silver, for which: - carbon nanotubes are treated with acid at a temperature of 20 - 100
  • nanotubes are mixed with an aqueous solution of a salt of the corresponding metal and exposed to the resulting mixture by ultrasound;
  • - nanotubes with a metal salt on their surface are heated in an inert medium to a temperature of 550-650 ° C with decomposition of the metal salt to metal oxides;
  • nanotubes with metal oxides on their surface are reduced at a temperature of 550-650 ° C in a stream of methane, or a methane-hydrogen mixture to obtain nanotubes with metal on their surface.
  • the method can use single-walled and / or double-walled and / or multi-walled carbon nanotubes.
  • Metal salts can be: nitrates, acetates, metal carbonates.
  • the method is as follows.
  • Carbon nanotubes are treated with hydrochloric or nitric acid, or a mixture thereof, or other acids at a temperature of 20-100 ° C for, for example, 20 minutes.
  • Treated nanotubes are washed with a neutral reagent, for example, distilled water, and dried at a temperature of 100-120 ° C for at least 30 minutes.
  • Acid treated, washed and dried nanotubes are impregnated with an aqueous solution of a salt of the corresponding metal, for example, an aqueous solution of copper nitrate, or tin nitrate, or lead nitrate, or other suitable salts. After that, using a magnetic stirrer with heating from the resulting suspension, the liquid is evaporated at a temperature of 90-100 ° C to obtain a composite: "carbon nanotube - salt of the corresponding metal.”
  • the resulting nanotubes are air dried at a temperature of the order of 100-180 ° C for at least 30 minutes. (drying time depends on the volume of the sample). After that, the dried nanotubes are heated in an argon medium to 550-650 ° C and kept at this temperature in a medium of hydrogen or a methane-hydrogen mixture for at least 30 minutes. In this case, the metal nitrate deposited on the surface of carbon nanotubes decomposes with the formation of metal oxide and then is reduced to metal. The result is nanotubes functionalized with the corresponding metal.
  • the obtained nanotubes in comparison with the initial ones have a surface modified with metal nanoparticles, affinity for the base metal - copper, which allows them to be mixed with copper.
  • a chemical interaction occurs between the surface of a carbon nanotube and a metal, which is impossible without modifying the surface of the nanotubes, which makes it possible to uniformly incorporate nanotubes into a metal matrix.
  • Modification of carbon nanotubes by said metals can be carried out by other methods than those described. It is important that a change in the chemical composition of the surface of carbon nanotubes enhances their interaction with a dispersion medium. As a result, a more uniform distribution of nanotubes in the volume of the dispersion medium is observed, as a result of which the positive effect of their introduction into the matrix increases and the desired result is achieved at lower nanotube concentrations, which greatly expands the possibilities of their practical application.
  • the carbon nanotubes described above, modified with the aforementioned metals, are then used to obtain composite materials based on copper.
  • the modified carbon nanotubes are mixed with copper powder with a fraction size of 3-10 ⁇ m and subjected to mechanical activation by a power mill, for example, a centrifugal planetary, or ball, or bissor or magnetic. Upon activation, more thorough and uniform mixing of nanotubes with copper powder occurs.
  • a power mill for example, a centrifugal planetary, or ball, or bissor or magnetic.
  • portions are separated from the mass of the mixed material, which are pressed into solid arrays, for example tablets, of the nanocomposite material by cold pressing.
  • Several tablets are stacked on top of each other in a graphite crucible and placed in a furnace chamber that provides isolation from oxygen.
  • a stack of tablets is heated in a furnace chamber to a temperature of at least 1085 ° C.
  • the tablets melt, at which the metal melts, and the nanotubes are stored in the volume of the molten metal without burning out.
  • the melt is cooled to the solidification temperature and then to room temperature. The result is an ingot of nanocomposite material containing carbon nanotubes.
  • this material can be used as a ligature to obtain alloys.
  • the proposed method provides the production of a composite material based on copper in the form of an ingot, which can be used as a finished nanocomposite material for further mechanical or other processing, or as a ligature for the production of copper alloys.
  • a copper powder having a fraction size of 3 ⁇ m in an amount of 100 g is subjected to mechanical activation in a planetary mill for 1 minute.
  • metallic copper is compacted by compression at room temperature and a pressure of 16 tons into solid arrays in the form of tablets.
  • the diameter of the tablets is 18 mm.
  • the tablets are loaded into a quartz tube with a diameter of 20 mm and placed in an oven, where in an argon atmosphere they are heated to a temperature of 1120 ° C. Under the influence of this temperature, the tablets melt.
  • the resulting melt is cooled without air to room temperature.
  • the resulting material contains May 100. % copper.
  • the tensile strength of a sample of this copper is 87.5 MPa, the relative deformation at the break point is 8.33%.
  • Copper modified nanotubes in the described manner in the amount of 0.06 g, are mixed with copper powder having a fraction size of 3 ⁇ m, in the amount of 99.94 g, and this mixture is subjected to mechanical activation in a planetary mill for 1 minute. After the mill, the mechanically activated mixture is compacted by pressing at room temperature and a pressure of 16 tons into solid arrays in the form of tablets. The diameter of the tablets is 18 mm. The tablets are loaded into a quartz tube with a diameter of 20 mm and placed in a furnace, where in an argon atmosphere they are heated to a temperature of 1120 ° C. Under the influence of this temperature, the tablets melt. The resulting melt is cooled without air to room temperature.
  • the resulting composite material based on a copper matrix contains 0.06 May. % carbon nanotubes and 99.94 May. % copper.
  • the tensile strength of the sample from this composite material is 136.5 MPa, the relative deformation at the break point is 45.2%.
  • the resulting composite material based on a copper matrix contains 0.1 May. % carbon nanotubes, 0.03 May. % lead and 99.87 May. % copper.
  • the tensile strength of the sample from this composite material is 124.3 MPa, the relative deformation at the break point is 30.0%.
  • the resulting composite material based on a copper matrix contains 0.1 May. % carbon nanotubes, 0.03 May. % tin and 99.87 may. % copper.
  • the tensile strength of the sample from this composite material is 121, 7 MPa, the relative deformation at the break point is 25.4%.
  • the resulting composite material based on a copper matrix contains 0.1 May. % carbon nanotubes, 0.03 May. % zinc and 99.87 may. % copper. Limit the strength of the sample from this composite material is 135.2 MPa, the relative deformation at the break point is 41, 1%.
  • the resulting composite material based on a copper matrix contains 0.1 May. % carbon nanotubes, 0.03 May. % aluminum and 99.87 May. % copper.
  • the tensile strength of the specimen from this composite material is 90.4 MPa, the relative deformation at the break point is 9.3%.
  • the resulting composite material based on a copper matrix contains 0.1 May. % carbon nanotubes, 0.03 May. % silver and 99.87 may. % copper.
  • the tensile strength of the sample from this composite material is 140.3 MPa, the relative deformation at the break point is 45.0%.
  • deformation at a point is an example of a modifier based on strength

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

L'invention se rapporte aux techniques de production de matériaux nanocomposites contenant, en qualité de matrice, du cuivre ou ses alliages comme du laiton ou du bronze, et des nanotubes de carbone en qualité de matière de charge. L'invention peut être utilisée dans diverses branches de l'ndustrie, de préférence en chimie et en métallurgie. L'invention concerne un procédé de production de matériaux nanocomposites à partir d'une matrice de cuivre, lequel consiste à modifier des nanotubes de carbone avec un métal et à les compacter dans des massifs solides, les nanotubes étant modifés par un métal choisi dans le liste suivante: cuivre et/ou plomb et/ou étain et/ou zinc et/ou aluminium et/ou argent; les nanotubes de carbone modifiés soont ensuite mélangés à lde la poudre de cuivre ayant une taille de fraction de 3-10 microns, et le mélange est soumis à une activation mécanique; le mélange mécaniquement activé est compacté par pressage dans des massifs solides qui sont ensuite chauffés au moins à la température de fusion en l'absence d'oxygène, puis fondus et refroidis. L'invention permet de fournir un procédé de production d'un matériau composite ayant des propriétés physiques et macaniques élevées à partir d'ûne matrice de cuivre, lequel peut posséder diverses concentrations en nanotubes de carbone et peut être utilisé comme matériau nanocomposite fini en vue d'un traitement ultérieur, y compris mécanique, ou comme alliage mère pour produire des alliages de cuivre.
PCT/RU2017/000133 2017-03-15 2017-03-15 Procédé de production de matériaux nanocomposites à partir d'une matrice de cuivre WO2018169428A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/RU2017/000133 WO2018169428A1 (fr) 2017-03-15 2017-03-15 Procédé de production de matériaux nanocomposites à partir d'une matrice de cuivre

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2017/000133 WO2018169428A1 (fr) 2017-03-15 2017-03-15 Procédé de production de matériaux nanocomposites à partir d'une matrice de cuivre

Publications (1)

Publication Number Publication Date
WO2018169428A1 true WO2018169428A1 (fr) 2018-09-20

Family

ID=63522723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2017/000133 WO2018169428A1 (fr) 2017-03-15 2017-03-15 Procédé de production de matériaux nanocomposites à partir d'une matrice de cuivre

Country Status (1)

Country Link
WO (1) WO2018169428A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110983211A (zh) * 2019-12-10 2020-04-10 昆明理工大学 一种碳纳米管增强铜基复合材料的制备方法
CN111809078A (zh) * 2020-07-21 2020-10-23 深圳市中金岭南科技有限公司 一种复合铜银合金导线及其制备方法
CN113038684A (zh) * 2021-03-04 2021-06-25 中科超睿(青岛)技术有限公司 一种碳纳米管修饰高密度吸氢中子靶及其制备方法
CN113549430A (zh) * 2021-08-13 2021-10-26 广西师范大学 一种构建离域共轭π键的碳纳米管/铜复合导热材料的制备方法
CN116161768A (zh) * 2023-04-26 2023-05-26 四川省生态环境科学研究院 一种污水处理方法、所采用污水处理剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2412020C2 (ru) * 2009-05-12 2011-02-20 Открытое акционерное общество "Конструкторское бюро химавтоматики" Способ изготовления наноструктурированного конструкционного материала с объемной наноструктурой
WO2011078934A1 (fr) * 2009-12-01 2011-06-30 Applied Nanostructured Solutions, Llc Matériaux composites à matrice métallique contenant des matériaux en fibres infusés de nanotubes de carbone et procédés pour leur production
RU2485196C1 (ru) * 2012-03-30 2013-06-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ получения изделий из композиционных материалов с наноразмерными упрочняющими частицами
RU2593875C2 (ru) * 2014-07-03 2016-08-10 Рябых Виктор Владимирович Способ получения углеродных наноструктур, модифицированных металлом, лигатура для композиционных материалов на основе алюминия или алюминиевого сплава и способ ее получения

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2412020C2 (ru) * 2009-05-12 2011-02-20 Открытое акционерное общество "Конструкторское бюро химавтоматики" Способ изготовления наноструктурированного конструкционного материала с объемной наноструктурой
WO2011078934A1 (fr) * 2009-12-01 2011-06-30 Applied Nanostructured Solutions, Llc Matériaux composites à matrice métallique contenant des matériaux en fibres infusés de nanotubes de carbone et procédés pour leur production
RU2485196C1 (ru) * 2012-03-30 2013-06-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ получения изделий из композиционных материалов с наноразмерными упрочняющими частицами
RU2593875C2 (ru) * 2014-07-03 2016-08-10 Рябых Виктор Владимирович Способ получения углеродных наноструктур, модифицированных металлом, лигатура для композиционных материалов на основе алюминия или алюминиевого сплава и способ ее получения

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110983211A (zh) * 2019-12-10 2020-04-10 昆明理工大学 一种碳纳米管增强铜基复合材料的制备方法
CN111809078A (zh) * 2020-07-21 2020-10-23 深圳市中金岭南科技有限公司 一种复合铜银合金导线及其制备方法
CN111809078B (zh) * 2020-07-21 2021-06-04 深圳市中金岭南科技有限公司 一种复合铜银合金导线及其制备方法
CN113038684A (zh) * 2021-03-04 2021-06-25 中科超睿(青岛)技术有限公司 一种碳纳米管修饰高密度吸氢中子靶及其制备方法
CN113549430A (zh) * 2021-08-13 2021-10-26 广西师范大学 一种构建离域共轭π键的碳纳米管/铜复合导热材料的制备方法
CN116161768A (zh) * 2023-04-26 2023-05-26 四川省生态环境科学研究院 一种污水处理方法、所采用污水处理剂及其制备方法
CN116161768B (zh) * 2023-04-26 2023-08-04 四川省生态环境科学研究院 一种污水处理方法、所采用污水处理剂及其制备方法

Similar Documents

Publication Publication Date Title
WO2018169428A1 (fr) Procédé de production de matériaux nanocomposites à partir d'une matrice de cuivre
Varol et al. Microstructure, electrical conductivity and hardness of multilayer graphene/copper nanocomposites synthesized by flake powder metallurgy
JP5524257B2 (ja) 金属物品を融解せずに製造する方法
JP5697604B2 (ja) 金属部品の製造方法
RU2593875C2 (ru) Способ получения углеродных наноструктур, модифицированных металлом, лигатура для композиционных материалов на основе алюминия или алюминиевого сплава и способ ее получения
JP2005314806A (ja) 高硬度で高導電性を有するナノ結晶銅金属及びナノ結晶銅合金の粉末、高硬度・高強度で高導電性を有する強靱なナノ結晶銅又は銅合金のバルク材並びにそれらの製造方法
WO2020117102A1 (fr) Procédé pour obtenir un matériau à nanocomposites à base de cuivre et renforcé par des nanofibres de carbone
Tiwari et al. Study of fabrication processes and properties of Al-CNT composites reinforced by carbon nano tubes-a review
CN107245596A (zh) 一种碳纳米管增强锌基复合材料的制备方法
JP6815388B2 (ja) 複合材料からの金属含有材料の回収のための方法
CN108856725A (zh) 一种弥散强化铜原位自生复合材料的制备方法和应用
JP2016050344A (ja) セラミックスナノ粒子が担持されたアルミニウム又はアルミニウム合金粉体及びそれを用いたセラミックス−アルミニウム系複合材料、並びに、その粉体の製造方法
RU2625692C2 (ru) Способ получения нанокомпозитных материалов на основе медной матрицы
JPH02213431A (ja) SiCウィスカ強化Al合金複合材料
US10058917B2 (en) Incorporation of nano-size particles into aluminum or other light metals by decoration of micron size particles
JP3842580B2 (ja) 合金形成用金属粒子組成物
Korać et al. Sintered materials based on copper and alumina powders synthesized by a novel method
KR101658381B1 (ko) 분말 성형체 제조방법 및 분말 성형체 제조용 혼합분말
CN1292311A (zh) 电接触器和电极用合金和其制备方法
JP4008597B2 (ja) アルミニウム基複合材およびその製造方法
JP2005314805A (ja) マグネシウム化合物、金属材料およびマグネシウム化合物の製造方法
JP2004169064A (ja) 銅−タングステン合金およびその製造方法
KR20190050562A (ko) 알루미늄-티타늄 복합재료의 제조방법 및 이에 의해 제조된 알루미늄-티타늄 복합재료
Kim et al. Microstructures and mechanical properties of CNT/AZ31 composites produced by mechanical alloying
Shaari et al. Sintering and dimensional analysis of Cu/CNTs via a powder metallurgy route

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 19/11/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17900916

Country of ref document: EP

Kind code of ref document: A1