WO2018168595A1 - ヘッドアップディスプレイ装置 - Google Patents

ヘッドアップディスプレイ装置 Download PDF

Info

Publication number
WO2018168595A1
WO2018168595A1 PCT/JP2018/008696 JP2018008696W WO2018168595A1 WO 2018168595 A1 WO2018168595 A1 WO 2018168595A1 JP 2018008696 W JP2018008696 W JP 2018008696W WO 2018168595 A1 WO2018168595 A1 WO 2018168595A1
Authority
WO
WIPO (PCT)
Prior art keywords
virtual image
image display
distance
display
night
Prior art date
Application number
PCT/JP2018/008696
Other languages
English (en)
French (fr)
Inventor
勇希 舛屋
Original Assignee
日本精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精機株式会社 filed Critical 日本精機株式会社
Priority to JP2019505917A priority Critical patent/JP7041851B2/ja
Publication of WO2018168595A1 publication Critical patent/WO2018168595A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/21Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
    • B60K35/23Head-up displays [HUD]
    • B60K35/232Head-up displays [HUD] controlling the projection distance of virtual images depending on the condition of the vehicle or the driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/21Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
    • B60K35/23Head-up displays [HUD]
    • B60K35/233Head-up displays [HUD] controlling the size or position in display areas of virtual images depending on the condition of the vehicle or the driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/02Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof

Definitions

  • the present invention relates to a head-up display (HUD) device mounted on a vehicle such as an automobile.
  • HUD head-up display
  • a head-up display device (hereinafter referred to as a HUD device) is mounted on a vehicle such as an automobile (mainly a four-wheeled vehicle) or a motorcycle (mainly a two-wheeled vehicle), for example, and displays an image indicating information related to driving, etc.
  • a vehicle such as an automobile (mainly a four-wheeled vehicle) or a motorcycle (mainly a two-wheeled vehicle), for example, and displays an image indicating information related to driving, etc.
  • a virtual image is displayed over the actual scene in front of the driver (for example, scenery including the vehicle ahead, the road surface, etc.)
  • It is a display device for vehicles which can do. Since necessary information and the like are displayed superimposed on the scenery such as the front, the driver can efficiently obtain the necessary information without moving a large line of sight while driving the vehicle.
  • the content displayed by the HUD device needs to be superimposed on the actual scene and the superimposed content to be superimposed on the actual scene (for example, a warning mark superimposed on the vehicle position according to the movement or movement of the vehicle ahead).
  • Non-superimposed content for example, vehicle speed information
  • vehicle information is dynamically superimposed on the road surface or virtual surface according to the slope of the road surface (road gradient) as a real scene or a virtual surface parallel to the road surface
  • the vehicle speed information is , Superimposed content.
  • the superimposed content and non-superimposed content can also be referred to as dynamic superimposed content and non-dynamic (static) superimposed content, respectively.
  • a virtual image of non-superimposed content or a virtual image of vehicle information typically prevents a user (driver, etc.) from feeling uncomfortable, or facilitates where the content or vehicle information is displayed. It is common to display at a fixed position for recognition. In other words, conventionally, the virtual image of the non-superimposed content or the virtual image of the vehicle information is displayed at a fixed position (for example, the lower center or the lower right side) in the virtual image display area on the projection target member as an example.
  • Patent Literature 1 normal first information (vehicle information such as vehicle speed and engine speed), which is information displayed by the HUD device, and second information (typically, urgency or importance) are typical. Is distinguished from emergency broadcast messages such as “Tsunami Occurrence”, information for notifying obstacles, etc., and the second information is displayed (height position) corresponding to the on / off of the headlamps. The first position is fixed regardless of whether the headlight is on or off (the second information is displayed and the height is changed).
  • paragraphs [0036] to [0038] and [0047] to [0050] are disclosed in which the visual recognition of the actual scene is given priority so that the driver is not disturbed. ], [FIG. 5] to [FIG.
  • vehicle information such as vehicle speed (which may be non-superimposed content or in some cases superimposed content) is typically at a fixed position in the display area (area where a virtual image can be displayed) of the projection target member. It is displayed.
  • the first information such as the vehicle speed is displayed at a display position (height position) lower than the driver's reference line of sight (height near the center of the windshield). It is fixed on the lower side.
  • the second information having a high degree of urgency or importance is a display position (height position) that is substantially the same as the height near the center of the windshield when the headlamps (low beam and high beam) are turned off.
  • the low beam and the high beam are turned on, they are moved to positions slightly lower (height position) and higher (height position) than the height near the center of the windshield, respectively.
  • the distance between the virtual image of the second information and the viewpoint (eyes) of the driver is almost constant.
  • the position in the real space of the virtual image (emergency information 302) in FIG. 4 of Patent Document 1 is substantially constant only by rotating the mirror.
  • the driver needs to adjust the focus of the eyes (gaze point) from the real scene in the real space to the virtual image.
  • the actual scene position in the real space (the distance between the gaze actual scene and the driver in the vehicle longitudinal direction) watched by the driver in the daytime and the driver's gaze at night.
  • the present inventors have recognized that there is a difference between the real scene position in the real space (the distance between the gaze real scene and the driver in the vehicle front-rear direction), and therefore the virtual image position (the virtual image in the vehicle front-rear direction and the virtual image position in the vehicle front-rear direction).
  • the present inventors have recognized that there is a difference between the focus adjustment to the virtual image at daytime and the focus adjustment to the virtual image at night when the distance to the driver is substantially constant.
  • the movement of the driver's line of sight is reduced as much as possible (in other words, the focus adjustment of the eyes is reduced as much as possible).
  • display information content
  • the HUD device of Patent Document 1 in which the display position of vehicle information (non-superimposed content) such as the vehicle speed is fixed cannot meet this requirement.
  • One object of the present invention is to provide a head-up display device capable of displaying an image of content at an appropriate display distance according to driving conditions.
  • the head-up display device comprises: A head-up display device that is mounted on a vehicle and projects an image onto a projection member provided on the vehicle to allow a user to visually recognize a virtual image of the image, A vehicle information acquisition unit for acquiring vehicle information; A day / night determination unit that determines day / night based on at least one of external light intensity information obtained from an external light sensor and vehicle information acquired by the vehicle information acquisition unit; An image generation unit that generates first image data for first content (for example, non-superimposed content that does not need to be superimposed on a real scene in front of the vehicle); An image display unit including a display surface that displays a first image corresponding to the first image data; and an optical member that reflects display light indicating the first image and projects the light onto the projection member.
  • the change of the optical path length from the image display unit to the projection target member and the display surface A virtual image display distance control unit that controls a virtual image display distance for a first virtual image that is a virtual image corresponding to the first image by at least one of a change in a display position of the first image;
  • the visual field range of the user at noon is the first gaze area
  • the representative gaze point of the user in the first gaze area is the first gaze area
  • the visual field range of the user at night is the second gaze area
  • the virtual image display distance control unit determines the virtual image display distance for the first virtual image according to whether the determination result of the day / night determination unit is daytime or night, the first gazing point or the second Switch to the distance corresponding to the point of interest.
  • the virtual image display distance control unit determines the virtual image display distance of the virtual image of the first content such as the non-superimposed content according to the determination result of the day / night determination unit. ) / Switches to a distance corresponding to each of the second gaze points (gaze points at night).
  • the “gaze point” is a representative gaze point in the first and second gaze areas (field-of-view range) at day / night (eg, good view, no obstacles, warning display, etc.) It is estimated that the standard user's eyes are in focus in the most stable driving state).
  • the user can It is possible to grasp the current running state while minimizing the focus adjustment.
  • vehicle information vehicle speed display, etc.
  • the virtual image display distance can be changed from an image display unit (for example, a display device such as a screen on which an image is projected or a liquid crystal panel with a backlight) having a display surface for displaying an image to a projection target (typically Change of the optical path length to the windshield (specifically, for example, the length of the optical path from the first point where the optical axis of the optical system intersects the display surface of the display unit to the second point where it intersects the projection target member) And at least one of changing the display position of the image of the first content on the display surface of the image display unit. In other words, any of them may be used alone, or each method may be used in combination. Since the distance of the virtual image is controlled, the accuracy of the switching control is increased, and thus the burden of the user's eye focus adjustment is reduced.
  • an image display unit for example, a display device such as a screen on which an image is projected or a liquid crystal panel with a backlight
  • a projection target typically Change of the optical path length to the windshield (specific
  • the head-up display device comprises: A head-up display device that is mounted on a vehicle and projects an image onto a projection member provided on the vehicle to allow a user to visually recognize a virtual image of the image, A vehicle information acquisition unit for acquiring vehicle information; A day / night determination unit that determines day / night based on at least one of external light intensity information obtained from an external light sensor and vehicle information acquired by the vehicle information acquisition unit; A high beam for determining whether the state of the headlamp is a high beam state or a low beam state based on the vehicle information acquired by the vehicle information acquisition unit when the vehicle headlamp is turned on.
  • An image generation unit that generates first image data for first content (for example, non-superimposed content that does not need to be superimposed on a real scene in front of the vehicle);
  • An image display unit comprising a display surface for displaying a first image corresponding to the first image data;
  • An optical system including an optical member that reflects display light indicating the first image and projects the reflected light onto the projection target member;
  • the distance from the reference point set on the user or the vehicle to the virtual image is a virtual image display distance, the change in the optical path length from the image display unit to the projection target member and the display surface
  • a virtual image display distance control unit that controls a virtual image display distance for a first virtual image that is a virtual image corresponding to the first image by at least one of a change in a display position of the first image;
  • Have The visual field range of the user in the first state corresponding to daytime or the first state in which the headlamp at night is a high beam is defined as a first gaze region, and the user's field of view within the
  • the visual field range of the user in the third state corresponding to daytime is the third gaze area
  • the representative gaze point of the user in the third gaze area is the third gaze point
  • the heading at night The field of view of the user in the fourth state where the lamp is a high beam is the fourth gaze area
  • the representative gaze point of the user in the fourth gaze area is the fourth gaze point
  • the front at night In the case where the visual field range of the user in the fifth state where the illumination lamp is a low beam
  • the representative gaze point of the user in the fifth gaze area is the fifth gaze point
  • the virtual image display distance control unit is configured such that, based on the determination result of the day / night determination unit and the detection result of the high beam / low beam detection unit, the third state corresponding to the third
  • the virtual image display distance for the first virtual image is switched to a distance corresponding to the third gazing point, the fourth gazing point, or the fifth gazing point.
  • a high beam / low beam detection unit for determining whether the headlamp is in the high beam state or the low beam state.
  • the virtual image display distance control unit distinguishes between the first state in the daytime or the first state in which the headlight at night is a high beam and the second state in which the headlamp at night is a low beam. Or the third state, which is daytime, the fourth state, where the headlight at night is a high beam, and the fifth state, where the headlight at night is a low beam.
  • each of the first to fifth gaze points is a representative gaze point of the user in the gaze area in each of the first to fifth states, and is uniquely determined in each gaze area.
  • the effect obtained in the second mode is the same as that in the first mode, but since the headlamp state is considered, it is divided into the high beam state / low beam state of the headlamp at night. Accordingly, for example, the virtual image display distance for the virtual image of the first content, which is non-superimposed content, is switched, so that the accuracy of the virtual image display distance switching control can be further increased.
  • the virtual image display distance control unit is When determining the first state, when setting the virtual image display distance for the first virtual image to the first distance corresponding to the first gazing point, and determining the second state
  • the virtual image display distance for the first virtual image may be set to a second distance corresponding to the second gazing point and shorter than the first distance
  • the virtual image display distance control unit is When determining the third state, when setting the virtual image display distance for the first virtual image to a third distance corresponding to the third gazing point, and determining the fourth state
  • the virtual image display distance for the first virtual image may be set to a fifth distance corresponding to the fifth gazing point and shorter than the third distance and the fourth distance.
  • the viewpoint at this time is on the side (back side) relatively far from the vehicle.
  • the night high beam time and daytime are common in that the user tends to watch relatively far away, but the viewpoint position does not always match, and it is better to distinguish between daytime and night high beam time. It can be good.
  • the virtual image display distance control unit sets the virtual image display distance to the first / second distances in correspondence with the case where the headlights in the day and night are high beams / low beams in the night. (The second distance is shorter than the first distance), or the virtual image display distance is changed to correspond to each case of daytime / high beam at night / low beam at night. Switching control is performed to each of 3 / fourth / fifth distances (the third / fourth distances are different values, and the fifth distance is shorter than the third / fourth distances). Thereby, it is possible to switch the virtual image display distance for the first content that is, for example, non-superimposed content with high accuracy in correspondence with the gaze point in each state.
  • the first content (for example, non-superimposed content) includes vehicle speed information indicating the travel speed of the vehicle, engine speed information, intake pressure information, hydraulic pressure information, and fuel pressure information indicating the travel state of the vehicle.
  • Oil temperature information, water temperature information, exhaust gas temperature information, throttle opening information, and intake air temperature information may be included.
  • Vehicle information such as vehicle speed, engine speed, intake pressure, oil pressure, fuel pressure, oil temperature, water temperature, exhaust temperature, throttle opening, intake air temperature, etc. is useful to the user as information indicating the running state. Therefore, in the third aspect, for example, non-superimposed content including at least one of the information exemplified above is set as a target for switching control. For example, in a racing vehicle, it may be possible to display various types of vehicle information effectively while reducing movement of the user's viewpoint and focus adjustment.
  • the virtual image display distance control unit displays a virtual image for a first virtual image corresponding to the first image in accordance with the first / second state or the third / fourth / fifth state.
  • the switching control may not be executed.
  • the virtual image of the first content that is a non-superimposed content is displayed.
  • the virtual image display distance switching control is not executed. If the user performs the switching control in the first to fourth modes in a situation where the user is gazing at the virtual image of the superimposed content, the user is forced to change the viewpoint, which is not preferable, and a gaze point conflict occurs. In such a case, the switching control is not executed.
  • a direction corresponding to a vertical direction in the real space on the display surface of the image display unit is a vertical direction, orthogonal to the vertical direction, and corresponds to a left-right direction toward the front of the vehicle in the real space.
  • the virtual image display distance control unit displays a virtual image for a first virtual image corresponding to the first image in accordance with the first / second state or the third / fourth / fifth state.
  • the virtual image display distance may be changed while maintaining the layout of the first image in the horizontal direction on the display surface of the image display unit.
  • the layout when performing the switching control of the virtual image display distance, the layout is not changed before and after the switching so as to prevent the user from feeling uncomfortable as much as possible.
  • an image of the first content for example, non-superimposed content
  • the second space should exist, that is, it can be understood that a layout including a left space, an image, and a right space is formed from the left side in the horizontal direction. Therefore, the layout in the horizontal direction is maintained on the display surface of the image display unit even after the switching control.
  • a direction corresponding to a vertical direction in the real space on the display surface of the image display unit is a vertical direction, orthogonal to the vertical direction, and corresponds to a left-right direction toward the front of the vehicle in the real space.
  • the virtual image display distance control unit is In accordance with the first / second state or the third / fourth / fifth state, the virtual image display distance for the first virtual image corresponding to the first image is switched and controlled, And based on the steering angle information which changes with steering operation which the said vehicle information acquisition part acquires, the said 1st in the said display surface of the said image display part is corresponding to the movement of the said user's viewpoint.
  • the horizontal position of the image may be controlled.
  • non-superimposed content is controlled so that the virtual image display distance is switched as described above, and further, based on the steering angle information that changes with the steering operation, in response to the movement of the user's viewpoint.
  • the position of the first image in the horizontal direction on the display surface of the image display unit is switched, for example, so that the user can visually recognize the first image with less viewpoint movement and focus adjustment. To do. Therefore, the burden on the user's eyes is further reduced.
  • the image generation unit may generate second image data for the second content in addition to the first image data for the first content, In addition to the display surface for displaying the first image corresponding to the first image data, the image display unit displays another display for displaying the second image corresponding to the second image data. May have a surface, The optical system may reflect display light indicating the first image and reflect display light indicating the second image, and may project the projection light onto the projection target member.
  • the virtual image display distance for the second virtual image that is a virtual image corresponding to the second image is longer than the virtual image display distance for the first virtual image that is a virtual image corresponding to the first image, and
  • the virtual image display distance control unit controls the virtual image display distance for the second virtual image based on the determination result of the day / night determination unit, or the determination result of the day / night determination unit and the high beam / low beam detection unit. The control based on the detection result may not be executed.
  • a second virtual image (in other words, virtual image display distance) displayed farther from the user's perspective.
  • control based on the determination result of the day / night determination unit, or control based on the determination result of the day / night determination unit and the detection result of the high beam / low beam detection unit (in other words, The virtual image display distance switching control is not a target of virtual image display distance switching control, and the first virtual image displayed in a closer position as viewed from the user (in other words, the virtual image display distance is greater than that of the second virtual image). Only the first short virtual image).
  • a large virtual image display surface corresponding to a wide range of real scenes is set at a position farther from the user, and this virtual image display surface is superimposed on, for example, a real scene.
  • Display a second virtual image of superimposed content (for example, a warning mark superimposed on a vehicle ahead) that needs to be performed, and set a relatively small virtual image display surface at a closer position, and display this virtual image
  • a first virtual image of non-superimposed content for example, information such as vehicle speed display
  • each information is clearly distinguished to give a stereoscopic effect. Can be displayed.
  • the first virtual image of the two-sided (two-layer) HUD device adopts the virtual image display distance switching control according to the distinction between day and night, etc., so that the focus adjustment (focusing when the user visually recognizes the first virtual image) The load during operation can be reduced. Therefore, the convenience of the two-sided (two-layer) HUD device is improved.
  • the first virtual image may be a virtual image for non-superimposed content that does not need to be superimposed on a real scene
  • the second virtual image may be a virtual image for superimposed content that needs to be superimposed on a real scene.
  • the second virtual image of the superimposed content to be superimposed on the real scene for example, a warning mark superimposed on the vehicle ahead
  • the non-superimposed content that does not need to be superimposed on the real scene for example, vehicle speed display, etc.
  • the first virtual image can be clearly distinguished from the first virtual image and displayed with a stereoscopic effect, and the virtual image display distance switching control according to the distinction between day and night etc. with respect to the first virtual image
  • the virtual image display distance control unit may periodically change the optical path length from the image display unit to the projection target member by vibrating the image display unit in a predetermined range.
  • the virtual image display distance for the first virtual image that is a virtual image corresponding to the first image is controlled. May be.
  • a virtual image display distance switching control is executed in a HUD (multi-plane HUD or multi-layer HUD) apparatus capable of setting a multi-surface virtual image display surface.
  • a HUD multi-plane HUD or multi-layer HUD
  • the virtual image display distance can be changed more freely, and the sense of depth is further improved.
  • a three-dimensional display is possible.
  • the size and height of the display target object (object) can be changed as appropriate to give perspective, adjust the display position of the object, add depth to the object,
  • geometrical three-dimensional decoration processing hereinafter sometimes simply referred to as three-dimensional decoration
  • three-dimensional decoration such as adding shadows, adopting perspective expression, or expressing the texture of an object precisely.
  • Realistic 3D display is possible.
  • the focus adjustment (focus adjustment) when the user visually recognizes the first virtual image by adopting the switching control of the virtual image display distance according to the distinction such as day and night ) Is reduced, and the load during operation can be reduced. Therefore, the convenience of a multi-sided (multi-layer) HUD device is improved.
  • the virtual image display distance may be changed to m (m is a natural number of 3 or more),
  • the first virtual image may be a virtual image of non-superimposed content that does not need to be superimposed on a real scene,
  • the virtual image display surface corresponding to the virtual image display distance changed in the m ways is the first to m-th virtual image display surfaces, control for vibrating the image display unit within a predetermined range; Due to the control of the display timing of the image on the display surface and the display content change control synchronized with the control of the display timing, each of at least two of the first to m-th virtual image display surfaces is different. It may be possible to display a virtual image of the superimposed content.
  • the multi-plane (multilayer) HUD device can change the virtual image display distance to m ways (m is a natural number of 3 or more), and controls vibration of the image display unit, control of display timing, and display timing.
  • m is a natural number of 3 or more
  • a three-dimensional display three-dimensional AR display
  • the virtual image display distance control unit can use a virtual image display surface group (at least 2) according to day and night, the first and second states, or the third, fourth, and fifth states. (Including the above virtual image display surface) may be switched.
  • the virtual image display plane group is set according to each state such as day and night.
  • the control of switching is executed.
  • a virtual image is displayed by appropriately selecting a virtual image display surface included in the virtual image display surface group after switching.
  • the range of usable virtual image display surfaces (number of virtual image display surfaces, position, etc.) can be easily narrowed down, and the virtual image display surface to be actually used can be selected.
  • the burden is reduced and narrowing down facilitates processing for displaying a virtual image (such as timing adjustment of image display in the image display unit) and reduces the burden on the virtual image display distance control unit. .
  • FIG. 4A is a diagram illustrating an example of a configuration of a main part of a road surface superimposing HUD device capable of controlling the virtual image display distance
  • FIG. 4B is a diagram in which the virtual image display distance is changed by changing the position of the virtual image. It is a figure which shows a mode that it does.
  • FIG. 5A is a diagram illustrating an example of a gaze area and a gazing point at noon
  • FIG. 5A is a diagram illustrating an example of a gaze area and a gazing point at noon
  • FIG. 5B is a diagram illustrating an example of a gaze area and a gazing point when the headlamp is a high beam at night.
  • FIG.5 (c) is a figure which shows the example of the gaze area
  • FIGS. 6A to 6C uses the configuration of FIG. 3 to change the virtual image display distance according to the gazing point in each of FIGS. 5A to 5C. It is a figure which shows the example of a display.
  • FIGS. 7A to 7C uses the configuration of FIG. 4 to change the virtual image display distance in accordance with the gazing point in each of FIGS. 5A to 5C. It is a figure which shows the example of a display.
  • FIG. 8A and 8B are diagrams illustrating an example of the case where the virtual image display distance switching control is not executed.
  • FIG. 8C illustrates a plurality of types of information in a horizontal row as non-superimposed content. It is a figure which shows the example arrange
  • FIG. 10A is a diagram illustrating the position of the gazing point before the position change in the example in which the horizontal position of the virtual image is controlled based on the steering angle information that changes with the steering operation.
  • FIG. 10B is a diagram showing the display position of the virtual image before the position change, FIG.
  • FIG. 10C is a diagram showing the position of the gazing point after the position change, and FIG. It is a figure which shows the display position of a virtual image.
  • FIG. 11A is a diagram illustrating a virtual image display example of a two-sided (two-layer) HUD device
  • FIG. 11B is a diagram illustrating a configuration example of a main part of the two-sided (two-layer) HUD device. is there.
  • FIGS. 12A, 12B, and 12C are diagrams showing virtual image display examples in the night (night low beam) state, the daytime state, and the night high beam state in the two-sided (two-layer) HUD device of FIG. 11, respectively. It is.
  • FIG. 12A, 12B, and 12C are diagrams showing virtual image display examples in the night (night low beam) state, the daytime state, and the night high beam state in the two-sided (two-layer) HUD device of FIG. 11, respectively. It is.
  • FIG. 12A, 12B, and 12C are diagram
  • FIG. 13A is a diagram illustrating a virtual image display example of a multi-plane (multi-layer) HUD device
  • FIG. 13B is a diagram illustrating a configuration example of a main part of the multi-plane (multi-layer) HUD device
  • FIG. 13C is a diagram illustrating an example of a relationship (synchronization relationship) between a position control signal for controlling the positions of the screen and the lens and the image display timing on the display surface of the screen.
  • FIG. 14A is a diagram showing a setting example of a virtual image display surface in the multi-plane (multi-layer) HUD device of FIG. 13, and FIGS. 14B, 14C, and 14D are respectively night time (night time).
  • FIGS. 15A, 15B, and 15C are diagrams showing virtual image display examples in a night (night low beam) state, a daytime state, and a night high beam state in a multi-plane (multilayer) HUD device, respectively.
  • FIG. 15D is a diagram illustrating a display example in which a virtual image (a virtual image indicating the vehicle speed and a virtual image indicating the speed limit on the road) is given a sense of depth while the vehicle is running.
  • FIG. 16A is a diagram illustrating an example in which a virtual image for notifying the change of the speed limit on the road is displayed in a distant manner in a manner different from the display of the current speed limit on the multi-faceted (multi-layer) HUD device.
  • FIG. 16 (b) is a diagram showing how the virtual image for notifying the change of the speed limit dynamically approaches as the vehicle progresses, and
  • FIG. It is a figure which shows a mode that it was displayed as the present speed limit.
  • FIG. 1 is a diagram showing an overall schematic configuration of an example of a head-up display (HUD) device according to the present invention.
  • the HUD device 100 is mounted on a vehicle (here, assumed to be a four-wheeled automobile) 10, and an image (in other words, image display light) is projected on a projection member (typically translucent and reflective) provided on the vehicle 10.
  • a vehicle here, assumed to be a four-wheeled automobile
  • an image in other words, image display light
  • a projection member typically translucent and reflective
  • a user By projecting onto a windshield (6) that combines the characteristics of the image, a user (typically a driver) can see a virtual image of the image (for example, a virtual image V (a) on the virtual image display surface 400a perpendicular to the road surface 2), Or it is a vehicle display apparatus which makes the virtual image V (b) on the virtual image display surface 400b parallel to the road surface 2 visually recognizable. Since a virtual image can be displayed over a real scene in front of the user (for example, a scene including the vehicle ahead, the road surface, etc.), the user can obtain necessary information without moving a large line of sight while driving the vehicle. Can be obtained efficiently.
  • the user's viewpoint is indicated by a symbol A.
  • the content displayed by the HUD device 100 includes superimposed content to be superimposed on the actual scene (for example, a warning mark superimposed on the vehicle ahead) and non-superimposed content that does not need to be superimposed on the actual scene (for example, vehicle speed).
  • Vehicle information indicating the traveling state of the vehicle such as information).
  • the superimposed content and non-superimposed content can also be referred to as dynamic superimposed content and non-dynamic (static) superimposed content, respectively.
  • vehicle information such as vehicle speed is a display area of the projection target member 6 (an area where a virtual image can be displayed and is not shown in FIG. 1, but is indicated by reference numeral 11 in FIG. Is displayed at a fixed position.
  • a virtual image for example, vehicle information
  • the user needs to adjust the focus of the eyes from the real scene in the real space to the virtual image.
  • the user does not always drive while looking only at the real scene (or virtual image), but looks at the virtual image (or real scene) as necessary.
  • the real scene position in the real space (the distance between the gaze real scene in the vehicle front-rear direction and the user (viewpoint A)) that the user gazes at noon and the user gaze at night.
  • the present inventors recognize that there is a difference between the real scene position in the real space (the distance between the gaze real scene in the vehicle front-rear direction and the user (viewpoint A)), and thus the virtual image position (the vehicle front-rear direction in the real space).
  • the present inventors have recognized that there is a difference between the focus adjustment to the virtual image at daytime and the focus adjustment to the virtual image at night if the distance between the virtual image and the user (viewpoint A) in the image is substantially constant .
  • the HUD device 100 in FIG. 1 can distinguish day and night in order to flexibly cope with the above situation. More specifically, as an example, the HUD device 100 can be used in the case where the headlight at night or at night is a high beam (first state) and the headlight at night is a low beam (second state). State) can be distinguished. Alternatively, the HUD device 100 may be used in the daytime (third state), in the case where the headlight at night is a high beam (fourth state), and in the case where the headlight at night is a low beam (first state). 5 states) can be distinguished.
  • the HUD device 100 has a configuration capable of switching and controlling the virtual image display distance for content such as vehicle speed in accordance with the gaze point in each case (each state) based on the result of discrimination or determination. ing. Note that the gaze point will be described later.
  • the HUD device 100 of FIG. 1 is housed in the dashboard 4 of the vehicle 10, for example, and includes a control unit 30, a light projecting unit 42, a lens 44 provided as necessary, and a display for displaying an image.
  • a screen 46 serving as an image display unit having a surface 47 and an optical member that reflects the display light 5 indicating the image and projects it onto the projection target member 6 (not shown in FIG. 1, concave mirror 49 in FIGS. 3 and 4).
  • An optical system 48 including:
  • the control unit 30 includes a vehicle information acquisition unit 14 that acquires from an ECU (Electronic Control Unit) 150 provided in the vehicle 10 via a signal line (bus) 8 that constitutes an in-vehicle network such as CAN, and an external device provided in the vehicle 10.
  • a day / night determination unit 16 that determines day / night based on at least one of external light intensity information obtained from the optical sensor 12 and vehicle information acquired by the vehicle information acquisition unit 14 (typically, the state of the headlamp 3); When the headlamp 3 of the vehicle 10 is turned on, it is determined whether the state of the headlamp 3 is a high beam state or a low beam state based on the vehicle information acquired by the vehicle information acquisition unit 14.
  • High beam / low beam detection unit 18 first image data on non-superimposed content that does not need to be superimposed on the actual scene ahead of the vehicle, and actual scene Having an image generator 20 which generates a second image data for superimposing the content to be superimposed, a light projecting control unit 22 that controls the operation of the light projecting unit 42, a virtual image display distance control section 24, the.
  • a person skilled in the art may call each content an AR (Augmented Reality) content.
  • the image display unit 46 is configured by the screen 46 on which the image projected by the light projecting unit 42 is imaged on the display surface 47, but is not limited thereto.
  • a display panel such as a liquid crystal display device with a backlight may be used.
  • the light projecting unit 42 and the light projecting control unit 22 are not necessary, and an image display control unit is provided instead.
  • the first image data corresponding to the first image data regarding the non-superimposed content is displayed.
  • the second image corresponding to the second image data for the superimposed content are displayed.
  • the virtual image display distance control unit 24 can switch and control the virtual image display distance for the virtual image V (a) or the virtual image V (b) for the first image.
  • the virtual image V (a) displays, for example, a standing virtual image (a virtual image having an angle of 45 to 90 degrees with respect to a horizontal road surface) on the virtual image display surface 400a that is not parallel to the road surface 2.
  • a so-called road surface superimposing HUD device in which a virtual image V (b) is a virtual image visually recognized by a user in the HUD device, and a virtual image display surface 400b is set on the road surface 2 or on a virtual surface substantially parallel to the road surface 2. It is a virtual image visually recognized by the user.
  • the “virtual image display distance” will be described.
  • the virtual image display distance is indicated by symbols La and Lb.
  • the “virtual image display distance” is a distance from the reference point set on the user or the reference point set on the vehicle 10 to the virtual image V (a) (or V (b)).
  • the reference point provided on the user side can be, for example, one point such as a viewpoint A such as the center point of both eyes of the user or a point in the vehicle interior corresponding to the viewpoint A. It is good also as a point set to 6.
  • the distance (apparent distance) from the reference point on the user side to the virtual image V (a) (V (b)) is precisely set on the virtual image
  • the reference point on the virtual image Can be defined by three-dimensional polar coordinates (ri, ⁇ i, ⁇ i) with the reference point on the user side as the origin.
  • the deflection angle ⁇ i is an angle in the left-right direction with reference to the coordinate axis (Z axis in FIG. 1) in front of the vehicle, and the deflection angle ⁇ i is an angle in the vertical direction.
  • the deflection angle ( ⁇ i, ⁇ i) of the three-dimensional polar coordinate system indicates the direction of the virtual image
  • the radius ri of the three-dimensional polar coordinate system indicates the virtual image display distance.
  • the surface having the same virtual image distance ri is a spherical surface.
  • the virtual image direction is limited to a certain range (front of the vehicle), and the virtual image display distance. Can be approximated by a plane, and many HUD devices are optically devised so that the virtual image display surface is a plane. Therefore, in the following description, as shown in FIG. 2, surfaces having the same virtual image display distance are treated as planes.
  • the virtual image of the 1st image about the vehicle information as non-superimposition contents, such as a vehicle speed is displayed on this virtual image display surface 400a1 and 400a2.
  • the vehicle speed is displayed as “55 km / h”.
  • FIG. 1 when there is a virtual image display surface 400b on the road surface 2, a reference point is provided on the virtual image V (b), and a virtual surface passing through the reference point and perpendicular to the road surface is assumed.
  • the distance (horizontal distance) to the surface is defined as a virtual image display distance Lb.
  • the virtual image display surface 400a is perpendicular to the road surface 2, but is inclined with respect to the road surface 2, for example, at a predetermined angle (in the range of 45 to 90 degrees in the case of a standing image). There is also a possibility.
  • a virtual image V (a) is provided with a reference point, a virtual surface passing through this reference point and perpendicular to the road surface is assumed, and the distance (horizontal distance) to that surface is defined as the virtual image display distance La. .
  • said description is an example and you may employ
  • FIG. 3 is a diagram illustrating an example of a configuration of a main part of a normal HUD device (non-road surface superimposing HUD) device capable of controlling the virtual image display distance.
  • the HUD device 100 in FIG. 3 generates, for example, first image data that is image data of non-superimposed content (and second image data that is image data of superimposed content, for example);
  • the lens driving unit 51 moves the lens 44 in the direction along the z axis
  • the screen driving unit 53 moves the screen 46 in the direction along the z axis.
  • the virtual image display distance control unit 24 outputs control signals to the lens driving unit 51 and the screen driving unit 53 to move the lens 44 and the screen 46 in conjunction with each other.
  • the optical path length of the optical path from the screen 46 serving as the image display unit to the projection target member (typically the windshield) 6 changes.
  • the “optical path length” is the optical axis of the optical system 48 (in other words, the optical axis of the concave mirror 49 which is an optical member included in the optical system 48, which can also be said to be the optical axis of the HUD device: FIG. , Symbol P) indicated by a dashed-dotted line is the length of the optical path from the first point W1 that intersects the display surface 47 of the screen 46 serving as the image display unit to the second point W2 that intersects the projection target member 6. .
  • the virtual image display distance is changed from the distance La to the distance La ′, for example.
  • the virtual image display distance control unit 24 instructs the image generation unit 20 to change the position of the image when generating the image data (here, the first image data for the non-superimposed content).
  • the virtual image display distance can be changed by at least one of changing the optical path length and changing the display position of the image on the display surface 47 of the image display unit (here, the screen 46). In other words, any of them may be used alone, or each method may be used in combination. Since the distance at which the virtual image is displayed is controlled, the accuracy of the switching control is increased, and thus the burden of the user's eye focus adjustment is reduced.
  • FIG. 4A is a diagram illustrating an example of a configuration of a main part of a road surface superimposing HUD device capable of controlling the virtual image display distance
  • FIG. 4B is a diagram in which the virtual image display distance is changed by changing the position of the virtual image. It is a figure which shows a mode that it does.
  • the road surface superimposing HUD device includes a screen 46 that is inclined by a predetermined angle with respect to the vertical direction (y-axis direction).
  • the road surface superimposing HUD device normally does not have a mechanism for moving an inclined screen 46 as an image display unit.
  • the virtual image display distance is changed by changing the position of the image M in the y-axis direction on the display surface 47 of the screen 46.
  • the virtual image display distance can be changed by moving the screen 46 as in the example of FIG. 3, and the movement of the screen 46 and the display of the image M can be changed.
  • the virtual image display distance can be changed also in combination with the change of the position on the surface 47.
  • the change of the position along the vertical direction of the image M on the display surface 47 of the inclined screen 46 is indicated by a broken-line bidirectional arrow.
  • the virtual image V (b) moves to the position of the virtual image V (b) ′ on the virtual image display surface 400b set on the road surface 2 shown in FIG. 4B.
  • the virtual image display distance Lb is changed to the virtual image display distance Lb ′.
  • FIGS. 5A to 5C show an example of fluctuations of the user's “gaze area” and “gaze point” depending on the driving environment.
  • a gaze area that is a user's visual field range is assumed in each case.
  • a gazing point as a viewpoint
  • the virtual image display distance is switched and controlled so as to correspond to the gazing point.
  • the representative point of sight is just an example, but the standard user's eyes are in focus in the most stable driving state, with a good view, no obstacles, no warnings, etc. It can be assumed that the gaze point is estimated.
  • the gaze point can be said to be a virtual gaze point uniquely defined in the gaze area.
  • the case classification one that distinguishes day and night can be considered.
  • first state a case where the headlight at daytime or night is a high beam
  • second state a case where the headlight at night is a low beam
  • daytime third state
  • fourth state in the case where the headlight at night is a high beam
  • fourth state in the case where the headlight at night is a low beam
  • FIGS. 5A to 5C show the case where the headlamp at daytime (third state) / night is a high beam (fourth state) / when the headlamp at night is low beam (fifth state). ) Are shown as examples of gaze region and gaze point variations.
  • FIG. 5 (a) shows an example of a gaze area and a gaze point at noon.
  • a virtual image display region (region where a virtual image can be displayed) 11 in a projection target member is drawn as a rectangular region surrounded by a thick broken line.
  • the user has a strong tendency to gaze relatively far, and the user's gaze area 200b is shifted to the far side from the vehicle. Therefore, the gazing point Qb is located near the upper center in the virtual image display area 11.
  • FIG. 5B shows an example of a gaze area and a gaze point when the headlight at night is a high beam.
  • the user has a strong tendency to watch the vicinity of the irradiation area of the headlamp.
  • the night high beam and daytime are common in that the user tends to gaze relatively far away, but the viewpoint positions do not necessarily match.
  • the user's gaze area 200b is shifted slightly downward (side closer to the vehicle) than the gaze area 200a of FIG. 5 (a).
  • the gazing point Qb in FIG. 5B is shifted slightly downward (side closer to the vehicle) than the gazing point Qa in FIG.
  • this is an example, and the present invention is not limited to the above example.
  • FIG. 5C shows an example of a gaze area and a gaze point when the headlight at night is a low beam.
  • the user has a strong tendency to watch the vicinity of the irradiation area of the headlamp, and therefore the viewpoint at the time of low beam is relatively close to the vehicle.
  • the user's gaze area 200c is shifted downward (side closer to the vehicle) compared to the gaze areas 200a and 200b in FIGS. 5A and 5B.
  • the gazing point Qc in FIG. 5C is shifted downward (side closer to the vehicle) compared to the gazing points Qa and Qb in FIGS. 5A and 5B.
  • any one of the gazing points Qa and Qb is adopted as the gazing point.
  • the virtual image display distance control unit 24 switches and controls the virtual image display distance according to the change of the gazing point as in the above example.
  • the virtual image display distance control unit 24 responds to day / night or when the headlamps are high beam (first state) at daytime and night / when low beam is at night (second state).
  • the virtual image display distance may be switched to the first / second distance (the second distance is shorter than the first distance) and may be controlled as in the example of FIG.
  • daytime third state: FIG. 5A
  • fourth state: FIG. 5B in the case of low beam at night
  • the virtual image display distance is set to the third / fourth / fifth distances (the third / fourth distances are different values, and the fifth distance is equal to the third / fourth distance).
  • Switching control may be performed to be shorter than the fourth distance. Accordingly, for example, the virtual image display distance for the non-superimposed content can be switched with high accuracy in correspondence with the gaze point in each state.
  • FIGS. 6A to 6C Each of FIGS. 6A to 6C uses the configuration of FIG. 3 (configuration of a non-road surface superimposing HUD device having a mechanism for changing the virtual image display distance) to determine the virtual image display distance as shown in FIG.
  • FIG. 3 configuration of a non-road surface superimposing HUD device having a mechanism for changing the virtual image display distance
  • FIG. 6 It is a figure which shows the example of a display of a virtual image in the case of performing switching control corresponding to the gaze point in each of thru
  • a virtual image in other words, a display of “55 km / h”) 210 that displays the vehicle speed is shown as a virtual image of the first image of the non-superimposed content.
  • the vehicle is in a stable driving state with a good view, no obstacles, no warning display, etc. Since it is presumed to be in the vicinity of the gazing points Qa to Qc shown in (a) to (c), the virtual image display distances of the virtual images 210a to 210c indicating the vehicle speed are switched to correspond to the gazing points Qa to Qc. Is done.
  • the display size of the virtual image 210 of “55 km / h” is appropriately adjusted according to the size of the distance (far and near), and is a display with a sense of perspective.
  • the example of FIG. 6 can be said to be a situation in which, for example, a vehicle is running on a straight road with good visibility during daytime or night, and the speed is likely to go out too soon.
  • vehicle information vehicle speed display, etc.
  • the user can grasp the current running state while minimizing eye movement and focus adjustment. This increases the possibility of avoiding undesired driving such as excessive speed.
  • the accuracy of the switching control is increased, thereby reducing the burden of the user's eye focus adjustment.
  • FIGS. 7A to 7C uses the configuration of FIG. 4 (configuration of the road surface superimposing HUD device) to correspond the virtual image display distance to the point of interest in each of FIGS. 5A to 5C.
  • FIG. 4 configuration of the road surface superimposing HUD device
  • FIG. 7 shows the example of a display of a virtual image in the case of carrying out switching control.
  • the display mode of the virtual image is generally the same as in FIGS. 6A to 6C, and the description of FIGS. 6A to 6C can be applied as it is.
  • the virtual image is, for example, a non-standing image, and therefore the virtual image is displayed in a tapered perspective that becomes narrower from the lower end toward the upper end.
  • virtual images 220a to 200c displaying the vehicle speed are shown in italics.
  • Non-superimposed content that is subject to virtual image display distance switching control includes vehicle speed information that indicates the traveling speed of the vehicle, engine speed information that indicates the traveling state of the vehicle, intake pressure information, hydraulic pressure information, and fuel pressure information.
  • Oil temperature information, water temperature information, exhaust gas temperature information, throttle opening information, and intake air temperature information may be included.
  • Vehicle information such as vehicle speed, engine speed, intake pressure, oil pressure, fuel pressure, oil temperature, water temperature, exhaust temperature, throttle opening, intake air temperature, etc. is useful to the user as information indicating the running state.
  • Vehicle information such as vehicle speed, engine speed, intake pressure, oil pressure, fuel pressure, oil temperature, water temperature, exhaust temperature, throttle opening, intake air temperature, etc.
  • the non-superimposed content image switching control of the present invention can be used not only in the city riding mode but also in the sports mode.
  • FIGS. 8A and 8B are diagrams illustrating an example in which the virtual image display distance switching control is not executed, and FIG. 8C illustrates a plurality of types of information arranged in a horizontal row as non-superimposed content.
  • FIG. 8A there is a vehicle in front in the daytime gaze area 200a, and a virtual image 230a of a warning mark (superimposed content) is superimposed on the vehicle and displayed.
  • the virtual image 220 a of the first image indicating the vehicle speed is displayed at the center position above the virtual image display area 11 of the projection target member 6.
  • the warning mark is a superimposed content that is superimposed on the actual scene (in this case, the vehicle ahead), and the image of the warning mark displayed on the display surface 47 of the image display unit 46 is the second image.
  • the virtual image of the second image it is estimated that the user's gaze point is often directed to the vicinity of the virtual image 230a of the alert mark.
  • the virtual image of the second image of the superimposed content overlaps the virtual image of the first image. It is also considered effective to take measures such as releasing the virtual image display distance switching control mode itself and returning to the position in the normal display position fixing mode.
  • appropriately controlling the switching of the virtual image display distance is a superimposition object (real scene) of the virtual image of the second image, which is the original purpose of the HUD device. It should be performed within the range that does not hinder superimposition on the screen, and if there is a possibility of causing unnecessary gaze point conflict, it is performed under careful operation such as not performing switching control. Is.
  • the non-superimposed content includes a plurality of pieces of information. May be displayed in a predetermined layout.
  • the display of the weather forecast warning (“snow” warning), the road speed limit display, and the vehicle speed display are arranged in a horizontal row (in this case, the horizontal direction is the vehicle direction). In the horizontal direction).
  • three types of different information are handled as a virtual image of one non-superimposed content 210.
  • the virtual image display distance switching control for the virtual image 210 is executed, the virtual image display distance is switched while the horizontal layout (arrangement of each display) is maintained. In other words, when performing the switching control of the virtual image display distance, the layout is not changed before and after the switching so that the user is as uncomfortable as possible.
  • the direction corresponding to the vertical direction in the real space on the display surface 47 of the image display unit 46 is defined as the vertical direction, is orthogonal to the vertical direction, and corresponds to the left-right direction toward the front of the vehicle in the real space.
  • the virtual image display distance control unit 24 corresponds to the day / night, the first / second state, or the third / fourth / fifth state.
  • the layout of the first image in the horizontal direction on the display surface 47 of the image display unit 46 is changed. Maintain and change the virtual image display distance. By preventing the layout from being changed before and after the switching, it is possible to prevent the user from feeling uncomfortable and there is no inconvenience in safe driving.
  • the image of the non-superimposed content (first image) is displayed at the center below the display surface 47 of the image display unit 46, and the image It is considered that there is a first space on the left and a second space of the same size on the right.
  • first image the image of the non-superimposed content
  • the left space, the image, and the layout of the right space of the same size are formed from the left side. For example, when shifting from this situation to the situation shown in FIGS. 6A and 7A, switching is performed so that the layout in the horizontal direction is maintained on the display surface of the image display unit even after the switching control. Has been done.
  • virtual images of weather forecast warning information, road speed limit value, and vehicle speed information are arranged in parallel near the center below the display surface 47 of the image display unit 46.
  • the layout in the horizontal direction that is, the position of each information in the horizontal direction and the positional relationship between the information
  • the present invention is not limited to this, and a slight modification of the layout is allowed according to the situation.
  • FIG. 9 is a flowchart showing an example of main operation procedures of the HUD device capable of controlling the virtual image display distance.
  • the vehicle information acquisition unit 14 shown in FIG. 1 acquires information for day / night determination (external light intensity information detected by the external light sensor 12, dimming information from the CAN transceiver IC, etc.) (step S1). .
  • the day / night determination unit 16 performs day / night determination (step S2), and when it is determined that the night, the high beam / low beam detection unit 18 subsequently determines whether the headlamp is in a high beam state or a low beam state. Detect (step S3).
  • the first to third virtual image display distances are set as described with reference to FIGS. 5 to 7 (steps S4 to S6).
  • R1 and R2 are different distances
  • R3 is It is smaller than R1 and R2.
  • R1 and R2 are set for day / night.
  • R1 or R2 and R3 are set.
  • the virtual image display distance control unit 24 determines whether or not the virtual image display distance can be changed (for example, the situation as shown in FIGS. 8A and 8B) (step S7). In the case of No, the current virtual image display distance is maintained without performing switching control (step S9), and in the case of Yes, the virtual image is displayed at the virtual image display distance determined in step S7. As described above, the virtual image display distance is changed by changing the optical path length (the optical path length from the first point W1 to the second point W2) shown in FIG. 3 and displaying the first image on the display surface 47. It is executed by at least one of the position changes (either alone or a combination of both).
  • FIG. 10A is a diagram illustrating the position of the gazing point before the position change in the example in which the horizontal position of the virtual image is controlled based on the steering angle information that changes with the steering operation.
  • A is a figure which shows the display position of the virtual image before a position change
  • c is a figure which shows the position of the gaze point after a position change
  • d shows the display position of the virtual image after a position change.
  • the vehicle has a configuration that adaptively changes the irradiation direction of the headlamp according to the user's steering operation.
  • FIG. 10A shows the position of the gazing point Qc in a situation where the headlight at night is a low beam (this is the same as FIG. 5C).
  • FIG. 10B the virtual image 220c regarding the vehicle speed is displayed at the virtual image display distance corresponding to the gazing point Qc (this is the same as FIG. 7C). .
  • the vehicle information acquisition unit 14 acquires vehicle steering angle information.
  • “Steering angle information” is, for example, steering angle information of a steering wheel in a vehicle with a built-in system that adaptively changes the irradiation direction of the headlamp. Specifically, for example, the vehicle information acquisition unit acquires the steering angle information.
  • the virtual image display distance control unit 24 determines whether the user's line of sight (gaze point) is moving in the horizontal direction based on the steering angle information. For example, as shown in FIG. 10C, when it is determined that the line of sight (gaze point Qd) is moving rightward, as shown in FIG. 10D, a virtual image 220d indicating the vehicle speed is displayed. Is moved in the right direction in accordance with the movement of the line of sight (gaze point Qd).
  • the direction corresponding to the vertical direction in the real space on the display surface 47 of the image display unit 46 is defined as the vertical direction, orthogonal to the vertical direction, and corresponding to the left-right direction toward the front of the vehicle in the real space.
  • the virtual image display distance control unit 24 responds to day / night, the above-described first / second state, or the above-described third / fourth / fifth state.
  • the virtual image display distance for the first virtual image corresponding to the first image is switched and controlled (that is, the virtual image display distance in the depth direction is changed), and the vehicle information acquisition unit 14 acquires the steering operation.
  • the virtual image display distance is controlled to be switched, and the first non-superimposed content is adapted to correspond to the movement of the user's viewpoint based on the steering angle information that changes with the steering operation.
  • the display position of the virtual image of the non-superimposed content is fixed, but in the present invention, the virtual image display distance (also referred to as the virtual image display position) is changed according to the driving environment. Accordingly, it is possible to provide a user with a safe driving environment that is higher than that of the prior art and adapted to the driving situation.
  • FIG. 11A is a diagram illustrating a virtual image display example of a two-sided (two-layer) HUD device
  • FIG. 11B is a diagram illustrating a configuration example of a main part of the two-sided (two-layer) HUD device. is there.
  • the two-sided (two-layer) HUD device 100 has a first virtual image display surface PS1 at a close position (virtual image display distance L100) as viewed from the user 1 as a virtual image display surface.
  • the second virtual image display surface PS2 that is farther away can be set.
  • a virtual image of vehicle speed information (here, “55 km / h”) SP of the vehicle is displayed on the first virtual image display surface PS1.
  • the vehicle speed information SP is an image of non-superimposed content that does not need to be superimposed on the actual scene.
  • a virtual image of the alert mark CU superimposed on the vehicle ahead is displayed on the second virtual image display surface PS2.
  • the attention mark CU is an image of superimposed content that needs to be superimposed on the actual scene.
  • the virtual image of the vehicle speed information SP on the first virtual image display surface PS1 is generated by the display light K1 projected (projected) from the two-surface (two-layer) HUD device 100 onto the projection target member 6 (windshield or the like). It is visually recognized by being incident on one viewpoint A.
  • the virtual image of the warning mark CU on the second virtual image display surface PS2 is obtained by projecting (projecting) the display light K2 projected (projected) onto the projection target member 6 (windshield or the like) from the two-surface (two-layer) HUD device 100. It is visually recognized by being incident on the viewpoint A of the user 1.
  • the virtual image display distance (L100) of the virtual image of the vehicle speed information SP displayed on the first virtual image display surface PS1 is the virtual image display distance described in FIG.
  • the control unit 24 may appropriately change the control based on the determination result of the day / night determination unit 16 or the control based on the determination result of the day / night determination unit 16 and the detection result of the high beam / low beam detection unit 18.
  • the virtual image display distance is set to L100 in the daytime (described as “D”)
  • the virtual image display distance is set to L104 (L104 ⁇ L) in the case of night (described as “N”). L100).
  • the user 1 tends to see the range (the position closer to the daytime) that the headlight can reach, so at night, the first virtual image display surface PS1. Is moved closer to the user 1 to the position indicated by the broken line in the figure so as to be the same as the viewpoint position of the user at night. As a result, the burden of user 1's viewpoint adjustment is reduced.
  • a relatively small first virtual image display surface PS1 is set at a position closer to the user 1 and the first virtual image display surface PS1 is set.
  • a first virtual image of non-superimposed content that does not need to be superimposed on a real scene for example, information such as vehicle speed information SP
  • a large number corresponding to a wide range of real scenes is displayed at a farther position.
  • the second virtual image display surface PS2 is set, and the second virtual image display surface PS2 is superimposed on the real scene, for example, on the superimposed content (for example, information such as the attention mark CU superimposed on the vehicle ahead).
  • each information can be clearly distinguished and displayed with a stereoscopic effect.
  • the focus adjustment in the case where the user visually recognizes the first virtual image by adopting the virtual image display distance switching control according to the distinction between day and night etc.
  • the burden of (focusing) is reduced and the load during operation can be reduced. Therefore, the convenience of the two-sided (two-layer) HUD device is improved.
  • the switching control of the virtual image display distance is performed only for the first virtual image (virtual image of the image of the non-superimposed content).
  • the two-sided (two-layer) HUD device 100 generates, for example, a light source unit 31 (for example, a laser light source 33 and a laser beam divided into two to generate and output two beams. Including an optical system 35), a mirror 39, a lens 44, screens 46a and 46b as image display units, and a virtual image display distance control unit 24 (lens drive unit 51 and screen drive unit 53). ), A mirror 71, a reflecting mirror (concave mirror) 72, a casing 81, and a light exit window 83.
  • a light source unit 31 for example, a laser light source 33 and a laser beam divided into two to generate and output two beams.
  • a virtual image display distance control unit 24 lens drive unit 51 and screen drive unit 53.
  • a mirror 71, a reflecting mirror (concave mirror) 72, a casing 81, and a light exit window 83 for example, a light source unit 31 (for example, a laser light source 33 and a laser beam divided into two to generate
  • the display light K1 is generated by the emitted light of the image Ma displayed on the display surface 47 of the screen 46a
  • the display light K2 is generated by the emitted light of the image Mb displayed on the display surface 47 of the screen 46b.
  • the positions of the lens 44 and the screen 46a are moved along the optical path by the virtual image display distance control unit 24 (the lens driving unit 51 and the screen driving unit 53), in other words, in the direction along the optical axis of the lens 44 (and the screen 46a).
  • the virtual image display distance (L100, L104) for the first virtual image display surface PS1 can be switched as appropriate.
  • FIGS. 12A, 12B, and 12C are diagrams showing virtual image display examples in the night (night low beam) state, the daytime state, and the night high beam state in the two-sided (two-layer) HUD device of FIG. 11, respectively.
  • the virtual image display distance L102 for the second virtual image display surface PS2 is the same in any of FIGS. 12A to 12C (in other words, it is not affected by distinction between day and night).
  • the virtual image display distance for the first virtual image display surface PS1 is appropriately switched by the virtual image display distance control unit 24, and is thereby set to L104 in the case of FIG. 12A, and in the case of FIG. Is set to L100 (L104 ⁇ L100), and in the case of FIG. 12C, it is set to L106 (L104 ⁇ L106 ⁇ L104).
  • FIG. 13 is a diagram illustrating a virtual image display example of a multi-plane (multi-layer) HUD device
  • FIG. 13B is a diagram illustrating a configuration example of a main part of the multi-plane (multi-layer) HUD device
  • FIG. 13C is a diagram illustrating an example of a relationship (synchronization relationship) between a position control signal for controlling the positions of the screen and the lens and the image display timing on the display surface of the screen. Note that the multi-plane (multi-layer) HUD device in FIG.
  • Multi-layer HUD devices may be referred to as 3DHUD devices by those skilled in the art.
  • the multi-layer (multi-layer) HUD device is a HUD device capable of setting a multi-surface (preferably three or more surfaces in this specification) virtual image display surfaces.
  • the virtual image display distance can be changed to m (m is a natural number of 3 or more).
  • a virtual image display surface capable of displaying a virtual image is multi-plane (multi-layer), so that the virtual image display distance can be changed more freely, and a solid with a sense of depth can be obtained. Display is possible.
  • the size and height of the object (object) to be displayed are changed as appropriate to give a sense of perspective, the display position of the object is adjusted, the object is three-dimensionalized with depth,
  • geometrical three-dimensional decoration processing hereinafter sometimes simply referred to as three-dimensional decoration
  • three-dimensional decoration such as applying shadows to objects, adopting perspective expressions, and expressing the texture of objects precisely.
  • a first virtual image display surface for night (described as “N1”) PS10 and a second virtual image display surface for night (“N2”).
  • the virtual image display distances for the first and second virtual image display surfaces for night use are L201 and L203, respectively.
  • the virtual image display distances for the first and second virtual image display surfaces for daytime are L202 and L204, respectively.
  • the control unit 30 is shown in FIG. 1 earlier, in the example of FIG. 13B, the control unit 30 is provided with a position control signal generation unit 91, and the virtual image display distance control unit 24 in FIG.
  • the virtual image display distance control unit 24 ′ is replaced.
  • the virtual image display distance control unit 24 ′ includes a lens driving unit 93 and a screen driving unit 95.
  • an image processing unit 58 and a light source unit 56 are provided in FIG. 13B.
  • the light source unit 56 includes a light source driving unit 55 and a light source 57.
  • the position control signal VPC generated by the position control signal generation unit 91 is supplied to the lens driving unit 93 and the screen driving unit 95 of the virtual image display distance control unit 24 ′ and is also supplied to the light source driving unit 55 at the same time.
  • the virtual image display distance control unit 24 ′ moves the screen 46 (and the lens 44) as the image display unit in a predetermined range (in the direction along the optical path) in the direction along the optical axis of the screen 46 as the image display unit (in other words, along the optical path).
  • the optical path length from the screen 46 (more specifically, the display surface 47 on which the image M is displayed) to the projection member 6 is periodically changed by vibrating in the distance range LZ).
  • the light emission timing of the light from the light source (laser light source LD) 57 is controlled by the light source driving unit 55 of the light source unit 56, whereby the display timing of the image M on the display surface 47 of the screen 46 as the image display unit. (Display time) is controlled (adjusted).
  • the virtual image display surface corresponding to the virtual image display distance (m virtual image display distance) that can be changed in m ways is the first to mth virtual image display surfaces, the screen 46 (and the lens as the image display unit) 44) within a predetermined range (LZ) in a predetermined cycle, control of image display timing on the display surface 47 of the screen 46 serving as an image display unit, and display content change control synchronized with display timing control (Combination thereof), virtual images of different non-superimposed contents can be displayed on each of at least two of the first to m-th virtual image display surfaces.
  • virtual images of different non-superimposed contents are displayed on each of the two surfaces during the daytime and at night.
  • the position control signal VPC generated by the position control signal generation unit 91 included in the control unit 30 is, for example, a sawtooth (sawtooth) voltage signal (sawtooth) as illustrated in FIG.
  • the time signal is set on the horizontal axis and the voltage v is set on the vertical axis.
  • an image (“55 km / h”) to be displayed on the first virtual image display surface PS10 for night (“55 km / h”) is displayed at time t1, and at day t2.
  • An image (“55 km / h") to be displayed on the first (day 1) virtual image display surface PS11 for display is displayed, and an image to be displayed on the second (night 2) virtual image display surface PS12 for night at time t3 ("Image indicated as 60 inside double circle”) is displayed, and at time t4, an image (“60 inside the double circle” is displayed on the second virtual image display surface PS13 for daytime (day 2).
  • display of a virtual image as shown in FIG. 13A is realized.
  • FIG. 14A is a diagram showing a setting example of a virtual image display surface in a multi-plane (multi-layer) HUD device, and FIGS. 14B, 14C, and 14D are respectively a night (night low beam) state. It is a figure which shows the example of the virtual image display surface group which can be used in a daytime state and a night high beam state.
  • the multi-plane (multi-layer) HUD device 100 can change the virtual image display distance to m (m is a natural number of 3 or more), vibration control of the image display unit, control of image display timing, and By using the synchronized display content change control together, it is possible to display virtual images of different non-superimposed contents on each of at least two virtual image display surfaces.
  • the speed limit of the inside road can be displayed.
  • a three-dimensional display three-dimensional AR display
  • the virtual image display distance switching control according to the distinction between day and night is adopted, which reduces the burden of focus adjustment (focus adjustment) when the user visually recognizes the virtual image, thus reducing the load during driving. Is realized.
  • the virtual image display distance control unit 24 ′ of FIG. 13B first displays the usable virtual image display according to the distinction between day and night.
  • Switch the surface group including at least two virtual image display surfaces
  • select a usable virtual image display surface group select an appropriate surface from the selected virtual image display surface group
  • a virtual image may be displayed.
  • the virtual image display surface group PLS1 including the virtual image display surfaces PL (1) to PL (20) is selected. Yes.
  • the virtual image display surface group PLS2 including all usable virtual image display surfaces PL (1) to PL (45) is selected.
  • the virtual image display surface group PLS3 including the virtual image display surfaces PL (5) to PL (42) is selected.
  • the virtual image display plane group is switched according to each state such as day and night. Then, the virtual image display planes included in the virtual image display plane group after switching are appropriately selected to display a virtual image (in other words, switching control of usable virtual image display plane groups is performed.
  • the range of usable virtual image display surfaces (number of virtual image display surfaces, position, etc.) can be easily narrowed, the burden of selecting the virtual image display surface to be actually used is reduced, and narrowing down is possible. As a result, processing for displaying a virtual image (processing such as image display timing adjustment in the image display unit) is facilitated, and the burden on the virtual image display distance control unit 24 ′ is reduced.
  • FIGS. 15A, 15B, and 15C are diagrams showing virtual image display examples in a night (night low beam) state, a daytime state, and a night high beam state in a multi-plane (multilayer) HUD device, respectively.
  • FIG. 15D is a diagram illustrating a display example in which a virtual image (a virtual image indicating the vehicle speed and a virtual image indicating the speed limit on the road) is given a sense of depth while the vehicle is running.
  • the caution mark CU is an image of superimposed content that needs to be superimposed on the vehicle in front of the actual scene.
  • the virtual image of the caution mark CU is displayed as a virtual image by distinguishing between day and night as in the example of FIG.
  • the virtual image display distance is L320. In other words, in the night (night low beam) state, the daytime state, and the night high beam state, it is assumed that the distance between the vehicle ahead and the vehicle (own vehicle) on which the multi-layer (multilayer) HUD device is mounted is constant.
  • the virtual image display distance of the virtual image display surface PL (1) is L300
  • the virtual image display distance of the virtual image display surface PL (7) is L310.
  • the virtual image display distance of the virtual image display surface PL (11) is L301 (L300 ⁇ L301)
  • the virtual image display distance of the virtual image display surface PL (7) is L311.
  • the relationship L310 ⁇ L311 is established.
  • Is displayed on PL (15) which is a virtual image display surface corresponding to m 15.
  • the virtual image display distance of the virtual image display surface PL (9) is L302.
  • the relationship L300 ⁇ L302 ⁇ L301 is established.
  • the virtual image display distance of the virtual image display surface PL (15) is L312.
  • the relationship L310 ⁇ L312 ⁇ L311 is established.
  • a virtual image of the vehicle speed information SP of “55 km / h” is arranged at the center in front, and a slightly small and perspective is given to the left back.
  • the virtual image of the speed limit information LSP with the notation “60 inside the double circle” is arranged, and the virtual image of the warning mark superimposed on the vehicle ahead is small and has a sense of perspective in the back right. It is arranged in the form.
  • a stereoscopic display (AR display) with a sense of depth is possible, and a more dynamic and easily visible display (AR display) is realized. This point is clear when compared with, for example, the display example of FIG. 8C (an example in which the virtual images of the vehicle speed and the speed limit are displayed on the same virtual image display surface).
  • FIG. 16A is a diagram illustrating an example in which a virtual image for notifying the change of the speed limit on the road is displayed in a distant manner in a manner different from the display of the current speed limit on the multi-faceted (multi-layer) HUD device.
  • FIG. 16 (b) is a diagram showing how the virtual image for notifying the change of the speed limit dynamically approaches as the vehicle progresses, and FIG. It is a figure which shows a mode that it was displayed as the present speed limit.
  • one virtual image is used as the front face at a closer position as viewed from the user 1.
  • the display surface PL (3) is used, and the 16 virtual image display surfaces PL (30) to PL (45) are used as the rear surface farther away.
  • the speed limit information (“60 km / h”) LSP (1) of the currently traveling road (current) is stored. It is displayed.
  • the change of the speed limit is notified in advance using the back surface. As shown in FIG. 16 (a), for example, it is small on the virtual image display surface PL (45) as the back surface and is different from the current speed limit display (speed limit information) LSP (1) (
  • a warning speed limit display (“display described as 80 inside the double circle”) RLSP is performed in a manner in which the display blinks.
  • the speed limit notice display RSLP is moved to the near side.
  • a dynamic virtual image can be moved by sequentially switching the virtual image display surface to be used from PL (45) to PL (30).
  • the speed limit notice display is switched to the current speed limit display LSP (2) (in other words, replaced).
  • the notice display that has moved may disappear so as to flow backward, while the display of the current speed limit is changed.
  • the user 1 can know in advance the change in the speed limit, can reliably recognize the change in the speed limit, and increases the vehicle speed according to the speed limit after the change. A quicker and more comfortable driving environment is realized.
  • notification of change of speed limit is an example and is not limited to this.
  • prefectural border notice display or “prediction notice of arrow turning right to show that there is a sharp right curve when running a little more” Is possible.
  • FIG. 14C The daytime example of FIG. 14C has been described above.
  • the virtual image display surface PL (1) is used as the front of the hand
  • virtual image display surfaces PL (15) to PL (20) may be used.
  • Light source drive unit 56... Light source unit, 57... Light source (LD), 58.
  • 91 Position control signal generation unit
  • 93 Lens drive unit
  • 95 Screen drive unit
  • 100 HUD device, 200a, 200b, 200c ... Gaze area, Qa to Qc ... Note View point, 210a, 210b, 210c ... virtual image indicating vehicle speed, 400a, 400b ... virtual image display surface, PS1, PS2 ...
  • virtual image display surface in two-sided (two-layer) HUD device PS10 to PS13
  • PL ( 1) to PL (45) virtual image display surface in a multi-plane (multilayer) HUD device
  • PLS1 to PLS3 virtual image display surface group
  • SP vehicle speed information (vehicle speed display)
  • LSP speed limit Information (restriction speed display)
  • RLSP advance notice speed limit information (predictive speed limit display).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Instrument Panels (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Abstract

非重畳コンテンツ等のコンテンツ(典型的には車両情報)の画像を、運転状況に応じて、適切な表示距離(虚像表示距離)で表示できるヘッドアップディスプレイ(HUD)装置を提供する。 HUD装置は、昼夜判定部16と、画像生成部20と、表示面47を備える画像表示部46と、表示光を被投影部材6に投影する光学部材を含む光学系48と、虚像表示距離を制御する虚像表示距離制御部24と、を有し、虚像表示距離制御部24は、昼又は夜に応じて、虚像表示距離を、昼の注視領域における代表注視点である第1の注視点に対応する距離、又は、夜の注視領域における代表注視点である第2の注視点に対応する距離に切り換え制御する。

Description

ヘッドアップディスプレイ装置
 本発明は、例えば自動車等の車両に搭載されるヘッドアップディスプレイ(HUD)装置に関する。
 ヘッドアップディスプレイ装置(以下、HUD装置と称する)は、例えば自動車(主として四輪車)、オートバイ(主として二輪車)等の車両に搭載され、運転に関係する情報等を示す画像を被投影部材(透光性と反射性とを併せ持つウインドシールド(フロントガラス)、コンバイナ等)に投影することで、運転者の前方の実景(例えば前方車両、前方路面等を含む景色)に重ねて虚像を表示することができる車両用表示装置である。必要な情報等が前方等の景色と重ね合わされて表示されることから、運転者は、車両の運転中に大きな視線の移動を行うことなく、必要な情報を効率的に得ることができる。
 HUD装置が表示するコンテンツには、一例として、実景に重畳するべき重畳コンテンツ(例えば、前方の車両の移動又は動きに応じてその車両位置に重畳される注意喚起マーク)と、実景に重畳する必要のない(対象物の移動又は動きに応じて表示位置を動的に変化させる必要のない)非重畳コンテンツ(例えば、車速情報)と、が含まれる。但し、実景としての路面の傾き(道路勾配)、又はその路面に平行な仮想面に応じて、その路面又は仮想面上に例えば車両情報が動的に重畳される場合には、その車速情報は、重畳コンテンツである。なお、重畳コンテンツ及び非重畳コンテンツは、それぞれ、動的重畳コンテンツ及び非動的(静的)重畳コンテンツと呼ぶこともできる。
 非重畳コンテンツの虚像、又は車両情報の虚像は、典型的には、ユーザー(運転者等)の運転中に違和感を生じさせないように、又はコンテンツ又は車両情報がどこに表示されているのかを容易に認識させるために、固定位置に表示するのが一般的である。言い換えれば、従来は、非重畳コンテンツの虚像、又は車両情報の虚像は、一例として、被投影部材における虚像表示領域中の固定位置(例えば、下方中央や下方右側等)に表示される。
 特許文献1には、HUD装置が表示する情報である、通常の第1の情報(車速やエンジンの回転数等の車両情報)と、緊急度又は重要度の高い第2の情報(典型的には、「津波発生」等の緊急放送メッセージ、障害物を報知する情報等)とを区別し、第2の情報に関しては、前照灯のオン・オフに対応させて表示位置(高さ位置)を変更してユーザー(運転者等)の迅速な認知を可能とし、第1の情報に関しては、前照灯のオン・オフに関係なく表示位置を固定(第2の情報が表示されり高さよりも下側)として、実景の視認を優先させて運転者に支障が生じないようにする技術が開示されている(特許文献1の例えば段落[0036]~[0038],[0047]~[0050]、[図5]~[図7]等参照)。言い換えれば、この特許文献1においても、車速等の車両情報の表示位置は固定されている。なお、特許文献1における第2の情報は、障害物を報知する情報である場合であっても、表示位置(高さ位置)が前照灯のオン・オフに対応させて固定されている非重畳コンテンツ(障害物の移動又は動きにかかわらず固定されているコンテンツ)である。
特許第5555526号公報
 従来、車速等の車両情報(非重畳コンテンツ又は場合によっては重畳コンテンツであってもよい)は、典型的には、被投影部材の表示領域(虚像を表示可能な領域)中の固定位置にて表示されている。特許文献1では、車速等の第1の情報は、運転者の基準視線(ウインドシールドの中央部付近の高さ)よりも低い表示位置(高さ位置)に、具体的には、ウインドシールドの下側に、固定されている。
 特許文献1では、緊急度又は重要度の高い第2の情報は、前照灯(ロービーム及びハイビーム)がオフされる時に、ウインドシールドの中央部付近の高さとほぼ同じ表示位置(高さ位置)に固定される一方、ロービーム及びハイビームがオンされる時に、それぞれ、ウインドシールドの中央部付近の高さよりも僅かに低い(高さ位置)及び高い(高さ位置)位置に移動される。しかしながら、第2の情報の表示位置(高さ位置)であっても、第2の情報の虚像と運転者の視点(目)との距離は、ほぼ一定である。言い換えれば、特許文献1の図4の虚像(緊急情報302)の実空間上の位置(車両前後方向における虚像と運転者との距離)は、ミラーを回転させるだけでは、ほぼ一定である。
 ところで、運転者が前方の実景から虚像を見るときに、運転者は、目のピント(注視点)を実空間上の実景から虚像に調整する必要がある。特に、運転者が前方の実景を見ているときには、昼における運転者の注視する実空間上の実景位置(車両前後方向における注視実景と運転者との距離)と、夜における運転者の注視する実空間上の実景位置(車両前後方向における注視実景と運転者との距離)とに違いがあることを本発明者らは認識し、したがって、実空間上の虚像位置(車両前後方向における虚像と運転者との距離)がほぼ一定である場合には、昼における虚像へのピント調整と夜における虚像へのピント調整とに違いがあることを本発明者らは認識した。このように運転者の注視点が前方の実景から虚像を切り替わる場合には、運転者の視線の移動が極力低減されるように(言い換えれば、目のピント調整が極力低減されるように)車両情報等の表示情報(コンテンツ)を、より適切な表示距離(虚像表示距離)で表示することが望まれる。特に、車速等の車両情報(非重畳コンテンツ)の表示位置が固定されている特許文献1のHUD装置では、この要求に応えることができない。
 本発明の1つの目的は、コンテンツの画像を、運転状況に応じて、適切な表示距離で表示できるヘッドアップディスプレイ装置を提供することである。本発明の他の目的は、以下に例示する態様及び最良の実施形態、並びに添付の図面を参照することによって、当業者に明らかになるであろう。
 以下に、本発明の概要を容易に理解するために、本発明に従う態様を例示する。
 第1の態様において、ヘッドアップディスプレイ装置は、
 車両に搭載され、画像を、前記車両に備わる被投影部材に投影することで、ユーザーに前記画像の虚像を視認させるヘッドアップディスプレイ装置であって、
 車両情報を取得する車両情報取得部と、
 外光センサから得られる外光強度情報及び前記車両情報取得部が取得した車両情報の少なくとも一方に基づいて、昼夜を判別する昼夜判定部と、
 第1のコンテンツ(例えば、前記車両の前方の実景に重畳する必要のない非重畳コンテンツ)についての第1の画像データを生成する画像生成部と、
 前記第1の画像データに対応する第1の画像を表示する表示面を備える画像表示部と、前記第1の画像を示す表示光を反射して、前記被投影部材に投影する光学部材を含む光学系と、
 前記ユーザー上又は前記車両上に設定される基準点から前記虚像までの距離を虚像表示距離とする場合に、前記画像表示部から前記被投影部材までの光路長の変更及び前記表示面上における前記第1の画像の表示位置の変更、の少なくとも一方によって、前記第1の画像に対応する虚像である第1の虚像についての虚像表示距離を制御する虚像表示距離制御部と、
 を有し、
 昼における前記ユーザーの視野範囲を第1の注視領域とし、前記第1の注視領域内における前記ユーザーの代表注視点を第1の注視点とし、夜における前記ユーザーの視野範囲を第2の注視領域とし、前記第2の注視領域内における前記ユーザーの代表注視点を第2の注視点とする場合において、
 前記虚像表示距離制御部は、前記昼夜判定部の判定結果が昼であるか夜であるかに応じて、第1の虚像についての虚像表示距離を、前記第1の注視点又は前記第2の注視点に対応する距離に切り換える。
 第1の態様では、虚像表示距離制御部が、非重畳コンテンツ等の第1のコンテンツの虚像の虚像表示距離を、昼夜判定部の判定結果に応じて、第1の注視点(昼における注視点)/第2の注視点(夜における注視点)の各々に対応する距離に切り換え制御する。ここで、「注視点」は、昼/夜における第1、第2の各注視領域(視野範囲)における代表注視点(例えば、見晴らしがよく、障害物等がなく、警告表示等も表示されていない、最も安定した走行状態において、標準的なユーザーの目のピントが合っていると推定される点)である。本態様によれば、昼又は夜において、車両情報(車速表示等)等の第1のコンテンツが、ユーザーの視線(注視点)に対応して表示されることから、ユーザーは、目の移動やピント調整を最小限に抑えながら、現状の走行状態を把握することができる。また、虚像表示距離の変更は、画像を表示する表示面を備える画像表示部(例えば、画像が投影されるスクリーン、バックライト付きの液晶パネル等の表示装置)から被投影部材(典型的にはウインドシールド)までの光路長(具体的には、例えば、光学系の光軸が表示部の表示面と交わる第1点から、被投影部材と交わる第2点までの光路の長さ)の変更、及び画像表示部の表示面における第1のコンテンツの画像の表示位置の変更の少なくとも一方により行われる。言い換えれば、いずれか単独でもよく、各手法を併用してもよい。虚像の距離が制御されることから、切り換え制御の精度が高くなり、よって、ユーザーの目のピント調整の負担が軽減される。
 第2の態様において、ヘッドアップディスプレイ装置は、
 車両に搭載され、画像を、前記車両に備わる被投影部材に投影することで、ユーザーに前記画像の虚像を視認させるヘッドアップディスプレイ装置であって、
 車両情報を取得する車両情報取得部と、
 外光センサから得られる外光強度情報及び前記車両情報取得部が取得した車両情報の少なくとも一方に基づいて、昼夜を判別する昼夜判定部と、
 前記車両の前照灯がオンされている場合に、前記車両情報取得部が取得した車両情報に基づいて、前記前照灯の状態がハイビーム状態であるか、ロービーム状態であるかを判別するハイビーム/ロービーム検出部と、
 第1のコンテンツ(例えば、前記車両の前方の実景に重畳する必要のない非重畳コンテンツ)についての第1の画像データを生成する画像生成部と、
 前記第1の画像データに対応する第1の画像を表示する表示面を備える画像表示部と、
 前記第1の画像を示す表示光を反射して、前記被投影部材に投影する光学部材を含む光学系と、
 前記ユーザー上又は前記車両上に設定される基準点から前記虚像までの距離を虚像表示距離とする場合に、前記画像表示部から前記被投影部材までの前記光路長の変更及び前記表示面上における前記第1の画像の表示位置の変更、の少なくとも一方によって、前記第1の画像に対応する虚像である第1の虚像についての虚像表示距離を制御する虚像表示距離制御部と、
 を有し、
 昼に対応する第1の状態、又は夜における前記前照灯がハイビームである第1の状態での前記ユーザーの視野範囲を第1の注視領域とし、前記第1の注視領域内における前記ユーザーの代表注視点を第1の注視点とし、夜における前記前照灯がロービームである第1の状態での前記ユーザーの視野範囲を第2の注視領域とし、前記第2の注視領域内における前記ユーザーの代表注視点を第2の注視点とする場合において、
 前記虚像表示距離制御部は、前記昼夜判定部の判定結果及び前記ハイビーム/ロービーム検出部の検出結果に基づいて、昼の場合又は夜における前記前照灯がハイビームである場合に対応する前記第1の状態と、夜における前記前照灯がロービームである場合に対応する前記第2の状態とを区別し、前記第1の状態又は前記第2の状態に応じて、第1の虚像についての虚像表示距離を、前記第1の注視点又は前記第2の注視点に対応する距離に切り換え、
 又は、
 昼に対応する第3の状態での前記ユーザーの視野範囲を第3の注視領域とし、前記第3の注視領域内における前記ユーザーの代表注視点を第3の注視点とし、夜における前記前照灯がハイビームである第4の状態での前記ユーザーの視野範囲を第4の注視領域とし、前記第4の注視領域内における前記ユーザーの代表注視点を第4の注視点とし、夜における前記前照灯がロービームである第5の状態での前記ユーザーの視野範囲を第5の注視領域とし、前記第5の注視領域内における前記ユーザーの代表注視点を第5の注視点とする場合において、
 前記虚像表示距離制御部は、前記昼夜判定部の判定結果及び前記ハイビーム/ロービーム検出部の検出結果に基づいて、昼の場合に対応する前記第3の状態と、夜における前記前照灯がハイビームである場合に対応する前記第4の状態と、夜における前記前照灯がロービームである場合に対応する前記第5の状態とを区別し、前記第3の状態又は前記第4の状態又は前記第5の状態に応じて、前記第1の虚像についての虚像表示距離を、前記第3の注視点又は前記第4の注視点又は前記第5の注視点に対応する距離に切り換える。
 第2の態様では、第1の態様の構成に加えて、前照灯の状態がハイビーム状態であるか、ロービーム状態であるかを判別するハイビーム/ロービーム検出部が設けられる。本態様では、虚像表示距離制御部は、昼である第1の状態又は夜における前照灯がハイビームである第1の状態と、夜における前照灯がロービームである第2の状態とを区別し、又は、昼である第3の状態と、夜における前照灯がハイビームである第4の状態と、夜における前照灯がロービームである第5の状態とを区別し、第1/第2の各状態に応じて、又は、第3/第4/第5の各状態に応じて、虚像表示距離を、第1/第2の各注視点に対応する距離、又は第1/第2/第3の各注視点に対応する距離に切り換える。ここで、第1乃至第5の各注視点は、第1乃至第5の各状態における注視領域におけるユーザーの代表注視点であり、各注視領域内において一義的に定められる。第2の態様にて得られる効果は、第1の態様と同様であるが、前照灯の状態を考慮した場合分けをしていることから、夜間において、前照灯のハイビーム状態/ロービーム状態に応じて、例えば非重畳コンテンツである第1のコンテンツの虚像についての虚像表示距離が切り換えられ、よって、虚像表示距離の切り換え制御の精度を、より高めることができる。
 第2の態様に従属する第3の態様において、
 前記虚像表示距離制御部は、
 前記第1の状態を判定するときは、前記第1の虚像についての虚像表示距離を、前記第1の注視点に対応する第1の距離に設定し、前記第2の状態を判定するときは、前記第1の虚像についての虚像表示距離を、前記第2の注視点に対応し、かつ前記第1の距離よりも短い第2の距離に設定してもよく、
 又は、
 前記虚像表示距離制御部は、
 前記第3の状態を判定するときは、前記第1の虚像についての虚像表示距離を、前記第3の注視点に対応する第3の距離に設定し、前記第4の状態を判定するときは、前記第1の虚像についての虚像表示距離を、前記第4の注視点に対応し、かつ前記第3の距離とは異なる第4の距離に設定し、前記第5の状態を判定するときは、前記第1の虚像についての虚像表示距離を、前記第5の注視点に対応し、かつ前記第3の距離及び前記第4の距離よりも短い第5の距離に設定してもよい。
 ユーザーは、夜間には、遠方の視認性が悪いため、前照灯が照らしている路面近傍(言い換えれば、前照灯の照射エリア近傍)を注視する傾向が強く、よってロービーム時における視点は、比較的車両に近い側にあり、一方、昼間及び夜間のハイビーム時には、遠方や周囲の視認性が良いため、ユーザーは、周辺視野を含めて前方風景の全体を捉えるべく、夜間と比較して遠方を注視する傾向があり、よって、このときの視点は、比較的車両から遠い側(奥側)にある。また、夜間のハイビーム時と昼間は、ユーザーが比較的遠方を注視する傾向がある点で共通するが、視点の位置が必ずしも一致するとは限らず、昼間と夜間のハイビーム時とを区別した方がよい場合もあり得る。そこで、第3の態様では、虚像表示距離制御部は、昼、及び夜における前照灯がハイビームの場合/夜におけるロービームの場合に対応させて、虚像表示距離を、第1/第2の距離(第2の距離は第1の距離よりも短い)に切り換え制御し、又は、昼の場合/夜におけるハイビームの場合/夜におけるロービームの場合の各場合に対応させて、虚像表示距離を、第3/第4/第5の各距離(第3/第4の距離は異なる値であり、第5の距離は、第3/第4の距離よりも短い)に切り換え制御する。これにより、各状態における注視点に対応させて、例えば非重畳コンテンツである第1のコンテンツについての虚像表示距離を精度よく切り換えることができる。
 第2又は第3の態様に従属する第4の態様において、
 前記第1のコンテンツ(例えば非重畳コンテンツ)は、前記車両の走行速度を示す車速情報、前記車両の走行状態を示す、エンジンの回転数の情報、吸気圧の情報、油圧の情報、燃圧の情報、油温の情報、水温の情報、排気温度の情報、スロットル開度の情報、吸気温の情報の、少なくともいずれか一つを含んでもよい。
 車速、エンジンの回転数、吸気圧、油圧、燃圧、油温、水温、排気温度、スロットル開度、吸気温等の車両情報は、走行状態を示す情報としてユーザーに有用である。そこで、第3の態様では、上記に例示される情報のうちの少なくとも一つを含む例えば非重畳コンテンツを切り換え制御の対象としている。なお、例えば、競技車両においては、各種の車両情報を、ユーザーの視点の移動やピント調整を少なくしつつ、効果的に表示するのがよい場合も想定される。
 第2乃至第4の何れか1つの態様に従属する第5の態様において、
 前記虚像表示距離制御部は、前記第1/第2の状態、又は、前記第3/第4/第5の状態に応じて、前記第1の画像に対応する第1の虚像についての虚像表示距離を切り換え制御する際に、前記画像表示部の前記表示面に、実景に重畳される重畳コンテンツについての第2の画像が表示されている場合は、前記切り換え制御を実行しないようにしてもよい。
 第5の態様では、実景に重畳される重畳コンテンツ(例えば、前方の車両に重畳される注意喚起マーク)の虚像が表示されている状況では、例えば非重畳コンテンツである第1のコンテンツの虚像についての虚像表示距離の切り換え制御は実行しないようにしている。ユーザーが重畳コンテンツの虚像を注視する状況で、第1乃至第4の態様における切り換え制御を実行すると、ユーザーに、視点の変動を強要することになり、好ましくないことから、注視点の競合が生じる場合には、切り換え制御を実行しないようにするものである。
 第2乃至第5の何れか1つの態様に従属する第6の態様において、
 前記画像表示部の前記表示面における、実空間での鉛直方向に対応する方向を縦方向とし、前記縦方向に直交し、かつ、実空間での前記車両の前方に向かって左右方向に対応する方向を横方向とする場合において、
 前記虚像表示距離制御部は、前記第1/第2の状態、又は、前記第3/第4/第5の状態に応じて、前記第1の画像に対応する第1の虚像についての虚像表示距離を切り換え制御する際に、前記画像表示部の前記表示面上での、前記横方向における前記第1の画像のレイアウトを維持して虚像表示距離を変更してもよい。
 第6の態様では、虚像表示距離の切り換え制御を行う際に、切り換えの前後で、レイアウトが変更されないようにして、ユーザーに、極力違和感を与えないようにする。例えば、画像表示部の表示面の下方の中央に第1のコンテンツ(例えば非重畳コンテンツ)の画像が表示されている場合には、その画像の左には第1のスペースが存在し、右には第2のスペースが存在するはずであり、つまり、横方向に関して、左側から、左スペース、画像、右スペースとなるレイアウトが形成されているものと把握できる。よって、切り換え制御後においても、横方向におけるレイアウトが、画像表示部の表示面上で維持されるようにする。また、例えば、画像表示部の表示面の下方の中央付近に、道路の速度制限値、車速、の各情報が並列に、近接して表示されている場合は、切り換え制御後においても、その横方向のレイアウト(つまり、各情報の横方向における位置、及び、各情報の相互の位置関係)が維持されるようにする。
 第2乃至第6の何れか1つの態様に従属する第7の態様において、
 前記車両が、前記前照灯の照射方向を、前記ユーザーの操舵操作に応じて適応的に変更する場合において、
 前記画像表示部の前記表示面における、実空間での鉛直方向に対応する方向を縦方向とし、前記縦方向に直交し、かつ、実空間での前記車両の前方に向かって左右方向に対応する方向を横方向とするとき、
 前記虚像表示距離制御部は、
 前記第1/第2の状態、又は、前記第3/第4/第5の状態に応じて、前記第1の画像に対応する第1の虚像についての虚像表示距離を切り換え制御し、
 かつ、前記車両情報取得部が取得する、操舵操作に伴って変化する操舵角情報に基づいて、前記ユーザーの視点の移動に対応するように、前記画像表示部の前記表示面における、前記第1の画像の前記横方向の位置を制御してもよい。
 第7の態様では、上記のように虚像表示距離を切り換え制御し、さらに、操舵操作に伴って変化する操舵角情報に基づいて、ユーザーの視点の移動に対応するように、例えば非重畳コンテンツについての第1の画像の、画像表示部の表示面における横方向の位置を、例えば切り換え制御し、これによって、ユーザーが、より少ない視点の移動及びピント調整で、第1の画像を視認できるようにする。よって、ユーザーの目の負担がさらに軽減される。
 第1又は第2の態様に従属する第8の態様において、
 前記画像生成部は、前記第1のコンテンツについての前記第1の画像データの他に、第2のコンテンツについての第2の画像データも生成してもよく、
 前記画像表示部は、前記第1の画像データに対応する前記第1の画像を表示する前記表示面の他に、前記第2の画像データに対応する前記第2の画像を表示する他の表示面を有してもよく、
 前記光学系は、前記第1の画像を示す表示光を反射し、かつ前記第2の画像を表示する表示光を反射して、前記被投影部材に投影してもよく、
 前記第2の画像に対応する虚像である第2の虚像についての虚像表示距離は、前記第1の画像に対応する虚像である前記第1の虚像についての前記虚像表示距離よりも長く、かつ、前記虚像表示距離制御部は、前記第2の虚像についての前記虚像表示距離については、前記昼夜判定部の判定結果に基づく制御、又は、前記昼夜判定部の判定結果及び前記ハイビーム/ロービーム検出部の検出結果に基づく制御を実行しないものであってもよい。
 第8の態様では、2面の虚像表示面を有するHUD装置(2面HUD、あるいは2レイヤーHUD)において、ユーザーから見て、より遠方に表示される第2の虚像(言い換えれば、虚像表示距離が、第1の虚像よりも長い第2の虚像)については、昼夜判定部の判定結果に基づく制御、又は、昼夜判定部の判定結果及びハイビーム/ロービーム検出部の検出結果に基づく制御(言い換えれば、虚像表示距離の切り換え制御)の対象とせず、虚像表示距離の切り換え制御は、ユーザーから見て、より近くに表示される第1の虚像(言い換えれば、虚像表示距離が、第2の虚像よりも短い第1の虚像)のみ行うこととしている。2面(2レイヤー)HUD装置では、例えば、ユーザーから見て、より遠方の位置に、広い範囲の実景に対応する大きな虚像表示面を設定して、この虚像表示面に、例えば、実景に重畳する必要がある重畳コンテンツ(例えば、前方の車両に重畳される注意喚起マーク)についての第2の虚像を表示し、一方、より近い位置に、比較的小さな虚像表示面を設定し、この虚像表示面に、例えば、実景に重畳する必要のない非重畳コンテンツ(例えば、車速表示等の情報)についての第1の虚像を表示することで、各情報をはっきりと区別して、立体感を持たせて表示することができる。この2面(2レイヤー)HUD装置の第1の虚像に関して、昼夜等の区別に応じた虚像表示距離の切り換え制御を採用することで、ユーザーが第1の虚像を視認する場合のピント調整(ピント合わせ)の負担が軽減され、運転時の負荷を軽くすることが可能となる。よって、2面(2レイヤー)HUD装置の利便性が向上する。
 第8の態様に従属する第9の態様において、
 前記第1の虚像は、実景に重畳する必要がない非重畳コンテンツについての虚像であり、前記第2の虚像は、実景に重畳する必要がある重畳コンテンツについての虚像であってもよい。
 第9の態様では、実景に重畳する重畳コンテンツ(例えば、前方の車両に重畳される注意喚起マーク)についての第2の虚像と、実景に重畳する必要のない非重畳コンテンツ(例えば、車速表示等の情報)についての第1の虚像とを、はっきりと区別して、立体感を持たせて表示することができ、かつ、第1の虚像に関して、昼夜等の区別に応じた虚像表示距離の切り換え制御を採用することで、ユーザーが第1の虚像を視認する場合のピント調整(ピント合わせ)の負担を軽減することができる。よって、運転時の負荷を軽くすることが可能となり、2面(2レイヤー)HUD装置の利便性の向上を図ることができる。
 第1又は第2の態様に従属する第10の態様において、
 前記虚像表示距離制御部は、前記画像表示部を、所定範囲において振動させることによって前記画像表示部から前記被投影部材までの光路長を周期的に変更してもよく、
 前記画像表示部の前記表示面に前記第1の画像が表示されるタイミングが制御されることによって、前記第1の画像に対応する虚像である前記第1の虚像についての前記虚像表示距離が制御されてもよい。
 第10の態様では、多面の虚像表示面を設定可能なHUD(多面HUD、あるいはマルチレイヤーHUD)装置において、虚像表示距離の切り換え制御を実行する。多面(マルチレイヤー)HUD装置では、第1の虚像を表示可能な虚像表示面が多面化(マルチレイヤー化)されることから、虚像表示距離を、より自在に変更することができ、更に奥行き感のある立体的な表示が可能である。また、表示対象の物体(オブジェクト)のサイズや高さを、適宜、変更して遠近感を持たせたり、物体の表示位置を調整したり、物体に奥行きを持たせて立体化したり、物体に影をつけたり、斜視表現を採用したり、物体の質感を緻密に表現したりする、といった、幾何学的な立体装飾処理(以下、単に、立体装飾と称する場合がある)を施すことで、よりリアルな3D表示が可能となる。この多面(マルチレイヤー)HUD装置における第1の虚像に関して、昼夜等の区別に応じた虚像表示距離の切り換え制御を採用することで、ユーザーが第1の虚像を視認する場合のピント調整(ピント合わせ)の負担が軽減され、運転時の負荷を軽くすることが可能となる。よって、多面(マルチレイヤー)HUD装置の利便性が向上する。
 第10の態様に従属する第11の態様において、
 前記虚像表示距離は、m通り(mは3以上の自然数)に変更可能であってもよく、
 前記第1の虚像は、実景に重畳する必要がない非重畳コンテンツについての虚像であってもよく、
 前記m通りに変更される前記虚像表示距離に対応する虚像表示面を第1~第mの虚像表示面とする場合に、前記画像表示部を所定範囲内で振動させる制御、前記画像表示部の前記表示面における画像の表示タイミングの制御、及び、前記表示タイミングの制御に同期した表示内容の変更制御によって、前記第1~第mの虚像表示面の内の少なくとも2面の各々に、異なる非重畳コンテンツについての虚像の表示が可能であってもよい。
 第11の態様では、多面(マルチレイヤー)HUD装置は、虚像表示距離をm通り(mは3以上の自然数)に変更でき、画像表示部の振動制御と、表示タイミングの制御と、表示タイミングの制御に同期した表示内容の変更制御と、を併用する(組み合わせる)ことで、少なくとも2面の虚像表示面の各々に、異なる非重畳コンテンツについての虚像の表示が可能である。例えば、m=45(なお、mの値が大きくなるほどユーザーから遠い虚像面となる)の場合、例えば、m=1の虚像表示面に、「55km/h」というような車速表示を行い、m=30の虚像表示面に、「二重丸と組み合わせた60の表示」をすることで、通行中の道路の制限速度の表示をなすことができる。車速と、道路の制限速度と、を異なる虚像表示距離の虚像表示面に表示することで、立体的な表示(立体的なAR表示)が可能である。但し、立体的な表示がされる分、ユーザーの目の負担は大きくなるのは否めない。ここで、昼夜等の区別に応じた虚像表示距離の切り換え制御を採用することで、ユーザーが虚像を視認する場合のピント調整(ピント合わせ)の負担が軽減され、よって、運転時の負荷の軽減が実現される。
 第10又は第11の態様に従属する第12の態様において、
 前記虚像表示距離制御部は、昼と夜、又は、前記第1、第2の状態、又は、前記第3、第4、第5の状態に応じて、使用可能な虚像表示面群(少なくとも2以上の虚像表示面を含む)を切り換えてもよい。
 第12の態様では、多面(マルチレイヤー)HUD装置において、昼夜等の区別に応じた虚像表示距離の切り換え制御を行う際、まず、昼、夜等の各状態に応じて、虚像表示面群を切り換えるという制御を実行する。この場合、切り換えられた後の虚像表示面群に含まれる虚像表示面を、適宜、選択して虚像が表示されることになる。使用可能な虚像表示面群の切り換えを行うことで、使用可能な虚像表示面の範囲(虚像表示面の数、位置等)を簡単に絞り込むことができ、実際に使用する虚像表示面の選択の負担が軽減され、また、絞り込みがなされることで、虚像を表示するための処理(画像表示部における画像表示のタイミング調整等)の処理が容易となり、虚像表示距離制御部の負担が軽減される。
 当業者は、例示した本発明に従う態様が、本発明の精神を逸脱することなく、さらに変更され得ることを容易に理解できるであろう。
本発明のヘッドアップディスプレイ(HUD)装置の一例における全体の概略構成を示す図である。 虚像表示距離の一例について説明するための図である。 虚像表示距離を制御可能な通常のHUD装置の、要部の構成の一例を示す図である。 図4(a)は、虚像表示距離を制御可能な路面重畳HUD装置の、要部の構成の一例を示す図であり、図4(b)は、虚像の位置の変更によって虚像表示距離が変化する様子を示す図である。 図5(a)は、昼のときの注視領域及び注視点の例を示す図、図5(b)は、夜における前照灯がハイビームのときの注視領域及び注視点の例を示す図、図5(c)は、夜における前照灯がロービームのときの注視領域及び注視点の例を示す図、である。 図6(a)乃至(c)の各々は、図3の構成を用いて、虚像表示距離を、図5(a)乃至(c)の各々における注視点に対応させて切り換え制御する場合の虚像の表示例を示す図である。 図7(a)乃至(c)の各々は、図4の構成を用いて、虚像表示距離を、図5(a)乃至(c)の各々における注視点に対応させて切り換え制御する場合の虚像の表示例を示す図である。 図8(a)及び(b)は、虚像表示距離の切り換え制御を実行しない場合の一例を示す図であり、図8(c)は、非重畳コンテンツとして、複数の種類の情報が横一列に配置されている例を示す図である。 虚像表示距離を制御可能なヘッドアップディスプレイ(HUD)装置の、主要な動作手順の一例を示すフロー図である。 図10(a)は、操舵操作に伴って変化する操舵角情報に基づいて虚像の横方向の位置が制御される例における、位置変更前の注視点の位置を示す図であり、図10(b)は、位置変更前の虚像の表示位置を示す図であり、図10(c)は、位置変更後の注視点の位置を示す図であり、図10(d)は、位置変更後の虚像の表示位置を示す図である。 図11(a)は、2面(2レイヤー)HUD装置の虚像表示例を示す図であり、図11(b)は、2面(2レイヤー)HUD装置の要部の構成例を示す図である。 図12(a)、(b)及び(c)は、それぞれ、図11の2面(2レイヤー)HUD装置における、夜間(夜間ロービーム)状態、昼間状態及び夜間ハイビーム状態における虚像表示例を示す図である。 図13(a)は、多面(マルチレイヤー)HUD装置の虚像表示例を示す図であり、図13(b)は、多面(マルチレイヤー)HUD装置の要部の構成例を示す図であり、図13(c)は、スクリーン及びレンズの位置を制御する位置制御信号と、スクリーンの表示面における画像表示タイミングとの関係(同期関係)の一例を示す図である。 図14(a)は、図13の多面(マルチレイヤー)HUD装置における虚像表示面の設定例を示す図であり、図14(b)、(c)及び(d)は、それぞれ、夜間(夜間ロービーム)状態、昼間状態及び夜間ハイビーム状態において使用可能な虚像表示面群の例を示す図である。 図15(a)、(b)及び(c)は、それぞれ、多面(マルチレイヤー)HUD装置における、夜間(夜間ロービーム)状態、昼間状態、夜間ハイビーム状態における虚像表示例を示す図であり、図15(d)は、車両の走行中における虚像(車速を示す虚像、及び道路の制限速度を示す虚像)の、奥行き感を持たせた表示例を示す図である。 図16(a)は、多面(マルチレイヤー)HUD装置で、道路の制限速度の変更を予告する虚像を、遠方に、現在の制限速度の表示とは異なる態様で表示した例を示す図であり、図16(b)は、車両の進行に伴い、制限速度の変更を予告する虚像がダイナミックに接近してくる様子を示す図であり、図16(c)は、予告されていた制限速度が、現在の制限速度として表示された様子を示す図である。
 以下に説明する最良の実施形態は、本発明を容易に理解するために用いられている。従って、当業者は、本発明が、以下に説明される実施形態によって不当に限定されないことを留意すべきである。
 図1は、本発明のヘッドアップディスプレイ(HUD)装置の一例における全体の概略構成を示す図である。HUD装置100は、車両(ここでは四輪の自動車とする)10に搭載され、画像(言い換えれば画像の表示光)を、車両10に備わる被投影部材(典型的には、透光性と反射性とを併せ持つウインドシールド)6に投影することで、ユーザー(典型的には、運転者)に、画像の虚像(例えば、路面2に垂直である虚像表示面400a上の虚像V(a)、又は路面2に平行である虚像表示面400b上の虚像V(b))を視認させる車両表示装置である。ユーザーの前方の実景(例えば前方車両、前方路面等を含む景色)に重ねて虚像を表示することができることから、ユーザーは、車両の運転中に大きな視線の移動を行うことなく、必要な情報を効率的に得ることができる。なお、図1において、ユーザーの視点を符号Aで示している。
 HUD装置100が表示するコンテンツには、一例として、実景に重畳するべき重畳コンテンツ(例えば、前方の車両に重畳される注意喚起マーク)と、実景に重畳する必要のない非重畳コンテンツ(例えば、車速情報等の車両の走行状態を示す車両情報)と、が含まれる。なお、重畳コンテンツ及び非重畳コンテンツは、それぞれ、動的重畳コンテンツ及び非動的(静的)重畳コンテンツと呼ぶこともできる。
 従来、車速等の車両情報(非重畳コンテンツ)は被投影部材6の表示領域(虚像を表示可能な領域であり、図1では不図示であるが、例えば図5において、参照符号11で示されている)中の固定位置にて表示される。ところで、ユーザーが前方の実景から虚像(例えば車両情報)を見るときに、ユーザーは、目のピントを実空間上の実景から虚像に調整する必要がある。言い換えれば、運転中、ユーザーは、常に実景(又は虚像)だけを見て運転するのではなく、必要に応じて虚像(又は実景)を見ることとなる。特に、ユーザーが前方の実景を見ているときには、昼におけるユーザーの注視する実空間上の実景位置(車両前後方向における注視実景とユーザー(視点A)との距離)と、夜におけるユーザーの注視する実空間上の実景位置(車両前後方向における注視実景とユーザー(視点A)との距離)とに違いがあることを本発明者らは認識し、したがって、実空間上の虚像位置(車両前後方向における虚像とユーザー(視点A)との距離)がほぼ一定である場合には、昼における虚像へのピント調整と夜における虚像へのピント調整とに違いがあることを本発明者らは認識した。このようにユーザーの注視点(ピント)が前方の実景から虚像に切り替わる場合には、ユーザーの視線(注視点)の移動が極力低減されるように(言い換えれば、目のピント調整が極力低減されるように)車両情報(車速等)の表示情報(コンテンツ)を、より適切な表示距離(虚像表示距離)で表示するのが望ましい。
 図1のHUD装置100は、上記のような状況に柔軟に対応できるようにするために、昼及び夜を区別することができる。より具体的には、1例として、HUD装置100は、昼の場合又は夜における前照灯がハイビームの場合(第1の状態)、及び、夜における前照灯がロービームの場合(第2の状態)を区別することができる。代替的に、HUD装置100は、昼の場合(第3の状態)、及び、夜における前照灯がハイビームの場合(第4の状態)、及び、夜における前照灯がロービームの場合(第5の状態)を区別することができる。HUD装置100は、区別又は判定の結果に基づき、例えば車速等のコンテンツについての虚像表示距離を、上記の各場合(各状態)における注視点に対応させて切り換え制御することが可能な構成を備えている。なお、注視点については、後述する。
 図1のHUD装置100は、例えば、車両10のダッシュボード4の内部に収納されており、制御部30と、投光部42と、必要に応じて設けられるレンズ44と、画像を表示する表示面47を備える、画像表示部としてのスクリーン46と、画像を示す表示光5を反射して、被投影部材6に投影する光学部材(図1では不図示、図3、図4における凹面鏡49)を含む光学系48と、を有する。
 制御部30は、車両10に備わるECU(Electronic Control Unit)150から例えばCAN等の車載ネットワークを構成する信号線(バス)8を経由して取得する車両情報取得部14と、車両10に備わる外光センサ12から得られる外光強度情報及び車両情報取得部14が取得した車両情報(典型的には、前照灯3の状態)の少なくとも一方に基づいて昼夜を判別する昼夜判定部16と、車両10の前照灯3がオンされている場合に、車両情報取得部14が取得した車両情報に基づいて、前照灯3の状態がハイビーム状態であるか、ロービーム状態であるかを判別するハイビーム/ロービーム検出部18と、車両の前方の実景に重畳する必要のない非重畳コンテンツについての第1の画像データ、および実景に重畳される重畳コンテンツについての第2の画像データを生成する画像生成部20と、投光部42の動作を制御する投光制御部22と、虚像表示距離制御部24と、を有する。なお、当業者は、各コンテンツをAR(Augmented Reality)コンテンツと呼んでもよい。
 画像表示部46は、図1の例では、投光部42によって投光された画像が、表示面47に結像されるスクリーン46により構成されているが、これに限定されるものではなく、例えば、バックライト付きの液晶表示装置等の表示パネルであってもよい。表示パネルを用いる場合は、投光部42及び投光制御部22は不要であり、代わりに、画像表示制御部が設けられる。画像表示部(画像が投影されるスクリーン46、又は、バックライト付きの液晶パネル等の表示装置の表示パネル)の表示面47には、非重畳コンテンツについての第1の画像データに対応する第1の画像、及び重畳コンテンツについての第2の画像データに対応する第2の画像が表示される。
 虚像表示距離制御部24は、第1の画像についての虚像V(a)、又は虚像V(b)についての虚像表示距離を切り換え制御することができる。ここで、虚像V(a)は、路面2に平行でない虚像表示面400a上に、例えば立像の虚像(水平な路面に対して45度~90度の角度をなす虚像)を表示する、通常のHUD装置においてユーザーに視認される虚像であり、虚像V(b)は、路面2上に、又は路面2にほぼ平行な仮想面上に、虚像表示面400bが設定される、いわゆる路面重畳HUD装置においてユーザーに視認される虚像である。
 次に、「虚像表示距離」について説明する。図1の場合、虚像表示距離は、符号La、Lbで示されている。「虚像表示距離」は、ユーザー上に設定される基準点又は車両10上に設定される基準点から虚像V(a)(又はV(b))までの距離である。
 ユーザー側に設けられる基準点は、例えば、ユーザーの両目の中心点等の視点A、又は視点Aに対応する車内空間の点等の例えば一点とすることができ、運転席または被投影部材(ウインドシールド等)6に設定される点としてもよい。
 また、ユーザー側の基準点から虚像V(a)(V(b))までの距離(見かけ上の距離)は、正確には、虚像上にも基準点を設定し、その虚像上の基準点を、ユーザー側の基準点を原点とする3次元極座標(ri,θi,φi)により表すことで定義することができる。なお、偏角θiは、車両の前方の座標軸(図1におけるZ軸)を基準とした左右方向における角度であり、偏角φiは、鉛直方向における角度である。言い換えれば、3次元極座標系の偏角(θi,φi)は虚像の方向を示しており、そして、3次元極座標系の動径riが虚像表示距離を示す。
 但し、虚像位置を3次元極座標で表すと虚像距離riの等しい面は球面となるが、車両用のHUD装置では、虚像方向が一定の範囲(車両の前方)に制限されており、虚像表示距離の等しい面を平面で近似することができ、また、HUD装置では、虚像表示面が平面となるように光学的に工夫されているものが多い。したがって、以下の説明では、図2に示されるように、虚像表示距離の等しい面を平面として扱うこととする。
 ここで、図2を参照する。車両の進行方向がZ軸であり、z=ri(図2では、ri=10m、20m)の平面を、虚像距離riの表示面(言い換えれば、虚像表示面400a1、400a2)としている。そして、この虚像表示面400a1、400a2上に、車速等の、非重畳コンテンツとしての車両情報についての第1の画像の虚像が表示される。図2では、車速が「55km/h」と表示されている。
 なお、図1において、路面2上に虚像表示面400bがある場合には、虚像V(b)上に基準点を設け、この基準点を通り、かつ路面に垂直な仮想的な面を想定し、その面までの距離(水平距離)を虚像表示距離Lbとする。また、図1では、虚像表示面400aは、路面2に対して垂直であるが、路面2に対して例えば、所定の角度(立像の場合は45度~90度の範囲)で傾いている場合もあり得る。この場合も、虚像V(a)に基準点を設け、この基準点を通り、かつ路面に垂直な仮想的な面を想定し、その面までの距離(水平距離)を虚像表示距離Laとする。なお、上記の説明は一例であり、虚像表示距離を規定する方法として、他の方法を採用してもよい。
 次に、図3、図4を参照して、虚像表示距離の切り換え制御について、具体的に説明する。なお、図3及び図4において、図1と共通する部分には同じ符号を付してある。まず、図3を参照する。図3は、虚像表示距離を制御可能な、通常のHUD装置(非路面重畳HUD)装置の、要部の構成の一例を示す図である。
 図3のHUD装置100は、一例として、例えば非重畳コンテンツの画像データである第1の画像データ(及び例えば重畳コンテンツの画像データである第2の画像データ)を生成する画像生成部20と、投光制御部22と、虚像表示距離制御部24と、投光部42と、レンズ44と、画像が表示される表示面47を有するスクリーン46と、光学系48に含まれる光学部材としての凹面鏡49と、レンズ駆動部51と、スクリーン駆動部53と、を有する。レンズ駆動部51は、レンズ44をz軸に沿う方向に移動させ、スクリーン駆動部53は、スクリーン46をz軸に沿う方向に移動させる。虚像表示距離制御部24は、レンズ駆動部51及びスクリーン駆動部53に制御信号を出力して、レンズ44及びスクリーン46を連動させて移動させる。
 レンズ44及びスクリーン46が移動されると、画像表示部としてのスクリーン46から被投影部材(典型的にはウインドシールド)6までの光路の光路長が変化する。ここで、「光路長」は、光学系48の光軸(言い換えれば、光学系48に含まれる光学部材である凹面鏡49の光軸であり、これはHUD装置の光軸ともいえる:図3中、一点鎖線の直線で示される符号P)が、画像表示部としてのスクリーン46の表示面47と交わる第1点W1から、被投影部材6と交わる第2点W2までの光路の長さである。この光路長が変更されることで、虚像表示距離は、例えば、距離Laから距離La’へと変更される。
 また、虚像表示面400a(400a’)が路面2に対して傾斜している場合は、傾斜面である虚像表示面400a(400a’)上における虚像の位置が、上下方向(図3の例ではy軸方向)に沿って移動されることによっても、虚像表示距離を微調整することができる。言い換えれば、画像表示部としてのスクリーン46の表示面47に表示される画像Mの上下方向における位置が変更されることによっても、虚像表示距離を調整することができる。この場合は、虚像表示距離制御部24が、画像生成部20に指示して、画像データ(ここでは非重畳コンテンツについての第1の画像データ)の生成時に、画像の位置を変更させる。このように、虚像表示距離の変更は、光路長の変更、及び画像表示部(ここではスクリーン46)の表示面47における画像の表示位置の変更、の少なくとも一方により行われ得る。言い換えれば、いずれか単独でもよく、各手法を併用してもよい。虚像が表示される距離が制御されることから、切り換え制御の精度が高くなり、よって、ユーザーの目のピント調整の負担が軽減される。
 次に、図4を参照する。図4(a)は、虚像表示距離を制御可能な路面重畳HUD装置の、要部の構成の一例を示す図であり、図4(b)は、虚像の位置の変更によって虚像表示距離が変化する様子を示す図である。図4(a)に示されるように、路面重畳HUD装置は、鉛直方向(y軸方向)を基準として、所定の角度だけ傾斜したスクリーン46を備えている。路面重畳HUD装置は、通常は、画像表示部としての傾斜したスクリーン46を移動させる機構は有していない。よって、この場合は、スクリーン46の表示面47上で画像Mのy軸方向における位置を変更することによって、虚像表示距離を変更することになる。但し、傾斜したスクリーンを移動させる機構を有する場合は、図3の例と同じように、スクリーン46の移動によって虚像表示距離を変更することができ、また、スクリーン46の移動と、画像Mの表示面47上における位置の変更との併用によっても、虚像表示距離を変更することができる。
 図4(a)において、傾斜したスクリーン46の表示面47上での画像Mの、上下方向に沿う位置の変更は、破線の双方向の矢印で示されている。この画像Mの位置の変更によって、図4(b)に示される、路面2に設定される虚像表示面400b上で、例えば、虚像V(b)が、虚像V(b)’の位置まで移動することになり、この場合、虚像表示距離Lbが、虚像表示距離Lb’へと変更されることになる。
 次に、図5乃至図8を用いて、非重畳コンテンツについての虚像の虚像表示距離を変更する場合の具体的な態様について説明する。まず、図5(a)乃至(c)を参照する。図5(a)乃至(c)においては、ユーザーの「注視領域」及び「注視点」の、運転環境による変動の一例が示されている。
 上述のとおり、本発明では、運転環境(昼夜を含む)を表すいくつかの場合を区別し、各場合に応じてユーザーの視野範囲である注視領域を想定し、その注視領域内で、代表注視点である注視点を想定し、その注視点に対応するように、虚像表示距離を切り換え制御する。なお、代表注視点は、一例であるが、見晴らしがよく、障害物等がなく、警告表示等も表示されていない、最も安定した走行状態において、標準的なユーザーの目のピントが合っていると推定される注視点とすることができる。注視点は、注視領域内において一義的に定められる仮想的な注視点ということができる。
 場合分けの態様としては、昼及び夜を区別するものが考えられる。一例として、より具体的には、昼の場合又は夜における前照灯がハイビームの場合(第1の状態)、及び夜における前照灯がロービームの場合(第2の状態)を区別するものが考えられる。他の一例として、昼の場合(第3の状態)、及び、夜における前照灯がハイビームの場合(第4の状態)、及び、夜における前照灯がロービームの場合(第5の状態)を区別するものが考えられる。
 図5(a)乃至(c)には、昼(第3の状態)/夜における前照灯がハイビームの場合(第4の状態)/夜における前照灯がロービームの場合(第5の状態)を区別する場合の注視領域及び注視点の変動の例が示される。
 図5(a)は、昼のときの注視領域及び注視点の例を示している。図5(a)において、被投影部材(典型的にはウインドシールド)における虚像表示領域(虚像を表示可能な領域)11は、太い破線で囲まれて矩形の領域として描かれている。昼間においては、ユーザーは、比較的遠方を注視する傾向が強く、ユーザーの注視領域200bは、車両から遠い側にシフトしている。よって、注視点Qbは、虚像表示領域11内における、上方の中央付近に位置している。
 図5(b)は、夜における前照灯がハイビームのときの注視領域及び注視点の例を示している。夜間には、ユーザーは、前照灯の照射エリア近傍を注視する傾向が強い。夜間のハイビーム時と昼間は、ユーザーが比較的遠方を注視する傾向がある点で共通するが、視点の位置が必ずしも一致するとは限らない。図5(b)の例では、ユーザーの注視領域200bは、図5(a)の注視領域200aと比較してやや下側(車両に近い側)にシフトされている。これに対応して、図5(b)における注視点Qbは、図5(a)における注視点Qaと比較してやや下側(車両に近い側)にシフトされている。但し、これは一例であり、上記の例に限定されるものではない。
 図5(c)は、夜における前照灯がロービームのときの注視領域及び注視点の例を示している。上述のとおり、夜間では、ユーザーは、前照灯の照射エリア近傍を注視する傾向が強く、よってロービーム時における視点は比較的車両に近い側にある。言い換えれば、図5(c)の例では、ユーザーの注視領域200cは、図5(a)、(b)における注視領域200a、200bと比較して下側(車両に近い側)にシフトされている。これに対応して、図5(c)における注視点Qcは、図5(a)、(b)における注視点Qa、Qbと比較して下側(車両に近い側)にシフトされている。
 なお、昼と夜とを区別する場合には、夜における注視点として、注視点Qb、Qcのいずれかを採用する。又、昼と、夜におけるハイビーム時とを同じ区分とする場合には、注視点として、注視点Qa、Qbのいずれかを採用する。
 虚像表示距離制御部24は、上記の例のような注視点の変化に応じて、虚像表示距離を切り換え制御する。言い換えれば、虚像表示距離制御部24は、昼/夜に応じて、又は、昼、及び夜における前照灯がハイビームの場合(第1の状態)/夜におけるロービームの場合(第2の状態)に対応させて、虚像表示距離を、第1/第2の距離(第2の距離は第1の距離よりも短い)に切り換え制御してもよく、又、図5(c)の例のように、昼の場合(第3の状態:図5(a))/夜におけるハイビームの場合(第4の状態:図5(b))/夜におけるロービームの場合(第5の状態:図5(c))の各場合に対応させて、虚像表示距離を、第3/第4/第5の各距離(第3/第4の距離は異なる値であり、第5の距離は、第3/第4の距離よりも短い)に切り換え制御してもよい。これにより、各状態における注視点に対応させて、例えば非重畳コンテンツについての虚像表示距離を精度よく切り換えることができる。
 次に、図6(a)乃至(c)を参照する。図6(a)乃至(c)の各々は、図3の構成(虚像表示距離を変更する機構をもつ、非路面重畳HUD装置の構成)を用いて、虚像表示距離を、図5(a)乃至(c)の各々における注視点に対応させて切り換え制御する場合の虚像の表示例を示す図である。図6の例では、非重畳コンテンツの第1の画像の虚像として、車速を表示する虚像(言い換えれば「55km/h」という表示)210が示されている。
 図6(a)乃至(c)では、車両は、見晴らしがよく、障害物等がなく、警告表示等も表示されていない、安定した走行状態にあり、ユーザーの注視点は、概ね、図5(a)乃至(c)に示した注視点Qa乃至Qcの付近にあると推定されるため、注視点Qa乃至Qcに対応するように、車速を示す虚像210a乃至210cの虚像表示距離が切り換え制御される。「55km/h」という虚像210の表示サイズは、距離の大小(遠近)に応じて適宜、調整され、遠近感を伴う表示となっている。
 図6の例は、昼又は夜において、例えば、見通しのよい直線道路を車両が走っており、いつの間にかスピードが出すぎてしまいそうである、といった状況と言える。しかし、車両情報(車速表示等)が、ユーザーの視点に対応して表示されることから、ユーザーは、目の移動やピント調整を最小限に抑えながら、現状の走行状態を把握することができ、スピードの出しすぎ等の好ましくない運転を回避できる可能性が高まる。又、虚像の距離が制御されることから、切り換え制御の精度が高くなり、よって、ユーザーの目のピント調整の負担が軽減される。
 次に、図7を参照する。図7(a)乃至(c)の各々は、図4の構成(路面重畳HUD装置の構成)を用いて、虚像表示距離を、図5(a)乃至(c)の各々における注視点に対応させて切り換え制御する場合の虚像の表示例を示す図である。虚像の表示態様は、概ね、図6(a)乃至(c)と同様であり、図6(a)乃至(c)についての説明が、そのまま適用され得る。但し、路面重畳HUD装置の場合、虚像は例えば非立像であり、従って、虚像は、下端から上端に向かって幅が狭くなる先細りの遠近表示となる。図7では、便宜上、車速を表示する虚像220a乃至200cを、斜体によって示している。
 なお、上記の例では、虚像表示距離の切り換え制御の対象となる非重畳コンテンツとして、車速を示す車両情報を採用しているが、これに限定されるものではない。虚像表示距離の切り換え制御の対象となる非重畳コンテンツは、車両の走行速度を示す車速情報、車両の走行状態を示す、エンジンの回転数の情報、吸気圧の情報、油圧の情報、燃圧の情報、油温の情報、水温の情報、排気温度の情報、スロットル開度の情報、吸気温の情報の、少なくともいずれか一つを含むものであってもよい。
 車速、エンジンの回転数、吸気圧、油圧、燃圧、油温、水温、排気温度、スロットル開度、吸気温等の車両情報は、走行状態を示す情報としてユーザーに有用である。例えば、競技車両においては、各種の車両情報を、ユーザーの視点の移動やピント調整を少なくしつつ、効果的に表示するのがよい場合も想定される。本発明の非重畳コンテンツの画像の切り換え制御は、街乗りモードのみならず、スポーツモードにおいても利用可能である。
 次に、図8を参照する。図8(a)及び(b)は、虚像表示距離の切り換え制御を実行しない場合の一例を示す図であり、(c)は、非重畳コンテンツとして、複数の種類の情報が横一列に配置されている例を示す図である。図8(a)では、昼の注視領域200a内に、前を行く車両があり、この車両に、注意喚起マーク(重畳コンテンツ)の虚像230aが重畳されて表示されている。車速を示す第1の画像の虚像220aは、被投影部材6の虚像表示領域11の上方の中央位置に表示されている。
 図8(a)の状態が継続中に夜になり、前照灯がオンされて、図8(b)のように、夜における前照灯がロービームとなっている状態になった場合、車速を示す虚像220cの虚像表示距離の切り換え制御は、以下の理由で実行されない。
 注意喚起マークは、実景(この場合は前方の車両)に重畳される重畳コンテンツであり、画像表示部46の表示面47に表示される注意喚起マークの画像は、第2の画像である。この第2の画像の虚像が表示されている状況では、ユーザーの注視点は、注意喚起マークの虚像230aの付近に向けられることが多いと推定される。
 この状態で第1の画像についての虚像表示距離の切り換え制御を実行すると、ユーザーに、視線の変動を強要することになり、注視点の競合が生じて、ユーザーを混乱させてしまうおそれがある。したがって、注視点の競合が予測される場合は、非重畳コンテンツについての第1の画像の虚像の、虚像表示距離の切り換え制御は実行しない。
 また、重畳コンテンツについての第2の画像の虚像が、第1の画像の虚像と重なるなど、第1の画像の虚像を注視点に対応する位置に表示することが好ましくない状況である場合には、虚像表示距離の切り換え制御モード自体を解除して、通常の表示位置固定モードにおける位置に復帰させる、といった対策を採ることも有効であると考えられる。言い換えれば、非重畳コンテンツについての第1の画像の虚像に関して、虚像表示距離を適宜、切り換え制御することは、HUD装置の本来の目的である第2の画像の虚像の、重畳対象物(実景)への重畳に支障のない範囲で行われるべきものであり、また、不要な注視点の競合を引き起こす可能性がある場合は、切り換え制御を実行しない等の、慎重な運用の下に実行されるものである。
 以上の説明では、非重畳コンテンツが車速情報単独である場合を例にとっているが、実際の運転状況では、図8(c)に示されるように、非重畳コンテンツが複数の情報を含み、各情報が所定のレイアウトで表示されている場合がある。図8(c)の例では、天気予報の注意報(「大雪」警報)の表示と、道路の制限速度の表示と、車速の表示とが、横一列(この場合の横方向は、車両の左右方向のことである)に並んでいる。図8(c)では、種類の異なる3つの情報を一つの非重畳コンテンツ210の虚像として取り扱っている。
 このような場合に、仮に、虚像210についての虚像表示距離の切り換え制御を実行する場合には、その横方向におけるレイアウト(各表示の配置)を維持しつつ、虚像表示距離の切り換えを実行する。言い換えれば、虚像表示距離の切り換え制御を行う際に、切り換えの前後で、レイアウトが変更されないようにして、ユーザーに、極力違和感を与えないようにする。
 つまり、画像表示部46の表示面47における、実空間での鉛直方向に対応する方向を縦方向とし、縦方向に直交し、かつ、実空間での車両の前方に向かって左右方向に対応する方向を横方向とする場合において、虚像表示距離制御部24は、上記の昼/夜、又は、第1/第2の状態、又は、前記第3/第4/第5の状態に応じて、第1の画像に対応する虚像(第1の虚像とする)についての虚像表示距離を切り換え制御する際に、画像表示部46の表示面47上での、横方向における第1の画像のレイアウトを維持して、虚像表示距離を変更させる。切り換えの前後でレイアウトが変更されないようにすることで、ユーザーに違和感を与えないようにすることができ、安全運転上の不都合が生じない。
 先に説明した図6(c)及び図7(c)の例では、画像表示部46の表示面47の下方の中央に非重畳コンテンツの画像(第1の画像)が表示され、その画像の左には第1のスペースが存在し、右には、同じサイズの第2のスペースが存在すると考えられる。言い換えれば、横方向に関して、左側から、左スペース、画像、同サイズの右スペースとなるレイアウトが形成されているものと把握できる。この状況から、例えば図6(a)及び図7(a)の状況に移行する際、切り換え制御後においても、横方向におけるレイアウトが、画像表示部の表示面上で維持されるように切り換えが行われている。
 また、図8(c)の例のように、画像表示部46の表示面47の下方の中央付近に、天気予報の注意報、道路の速度制限値、車速、の各情報の虚像が並列に、近接して表示されている場合は、切り換え制御後においても、その横方向のレイアウト(つまり、各情報の横方向における位置、及び、各情報の相互の位置関係)が維持されるようにするのが好ましい。但し、これに限定されるものではなく、状況に応じて、レイアウトを少々改変する程度のことは許容される。
 次に、図9を参照する。図9は、虚像表示距離を制御可能なHUD装置の、主要な動作手順の一例を示すフロー図である。まず、図1に示される車両情報取得部14が、昼夜判定のための情報(外光センサ12が検出する外光強度情報、CANトランシーバICからの調光情報等)を取得する(ステップS1)。次に、昼夜判定部16が昼夜判定を行い(ステップS2)、夜と判定される場合は、続いてハイビーム/ロービーム検出部18が、前照灯がハイビーム状態であるかロービーム状態であるかを検出する(ステップS3)。
 ステップS1、S2の判定結果に応じて、例えば、図5乃至図7を用いて説明したように、第1乃至第3の虚像表示距離が設定される(ステップS4~S6)。
 昼における第1の距離をR1とし、夜におけるハイビーム時の第2の距離をR2とし、夜におけるロービーム時の第3の距離をR3とする場合、R1とR2は異なる距離であり、R3は、R1及びR2よりも小さい。図5(a)乃至(c)の例では、R1>R2>R3の関係が成立する。なお、昼/夜に場合分けする場合には、R1と、R2又はR3を設定する。また、昼及び夜における前照灯がハイビームである状態/夜における前照灯がロービームである状態に場合分けする場合は、R1又はR2と、R3とを設定する。
 続いて、虚像表示距離制御部24は、虚像表示距離を変更可能な状況であるか(例えば、図8(a)及び(b)のような状況であるか)を判定し(ステップS7)、Noの場合は、切り換え制御を行うことなく現状の虚像表示距離を維持し(ステップS9)、Yesの場合は、ステップS7で決定された虚像表示距離で虚像を表示させる。上述のとおり、虚像表示距離の変更は、図3で示した光路長(第1点W1から第2点W2までの光路の長さ)の変更、及び表示面47上における第1の画像の表示位置の変更、の少なくとも一方(いずれか単独、又は双方の併用)によって実行される。
 本発明は、上記の例に限定されるものではなく、種々、変形、応用が可能である。ここで、図10を参照する。図10(a)は、操舵操作に伴って変化する操舵角情報に基づいて虚像の横方向の位置が制御される例における、位置変更前の注視点の位置を示す図であり、(b)は、位置変更前の虚像の表示位置を示す図であり、(c)は、位置変更後の注視点の位置を示す図であり、(d)は、位置変更後の虚像の表示位置を示す図である。
 図10の例では、車両が、前照灯の照射方向を、ユーザーの操舵操作に応じて適応的に変更する構成を備える。図10(a)は、夜における前照灯がロービームである状況での注視点Qcの位置が示されている(これは、図5(c)と同じである)。この場合は、図10(b)に示されるように、車速についての虚像220cが、注視点Qcに対応する虚像表示距離にて表示される(これは、図7(c)と同じである)。
 この状況において、車両情報取得部14が、車両の操舵角情報を取得する。「操舵角情報」は、例えば、前照灯の照射方向を適応的に変化させるシステムを内蔵した車両におけるステアリングハンドルの操舵角情報であり、具体的には、例えば、車両情報取得部が取得する、舵角センサの検出信号、トルクセンサによって検出される操舵トルク信号等である。
 虚像表示距離制御部24は、この操舵角情報に基づいて、ユーザーの視線(注視点)が横方向に移動しているかを判定する。例えば、図10(c)に示すように、視線(注視点Qd)が右方向に移動していると判定される場合には、図10(d)に示されるように、車速を示す虚像220dの表示位置を、視線(注視点Qd)の移動に合わせて、右方向に移動させる。
 言い換えれば、画像表示部46の表示面47における、実空間での鉛直方向に対応する方向を縦方向とし、縦方向に直交し、かつ、実空間での車両の前方に向かって左右方向に対応する方向を横方向とするとき、虚像表示距離制御部24は、昼/夜、又は、上述の第1/第2の状態、又は、上述の第3/第4/第5の状態に応じて、第1の画像に対応する第1の虚像についての虚像表示距離を切り換え制御し(つまり、奥行き方向についての虚像表示距離を変更し)、かつ、車両情報取得部14が取得する、操舵操作に伴って変化する操舵角情報に基づいて、ユーザーの視線(注視点Qd)の移動に対応するように、画像表示部46の表示面47における、第1の画像の横方向(実空間における車両の左右方向)の位置を制御する。
 前掲の実施形態のように、虚像表示距離を切り換え制御し、さらに、操舵操作に伴って変化する操舵角情報に基づいて、ユーザーの視点の移動に対応するように、非重畳コンテンツについての第1の画像の、画像表示部の表示面における横方向の位置を、例えば切り換え制御することで、ユーザーが、より少ない視点の移動及びピント調整で、第1の画像を視認できるようになる。よって、ユーザーの目の負担がさらに軽減される。
 例えば、見晴らしのよい広々とした道路が左右に緩くカーブしており、前方を行く車両がなく、警告表示もなされていないような場合は、スピードが出すぎてしまう恐れがあるが、上記の制御を行うことで、ユーザーに現在の車速の状況を、さりげなく、的確に伝えることができ、これがユーザーに注意を促すことになる。よって、ユーザーに、従来にない、ワンランク上の安全運転環境を提供することができる。
 このように、従来は、例えば非重畳コンテンツの虚像の表示位置は固定されていたが、本発明では、虚像表示距離(虚像表示位置ということもできる)が、運転環境に応じた注視点の変化に対応して適応的に切り換え制御され、これによって、ユーザーに、運転状況に適応した、従来にない、ワンランク上の安全運転環境を提供することが可能となる。
 本発明は、上記の例に限定されるものではなく、種々、変形、応用が可能である。例えば、本発明は、2面(2レイヤー)HUD装置に適用することもできる。ここで、図11を参照する。図11(a)は、2面(2レイヤー)HUD装置の虚像表示例を示す図であり、図11(b)は、2面(2レイヤー)HUD装置の要部の構成例を示す図である。
 図11(a)に示されるように、2面(2レイヤー)HUD装置100は、虚像表示面として、ユーザー1から見て、近い位置(虚像表示距離L100)の第1の虚像表示面PS1と、より遠方(虚像表示距離L102、ここでは、L102>L100)の第2の虚像表示面PS2と、を設定することができる。第1の虚像表示面PS1には、例えば、車両の車速情報(ここでは、「55km/h」)SPの虚像が表示される。車速情報SPは、実景に重畳する必要のない非重畳コンテンツの画像である。一方、第2の虚像表示面PS2には、例えば、前方の車両に重畳される注意喚起マークCUの虚像が表示される。注意喚起マークCUは、実景に重畳する必要のある重畳コンテンツの画像である。
 なお、第1の虚像表示面PS1上の車速情報SPの虚像は、2面(2レイヤー)HUD装置100から被投影部材6(ウインドシールド等)に投射(投影)される表示光K1が、ユーザー1の視点Aに入射されることによって視認される。また、第2の虚像表示面PS2上の注意喚起マークCUの虚像は、2面(2レイヤー)HUD装置100から被投影部材6(ウインドシールド等)に投射(投影)される表示光K2が、ユーザー1の視点Aに入射されることによって視認される。
 ここで、図11(a)に示されるように、第1の虚像表示面PS1上に表示される車速情報SPの虚像の虚像表示距離(L100)については、図1で説明した、虚像表示距離制御部24による、昼夜判定部16の判定結果に基づく制御、又は、昼夜判定部16の判定結果及びハイビーム/ロービーム検出部18の検出結果に基づく制御によって、適宜、変更され得る。図11(a)の例では、昼の場合(「D」と記載)は、虚像表示距離はL100に設定され、夜の場合(「N」と記載)は、虚像表示距離はL104(L104<L100)へと変更される。先に説明したように、夜間は、ユーザー1は、前照灯の光が届く範囲(昼間に比べてより近い位置)を見る傾向があることから、夜間には、第1の虚像表示面PS1を、図中、破線で示される位置まで、ユーザー1により近づくように移動させ、夜間におけるユーザーの視点位置と同じにする。これによって、ユーザー1の視点調整の負担が軽減される。
 このように、2面(2レイヤー)HUD装置では、例えば、ユーザー1から見て、より近い位置に、比較的小さな第1の虚像表示面PS1を設定し、この第1の虚像表示面PS1に、例えば、実景に重畳する必要のない非重畳コンテンツ(例えば、車速情報SP等の情報)についての第1の虚像を表示し、また、より遠方の位置に、広い範囲の実景に対応する大きな第2の虚像表示面PS2を設定して、この第2の虚像表示面PS2に、例えば、実景に重畳する重畳コンテンツ(例えば、前方の車両に重畳される注意喚起マークCU等の情報)についての第2の虚像を表示することで、各情報をはっきりと区別して、立体感を持たせて表示することができる。そして、第1の虚像(車速表示等の情報についての虚像)に関して、昼夜等の区別に応じた虚像表示距離の切り換え制御を採用することで、ユーザーが第1の虚像を視認する場合のピント調整(ピント合わせ)の負担が軽減され、運転時の負荷を軽くすることが可能となる。よって、2面(2レイヤー)HUD装置の利便性が向上する。
 なお、第2の虚像(前方車両に重畳される注意喚起マークCU等の情報についての虚像)については、昼夜等の区別に応じた虚像表示距離の切り換え制御は行わないことが好ましい。言い換えれば、注意喚起マークCU等の虚像(第2の虚像)は、実景としての対象物に重ね合わされるものであることから、その虚像(第2の虚像)の位置を、実際の対象物の位置と関係なく、昼夜等の区別に応じて移動させると、ユーザー1は、あたかも対象物が移動した(例えば接近した)ように錯覚してしまうおそれがあり、安全運転の確保の観点からは好ましくない。したがって、虚像表示距離の切り換え制御は、第1の虚像(非重畳コンテンツの画像の虚像)についてのみ行う。
 次に、図11(b)を参照する。図11(b)に示されるように、2面(2レイヤー)HUD装置100は、例えば、光源部31(例えば、レーザー光源33と、レーザー光を2分割して2つのビームを生成して出力する光学系35と、を含む)と、ミラー39と、レンズ44と、画像表示部としてのスクリーン46a、46bと、虚像表示距離制御部24(レンズ駆動部51と、スクリーン駆動部53とを含む)と、ミラー71と、反射鏡(凹面鏡)72と、筐体81と、光出射窓83と、を有する。スクリーン46aの表示面47に表示される画像Maの出射光によって表示光K1が生成され、スクリーン46bの表示面47に表示される画像Mbの出射光によって表示光K2が生成される。虚像表示距離制御部24(レンズ駆動部51、スクリーン駆動部53)によって、レンズ44及びスクリーン46aの位置が、光路に沿って、言い換えれば、レンズ44(及びスクリーン46a)の光軸に沿う方向に移動することで、第1の虚像表示面PS1についての虚像表示距離(L100、L104)を適宜、切り換えることが可能である。
 次に、図12を参照する。図12(a)、(b)及び(c)は、それぞれ、図11の2面(2レイヤー)HUD装置における、夜間(夜間ロービーム)状態、昼間状態及び夜間ハイビーム状態における虚像表示例を示す図である。図12(a)~(c)において、下側に「横画角」と記載されているが、これは、画像表示部としてのスクリーン46(46a)における横幅に相当する(図15においても同様である)。第2の虚像表示面PS2についての虚像表示距離L102は、図12(a)~(c)のいずれの場合も共通である(言い換えれば、昼夜等の区別に左右されない)。第1の虚像表示面PS1についての虚像表示距離は、虚像表示距離制御部24によって、適宜、切り換えられ、これによって、図12(a)の場合はL104に設定され、図12(b)の場合はL100(L104<L100)に設定され、図12(c)の場合はL106(L104<L106<L104)に設定される。
 本発明は、上記の例に限定されるものではなく、種々、変形、応用が可能である。例えば、本発明は、多面(マルチレイヤー)HUD装置に適用することもできる。なお、ここで、図13を参照する。図13(a)は、多面(マルチレイヤー)HUD装置の虚像表示例を示す図であり、図13(b)は、多面(マルチレイヤー)HUD装置の要部の構成例を示す図であり、図13(c)は、スクリーン及びレンズの位置を制御する位置制御信号と、スクリーンの表示面における画像表示タイミングとの関係(同期関係)の一例を示す図である。なお、図13の多面(マルチレイヤー)HUD装置は、本質的には1つの虚像表示面から多面(マルチレイヤー)の虚像表示面が形成されているが、複数の光源部を備えて、多面(マルチレイヤー)の虚像表示面を形成してもよい。また、多面(マルチレイヤー)の虚像表示面を構成する実質的に1つの虚像表示面又は各虚像表示面は、実空間での任意の平面に設定してもよく、立体的な表示が可能な多面(マルチレイヤー)HUD装置は、当業者に3DHUD装置と呼ばれてもよい。
 多面(マルチレイヤー)HUD装置は、多面(本明細書において、好ましくは3以上の面)の虚像表示面を設定可能なHUD装置である。言い換えれば、虚像表示距離は、m通り(mは3以上の自然数)に変更可能である。多面(マルチレイヤー)HUD装置では、虚像を表示可能な虚像表示面が多面化(マルチレイヤー化)されることから、虚像表示距離を、より自在に変更することができ、更に奥行き感のある立体的な表示が可能となる。また、更に、表示対象の物体(オブジェクト)のサイズや高さを、適宜、変更して遠近感を持たせたり、物体の表示位置を調整したり、物体に奥行きを持たせて立体化したり、物体に影をつけたり、斜視表現を採用したり、物体の質感を緻密に表現したりする、といった、幾何学的な立体装飾処理(以下、単に、立体装飾と称する場合がある)を施すことで、よりリアルな3D表示が可能となる。
 この多面(マルチレイヤー)HUD装置における虚像の表示に関して、昼夜等の区別に応じた虚像表示距離の切り換え制御を採用することで、ユーザー1が虚像を視認する場合のピント調整(ピント合わせ)の負担が軽減され、運転時の負荷を軽くすることが可能となる。よって、多面(マルチレイヤー)HUD装置の利便性が向上する。
 図13(a)の例では、夜間に使用可能な虚像表示面として、夜用の第1の虚像表示面(「N1」と記載)PS10と、夜用の第2の虚像表示面(「N2」と記載)PS12と、が設定され、昼間に使用可能な虚像表示面として、昼用の第1の虚像表示面(「D1」と記載)PS11と、昼用の第2の虚像表示面(「D2」と記載)PS13と、が設定されている。夜用の第1、第2の虚像表示面についての虚像表示距離は各々、L201、L203である。また、昼用の第1、第2の虚像表示面についての虚像表示距離は、それぞれ、L202、L204である。ここで、L201<L202<L203<L204である。
 夜間においては、夜用第1の虚像表面(N1)PS10に、車速情報(「55km/h」)SPが表示され、第2の虚像表示面(N2)PS12に、道路の制限速度情報(「二重丸の内側に60と記載された情報」)LSPが表示されている。なお、「車速」、「道路の制限速度」の各情報は、一般には、実景に重畳する必要がない非重畳コンテンツの情報である。車速と道路の制限速度の各情報を、虚像表示距離が異なる面に表示することで、奥行き感のある、より立体的な表示(AR表示)が可能である(図15(d)参照)。但し、立体的な表示がされる分、状況によっては、ユーザーの目の負担が大きくなるのは否めない。特に、昼夜等の状況によっては、昼夜等の状態の区別に応じた虚像表示距離の切り換え制御を採用することで、ユーザーが虚像を視認する場合のピント調整(ピント合わせ)の負担が軽減され、よって、運転時の負荷の軽減が実現される。
 次に、図13(b)を参照する。先に図1において制御部30を示したが、図13(b)の例では、この制御部30に、位置制御信号生成部91が設けられ、また、図1の虚像表示距離制御部24は、図13(b)においては、虚像表示距離制御部24’に置き換えられている。虚像表示距離制御部24’は、レンズ駆動部93及びスクリーン駆動部95を含む。また、図13(b)においては、画像処理部58と、光源部56とが設けられる。なお、光源部56は、光源駆動部55及び光源57を含む。位置制御信号生成部91が生成する位置制御信号VPCは、虚像表示距離制御部24’のレンズ駆動部93及びスクリーン駆動部95に供給され、同時に、光源駆動部55にも供給される。
 虚像表示距離制御部24’は、画像表示部としてのスクリーン46(及びレンズ44)を、画像表示部としてのスクリーン46の光軸に沿う方向(言い換えれば、光路に沿う方向)において、所定範囲(ここでは距離範囲LZ)で、振動させることによって、画像表示部としてのスクリーン46(より具体的には、画像Mが表示される表示面47)から、被投影部材6までの光路長を周期的に変更する。また、光源部56の光源駆動部55によって、光源(レーザー光源LD)57からの光の出射タイミングが制御されることによって、画像表示部としてのスクリーン46の表示面47上における画像Mの表示タイミング(表示時刻)が制御(調整)される。
 ここで、m通りに変更され得る虚像表示距離(mの虚像表示距離)に対応する虚像表示面を第1~第mの虚像表示面とする場合に、画像表示部としてのスクリーン46(及びレンズ44)を所定範囲(LZ)で、所定周期で振動させる制御、画像表示部としてのスクリーン46の表示面47における画像の表示タイミングの制御、及び、表示タイミングの制御に同期した表示内容の変更制御(の組み合わせ)によって、第1~第mの虚像表示面の内の少なくとも2面の各々に、異なる非重畳コンテンツについての虚像の表示が可能である。図13(a)の例では、昼間、夜間において、2面の各々に異なる非重畳コンテンツ(車速情報、道路の制限速度情報)の虚像を表示させている。
 制御部30(図1)に含まれる位置制御信号生成部91が生成する位置制御信号VPCは、例えば、図11(c)に記載されるような、鋸歯状(のこぎり状)の電圧信号(鋸歯状波の電圧信号)である、図11(c)では、横軸に時間t、縦軸に電圧vを設定している。位置制御信号VPCの電圧が0の場合は、画像表示部としてのスクリーン46は、第1の位置PT0に位置し、位置制御信号VPCの電圧がピーク値の場合は、画像表示部としてのスクリーン46は、第2の位置PT1に位置する。
 ここで、図11(c)のように、時刻t1に、夜用の第1(夜1)の虚像表示面PS10に表示する画像(「55km/h」)を表示させ、時刻t2に、昼用の第1(昼1)の虚像表示面PS11に表示する画像(「55km/h」)を表示させ、時刻t3に、夜用の第2(夜2)の虚像表示面PS12に表示する画像(「二重丸の内側に60と表記される画像」)を表示させ、時刻t4に、昼用の第2(昼2)の虚像表示面PS13に表示する画像(「二重丸の内側に60と表記される画像」)を表示させることで、図13(a)に示されるような虚像の表示が実現される。
 次に、図14を参照する。図14(a)は、多面(マルチレイヤー)HUD装置における虚像表示面の設定例を示す図であり、図14(b)、(c)及び(d)は、それぞれ、夜間(夜間ロービーム)状態、昼間状態、夜間ハイビーム状態において使用可能な虚像表示面群の例を示す図である。上述のとおり、多面(マルチレイヤー)HUD装置100は、虚像表示距離をm通り(mは3以上の自然数)に変更でき、画像表示部の振動制御と、画像の表示タイミングの制御と、これに同期した表示内容の変更制御と、を併用することで、少なくとも2面の虚像表示面の各々に、異なる非重畳コンテンツについての虚像の表示が可能である。図14(a)の例では、例えば、m=45に設定されている。mの値が大きくなるほどユーザーから遠い虚像面となる場合、図14(a)の例では、m=1に対応する虚像表示面PL(1)、乃至、m=45に対応する虚像表示面PL(45)が設定され、この45面の中から選択される1面に、所望の画像の虚像を自在に表示することができる。
 例えば、m=1の虚像表示面に、「55km/h」というような車速表示を行い、m=30の虚像表示面に、「二重丸と組み合わせた60の表示」をすることで、通行中の道路の制限速度の表示をなすことができる。車速と、道路の制限速度と、を異なる虚像表示距離の虚像表示面に表示することで、立体的な表示(立体的なAR表示)が可能である。但し、上述のとおり、立体的な表示がされる分、昼夜等の状況によっては、ユーザーの目の負担は大きくなるのは否めない。そこで、昼夜等の区別に応じた虚像表示距離の切り換え制御が採用され、これによって、ユーザーが虚像を視認する場合のピント調整(ピント合わせ)の負担が軽減され、よって、運転時の負荷の軽減が実現される。
 ここで、昼夜等の区別に応じた虚像表示距離の切り換え制御を行うに際して、図13(b)の虚像表示距離制御部24’は、まず、昼夜等の区別に応じて、使用可能な虚像表示面群(少なくとも2以上の虚像表示面を含む)を切り換え(言い換えれば、使用可能な虚像表示面群の選択を行い)、そして、選択された虚像表示面群の中から、適切な面を選んで、虚像を表示させてもよい。
 具体的には、図14(b)の例(夜、あるいは、夜のロービーム時に対応する例)では、虚像表示面PL(1)~PL(20)を含む虚像表示面群PLS1が選択されている。図14(c)の例(昼に対応する例)では、使用可能なすべての虚像表示面PL(1)~PL(45)を含む虚像表示面群PLS2が選択されている。図14(d)の例(夜のハイビーム時に対応する例)では、虚像表示面PL(5)~PL(42)を含む虚像表示面群PLS3が選択されている。
 このように、多面(マルチレイヤー)HUD装置100において、昼夜等の区別に応じた虚像表示距離の切り換え制御を行う際、まず、昼、夜等の各状態に応じて、虚像表示面群を切り換え、そして、切り換えられた後の虚像表示面群に含まれる虚像表示面を、適宜、選択して虚像を表示する、という処理を行うこと(言い換えれば、使用可能な虚像表示面群の切り換え制御を行う)ことで、使用可能な虚像表示面の範囲(虚像表示面の数、位置等)を簡単に絞り込むことができ、実際に使用する虚像表示面の選択の負担が軽減され、また、絞り込みがなされることで、虚像を表示するための処理(画像表示部における画像表示のタイミング調整等の処理)が容易となり、虚像表示距離制御部24’の負担が軽減される。
 次に、図15を参照する。図15(a)、(b)及び(c)は、それぞれ、多面(マルチレイヤー)HUD装置における、夜間(夜間ロービーム)状態、昼間状態及び夜間ハイビーム状態における虚像表示例を示す図であり、図15(d)は、車両の走行中における虚像(車速を示す虚像、及び道路の制限速度を示す虚像)の、奥行き感を持たせた表示例を示す図である。注意喚起マークCUは、実景である前方の車両に重畳する必要がある重畳コンテンツの画像であり、この注意喚起マークCUの虚像については、図12の例と同様に、昼夜等の区別による虚像表示距離の切り換え制御は実行しないことが好ましい。先に説明したとおり、これは、重畳コンテンツの虚像を移動させると、あたかも、重畳されている対象物自体が移動したかのような印象をユーザー1に与える可能性があるからである。図15(a)~(c)のいずれの場合も、注意喚起マークCUの虚像は、例えば、m=30に相当する虚像表示面であるPL(30)に表示されている。虚像表示距離はL320である。言い換えれば、夜間(夜間ロービーム)状態、昼間状態及び夜間ハイビーム状態において、前方の車両と多面(マルチレイヤー)HUD装置が搭載される車両(自車両)との距離は、一定であると仮定する。
 図15(a)の例(夜間、又は夜間ロービーム時の例)では、車速情報(ここでは「55km/h」とする)SPの虚像は、m=1に相当する虚像表示面であるPL(1)に表示され、道路の制限速度情報(ここでは、二重丸の内側に60と表記される)LSPの虚像は、m=7に相当する虚像表示面であるPL(7)に表示される。虚像表示面PL(1)の虚像表示距離はL300であり、虚像表示面PL(7)の虚像表示距離はL310である。
 図15(b)の例(昼間の例)では、車速情報SPの虚像は、m=11に相当する虚像表示面であるPL(11)に表示され、道路の制限速度情報LSPの虚像は、m=17に相当する虚像表示面であるPL(17)に表示される。虚像表示面PL(11)の虚像表示距離はL301(L300<L301)であり、虚像表示面PL(7)の虚像表示距離はL311である。ここで、L310<L311の関係が成立する。
 図15(c)の例(夜間ハイビーム時の例)では、車速情報SPの虚像は、m=9に相当する虚像表示面であるPL(9)に表示され、道路の制限速度情報LSPの虚像は、m=15相当する虚像表示面であるPL(15)に表示される。虚像表示面PL(9)の虚像表示距離はL302である。ここで、L300<L302<L301の関係が成立する。また、虚像表示面PL(15)の虚像表示距離はL312である。ここで、L310<L312<L311の関係が成立する。このように、非重畳コンテンツの画像についての虚像の虚像表示距離を、昼夜等の区別に応じて切り換え制御することで、ユーザー1の視点移動が抑制され、目の負担が軽減される。
 次に、図15(d)を参照する。被投影部材6(ウインドシールド等)の虚像表示領域11において、手前の中央に大きく「55km/h」という車速情報SPの虚像が配置され、その左奥に、やや小さく、かつ遠近感を持たせた形態で、「二重丸の内側に60」という表記の制限速度情報LSPの虚像が配置され、更に右奥に、前方車両に重畳される注意喚起マークの虚像が、小さく、かつ遠近感を持たせた形態で配置されている。このように、多面(マルチレイヤー)HUD装置100によれば、奥行き感のある、立体的な表示(AR表示)が可能であり、よりダイナミックで視認し易い表示(AR表示)が実現される。この点は、例えば、図8(c)の表示例(車速、制限速度の各虚像が同一の虚像表示面に表示される例)と比較すると明らかである。
 但し、立体的な表示(立体的なAR表示)である分、ユーザー1の目の負担は大きくなるのは否めない。ここで、昼夜等の区別に応じた虚像表示距離の切り換え制御を採用することで、ユーザー1が虚像を視認する場合のピント調整(ピント合わせ)の負担が軽減され、よって、運転時の負荷の軽減が実現される。
 次に、図16を参照して、多面(マルチレイヤー)HUD装置における、虚像をダイナミックに移動させる応用例について説明する。図16(a)は、多面(マルチレイヤー)HUD装置で、道路の制限速度の変更を予告する虚像を、遠方に、現在の制限速度の表示とは異なる態様で表示した例を示す図であり、図16(b)は、車両の進行に伴い、制限速度の変更を予告する虚像がダイナミックに接近してくる様子を示す図であり、図16(c)は、予告されていた制限速度が、現在の制限速度として表示された様子を示す図である。
 例えば、図14(c)の例(昼間に、45面すべてを含む虚像表示面群PLS2が選択される例)において、ユーザー1から見て、より近い位置にある手前面として、1枚の虚像表示面PL(3)を使用し、また、より遠くにある奥面として、16枚の虚像表示面PL(30)~PL(45)を使用する。図16(a)に示されるように、手前面である虚像表示面PL(3)には、現在走行中の道路の(現時点における)制限速度情報(「60km/h」)LSP(1)が表示されている。ここで、もう少し走ると、制限速度が「80km/h」に変更される場合に、その変更地点に到達した時点で、唐突に制限速度の表示を変更すると、ユーザー1がその表示の変更に気づかずに通り過ぎてしまう、あるいは、その唐突な変更に対して違和感を覚える、といった場合が有り得る。そこで、ここでは、奥面を利用して、制限速度の変更を予告することとする。図16(a)に記載されるように、例えば、奥面としての虚像表示面PL(45)に小さく、かつ、現時点の制限速度表示(制限速度情報)LSP(1)とは異なる態様で(ここでは、表示が点滅する態様で)、制限速度の予告表示(「二重丸の内側に80と記載される表示」)RLSPがなされる。
 そして、図16(b)に記載されるように、車両が、制限速度の変更地点に接近するに伴い、制限速度の予告表示RSLPを、手前側に移動させる。例えば、使用する虚像表示面を、PL(45)を起点として、PL(30)に向けて、次々と切り換えていくことで、このようなダイナミックな虚像の移動が可能となる。そして、図16(c)のように、制限速度の変更地点に到達すると、制限速度の予告表示が、現時点の制限速度表示LSP(2)に切り得られる(言い換えれば、置き換わる)。この場合、置き換わるのではなく、移動してきた予告表示が後方に流れるように消えていき、一方、現時点の制限速度の表示が変更される、という態様であってもよい。このようにすれば、ユーザー1は、制限速度の変更を予め知ることができ、制限速度の変更を確実に認識でき、かつ、変更された後の制限速度に応じて、車速を高めるといったことが迅速にでき、より快適な運転環境が実現される。
 なお、「制限速度の変更の予告」は一例であり、これに限定されるものではない。例えば、A県からB県へと入る場合の、「県境の予告表示」、あるいは、「もう少し走ると、急激な右カーブがあることを示す、右に曲折する矢印の予告表示」等にも適用可能である。
 以上、図14(c)の昼間の例について説明したが、例えば、図14(b)の例(夜間の例)においては、例えば、手前面として、虚像表示面PL(1)を使用し、奥面として、虚像表示面PL(15)~PL(20)を使用してもよい。
 本発明は、上述の例示的な実施形態に限定されず、また、当業者は、上述の例示的な実施形態を特許請求の範囲に含まれる範囲まで、容易に変更することができるであろう。
 2・・・路面、3・・・前照灯、4・・・ダッシュボード、5・・・表示光、6・・・被投影部材(ウインドシールド等)、10・・・車両、11・・・虚像表示領域、12・・・外光センサ、14・・・車両情報取得部、16・・・昼夜判定部、18・・・ハイビーム/ロービーム検出部、20・・・画像生成部、22・・・投光制御部、24・・・虚像表示距離制御部、30・・・制御部、42・・・投光部、44・・・レンズ、46・・・画像表示部としてのスクリーン(傾斜したスクリーンを含む)、47・・・表示面、48・・・光学系、49・・・光学部材としての凹面鏡、51・・・レンズ駆動部、53・・・スクリーン駆動部、55・・・光源駆動部、56・・・光源部、57・・・光源(LD)、58・・・画像処理部、91・・・位置制御信号生成部、93・・・レンズ駆動部、95・・・スクリーン駆動部 100・・・HUD装置、200a、200b、200c・・・注視領域、Qa~Qc・・・注視点、210a、210b、210c・・・車速を示す虚像、400a、400b・・・虚像表示面、PS1、PS2・・・2面(2レイヤー)HUD装置における虚像表示面、PS10~PS13、PL(1)~PL(45)・・・多面(マルチレイヤー)HUD装置における虚像表示面、PLS1~PLS3・・・虚像表示面群、SP・・・車速情報(車速表示)、LSP・・・制限速度情報(制限速度表示)、RLSP・・・予告制限速度情報(予告制限速度表示)。

Claims (12)

  1.  車両に搭載され、画像を、前記車両に備わる被投影部材に投影することで、ユーザーに前記画像の虚像を視認させるヘッドアップディスプレイ装置であって、
     車両情報を取得する車両情報取得部と、
     外光センサから得られる外光強度情報及び前記車両情報取得部が取得した車両情報の少なくとも一方に基づいて、昼夜を判別する昼夜判定部と、
     第1のコンテンツについての第1の画像データを生成する画像生成部と、
     前記第1の画像データに対応する第1の画像を表示する表示面を備える画像表示部と、
     前記第1の画像を示す表示光を反射して、前記被投影部材に投影する光学部材を含む光学系と、
     前記ユーザー上又は前記車両上に設定される基準点から前記虚像までの距離を虚像表示距離とする場合に、前記画像表示部から前記被投影部材までの光路長の変更及び前記表示面上における前記第1の画像の表示位置の変更、の少なくとも一方によって、前記第1の画像に対応する虚像である第1の虚像についての虚像表示距離を制御する虚像表示距離制御部と、
     を有し、
     昼における前記ユーザーの視野範囲を第1の注視領域とし、前記第1の注視領域内における前記ユーザーの代表注視点を第1の注視点とし、夜における前記ユーザーの視野範囲を第2の注視領域とし、前記第2の注視領域内における前記ユーザーの代表注視点を第2の注視点とする場合において、
     前記虚像表示距離制御部は、前記昼夜判定部の判定結果が昼であるか夜であるかに応じて、第1の虚像についての虚像表示距離を、前記第1の注視点又は前記第2の注視点に対応する距離に切り換えることを特徴とするヘッドアップディスプレイ装置。
  2.  車両に搭載され、画像を、前記車両に備わる被投影部材に投影することで、ユーザーに前記画像の虚像を視認させるヘッドアップディスプレイ装置であって、
     車両情報を取得する車両情報取得部と、
     外光センサから得られる外光強度情報及び前記車両情報取得部が取得した車両情報の少なくとも一方に基づいて、昼夜を判別する昼夜判定部と、
     前記車両の前照灯がオンされている場合に、前記車両情報取得部が取得した車両情報に基づいて、前記前照灯の状態がハイビーム状態であるか、ロービーム状態であるかを判別するハイビーム/ロービーム検出部と、
     第1のコンテンツについての第1の画像データを生成する画像生成部と、
     前記第1の画像データに対応する第1の画像を表示する表示面を備える画像表示部と、
     前記第1の画像を示す表示光を反射して、前記被投影部材に投影する光学部材を含む光学系と、
     前記ユーザー上又は前記車両上に設定される基準点から前記虚像までの距離を虚像表示距離とする場合に、前記画像表示部から前記被投影部材までの光路長の変更及び前記表示面上における前記第1の画像の表示位置の変更、の少なくとも一方によって、前記第1の画像に対応する虚像である第1の虚像についての虚像表示距離を制御する虚像表示距離制御部と、
     を有し、
     昼に対応する第1の状態、又は夜における前記前照灯がハイビームである第1の状態での前記ユーザーの視野範囲を第1の注視領域とし、前記第1の注視領域内における前記ユーザーの代表注視点を第1の注視点とし、夜における前記前照灯がロービームである第1の状態での前記ユーザーの視野範囲を第2の注視領域とし、前記第2の注視領域内における前記ユーザーの代表注視点を第2の注視点とする場合において、
     前記虚像表示距離制御部は、前記昼夜判定部の判定結果及び前記ハイビーム/ロービーム検出部の検出結果に基づいて、昼の場合又は夜における前記前照灯がハイビームである場合に対応する前記第1の状態と、夜における前記前照灯がロービームである場合に対応する前記第2の状態とを区別し、前記第1の状態又は前記第2の状態に応じて、第1の虚像についての虚像表示距離を、前記第1の注視点又は前記第2の注視点に対応する距離に切り換え、
     又は、
     昼に対応する第3の状態での前記ユーザーの視野範囲を第3の注視領域とし、前記第3の注視領域内における前記ユーザーの代表注視点を第3の注視点とし、夜における前記前照灯がハイビームである第4の状態での前記ユーザーの視野範囲を第4の注視領域とし、前記第4の注視領域内における前記ユーザーの代表注視点を第4の注視点とし、夜における前記前照灯がロービームである第5の状態での前記ユーザーの視野範囲を第5の注視領域とし、前記第5の注視領域内における前記ユーザーの代表注視点を第5の注視点とする場合において、
     前記虚像表示距離制御部は、前記昼夜判定部の判定結果及び前記ハイビーム/ロービーム検出部の検出結果に基づいて、昼の場合に対応する前記第3の状態と、夜における前記前照灯がハイビームである場合に対応する前記第4の状態と、夜における前記前照灯がロービームである場合に対応する前記第5の状態とを区別し、前記第3の状態又は前記第4の状態又は前記第5の状態に応じて、前記第1の虚像についての虚像表示距離を、前記第3の注視点又は前記第4の注視点又は前記第5の注視点に対応する距離に切り換えることを特徴とするヘッドアップディスプレイ装置。
  3.  前記虚像表示距離制御部は、
     前記第1の状態を判定するときは、前記第1の虚像についての虚像表示距離を、前記第1の注視点に対応する第1の距離に設定し、前記第2の状態を判定するときは、前記第1の虚像についての虚像表示距離を、前記第2の注視点に対応し、かつ前記第1の距離よりも短い第2の距離に設定し、
     又は、
     前記虚像表示距離制御部は、
     前記第3の状態を判定するときは、前記第1の虚像についての虚像表示距離を、前記第3の注視点に対応する第3の距離に設定し、前記第4の状態を判定するときは、前記第1の虚像についての虚像表示距離を、前記第4の注視点に対応し、かつ前記第3の距離とは異なる第4の距離に設定し、前記第5の状態を判定するときは、前記第1の虚像についての虚像表示距離を、前記第5の注視点に対応し、かつ前記第3の距離及び前記第4の距離よりも短い第5の距離に設定することを特徴とする請求項2に記載のヘッドアップディスプレイ装置。
  4.  前記第1のコンテンツは、前記車両の走行速度を示す車速情報、前記車両の走行状態を示す、エンジンの回転数の情報、吸気圧の情報、油圧の情報、燃圧の情報、油温の情報、水温の情報、排気温度の情報、スロットル開度の情報、吸気温の情報の、少なくともいずれか一つを含むことを特徴とする請求項2又は3に記載のヘッドアップディスプレイ装置。
  5.  前記虚像表示距離制御部は、前記第1/第2の状態、又は、前記第3/第4/第5の状態に応じて、前記第1の画像に対応する第1の虚像についての虚像表示距離を切り換え制御する際に、前記画像表示部の前記表示面に、実景に重畳される重畳コンテンツについての第2の画像が表示されている場合は、前記切り換え制御を実行しないことを特徴とする請求項2乃至4の何れか1項に記載のヘッドアップディスプレイ装置。
  6.  前記画像表示部の前記表示面における、実空間での鉛直方向に対応する方向を縦方向とし、前記縦方向に直交し、かつ、実空間での前記車両の前方に向かって左右方向に対応する方向を横方向とする場合において、
     前記虚像表示距離制御部は、前記第1/第2の状態、又は、前記第3/第4/第5の状態に応じて、前記第1の画像に対応する第1の虚像についての虚像表示距離を切り換え制御する際に、前記画像表示部の前記表示面上での、前記横方向における前記第1の画像のレイアウトを維持して虚像表示距離を変更することを特徴とする請求項2乃至5の何れか1項に記載のヘッドアップディスプレイ装置。
  7.  前記車両が、前記前照灯の照射方向を、前記ユーザーの操舵操作に応じて適応的に変更する場合において、
     前記画像表示部の前記表示面における、実空間での鉛直方向に対応する方向を縦方向とし、前記縦方向に直交し、かつ、実空間での前記車両の前方に向かって左右方向に対応する方向を横方向とするとき、
     前記虚像表示距離制御部は、
     前記第1/第2の状態、又は、前記第3/第4/第5の状態に応じて、前記第1の画像に対応する第1の虚像についての虚像表示距離を切り換え制御し、
     かつ、前記車両情報取得部が取得する、操舵操作に伴って変化する操舵角情報に基づいて、前記ユーザーの視点の移動に対応するように、前記画像表示部の前記表示面における、前記第1の画像の前記横方向の位置を制御する請求項2乃至6の何れか1項に記載のヘッドアップディスプレイ装置。
  8.  前記画像生成部は、前記第1のコンテンツについての前記第1の画像データの他に、第2のコンテンツについての第2の画像データも生成し、
     前記画像表示部は、前記第1の画像データに対応する前記第1の画像を表示する前記表示面の他に、前記第2の画像データに対応する前記第2の画像を表示する他の表示面を有し、
     前記光学系は、前記第1の画像を示す表示光を反射し、かつ前記第2の画像を表示する表示光を反射して、前記被投影部材に投影し、
     前記第2の画像に対応する虚像である第2の虚像についての虚像表示距離は、前記第1の画像に対応する虚像である前記第1の虚像についての前記虚像表示距離よりも長く、かつ、前記虚像表示距離制御部は、前記第2の虚像についての前記虚像表示距離については、前記昼夜判定部の判定結果に基づく制御、又は、前記昼夜判定部の判定結果及び前記ハイビーム/ロービーム検出部の検出結果に基づく制御を実行しないことを特徴とする請求項1又は2に記載のヘッドアップディスプレイ装置。
  9.  前記第1の虚像は、実景に重畳する必要がない非重畳コンテンツについての虚像であり、前記第2の虚像は、実景に重畳する必要がある重畳コンテンツについての虚像であることを特徴とする請求項8に記載のヘッドアップディスプレイ装置。
  10.  前記虚像表示距離制御部は、前記画像表示部を、所定範囲において振動させることによって前記画像表示部から前記被投影部材までの光路長を周期的に変更し、
     前記画像表示部の前記表示面に前記第1の画像が表示されるタイミングが制御されることによって、前記第1の画像に対応する虚像である前記第1の虚像についての前記虚像表示距離が制御されることを特徴とする請求項1又は2に記載のヘッドアップディスプレイ装置。
  11.  前記虚像表示距離は、m通り(mは3以上の自然数)に変更可能であり、
     前記第1の虚像は、実景に重畳する必要がない非重畳コンテンツについての虚像であり、
     前記m通りに変更される前記虚像表示距離に対応する虚像表示面を第1~第mの虚像表示面とする場合に、前記画像表示部を所定範囲内で振動させる制御、前記画像表示部の前記表示面における画像の表示タイミングの制御、及び、前記表示タイミングの制御に同期した表示内容の変更制御によって、前記第1~第mの虚像表示面の内の少なくとも2面の各々に、異なる非重畳コンテンツについての虚像の表示が可能であることを特徴とする請求項10に記載のヘッドアップディスプレイ装置。
  12.  前記虚像表示距離制御部は、昼と夜、又は、前記第1、第2の状態、又は、前記第3、第4、第5の状態に対応して、使用可能な虚像表示面群(少なくとも2以上の虚像表示面を含む)を切り換えることを特徴とする請求項10又は11に記載のヘッドアップディスプレイ装置。
PCT/JP2018/008696 2017-03-15 2018-03-07 ヘッドアップディスプレイ装置 WO2018168595A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019505917A JP7041851B2 (ja) 2017-03-15 2018-03-07 ヘッドアップディスプレイ装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-049809 2017-03-15
JP2017049809 2017-03-15
JP2017-143890 2017-07-25
JP2017143890 2017-07-25

Publications (1)

Publication Number Publication Date
WO2018168595A1 true WO2018168595A1 (ja) 2018-09-20

Family

ID=63522065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008696 WO2018168595A1 (ja) 2017-03-15 2018-03-07 ヘッドアップディスプレイ装置

Country Status (2)

Country Link
JP (1) JP7041851B2 (ja)
WO (1) WO2018168595A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200062113A (ko) * 2018-10-10 2020-06-03 네이버랩스 주식회사 영상을 지면에 위치시켜 운전자의 시점에 증강현실을 구현하는 3차원 증강현실 헤드업 디스플레이
JP2021000961A (ja) * 2019-06-24 2021-01-07 パナソニックIpマネジメント株式会社 表示制御装置、表示装置、表示制御方法、及びプログラム
CN112534334A (zh) * 2018-10-10 2021-03-19 纳宝实验室株式会社 使影像位于地面而对驾驶员的视点实现增强现实的三维增强现实平视显示器
CN112578612A (zh) * 2019-09-30 2021-03-30 宁波舜宇车载光学技术有限公司 车灯系统及其组装方法
CN114127614A (zh) * 2019-08-25 2022-03-01 日本精机株式会社 平视显示装置
JP2022044192A (ja) * 2020-09-07 2022-03-17 マツダ株式会社 運転支援装置
CN115047622A (zh) * 2021-03-09 2022-09-13 矢崎总业株式会社 车辆用显示装置
JP2023029870A (ja) * 2018-10-10 2023-03-07 ネイバーラボス コーポレーション 画像を地面に位置させて運転手の視点に拡張現実を実現する3次元拡張現実ヘッドアップディスプレイ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007296889A (ja) * 2006-04-28 2007-11-15 Honda Motor Co Ltd 車両搭載機器の操作装置
JP2008203441A (ja) * 2007-02-19 2008-09-04 Calsonic Kansei Corp 車両用ヘッドアップディスプレイ装置
JP2017015918A (ja) * 2015-06-30 2017-01-19 パナソニックIpマネジメント株式会社 表示装置
WO2017022051A1 (ja) * 2015-08-03 2017-02-09 三菱電機株式会社 表示制御装置、表示装置及び表示制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007296889A (ja) * 2006-04-28 2007-11-15 Honda Motor Co Ltd 車両搭載機器の操作装置
JP2008203441A (ja) * 2007-02-19 2008-09-04 Calsonic Kansei Corp 車両用ヘッドアップディスプレイ装置
JP2017015918A (ja) * 2015-06-30 2017-01-19 パナソニックIpマネジメント株式会社 表示装置
WO2017022051A1 (ja) * 2015-08-03 2017-02-09 三菱電機株式会社 表示制御装置、表示装置及び表示制御方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102385807B1 (ko) * 2018-10-10 2022-04-13 네이버랩스 주식회사 영상을 지면에 위치시켜 운전자의 시점에 증강현실을 구현하는 3차원 증강현실 헤드업 디스플레이
JP2023029870A (ja) * 2018-10-10 2023-03-07 ネイバーラボス コーポレーション 画像を地面に位置させて運転手の視点に拡張現実を実現する3次元拡張現実ヘッドアップディスプレイ
KR20200062113A (ko) * 2018-10-10 2020-06-03 네이버랩스 주식회사 영상을 지면에 위치시켜 운전자의 시점에 증강현실을 구현하는 3차원 증강현실 헤드업 디스플레이
JP2021534464A (ja) * 2018-10-10 2021-12-09 ネイバーラボス コーポレーション 画像を地面に位置させて運転手の視点に拡張現実を実現する3次元拡張現実ヘッドアップディスプレイ
JP2021534465A (ja) * 2018-10-10 2021-12-09 ネイバーラボス コーポレーション フロントガラス反射方式によって仮想の画像を地面に位置させる3次元拡張現実ヘッドアップディスプレイ
US11865915B2 (en) 2018-10-10 2024-01-09 Naver Labs Corporation Three-dimensional augmented reality head-up display for positioning virtual image on ground by means of windshield reflection method
JP7397152B2 (ja) 2018-10-10 2023-12-12 ネイバーラボス コーポレーション 画像を地面に位置させて運転手の視点に拡張現実を実現する3次元拡張現実ヘッドアップディスプレイ
CN112534334A (zh) * 2018-10-10 2021-03-19 纳宝实验室株式会社 使影像位于地面而对驾驶员的视点实现增强现实的三维增强现实平视显示器
JP7183393B2 (ja) 2018-10-10 2022-12-05 ネイバーラボス コーポレーション 画像を地面に位置させて運転手の視点に拡張現実を実現する3次元拡張現実ヘッドアップディスプレイ
JP7178485B2 (ja) 2018-10-10 2022-11-25 ネイバーラボス コーポレーション フロントガラス反射方式によって仮想の画像を地面に位置させる3次元拡張現実ヘッドアップディスプレイ
JP7429875B2 (ja) 2019-06-24 2024-02-09 パナソニックIpマネジメント株式会社 表示制御装置、表示装置、表示制御方法、及びプログラム
JP2021000961A (ja) * 2019-06-24 2021-01-07 パナソニックIpマネジメント株式会社 表示制御装置、表示装置、表示制御方法、及びプログラム
CN114127614B (zh) * 2019-08-25 2023-08-25 日本精机株式会社 平视显示装置
CN114127614A (zh) * 2019-08-25 2022-03-01 日本精机株式会社 平视显示装置
CN112578612A (zh) * 2019-09-30 2021-03-30 宁波舜宇车载光学技术有限公司 车灯系统及其组装方法
JP2022044192A (ja) * 2020-09-07 2022-03-17 マツダ株式会社 運転支援装置
JP7484597B2 (ja) 2020-09-07 2024-05-16 マツダ株式会社 運転支援装置
CN115047622B (zh) * 2021-03-09 2024-06-07 矢崎总业株式会社 车辆用显示装置
CN115047622A (zh) * 2021-03-09 2022-09-13 矢崎总业株式会社 车辆用显示装置

Also Published As

Publication number Publication date
JP7041851B2 (ja) 2022-03-25
JPWO2018168595A1 (ja) 2020-01-16

Similar Documents

Publication Publication Date Title
WO2018168595A1 (ja) ヘッドアップディスプレイ装置
JP7301880B2 (ja) ミラーレスヘッドアップディスプレイ
US9400385B2 (en) Volumetric heads-up display with dynamic focal plane
JP5008556B2 (ja) ヘッドアップ表示を使用する途上ナビゲーション表示方法および装置
JP7111582B2 (ja) ヘッドアップディスプレイシステム
JP2020024578A (ja) 表示装置、表示制御方法、およびプログラム
JP6734340B2 (ja) 表示装置、表示制御方法、およびプログラム
JP7300112B2 (ja) 制御装置、画像表示方法及びプログラム
JP2019116229A (ja) 表示システム
JP2016107947A (ja) 情報提供装置、情報提供方法及び情報提供用制御プログラム
JP7082745B2 (ja) 車両用表示装置
JP2018058521A (ja) 仮想表示ミラー装置
JP6887732B2 (ja) ヘッドアップディスプレイ装置
JP6562843B2 (ja) 画像投射装置、画像投射方法および画像投射プログラム
KR20180046567A (ko) 차량용 헤드 업 디스플레이 제어 장치 및 방법
JP6814416B2 (ja) 情報提供装置、情報提供方法及び情報提供用制御プログラム
JP2019056885A (ja) 虚像表示装置
US11009702B2 (en) Display device, display control method, storage medium
WO2019130860A1 (ja) ヘッドアップディスプレイ装置、および制御プログラム
JP7516954B2 (ja) ヘッドアップディスプレイ装置、表示制御装置、及び表示制御プログラム
WO2020171045A1 (ja) ヘッドアップディスプレイ装置、表示制御装置、及び表示制御プログラム
JP7429875B2 (ja) 表示制御装置、表示装置、表示制御方法、及びプログラム
WO2023145856A1 (ja) 表示システム
JP7054483B2 (ja) 情報提供装置、情報提供方法及び情報提供用制御プログラム
JP6726412B2 (ja) 画像表示装置、移動体、画像表示方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768062

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505917

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18768062

Country of ref document: EP

Kind code of ref document: A1