WO2018169348A1 - 항-tnf 알파 항체의 액상 제제 - Google Patents

항-tnf 알파 항체의 액상 제제 Download PDF

Info

Publication number
WO2018169348A1
WO2018169348A1 PCT/KR2018/003097 KR2018003097W WO2018169348A1 WO 2018169348 A1 WO2018169348 A1 WO 2018169348A1 KR 2018003097 W KR2018003097 W KR 2018003097W WO 2018169348 A1 WO2018169348 A1 WO 2018169348A1
Authority
WO
WIPO (PCT)
Prior art keywords
formulation
adalimumab
tnf alpha
alpha antibody
arginine
Prior art date
Application number
PCT/KR2018/003097
Other languages
English (en)
French (fr)
Inventor
윤소라
고연경
소진언
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=63522490&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018169348(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to MA46988A priority Critical patent/MA46988A1/fr
Priority to UAA201909838A priority patent/UA123847C2/uk
Priority to AU2018236651A priority patent/AU2018236651B2/en
Priority to JP2019551275A priority patent/JP7109849B2/ja
Priority to BR112019019162A priority patent/BR112019019162A2/pt
Priority to RU2019130728A priority patent/RU2756619C2/ru
Priority to CN201880031705.6A priority patent/CN110621303A/zh
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to MX2019010895A priority patent/MX2019010895A/es
Priority to NZ757965A priority patent/NZ757965A/en
Priority to MYPI2019005331A priority patent/MY197202A/en
Publication of WO2018169348A1 publication Critical patent/WO2018169348A1/ko
Priority to PH12019502075A priority patent/PH12019502075A1/en
Priority to CONC2019/0010860A priority patent/CO2019010860A2/es
Priority to ZA2019/06696A priority patent/ZA201906696B/en
Priority to JP2022076654A priority patent/JP2022097600A/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39591Stabilisation, fragmentation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464436Cytokines
    • A61K39/464438Tumor necrosis factors [TNF], CD70
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2121/00Preparations for use in therapy

Definitions

  • the present invention relates to liquid formulations of anti-TNF alpha antibodies, specifically adalimumab.
  • Tumor necrosis factor alpha is a cytokine produced by various types of cells such as monocytes and macrophages by stimulation with endotoxin.
  • TNFa is a major mediator of inflammatory, immune, and pathophysiological responses that activate TNF receptors and induce responses such as T-cell activation and thymic cell proliferation (Grell, M., et al. (1995) Cell 83: 793-802).
  • Adalimumab is a recombinant human immunoglobulin G1 monoclonal antibody that selectively binds to tumor necrosis factor alpha and inhibits the immune response by tumor necrosis factor alpha in the body.
  • Adalimumab was developed by BASP Bioresearch Corporation around 1993 and was approved for sale as a treatment for rheumatoid arthritis through Abbott Laboratories.
  • Adalimumab is sold under the trade name Humira, and it is used for the treatment of Crohn's disease, ankylosing spondylitis, psoriatic arthritis, and ulcerative colitis after being approved for the treatment of rheumatoid arthritis.
  • Adalimumab was the first fully human antibody to be developed as a drug and was developed by applying phage display technology and mutated CDRs to enhance affinity.
  • Adalimumab also called D2E7, has a molecular weight of about 148 kD consisting of 1330 amino acids (US Patent 6090382).
  • Adalimumab is a TNFa inhibitor that binds to TNF and prevents TNF-induced responses by preventing TNF receptors and TNF from interacting with p55 and p75 cell surfaces.
  • antibody drugs are a type of protein drugs, and physical and chemical degeneration may occur due to various factors.
  • Protein denaturation may result in structural denaturation such as chemical denaturation such as oxidation, deamidation, and isomerization and fragmentation or aggregation, and when the protein is denatured, the protein itself loses its pharmacological activity and adverse effects in the body. May induce an unnecessary immune response.
  • the antibody is fragmented (Framentation), it may affect the pharmacological activity by changing the binding affinity or the retention time in the body.
  • fragmented antibodies induce aggregation of antibodies.
  • pharmacological activity is reduced by aggregation.
  • the study of protein formulations aims to find the optimal combination by properly mixing the various additives in consideration of the characteristics of each product so that it can be stably stored until the patient is administered.
  • the main purpose of adding the additive is to control the stabilization of the protein and the physical properties of the mixture.
  • Additives are classified into surfactants, stabilizers, preservatives, buffers and isotonic agents according to their purpose and properties.
  • more protein is required to be administered than other protein pharmaceuticals in order to have an effective therapeutic effect.
  • the administration route is a subcutaneous injection, it is important to develop a high-concentration formulation because of difficulty in patient pain and production to administer a large volume at a time.
  • One object of the present invention is to provide a liquid preparation of an anti-TNF alpha antibody.
  • Another object of the present invention is to provide a method for producing the liquid formulation.
  • Another object of the present invention is to provide a method of increasing the stabilization of an anti-TNF alpha antibody using a composition comprising a stabilizer, a surfactant, and arginine.
  • Another object of the present invention is to provide a method of increasing the stabilization of an anti-TNF alpha antibody using a composition comprising no buffer and a stabilizer, a surfactant, and arginine.
  • Anti-TNFa antibodies in particular liquid formulations of adalimumab, according to the present invention may reduce long-term storage by reducing byproduct formation of adalimumab during storage.
  • the liquid formulation according to the present invention may be effectively applied to the therapeutic field related to the pharmacological efficacy of adalimumab in the future.
  • FIG. 1 shows the viscosity according to the additive composition of each sample of Example 1.
  • Fig. 2 shows the number of particles before and after the passage of the pump of the sample and placebo of the sample of Example 7.
  • One aspect of the present invention for solving the above problems is a liquid preparation of an anti-TNF alpha antibody.
  • anti-TNF alpha antibody refers to an antibody that binds to and modulates biological activity of TNF alpha. More specifically, the antibody may have a function of inhibiting TNF alpha signaling by inhibiting binding between TNF alpha and its receptor by binding to TNF alpha. In addition, such anti-TNF alpha antibodies may be monoclonal antibodies.
  • the anti-TNF alpha antibody may be in the form of an antibody fragment comprising a full length antibody or an antigen binding site thereof, but is not particularly limited thereto.
  • the anti-TNF alpha antibody may be a recombinant human immunoglobulin G1 monoclonal antibody, and even more specifically, adalimumab.
  • Information about the adalimumab can be readily obtained by those skilled in the art from known databases.
  • the antibody may be prepared through recombinant DNA technology using a mammalian cell expression system, but is not particularly limited thereto.
  • the antibody can be included in a therapeutically effective amount in a liquid formulation according to the invention.
  • Liquid formulations of the present invention may include stabilizers, surfactants, and arginine in addition to anti-TNF alpha antibodies.
  • the liquid formulation may be a solution formulation capable of stably storing the anti-TNF alpha antibody.
  • protein stability assays well known in the art can be used to measure the stability of anti-TNF alpha antibodies. Stability can be measured at a selected temperature for a selected time. For rapid testing, the formulations can be stored at 40 ° C. for higher or “accelerated” temperatures, eg, 2 weeks to 1 month or more, at which point time-dependent stability is measured.
  • stabilizing anti-TNF alpha antibody in the present invention is meant that for a certain time the loss of active ingredient under certain storage conditions, in particular temperature, is below a certain amount, such as less than 10%. Normally, the anti-TNF alpha antibody retains at least 90%, specifically at least about 92%, for 2 years at 5 ⁇ 3 ° C, 6 months at 25 ⁇ 2 ° C, or 1 to 2 months at 40 ⁇ 2 ° C. Such formulations can be understood to be stable.
  • Stabilizers included in the liquid formulation of the present invention may be a polyol, an amino acid, or a combination thereof.
  • the amino acid may be another amino acid other than arginine.
  • the stabilizer is 1) one type of polyol, 2) one type of polyol and one type of amino acid, 3) one type of polyol, a first amino acid, and a second amino acid combination, 4) a first A combination of a polyol and a second polyol, 5) a combination between a first polyol, a second polyol and one type of amino acid, 6) a combination between a first polyol, a second polyol, a first amino acid, and a second amino acid, or 7) a It may be a kind of amino acid.
  • the polyol may be mannitol, sucrose, trehalose, PEG, or a combination thereof, and more specifically sucrose, trehalose, PEG, or a combination thereof.
  • the PEG may be specifically PEG400 or PEG4000, but is not particularly limited thereto.
  • the polyol in the formulation may be present at a concentration of 0.1 to 100 mg / mL.
  • the amino acid other than arginine may be glycine, leucine, isoleucine, phenylalanine, or proline.
  • the amino acid in the formulation may be present at a concentration of 1 to 300 mM.
  • amino acid in the present invention also encompasses all forms of analogs, solvates, hydrates, stereoisomers, and pharmaceutically acceptable salts thereof of the corresponding amino acids which exhibit substantially the same efficacy.
  • salts includes salts derived from pharmaceutically acceptable inorganic acids, organic acids, or bases.
  • suitable acids include hydrochloric acid, bromic acid, sulfuric acid, nitric acid, perchloric acid, fumaric acid, maleic acid, phosphoric acid, glycolic acid, lactic acid, salicylic acid, succinic acid, toluene-p-sulfonic acid, tartaric acid, acetic acid, citric acid, methanesulfonic acid, formic acid , Benzoic acid, malonic acid, naphthalene-2-sulfonic acid, benzenesulfonic acid and the like.
  • Salts derived from suitable bases may include alkali metals such as sodium, potassium, alkaline earth metals such as magnesium, and ammonium and the like.
  • solvate refers to a complex of an amino acid or salt thereof with a solvent molecule.
  • the stabilizer is (i) sucrose or trehalose, (ii) PEG with a number average molecular weight of 200 to 600, or PEG with a number average molecular weight of 1000 to 8000, (iii) glycine or leucine, and (iv) the above (i) It may be selected from the group consisting of a combination of two or more of (iii), but is not particularly limited thereto.
  • the stabilizing agent may comprise 1) sucrose, trehalose and PEG400, 2) sucrose or trehalose and glycine or leucine, 3) sucrose or trehalose and glycine and leucine, 4) sucrose or trehalose And a combination of PEG4000, 5) a combination of sucrose or trehalose, PEG4000, and glycine, 6) a combination of sucrose or trehalose, PEG4000, and leucine, 7) a combination of sucrose or trehalose, PEG4000, glycine, and leucine, and 8) glycine It may be one selected from the group consisting of, but is not particularly limited thereto.
  • the surfactant included in the liquid formulation of the present invention may be a nonionic surfactant. More specifically, the surfactant may be polysorbate or poloxamer.
  • the surfactant may be polysorbate 80, polysorbate 20, or poloxamer 188, but is not particularly limited thereto.
  • the surfactant may be present at a concentration of 0.1 to 5 mg / mL.
  • Arginine included in the liquid formulation of the present invention may exist in salt form. More specifically, it may be in the form of a pharmaceutically acceptable salt.
  • the arginine may be in the form of arginine hydrochloride, but is not particularly limited thereto.
  • Arginine in the formulation may be present at a concentration of 0.1 to 200 mM. More specifically, arginine may be present at a concentration of 0.1 to 140 mM when the antibody is present in the formulation at 100 mg / mL, and may be present at a concentration of 0.1 to 100 mM when the antibody is present in the formulation at 50 mg / mL. Is not particularly limited thereto.
  • the arginine may be included in the liquid formulation of the present invention as a viscosity lowering agent.
  • the liquid formulation of the present invention may have a viscosity of about 1 to 6 cps, but is not particularly limited thereto.
  • the measurement of the viscosity may be performed using various methods known in the art, for example, but may be performed by the same method as described in Example 1 herein, but is not particularly limited thereto.
  • Liquid formulations of the present invention may further comprise an antioxidant.
  • the term "antioxidant” may play a role in suppressing the generation of impurities that may occur due to the oxidation reaction of the protein in a solution state.
  • antioxidants sodium hydrogen sulfate, ascorbic acid, ascorbyl palmitate, citric acid, butylhydroxyanisole (BHA), butylhydroxytoluene (BHT), thioglycerol, propylgallate, methionine, sodium ascorbate, Sodium citrate, sodium sulfide, sodium sulfite, EDTA and other antioxidants.
  • BHA butylhydroxyanisole
  • BHT butylhydroxytoluene
  • thioglycerol propylgallate
  • methionine sodium ascorbate
  • sodium citrate sodium sulfide
  • sodium sulfite sodium sulfite
  • EDTA EDTA
  • the antioxidant in the formulation specifically methionine may be present at a concentration of 1 to 50 mM, but is not particularly limited thereto.
  • the pH of the liquid formulation of the present invention may be 4 to 6, but is not particularly limited thereto.
  • the liquid formulation may be one containing no additional salt and / or buffer.
  • a formulation comprising at least 50 mg / mL anti-TNF alpha antibody may not include additional salts and / or buffers.
  • preparations according to the invention that do not include them compared to preparations comprising salts, buffers, or both, can impart higher stabilization of heat to anti-TNF alpha antibodies.
  • it is not particularly limited thereto.
  • the pain is reduced when the additional buffer or the amount of additional additives that cause the osmotic pressure of the solution to be out of the osmotic pressure range similar to body fluids
  • the convenience of the patient can be increased.
  • liquid formulation according to the present invention may have the following effects:
  • Liquid formulations according to the present invention comprising arginine may inhibit aggregation of anti-TNF alpha antibody proteins as compared to formulations without arginine, resulting in a relatively low polymer product (HMW) content and / or no arginine Compared to formulations that do not inhibit the production of acidic isomeric antibodies and may comprise relatively low acidic isomeric antibodies.
  • the liquid preparations according to the invention may have the effect of reducing the production of antibodies by denaturation, and / or reducing the aggregation and particle production on certain physical stresses.
  • Solution formulations according to the invention may further comprise a preservative.
  • the preservative means a compound added to a pharmaceutical formulation to act as an antimicrobial agent, and such preservatives include benzalkonium chloride, benzethonium, chlorohexidine, phenol, m-cresol, benzyl alcohol, methylparaben, propylparaben, Chlorobutanol, o-cresol, p-cresol, chlorocresol, phenylmercuric nitrate, thimerosal, benzoic acid and the like can be used, but are not limited thereto. These preservatives may be used alone or in combination of two or more thereof.
  • Liquid formulations according to the invention may be in the form of pharmaceutical compositions.
  • Formulations of the present invention include rheumatoid arthritis, psoriasis, psoriatic arthritis, axial spondyloarthritis (eg, ankylosing spondylitis, severe axial spondyloarthritis, in which radiological ankylosing spondylitis is not identified), vasculitis, Alzheimer's disease, ulcerative colitis, Behcet's enteritis, It may be used for the prophylaxis or treatment of purulent sweating, uveitis, idiopathic arthritis, pediatric plaque psoriasis, or Crohn's disease (including adult Crohn's disease, childhood Crohn's disease), but is not limited thereto.
  • Formulations according to the invention may be administered to the body by oral administration or parenteral administration, including but not limited to subcutaneous, intramuscular, intraperitoneal, intrasternal, transdermal, and intravenous injections and infusions.
  • Another aspect of the invention is a method of preparing a liquid formulation of an anti-TNF alpha antibody, comprising mixing the anti-TNF alpha antibody, stabilizer, surfactant, and arginine with each other.
  • Yet another aspect of the invention is a method of increasing stabilization of an anti-TNF alpha antibody using a composition comprising a stabilizer, a surfactant, and arginine.
  • Another object of the present invention is to provide a method of increasing the stabilization of an anti-TNF alpha antibody using a composition comprising no buffer and a stabilizer, a surfactant, and arginine.
  • Formulation 1 was prepared with 55 mg / mL sucrose, 5 mM methionine, 1 mg / mL polysorbate80, 100 mg / mL adalimumab, pH 5.2 to identify additives for use in preparing adalimumab liquid formulations. .
  • formulations 2 to 13 were prepared by adding arginine hydrochloride, lysine hydrochloride, leucine, isoleucine, phenylalanine, glutamic acid, glycine, proline, alanine, sodium chloride, calcium chloride, and magnesium chloride in addition to the composition of Formulation 1.
  • arginine hydrochloride lysine hydrochloride
  • leucine leucine
  • isoleucine phenylalanine
  • glutamic acid glycine
  • proline proline
  • alanine sodium chloride
  • calcium chloride calcium chloride
  • magnesium chloride magnesium chloride
  • Formulation Number Additive composition Viscosity (cp) Formulation 1 - 3.23 Formulation 2 Arginine Hydrochloride 20 mM 3.04 Formulation 3 Lysine Hydrochloride 40 mM 3.14 Formulation 4 Leucine 40 mM 3.28 Formulation 5 Isoleucine 40 mM 3.26 Formulation 6 Phenylalanine 15 mM 3.21 Formulation 7 Glutamic Acid 7.5 mM 3.07 Formulation 8 Glycine 40 mM 3.20 Formulation 9 Proline 40 mM 3.20 Formulation 10 Alanine 40 mM 3.21 Formulation 11 Sodium chloride 40 mM 3.12 Formulation 12 Calcium Chloride 20 mM 2.94 Formulation 13 Magnesium chloride 20 mM 3.01
  • the viscosity of the formulation 1 composed of sucrose, methionine, polysorbate 80, and adalimumab was 3.23.
  • the viscosity was 3.20 to 3.28, which did not change significantly.
  • the arginine hydrochloride, lysine hydrochloride, glutamic acid, sodium chloride, calcium chloride, magnesium chloride and the like was added, the viscosity decreased to 2.94 to 3.14.
  • each formulation was sterile filtered with a pore size filter of 0.2 ⁇ m, soaked in 0.4 mL of a 1.0 mL glass syringe, sealed and stored at 40 ° C. for 2 months. After storage, each sample was analyzed by SE-HPLC to analyze the content of high molecular weight impurities (HMW) such as oligomers and aggregates and low molecular weight impurities (LMW) which are fragments of adalimumab molecules.
  • HMW high molecular weight impurities
  • LMW low molecular weight impurities
  • the formulation was prepared as follows.
  • Formulation 14 was prepared such that sucrose 55 mg / mL, methionine 5 mM, polysorbate 80 1 mg / mL, and adalimumab 100 mg / mL, and 20 mg of arginine hydrochloride and 40 mM arginine hydrochloride were added to the composition of Formulation 14 to form 15 and Formulation 16 was prepared and filled in 0.4 mL in 1 mL glass syringe. Each syringe was stored at 40 ° C. for 2 months and then analyzed by SE-HPLC to assess stability. The composition of each formulation and the HMW content before and after storage are shown in Table 4.
  • Formulation 14 Sucrose 55mg / mL, Methionine 5mM, Polysorbate80 1mg / mL, Arginine Hydrochloride 0mM 0.17 1.00
  • Formulation 15 Sucrose 55mg / mL, Methionine 5mM, Polysorbate80 1mg / mL, Arginine Hydrochloride 20mM 0.17 0.82
  • Formulation 16 Sucrose 55mg / mL, Methionine 5mM, Polysorbate80 1mg / mL, Arginine hydrochloride 40mM 0.16 0.82
  • Formulation Formulation Summary 40 o 1 month before storage 40 o C After 1 month of storage Acidic K0 K1 Basic Acidic K0 K1 Basic A Sucrose 55mg / mL, Methionine 5mM, Polysorbate80 1mg / mL, Adalimumab 100mg / mL 13.36 70.77 12.44 3.44 33.39 51.58 10.70 4.33 B Sucrose 55mg / mL, Methionine 5mM, Polysorbate80 1mg / mL, Adalimumab 100mg / mL, Arginine Hydrochloride 20mM 13.15 71.14 12.41 3.30 31.31 52.51 11.16 5.01
  • Formulation A was prepared to contain 55 mg / mL sucrose, 5 mM methionine, 1 mg / mL polysorbate 80 (PS80) and 100 mg / mL adalimumab; for formulation B, Arginine Hydrochloride in the composition of Formulation A It was prepared to further contain 20 mM. 40 o C
  • the acid isomer antibody content before storage for 1 month was similar, and compared with the acid isomer antibody content after storage, formulation B containing arginine hydrochloride had a lower content of acid isomer antibody than formulation A, and a content of K0 You can find out more.
  • Formulation 17 was prepared to be 55 mg / mL sucrose, 5 mM methionine, 1 mg / mL polysorbate80 and 100 mg / mL adalimumab.
  • formulation 18 and formulation 19 were prepared by changing the type of surfactant to polysorbate 20 and poloxamer 188 while fixing the same amount of the surfactant.
  • HMW and LMW content was not significantly different before and after storage at 40 ° C. for 1 month depending on the type of surfactant. That is, the stability of the formulation including polysorbate 80, the formulation including polysorbate 20, and the formulation including poloxamer 188 appeared similar.
  • Formulation 20 was prepared to be 55 mg / mL sucrose, 5 mM methionine, 1 mg / mL polysorbate 80 and 100 mg / mL adalimumab (the same as Formula 17 in Example 4).
  • the formulations 21-23 were prepared by changing the type of polyol to trehalose, PEG400 and PEG4000 while fixing the total content of polyol in the same manner. Each formulation was sterile filtered and filled with 0.4 mL in 1 mL glass syringe and stored at 40 ° C. for 1 month. Samples before and after storage were analyzed for impurity contents of HMW and LMW using SE-HPLC.
  • composition of the formulations 20-23 and the results of analyzing the SE-HPLC content before and after 1 month storage at 40 o C are shown in Table 7.
  • a formulation consisting of a polyol, arginine, methionine, a surfactant, and an additional stabilizer Humira Comparison of stability with formulation
  • Samples were prepared by varying the surfactant and polyol types, the presence or absence of additional stabilizers, and arginine hydrochloride content in the composition using methionine 5mM as a stabilizer, and prepared samples in commercial Humira formulations and stored at 40 o C. Analysis by SE-HPLC compared the stability of each formulation.
  • the composition of each formulation is shown in Table 8 and the impurity content before and after 2 months storage at 40 ° C. of each composition is shown in Table 9.
  • Formulation Number Formulation Composition 24 Adalimumab 100 mg / mL, methionine 5 mM, arginine hydrochloride 0 mM, polysorbate80 1 mg / mL, sucrose 55 mg / mL 25 Adalimumab 100 mg / mL, methionine 5 mM, arginine hydrochloride 20 mM, polysorbate80 1 mg / mL, sucrose 55 mg / mL 26 Adalimumab 100 mg / mL, methionine 5 mM, arginine hydrochloride 40 mM, polysorbate80 1 mg / mL, sucrose 55 mg / mL 27 Adalimumab 100 mg / mL, methionine 5 mM, arginine hydrochloride 40 mM, poloxamer188 1 mg / mL, sucrose 55 mg / mL 28 Adalimumab 100 mg / m
  • sucrose and trehalose as polyol a combination of sucrose and PEG4000 and a combination of trehalose and PEG4000 were used, and polysorbate 80 and poloxamer 188 were used as surfactants.
  • Arginine was used at 0, 20 or 40 mM, and the formulation was designed with glycine (Gly), leucine (Leu) or a combination of glycine and leucine to confirm the stability of adalimumab at 100 mg / mL. Compared to the formulation. The stability at 50 mg / mL was also compared with the composition of Humira formulations and Formulation 44 (same except for Formula 26 and adalimumab content).
  • the present formulation consisting of various polyols and surfactants, arginine hydrochloride and additional stabilizers was more stable in terms of increasing impurities than commercial Humira formulations.
  • the PEG 4000 with a polyol in the preceding Example 5 0.4% was high, in the present embodiment, though two months yieoteumedo storage time Mixing of sucrose or trehalose with PEG4000 showed that the adalimumab impurity content was comparable to that of sucrose and trehalose alone. Accordingly, it was confirmed that replacing a portion of sucrose or trehalose with PEG having a higher molecular weight may be used as a method of maintaining osmotic pressure and stability when additional additives are used to obtain additional effects such as antioxidant.
  • a placebo except for adalimumab alone was made in each sample, and the number of particles before and after passing the pump was evaluated by passing a rotary piston pump under the same conditions.
  • a micro flow imaging device from Protein Simple was used as a method of particle number evaluation. The composition of each sample is shown in Table 10, and the number of particles before and after the pump passage of the placebo of each sample and the sample is shown in Table 11 and FIG.
  • Formulation 46 Adalimumab 100 mg / mL, sucrose 55 mg / mL, arginine hydrochloride 40 mM, methionine 5 mM, polysorbate 80 1 mg / mL, pH5.2 Formulation 47
  • Formulation 48 Adalimumab 50 mg / mL, Sodium phosphate monobasic dihydrate 0.86 mg / mL, Sodium phosphate dibasic dihydrate 1.53 mg / mL, Sodium citrate 0.3 mg / mL mL, Citric acid monohydrate 1.3 mg / mL, mannitol 12 mg / mL, sodium chloride 6.16 mg / mL, polysorbate 80 (PS80) 1 mg / mL
  • Formulation 46 and Formulation 47 have the same additive composition, and the content of adalimumab is 100mg / mL for Formulation 46 and 50mg / mL for Formulation 47.
  • Formulation 48 the composition and adalimumab content were adjusted in the same way as commercial Humira.
  • the formulation 46 is 85743 / mL
  • formulation 47 is 53734 / mL, as shown in Table 11 and Figure 2, the high adalimumab formulation It was found that 46 had more particles than Formula 47 with a low content of adalimumab.
  • the number of particles after passing through the pump was 150617 / mL, which was higher than that of Formulas 46 and 47.
  • the particle concentrations of placebo in all formulations were significantly lower than the particle concentrations after pumping of samples containing adalimumab at 3618 / mL and 7938 / mL after pumping, as measured in adalimumab containing samples after pumping It was confirmed that the particles were from adalimumab. Accordingly, it can be seen that the formulation containing arginine hydrochloride effectively protects adalimumab against mechanical stress as compared to commercial humira formulations.
  • ArgHCl (mM) 100 mg / mL adalimumab in cp 50 mg / mL adalimumab in cp 0 2.71 1.47 20 2.59 1.42 40 2.59 1.42 60 2.62 1.42 80 2.62 1.45 100 2.63 1.48 120 2.67 1.49 140 2.70 1.50 160 2.75 1.52 180 2.79 1.54
  • Table 12 shows the viscosity of adalimumab 100 mg / mL, polysorbate 80 1 mg / mL, and various concentrations of arginine hydrochloride (ArgHCl) added formulations: adalimumab 100 mg / ml without ArgHCl, polysorbate 80 1 mg
  • ArgHCl arginine hydrochloride
  • the viscosity could be lowered by adding ArgHCl of 140 mM or less in the case of 100 mg / mL adalimumab solution, and the arginine of 100 mM or less in the case of 50 mg / mL adalimumab solution.
  • samples of formulations containing no buffers and salts were prepared, and samples of formulations with buffers or salts added to the formulations were prepared for 2 weeks at 40 ° C. And storage for 1 month was compared to the stability by SE-HPLC, the pH of each sample was measured.
  • Humira composition Buffer Sodium phosphate monobasic dihydrate 0.86 mg / mL, Sodium phosphate dibasic dihydrate 1.53 mg / mL, Sodium citrate 0.3 mg / mL, Citric acid monohydrate 1.3 mg / mL
  • Table 13 shows the formulation of the samples and the zerotime of each sample, 40 o C 2 weeks storage, 40 o SE-HPLC analysis after 1 month storage.
  • Samples of A-1 were prepared to be adalimumab 100 mg / mL and PS80 1 mg / mL, and A-2 to A-5 were prepared to contain buffers or salts.
  • concentration of adalimumab of A-1 ⁇ A-5 composition was adjusted to 50mg / mL to prepare A-6 ⁇ A-10.
  • HMW when comparing formulations containing salts such as A-1 and A-6 with salts such as NaCl, ammonium sulfate, sodium sulfate, and the like, HMW may be compared to a formulation containing no salt. And the increase of LMW is small. Thus it can be seen that in the case of adalimumab formulations no salts are better in terms of the stability of adalimumab.
  • adalimumab 100 mg / mL or 50 mg / mL
  • stabilizers sucrose 55 mg / mL or glycine 160 mM
  • arginine hydrochloride ArgHCl 50 mM
  • methionine 5 mM A sample of a formulation consisting of 1 mg / mL of Polysorbate 80 was prepared and a sample of the formulation with buffer or salt added to the formulation was prepared.
  • Humira composition 100 mg / mL of adalimumab or 50 mg / mL of adalimumab was prepared, and each formulation was filled with 0.4 mL of free syringes and stored at 55 ° C. for 1 week to be stable with SE-HPLC. Were compared and pH was measured. Table below shows each composition and monomer content before and after storage at 55 o C for 1 week.
  • Humira composition Sodium phosphate monobasic dihydrate 0.86 mg / mL, Sodium phosphate dibasic dihydrate 1.53 mg / mL, Sodium citrate 0.3 mg / mL, Citric acid monohydrate 1.3 mg / mL, Mannitol 12 mg / mL, Sodium chloride 6.16 mg / mL, PS80 1 mg / mL
  • the monomer content before storage of each sample was similar to 98.8 ⁇ 99.0%. After storage at 55 o C for one week, the monomer content varied by composition.
  • adalimumab 112 mg / mL solution and adalimumab 112 mg / mL and formulations containing 42 mg / mL of each polyol were prepared as follows. 5 cycle and 10 cycle freeze thaw was repeated at -70 o C and 5 o C and analyzed by SE-HPLC to analyze the contents of HMW, LMW and monomer.
  • Table 15 shows the SE-HPLC results for each sample point of the formulation and stability test of the sample.
  • the formulations with mannitol, sucrose, or trehalose showed a tendency to decrease HMW and LMW increase compared to the formulation without polyol, and stabilized by polyol. It was confirmed that there is. Comparing the stabilization effect of each type of polyol, when the sucrose or trehalose was added, the contents of HMW and LMW were similar to the sample before freezing, and the purity was similar to that before freezing after 10 cycles of freezing.
  • the sample containing mannitol showed a tendency to increase the HMW content after repeated freeze thaw, and it was confirmed that the purity decreased during the freeze thaw period. Accordingly, it was confirmed that the stabilizing effect of sucrose and trehalose is superior to mannitol.
  • Adalimumab formulation freeze thaw test for identification and comparison of stabilizing effects of arginine, methionine, glycine and sucrose
  • Samples were prepared to be adalimumab 130 mg / mL, polysorbate 80 1 mg / mL, and samples were prepared to include additional stabilizers.
  • the impurity contents of each sample during cold thaw were similar for both HMW and LMW. After freeze-thaw, the LMW of all samples was similar, but the HMW content was different according to the type and content of additional stabilizer. The HMW increased to 1.76% after 5 freeze thaws when no additional stabilizer was included, but the HMW decreased significantly to 0.67% after 5 freeze thaws with arginine hydrochloride.
  • the adalimumab content is 100 mg / mL or 50 mg / mL, arginine hydrochloride (ArgHCl) 50 mM, polysorbate 80 (PS80) 1 mg / mL
  • ArgHCl arginine hydrochloride
  • PS80 polysorbate 80
  • a sample was prepared by containing 5 mM methionine, and a sample was prepared using glycine, a combination of glycine and methionine, or sucrose as an additional stabilizer in this composition.
  • the samples were prepared in Humira commercial composition so that the content of adalimumab is 100 mg / mL or 50 mg / mL.
  • Samples of the composition comprising arginine hydrochloride, polysorbate 80, methionine, adalimumab showed similar stability before storage at 40 ° C. for 4 weeks.
  • samples of commercial composition of Humira had 0.1% higher HMW than other samples immediately after preparation.
  • HMW and LMW contents after storage was relatively low at 2.81-2.99% at 100 mg / mL of adalimumab and 2.56-2.71% at 50 mg / mL of adalimumab for all samples containing arginine hydrochloride, but Humira commercially prepared samples In the case of adalimumab 100 mg / mL, 4.03%, and adalimumab 50 mg / mL were 4.06% higher than those of the arginine-containing sample.
  • the combination of the additives described in this example that is, the formulation containing arginine, and the formulation containing polyol or amino acid as arginine and an additional stabilizer, are superior in terms of stability than commercial Humira formulations.
  • Adalimumab Sucrose, glycine, Leucine
  • adalimumab arginine hydrochloride (ArgHCl), sodium chloride (NaCl), polysorbate 80 (PS80), methionine (Met), sucrose (Sucrose), glycine (Gly), leucine
  • ArgHCl arginine hydrochloride
  • NaCl sodium chloride
  • PS80 polysorbate 80
  • methionine (Met) sucrose
  • Sucrose sucrose
  • Gly glycine
  • Samples of various compositions were prepared by the combination of (Leu).
  • Humira commercial composition so that the content of adalimumab is 100 mg / mL or 50 mg / mL for comparison.
  • Each formulation was filled with 0.4 mL in a 1 mL glass syringe, and the monomer content before and after storage at 40 ° C. for 4 weeks was analyzed by SE-HPLC.
  • SE-HPLC SE-HPLC
  • Adalimumab (mg / mL) ArgHCl (mM) NaCl (mM) Met (mM) PS80 (mg / mL) Sucrose (mg / mL) Gly (mM) Leu (mM) 40 ° C 4 weeks before storage After 4 weeks at 40 ° C A-40 100 50 5 One 55 99.29 97.15 A-41 100 50 5 One 45 99.33 97.16 A-42 100 50 25 One 45 99.30 97.14 A-43 100 50 5 One 45 20 99.30 97.18 A-44 100 50 5 One 45 20 99.30 97.12 A-45 100 50 5 One 35 99.30 97.06 A-46 100 50 25 One 35 99.30 97.14 A-47 100 50 25 One 35 40 99.33 97.09 A-48 100 50 25 One 35 20 20 99.29 97.23 A-49 100 50 5 One 25 99.31 97.11 A-50 100 50 25 One 25 99.31 97.11
  • the monomer content of all samples was similar between 99.27% and 99.33%, regardless of formulation, before storage at 40 ° C.
  • the monomer content after storage at 40 ° C for 4 weeks in a sample containing 100 mg / mL of adalimumab (A-40 to A-61) was 97.04 for formulations containing no sodium chloride (A-40 to A-55). % -97.23%, 96.85% -97.00% for formulations containing sodium chloride (A-56-A-61, excluding commercial Humira composition A-62), slightly lower than formulations without sodium chloride.
  • the difference in monomer content after 4 weeks of storage at 40 ° C according to the content of sodium chloride, sucrose, methionine, glycine, and leucine was relatively insignificant. It was found to be at least 1% higher than the monomer content of 95.64% of the commercial Humira composition (A-62) of Dalimumab concentration.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Oncology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cell Biology (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Endocrinology (AREA)
  • Biomedical Technology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 항-TNF 알파 항체, 구체적으로 아달리무맙의 액상 제제에 관한 것이다.

Description

항-TNF 알파 항체의 액상 제제
본 발명은 항-TNF 알파 항체, 구체적으로 아달리무맙의 액상 제제에 관한 것이다.
종양괴사인자 알파 (TNF alpha, TNFa)는 엔도톡신 등의 자극에 의해 단핵백혈구 및 대식세포 등의 다양한 종류의 세포에 의해 만들어지는 사이토카인이다. TNFa는 TNF 수용체를 활성화시켜 T-세포 활성화, 흉선세포 증식 등의 반응을 유도하는 역할을 하는 주요 염증성, 면역성, 병리생리학적 반응의 주요 매개체이다 (Grell, M., et al. (1995) Cell, 83: 793-802).
아달리무맙은 체내에서 종양괴사인자 알파에 선택적으로 결합하여 종양괴사인자 알파에 의한 면역반응을 저해하는 재조합 인간 면역글로불린 G1 단일클론성 항체이다. 아달리무맙은 1993년경 BASP Bioresearch Corporation에 의해 개발되었고 애벗래버러토리스 사 (Abbott Laboratories)를 통해 류마티스 관절염 치료제로 판매 승인되었다. 아달리무맙은 휴미라라는 상품명으로 판매되고 있으며, 휴미라는 류마티스 관절염 치료제로 판매허가를 받은 후 크론병, 강직성 척추염, 건선성 관절염, 궤양성 대장염 등의 치료에 사용되고 있다.
아달리무맙은 의약품으로 개발된 최초의 완전 인간항체로 파아지 디스플레이 기술을 적용하여 개발되었고 CDR에 돌연변이를 일으켜 친화력이 증강되었다. 아달리무맙은 D2E7이라고도 불리며, 1330개의 아미노산으로 이루어진 약 148kD의 분자량을 가지고 있다 (US 등록특허 6090382). 아달리무맙은 TNF와 결합하여 p55, p75 세포 표면의 TNF 수용체와 TNF가 서로 반응하지 못하도록 하여 TNF가 유도하는 반응을 막는 TNFa 저해제이다.
한편, 항체의약품은 단백질 의약품의 한 종류로 다양한 요인에 의해 물리적, 화학적 변성이 일어날 수 있다. 단백질의 변성은 산화, 탈아미드화, 이성질체화와 같은 화학적 변성과 단편이 생기거나 응집이 되는 등의 구조적 변성이 일어날 수 있으며, 단백질이 변성될 경우 단백질 자체의 약리 활성을 잃으며, 체내에서 부작용으로 불필요한 면역반응을 유도할 수도 있다. 항체가 단편화(Framentation)되는 경우, binding affinity나 체내에 머무르는 시간을 변화시켜 약리활성에 영향을 미칠 수 있다. 또한 단편화된 항체가 항체의 응집을 유도한다는 연구결과가 있다. 또한 응집에 의해 약리활성이 줄어들기도 한다. 상용 인터페론 베타 제품을 비교하였을 때 응집물 (aggregate) 및 입자 (particle)의 함량이 많은 제품이 체내에서 중화항체가 발생되는 비율도 높다는 연구 결과가 있다 (Barnard et al., 2013, J. Pharm. Sci. 102:915). 체내에서 중화항체가 생기면 단백질의약품을 주사하더라도 그 단백질의약품에 중화항체가 결합하여 단백질의약품의 안전성, 약리효과, 약동학에 영향을 미친다. 또한 EpoetinAlfa의 변성 및 응집이 Epoetin Alfa 의약품의 면역원성 증가의 원인으로 밝혀지기도 했다. 따라서 단백질 의약품의 경우 저장기간 동안 그 생리활성을 잃지 않도록, 또한 단백질이 단편화, 응집이나 입자화되지 않도록 적절한 제형으로 제조하는 것이 매우 중요하다. 따라서 여러 단백질 의약품의 제형에 대한 연구가 활발하게 일어나고 있다.
단백질 제형의 연구는 각 제품의 특성을 고려하여 여러 첨가제를 적절히 혼합함으로써 최적의 조합을 찾아 환자가 투여하기 전까지 안정하게 보관할 수 있게 하는데 그 목적이 있다. 첨가제를 투입하는 주된 목적은 단백질의 안정화와 혼합물질의 물리적인 특성을 조절하기 위함이다. 첨가제는 그 목적과 특성에 따라 계면활성제, 안정화제, 보존제, 완충제 및 등장화제 등으로 구분된다. 항체 의약품의 경우 유효한 치료 효과를 내기 위해 다른 단백질 의약품보다 많은 양의 단백질이 투여될 필요가 있다. 또한 투여 루트가 피하주사인 경우 한 번에 많은 부피를 투여하기에는 환자의 통증 및 생산 등의 어려움이 있기 때문에 고농도 제형개발이 중요하다. 단백질의 농도가 높아지면 intermolecular interaction이 증가하면서 응집체 증가, 점도 증가, 용액의 gel 화 및 침전 등의 문제점이 생긴다. 이 중, 점도가 지나치게 증가하면 생산이 용이하지 못할 뿐만 아니라 주사압의 증가로 환자에게 투여하기 어렵다. 따라서 고농도의 항체 용액의 점도를 예측하고 낮추는 여러 가지 방법이 연구되고 있다.
본 발명의 하나의 과제는 항-TNF 알파 항체의 액상 제제를 제공하는 것이다.
본 발명의 다른 하나의 과제는 상기 액상 제제의 제조 방법을 제공하는 것이다.
본 발명의 다른 하나의 과제는 안정화제, 계면활성제, 및 아르기닌을 포함하는 조성물을 사용하여, 항-TNF 알파 항체의 안정화를 증가시키는 방법을 제공하는 것이다.
본 발명의 다른 하나의 과제는 완충제를 포함하지 않고, 안정화제, 계면활성제, 및 아르기닌을 포함하는 조성물을 사용하여, 항-TNF 알파 항체의 안정화를 증가시키는 방법을 제공하는 것이다.
본 발명에 따른 항-TNFa 항체, 구체적으로 아달리무맙의 액상 제제는 저장기간 동안에 아달리무맙의 부산물 형성을 감소시켜 장기보관을 가능케 할 수 있다. 또한, 생산 공정과 운송 시의 물리적인 스트레스에 변성 및 응집이 일어나는 것을 방지하여 아달리무맙의 약리효능을 장기간 안정하게 보존할 수 있다. 따라서 본 발명에 따른 액상 제제는 향후 아달리무맙의 약리 효능에 관련된 치료분야에 효과적으로 응용될 수 있을 것이다.
도 1은, 실시예 1의 각 시료의 첨가제 조성에 따른 점도를 나타낸 것이다.
도 2은, 실시예 7의 시료 및 시료의 placebo의 펌프 통과 전과 후의 입자 수를 나타낸 것이다.
이하에서는, 본 발명을 더욱 상세히 설명한다.
한편, 본원에서 개시되는 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본원에서 개시된 다양한 요소들의 모든 조합이 본 발명의 범주에 속한다. 또한, 하기 기술되는 구체적인 서술에 의하여 본 발명의 범주가 제한된다고 할 수 없다.
또한, 당해 기술분야의 통상의 지식을 가진 자는 통상의 실험만을 사용하여 본 출원에 기재된 본 발명의 특정 양태에 대한 다수의 등가물을 인지하거나 확인할 수 있다. 또한, 이러한 등가물은 본 발명에 포함되는 것으로 의도된다.
상기 과제를 해결하기 위한 본 발명의 하나의 양태는 항-TNF 알파 항체의 액상 제제이다.
본 발명에서 용어, "항-TNF 알파 항체"는 TNF 알파에 결합하여 이의 생물학적 활성을 조절하는 항체를 말한다. 보다 구체적으로, 상기 항체는 TNF 알파에 결합하여 TNF 알파와 이의 수용체 간의 결합을 억제하여 TNF 알파에 의한 신호전달을 억제하는 기능을 보유할 수 있다. 또한, 이러한 항-TNF 알파 항체는 단일클론항체일 수 있다.
상기 항-TNF 알파 항체는 전장 항체 또는 이의 항원 결합 부위를 포함하는 항체 단편의 형태일 수 있으나, 특별히 이에 제한되지 않는다.
보다 구체적으로, 상기 항-TNF 알파 항체는 재조합 인간 면역글로불린 G1 단일클론 항체일 수 있으며, 보다 더 구체적으로 아달리무맙일 수 있다. 상기 아달리무맙에 대한 정보는 공지의 데이터베이스에서 당업자가 용이하게 입수할 수 있다.
상기 항체는 포유세포 발현 시스템을 이용한 재조합 DNA 기술을 통하여 제조될 수 있으나, 특별히 이에 제한되는 것은 아니다.
상기 항체는 본 발명에 따른 액상 제제에 치료학적 유효량으로 포함될 수 있다. 구체적인 예로, 1 내지 250mg/mL의 농도, 구체적으로, 20 내지 200mg/mL의 농도, 더 구체적으로는, 50mg/mL 내지 200mg/mL의 농도, 더욱 더 구체적으로 50mg/mL, 100mg/mL, 또는 130mg/mL의 농도로 존재할 수 있으나, 특별히 이에 제한되는 것은 아니다.
본 발명의 액상 제제는 항-TNF 알파 항체 외에 안정화제, 계면활성제, 및 아르기닌을 포함할 수 있다. 상기 액상제제는 항-TNF 알파 항체를 안정적으로 저장할 수 있는 용액 제형일 수 있다.
구체적으로, 항-TNF 알파 항체의 안정성을 측정하기 위하여 당해 분야에서 널리 알려진 단백질 안정성 분석법이 이용될 수 있다. 안정성은 선택된 시간 동안에 선택된 온도에서 측정할 수 있다. 신속한 시험을 위해, 제형은 보다 높은 또는 "가속화된" 온도, 예를 들면, 2주 내지 1개월 이상 동안 40℃에서 보관할 수 있으며, 이 시점에서 시간-의존성 안정성을 측정한다.
본 발명에서 "항-TNF 알파 항체에 안정화를 부여한다는 것"은 일정한 시간 동안 특정 저장 조건, 구체적으로 특정 온도 하에서 활성 성분의 손실이 특정량 미만, 예컨대 10% 미만임을 의미한다. 보통, 5±3℃에서 2년, 25±2℃에서 6개월 또는 40±2℃에서 1개월 내지 2개월 동안 항-TNF 알파 항체가 90% 이상, 구체적으로는 약 92% 이상의 잔존율을 유지하는 경우 이러한 제제는 안정한 것으로 이해될 수 있다.
본 발명의 액상 제제에 포함되는 안정화제는 폴리올, 아미노산, 또는 이들의 조합일 수 있다. 여기서, 상기 아미노산은 아르기닌 외의 다른 아미노산일 수 있다.
구체적으로, 상기 안정화제는 1) 한 종류의 폴리올, 2) 한 종류의 폴리올과 한 종류의 아미노산 간의 조합, 3) 한 종류의 폴리올, 제1 아미노산, 및 제2 아미노산의 조합, 4) 제1 폴리올 및 제2 폴리올의 조합, 5) 제1 폴리올, 제2 폴리올 및 한 종류의 아미노산 간의 조합, 6) 제1 폴리올, 제2 폴리올, 제1 아미노산, 및 제2 아미노산 간의 조합, 또는 7) 한 종류의 아미노산일 수 있다.
보다 구체적으로, 상기 폴리올은 만니톨, 수크로오스, 트레할로스, PEG, 또는 이들의 조합일 수 있으며, 보다 구체적으로 수크로오스, 트레할로스, PEG, 또는 이들의 조합일 수 있다. 상기 PEG는 구체적으로 PEG400 혹은 PEG4000일 수 있으나, 특별히 이에 제한되는 것은 아니다. 상기 제제에서 폴리올은 0.1 내지 100 mg/mL의 농도로 존재할 수 있다.
보다 구체적으로, 상기 아르기닌 외의 다른 아미노산은 글리신, 류신, 이소류신, 페닐알라닌, 또는 프롤린일 수 있다. 상기 제제에서 아미노산은 1 내지 300 mM의 농도로 존재할 수 있다.
또한, 본 발명에서 용어 "아미노산"은 실질적으로 동일한 효능을 나타내는 해당 아미노산의 유사체, 용매화물, 수화물, 입체 이성질체, 및 이들의 약학적으로 허용가능한 염의 형태도 모두 포함한다.
본 발명에서 용어, "약학적으로 허용가능한 염"이란 약학적으로 허용되는 무기산, 유기산, 또는 염기로부터 유도된 염을 포함한다. 적합한 산의 예로는 염산, 브롬산, 황산, 질산, 과염소산, 푸마르산,말레산, 인산, 글리콜산, 락트산, 살리실산,숙신산, 톨루엔-p-설폰산, 타르타르산, 아세트산,시트르산, 메탄설폰산,포름산, 벤조산, 말론산, 나프탈렌-2-설폰산, 벤젠설폰산 등을 들 수 있다. 적합한 염기로부터 유도된 염은 나트륨, 칼륨 등의 알칼리 금속,마그네슘 등의 알칼리 토금속,및 암모늄 등을 포함할 수 있다.
또한, 본 발명에서 사용된 용어 "용매화물"은 아미노산 또는 이의 염이 용매 분자와 복합체를 형성한 것을 말한다.
보다 더 구체적으로,
상기 안정화제는 (i) 수크로오스 또는 트레할로스, (ii) 수평균 분자량이 200 내지 600인 PEG, 또는 수 평균 분자량이 1000 내지 8000인 PEG, (iii) 글리신 또는 류신, 및 (iv) 상기 (i) 내지 (iii) 중 2 이상의 조합으로 이루어진 군에서 선택된 것일 수 있으나, 특별히 이에 제한되지 않는다.
보다 더 구체적인 예로서, 상기 안정화제는 1) 수크로오스, 트레할로스및 PEG400 중 어느 하나, 2) 수크로오스 또는 트레할로스와 글리신 또는 류신의 조합, 3) 수크로오스 또는 트레할로스와 글리신 및 류신의 조합, 4) 수크로오스 또는 트레할로스와 PEG4000의 조합, 5) 수크로오스 또는 트레할로스, PEG4000, 및 글리신의 조합, 6) 수크로오스 또는 트레할로스, PEG4000, 및 류신의 조합, 7) 수크로오스 또는 트레할로스, PEG4000, 글리신, 및 류신의 조합, 및 8) 글리신으로 이루어진 군에서 선택되는 하나일 수 있으나, 특별히 이에 제한되는 것은 아니다.
본 발명의 액상 제제에 포함되는 계면활성제는 비이온성 계면활성제일 수 있다. 보다 구체적으로, 상기 계면활성제는 폴리소르베이트 또는 폴록사머일 수 있다.
구체적으로, 상기 계면활성제는 폴리소르베이트80, 폴리소르베이트20, 또는 폴록사머188일 수 있으나, 특별히 이에 제한되는 것은 아니다.
상기 제제에서 계면활성제는 0.1 내지 5 mg/mL의 농도로 존재할 수 있다.
본 발명의 액상 제제에 포함되는 아르기닌은 염 형태로 존재할 수 있다. 보다 구체적으로, 약학적으로 허용가능한 염의 형태일 수 있다.
보다 구체적으로 상기 아르기닌은 아르기닌 염산염 (Arginine hydrochloride) 형태일 수 있으나, 특별히 이에 제한되는 것은 아니다.
상기 제제에서 아르기닌은 0.1 내지 200 mM의 농도로 존재할 수 있다. 보다 구체적으로, 아르기닌은 상기 항체가 100mg/mL로 제제에 존재하는 경우에는 0.1 내지 140mM의 농도로 존재할 수 있고, 항체가 50mg/mL로 제제에 존재하는 경우에는 0.1 내지 100mM의 농도로 존재할 수 있으나, 특별히 이에 제한되지 않는다.
상기 아르기닌은 점도강하제로서 본 발명의 액상제제에 포함될 수 있다.
아르기닌을 포함함으로써, 본 발명의 액상제제는 약 1 내지 6 cps의 점도를 가질 수 있으나, 특별히 이에 제한되지 않는다. 점도의 측정은 당업계에 공지된 다양한 방법을 이용하여 수행될 수 있으며, 예컨대 본원 실시예 1에 기술된 것과 같은 방법으로 수행될 수 있으나, 특별히 이에 제한되는 것은 아니다.
본 발명의 액상 제제는 항산화제를 더 포함할 수 있다.
본 발명에서 용어, "항산화제"는 용액 상태에서 단백질의 산화 반응 등에 의하여 일어날 수 있는 불순물 생성을 억제시키는 역할을 수행할 수 있다.
이러한 항산화제로서, 황산수소나트륨, 아스코르빈산, 아스코빌팔미테이트, 시트르산, 부틸히드록시아니솔 (BHA), 부틸히드록시톨루엔 (BHT), 티오글리세롤, 프로필갈레이트, 메티오닌, 아스코르브산나트륨, 시트르산나트륨, 황화나트륨, 아황산나트륨, EDTA 및 기타 항산화제를 들 수 있다. 그러나, 이에 제한되는 것은 아니다.
상기 제제에서 항산화제, 구체적으로 메티오닌은 1 내지 50 mM의 농도로 존재할 수 있으나, 특별히 이에 제한되지 않는다.
또한, 본 발명의 상기 액상 제제의 pH는 4 내지 6일 수 있으나, 특별히 이에 제한되는 것은 아니다.
한편, 특별히 이에 제한되는 것은 아니나, 상기 액상 제제는 추가의 염 및/또는 완충액을 포함하지 않는 것일 수 있다.
비제한적인 예로서, 50mg/mL 이상의 항-TNF 알파 항체를 포함하는 제제는 추가의 염 및/또는 완충액을 포함하지 않을 수 있다.
본 발명의 일 실시예에서 확인한 바와 같이, 염, 완충액, 또는 둘 다를 포함하는 제제에 비하여 이들을 포함하지 않는 본 발명에 따른 제제는 항-TNF 알파 항체에 열에 대한 더 높은 안정화를 부여할 수 있다. 그러나, 특별히 이에 제한되는 것은 아니다.
한편, 고농도의 항체 의약품, 예컨대 50mg/mL 이상의 항체가 존재하는 의약품의 제형에 추가적인 완충제, 혹은 용액의 삼투압이 체액과 유사한 삼투압 범위에서 벗어나게 하는 양의 추가 첨가제가 사용되지 않으면 투여 시 통증이 감소하여 환자의 편의성이 증대될 수 있다.
한편, 특별히 이에 제한되는 것은 아니나, 본 발명에 따른 액상제제는 다음과 같은 효과를 보유할 수 있다:
아르기닌을 포함하는 본 발명에 따른 액상제제는 아르기닌를 포함하지 않는 제제에 비하여 항-TNF 알파 항체 단백질의 응집이 억제되어 상대적으로 낮은 고분자 생성물 (HMW)의 함량을 나타낼 수 있고/있거나, 아르기닌을 포함하지 않는 제제에 비하여 산성 이성질 항체의 생성을 억제하여 상대적으로 낮은 산성 이성질 항체를 포함할 수 있다. 특히, 본 발명에 따른 액상제제는 변성에 의한 항체의 생성 감소, 및/또는 특정 물리적 스트레스에 대한 응집 및 파티클 생성 감소의 효과를 보유할 수 있다.
본 발명에 따른 용액 제형은 추가로 보존제를 포함할 수 있다. 상기 보존제는 항균제로서 작용하기 위해 제약 제제에 첨가되는 화합물을 의미하는데, 이러한 보존제로 벤즈알코늄 클로라이드, 벤즈에토늄, 클로로헥시딘, 페놀, m-크레졸, 벤질 알코올, 메틸파라벤, 프로필파라벤, 클로로부탄올, o-크레졸, p-크레졸, 클로로크레졸, 페닐수은산 질산염(phenylmercuric nitrate), 티메로살, 벤조산 등을 사용할 수 있지만, 이에 제한되는 것은 아니다. 이들 보존제는 1종 단독으로 사용하거나 2종 이상을 임의로 조합하여 사용할 수도 있다.
본 발명에 따른 액상제제는 약학적 조성물의 형태일 수 있다.
또한, 상기 기술한 성분 외에도 다양한 약학적으로 허용가능한 담체를 포함할 수 있다.
본 발명의 제형은 류마티스 관절염, 건선, 건선성 관절염, 축성 척추관절염 (예, 강직성 척추염, 방사선학적으로 강직성 척추염이 확인되지 않는 중증 축성 척추관절염), 혈관염, 알츠하이머병, 궤양성 대장염, 베체트 장염, 화농성 한선염, 포도막염, 소아특발성 관절염, 소아 판상 건선, 또는 크론병 (성인 크론병, 소아 크론병 포함) 등의 예방 또는 치료에 사용될 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 따른 제형은 경구 투여, 또는 피하, 근육 내, 복강 내, 흉골 내, 경피, 및 정맥 내 주사 및 주입을 포함하는 비경구 투여에 의해 체내에 투여될 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 또 다른 하나의 양태는 항-TNF 알파 항체, 안정화제, 계면활성제, 및 아르기닌을 서로 혼합하는 단계를 포함하는, 상기 항-TNF 알파 항체의 액상 제제의 제조 방법이다.
상기 용어들에 대해서는 앞서 설명한 바와 같다. 또한, 각 용어들의 구체적인 예들이 본 양태에도 모두 적용됨은 자명하다.
또한, 본 발명의 또 다른 하나의 양태는 안정화제, 계면활성제, 및 아르기닌을 포함하는 조성물을 사용하여, 항-TNF 알파 항체의 안정화를 증가시키는 방법이다.
상기 용어들에 대해서는 앞서 설명한 바와 같다. 또한, 각 용어들의 구체적인 예들이 본 양태에도 모두 적용됨은 자명하다.
본 발명의 다른 하나의 과제는 완충제를 포함하지 않고, 안정화제, 계면활성제, 및 아르기닌을 포함하는 조성물을 사용하여, 항-TNF 알파 항체의 안정화를 증가시키는 방법을 제공하는 것이다.
상기 용어들에 대해서는 앞서 설명한 바와 같다. 또한, 각 용어들의 구체적인 예들이 본 양태에도 모두 적용됨은 자명하다.
이하 본 발명을 실시예를 통하여 더욱 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
< 실시예 1>
첨가제에 따른 아달리무맙 용액의 점도 강하 효과 및 안정성 확인
아달리무맙 액상 제제 제조에 사용하기 위한 첨가제를 확인하기 위하여 수크로오스 55mg/mL, 메티오닌 5 mM, 폴리소르베이트80 1 mg/mL, 아달리무맙 100 mg/mL, pH 5.2 조성의 제형 1을 제조하였다.
또한 제형 1의 조성에 추가로 아르기닌 염산염, 라이신 염산염, 류신, 이소류신, 페닐알라닌, 글루타민산, 글리신, 프롤린, 알라닌, 염화나트륨, 염화칼슘, 염화마그네슘을 각각 첨가하여 제형 2~13을 제조하여 Rheosense 사의 mVROC 기기를 사용하여 점도를 측정하였다. 상기 제형들에 첨가된 첨가제의 종류와 농도 및 각 제형의 점도를 하기 표 1 및 도 1에 나타내었다.
제형번호 첨가제 조성 점도(cp)
제형1 - 3.23
제형2 아르기닌 염산염 20 mM 3.04
제형3 라이신 염산염 40 mM 3.14
제형4 류신 40 mM 3.28
제형5 이소류신 40 mM 3.26
제형6 페닐알라닌 15 mM 3.21
제형7 글루타민산 7.5 mM 3.07
제형8 글리신 40 mM 3.20
제형9 프롤린 40 mM 3.20
제형10 알라닌 40 mM 3.21
제형11 염화나트륨 40 mM 3.12
제형12 염화칼슘 20 mM 2.94
제형13 염화마그네슘 20 mM 3.01
상기 표 1의 각 제형의 점도 값을 보면 수크로오스, 메티오닌, 폴리소르베이트80 및 아달리무맙으로 구성된 제형1의 경우 점도는 3.23이었다. 이와 비교했을 때 류신, 이소류신, 페닐알라닌, 글리신, 프롤린 등의 아미노산을 첨가한 제형의 경우 점도는 3.20 ~ 3.28로 점도가 크게 달라지지 않았다. 반면 아르기닌 염산염, 라이신 염산염, 글루타민산, 염화나트륨, 염화칼슘, 염화마그네슘 등을 첨가한 경우 점도는 2.94 ~ 3.14로 점도가 감소하는 것을 확인하였다.
각 제형의 안정성을 비교하기 위하여 각각의 제형을 0.2 ㎛의 pore 크기의 필터로 제균 여과하여 약 1.0 mL 용량의 유리 주사기에 0.4 mL씩 담은 후에 밀봉하여 40oC에서 2개월 보관하였다. 보관 후 각 시료를 SE-HPLC로 분석하여 올리고머, 응집체 등의 고분자 생성물 (High molecular weight impurities, HMW) 과 아달리무맙 분자의 단편인 저분자 생성물 (Low molecular weight impurities, LMW)의 함량을 분석하였다. 먼저, 점도가 강하된 제형, 즉 제형2, 제형3, 제형7, 제형11, 제형12, 제형13 및 대조군인 제형1의 SE-HPLC 결과를 표 2에 나타내었다. 또한 점도가 크게 달라지지 않은 제형, 즉 제형4, 제형5, 제형6, 제형8, 제형 9, 제형10 및 대조군인 제형1의 SE-HPLC 결과를 표3에 나타내었다.
보관 전 40oC 2개월 보관 후
HMW (%) LMW (%) Total (%) HMW (%) LMW (%) Total (%)
제형1 0.33 0.54 0.87 1.46 5.13 6.59
제형2 0.33 0.53 0.86 1.31 5.21 6.52
제형3 0.33 0.53 0.85 1.42 5.18 6.61
제형7 0.33 0.56 0.89 1.40 5.06 6.45
제형11 0.35 0.55 0.89 1.70 5.40 7.10
제형12 0.33 0.54 0.87 1.36 6.02 7.38
제형13 0.34 0.54 0.88 1.72 5.70 7.42
보관 전 40oC 2개월 보관 후
HMW (%) LMW (%) Total (%) HMW (%) LMW (%) Total (%)
제형1 0.33 0.54 0.87 1.46 5.13 6.59
제형4 0.33 0.52 0.85 1.27 4.81 6.07
제형5 0.33 0.56 0.88 1.28 4.74 6.02
제형6 0.34 0.52 0.86 1.32 4.85 6.17
제형8 0.33 0.48 0.81 1.21 4.77 5.98
제형9 0.32 0.55 0.87 1.14 4.80 5.94
제형10 0.34 0.56 0.90 1.24 4.84 6.08
상기 표2의 결과를 보면, 보관 전의 HMW, LMW 및 총 불순물의 양은 유사하였으나, 40oC에서 2개월 보관한 후 총 불순물이 염화나트륨을 포함한 제형11의 경우 7.10%, 염화칼슘을 포함한 제형12의 경우 7.38%, 염화마그네슘을 포함한 제형13의 경우 7.42%로 대조군인 제형1의 총 불순물 6.59%에 대비하여 더 크게 증가한 것을 확인하였다. 반면 아르기닌 염산염, 라이신 염산염, 글루타민산을 포함한 제형2, 제형3, 제형7의 경우 40oC 2개월 보관 후 총 불순물의 양이 6.45~6.61%로 대조군인 제형1의 총 불순물 6.59%와 불순물 수준을 유지하였다
상기 표 3의 결과를 보면, 류신, 이소류신, 페닐알라닌, 글리신, 프롤린 등의 아미노산을 첨가한 제형의 경우 40oC 2개월 보관 후 총 불순물 양이 5.94 ~ 6.17%로 대조군인 제형1의 불순물 함량 6.59%에 대비하여 크게 감소한 것을 확인하였다. 이로써 류신, 이소류신, 페닐알라닌, 글리신, 프롤린 등의 아미노산이 아달리무맙의 안정성에 기여하는 것을 확인하였다.
< 실시예 2>
아르기닌 염산염의 함량에 따른 안정성 평가 1
아르기닌 염산염의 함량에 따른 아달리무맙 제형의 안정성을 평가하기 위하여 다음과 같이 제형을 제조하였다.
수크로오스 55mg/mL, 메티오닌 5mM, 폴리소르베이트80 1mg/mL 및 아달리무맙 100mg/mL이 되도록 제형14를 제조하였고, 제형14의 조성에 아르기닌 염산염 20mM 및 아르기닌 염산염 40mM을 첨가한 조성으로 제형15와 제형16을 제조하여 1mL 유리 시린지에 0.4mL씩 충전하였다. 각 시린지를 40oC에서 2개월 보관 후 SE-HPLC 로 분석하여 안정성을 평가하였다. 각 제형의 조성과 보관 전/후의 HMW 함량은 표 4와 같다.
제형 조성 HMW (%)
40oC 2개월보관 전 40oC 2개월보관 후
제형14 수크로오스 55mg/mL, 메티오닌 5mM,폴리소르베이트80 1mg/mL, 아르기닌 염산염 0mM 0.17 1.00
제형15 수크로오스 55mg/mL, 메티오닌 5mM,폴리소르베이트80 1mg/mL, 아르기닌 염산염 20mM 0.17 0.82
제형16 수크로오스 55mg/mL, 메티오닌 5mM,폴리소르베이트80 1mg/mL, 아르기닌 염산염 40mM 0.16 0.82
상기 표 4의 SE-HPLC 결과를 보면, 아르기닌 염산염의 함량을 0mM (제형14)에서 20mM (제형15) 및 40mM (제형16)로 증량 하였을 때 보관 전의 시료의 HMW 함량은 0.16~0.17%로 모두 유사하였으나, 40oC 2개월 보관 후의 HMW 함량은 아르기닌 염산염이 포함되지 않은 제형 14의 경우 1.00%, 아르기닌 염산염의 함량이 20mM 및 40mM인 제형15, 16의 경우 0.82%로 아르기닌 염산염이 20mM 또는 40mM 포함된 경우 아르기닌 염산염이 포함되지 않은 경우보다 HMW 생성 정도가 감소하였다. 따라서 아르기닌 염산염은 아달리무맙의 응집 방지 효과가 있음을 확인하였다.
<실시예 3>
아르기닌 함량에 따른 전하 이성질 항체 (charge variant) 생성 정도 비교
아르기닌 함량에 따른 전하 이성질 항체 생성 정도를 비교하기 위하여 아르기닌 포함 제형과 포함하지 않은 제형을 만들어 40oC에서 보관 1개월 후 CEX-HPLC로 전하 이성질 항체 생성 양상을 비교하였다. 각 제형과 보관 전후의 전하 이성질 항체 함량을 아래 표 5에 나타내었다.
제형 제형요약 40oC 1개월 보관 전 40oC 1개월 보관 후
Acidic K0 K1 Basic Acidic K0 K1 Basic
A 수크로오스 55mg/mL, 메티오닌 5mM, 폴리소르베이트80 1mg/mL, 아달리무맙100mg/mL 13.36 70.77 12.44 3.44 33.39 51.58 10.70 4.33
B 수크로오스 55mg/mL, 메티오닌 5mM, 폴리소르베이트80 1mg/mL, 아달리무맙 100mg/mL, 아르기닌 염산염 20mM 13.15 71.14 12.41 3.30 31.31 52.51 11.16 5.01
제형 A는 수크로오스 55mg/mL, 메티오닌 5mM, 폴리소르베이트80 (PS80) 1mg/mL 및 아달리무맙 100mg/mL을 포함하게 제조하였으며, 제형 B의 경우는 제형 A의 조성에 아르기닌 염산염 (Arginine Hydrochloride) 20mM을 추가로 포함하도록 제조하였다. 40oC 1개월 보관 전의 산성 이성질 항체 함량은 유사하였으며, 보관 후의 산성 이성질 항체 함량을 비교하면 아르기닌 염산염을 포함한 제형 B의 경우 제형 A 대비 산성 이성질 항체의 함량이 적고, K0의 함량이 더 많은 것을 알 수 있다.
따라서 아르기닌 염산염이 아달리무맙의 산성 이성질 항체 생성을 저하하는 것을 확인할 수 있다.
<실시예 4>
계면활성제의 종류별 제형과 제형 안정성 비교
계면활성제의 종류에 따른 아달리무맙 액상 제제의 안정성을 비교하기 위해 다음과 같은 조성의 제형을 제조하였다.
실시예 2의 제형14와 같이 수크로오스 55mg/mL, 메티오닌 5mM, 폴리소르베이트80 1mg/mL 및 아달리무맙 100mg/mL이 되도록 구성된 제형17을 제조하였다. 또한 계면활성제의 함량은 동일하게 고정하면서 계면활성제의 종류를 폴리소르베이트20 및 폴록사머 188로 바꾸어 제형18 및 제형19를 제조하였다.
각 제형을 제균여과하여 1mL 유리시린지에 0.4mL씩 충전하여 40oC에 1개월 보관하였다. 보관 전과 후의 시료를 SE-HPLC를 이용하여 HMW 및 LMW의 불순물 함량을 분석하였다. 제형17~19의 구성 및 40oC 1개월 보관 전후의 SE-HPLC 함량을 분석한 결과를 표 6에 나타내었다.
40oC 1개월 보관 전 40oC 1개월 보관 후
HMW (%) LMW (%) Total (%) HMW (%) LMW (%) Total (%)
제형17 수크로오스 55mg/mL, 메티오닌 5mM, 폴리소르베이트80 1mg/mL, pH5.2 0.14 0.37 0.51 0.46 2.05 2.52
제형18 수크로오스 55mg/mL, 메티오닌 5mM, 폴리소르베이트20 1mg/mL, pH5.2 0.15 0.38 0.53 0.45 2.04 2.49
제형19 수크로오스 55mg/mL, 메티오닌 5mM, 폴록사머188 1mg/mL, pH5.2 0.15 0.37 0.53 0.44 1.99 2.43
상기 표 6의 결과를 보면 계면활성제의 종류에 따라 40oC 1개월 보관 전후의 HMW 및 LMW 함량이 크게 다르지 않았다. 즉, 폴리소르베이트80을 포함한 제형, 폴리소르베이트20을 포함한 제형 및 폴록사머188을 포함한 제형의 안정성이 서로 유사하게 나타났다.
따라서 폴리소르베이트80, 폴리소르베이트20 및 폴록사머188이 아달리무맙의 안정성에 미치는 영향이 서로 유사함을 확인하였다.
< 실시예 5>
폴리올의 종류별 제형 및 안정성 비교
폴리올의 종류에 따른 아달리무맙 액상 제제의 안정성을 비교하기 위해 다음과 같은 조성의 제형을 제조하였다.
실시예 2의 제형14와 같이 수크로오스 55mg/mL, 메티오닌 5mM, 폴리소르베이트80 1mg/mL 및 아달리무맙 100mg/mL이 되도록 구성된 제형 20을 제조하였다 (실시예4의 제형17과 동일함). 또한 폴리올의 총 함량은 동일하게 고정하면서 폴리올의 종류를 트레할로스, PEG400 및 PEG4000로 바꾸어 제형 21~23을 제조하였다. 각 제형을 제균여과하여 1mL 유리시린지에 0.4mL씩 충전하여 40oC에 1개월 보관하였다. 보관 전과 후의 시료를 SE-HPLC를 이용하여 HMW 및 LMW의 불순물 함량을 분석하였다.
제형 20~23의 구성 및 40oC 1개월 보관 전후의 SE-HPLC 함량을 분석한 결과를 표 7에 나타내었다.
40oC 1개월 보관 전 40oC 1개월 보관 후
HMW (%) LMW (%) Total (%) HMW (%) LMW (%) Total (%)
제형20 수크로오스 55mg/mL, 메티오닌 5mM, 폴리소르베이트80 1mg/mL, pH5.2 0.14 0.37 0.51 0.46 2.05 2.52
제형21 트레할로스 55mg/mL, 메티오닌 5mM, 폴리소르베이트80 1mg/mL, pH5.2 0.14 0.36 0.50 0.46 2.03 2.49
제형22 PEG400 55mg/mL, 메티오닌 5mM, 폴리소르베이트80 1mg/mL, pH5.2 0.16 0.38 0.54 0.62 2.02 2.63
제형23 PEG4000 55mg/mL, 메티오닌 5mM, 폴리소르베이트80 1mg/mL, pH5.2 0.17 0.37 0.53 0.85 2.05 2.90
상기 표 7의 결과를 보면 폴리올의 종류에 따라 40oC 1개월 보관 전후의 HMW 및 LMW 함량이 크게 달라지는 것을 확인할 수 있다. 모든 제형의 40oC 1개월 보관 전 HMW 및 LMW 불순물 함량은 유사하였으나, 40oC 1개월 보관 후에는 HMW 함량이 수크로오스와 트레할로스 및 PEG400을 포함한 제형20~22의 경우 PEG4000을 포함한 제형23에 비해 비교적 낮았다. LMW 함량은 모두 유사하게 나타났다. 따라서 사용하는 폴리올의 종류에 따라 제형간 안정성에 차이가 있을 수 있음을 확인하였고 그 중에서도 수크로오스 및 트레할로스가 다른 폴리올보다 안정성 개선에 효과가 있음을 확인하였다.
< 실시예 6>
폴리올, 아르기닌, 메티오닌, 계면활성제, 및 추가안정화제로 이루어진 제형과 휴미라 제형과의 안정성 비교
메티오닌 5mM을 안정화제로 사용한 조성에 서로 다른 계면활성제 및 폴리올 종류, 추가 안정화제 유무 및 아르기닌 염산염 함량 등을 변화시켜 다양한 조성을 구성하여 시료를 제조하고 상용 휴미라 제형으로 조성을 제조하여 40oC에서 보관한 후 SE-HPLC로 분석하여 각각의 제형의 안정성을 비교하였다. 각 제형의 조성을 표 8에, 각 조성의 40oC 2개월 보관 전후의 불순물 함량은 표 9에 나타내었다.
제형번호  제형 조성
24 아달리무맙 100 mg/mL, 메티오닌 5mM, 아르기닌 염산염 0mM, 폴리소르베이트80 1mg/mL, 수크로오스 55mg/mL
25 아달리무맙 100 mg/mL, 메티오닌 5mM, 아르기닌 염산염 20mM, 폴리소르베이트80 1mg/mL, 수크로오스 55mg/mL
26 아달리무맙 100 mg/mL, 메티오닌 5mM, 아르기닌 염산염 40mM, 폴리소르베이트80 1mg/mL, 수크로오스 55mg/mL
27 아달리무맙 100 mg/mL, 메티오닌 5mM, 아르기닌 염산염 40mM, 폴록사머188 1mg/mL, 수크로오스 55mg/mL
28 아달리무맙 100 mg/mL, 메티오닌 5mM, 아르기닌 염산염 40mM, 폴록사머188 1mg/mL, 수크로오스 55mg/mL, 글리신 20mM
29 아달리무맙 100 mg/mL, 메티오닌 5mM, 아르기닌 염산염 40mM, 폴록사머188 1mg/mL, 수크로오스 55mg/mL, 류신 20mM
30 아달리무맙 100 mg/mL, 메티오닌 5mM, 아르기닌 염산염 40mM, 폴록사머188 1mg/mL, 수크로오스 55mg/mL, 글리신 10mM, 류신 10mM
31 아달리무맙 100 mg/mL, 메티오닌 5mM, 아르기닌 염산염 40mM, 폴록사머188 1mg/mL, 트레할로스 55mg/mL
32 아달리무맙 100 mg/mL, 메티오닌 5mM, 아르기닌 염산염 40mM, 폴록사머188 1mg/mL, 트레할로스 55mg/mL, 글리신 20mM
33 아달리무맙 100 mg/mL, 메티오닌 5mM, 아르기닌 염산염 40mM, 폴록사머188 1mg/mL, 트레할로스 55mg/mL, 류신 20mM
34 아달리무맙 100 mg/mL, 메티오닌 5mM, 아르기닌 염산염 40mM, 폴록사머188 1mg/mL, 트레할로스 55mg/mL, 글리신 10mM, 류신 10mM
35 아달리무맙 100 mg/mL, 메티오닌 5mM, 아르기닌 염산염 40mM, 폴록사머188 1mg/mL, 수크로오스 27.5mg/mL, PEG4000 27.5mg/mL
36 아달리무맙 100 mg/mL, 메티오닌 5mM, 아르기닌 염산염 40mM, 폴록사머188 1mg/mL, 수크로오스 27.5mg/mL, PEG4000 27.5mg/mL, 글리신 20mM
37 아달리무맙 100 mg/mL, 메티오닌 5mM, 아르기닌 염산염 40mM, 폴록사머188 1mg/mL, 수크로오스 27.5mg/mL, PEG4000 27.5mg/mL, 류신 20mM
38 아달리무맙 100 mg/mL, 메티오닌 5mM, 아르기닌 염산염 40mM, 폴록사머188 1mg/mL, 수크로오스 27.5mg/mL, PEG4000 27.5mg/mL, 글리신 10mM, 류신 10mM
39 아달리무맙 100 mg/mL, 메티오닌 5mM, 아르기닌 염산염 40mM, 폴록사머188 1mg/mL, 트레할로스 27.5mg/mL, PEG4000 27.5mg/mL
40 아달리무맙 100 mg/mL, 메티오닌 5mM, 아르기닌 염산염 40mM, 폴록사머188 1mg/mL, 트레할로스 27.5mg/mL, PEG4000 27.5mg/mL, 글리신 20mM
41 아달리무맙 100 mg/mL, 메티오닌 5mM, 아르기닌 염산염 40mM, 폴록사머188 1mg/mL, 트레할로스 27.5mg/mL, PEG4000 27.5mg/mL, 류신 20mM
42 아달리무맙 100 mg/mL, 메티오닌 5mM, 아르기닌 염산염 40mM, 폴록사머188 1mg/mL, 트레할로스 27.5mg/mL, PEG4000 27.5mg/mL, 글리신 10mM, 류신 10mM
43 아달리무맙 100mg/mL, 상용 휴미라 제형*
44 아달리무맙 50 mg/mL, 메티오닌 5mM, 아르기닌 염산염 40mM, 폴리소르베이트80 1mg/mL, 수크로오스 55mg/mL
45 아달리무맙 50mg/mL, 상용 Humira 제형*
*상용 휴미라 제형: Sodium Phosphate Monobasic Dihydrate (0.86 mg/mL), Sodium Phosphate Dibasic Dihydrate (1.53 mg/mL), Sodium Citrate (0.3 mg/mL), Citric Acid Monohydrate (1.3 mg/mL), Mannitol (12 mg/mL), Sodium Chloride (6.16 mg/mL), Polysorbate 80 (PS80) (1 mg/mL), pH 5.2
제형번호 40oC 2개월 보관 전 40oC 2개월 보관 후
HMW(%) LMW(%) Total(%) HMW(%) LMW(%) Total(%)
24 0.17 0.44 0.60 1.00 4.42 5.43
25 0.17 0.45 0.62 0.82 4.49 5.32
26 0.16 0.41 0.57 0.82 4.69 5.52
27 0.17 0.43 0.60 0.85 4.57 5.42
28 0.17 0.45 0.61 0.77 4.55 5.32
29 0.16 0.44 0.60 0.80 4.55 5.34
30 0.17 0.44 0.60 0.79 4.54 5.33
31 0.17 0.45 0.62 0.76 4.58 5.34
32 0.17 0.45 0.62 0.73 4.55 5.28
33 0.17 0.43 0.60 0.76 4.55 5.31
34 0.16 0.44 0.60 0.76 4.57 5.33
35 0.18 0.45 0.62 0.99 4.56 5.55
36 0.17 0.44 0.61 1.06 4.50 5.56
37 0.17 0.43 0.61 1.02 4.50 5.52
38 0.18 0.44 0.62 0.95 4.47 5.42
39 0.17 0.43 0.61 0.96 4.52 5.48
40 0.17 0.44 0.62 0.97 4.51 5.48
41 0.17 0.42 0.59 0.99 4.50 5.49
42 0.18 0.43 0.61 0.99 4.55 5.55
43 0.29 0.44 0.73 1.44 5.52 6.95
44 0.19 0.43 0.62 0.50 4.62 5.12
45 0.29 0.45 0.74 1.15 5.66 6.81
표 8에서 보면 폴리올로 수크로오스 및 트레할로스, 그리고 수크로오스와 PEG4000의 조합 및 트레할로스와 PEG4000의 조합이 사용되었고, 계면활성제로는 폴리소르베이트80 및 폴록사머 188 이 사용되었다. 아르기닌은 0, 20 또는 40mM이 사용되었으며, 추가 첨가제의 역할을 확인하기 위해 글리신 (Gly), 류신 (Leu) 또는 글리신와 류신의 조합으로 제형을 설계하여 아달리무맙 100mg/mL에서의 안정성을 휴미라 상용제형과 비교하였다. 50mg/mL에서의 안정성도 휴미라 상용제형과 제형44 (제형26과 아달리무맙 함량을 제외하고 동일)의 조성을 비교하였다.
표 9에서 각 제형의 안정성을 비교하면, 모든 제형이 휴미라 상용제형 보다 월등한 안정성을 나타냄을 확인하였다. 보관 전의 전체 불순물은 0.57~0.74로 모두 유사하였다. 그러나 40oC 2개월 보관 후의 안정성을 보면, 아달리무맙의 함량이 100mg/mL인 휴미라 상용 제형 (제형 43)과 아달리무맙 함량이 50mg/mL인 휴미라 상용 제형 (제형 45) 대비 다른 제형들의 아달리무맙 불순물 함량이 더 적음을 확인하였다.
따라서 다양한 폴리올 및 계면활성제, 아르기닌 염산염 및 추가 안정화제로 구성된 본 제형이 상용 휴미라 제형보다 불순물 증가 측면에서 더 안정한 제형이라는 것을 확인하였다.
또한 앞의 실시예 5에서 폴리올로 PEG 4000을 사용시 수크로오스, 트레할로스를 사용한 제형보다 40oC 1개월 보관 시 전체 불순물함량이 0.4% 정도 높았던 것에 비해, 본 실시예에서는 보관기간이 2개월이었음에도 불구하고 수크로오스 또는 트레할로스와 PEG4000를 섞어서 사용하면 아달리무맙의 불순물 함량이 수크로오스 및 트레할로스를 단독으로 사용하는 것 대비 유사하게 나타났다. 이에 따라, 수크로오스 혹은 트레할로스의 일부를 분자량이 더 큰 PEG으로 대체하는 것이 항산화 등의 추가적인 효과를 얻기 위해 추가적인 첨가제를 사용하는 경우 삼투압 및 안정성을 유지하는 방법으로 사용될 수 있음을 확인하였다.
<실시예 7>
상용 휴미라 제형과 아르기닌 염산염 포함 제형의 기계적 스트레스 (mechanical stress)에 대한 안정성 비교 평가
상용 휴미라 제형과 아르기닌 염산염을 포함한 제형의 기계적 스트레스에 대한 안정성을 비교하기 위하여, 다음과 같은 조성의 시료를 만들어 로타리 피스톤 펌프 (rotary piston pump)를 통과시켜 펌프 통과 전과 후의 입자 수를 평가하였다.
또한 측정된 입자가 아달리무맙 유래인지 확인하기 위하여 각 시료의 조성에서 아달리무맙 만을 제외한 플라시보 (placebo)를 만들어 동일 조건에서 로타리 피스톤 펌프를 통과시켜 펌프 통과 전과 후의 입자 수를 평가하였다. 입자 수를 평가하는 방법으로는 Protein Simple 사의 micro flow imaging 기기가 사용되었다. 각 시료의 조성은 표 10에, 각 시료 및 시료의 플라시보의 펌프 통과 전과 후의 입자 수를 표 11 및 도 2에 나타내었다.
제형46 아달리무맙 100 mg/mL, 수크로오스 55 mg/mL, 아르기닌 염산염 40 mM,메티오닌 5 mM, 폴리소르베이트 80 1 mg/mL, pH5.2
제형47 아달리무맙 50 mg/mL, 수크로오스 55 mg/mL, 아르기닌 염산염 40 mM,메티오닌 5 mM, 폴리소르베이트 80 1 mg/mL, pH5.2
제형48 아달리무맙 50 mg/mL, 인산이수소나트륨이수화물 (Sodium phosphate monobasic dihydrate) 0.86 mg/mL, 인산수소나트륨이수화물 (Sodium phosphate dibasic dihydrate) 1.53 mg/mL, 시트르산 나트륨 (Sodium citrate) 0.3 mg/mL, 시트르산 수화물 (Citric acid monohydrate) 1.3 mg/mL, 만니톨 12 mg/mL, 염화나트륨 6.16 mg/mL, 폴리소르베이트80(PS80) 1 mg/mL, pH5.2(상용 휴미라 조성)
입자 농도 (#/mL)
placebo 시료 (아달리무맙 포함)
펌프 통과 전 펌프 통과 후 펌프 통과 전 펌프 통과 후
제형46 2667 3618 699 85743
제형47 2667 3618 769 53734
제형48 1213 7938 1917 150617
표 10와 같이 제형 46와 제형 47는 첨가제의 조성이 동일하며, 아달리무맙의 함량이 제형 46는 100mg/mL, 제형 47는 50mg/mL로 다르다. 제형 48의 경우 상용 휴미라와 동일하게 조성 및 아달리무맙 함량을 조절하였다. 각 제형을 로타리 피스톤 펌프에 통과 시켜 전 후 입자 수를 분석한 결과, 표 11 및 도 2와 같이 제형 46는 85743개/mL, 제형 47는 53734개/mL로, 아달리무맙의 함량이 높은 제형 46이 아달리무맙의 함량이 낮은 제형 47보다 입자가 더 증가한 것을 확인할 수 있었다. 반면 휴미라 상용제형인 제형 48의 경우 펌프를 통과한 후의 입자 수가 150617개/mL로 제형 46, 47 대비 높게 나타났다. 또한 모든 제형의 placebo의 입자농도가 펌프 통과 후 3618 개/mL 및 7938 개/mL로 아달리무맙을 포함한 시료의 펌프 통과 후 입자 농도에 비해 현저히 낮아, 펌프 통과 후 아달리무맙 포함 시료에서 측정되는 입자가 아달리무맙 유래임을 확인하였다. 이에 따라 아르기닌 염산염을 포함한 제형이 상용 휴미라 제형에 비해 기계적 스트레스에 대하여 아달리무맙을 효과적으로 보호함을 알 수 있다.
< 실시예 8>
아르기닌 염산염 농도별 점도강하 효과 실험
아달리무맙 용액에 아르기닌을 첨가하였을 때의 점도 강하가 일어나는 아르기닌 농도 범위를 확인하기 위하여 다음과 같이 실험을 진행하였다. 아르기닌 염산염(ArgHCl)을 포함하지 않은 대조군으로서, 아달리무맙 100mg/mL 및 폴리소르베이트80 1mg/mL, 또는 아달리무맙 50mg/mL 및 폴리소르베이트80 1mg/mL 을 포함하도록 시료를 제조하였다. 시험군으로서, 각 대조군의 조성에 아르기닌 염산염의 농도를 20mM씩 높여가며 아르기닌 염산염을 최대 180mM의 최종 농도로 포함하는 시료를 제조하였다. 모든 시료의 pH는 약 5.2였다. 제조한 시료의 점도를 Rheosense 사의 mVROC 기기를 사용하여 측정하였다. 점도 측정 결과를 표 12에 나타내었다.
ArgHCl(mM) 100mg/mL 아달리무맙(단위: cp) 50mg/mL 아달리무맙(단위: cp)
0 2.71 1.47
20 2.59 1.42
40 2.59 1.42
60 2.62 1.42
80 2.62 1.45
100 2.63 1.48
120 2.67 1.49
140 2.70 1.50
160 2.75 1.52
180 2.79 1.54
표 12에서 아달리무맙 100mg/mL, 폴리소르베이트 80 1mg/mL 및 다양한 농도의 아르기닌염산염(ArgHCl) 첨가 제형의 점도를 보면, ArgHCl을 포함하지 않은 아달리무맙 100mg/ml, 폴리소르베이트 80 1mg/mL 용액의 점도는 2.71 cp였다. 여기에 ArgHCl을 20~120mM의 최종 농도로 첨가하는 경우 ArgHCl 을 첨가하지 않은 조성 대비 점도가 강하되는 것을 확인 할 수 있다. ArgHCl이 140mM의 최종 농도로 첨가된 경우는 ArgHCl을 첨가하지 않은 조성과 점도가 서로 유사하였다. ArgHCl이 160mM 이상의 최종 농도로 첨가된 경우에는 점도의 강하효과가 나타나지 않았으며, ArgHCl 미첨가 제형보다 점도가 상승함을 확인하였다. 아달리무맙 50mg/mL 및 폴리소르베이트 80 1mg/mL을 포함한 제형의 경우에는, ArgHCl을 포함하지 않은 경우의 점도가 1.47 cp 였으며, ArgHCl 농도가 20~80 mM인 경우의 점도가 1.42~1.45로 ArgHCl 미첨가 제형보다 점도가 낮았다. ArgHCl을 100mM의 최종 농도로 첨가하였을 때의 점도는 ArgHCl이 첨가되지 않은 조성의 점도와 유사하였으며, ArgHCl을 120mM이상의 최종 농도로 첨가한 경우 첨가하지 않은 경우보다 점도가 증가하였다.
따라서 100mg/mL 아달리무맙 용액의 경우 140mM 이하의 ArgHCl을 첨가하여 점도를 강하시킬 수 있고, 50mg/mL 아달리무맙 용액의 경우 100mM 이하의 아르기닌을 첨가하여 점도를 강하할 수 있음을 확인하였다.
< 실시예 9>
아달리무맙 제제에서 완충액 및 염의 영향 확인 실험 1
아달리무맙의 안정성에 대한 완충액 및 염의 영향을 파악하기 위하여 완충액 및 염을 포함하지 않은 제형의 시료를 제조하였고, 이 제형에 완충액 혹은 염을 첨가한 제형의 시료를 제조하여 40oC에서 2주 및 1개월 보관하여 SE-HPLC로 안정성을 비교하였으며, 각 시료의 pH를 측정하였다.
제형번호 제형 추가 완충액 및 Salt zerotime 40oC 2주 보관후 40oC 1개월 보관후
HMW LMW Total HMW LMW Total HMW LMW Total
A-1 아달리무맙100mg/mL,PS801mg/mL, pH 5.2 no buffer/no salt 0.36 0.38 0.74 0.47 1.19 1.66 0.65 2.04 2.69
A-2 인산나트륨/시트르산나트륨 (Humira 조성 Buffer)* 0.38 0.39 0.76 0.59 1.25 1.84 0.92 2.27 3.19
A-3 NaCl 100mM 0.37 0.41 0.78 0.66 1.42 2.09 0.86 2.50 3.35
A-4 황산 암모늄(Ammonium sulfate) 100mM 0.37 0.41 0.78 0.50 1.42 1.92 0.69 2.54 3.24
A-5 황산 나트륨 (Sodium Sulfate) 100mM 0.39 0.41 0.80 0.54 1.41 1.95 0.75 2.49 3.24
A-6 아달리무맙50mg/mL,PS801mg/mL,pH 5.2 no buffer/no salt 0.37 0.40 0.77 0.28 1.21 1.49 0.38 2.03 2.41
A-7 인산나트륨/시트르산나트륨 (Humira 조성 Buffer)* 0.38 0.41 0.79 0.43 1.27 1.69 0.66 2.20 2.86
A-8 NaCl 100mM 0.38 0.42 0.80 0.43 1.38 1.81 0.63 2.50 3.13
A-9 황산 암모늄(Ammonium sulfate) 100mM 0.39 0.41 0.80 0.38 1.45 1.83 0.53 2.58 3.10
A-10 황산 나트륨 (Sodium Sulfate) 100mM 0.39 0.44 0.83 0.40 1.45 1.85 0.55 2.51 3.05
*Humira 조성 Buffer: Sodium phosphate monobasic dihydrate 0.86 mg/mL, Sodium phosphate dibasic dihydrate 1.53 mg/mL, Sodium citrate 0.3 mg/mL, Citric acid monohydrate 1.3 mg/mL
표 13에 시료의 제형 및 각 시료의 zerotime, 40 oC 2주 보관후, 40 oC 1개월 보관후의 SE-HPLC 분석결과를 나타내었다. 아달리무맙 100mg/mL 및 PS80 1mg/mL이 되도록 A-1의 시료를 제조하였고 여기에 완충액 혹은 염을 포함하도록 A-2 ~ A-5를 제조하였다. 또한 A-1~ A-5 조성의 아달리무맙의 농도를 50mg/mL로 조절하여 A-6~A-10을 제조하였다. 각 시료의 SE-HPLC 결과를 보면, 완충액을 포함하지 않은 A-1 과 버퍼를 포함한 A-2를 비교하였을 때, (혹은 아달리무맙 농도를 달리한 A-6 과 A-7을 비교하였을 때) 완충액을 포함하지 않은 제형이 HMW 및 LMW 증가폭이 더 작았고, 따라서 더 안정한 제형이라는 것을 알 수 있다.
또한 A-1 및 A-6과, NaCl, 황산 암모늄 (Ammonium Sulfate), 황산 나트륨 (Sodium Sulfate) 등의 염을 포함한 제형을 비교하면 염을 포함하지 않은 제형이 염을 포함한 제형과 비교하였을 때 HMW 및 LMW 의 증가폭이 작다. 따라서 아달리무맙 제형의 경우에 염을 포함하지 않는 것이 아달리무맙의 안정성 면에서 더 좋음을 알 수 있다.
또한 모든 시료의 pH는 보관 전, 보관 2주 후 및 보관 1개월 후에 5.2로 일정하게 유지되었다. 이에 따라 50mg/mL 이상의 아달리무맙이 충분한 자체 완충효과를 가지고 있는 것으로 확인되었으며, 따라서 완충제의 사용이 불필요하며, 완충제를 사용하지 않음으로써 더욱 높은 안정성을 가지는 제형을 구성할 수 있음을 확인하였다.
< 실시예 10>
아달리무맙 제제에서 완충액 및 염의 영향 확인 실험 2
아달리무맙의 안정성에 대한 완충액 및 염의 영향을 파악하기 위하여 아달리무맙 (100mg/mL 혹은 50mg/mL), 안정화제 (수크로오스 55mg/mL 혹은 글리신 160mM), 아르기닌 염산염(ArgHCl) 50mM, 메티오닌 5mM 및 폴리소르베이트80 1mg/mL으로 구성된 제형의 시료를 제조하였고, 이 제형에 완충제 혹은 염을 첨가한 제형의 시료를 제조하였다. 비교를 위하여 아달리무맙 100 mg/mL 또는 아달리무맙 50mg/mL의 휴미라 조성의 시료를 제조하였고, 각 제형을 유리시린지에 0.4mL씩 충전하여 55oC에서 1주 보관하여 SE-HPLC로 안정성을 비교하였고 pH를 측정하였다. 아래의 표에 각 조성과 55oC 1주 보관 전/후의 단량체(monomer) 함량을 나타내었다.
Figure PCTKR2018003097-appb-T000001
Figure PCTKR2018003097-appb-I000001
*Humira 조성: Sodium phosphate monobasic dihydrate 0.86 mg/mL, Sodium phosphate dibasic dihydrate 1.53 mg/mL, Sodium citrate 0.3 mg/mL, Citric acid monohydrate 1.3 mg/mL, Mannitol 12 mg/mL, Sodium chloride 6.16 mg/mL, PS80 1 mg/mL
**Humira 조성 Buffer: Sodium phosphate monobasic dihydrate 0.86 mg/mL, Sodium phosphate dibasic dihydrate 1.53 mg/mL, Sodium citrate 0.3 mg/mL, Citric acid monohydrate 1.3 mg/mL
먼저, 모든 시료의 pH는 55oC 1주 보관 전/후에 5.2로 일정하게 유지되었다. 이에 따라 상기 표의 조성 및 유사 조성에서 50mg/mL 이상의 아달리무맙이 충분한 자체의 완충효과를 가지고 있는 것으로 확인되었다.
표 14의 결과와 같이, 각 시료의 보관 전 단량체 함량은 98.8~99.0%로 유사하였다. 55oC 1주 보관 후에는 단량체 함량이 조성별로 서로 다르게 나타났다. 아달리무맙 100mg/mL, 수크로오스 55mg/mL, ArgHCl 50mM, 메티오닌 5mM 및 폴리소르베이트80 1mg/mL 조성의 시료(A-11)는 보관 후 단량체 함량이 94.8% 이었으나 NaCl, 황산 암모늄, MgCl2 및 CaCl2 의 염, 혹은 아세트산 나트륨 완충제를 사용한 경우(A-12~A-16) 보관 후 단량체의 함량이 94.1~94.7%로 염과 완충제를 사용하지 않은 조성의 시료보다 단량체 함량이 낮았다. 안정화제로 수크로오스 대신 Gly 160mM을 사용한 경우 (A-17) 보관 후 단량체의 함량이 95.2%인데 비해 염 및 완충제를 사용한 경우 (A-18~A-23) 보관 후 단량체 함량이 94.0~94.9%로 염과 완충제를 사용하지 않은 조성보다 단량체 함량이 낮았다. 아달리무맙의 함량을 50mg/mL로 낮추어 조성한 경우에도 염과 완충제를 사용하지 않고 수크로오스를 안정화제로 사용한 경우 보관후 단량체 함량이 95.2% (A-25), Glycine (Gly)을 안정화제로 사용한 경우 보관 후 단량체 함량이 95.6% (A-32) 이었으나 각각의 제형에 추가 염/완충제를 사용한 경우 보관후 단량체 함량이 수크로오스 포함 제형의 경우 (A-26~A-31) 93.5~95.0%, Gly 포함 제형의 경우 (A-33~A-38) 93.6~95.4%로 추가 염/완충제를 사용한 제형의 단량체 함량이 염/완충제를 사용하지 않은 제형의 단량체 함량보다 낮았다. 따라서 아달리무맙, 아르기닌, 안정화제 및 계면 활성제를 포함한 제형에 추가적인 염 및 완충제를 사용하지 않는 것이 아달리무맙의 안정성을 증가시킴을 확인하였고, 아달리무맙 자체의 완충효과를 이용하여 추가적인 완충제를 사용하지 않고 안정성을 증가시킨 조성을 구성하는 것이 가능함을 확인하였다.
그러나 동일한 아달리무맙 함량의 휴미라 조성 시료(A-24, A-39) 와 비교하였을 때 염 및 완충제를 포함한 제형의 55oC 1주 보관 후 단량체 함량이 휴미라 조성 시료의 55oC 1주 보관 후의 단량체 함량 이상이었다.
이에 따라 아르기닌, 계면활성제, 안정화제를 포함하는 아달리무맙 제형에 추가 염 및 완충제를 사용하지 않는 것이 안정성 면에서 바람직하나, 아르기닌, 계면활성제, 안정화제를 포함하는 제형이 추가 염 및 완충제 포함 유무와 상관 없이 휴미라 상용 제형보다 안정함을 확인하였다.
<실시예 11>
아달리무맙 제제에서 폴리올의 안정화 효과 확인 실험
아달리무맙의 용액내 안정성을 증진시키기 위해 사용되는 폴리올의 안정화효과를 비교하기 위하여 아달리무맙 112mg/mL 용액 및 아달리무맙 112mg/mL 및 각 폴리올을 42mg/mL 포함한 제형을 다음과 같이 제조하여 -70oC와 5oC에서 5 cycle 및 10cycle 냉해동을 반복하여 SE-HPLC로 분석하여 HMW, LMW 및 단량체의 함량을 분석하였다.
제형 Zerotime FT 5C FT 10C
HMW (%) LMW(%) Total(%) HMW(%) LMW(%) Total(%) HMW(%) LMW(%) Total(%)
No polyol 0.40 0.42 0.82 1.63 0.49 2.13 2.08 0.37 2.45
만니톨42mg/mL 0.39 0.41 0.80 0.51 0.48 0.99 0.65 0.36 1.01
수크로오스 42mg/mL 0.38 0.41 0.79 0.35 0.47 0.82 0.34 0.34 0.68
트레할로스 42mg/mL 0.38 0.41 0.79 0.35 0.47 0.82 0.35 0.35 0.70
표 15에 시료의 제형 및 안정성 시험의 sampling point 별 SE-HPLC결과를 나타내었다. 위의 결과에서 각 시료를 냉해동을 반복하였을 때, 만니톨, 수크로오스, 또는 트레할로스를 첨가한 제형의 경우 폴리올을 첨가하지 않은 제형과 비교하여 HMW 및 LMW 증가가 줄어드는 경향을 보여, 폴리올에 의한 안정화 효과가 있음을 확인하였다. 각 폴리올의 종류별 안정화 효과를 비교하면, 수크로오스 또는 트레할로스를 넣은 경우 냉해동 전의 시료와 HMW 및 LMW의 함량이 유사하며, 냉해동 10 cycle 이후에도 냉해동 전과 유사한 순도를 보여 안정화 효과가 큼을 확인할 수 있었다. 반면 만니톨을 포함한 시료의 경우 냉해동을 반복하였을 때 HMW 함량이 증가하는 경향을 보였으며, 냉해동 기간 동안 순도가 낮아짐을 확인할 수 있었다. 이에 따라 만니톨에 비하여 수크로오스와 트레할로스의 안정화 효과가 우월함을 확인하였다.
<실시예 12>
아르기닌, 메티오닌, 글리신 및 수크로오스의 안정화효과 확인 및 비교를 위한 아달리무맙 제형 냉해동 시험
아르기닌, 메티오닌, 글리신 및 수크로오스가 원액의 냉해동시 안정화에 미치는 영향을 확인하기 위하여 다음과 같이 시료를 제조하여 5mL polycarbonate bottle에 1mL씩 담은 후 제조 직후와 -70oC, 5oC에서 냉해동을 5회 반복 한 후 SE-HPLC를 이용하여 분석하였다. 각 시료의 조성과 냉해동 전/후의 SE-HPLC 결과는 다음과 같다.
조성 추가 안정화제 냉해동 전 냉해동5회 후
ArgHCl(mM) Gly(mM) Met(mM) 수크로오스(mg/mL)
HMW LMW Total HMW LMW Total
아달리무맙 130mg/mL, 폴리소르베이트80 1mg/mL - - -  -  0.32 0.40 0.72 1.76 0.28 2.04
50 -  -  -  0.36 0.39 0.74 0.67 0.31 0.98
50 -  5 -  0.34 0.37 0.71 0.67 0.33 1.00
50 -  25 -  0.33 0.34 0.67 0.52 0.33 0.85
50 160 5 -  0.34 0.36 0.70 0.41 0.31 0.73
50 140 25 -  0.33 0.34 0.66 0.43 0.33 0.75
50 0 5 55 0.34 0.35 0.69 0.41 0.29 0.70
아달리무맙 130mg/mL, 폴리소르베이트80 1mg/mL이 되도록 시료를 제조하였고, 여기에 추가적인 안정화제를 포함하도록 시료를 제조하였다. 냉해동전의 각 시료의 불순물 함량은 HMW와 LMW 모두 유사하게 나타났다. 냉해동 후, 모든 시료의 LMW는 유사하였지만 추가 안정화제의 종류와 함량에 따라 HMW의 함량이 다르게 나타났다. 추가 안정화제를 포함하지 않은 경우 냉해동 5회후 HMW가 1.76%까지 증가하였으나, 아르기닌 염산염 50mM을 포함한 경우 냉해동 5회 후 HMW가 0.67%로 크게 감소하였다. 아르기닌 염산염 50mM에 메티오닌을 추가로 포함한 제형의 경우, 메티오닌을 5mM을 포함하였을 때에는 추가적인 HMW의 감소를 확인할 수 없었으나, 25mM 사용시에는 HMW가 0.52% 정도로 추가로 감소하는 것을 확인하였다. 아르기닌 염산염, 메티오닌에 추가로 글리신 혹은 수크로오스를 첨가한 경우 냉해동 5회 후 HMW가 더욱 줄어들어 0.41~0.43%까지 감소하였고, 글리신 포함 제형과 수크로오스 포함 제형이 유사한 안정성을 나타내는 것을 확인하였다. 이에 따라, 메티오닌, 아르기닌, 글리신, 수크로오스가 모두 아달리무맙의 안정성에 기여하는 것을 확인하였다. 또한 안정화제로 폴리올 혹은 아미노산을 사용하여 적절한 조합 시 유사한 안정화 효과를 얻을 수 있음을 확인하였다.
<실시예13>
글리신 포함 제형, 수크로오스 포함 제형 및 휴미라 상용 제형의 안정성 비교시험
글리신 포함 제형, 수크로오스 포함 제형 및 휴미라 상용제형의 안정성을 비교하기 위하여 아달리무맙의 함량이 100mg/mL 혹은 50mg/mL이 되고, 아르기닌염산염(ArgHCl) 50mM, 폴리소르베이트80(PS80) 1mg/mL, 메티오닌 5mM을 포함하도록 하여 시료를 제조하고 이 조성에 추가 안정화제로 글리신, 글리신과 메티오닌의 조합, 혹은 수크로오스를 사용하여 시료를 제조하였다. 또한 아달리무맙의 함량이 100mg/mL 또는 50mg/mL이 되도록 휴미라 상용 조성으로 시료를 제조하였다. 각각을 1mL 유리 시린지에 0.4mL씩 충전하여 40oC 4주 보관 전/후의 HMW 및 LMW 함량을 SE-HPLC로 분석하였다. 각 조성과 SE-HPLC의 결과는 다음과 같다.
조성 추가 안정화제 40oC 4주 보관 전 40oC 4주 보관 후
HMW LMW Total HMW LMW Total
아달리무맙 100mg/mL,ArgHCl 50mM,PS80 1mg/mL Met 5mM - 0.28 0.39 0.67 0.54 2.44 2.99
Gly 120mM 0.27 0.41 0.68 0.56 2.42 2.99
Gly 160mM 0.28 0.42 0.69 0.54 2.37 2.91
Gly 100mM, Met 20mM 0.26 0.40 0.67 0.54 2.40 2.94
Gly 120mM, Met 20mM 0.27 0.39 0.65 0.53 2.46 2.99
Gly 140mM, Met 20mM 0.28 0.43 0.70 0.49 2.32 2.81
수크로오스 55mg/mL 0.27 0.40 0.67 0.48 2.51 2.99
아달리무맙 100mg/mL, Humira 조성 0.40 0.40 0.80 0.98 3.05 4.03
아달리무맙 50mg/mL, ArgHCl 50mM, PS80 1mg/mL, Met 5mM - 0.27 0.38 0.64 0.35 2.36 2.71
Gly 120mM 0.26 0.38 0.64 0.35 2.29 2.64
Gly 160mM 0.28 0.43 0.71 0.32 2.26 2.58
Gly 100mM, Met 20mM 0.26 0.39 0.64 0.33 2.33 2.66
Gly 120mM, Met 20mM 0.25 0.36 0.61 0.34 2.38 2.71
Gly 140mM, Met 20mM 0.27 0.43 0.70 0.30 2.26 2.56
수크로오스 55mg/mL 0.26 0.38 0.64 0.31 2.33 2.64
아달리무맙 50mg/mL, Humira 조성 0.43 0.41 0.84 0.82 3.23 4.06
아르기닌 염산염, 폴리소르베이트80, 메티오닌, 아달리무맙을 포함하는 조성의 시료들은 40oC 4주 보관 전 유사한 안정성을 나타내었다. 한편 휴미라 상용 조성의 시료들은 제조 직후부터 기타 시료들보다 HMW가 0.1% 정도 높았다. 보관 후 HMW 및 LMW 함량의 합은 아르기닌 염산염을 포함한 모든 시료의 경우 아달리무맙 100mg/mL일 때 2.81~2.99%, 아달리무맙 50mg/mL 일 때 2.56~2.71%로 비교적 낮았으나 휴미라 상용 조성 시료의 경우 아달리무맙 100mg/mL일 때 4.03%, 아달리무맙 50mg/mL일 때 4.06%로 아르기닌 포함 조성의 시료보다 HMW 및 LMW의 함량이 높게 나타났다. 이에 따라, 본 실시예에 기술된 첨가제의 조합, 즉 아르기닌을 포함하는 제형, 아르기닌과 추가 안정화제로 폴리올 혹은 아미노산을 포함하는 제형이 상용 휴미라 제형보다 안정성 면에서 우월한 제형임을 확인할 수 있다.
< 실시예14 >
아달리무맙 , 수크로오스, 글리신, 류신 , 메티오닌, 염화나트륨, 아르기닌의 농도 별 아달리무맙 제형의 안정성 비교시험
아달리무맙 제형의 안정성을 비교하기 위하여, 아달리무맙, 아르기닌 염산염(ArgHCl), 염화나트륨 (NaCl), 폴리소르베이트80(PS80), 메티오닌(Met), 수크로오스 (Sucrose), 글리신 (Gly), 류신 (Leu)의 조합으로 다양한 조성의 시료를 제조하였다. 또한 비교를 위해 아달리무맙의 함량이 100mg/mL 또는 50mg/mL이 되도록 휴미라 상용 조성으로 시료를 제조하였다. 각 제형을 1mL 유리 시린지에 0.4mL씩 충전하여 40oC 4주 보관 전/후의 단량체 함량을 SE-HPLC로 분석하였다. 각 조성과 SE-HPLC의 결과는 다음과 같다.
  조성 단량체 함량 (%)
아달리무맙 (mg/mL) ArgHCl (mM) NaCl (mM) Met (mM) PS80 (mg/mL) Sucrose (mg/mL) Gly (mM) Leu (mM) 40°C 4주 보관 전 40°C 4주 보관 후
A-40 100 50   5 1 55     99.29 97.15
A-41 100 50   5 1 45     99.33 97.16
A-42 100 50   25 1 45     99.30 97.14
A-43 100 50   5 1 45 20   99.30 97.18
A-44 100 50   5 1 45   20 99.30 97.12
A-45 100 50   5 1 35     99.30 97.06
A-46 100 50   25 1 35     99.30 97.14
A-47 100 50   25 1 35 40   99.33 97.09
A-48 100 50   25 1 35 20 20 99.29 97.23
A-49 100 50   5 1 25     99.31 97.11
A-50 100 50   25 1 25     99.32 97.13
A-51 100 50   25 1 25 60   99.30 97.17
A-52 100 50   25 1 25 40 20 99.31 97.17
A-53 100 50   5 1       99.31 97.06
A-54 100 50   25 1       99.32 97.13
A-55 100 50   25 1   140   99.30 97.04
A-56 100 50 50 5 1 25     99.31 96.96
A-57 100 50 50 15 1 25     99.28 96.93
A-58 100 50 50 25 1 25     99.27 96.89
A-59 100 25 60 5 1 25     99.30 96.88
A-60 100 25 60 35 1 25     99.29 97.00
A-61 100 25 60 5 1 35     99.27 96.85
A-62 100 상용 휴미라 제형 99.29 95.64
A-63 50 50   5 1 55     99.30 97.23
A-64 50 50   5 1 45     99.30 97.21
A-65 50 50   25 1 45     99.31 97.28
A-66 50 50   5 1 45 20   99.30 97.30
A-67 50 50   5 1 45   20 99.30 97.32
A-68 50 50   5 1 35     99.30 97.23
A-69 50 50   25 1 35     99.31 97.23
A-70 50 50   25 1 35 40   99.30 97.27
A-71 50 50   25 1 35 20 20 99.30 97.34
A-72 50 50   5 1 25     99.31 97.15
A-73 50 50   25 1 25     99.30 97.24
A-74 50 50   25 1 25 60   99.30 97.32
A-75 50 50   25 1 25 40 20 99.31 97.26
A-76 50 50   5 1       99.29 97.25
A-77 50 50   25 1       99.30 97.33
A-78 50 50   25 1   140   99.29 97.33
A-79 50 50   25 1   120 20 99.31 97.38
A-80 50 50 50 5 1 25     99.29 97.06
A-81 50 50 50 15 1 25     99.30 96.90
A-82 50 50 50 25 1 25     99.27 97.02
A-83 50 25 60 5 1 25     99.30 96.81
A-84 50 25 60 35 1 25     99.30 97.00
A-85 50 25 60 5 1 35     99.29 96.92
A-86 50 상용 휴미라 제형 99.29 95.47
*상용 휴미라 제형: Sodium phosphate monobasic dihydrate 0.86 mg/mL, Sodium phosphate dibasic dihydrate 1.53 mg/mL, Sodium citrate 0.3 mg/mL, Citric acid monohydrate 1.3 mg/mL, Mannitol 12 mg/mL, Sodium chloride 6.16 mg/mL, PS80 1 mg/mL
모든 시료의 단량체 함량은 40°C에 보관 전 99.27% ~ 99.33%로 제형과 관계없이 유사하였다.
아달리무맙의 함량이 100mg/mL인 시료 (A-40~A-61)의 40°C 4주 보관 후 단량체 함량은, 염화나트륨을 포함하지 않는 제형(A-40~A-55)의 경우 97.04%~97.23% 였으며, 염화나트륨을 포함하는 제형 (A-56~A-61, 상용 휴미라 조성 A-62 제외)의 경우 96.85%~97.00%로 염화나트륨을 포함하지 않는 제형보다는 약간 낮았다. 그러나 염화나트륨, 수크로오즈, 메티오닌, 글리신, 류신의 함량에 따른 40°C 4주 보관 후의 단량체 함량 차이는 비교적 미미하였고, 아르기닌을 포함한 조성 (A-40~A-61)의 단량체 함량이 동일 아달리무맙 농도의 상용 휴미라 조성(A-62)의 단량체 함량인 95.64% 보다 1% 이상 높음을 확인하였다.
아달리무맙 함량이 50mg/mL인 경우에도 100mg/mL 아달리무맙 조성의 분석결과와 유사한 결과를 나타내었다. 아달리무맙의 함량이 50mg/mL인 시료 (A-63~A-85)의 40°C 4주 보관 후 단량체 함량은, 염화나트륨을 포함하지 않는 제형(A-63~A-79)의 경우 97.15%~97.38% 였으며, 염화나트륨을 포함하는 제형 (A-80~A-85, 상용 휴미라 조성 A-86 제외)의 경우 96.81%~97.06%로 염화나트륨을 포함하지 않는 제형보다는 약간 낮았다. 그러나 염화나트륨, 수크로오즈, 메티오닌, 글리신, 류신의 함량에 따른 40°C 4주 보관 후의 단량체 함량 차이는 비교적 미미하였고, 아르기닌을 포함한 조성 (A-63~A-85)의 단량체 함량이 동일 아달리무맙 농도의 상용 휴미라 조성(A-86)의 단량체 함량인 95.47% 보다 1% 이상 높음을 확인하였다.
이에 따라, 본 실시예에 기술된 첨가제의 조합 및 유사 제형, 즉 아르기닌을 포함하는 제형이 상용 휴미라 제형보다 안정성 면에서 우월한 제형임을 확인하였다.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (25)

  1. 항-TNF 알파 항체, 안정화제, 계면활성제, 및 아르기닌을 포함하는, 항-TNF 알파 항체의 액상 제제.
  2. 제1항에 있어서, 상기 안정화제는 폴리올, 아르기닌 외의 다른 아미노산, 또는 이들의 조합인, 항-TNF 알파 항체의 액상 제제.
  3. 제2항에 있어서, 상기 폴리올은 수크로오스, 트레할로스, PEG, 및 이들의 조합으로 이루어진 군에서 선택되는 것인, 항-TNF 알파 항체의 액상 제제.
  4. 제2항에 있어서, 상기 아미노산은 글리신, 류신, 이소류신, 페닐알라닌, 프롤린 및 이들의 조합으로 이루어진 군에서 선택되는 것인, 항-TNF 알파 항체의 액상 제제.
  5. 제1항에 있어서, 상기 안정화제는
    (i) 수크로오스 또는 트레할로스,
    (ii) 수 평균 분자량이 200 내지 600인 PEG, 또는 수 평균 분자량이 1000 내지 8000인 PEG,
    (iii) 글리신 또는 류신, 및
    (iv) 상기 (i) 내지 (iii) 중 2 이상의 조합
    으로 이루어진 군에서 선택된 것인, 항-TNF 알파 항체의 액상 제제.
  6. 제2항에 있어서, 상기 제제에서 폴리올은 0.1 내지 100 mg/mL의 농도로 존재하는, 항-TNF 알파 항체의 액상 제제.
  7. 제2항에 있어서, 상기 제제에서 아르기닌 외의 아미노산은 1 내지 300 mM의 농도로 존재하는, 항-TNF 알파 항체의 액상 제제.
  8. 제1항에 있어서, 상기 계면활성제는 비이온성 계면활성제인, 항-TNF 알파 항체의 액상 제제.
  9. 제1항에 있어서, 상기 계면활성제는 폴리소르베이트 또는 폴록사머인, 항-TNF 알파 항체의 액상 제제.
  10. 제9항에 있어서, 상기 계면활성제는 폴리소르베이트80, 폴리소르베이트20, 또는 폴록사머188인, 항-TNF 알파 항체의 액상 제제.
  11. 제1항에 있어서, 상기 제제에서 계면활성제는 0.1 내지 5 mg/mL의 농도로 존재하는, 항-TNF 알파 항체의 액상 제제.
  12. 제1항에 있어서, 상기 아르기닌은 염 형태인, 항-TNF 알파 항체의 액상 제제.
  13. 제12항에 있어서, 상기 아르기닌은 아르기닌 염산염 (arginine hydrochloride) 형태인, 항-TNF 알파 항체의 액상 제제.
  14. 제1항에 있어서, 상기 제제에서 아르기닌은 0.1 내지 200mM의 농도로 존재하는, 항-TNF 알파 항체의 액상 제제.
  15. 제1항에 있어서, 상기 항-TNF 알파 항체는 아달리무맙 (adalimumab)인, 항-TNF 알파 항체의 액상 제제.
  16. 제1항에 있어서, 상기 제제에서 항-TNF 알파 항체는 1 내지 250 mg/mL의 농도로 존재하는, 항-TNF 알파 항체의 액상 제제.
  17. 제1항에 있어서, 상기 제제에서 항-TNF 알파 항체는 50 내지 200 mg/mL의 농도로 존재하는, 항-TNF 알파 항체의 액상 제제.
  18. 제1항에 있어서,
    상기 액상 제제는 항산화제를 더 포함하는, 액상 제제.
  19. 제18항에 있어서, 상기 항산화제는 메티오닌인, 항-TNF 알파 항체의 액상 제제.
  20. 제19항에 있어서, 상기 제제에서 메티오닌은 1 내지 50 mM의 농도로 존재하는, 항-TNF 알파 항체의 액상 제제.
  21. 제1항 내지 제20항 중 어느 한 항에 있어서,
    상기 액상 제제는 추가의 염 및 완충액을 포함하지 않는 것인, 항-TNF 알파 항체의 액상 제제.
  22. 제1항 내지 제20항 중 어느 한 항에 있어서,
    상기 액상 제제의 pH는 4 내지 6인, 항-TNF 알파 항체의 액상 제제.
  23. 제1항에 있어서, 상기 액상 제제는
    1 내지 250mg/mL 농도의 항-TNF 알파 항체;
    0.1 내지 100mg/mL 농도의 폴리올;
    0.1 내지 5mg/mL 농도의 계면활성제, 및
    0.1 내지 200mM 농도의 아르기닌을 포함하는, 항-TNF 알파 항체의 액상 제제.
  24. 제1항에 있어서, 상기 액상 제제는
    1 내지 250mg/mL 농도의 항-TNF 알파 항체;
    1 내지 300mM 농도의 아르기닌 외의 다른 아미노산;
    0.1 내지 5mg/mL 농도의 계면활성제, 및
    0.1 내지 200mM 농도의 아르기닌을 포함하는, 항-TNF 알파 항체의 액상 제제.
  25. 항-TNF 알파 항체, 안정화제, 계면활성제, 및 아르기닌을 서로 혼합하는 단계를 포함하는, 제1항의 액상 제제의 제조 방법.
PCT/KR2018/003097 2017-03-16 2018-03-16 항-tnf 알파 항체의 액상 제제 WO2018169348A1 (ko)

Priority Applications (14)

Application Number Priority Date Filing Date Title
MYPI2019005331A MY197202A (en) 2017-03-16 2018-03-16 A liquid formulation of anti-tnf alpha antibody
CN201880031705.6A CN110621303A (zh) 2017-03-16 2018-03-16 抗TNFα抗体的液体制剂
AU2018236651A AU2018236651B2 (en) 2017-03-16 2018-03-16 Liquid formulation of anti-TNF alpha antibody
JP2019551275A JP7109849B2 (ja) 2017-03-16 2018-03-16 抗TNFα抗体の液状製剤
MX2019010895A MX2019010895A (es) 2017-03-16 2018-03-16 Formulacion liquida de anticuerpo anti-tnf alfa.
RU2019130728A RU2756619C2 (ru) 2017-03-16 2018-03-16 Жидкая композиция антитела против TNF альфа
UAA201909838A UA123847C2 (uk) 2017-03-16 2018-03-16 Рідка композиція анти-tnf альфа антитіла
MA46988A MA46988A1 (fr) 2017-03-16 2018-03-16 Formulation liquide d'anticorps anti-tnf alpha
BR112019019162A BR112019019162A2 (pt) 2017-03-16 2018-03-16 formulação líquida de um anticorpo anti-tnf-a e método para preparar a formulação líquida
NZ757965A NZ757965A (en) 2017-03-16 2018-03-16 Liquid formulation of anti-tnf alpha antibody
PH12019502075A PH12019502075A1 (en) 2017-03-16 2019-09-12 A liquid formulation of anti-tnf alpha antibody
CONC2019/0010860A CO2019010860A2 (es) 2017-03-16 2019-09-30 Una formulación líquida de anticuerpo contra tnf alfa
ZA2019/06696A ZA201906696B (en) 2017-03-16 2019-10-10 Liquid formulation of anti-tnf alpha antibody
JP2022076654A JP2022097600A (ja) 2017-03-16 2022-05-06 抗TNFα抗体の液状製剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170033188 2017-03-16
KR10-2017-0033188 2017-03-16

Publications (1)

Publication Number Publication Date
WO2018169348A1 true WO2018169348A1 (ko) 2018-09-20

Family

ID=63522490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003097 WO2018169348A1 (ko) 2017-03-16 2018-03-16 항-tnf 알파 항체의 액상 제제

Country Status (15)

Country Link
JP (2) JP7109849B2 (ko)
KR (2) KR20180106974A (ko)
CN (1) CN110621303A (ko)
AU (1) AU2018236651B2 (ko)
BR (1) BR112019019162A2 (ko)
CO (1) CO2019010860A2 (ko)
MA (1) MA46988A1 (ko)
MX (1) MX2019010895A (ko)
MY (1) MY197202A (ko)
NZ (1) NZ757965A (ko)
PH (1) PH12019502075A1 (ko)
RU (1) RU2756619C2 (ko)
UA (1) UA123847C2 (ko)
WO (1) WO2018169348A1 (ko)
ZA (1) ZA201906696B (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113573733A (zh) * 2019-03-21 2021-10-29 瑞泽恩制药公司 含有抗il-33抗体的稳定调配物
JP2022520857A (ja) * 2019-02-18 2022-04-01 イーライ リリー アンド カンパニー 治療用抗体製剤

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230173068A1 (en) * 2020-02-20 2023-06-08 Bio-Thera Solutions, Ltd. ANTI-TNF-a ANTIBODY FORMULATION, PREPARATION METHOD THEREFOR AND USE THEREOF

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151115A1 (en) * 2014-04-02 2015-10-08 Intas Pharmaceuticals Limited Liquid pharmaceutical composition of adalimumab
WO2016066688A1 (en) * 2014-10-28 2016-05-06 Richter Gedeon Nyrt. Pharmaceutical anti-tnf-alpha antibody formulation
WO2016120413A1 (en) * 2015-01-28 2016-08-04 Mabxience S.A. Pharmaceutical formulations for anti-tnf-alpha antibodies
US20160304599A1 (en) * 2012-09-07 2016-10-20 Coherus Biosciences, Inc. Stable Aqueous Formulations of Adalimumab
KR20170005864A (ko) * 2014-05-23 2017-01-16 아레스 트레이딩 에스.아. 액체 제약 조성물

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2815689C (en) * 2010-11-11 2016-11-22 Abbvie Biotechnology Ltd. Improved high concentration anti-tnf.alpha. antibody liquid formulations
UY34105A (es) * 2011-06-03 2012-07-31 Lg Life Sciences Ltd Formulación líquida estable de etanercept
KR20160105535A (ko) * 2012-03-07 2016-09-06 카딜라 핼쓰캐어 리미티드 TNF-α 항체의 약제학적 제형
CN105051064A (zh) * 2013-01-24 2015-11-11 葛兰素史克知识产权开发有限公司 抗TNF-α抗原结合蛋白
CN105025925A (zh) 2013-03-15 2015-11-04 拜尔健康护理有限责任公司 抗-催乳素受体抗体制剂
WO2015134406A1 (en) 2014-03-03 2015-09-11 La Jolla Biologics, Inc. Stable aqueous recombinant protein formulations
US9821059B2 (en) 2014-10-17 2017-11-21 Alteogen Inc. Composition for stabilizing protein and pharmaceutical formulation comprising the same
WO2016162819A1 (en) * 2015-04-07 2016-10-13 Lupin Limited Stable aqueous pharmaceutical composition of anti-tnf alpha antibody

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160304599A1 (en) * 2012-09-07 2016-10-20 Coherus Biosciences, Inc. Stable Aqueous Formulations of Adalimumab
WO2015151115A1 (en) * 2014-04-02 2015-10-08 Intas Pharmaceuticals Limited Liquid pharmaceutical composition of adalimumab
KR20170005864A (ko) * 2014-05-23 2017-01-16 아레스 트레이딩 에스.아. 액체 제약 조성물
WO2016066688A1 (en) * 2014-10-28 2016-05-06 Richter Gedeon Nyrt. Pharmaceutical anti-tnf-alpha antibody formulation
WO2016120413A1 (en) * 2015-01-28 2016-08-04 Mabxience S.A. Pharmaceutical formulations for anti-tnf-alpha antibodies

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022520857A (ja) * 2019-02-18 2022-04-01 イーライ リリー アンド カンパニー 治療用抗体製剤
US11634485B2 (en) 2019-02-18 2023-04-25 Eli Lilly And Company Therapeutic antibody formulation
JP7266108B2 (ja) 2019-02-18 2023-04-27 イーライ リリー アンド カンパニー 治療用抗体製剤
JP7551822B2 (ja) 2019-02-18 2024-09-17 イーライ リリー アンド カンパニー 治療用抗体製剤
CN113573733A (zh) * 2019-03-21 2021-10-29 瑞泽恩制药公司 含有抗il-33抗体的稳定调配物
JP2022526292A (ja) * 2019-03-21 2022-05-24 リジェネロン・ファーマシューティカルズ・インコーポレイテッド 抗il-33抗体を含有する安定化製剤

Also Published As

Publication number Publication date
AU2018236651A1 (en) 2019-10-31
MY197202A (en) 2023-05-31
AU2018236651B2 (en) 2020-12-10
ZA201906696B (en) 2020-08-26
BR112019019162A2 (pt) 2020-04-14
KR20180106974A (ko) 2018-10-01
MA46988A1 (fr) 2020-06-30
RU2019130728A3 (ko) 2021-04-16
JP2022097600A (ja) 2022-06-30
MX2019010895A (es) 2019-11-05
CO2019010860A2 (es) 2020-01-17
KR20200096472A (ko) 2020-08-12
UA123847C2 (uk) 2021-06-09
RU2756619C2 (ru) 2021-10-04
CN110621303A (zh) 2019-12-27
PH12019502075A1 (en) 2020-09-14
NZ757965A (en) 2022-07-01
KR102342292B1 (ko) 2021-12-24
JP7109849B2 (ja) 2022-08-01
JP2020510079A (ja) 2020-04-02
RU2019130728A (ru) 2021-04-16

Similar Documents

Publication Publication Date Title
WO2015080513A1 (en) A liquid formulation of a fusion protein comprising tnfr and fc region
WO2014017845A2 (en) A liquid formulation of long acting insulinotropic peptide conjugate
WO2018169348A1 (ko) 항-tnf 알파 항체의 액상 제제
AU2016346864B2 (en) Long-acting FGF21 fusion proteins and pharmaceutical composition comprising same
WO2017078385A1 (en) Formulation of modified interleukin-7 fusion protein
WO2012169798A2 (en) Novel oxyntomodulin derivatives and pharmaceutical composition for treating obesity comprising the same
WO2014017847A1 (en) A liquid formulation of long-acting insulin conjugate
WO2014084508A1 (ko) 단백질과 Fc 도메인을 융합한 융합 단백질의 안정화용 조성물
EP2714009A1 (en) Stable liquid formulation of etanercept
WO2021118321A1 (ko) 안정한 항-pd-1 항체 약제학적 제제
EP2877201A1 (en) A liquid formulation of long-acting insulin and insulinotropic peptide
WO2018131893A1 (ko) 안정한 액체 제제
AU2009294680A1 (en) Novel antibody formulation
WO2015046974A1 (ko) 지속형 인간 성장 호르몬 제제
WO2021182874A1 (ko) 안정성이 증진된 액상 약제학적 조성물
WO2020145789A1 (ko) 항체를 포함하는 약학적 조성물, 이를 포함하는 디바이스, 및 이의 용도
WO2022245179A1 (en) Composition for combination therapy comprising growth differentiation factor-15 variant and glucagon-like peptide-1 receptor agonist
WO2021096278A1 (ko) 항체 의약품용 액상 조성물
WO2016060507A1 (ko) 단백질 안정화용 조성물 및 이를 포함하는 약제학적 제제
WO2017142331A1 (en) Pharmaceutical composition comprising recombinant hgh for the treatment of growth hormone deficiency
WO2020101452A1 (ko) 단백질을 포함하는 안정한 액상 조성물
WO2022045857A2 (ko) 안정한 약제학적 제제
EP3416677A1 (en) Pharmaceutical composition comprising recombinant hgh for the treatment of growth hormone deficiency
WO2018080196A2 (ko) 안정한 약제학적 제제
WO2024196220A1 (ko) 안정한 약제학적 제제 및 완제의약품의 제조공정

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767054

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019551275

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019019162

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018236651

Country of ref document: AU

Date of ref document: 20180316

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019019162

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190916

122 Ep: pct application non-entry in european phase

Ref document number: 18767054

Country of ref document: EP

Kind code of ref document: A1