WO2018167591A1 - 半導体装置、および半導体装置の作製方法 - Google Patents

半導体装置、および半導体装置の作製方法 Download PDF

Info

Publication number
WO2018167591A1
WO2018167591A1 PCT/IB2018/051253 IB2018051253W WO2018167591A1 WO 2018167591 A1 WO2018167591 A1 WO 2018167591A1 IB 2018051253 W IB2018051253 W IB 2018051253W WO 2018167591 A1 WO2018167591 A1 WO 2018167591A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
insulator
conductor
region
film
Prior art date
Application number
PCT/IB2018/051253
Other languages
English (en)
French (fr)
Inventor
山崎舜平
竹内敏彦
山出直人
藤木寛士
森若智昭
木村俊介
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE112018001295.6T priority Critical patent/DE112018001295T5/de
Priority to US16/492,282 priority patent/US11004961B2/en
Priority to CN201880016444.0A priority patent/CN110678989B/zh
Priority to CN202410057392.9A priority patent/CN118102714A/zh
Priority to KR1020197029067A priority patent/KR102447148B1/ko
Priority to JP2019505302A priority patent/JP7118948B2/ja
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Publication of WO2018167591A1 publication Critical patent/WO2018167591A1/ja
Priority to US17/176,211 priority patent/US11670705B2/en
Priority to JP2022124059A priority patent/JP7351986B2/ja
Priority to US18/135,793 priority patent/US11955538B2/en
Priority to JP2023149022A priority patent/JP2023164563A/ja
Priority to US18/624,488 priority patent/US20240258409A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/50Peripheral circuit region structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2

Definitions

  • One embodiment of the present invention relates to a semiconductor device and a method for manufacturing the semiconductor device.
  • One embodiment of the present invention relates to a semiconductor wafer, a module, and an electronic device.
  • a semiconductor device refers to all devices that can function by utilizing semiconductor characteristics.
  • a semiconductor element such as a transistor, a semiconductor circuit, an arithmetic device, and a memory device are one embodiment of the semiconductor device.
  • a display device (a liquid crystal display device, a light-emitting display device, or the like), a projection device, a lighting device, an electro-optical device, a power storage device, a memory device, a semiconductor circuit, an imaging device, an electronic device, or the like may include a semiconductor device.
  • one embodiment of the present invention is not limited to the above technical field.
  • One embodiment of the invention disclosed in this specification and the like relates to an object, a method, or a manufacturing method.
  • one embodiment of the present invention relates to a process, a machine, a manufacture, or a composition (composition of matter).
  • Integrated Circuit Integrated Circuit: IC
  • LSI and VLSI technologies that have higher integration ICs are used.
  • Such an IC is mounted on a circuit board, for example, a printed wiring board, and is used as one of components of various electronic devices constituting a computer, an information terminal, a display device, an automobile, and the like.
  • AI artificial intelligence
  • desktop computers As computers and information terminals, desktop computers, laptop computers, tablet computers, smartphones, mobile phones and the like are known.
  • Silicon-based semiconductor materials are widely known as semiconductor materials used for semiconductor elements, but oxide semiconductors have attracted attention as other materials.
  • a transistor using an oxide semiconductor has extremely small leakage current in a non-conduction state.
  • a low power consumption CPU using a characteristic that a transistor including an oxide semiconductor has low leakage current is disclosed (see Patent Document 1).
  • the oxide semiconductor for example, not only single-component metal oxides such as indium oxide and zinc oxide but also multi-component metal oxides are known.
  • IGZO In—Ga—Zn oxide
  • Non-Patent Document 1 and Non-Patent Document 2 also disclose a technique for manufacturing a transistor using an oxide semiconductor having a CAAC structure. Furthermore, Non-Patent Document 4 and Non-Patent Document 5 show that even an oxide semiconductor having lower crystallinity than the CAAC structure and the nc structure has a minute crystal.
  • Non-Patent Document 6 a transistor using IGZO as an active layer has extremely low off-state current (see Non-Patent Document 6), and an LSI and a display using the characteristics have been reported (see Non-Patent Document 7 and Non-Patent Document 8). .
  • An object of one embodiment of the present invention is to provide a semiconductor device having favorable electrical characteristics and a manufacturing method thereof.
  • An object of one embodiment of the present invention is to provide a highly reliable semiconductor device and a manufacturing method thereof.
  • An object of one embodiment of the present invention is to provide a semiconductor device that can be miniaturized or highly integrated and a manufacturing method thereof.
  • An object of one embodiment of the present invention is to provide a highly productive semiconductor device and a manufacturing method thereof.
  • One embodiment of the present invention includes a first conductor, a second conductor over the first conductor, a first insulator covering the second conductor, and a first conductor over the first insulator.
  • the second oxide is a semiconductor device that is electrically connected to the first conductor through the opening.
  • the end portion of the second oxide substantially coincides with the end portion of the first oxide.
  • the semiconductor device further includes a third conductor, a fourth conductor on the third conductor, a third oxide on the second oxide, and a third oxide.
  • a fifth conductor on the second insulator, the fourth conductor is covered with the first insulator, and the fifth conductor is The first insulator, the first oxide, the second oxide, the third oxide, and the second insulator are sandwiched between the third conductor and the fourth conductor. Is preferred.
  • the first conductor and the third conductor are preferably made of the same material, and the second conductor and the fourth conductor are preferably made of the same material.
  • the second conductor includes a metal nitride.
  • the metal nitride is preferably titanium nitride or tantalum nitride.
  • a first conductive film is formed over an insulating surface, a second conductive film is formed over the first conductive film, and the second conductive film and the first conductive film are patterned.
  • Forming a first conductor and a second conductor on the first conductor forming a first insulating film so as to cover the first conductor and the second conductor,
  • the insulating film is processed so that the second conductor is exposed to form a first insulator, and a second insulator is formed on the first insulator and the second conductor,
  • a first oxide film is formed on the second insulator, an opening is formed in the first oxide film and the second insulator so as to overlap at least part of the first conductor, and the first oxide film
  • Second Product through the opening, a manufacturing method of a semiconductor device that connects the first conductor and electrically.
  • a third conductor and a fourth conductor on the third conductor are further formed, and the second conductor is formed on the second oxide.
  • 3 oxide film, a second insulating film is formed on the third oxide film, a third conductive film is formed on the second insulating film, and the third conductive film is patterned to form a second 5 conductors may be formed, the second insulating film may be patterned to form a third insulator, and the third oxide film may be patterned to form a third oxide.
  • the conductor includes the second conductor, the first oxide, the second oxide, the third oxide, and the third insulator, and the third conductor and the fourth conductor. It is preferable to overlap.
  • the second conductive film preferably includes a metal nitride.
  • the metal nitride is preferably titanium nitride or tantalum nitride.
  • One embodiment of the present invention includes a first conductor, a first insulator over the first conductor, a first oxide over the first insulator, and a first oxide over the first oxide.
  • the first insulator is provided with an opening that overlaps with a part of the first conductor
  • the second oxide is a semiconductor device that is electrically connected to the first conductor through the opening. .
  • the side surface of the second oxide and the side surface of the third oxide have the same plane as the side surface of the first oxide.
  • the end portion of the second oxide and the end portion of the third oxide substantially coincide with the end portion of the first oxide.
  • the semiconductor device may further include a third conductor and a fourth oxide, and the fourth oxide is between the third oxide and the second insulator.
  • the third conductor is interposed between the first insulator, the first oxide, the second oxide, the third oxide, the fourth oxide, and the second insulator. It is preferable to sandwich and overlap the second conductor.
  • the first conductor and the third conductor have the same material.
  • a first insulating film is formed over a first conductor and a second conductor, a first oxide film is formed over the first insulating film, and the first oxide film An opening overlapping at least a part of the first conductor is formed in the first insulating film, a second oxide film is formed on the first oxide film and the first conductor, and a second oxidation film is formed.
  • a third oxide film is formed on the film, and the third oxide film, the second oxide film, and the first oxide film are patterned to form a first oxide and a second oxide on the first oxide.
  • An oxide and a third oxide over the second oxide are formed, and a second insulating film is formed to cover the first oxide, the second oxide, and the third oxide.
  • a method of manufacturing a semiconductor device in which a third insulator is formed on the side surface of the third conductor, the second insulator on the side surface of the first insulator, and the third insulator on the side surface of the second insulator. .
  • the third conductor includes the first insulating film, the first oxide, the second oxide, the third oxide, and the first insulator, and the second conductor It is preferable to overlap.
  • a semiconductor device having favorable electrical characteristics and a manufacturing method thereof can be provided.
  • a highly reliable semiconductor device and a manufacturing method thereof can be provided.
  • a semiconductor device that can be miniaturized or highly integrated and a manufacturing method thereof can be provided.
  • a highly productive semiconductor device and a manufacturing method thereof can be provided.
  • a semiconductor device in which fluctuation in electrical characteristics is suppressed, stable electrical characteristics, and reliability is improved can be provided.
  • a semiconductor device capable of holding data for a long period can be provided.
  • a semiconductor device with high data writing speed can be provided.
  • a novel semiconductor device can be provided.
  • a semiconductor device with high design freedom can be provided.
  • a semiconductor device that can reduce power consumption can be provided.
  • a semiconductor device in which a manufacturing process is simplified and a manufacturing method thereof can be provided. Further, according to one embodiment of the present invention, a semiconductor device with a reduced area and a manufacturing method thereof can be provided.
  • FIG. 6 is a cross-sectional view illustrating a semiconductor device according to one embodiment of the present invention.
  • 4A and 4B are a top view and cross-sectional views illustrating a semiconductor device according to one embodiment of the present invention.
  • 4A and 4B are a top view and cross-sectional views illustrating a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A and 4B are a top view and a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • 4A and 4B are a top view and a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • 4A and 4B are a top view and a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • FIG. 10 is a circuit diagram of a semiconductor device according to one embodiment of the present invention.
  • 4A and 4B are a circuit diagram and a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • 4A to 4C are a top view and cross-sectional views illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • FIG. 10 is a cross-sectional view illustrating a structure of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a cross-sectional view illustrating a structure of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a cross-sectional view illustrating a structure of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a cross-sectional view illustrating a structure of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a cross-sectional view illustrating a structure of a memory device according to one embodiment of the present invention.
  • FIG. 9 is a circuit diagram illustrating a structure of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a block diagram illustrating a structure example of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a circuit diagram illustrating a structural example of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a circuit diagram illustrating a structural example of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a cross-sectional view illustrating a structure of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a block diagram illustrating a structure example of a memory device according to one embodiment of the present invention.
  • 4A and 4B are a block diagram and a circuit diagram illustrating a structure example of a memory device according to one embodiment of the present invention.
  • FIG. 10 is a block diagram illustrating a structure example of a semiconductor device according to one embodiment of the present invention.
  • FIG. 10A and 10B are a block diagram illustrating a structure example of a semiconductor device according to one embodiment of the present invention, a circuit diagram, and a timing chart illustrating an operation example of the semiconductor device.
  • FIG. 10 is a block diagram illustrating a structure example of a semiconductor device according to one embodiment of the present invention.
  • 4A and 4B are a circuit diagram illustrating a structure example of a semiconductor device according to one embodiment of the present invention, and a timing chart illustrating an operation example of the semiconductor device.
  • 1 is a block diagram illustrating a configuration example of an AI system according to one embodiment of the present invention.
  • FIG. 10 is a block diagram illustrating an application example of an AI system according to one embodiment of the present invention.
  • FIG. 10 is a schematic perspective view illustrating a configuration example of an IC incorporating an AI system according to one embodiment of the present invention.
  • FIG. 14 illustrates an electronic device according to one embodiment of the present invention.
  • a top view also referred to as a “plan view”
  • a perspective view a perspective view, and the like
  • some components may be omitted in order to facilitate understanding of the invention.
  • description of some hidden lines may be omitted.
  • the ordinal numbers attached as the first, second, etc. are used for convenience and do not indicate the process order or the stacking order. Therefore, for example, the description can be made by appropriately replacing “first” with “second” or “third”.
  • the ordinal numbers described in this specification and the like may not match the ordinal numbers used to specify one embodiment of the present invention.
  • X and Y are assumed to be objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, etc.).
  • an element that enables electrical connection between X and Y for example, a switch, a transistor, a capacitor, an inductor, a resistor, a diode, a display, etc.
  • Element, light emitting element, load, etc. are not connected between X and Y
  • elements for example, switches, transistors, capacitive elements, inductors
  • resistor element for example, a diode, a display element, a light emitting element, a load, or the like.
  • an element for example, a switch, a transistor, a capacitive element, an inductor, a resistance element, a diode, a display, etc.
  • the switch has a function of controlling on / off. That is, the switch is in a conductive state (on state) or a non-conductive state (off state), and has a function of controlling whether or not to pass a current. Alternatively, the switch has a function of selecting and switching a path through which a current flows.
  • the case where X and Y are electrically connected includes the case where X and Y are directly connected.
  • a circuit for example, a logic circuit (an inverter, a NAND circuit, a NOR circuit, etc.) that enables a functional connection between X and Y, signal conversion, etc.
  • Circuit (DA conversion circuit, AD conversion circuit, gamma correction circuit, etc.), potential level conversion circuit (power supply circuit (boost circuit, step-down circuit, etc.), level shifter circuit that changes signal potential level, etc.), voltage source, current source, switching Circuit, amplifier circuit (circuit that can increase signal amplitude or current amount, operational amplifier, differential amplifier circuit, source follower circuit, buffer circuit, etc.), signal generation circuit, memory circuit, control circuit, etc.)
  • a circuit for example, a logic circuit (an inverter, a NAND circuit, a NOR circuit, etc.) that enables a functional connection between X and Y, signal conversion, etc.
  • Circuit (DA conversion circuit, AD conversion circuit, gamma correction circuit, etc.), potential level conversion circuit (power supply circuit (boost circuit, step-down
  • X and Y are functionally connected.
  • the case where X and Y are functionally connected includes the case where X and Y are directly connected and the case where X and Y are electrically connected.
  • a transistor is an element having at least three terminals including a gate, a drain, and a source.
  • a channel formation region is provided between the drain (drain terminal, drain region or drain electrode) and the source (source terminal, source region or source electrode), and between the source and drain via the channel formation region. It is possible to pass a current through. Note that in this specification and the like, a channel formation region refers to a region through which a current mainly flows.
  • the functions of the source and drain may be switched when transistors with different polarities are used or when the direction of current changes during circuit operation. Therefore, in this specification and the like, the terms “source” and “drain” may be used interchangeably.
  • the channel length refers to, for example, a region where a semiconductor (or a portion where current flows in the semiconductor when the transistor is on) and a gate electrode overlap with each other in a top view of the transistor, or a region where a channel is formed
  • the channel length is not necessarily the same in all regions. That is, the channel length of one transistor may not be fixed to one value. Therefore, in this specification, the channel length is any one of values, the maximum value, the minimum value, or the average value in a region where a channel is formed.
  • the channel width is, for example, in a top view of a transistor in a region where a semiconductor (or a portion where a current flows in the semiconductor when the transistor is on) and a gate electrode overlap with each other, or in a region where a channel is formed.
  • the channel width is not necessarily the same in all regions. That is, the channel width of one transistor may not be fixed to one value. Therefore, in this specification, the channel width is any one of values, the maximum value, the minimum value, or the average value in a region where a channel is formed.
  • the channel width in a region where a channel is actually formed (hereinafter also referred to as “effective channel width”) and the channel width (hereinafter “apparently” shown in the top view of the transistor).
  • channel width Sometimes referred to as “channel width”).
  • the effective channel width may be larger than the apparent channel width, and the influence may not be negligible.
  • the ratio of a channel formation region formed on the side surface of the semiconductor may increase. In that case, the effective channel width is larger than the apparent channel width.
  • the apparent channel width may be referred to as “surrounded channel width (SCW)”.
  • SCW surrounded channel width
  • channel width in the case where the term “channel width” is simply used, it may denote an enclosed channel width or an apparent channel width.
  • channel width in the case where the term “channel width” is simply used, it may denote an effective channel width. Note that the channel length, channel width, effective channel width, apparent channel width, enclosed channel width, and the like can be determined by analyzing a cross-sectional TEM image or the like.
  • the impurity of a semiconductor means the thing other than the main component which comprises a semiconductor, for example.
  • an element having a concentration of less than 0.1 atomic% can be said to be an impurity.
  • the impurities are included, for example, DOS (Density of States) of the semiconductor may increase or crystallinity may decrease.
  • examples of the impurity that changes the characteristics of the semiconductor include a Group 1 element, a Group 2 element, a Group 13 element, a Group 14 element, a Group 15 element, and an oxide semiconductor.
  • water may also function as an impurity.
  • oxygen vacancies may be formed, for example, by mixing impurities.
  • impurities that change the characteristics of the semiconductor include group 1 elements, group 2 elements, group 13 elements, and group 15 elements excluding oxygen and hydrogen.
  • a silicon oxynitride film has a higher oxygen content than nitrogen as its composition.
  • oxygen is 55 atomic% to 65 atomic%
  • nitrogen is 1 atomic% to 20 atomic%
  • silicon is 25 atomic% to 35 atomic%
  • hydrogen is 0.1 atomic% to 10 atomic%. It is included in the concentration range.
  • the silicon nitride oxide film has a nitrogen content higher than that of oxygen.
  • nitrogen is 55 atomic% to 65 atomic%
  • oxygen is 1 atomic% to 20 atomic%
  • silicon is 25 atomic% to 35 atomic%
  • hydrogen is 0.1 atomic% to 10 atomic%. It is included in the concentration range.
  • film and “layer” can be interchanged.
  • conductive layer may be changed to the term “conductive film”.
  • insulating film may be changed to the term “insulating layer” in some cases.
  • the term “insulator” can be referred to as an insulating film or an insulating layer.
  • the term “conductor” can be restated as a conductive film or a conductive layer.
  • the term “semiconductor” can be restated as a semiconductor film or a semiconductor layer.
  • the transistors described in this specification and the like are field-effect transistors unless otherwise specified.
  • the transistors described in this specification and the like are n-channel transistors unless otherwise specified. Therefore, the threshold voltage (also referred to as “Vth”) is assumed to be greater than 0 V unless otherwise specified.
  • parallel means a state in which two straight lines are arranged at an angle of ⁇ 10 ° to 10 °. Therefore, the case of ⁇ 5 ° to 5 ° is also included.
  • substantially parallel means a state in which two straight lines are arranged at an angle of ⁇ 30 ° to 30 °.
  • Vertical refers to a state in which two straight lines are arranged at an angle of 80 ° to 100 °. Therefore, the case of 85 ° to 95 ° is also included.
  • substantially vertical means a state in which two straight lines are arranged at an angle of 60 ° to 120 °.
  • a crystal when a crystal is a trigonal crystal or a rhombohedral crystal, it is included in a hexagonal crystal system.
  • a barrier film is a film having a function of suppressing permeation of impurities such as hydrogen and oxygen, and when the barrier film has conductivity, the barrier film is referred to as a conductive barrier film. There is.
  • a metal oxide is a metal oxide in a broad expression.
  • Metal oxides are classified into oxide insulators, oxide conductors (including transparent oxide conductors), oxide semiconductors (also referred to as oxide semiconductors or simply OS), and the like.
  • oxide semiconductors also referred to as oxide semiconductors or simply OS
  • the metal oxide may be referred to as an oxide semiconductor. That is, in the case of describing as OS FET, it can be translated into a transistor including an oxide or an oxide semiconductor.
  • part or the entirety of the capacitor 100 can be overlapped with the transistor 200, which is preferable because the total area of the projected area of the transistor 200 and the projected area of the capacitor 100 can be reduced.
  • the capacitor element 100 may be provided in a layer different from that of the transistor 200.
  • the capacitor element 100 may be provided over an insulator (interlayer film) provided so as to cover the transistor 200. Further, in the case where the semiconductor device operates or the circuit configuration does not require a capacitor element, the capacitor element 100 may not be provided.
  • 1A, 1B, 1C, and 1D are a top view and a cross-sectional view of the transistor 200, the capacitor 100, and the periphery of the transistor 200 according to one embodiment of the present invention.
  • FIG. 1A is a top view of a cell 600 including the transistor 200 and the capacitor 100.
  • FIGS. 1B, 1 ⁇ / b> C, and 1 ⁇ / b> D are cross-sectional views of the cell 600.
  • FIG. 1B is a cross-sectional view taken along dashed-dotted line AB in FIG. 1A and also a cross-sectional view of the transistor 200 in the channel length direction.
  • FIG. 1C is a cross-sectional view taken along dashed-dotted line CD in FIG. 1A and also a cross-sectional view of the transistor 200 in the channel width direction.
  • 1D is a cross-sectional view of a portion indicated by a dashed line EF in FIG. 1A, and is a cross-sectional view of a connection portion between the oxide 230 and the conductor 203, the capacitor 100, and the like. But there is. In the top view of FIG. 1A, some elements are omitted for clarity.
  • the semiconductor device of one embodiment of the present invention includes the transistor 200, the capacitor 100, and the insulator 280 functioning as an interlayer film.
  • a conductor 252 (a conductor 252a, a conductor 252b, a conductor 252c, and a conductor 252d) which is electrically connected to the transistor 200 and functions as a plug is provided.
  • the conductor 252 is formed in contact with the inner wall of the opening of the insulator 280.
  • the height of the upper surface of the conductor 252 and the height of the upper surface of the insulator 280 can be approximately the same.
  • the transistor 200 has a structure in which the conductor 252 has two layers, the present invention is not limited to this.
  • the conductor 252 may have a single layer or a stacked structure including three or more layers.
  • the transistor 200 includes an insulator 208, an insulator 210, and a conductor 203 (a conductor 203a and a conductor 203b) arranged on the insulator 210 over a substrate (not shown). ) And conductor 205 (conductor 205a, conductor 205b), insulator 216 provided between and around conductor 203 and conductor 205, insulator 216, conductor 203, conductor An insulator 220 disposed on 205, an insulator 222 disposed on insulator 220, an insulator 224 disposed on insulator 222, and an oxide disposed on insulator 224.
  • oxide 230 (oxide 230a, oxide 230b, and oxide 230c), an insulator 250 disposed on the oxide 230, and a conductor 260 (conductor) disposed on the insulator 250 60a and the conductor 260b), the insulator 270 disposed on the conductor 260, and the insulator 271; at least the insulator 250; and the insulator 272 disposed in contact with the side surface of the conductor 260; An oxide 230; and an insulator 274 provided in contact with the insulator 272.
  • the insulator 216 can be formed by polishing an insulating film disposed so as to cover the conductor 203 and the conductor 205 using a CMP method or the like until the conductor 203 and the conductor 205 are exposed. . Therefore, the insulator 216, the conductor 203, and the conductor 205 are excellent in surface flatness.
  • the insulator 220, the insulator 222, the insulator 224, and the oxide 230a have openings.
  • the oxide 230b is electrically connected to the conductor 203 through the opening.
  • series resistance and contact resistance can be reduced.
  • a semiconductor device with good electrical characteristics can be obtained. More specifically, a transistor with improved on-state current and a semiconductor device using the transistor can be obtained.
  • the conductor 203 and the conductor 205 preferably have a stacked structure. Further, it is preferable that the conductor 203b and the conductor 205b be made of a material that is less likely to be oxidized than the conductor 203a and the conductor 205a, that is, excellent in oxidation resistance.
  • the insulator 220, the insulator 222, the insulator 216, the insulator 216, the insulator 220, and the insulator 220 are formed.
  • the conductor 203a and the conductor 205a are preferably formed using a material having lower resistance than the conductor 203b and the conductor 205b.
  • a conductor 203b and a conductor 205b made of a material excellent in oxidation resistance are provided on the conductor 203a and the conductor 205a. Therefore, in the manufacturing process of the transistor 200 and the like, an increase in electrical resistance due to oxidation of the conductor 203a and the conductor 205a can be suppressed.
  • the transistor 200 has a structure in which the oxide 230a, the oxide 230b, and the oxide 230c are stacked as illustrated in FIG. 1, but the present invention is not limited thereto.
  • a two-layer structure of the oxide 230a and the oxide 230b or a stacked structure of four or more layers may be used.
  • a single layer including only the oxide 230b or only the oxide 230b and the oxide 230c may be provided.
  • the structure in which the conductors 260a and 260b are stacked is described; however, the present invention is not limited to this.
  • a single layer or a stacked structure of three or more layers may be used.
  • FIG. 2 shows an enlarged view of a region 239 in the vicinity of the channel, which is surrounded by a one-dot chain line in FIG.
  • the oxide 230 includes a region 234 functioning as a channel formation region of the transistor 200, and a region 231 (region 231 a and region 231 b) functioning as a source region or a drain region. In between, it has the area
  • the region 231 functioning as a source region or a drain region is a region with high carrier density and low resistance.
  • the region 234 functioning as a channel formation region is a region having a lower carrier density than the region 231 functioning as a source region or a drain region.
  • the region 232 has a lower carrier density than the region 231 that functions as a source region or a drain region and a higher carrier density than the region 234 that functions as a channel formation region. That is, the region 232 functions as a junction region between the channel formation region and the source region or the drain region.
  • a high resistance region is not formed between the region 231 functioning as a source region or a drain region and the region 234 functioning as a channel formation region, so that the on-state current of the transistor can be increased.
  • the region 232 has a region overlapping with the conductor 260 functioning as a gate electrode.
  • a region overlapping with the conductor 260 functioning as a gate electrode in the region 232 may function as a so-called overlap region (also referred to as a Lov region).
  • the region 231 is preferably in contact with the insulator 274.
  • the region 231 preferably has a concentration of at least one of a metal element such as indium and an impurity element such as hydrogen and nitrogen higher than that of the region 232 and the region 234.
  • the region 232 has a region overlapping with the insulator 272.
  • the region 232 preferably has a concentration of at least one of a metal element such as indium and an impurity element such as hydrogen and nitrogen higher than that of the region 234.
  • a metal element such as indium and an impurity element such as hydrogen and nitrogen
  • the region 234 overlaps with the conductor 260.
  • the region 234 is disposed between the region 232 a and the region 232 b, and at least one concentration of a metal element such as indium and an impurity element such as hydrogen and nitrogen is lower than that of the region 231 and the region 232. It is preferable.
  • the boundary between the region 231, the region 232, and the region 234 may not be clearly detected.
  • Concentrations of metal elements such as indium and impurity elements such as hydrogen and nitrogen detected in each region are not limited to stepwise changes in each region, but also continuously change in each region (also referred to as gradation). You may do it. In other words, the closer to the region 234 from the region 231 to the region 232, the lower the concentration of a metal element such as indium and an impurity element such as hydrogen and nitrogen.
  • the region 234, the region 231, and the region 232 are formed in the oxide 230 b, but the present invention is not limited to this.
  • these regions include the oxide 230 a or The oxide 230c may also be formed.
  • the boundary of each region is displayed substantially perpendicular to the upper surface of the oxide 230, but this embodiment is not limited to this.
  • the region 232 may protrude toward the conductor 260 in the vicinity of the surface of the oxide 230b and recede toward the conductor 252a or the conductor 252b in the vicinity of the lower surface of the oxide 230b.
  • the oxide 230 is preferably a metal oxide functioning as an oxide semiconductor (hereinafter also referred to as an oxide semiconductor). Since a transistor including an oxide semiconductor has extremely small leakage current (off-state current) in a non-conduction state, a semiconductor device with low power consumption can be provided.
  • An oxide semiconductor can be formed by a sputtering method or the like, and thus can be used for a transistor included in a highly integrated semiconductor device.
  • a transistor including an oxide semiconductor its electrical characteristics are likely to vary due to impurities and oxygen vacancies in the oxide semiconductor, and reliability may deteriorate.
  • hydrogen contained in the oxide semiconductor reacts with oxygen bonded to a metal atom to become water, so that an oxygen vacancy may be formed in some cases.
  • oxygen vacancies When hydrogen enters the oxygen vacancies, electrons serving as carriers may be generated. Therefore, a transistor including an oxide semiconductor in which an oxygen vacancy is included in a channel formation region is likely to be normally on. For this reason, it is preferable that oxygen vacancies in the channel formation region be reduced as much as possible.
  • the insulator 250 overlapping with the region 234 of the oxide 230 preferably contains more oxygen (also referred to as excess oxygen) than oxygen that satisfies the stoichiometric composition. That is, excess oxygen in the insulator 250 diffuses into the region 234, so that oxygen vacancies in the region 234 can be reduced.
  • the insulator 272 is preferably provided in contact with the insulator 250.
  • the insulator 272 preferably has a function of suppressing diffusion of at least one of oxygen (for example, oxygen atoms and oxygen molecules) (the above-described oxygen hardly transmits). Since the insulator 272 has a function of suppressing diffusion of oxygen, oxygen in the excess oxygen region is efficiently supplied to the region 234 without diffusing to the insulator 274 side. Accordingly, formation of oxygen vacancies at the interface between the oxide 230 and the insulator 250 is suppressed, and the reliability of the transistor 200 can be improved.
  • oxygen for example, oxygen atoms and oxygen molecules
  • the transistor 200 is preferably covered with an insulator having a barrier property to prevent entry of impurities such as water or hydrogen.
  • An insulator having a barrier property is a function of suppressing diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules (N 2 O, NO, NO 2, etc.), copper atoms, and the like. Insulators using an insulating material that has (which is difficult to transmit the above impurities).
  • the conductor 260 may function as a first gate electrode.
  • the conductor 205 may function as a second gate electrode.
  • the threshold voltage of the transistor 200 can be controlled by changing the potential applied to the conductor 205 independently of the potential applied to the conductor 260 without being linked.
  • the threshold voltage of the transistor 200 can be made higher than 0 V and the off-state current can be reduced. Therefore, the drain current when the voltage applied to the conductor 260 is 0 V can be reduced.
  • the conductor 205 functioning as the second gate electrode is provided so as to overlap with the oxide 230 and the conductor 260.
  • the conductor 205 is preferably provided larger than the region 234 in the oxide 230 so that the length in the channel width direction is larger.
  • the conductor 205 preferably extends in a region outside the end where the region 234 of the oxide 230 intersects the channel width direction. That is, it is preferable that the conductor 205 and the conductor 260 overlap with each other through the insulator on the side surface of the oxide 230 in the channel width direction.
  • the conductor 203 can be formed in the same process as the conductor 205.
  • the conductor 203 functions as an electrode or a wiring that is electrically connected to the region 231 of the oxide 230.
  • the insulator 216 is formed between the conductor 203 and the conductor 205 and around the conductor.
  • the heights of the upper surfaces of the conductor 203 and the conductor 205 and the height of the upper surface of the insulator 216 can be approximately the same.
  • the conductive material 203b and the conductive material 205b are preferably formed using a conductive material that is less likely to be oxidized than the conductive material 203a and the conductive material 205a, that is, excellent in oxidation resistance.
  • a conductive material a metal nitride such as tantalum nitride or titanium nitride can be used.
  • the conductor 203b and the conductor 205b By using a material with excellent oxidation resistance as the conductor 203b and the conductor 205b, it is possible to prevent the conductor 203 and the conductor 205 from being oxidized and lowering the conductivity. In addition, since the oxidation of the upper surface of the conductor 203 is suppressed, the contact between the oxide 230b and the conductor 203 becomes favorable.
  • the conductor 203a and the conductor 205a are preferably formed using a conductive material containing tungsten, copper, or aluminum as a main component.
  • tungsten is used for the conductor 203a and the conductor 205a.
  • a conductor 209 that is electrically connected to the conductor 205 may be provided.
  • the conductor 209 can be formed so that an insulator 212 is further provided over the insulator 210 and embedded in an opening provided in the insulator 212.
  • the conductor 209 is a stacked layer including a first conductor provided so as to be in contact with a side surface and a bottom surface of an opening provided in the insulator 212, and a second conductor provided on the first conductor. It is good also as a structure.
  • the first conductor is preferably a conductive barrier.
  • the conductor 209 may have a single-layer structure or a stacked structure including three or more layers.
  • the conductor 209 has a stacked structure of three or more layers
  • a structure in which two or more conductive barriers are provided may be employed.
  • the conductive barrier one or more of a barrier film that suppresses permeation of impurities such as hydrogen, water, and nitrogen, a barrier film that suppresses permeation of oxygen, or a barrier film that suppresses permeation of metal components is provided. Can do.
  • the conductor 209 may be formed using a lithography method or an etching method after a conductive film including a single layer or two or more layers is provided over the insulator 210. Further, an insulating film may be formed over the insulator 210 so as to cover the conductor 209, and the insulator 212 is formed by processing the insulating film by a CMP method or an etching method.
  • the conductor 209 can function as an electrode or a wiring.
  • part of the conductor 209 can function as a gate wiring.
  • the conductor 205 and the conductor 252d may be electrically connected through the conductor 207a, the conductor 207 including the conductor 207b provided over the conductor 207a, and the conductor 209.
  • the conductor 207 can be manufactured in the same process as the conductor 203 and the conductor 205.
  • the conductor 209 is electrically connected to the oxide 230b through the conductor 203 and can function as a source wiring or a drain wiring of the transistor 200.
  • the conductor 209 may be used as an electrode for electrically connecting to an element or a wiring located below the insulator 210.
  • the insulator 210 preferably functions as an insulating barrier film which prevents impurities such as water or hydrogen from entering the transistor from the substrate side. Therefore, the insulator 210 has a function of suppressing diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitric oxide molecules (N 2 O, NO, NO 2, and the like) and copper atoms. It is preferable to use an insulating material (which is difficult for the impurities to pass through). Alternatively, it is preferable to use an insulating material having a function of suppressing diffusion of at least one of oxygen (for example, oxygen atoms and oxygen molecules) (the above-described oxygen hardly transmits).
  • oxygen for example, oxygen atoms and oxygen molecules
  • the insulator 210 is preferably formed using aluminum oxide, silicon nitride, or the like.
  • impurities such as hydrogen and water can be prevented from diffusing from the insulator 210 to the transistor side.
  • oxygen contained in the insulator 224 or the like can be prevented from diffusing from the insulator 210 to the substrate side.
  • the insulator 208, the insulator 216, and the insulator 280 that function as interlayer films preferably have a lower dielectric constant than the insulator 210.
  • parasitic capacitance generated between the wirings can be reduced.
  • silicon oxide, silicon oxynitride, silicon nitride oxide, aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, lead zirconate titanate ( An insulator such as PZT), strontium titanate (SrTiO 3 ), or (Ba, Sr) TiO 3 (BST) can be used in a single layer or a stacked layer.
  • An insulator such as PZT), strontium titanate (SrTiO 3 ), or (Ba, Sr) TiO 3 (BST) can be used in a single layer or a stacked layer.
  • aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, or zirconium oxide may be added to these insulators.
  • these insulators may be nitrided. Silicon insulator, silicon oxynitride, or silicon nitride may be stacked over the above
  • the insulator 220, the insulator 222, and the insulator 224 function as gate insulators.
  • an oxide insulator containing more oxygen than oxygen that satisfies the stoichiometric composition is preferably used as the insulator 224 in contact with the oxide 230. That is, it is preferable that an excess oxygen region be formed in the insulator 224. By providing such an insulator containing excess oxygen in contact with the oxide 230, oxygen vacancies in the oxide 230 can be reduced and reliability can be improved.
  • an oxide material from which part of oxygen is released by heating is preferably used as the insulator having an excess oxygen region.
  • the oxide from which oxygen is desorbed by heating means that the amount of desorbed oxygen in terms of oxygen atom is 1.0 ⁇ 10 18 atoms / cm 3 or more, preferably 3 in TDS (Thermal Desorption Spectroscopy) analysis.
  • the oxide film has a thickness of 0.0 ⁇ 10 20 atoms / cm 3 or more.
  • the surface temperature of the film at the time of TDS analysis is preferably in the range of 100 ° C. to 700 ° C., or 100 ° C. to 400 ° C.
  • the insulator 222 has a function of suppressing at least one diffusion of oxygen (for example, oxygen atoms and oxygen molecules) (the oxygen is difficult to transmit). Is preferred.
  • the insulator 222 has a function of suppressing oxygen diffusion, oxygen in the excess oxygen region can be efficiently supplied to the oxide 230 without diffusing to the insulator 220 side.
  • the conductor 205 can be prevented from reacting with oxygen in the excess oxygen region of the insulator 224.
  • the insulator 222 is made of, for example, aluminum oxide, hafnium oxide, hafnium aluminate, tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ), or (Ba, Sr) TiO 3 (BST).
  • An insulator including a so-called high-k material such as a single layer or a stacked layer is preferably used. By using a high-k material for the insulator that functions as a gate insulator, transistors can be miniaturized and highly integrated.
  • an insulating material such as aluminum oxide, hafnium oxide, and hafnium aluminate that has a function of suppressing diffusion of impurities and oxygen (the oxygen hardly transmits).
  • an insulating material such as aluminum oxide, hafnium oxide, and hafnium aluminate that has a function of suppressing diffusion of impurities and oxygen (the oxygen hardly transmits).
  • it functions as a layer which prevents release of oxygen from the oxide 230 and entry of impurities such as hydrogen from the periphery of the transistor 200.
  • aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, or zirconium oxide may be added to these insulators.
  • these insulators may be nitrided. Silicon insulator, silicon oxynitride, or silicon nitride may be stacked over the above insulator.
  • the insulator 220 is preferably thermally stable.
  • silicon oxide and silicon oxynitride are thermally stable, a stacked structure having a high thermal stability and a high dielectric constant can be obtained by combining with an insulator of a high-k material.
  • the insulator 220, the insulator 222, and the insulator 224 may have a stacked structure of two or more layers. In that case, it is not limited to the laminated structure which consists of the same material, The laminated structure which consists of a different material may be sufficient. Further, although the structure in which the insulator 220, the insulator 222, and the insulator 224 function as gate insulators in the transistor 200 is described, this embodiment is not limited thereto. For example, any two layers or one layer of the insulator 220, the insulator 222, and the insulator 224 may be provided as the gate insulator.
  • the oxide 230 includes an oxide 230a, an oxide 230b over the oxide 230a, and an oxide 230c over the oxide 230b.
  • the oxide 230 includes a region 231, a region 232, and a region 234.
  • at least part of the region 231 is preferably in contact with the insulator 274.
  • at least part of the region 231 preferably has a concentration of at least one of a metal element such as indium, hydrogen, and nitrogen higher than that of the region 234.
  • the region 231a or the region 231b functions as a source region or a drain region.
  • at least part of the region 234 functions as a region where a channel is formed.
  • the insulator 220, the insulator 222, the insulator 224, and the oxide 230a have openings, and the region 231 of the oxide 230b is electrically connected to the conductor 203.
  • one of the source and the drain of the transistor 200 is electrically connected to the conductor 203 through an opening provided in the insulator 220, the insulator 222, the insulator 224, and the oxide 230a.
  • the body 203 can function as one of a source electrode and a drain electrode, or one of a source wiring and a drain wiring.
  • the oxide 230a and the oxide 230b include an opening formed in the insulator 220, the insulator 222, the insulator 224, and the oxide 230a.
  • the width in the EF direction in the region overlapping with the opening is wider than the width of the opening. Therefore, the width in the E-F direction of the oxide 230a and the oxide 230b in the region is the width in the CD direction of the oxide 230a and the oxide 230b in the region where the channel is formed or the region on the A side. May be wider.
  • the oxide 230b and the conductor 203 can be reliably in contact with each other.
  • the area of the capacitive element 100 can be increased, and an increase in the capacity of the capacitive element 100 can be expected.
  • the oxide 230 preferably includes a region 232.
  • the on-state current can be increased and the leakage current (off-state current) at the time of non-conduction can be reduced.
  • the oxide 230b over the oxide 230a, diffusion of impurities into the oxide 230b can be suppressed from a structure formed below the oxide 230a. In addition, by including the oxide 230b below the oxide 230c, diffusion of impurities into the oxide 230b can be suppressed from a structure formed above the oxide 230c.
  • the oxide 230 has a curved surface between the side surface and the upper surface. That is, it is preferable that the end of the side surface and the end of the upper surface are curved (hereinafter also referred to as a round shape).
  • the curved surface has a radius of curvature of 3 nm to 10 nm, preferably 5 nm to 6 nm at the end of the oxide 230b.
  • a metal oxide functioning as an oxide semiconductor (hereinafter also referred to as an oxide semiconductor) is preferably used.
  • an oxide having an energy gap of 2 eV or more, preferably 2.5 eV or more is preferably used as the metal oxide to be the region 234. In this manner, off-state current of a transistor can be reduced by using a metal oxide having a wide energy gap.
  • metal oxides containing nitrogen may be collectively referred to as metal oxides.
  • a metal oxide containing nitrogen may be referred to as a metal oxynitride.
  • An oxide semiconductor can be formed by a sputtering method or the like, and thus can be used for a transistor included in a highly integrated semiconductor device.
  • the oxide 230 includes an In-M-Zn oxide (the element M is aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, or cerium. It is preferable to use a metal oxide such as neodymium, hafnium, tantalum, tungsten, or magnesium. Further, as the oxide 230, an In—Ga oxide or an In—Zn oxide may be used as the oxide 230.
  • the region 234 preferably has a stacked structure with oxides having different atomic ratios of metal atoms.
  • the metal oxide used for the oxide 230b has an atomic ratio of the element M in the constituent elements of the metal oxide used for the oxide 230b. Is larger than the atomic ratio of the element M in the constituent elements.
  • the atomic ratio of the element M to In is preferably larger than the atomic ratio of the element M to In in the metal oxide used for the oxide 230b.
  • the atomic ratio of In to the element M is preferably larger than the atomic ratio of In to the element M in the metal oxide used for the oxide 230a.
  • the oxide 230c a metal oxide that can be used for the oxide 230a or the oxide 230b can be used.
  • An oxide can be used.
  • the said composition shows the atomic ratio in the oxide formed on the board
  • Ga: Zn 1: 3: 4 as the oxide 230a
  • In: Ga: Zn 4: 2: 3 as the oxide 230b
  • In: Ga: Zn 1: 3: 4 as the oxide 230c.
  • the oxides 230a and 230c having a wide energy gap may be referred to as a wide gap
  • the oxide 230b having a relatively narrow energy gap may be referred to as a narrow gap.
  • the wide gap and the narrow gap will be described in [Configuration of metal oxide].
  • the region 231 and the region 232 are regions where resistance is reduced by adding a metal atom such as indium or an impurity to a metal oxide provided as the oxide 230. Note that each region has higher conductivity than at least the oxide 230b in the region 234.
  • impurities for example, plasma treatment, an ion implantation method in which an ionized source gas is added by mass separation, and an ionized source gas are added without mass separation.
  • a dopant which is at least one of a metal element such as indium and an impurity may be added using an ion doping method, a plasma immersion ion implantation method, or the like.
  • the impurity can be added to the region 231 and the region 232.
  • the resistance of the region 231 and the region 232 is reduced by adding an element that forms oxygen vacancies or an element that is captured by oxygen vacancies.
  • elements typically include hydrogen, boron, carbon, nitrogen, fluorine, phosphorus, sulfur, chlorine, titanium, and rare gases.
  • rare gas elements include helium, neon, argon, krypton, and xenon. Therefore, the region 231 and the region 232 may include one or more of the above elements.
  • the insulator 274 may be a film that extracts and absorbs oxygen contained in the regions 231 and 232.
  • oxygen is extracted, oxygen vacancies are generated in the region 231 and the region 232.
  • hydrogen, boron, carbon, nitrogen, fluorine, phosphorus, sulfur, chlorine, titanium, a rare gas, or the like is trapped in the oxygen vacancies, the resistance of the region 231 and the region 232 is reduced.
  • the insulator 274 may be formed with a single layer or a stacked structure including two or more layers.
  • the insulator 274 can be formed by a CVD method, an ALD method, a sputtering method, or the like. Since the ALD method has excellent step coverage, excellent thickness uniformity, and excellent film thickness controllability, it is suitable for forming a step portion formed of the oxide 230 or the conductor 260. It is.
  • An insulator having a thickness of 0.5 nm to 5.0 nm is formed using the ALD method, and then an insulator of 1.0 nm to 10.0 nm is stacked using the plasma CVD method to form the insulator 274. May be formed.
  • the insulator 274 may be formed by stacking silicon oxide.
  • a single-layer insulator 274 may be formed by forming an insulator having a thickness of 1.0 nm to 10.0 nm by a plasma CVD method.
  • silicon nitride, silicon nitride oxide, silicon oxynitride, or silicon oxide formed using a plasma CVD method may be used as the insulator 274.
  • the region 232 since the region 232 is provided, a high resistance region is not formed between the region 231 functioning as a source region and a drain region and the region 234 where a channel is formed; Mobility can be increased.
  • the region 232 since the region 232 includes the source region and the drain region and the gate do not overlap with each other in the channel length direction, formation of unnecessary capacitance can be suppressed.
  • leakage current at the time of non-conduction can be reduced.
  • the insulator 250 functions as a gate insulating film.
  • the insulator 250 is preferably provided in contact with the upper surface of the oxide 230c.
  • the insulator 250 is preferably formed using an insulator from which oxygen is released by heating.
  • the amount of desorbed oxygen converted to oxygen atoms is 1.0 ⁇ 10 18 atoms / cm 3 or more, preferably 3.0 ⁇ 10 20.
  • the surface temperature of the film at the time of the TDS analysis is preferably in the range of 100 ° C. to 700 ° C., or 100 ° C. to 500 ° C.
  • the concentration of impurities such as water or hydrogen in the insulator 250 is preferably reduced.
  • the thickness of the insulator 250 is preferably greater than or equal to 1 nm and less than or equal to 20 nm.
  • the conductor 260 functioning as the first gate electrode includes a conductor 260a and a conductor 260b over the conductor 260a.
  • the conductor 260a titanium nitride or the like is preferably used.
  • a metal having high conductivity such as tungsten can be used.
  • a conductor made of a conductive oxide may be provided between the insulator 250 and the conductor 260a.
  • a metal oxide that can be used as the oxide 230a or the oxide 230b can be used.
  • oxygen can be added to the insulator 250 and oxygen can be supplied to the oxide 230b. Accordingly, oxygen vacancies in the region 234 of the oxide 230 can be reduced.
  • the insulator 270 functioning as a barrier film may be provided over the conductor 260c.
  • an insulating material having a function of suppressing permeation of impurities such as water or hydrogen and oxygen is preferably used.
  • an insulator including one or both of aluminum and hafnium can be used.
  • the insulator containing one or both of aluminum and hafnium aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used. Thereby, oxidation of the conductor 260 can be prevented.
  • impurities such as water or hydrogen can be prevented from entering the oxide 230 through the conductor 260 and the insulator 250.
  • the insulator 271 functioning as a hard mask is preferably provided over the insulator 270.
  • the side surface of the conductor 260 is substantially vertical, specifically, the angle formed between the side surface of the conductor 260 and the substrate surface is 75 degrees or more and 100 degrees or less. Preferably, it can be set to 80 degrees or more and 95 degrees or less.
  • the insulator 272 to be formed next can be formed into a desired shape.
  • An insulator 272 functioning as a barrier film is provided in contact with the side surfaces of the insulator 250, the conductor 260, and the insulator 270.
  • the insulator 272 may be formed using an insulating material having a function of suppressing permeation of impurities such as water or hydrogen and oxygen.
  • an insulator including one or both of aluminum and hafnium can be used.
  • the insulator containing one or both of aluminum and hafnium aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used.
  • oxygen in the insulator 250 can be prevented from diffusing outside.
  • entry of impurities such as hydrogen and water into the oxide 230 from an end portion of the insulator 250 or the like can be suppressed.
  • an upper surface and a side surface of the conductor 260 and a side surface of the insulator 250 can be covered with an insulator having a function of suppressing permeation of impurities such as water or hydrogen and oxygen.
  • impurities such as water or hydrogen can be prevented from entering the oxide 230 through the conductor 260 and the insulator 250. Therefore, the insulator 272 functions as a side barrier that protects the side surfaces of the gate electrode and the gate insulating film.
  • the impurity element contained in the structure provided around the transistor 200 is diffused, so that the region 231a and the region 231b or the region There is a risk that 232a and the region 232b are electrically connected.
  • the insulator 272 by forming the insulator 272, impurities such as hydrogen and water can be prevented from entering the insulator 250 and the conductor 260, and oxygen in the insulator 250 can be reduced. Can be prevented from spreading outside. Therefore, when the first gate voltage is 0 V, the source region and the drain region can be prevented from being electrically connected directly or through the region 232 or the like.
  • the insulator 274 is provided to cover the insulator 271, the insulator 272, the oxide 230, the insulator 224, and the like.
  • the insulator 274 is preferably formed using an insulating material having a function of suppressing permeation of impurities such as water or hydrogen and oxygen.
  • the insulator 274 is preferably formed using silicon nitride, silicon nitride oxide, silicon oxynitride, aluminum nitride, aluminum nitride oxide, or the like.
  • the insulator 274 may be formed by stacking the insulating material over aluminum oxide, hafnium oxide, or an oxide containing aluminum and hafnium (hafnium aluminate).
  • oxygen can be prevented from being transmitted through the insulator 274 and supplying oxygen to oxygen vacancies in the regions 231 a and 231 b, thereby reducing the carrier density. . Further, it is possible to prevent the region 231a and the region 231b from being excessively expanded to the region 234 side by being mixed with impurities such as water or hydrogen through the insulator 274.
  • the insulator 274 is trapped by an element that forms oxygen vacancies in the oxide 230 or oxygen vacancies in the oxide 230. It is preferable to have a certain element. Examples of such elements typically include hydrogen, boron, carbon, nitrogen, fluorine, phosphorus, sulfur, chlorine, titanium, and rare gases. Typical examples of rare gas elements include helium, neon, argon, krypton, and xenon.
  • the insulator 274 may be a film that extracts and absorbs oxygen contained in the regions 231 and 232.
  • oxygen is extracted, oxygen vacancies are generated in the region 231 and the region 232.
  • hydrogen, boron, carbon, nitrogen, fluorine, phosphorus, sulfur, chlorine, titanium, a rare gas, or the like is trapped in the oxygen vacancies, the resistance of the region 231 and the region 232 is reduced.
  • the conductor 130 is provided so as to overlap with the region 231 of the oxide 230 which functions as one electrode of the capacitor with the insulator 274 interposed therebetween.
  • the insulator 280 functioning as an interlayer film is preferably provided over the insulator 274 and the conductor 130.
  • the insulator 280 preferably has a reduced concentration of impurities such as water or hydrogen in the film. Note that the insulator 280 may have a stacked structure including similar insulators.
  • a conductor 252 (a conductor 252a, a conductor 252b, a conductor 252c, and a conductor 252d) that is electrically connected to the transistor 200 is provided.
  • a conductor 252a that is electrically connected to the oxide 230 is disposed in the opening formed in the insulator 280 and the insulator 274, and the conductor that is electrically connected to the conductor 130 is disposed in the opening formed in the insulator 280.
  • the body 252b is disposed, and the conductor 252c electrically connected to the conductor 260 functioning as the first gate is disposed in the opening formed in the insulator 280, the insulator 274, the insulator 271, and the insulator 270.
  • the conductor 252d that is electrically connected to the conductor 205 functioning as the second gate is disposed in the opening formed in the insulator 280, the insulator 274, the insulator 224, the insulator 222, and the insulator 220.
  • the conductor 252b can be electrically connected to the oxide 230 through openings formed in the insulator 280 and the insulator 274.
  • the top surfaces of the conductor 252a, the conductor 252b, the conductor 252c, and the conductor 252d may be flush with the top surface of the insulator 280.
  • the opening in which the conductor 252b is provided is provided so as to overlap with at least part of the conductor 203 or at least part of the openings provided in the insulator 220, the insulator 222, the insulator 224, and the oxide 230a. This is preferable because miniaturization and high integration of the semiconductor device can be realized.
  • the conductor 252 can be formed by a damascene method.
  • the conductor 252a is in contact with the region 231a functioning as one of the source region and the drain region of the transistor 200.
  • the conductor 203 is in contact with the region 231b functioning as the other of the source region and the drain region of the transistor 200. Since the region 231a and the region 231b have low resistance, the contact resistance between the conductor 252a and the region 231a and the contact resistance between the conductor 203 and the region 231b can be reduced, and the on-state current of the transistor 200 can be increased.
  • the conductor 252a is preferably in contact with at least the upper surface of the oxide 230 and further in contact with the side surface of the oxide 230.
  • the conductor 252a is preferably in contact with both or one of the side surface on the C side and the side surface on the D side on the side surface intersecting the channel width direction of the oxide 230.
  • the conductor 252a may be in contact with the side surface on the A side at the side surface intersecting the channel length direction of the oxide 230.
  • the conductor 252a is in contact with the side surface of the oxide 230 in addition to the top surface of the oxide 230, so that the contact area of the conductor 252a and the oxide 230 is not increased without increasing the contact area.
  • the contact area between the conductor 252a and the oxide 230 can be reduced.
  • the on-current can be increased while miniaturizing the source electrode and the drain electrode of the transistor.
  • FIG. 1D illustrates a cross section of the connection portion between the conductor 203 and the oxide 230 and the capacitor 100.
  • the conductor 130 is preferably wider in the EF direction than the oxide 230. Accordingly, a capacitance can be formed not only on the upper surface of the oxide 230 and the conductor 130 but also on the side surface of the oxide 230 and the conductor 130, and the capacitance can be increased.
  • the conductor 252 can be formed of a first conductor in contact with the inner wall of each opening and a second conductor provided further inside.
  • the height of the top surfaces of the first conductor and the second conductor and the height of the top surface of the insulator 280 can be approximately the same. Note that although an example in which a two-layer conductor is used as the conductor 252 is described in this embodiment, the present invention is not limited to this.
  • the conductor 252 may be formed using a single layer or a stacked film including three or more layers.
  • the first conductor used for the conductor 252 is a hydrogen atom, a hydrogen molecule, a water molecule, a nitrogen atom, a nitrogen molecule, a nitrogen oxide molecule (N 2 O, NO, NO 2, etc.), a copper atom, or the like. It is preferable to use a conductive material that has a function of suppressing diffusion of impurities (it is difficult for the impurities to pass through). Alternatively, it is preferable to use a conductive material that has a function of suppressing diffusion of at least one of oxygen (for example, oxygen atoms and oxygen molecules) (the oxygen is difficult to transmit).
  • oxygen for example, oxygen atoms and oxygen molecules
  • the function of suppressing diffusion of impurities or oxygen is a function of suppressing diffusion of any one or all of the impurities and oxygen.
  • a conductor having such a function may be referred to as a conductive barrier film.
  • the second conductor used for the conductor 252 absorbs oxygen in the insulator 280 or is oxidized. A decrease in conductivity can be prevented.
  • titanium, titanium nitride, tantalum, tantalum nitride, ruthenium, or ruthenium oxide is preferably used as the conductive material having a function of suppressing oxygen diffusion. Therefore, as the first conductor used for the conductor 252, the above conductive material may be a single layer or a stacked layer.
  • the first conductor used for the conductor 252 has a function of suppressing diffusion of impurities such as hydrogen, water, and nitrogen, impurities such as hydrogen and water can be transferred from above the insulator 280 to the conductor. Through 252, entry into the transistor 200 can be suppressed.
  • titanium nitride is used as the first conductor used for the conductor 252.
  • the second conductor used for the conductor 252 is preferably formed using a conductive material containing tungsten, copper, or aluminum as a main component. In this embodiment mode, tungsten is used as the second conductor used for the conductor 252.
  • an insulator having a function of suppressing transmission of impurities such as water or hydrogen may be provided in contact with the inner walls of the openings of the insulator 274 and the insulator 280 in which the conductor 252 is embedded.
  • an insulator that can be used for the insulator 270 and the insulator 272, for example, aluminum oxide is preferably used. Accordingly, impurities such as hydrogen and water from the insulator 280 and the like can be prevented from entering the oxide 230 through the conductor 252.
  • the insulator can be formed with good coverage by forming the insulator using, for example, an ALD method or a CVD method.
  • the conductor 256 functioning as a wiring may be provided in contact with the upper surface of the conductor 252.
  • the conductor 256 functioning as a wiring is preferably formed using a conductive material containing tungsten, copper, or aluminum as a main component.
  • the capacitor 100 has a structure in common with the transistor 200.
  • the capacitor 100 in which at least part of the region 231 b provided in the oxide 230 of the transistor 200 functions as one of the electrodes of the capacitor 100 is described.
  • the capacitor 100 includes at least part of the region 231 b of the oxide 230, the insulator 274 over the region 231, and the conductor 130 over the insulator 274. At least a part of the conductor 130 is preferably provided over the insulator 274 so as to overlap with the region 231b.
  • At least a part of the region 231 b of the oxide 230 functions as one of the electrodes of the capacitor 100, and the conductor 130 functions as the other of the electrodes of the capacitor 100. That is, the region 231 b functions as one of the source and the drain of the transistor 200 and functions as one of the electrodes of the capacitor 100.
  • the insulator 274 functions as a dielectric of the capacitor 100.
  • the insulator 280 is preferably provided so as to cover the insulator 274 and the conductor 130.
  • the conductor 130 is preferably formed using a conductive material containing tungsten, copper, or aluminum as a main component. Although not shown, the conductor 130 may have a stacked structure, for example, a stack of titanium, titanium nitride, and the above conductive material.
  • the conductor 252b is in contact with the conductor 130 which is one of the electrodes of the capacitor 100. Since the conductor 252b can be formed at the same time as the conductor 252a, the conductor 252c, and the conductor 252d, the process can be shortened.
  • a substrate over which the transistor 200 is formed for example, an insulator substrate, a semiconductor substrate, or a conductor substrate may be used.
  • the insulator substrate include a glass substrate, a quartz substrate, a sapphire substrate, a stabilized zirconia substrate (such as a yttria stabilized zirconia substrate), and a resin substrate.
  • the semiconductor substrate include a semiconductor substrate made of silicon or germanium, or a compound semiconductor substrate made of silicon carbide, silicon germanium, gallium arsenide, indium phosphide, zinc oxide, or gallium oxide.
  • there is a semiconductor substrate having an insulator region inside the semiconductor substrate for example, an SOI (Silicon On Insulator) substrate.
  • the conductor substrate examples include a graphite substrate, a metal substrate, an alloy substrate, and a conductive resin substrate.
  • a substrate having a metal nitride examples include a substrate having a metal oxide, and the like.
  • a substrate in which a conductor or a semiconductor is provided on an insulator substrate examples include a substrate in which a conductor or an insulator is provided on a semiconductor substrate, a substrate in which a semiconductor or an insulator is provided on a conductor substrate, and the like.
  • a substrate in which an element is provided may be used.
  • the element provided on the substrate include a capacitor element, a resistor element, a switch element, a light emitting element, and a memory element.
  • a flexible substrate may be used as the substrate.
  • a method for providing a transistor over a flexible substrate there is a method in which after a transistor is formed over a non-flexible substrate, the transistor is peeled off and transferred to a substrate which is a flexible substrate.
  • a separation layer is preferably provided between the non-flexible substrate and the transistor.
  • the substrate may have elasticity.
  • the substrate may have a property of returning to the original shape when bending or pulling is stopped. Or you may have a property which does not return to an original shape.
  • the substrate has a region having a thickness of, for example, 5 ⁇ m to 700 ⁇ m, preferably 10 ⁇ m to 500 ⁇ m, more preferably 15 ⁇ m to 300 ⁇ m.
  • a semiconductor device including a transistor can be reduced in weight. Further, by making the substrate thin, it may have elasticity even when glass or the like is used, or may have a property of returning to its original shape when bending or pulling is stopped. Therefore, an impact applied to the semiconductor device on the substrate due to dropping or the like can be reduced. That is, a durable semiconductor device can be provided.
  • the substrate which is a flexible substrate for example, metal, alloy, resin or glass, or fiber thereof can be used. Further, as the substrate, a sheet woven with fibers, a film, a foil, or the like may be used.
  • a substrate that is a flexible substrate is preferably as the linear expansion coefficient is lower because deformation due to the environment is suppressed.
  • the substrate which is a flexible substrate for example, a material having a linear expansion coefficient of 1 ⁇ 10 ⁇ 3 / K or less, 5 ⁇ 10 ⁇ 5 / K or less, or 1 ⁇ 10 ⁇ 5 / K or less may be used.
  • the resin include polyester, polyolefin, polyamide (such as nylon and aramid), polyimide, polycarbonate, and acrylic. In particular, since aramid has a low coefficient of linear expansion, it is suitable as a substrate that is a flexible substrate.
  • Insulator examples include an insulating oxide, nitride, oxynitride, nitride oxide, metal oxide, metal oxynitride, and metal nitride oxide.
  • a high-k material having a high relative dielectric constant is used for the insulator that functions as a gate insulator, so that transistors can be miniaturized and highly integrated. Become.
  • an insulator functioning as an interlayer film a parasitic capacitance generated between wirings can be reduced by using a material having a low relative dielectric constant as an interlayer film. Therefore, the material may be selected according to the function of the insulator.
  • Insulators having a high relative dielectric constant include aluminum oxide, gallium oxide, hafnium oxide, zirconium oxide, aluminum and hafnium-containing oxides, aluminum and hafnium-containing oxynitrides, silicon and hafnium-containing oxides, silicon And oxynitride having hafnium or nitride having silicon and hafnium.
  • Insulators having a low dielectric constant include silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, Examples include silicon oxide or resin having holes.
  • silicon oxide and silicon oxynitride are thermally stable. Therefore, for example, by combining with a resin, a laminated structure having a thermally stable and low relative dielectric constant can be obtained.
  • the resin include polyester, polyolefin, polyamide (such as nylon and aramid), polyimide, polycarbonate, and acrylic.
  • silicon oxide and silicon oxynitride can be combined with an insulator having a high relative dielectric constant to provide a thermally stable and high stacked dielectric structure.
  • a transistor including an oxide semiconductor can be stabilized in electrical characteristics of the transistor by being surrounded by an insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen.
  • Examples of the insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen include boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, and zirconium.
  • An insulator containing lanthanum, neodymium, hafnium, or tantalum may be used as a single layer or a stacked layer.
  • an insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen
  • a metal oxide such as tantalum oxide, silicon nitride oxide, silicon nitride, or the like can be used.
  • an insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen may be used as the insulator 222 and the insulator 210.
  • the insulator 222 and the insulator 210 can be formed using an insulator containing one or both of aluminum and hafnium.
  • the insulator containing one or both of aluminum and hafnium aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used.
  • Examples of the insulator 220, the insulator 224, the insulator 250, and the insulator 271 include boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium,
  • An insulator containing zirconium, lanthanum, neodymium, hafnium, or tantalum may be used as a single layer or a stacked layer.
  • silicon oxide, silicon oxynitride, or silicon nitride is preferably included.
  • the insulator 224 and the insulator 250 that function as gate insulators have a structure in which aluminum oxide, gallium oxide, hafnium aluminate, or hafnium oxide is in contact with the oxide 230, so that silicon oxide or silicon oxynitride is included. It is possible to prevent silicon to be mixed into the oxide 230.
  • the insulator 224 and the insulator 250 by using silicon oxide or silicon oxynitride in contact with the oxide 230, aluminum oxide, gallium oxide, hafnium aluminate, or hafnium oxide, and silicon oxide or silicon oxynitride In some cases, a trap center is formed at the interface. In some cases, the trap center can change the threshold voltage of the transistor in the positive direction by capturing electrons.
  • the insulator 274 functioning as a dielectric includes silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, aluminum oxide, aluminum oxynitride, aluminum nitride oxide, aluminum nitride, hafnium oxide, hafnium oxynitride, and hafnium nitride oxide
  • hafnium nitride, hafnium aluminate, or the like may be used.
  • a stacked structure of a high-k material such as aluminum oxide and a material with high dielectric strength such as silicon oxynitride is preferable.
  • the capacitive element 100 can secure a sufficient capacity with the high-k material, and the dielectric strength is improved with a material having a high dielectric strength. Therefore, electrostatic breakdown of the capacitive element 100 is suppressed, and the reliability of the capacitive element 100 is improved. Can be improved.
  • the insulator 208, the insulator 212, the insulator 216, and the insulator 280 preferably include an insulator with a low relative dielectric constant.
  • the insulator 208, the insulator 212, the insulator 216, and the insulator 280 include silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide added with fluorine, silicon oxide added with carbon, carbon, and It is preferable to include silicon oxide to which nitrogen is added, silicon oxide having holes, or a resin.
  • the insulator 208, the insulator 212, the insulator 216, and the insulator 280 are formed using silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, fluorine-added silicon oxide, carbon-added silicon oxide, carbon, and the like. It is preferable to have a stacked structure of silicon oxide to which nitrogen is added or silicon oxide having holes and a resin. Since silicon oxide and silicon oxynitride are thermally stable, a laminated structure having a low thermal stability and a low relative dielectric constant can be obtained by combining with silicon. Examples of the resin include polyester, polyolefin, polyamide (such as nylon and aramid), polyimide, polycarbonate, and acrylic.
  • an insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen may be used.
  • the insulator 270 and the insulator 272 include metal oxides such as aluminum oxide, hafnium oxide, hafnium aluminate, magnesium oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, and tantalum oxide. Silicon nitride oxide, silicon nitride, or the like may be used.
  • Conductor a metal selected from aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, etc.
  • a material containing one or more elements can be used.
  • a semiconductor with high electrical conductivity typified by polycrystalline silicon containing an impurity element such as phosphorus, or silicide such as nickel silicide may be used.
  • a plurality of conductive layers formed using the above materials may be stacked.
  • a stacked structure in which the above-described material containing a metal element and a conductive material containing oxygen may be combined.
  • a stacked structure in which the above-described material containing a metal element and a conductive material containing nitrogen are combined may be employed.
  • a stacked structure of a combination of the above-described material containing a metal element, a conductive material containing oxygen, and a conductive material containing nitrogen may be employed.
  • the conductor functioning as the gate electrode has a stacked structure in which the above-described material containing a metal element and the conductive material containing oxygen are combined. Is preferred.
  • a conductive material containing oxygen is preferably provided on the channel formation region side.
  • a conductive material containing oxygen and a metal element contained in a metal oxide in which a channel is formed is preferably used as the conductor functioning as a gate electrode.
  • the above-described conductive material containing a metal element and nitrogen may be used.
  • a conductive material containing nitrogen such as titanium nitride or tantalum nitride may be used.
  • indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, silicon were added Indium tin oxide may be used.
  • indium gallium zinc oxide containing nitrogen may be used.
  • the conductor 260, the conductor 205, the conductor 203, the conductor 207, the conductor 209, the conductor 130, the conductor 252, and the conductor 256 aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel
  • a material containing one or more metal elements selected from titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, and the like can be used.
  • a semiconductor with high electrical conductivity typified by polycrystalline silicon containing an impurity element such as phosphorus, or silicide such as nickel silicide may be used.
  • a metal oxide functioning as an oxide semiconductor (hereinafter also referred to as an oxide semiconductor) is preferably used.
  • an oxide semiconductor a metal oxide functioning as an oxide semiconductor
  • the metal oxide applicable to the oxide 230 which concerns on this invention is demonstrated.
  • the oxide semiconductor preferably contains at least indium or zinc. In particular, it is preferable to contain indium and zinc. In addition to these, it is preferable that aluminum, gallium, yttrium, tin, or the like is contained. Further, one or more selected from boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, or the like may be included.
  • the oxide semiconductor is an In-M-Zn oxide containing indium, the element M, and zinc is considered.
  • the element M is aluminum, gallium, yttrium, tin, or the like.
  • Other elements applicable to the element M include boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, and magnesium.
  • the element M may be a combination of a plurality of the aforementioned elements.
  • metal oxides containing nitrogen may be collectively referred to as metal oxides.
  • a metal oxide containing nitrogen may be referred to as a metal oxynitride.
  • An oxide semiconductor is classified into a single crystal oxide semiconductor and a non-single-crystal oxide semiconductor.
  • a non-single-crystal oxide semiconductor for example, a polycrystalline oxide semiconductor and an amorphous oxide semiconductor are known.
  • the oxide semiconductor used for the semiconductor of the transistor a thin film with high crystallinity is preferably used.
  • the stability or reliability of the transistor can be improved.
  • the thin film include a single crystal oxide semiconductor thin film and a polycrystalline oxide semiconductor thin film.
  • a high temperature or laser heating step is required in order to form a single crystal oxide semiconductor thin film or a polycrystalline oxide semiconductor thin film on a substrate. Therefore, the cost of the manufacturing process increases and the throughput also decreases.
  • Non-Patent Document 1 Non-Patent Document 1
  • Non-Patent Document 2 An In—Ga—Zn oxide having a CAAC structure
  • CAAC-IGZO In—Ga—Zn oxide having a CAAC structure
  • nc-IGZO In 2013, an In—Ga—Zn oxide having an nc structure (referred to as nc-IGZO) was discovered (see Non-Patent Document 3). Here, it is reported that nc-IGZO has periodicity in atomic arrangement in a minute region (for example, a region of 1 nm or more and 3 nm or less), and regularity is not observed in crystal orientation between different regions. Yes.
  • Non-Patent Document 4 and Non-Patent Document 5 show the transition of the average crystal size by irradiation of electron beams with respect to the thin films of the above-mentioned CAAC-IGZO, nc-IGZO, and IGZO having low crystallinity.
  • a complete amorphous structure could not be confirmed in IGZO.
  • CAAC-IGZO thin film and the nc-IGZO thin film have higher stability against electron beam irradiation than the low crystalline IGZO thin film. Therefore, a CAAC-IGZO thin film or an nc-IGZO thin film is preferably used as a semiconductor of the transistor.
  • a transistor including an oxide semiconductor has a very small leakage current in a non-conducting state. Specifically, an off-current per 1 ⁇ m channel width of the transistor is on the order of yA / ⁇ m (10 ⁇ 24 A / ⁇ m).
  • yA / ⁇ m 10 ⁇ 24 A / ⁇ m.
  • Non-Patent Document 8 an application of a transistor using an oxide semiconductor to a display device using a characteristic that leakage current of the transistor is low has been reported (see Non-Patent Document 8).
  • the displayed image is switched several tens of times per second.
  • the number of switching of images per second is called a refresh rate.
  • the refresh rate may be referred to as a drive frequency.
  • Such high-speed screen switching that is difficult for human eyes to perceive is considered as a cause of eye fatigue.
  • power consumption of the display device can be reduced by driving at a reduced refresh rate.
  • Such a driving method is called idling stop (IDS) driving.
  • IDS idling stop
  • the discovery of the CAAC structure and the nc structure contributes to improvement in electrical characteristics and reliability of a transistor including an oxide semiconductor having a CAAC structure or an nc structure, and a reduction in manufacturing process cost and throughput.
  • research on application of the transistor to a display device and an LSI utilizing the characteristic that the leakage current of the transistor is low is underway.
  • composition of metal oxide A structure of a CAC (Cloud-Aligned Composite) -OS that can be used for the transistor disclosed in one embodiment of the present invention is described below.
  • CAAC c-axis aligned crystal
  • CAC Cloud-aligned Composite
  • CAC-OS or CAC-metal oxide has a conductive function in part of a material and an insulating function in part of the material, and the whole material has a function as a semiconductor.
  • the conductive function is a function of flowing electrons (or holes) serving as carriers
  • the insulating function is an electron serving as carriers. It is a function that does not flow.
  • a function of switching (a function of turning on / off) can be imparted to CAC-OS or CAC-metal oxide by causing the conductive function and the insulating function to act complementarily.
  • CAC-OS or CAC-metal oxide by separating each function, both functions can be maximized.
  • the CAC-OS or the CAC-metal oxide has a conductive region and an insulating region.
  • the conductive region has the above-described conductive function
  • the insulating region has the above-described insulating function.
  • the conductive region and the insulating region may be separated at the nanoparticle level.
  • the conductive region and the insulating region may be unevenly distributed in the material, respectively.
  • the conductive region may be observed with the periphery blurred and connected in a cloud shape.
  • the conductive region and the insulating region are dispersed in the material with a size of 0.5 nm to 10 nm, preferably 0.5 nm to 3 nm, respectively. There is.
  • CAC-OS or CAC-metal oxide is composed of components having different band gaps.
  • CAC-OS or CAC-metal oxide includes a component having a wide gap caused by an insulating region and a component having a narrow gap caused by a conductive region.
  • the carrier when the carrier flows, the carrier mainly flows in the component having the narrow gap.
  • the component having a narrow gap acts in a complementary manner to the component having a wide gap, and the carrier flows through the component having the wide gap in conjunction with the component having the narrow gap. Therefore, when the CAC-OS or the CAC-metal oxide is used for a channel formation region of a transistor, high current driving force, that is, high on-state current and high field-effect mobility can be obtained in the on-state of the transistor.
  • CAC-OS or CAC-metal oxide can also be called a matrix composite material (metal matrix composite) or a metal matrix composite material (metal matrix composite).
  • An oxide semiconductor is classified into a single crystal oxide semiconductor and a non-single-crystal oxide semiconductor.
  • the non-single-crystal oxide semiconductor include a CAAC-OS (c-axis aligned crystal oxide semiconductor), a polycrystalline oxide semiconductor, an nc-OS (nanocrystalline oxide semiconductor), and a pseudo-amorphous oxide semiconductor (a-like oxide semiconductor).
  • OS amorphous-like oxide semiconductor) and amorphous oxide semiconductor.
  • the CAAC-OS has a c-axis orientation and a crystal structure in which a plurality of nanocrystals are connected in the ab plane direction and have a strain.
  • the strain refers to a portion where the orientation of the lattice arrangement changes between a region where the lattice arrangement is aligned and a region where another lattice arrangement is aligned in a region where a plurality of nanocrystals are connected.
  • Nanocrystals are based on hexagons, but are not limited to regular hexagons and may be non-regular hexagons.
  • a lattice arrangement such as a pentagon and a heptagon in the distortion.
  • a clear crystal grain boundary also referred to as a grain boundary
  • the formation of crystal grain boundaries is suppressed by the distortion of the lattice arrangement. This is because the CAAC-OS can tolerate distortion due to the fact that the arrangement of oxygen atoms is not dense in the ab plane direction and the bond distance between atoms changes due to substitution of metal elements. This is probably because of this.
  • the CAAC-OS includes a layered crystal in which a layer containing indium and oxygen (hereinafter referred to as In layer) and a layer including elements M, zinc, and oxygen (hereinafter referred to as (M, Zn) layers) are stacked.
  • In layer a layer containing indium and oxygen
  • M, Zn elements M, zinc, and oxygen
  • indium and the element M can be replaced with each other, and when the element M in the (M, Zn) layer is replaced with indium, it can also be expressed as an (In, M, Zn) layer. Further, when indium in the In layer is replaced with the element M, it can also be expressed as an (In, M) layer.
  • the CAAC-OS is an oxide semiconductor with high crystallinity.
  • CAAC-OS cannot confirm a clear crystal grain boundary, it can be said that a decrease in electron mobility due to the crystal grain boundary hardly occurs.
  • the CAAC-OS can be said to be an oxide semiconductor with few impurities and defects (such as oxygen vacancies). Therefore, the physical properties of the oxide semiconductor including a CAAC-OS are stable. Therefore, an oxide semiconductor including a CAAC-OS is resistant to heat and has high reliability.
  • the nc-OS has periodicity in atomic arrangement in a minute region (for example, a region of 1 nm to 10 nm, particularly a region of 1 nm to 3 nm).
  • the nc-OS has no regularity in crystal orientation between different nanocrystals. Therefore, orientation is not seen in the whole film. Therefore, the nc-OS may not be distinguished from an a-like OS or an amorphous oxide semiconductor depending on an analysis method.
  • the a-like OS is an oxide semiconductor having a structure between the nc-OS and the amorphous oxide semiconductor.
  • the a-like OS has a void or a low density region. That is, the a-like OS has lower crystallinity than the nc-OS and the CAAC-OS.
  • Oxide semiconductors have various structures and different properties.
  • the oxide semiconductor of one embodiment of the present invention may include two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, an nc-OS, and a CAAC-OS.
  • the oxide semiconductor for a transistor, a transistor with high field-effect mobility can be realized. In addition, a highly reliable transistor can be realized.
  • an oxide semiconductor with low carrier density is preferably used.
  • the impurity concentration in the oxide semiconductor film may be decreased and the defect level density may be decreased.
  • a low impurity concentration and a low density of defect states are referred to as high purity intrinsic or substantially high purity intrinsic.
  • the oxide semiconductor has a carrier density of less than 8 ⁇ 10 11 / cm 3 , preferably less than 1 ⁇ 10 11 / cm 3 , more preferably less than 1 ⁇ 10 10 / cm 3 , and 1 ⁇ 10 ⁇ 9 / What is necessary is just to be cm 3 or more.
  • a highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor film has a low density of defect states, and thus may have a low density of trap states.
  • the charge trapped in the trap level of the oxide semiconductor takes a long time to disappear, and may behave as if it were a fixed charge. Therefore, a transistor in which a channel is formed in an oxide semiconductor with a high trap state density may have unstable electrical characteristics.
  • Impurities include hydrogen, nitrogen, alkali metal, alkaline earth metal, iron, nickel, silicon, and the like.
  • the concentration of silicon or carbon in the oxide semiconductor and the concentration of silicon or carbon in the vicinity of the interface with the oxide semiconductor are 2 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 17 atoms / cm 3 or less.
  • the oxide semiconductor contains an alkali metal or an alkaline earth metal
  • a defect level is formed and carriers may be generated in some cases. Therefore, a transistor including an oxide semiconductor containing an alkali metal or an alkaline earth metal is likely to be normally on. Therefore, it is preferable to reduce the concentration of alkali metal or alkaline earth metal in the oxide semiconductor.
  • the concentration of alkali metal or alkaline earth metal in the oxide semiconductor obtained by SIMS is set to 1 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 16 atoms / cm 3 or less.
  • the nitrogen in the oxide semiconductor is preferably reduced as much as possible.
  • the nitrogen concentration in the oxide semiconductor is less than 5 ⁇ 10 19 atoms / cm 3 , preferably 5 ⁇ 10 18 atoms / cm 3 or less, more preferably 1 ⁇ 10 18 atoms / cm 3 or less in SIMS. Preferably, it is 5 ⁇ 10 17 atoms / cm 3 or less.
  • the oxide semiconductor reacts with oxygen bonded to a metal atom to become water, so that an oxygen vacancy may be formed in some cases.
  • an oxygen vacancy may be formed in some cases.
  • electrons serving as carriers may be generated.
  • a part of hydrogen may be combined with oxygen bonded to a metal atom to generate electrons as carriers. Therefore, a transistor including an oxide semiconductor containing hydrogen is likely to be normally on. For this reason, it is preferable that hydrogen in the oxide semiconductor be reduced as much as possible.
  • the hydrogen concentration obtained by SIMS is less than 1 ⁇ 10 20 atoms / cm 3 , preferably less than 1 ⁇ 10 19 atoms / cm 3 , more preferably 5 ⁇ 10 18 atoms / cm 3. Less than 3 , more preferably less than 1 ⁇ 10 18 atoms / cm 3 .
  • FIG. 4A is a top view of the transistor 201.
  • 4B, 4C, and 4D are cross-sectional views of the transistor 201.
  • FIG. 4B is a cross-sectional view taken along dashed-dotted line AB in FIG. 4A and a cross-sectional view in the channel length direction of the transistor 200.
  • FIG. 4C is a cross-sectional view taken along dashed-dotted line CD in FIG. 4A and also a cross-sectional view of the transistor 200 in the channel width direction.
  • FIG. 4D is a cross-sectional view taken along the dashed line EF in FIG. 4A.
  • connection portion between the oxide 230 and the conductor 203, the conductor 252b, and the oxidation It is also a cross-sectional view showing a connection portion with the object 230. In the top view of FIG. 4A, some elements are omitted for clarity.
  • the structure of the transistor 201 will be described with reference to FIGS. Note that in this item as well, the material described in detail in ⁇ Structure Example 1 of Semiconductor Device> can be used as the constituent material of the transistor 201.
  • a conductor 285 functioning as a source electrode or a drain electrode is provided over the oxide 230b.
  • An insulator 286 is provided over the conductor 285.
  • a material similar to that of the conductor 203, the conductor 205, or the conductor 260 can be used.
  • tantalum nitride or tungsten is preferably used as the conductor 285.
  • the insulator 286 can be formed using a material similar to that of the insulator 270 or the insulator 272.
  • the insulator 286 it is preferable to use aluminum oxide as the insulator 286.
  • the channel length of the transistor 201 is determined depending on the length between the conductors 285, the channel length of the transistor 201 is unintentionally increased due to oxidation of the ends of the opposing conductors 285. May occur.
  • the insulator 286 is preferably provided.
  • the low-resistance region of the oxide 230b is electrically connected to the conductor 203 through an opening provided in the insulator 220, the insulator 222, the insulator 224, and the oxide 230a.
  • An oxide 230c, an oxide 230d, an insulator 250, a conductor 260, and an insulator 270 are provided so as to cover the oxide 230b, the conductor 285, and part of the insulator 286.
  • the conductor 260 has the width in the AB direction and the length in the CD direction as shown in FIGS. 4A, 4B, and 4C, and has an oxide 230c. It is smaller than the object 230d, the insulator 250, and the insulator 270. Therefore, the insulator 270 has a structure in which the top surface and the side surface of the insulator 250 are covered and the insulator 250 is in contact with the outside of the conductor 260. Since the insulator 270 is formed using a material that suppresses permeation of oxygen, the insulator 270 thus provided can suppress the oxidation of the conductor 260 and suppress an increase in electrical resistance.
  • a material similar to that of the oxide 230b can be used for the oxide 230c.
  • a material similar to that of the oxide 230c can be used. Note that the oxide 230c is not necessarily formed.
  • a channel is formed in a region between the pair of conductors 285 or the pair of low resistance regions in the oxides 230b and 230c.
  • An insulator 287 and an insulator 288 are formed over the insulator 280.
  • an oxide insulator formed by a sputtering method is preferably used.
  • aluminum oxide, hafnium oxide, or hafnium aluminate is preferably used.
  • oxygen can be added to the insulator 280 through a surface of the insulator 280 that is in contact with the insulator 287, so that the insulator 280 is in an oxygen-excess state. Oxygen supplied to the insulator 280 is supplied to the oxide 230.
  • oxygen added to the insulator 224 and the insulator 280 can move upward during film formation. Diffusion can be suppressed. Thereby, oxygen can be added to the insulator 280 more efficiently.
  • the insulator 288 can be formed using a material similar to that of the insulator 208, the insulator 216, and the insulator 280.
  • the insulators such as the insulator 280, the insulator 287, and the insulator 288 are provided with openings.
  • a conductor 252 (a conductor 252a, a conductor 252b, a conductor 252c, and a conductor 252d) is provided.
  • An insulator 289 is provided between the conductor 252 and the insulator such as the insulator 280, the insulator 287, and the insulator 288.
  • the insulator 289 can be formed using a material similar to that of the insulator 270 and suppresses entry of impurities into the oxide 230 from the insulator 280 and an upper insulator or conductor.
  • the conductor 252 a not only be in contact with the conductor 285 over the oxide 230 but also be in contact with a side surface of the oxide 230 to be electrically connected to the oxide 230.
  • the conductor 252a is preferably in contact with both or one of the side surface on the C side and the side surface on the D side on the side surface intersecting the channel width direction of the oxide 230.
  • the conductor 252a may be in contact with the side surface on the A side at the side surface intersecting the channel length direction of the oxide 230.
  • the conductor 252a is in contact with the side surface of the oxide 230 in addition to the conductor 285, so that the contact between the conductor 252a and the oxide 230 can be increased without increasing the area of the contact portion.
  • the area can be increased and the contact resistance between the conductor 252a and the oxide 230 can be reduced.
  • the on-current can be increased while miniaturizing the source electrode and the drain electrode of the transistor.
  • FIG. 4D illustrates a cross section of a connection portion between the oxide 230 and the conductor 203 and a connection portion between the conductor 252b and the oxide 230.
  • the oxide 230b is electrically connected to the conductor 203 through an opening provided in the insulator 220, the insulator 222, the insulator 224, and the oxide 230a.
  • the conductor 252b may have a structure in contact with not only the upper surface of the conductor 285 but also the side surface of the oxide 230, like the conductor 252a described above.
  • the oxide 230a and the oxide 230b include an opening formed in the insulator 220, the insulator 222, the insulator 224, and the oxide 230a.
  • the width in the EF direction in the region overlapping with the opening is wider than the width of the opening. Therefore, the width in the E-F direction of the oxide 230a and the oxide 230b in the region is the width in the CD direction of the oxide 230a and the oxide 230b in the region where the channel is formed or the region on the A side. May be wider. With such a structure, the oxide 230b and the conductor 203 can be reliably in contact with each other.
  • FIGS. 5 to 22 a method for manufacturing a semiconductor device including the transistor 200 according to the present invention will be described with reference to FIGS. 5 to 22,
  • (B) of each figure is sectional drawing corresponding to the site
  • (C) of each figure is sectional drawing corresponding to the site
  • (D) of each figure is sectional drawing corresponding to the site
  • a substrate (not shown) is prepared, and an insulator 208 is formed over the substrate.
  • the insulator 208 is formed by a sputtering method, a chemical vapor deposition (CVD) method, a molecular beam epitaxy (MBE) method, a pulsed laser deposition (PLD) method, or an ALD (ALD) method. (Atomic Layer Deposition) method or the like can be used.
  • the CVD method can be classified into a plasma CVD (PECVD: Plasma Enhanced CVD) method using plasma, a thermal CVD (TCVD: Thermal CVD) method using heat, a photo CVD (Photo CVD) method using light, and the like.
  • PECVD Plasma Enhanced CVD
  • TCVD Thermal CVD
  • Photo CVD Photo CVD
  • MCVD Metal CVD
  • MOCVD Metal Organic CVD
  • the thermal CVD method is a film formation method that can reduce plasma damage to an object to be processed because plasma is not used.
  • a wiring, an electrode, an element (a transistor, a capacitor, or the like) included in the semiconductor device may be charged up by receiving electric charge from plasma.
  • a wiring, an electrode, an element, or the like included in the semiconductor device may be destroyed by the accumulated charge.
  • plasma damage during film formation does not occur, so that a film with few defects can be obtained.
  • the ALD method is also a film forming method that can reduce plasma damage to an object to be processed.
  • the ALD method does not cause plasma damage during film formation, a film with few defects can be obtained.
  • the CVD method and the ALD method are film forming methods in which a film is formed by a reaction on the surface of an object to be processed, unlike a film forming method in which particles emitted from a target or the like are deposited. Therefore, it is a film forming method that is not easily affected by the shape of the object to be processed and has good step coverage.
  • the ALD method has excellent step coverage and excellent thickness uniformity, and thus is suitable for covering the surface of an opening having a high aspect ratio.
  • the ALD method since the ALD method has a relatively low film formation rate, it may be preferable to use it in combination with another film formation method such as a CVD method with a high film formation rate.
  • the composition of the obtained film can be controlled by the flow rate ratio of the source gases.
  • a film having an arbitrary composition can be formed depending on the flow rate ratio of the source gases.
  • a film whose composition is continuously changed can be formed by changing the flow rate ratio of the source gas while forming the film.
  • a silicon oxide film is formed as the insulator 208 by a CVD method.
  • the insulator 210 is formed over the insulator 208.
  • an aluminum oxide film is formed as the insulator 210 by a sputtering method.
  • the insulator 210 may have a multilayer structure.
  • an aluminum oxide film may be formed by a sputtering method, and an aluminum oxide film may be formed on the aluminum oxide by an ALD method.
  • a structure in which an aluminum oxide film is formed by an ALD method and an aluminum oxide film is formed on the aluminum oxide by a sputtering method may be employed.
  • a conductive film 203 ⁇ / b> A and a conductive film 203 ⁇ / b> B are sequentially formed over the insulator 210.
  • the conductive films 203A and 203B can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • tungsten is formed by a sputtering method as the conductive film 203A
  • titanium nitride is formed by a sputtering method as the conductive film 203B.
  • a conductor such as aluminum or copper can be used in addition to tungsten.
  • the conductive film 203B is preferably formed using a material having oxidation resistance (difficult to oxidize) more than the conductive film 203A.
  • a metal nitride can be used.
  • tantalum nitride or the like can be used in addition to titanium nitride.
  • a mask 262 is formed over the conductive film 203B by a lithography method (see FIG. 5).
  • a resist is exposed through a mask.
  • a resist mask is formed by removing or leaving the exposed region using a developer.
  • a conductor, a semiconductor, an insulator, or the like can be processed into a desired shape by etching through the resist mask.
  • the resist mask may be formed by exposing the resist using KrF excimer laser light, ArF excimer laser light, EUV (Extreme Ultra violet) light, or the like.
  • an immersion technique may be used in which exposure is performed by filling a liquid (for example, water) between the substrate and the projection lens.
  • an electron beam or an ion beam may be used.
  • a mask is not necessary when an electron beam or an ion beam is used.
  • the resist mask can be removed by performing a dry etching process such as ashing, performing a wet etching process, performing a wet etching process after the dry etching process, or performing a dry etching process after the wet etching process.
  • a hard mask made of an insulator or a conductor may be used instead of the resist mask.
  • an insulating film or a conductive film to be a hard mask material is formed over the conductive film 203B, a resist mask is formed thereover, and the hard mask material is etched to form a hard mask having a desired shape. can do.
  • the conductive film 203A and the conductive film 203B are processed using the mask 262 so that the conductor 203a, the conductor 203b including the conductor 203b over the conductor 203a, the conductor 205a, and the conductor 205a are formed.
  • a conductor 205 made of the conductor 205b is formed (see FIG. 6).
  • a dry etching method or a wet etching method can be used for the processing. Processing by the dry etching method is suitable for fine processing.
  • a capacitively coupled plasma (CCP) etching apparatus having parallel plate electrodes can be used as the dry etching apparatus.
  • the capacitively coupled plasma etching apparatus having parallel plate electrodes may be configured to apply a high frequency power source to one of the parallel plate electrodes.
  • a configuration in which a plurality of different high-frequency power sources are applied to one electrode of the parallel plate electrode may be employed.
  • mold electrode may be sufficient.
  • mold electrode may be sufficient.
  • a dry etching apparatus having a high-density plasma source can be used.
  • an inductively coupled plasma (ICP) etching apparatus can be used as the dry etching apparatus having a high-density plasma source.
  • the etching treatment may be performed after the resist mask used for forming the hard mask is removed or may be performed while the resist mask is left. Also good. In the latter case, the resist mask may disappear during etching.
  • the hard mask may be removed by etching after the conductive film is etched.
  • the material of the hard mask does not affect the subsequent process or can be used in the subsequent process, it is not always necessary to remove the hard mask.
  • an insulating film 216A is formed over the insulator 210, the conductor 203, and the conductor 205 (see FIG. 7).
  • the insulating film 216A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • silicon oxide is formed as the insulating film 216A by a CVD method.
  • a part of the insulating film 216 ⁇ / b> A is removed by performing CMP treatment, and the conductor 203 and the conductor 205 are exposed.
  • the insulator 216 remains between and around the conductor 203 and the conductor 205.
  • the insulator 216, the conductor 203, and the conductor 205 having a flat upper surface can be formed (see FIG. 8). Note that in some cases, the conductor 203b and part of the conductor 205b are removed by the CMP treatment.
  • the insulator 220 is formed over the insulator 216, the conductor 203, and the conductor 205.
  • the insulator 220 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the insulator 222 is formed over the insulator 220.
  • the insulator 222 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • an insulator including one or both of aluminum and hafnium is preferably used.
  • the insulator containing one or both of aluminum and hafnium aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used.
  • the insulator 222 is preferably formed by an ALD method.
  • the insulator 222 formed by the ALD method has a barrier property against oxygen, hydrogen, and water. Since the insulator 222 has a barrier property against hydrogen and water, hydrogen and water contained in a structure provided around the transistor 200 do not diffuse inside the transistor 200 and are contained in the oxide 230. Generation of oxygen vacancies can be suppressed.
  • the insulator 224 is formed over the insulator 222.
  • the insulator 224 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like (see FIG. 9).
  • heat treatment is preferably performed.
  • the heat treatment may be performed at 250 ° C to 650 ° C, preferably 300 ° C to 500 ° C, more preferably 320 ° C to 450 ° C.
  • the first heat treatment is performed in a nitrogen or inert gas atmosphere or an atmosphere containing an oxidizing gas of 10 ppm or more, 1% or more, or 10% or more.
  • the first heat treatment may be performed in a reduced pressure state.
  • heat treatment is performed in an atmosphere containing an oxidizing gas of 10 ppm or more, 1% or more, or 10% or more in order to supplement the desorbed oxygen. May be.
  • impurities such as hydrogen and water contained in the insulator 224 can be removed.
  • plasma treatment containing oxygen in a reduced pressure state may be performed as the heat treatment.
  • the plasma treatment including oxygen it is preferable to use an apparatus having a power source that generates high-density plasma using microwaves, for example.
  • a power source for applying RF (Radio Frequency) may be provided on the substrate side.
  • High-density oxygen radicals can be generated by using high-density plasma, and oxygen radicals generated by high-density plasma can be efficiently guided into the insulator 224 by applying RF to the substrate side.
  • plasma treatment containing oxygen may be performed to supplement oxygen that has been desorbed after performing plasma treatment containing an inert gas using this apparatus. Note that the first heat treatment may not be performed.
  • the heat treatment can also be performed after the insulator 220 is formed and after the insulator 222 is formed. Although the above heat treatment conditions can be used for the heat treatment, the heat treatment after the formation of the insulator 220 is preferably performed in an atmosphere containing nitrogen.
  • treatment is performed for 1 hour at a temperature of 400 ° C. in a nitrogen atmosphere after the insulator 224 is formed.
  • an oxide film 230A to be the oxide 230a is formed over the insulator 224.
  • the oxide film 230A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the oxide film 230A is formed by a sputtering method
  • oxygen or a mixed gas of oxygen and a rare gas is used as a sputtering gas.
  • excess oxygen in the oxide film to be formed can be increased.
  • the oxide film is formed by a sputtering method
  • the In-M-Zn oxide target can be used.
  • part of oxygen contained in the sputtering gas may be supplied to the insulator 224 when the oxide film 230A is formed.
  • the ratio of oxygen contained in the sputtering gas of the oxide film 230A may be 70% or more, preferably 80% or more, and more preferably 100%.
  • an opening reaching the conductor 203 is formed in the insulator 220, the insulator 222, the insulator 224, and the oxide film 230A by using a lithography method.
  • a mask 263 is formed over the oxide film 230A (see FIG. 9).
  • the mask 263 used for forming the opening may be a resist mask or a hard mask.
  • the insulator 220, the insulator 222, the insulator 224, and the oxide film 230A are processed using the mask 263 to expose the surface of the conductor 203, whereby an opening is formed (see FIG. 10). ).
  • a dry etching method or a wet etching method can be used. Processing by the dry etching method is suitable for fine processing. Note that the insulator 220, the insulator 222, and the insulator 224 are processed through the oxide film 230A.
  • a mask made of a resist mask, a hard mask, or the like is formed over the oxide film 230A, and then the insulator 220, the insulator 222, the insulator 224, Then, the oxide film 230A is processed. That is, a mask is not formed on the surface of the insulator (insulator 220, insulator 222, and insulator 224) functioning as a gate insulating film.
  • the gate insulation is caused by impurities contained in the resist mask, components contained in the hard mask, and components contained in the chemical solution or plasma used for mask removal Contamination and damage of the film can be suppressed. With such a process, a method for manufacturing a highly reliable semiconductor device can be provided.
  • an oxide film 230B is formed over the oxide film 230A (see FIG. 11). At this time, the oxide film 230B is also formed inside the opening and is electrically connected to the conductor 203 through the opening. With the structure in which the oxide 230b and the conductor 203 are connected without the oxide 230a interposed therebetween, series resistance and contact resistance can be reduced. With such a configuration, a semiconductor device with good electrical characteristics can be obtained. More specifically, a transistor with improved on-state current and a semiconductor device using the transistor can be obtained.
  • the oxide film 230B can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the oxide film 230B is formed by a sputtering method
  • oxygen or a mixed gas of oxygen and a rare gas is used as a sputtering gas.
  • excess oxygen in the oxide film to be formed can be increased.
  • the oxide film is formed by a sputtering method
  • the In-M-Zn oxide target can be used.
  • an oxygen-deficient oxide semiconductor is formed when the proportion of oxygen contained in the sputtering gas is 1% to 30%, preferably 5% to 20%.
  • the A transistor including an oxygen-deficient oxide semiconductor can have a relatively high field-effect mobility.
  • heat treatment may be performed.
  • the heat treatment conditions described above can be used for the heat treatment.
  • impurities such as hydrogen and water in the oxide film 230A and the oxide film 230B can be removed.
  • the processing is continuously performed for one hour at a temperature of 400 ° C. in an oxygen atmosphere.
  • the oxide film 230A and the oxide film 230B are processed into an island shape to form an oxide 230a and an oxide 230b (see FIG. 12).
  • the oxide 230a and the oxide 230b The width in the ⁇ F direction is preferably formed wider than the width of the opening. Therefore, the width in the E-F direction of the oxide 230a and the oxide 230b in the region is the width in the CD direction of the oxide 230a and the oxide 230b in the region where the channel is formed or the region on the A side. May be wider. With such a structure, the oxide 230b and the conductor 203 can be reliably in contact with each other. In addition, the area of the capacitive element 100 can be increased, and an increase in the capacity of the capacitive element 100 can be expected.
  • the insulator 224 may be processed into an island shape. Further, half etching may be performed on the insulator 224. By performing half etching on the insulator 224, the insulator 224 is formed in a state where the insulator 224 remains also under the oxide 230c formed in a later step. Note that the insulator 224 can be processed into an island shape when the insulating film 272A, which is a subsequent step, is processed. In that case, the insulator 222 may be used as an etching stopper film.
  • the oxide 230 a and the oxide 230 b are formed so as to overlap with the conductor 205 at least partially.
  • the side surfaces of the oxide 230 a and the oxide 230 b are preferably substantially perpendicular to the insulator 222. Since the side surfaces of the oxide 230a and the oxide 230b are substantially perpendicular to the insulator 222, when the plurality of transistors 200 are provided, the area can be reduced and the density can be increased.
  • the angle formed between the side surfaces of the oxides 230a and 230b and the top surface of the insulator 222 may be an acute angle. In that case, the angle between the side surfaces of the oxides 230a and 230b and the top surface of the insulator 222 is preferably as large as possible.
  • a curved surface is provided between the side surfaces of the oxides 230a and 230b and the upper surface of the oxide 230b. That is, it is preferable that the end of the side surface and the end of the upper surface are curved (hereinafter also referred to as a round shape).
  • the curved surface has a radius of curvature of 3 nm to 10 nm, preferably 5 nm to 6 nm, for example, at the ends of the oxide 230a and the oxide 230b.
  • membrane coverage in a subsequent film-forming process improves by not having a corner
  • the oxide film may be processed by a lithography method.
  • a dry etching method or a wet etching method can be used for the processing. Processing by the dry etching method is suitable for fine processing.
  • a resist is exposed through a mask.
  • a resist mask is formed by removing or leaving the exposed region using a developer.
  • a conductor, a semiconductor, an insulator, or the like can be processed into a desired shape by etching through the resist mask.
  • the resist mask may be formed by exposing the resist using KrF excimer laser light, ArF excimer laser light, EUV (Extreme Ultra violet) light, or the like.
  • an immersion technique may be used in which exposure is performed by filling a liquid (for example, water) between the substrate and the projection lens.
  • an electron beam or an ion beam may be used.
  • a mask is not necessary when an electron beam or an ion beam is used.
  • the resist mask can be removed by performing a dry etching process such as ashing, performing a wet etching process, performing a wet etching process after the dry etching process, or performing a dry etching process after the wet etching process.
  • a hard mask made of an insulator or a conductor may be used instead of the resist mask.
  • an insulating film or a conductive film to be a hard mask material is formed over the oxide film 230B, a resist mask is formed thereon, and a hard mask having a desired shape is formed by etching the hard mask material. can do.
  • the etching of the oxide film 230A and the oxide film 230B may be performed after removing the resist mask, or may be performed while leaving the resist mask. In the latter case, the resist mask may disappear during etching.
  • the hard mask may be removed by etching after the oxide film is etched.
  • the material of the hard mask does not affect the subsequent process or can be used in the subsequent process, it is not always necessary to remove the hard mask.
  • a capacitively coupled plasma (CCP) etching apparatus having parallel plate electrodes can be used as the dry etching apparatus.
  • the capacitively coupled plasma etching apparatus having parallel plate electrodes may be configured to apply a high frequency power source to one of the parallel plate electrodes.
  • a configuration in which a plurality of different high-frequency power sources are applied to one electrode of the parallel plate electrode may be employed.
  • mold electrode may be sufficient.
  • mold electrode may be sufficient.
  • a dry etching apparatus having a high-density plasma source can be used.
  • an inductively coupled plasma (ICP) etching apparatus can be used as the dry etching apparatus having a high-density plasma source.
  • impurities due to an etching gas or the like may adhere or diffuse on the surface or inside of the oxide 230a, the oxide 230b, or the like.
  • impurities include fluorine and chlorine.
  • Cleaning is performed in order to remove the impurities and the like.
  • the cleaning method include wet cleaning using a cleaning liquid, plasma processing using plasma, cleaning by heat treatment, and the like, and the above cleaning may be performed in combination as appropriate.
  • a cleaning process may be performed using an aqueous solution obtained by diluting oxalic acid, phosphoric acid, hydrofluoric acid, or the like with carbonated water or pure water.
  • a cleaning process may be performed using an aqueous solution obtained by diluting oxalic acid, phosphoric acid, hydrofluoric acid, or the like with carbonated water or pure water.
  • ultrasonic cleaning using pure water or carbonated water may be performed.
  • ultrasonic cleaning using pure water or carbonated water is performed.
  • heat treatment may be performed.
  • the heat treatment conditions the above-described heat treatment conditions can be used.
  • the oxide film 230C, the insulating film 250A, the conductive film 260A, the conductive film 260B, the insulating film 270A, and the insulating film 271A are sequentially formed over the insulator 224, the oxide 230a, and the oxide 230b (FIG. 13).
  • the oxide film 230C can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the oxide film 230C may be formed using a film formation method similar to that of the oxide film 230A or the oxide film 230B in accordance with characteristics required for the oxide 230c.
  • the insulating film 250A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • oxygen is excited by microwaves, high-density oxygen plasma is generated, and the insulating film 250A is exposed to the oxygen plasma, whereby oxygen is supplied to the insulating film 250A, the oxide 230a, the oxide 230b, and the oxide film 230C. Can be introduced.
  • heat treatment may be performed.
  • the heat treatment conditions described above can be used for the heat treatment.
  • the moisture concentration and the hydrogen concentration of the insulating film 250A can be reduced.
  • the conductive film 260A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • titanium nitride is formed as the conductive film 260A by a sputtering method.
  • the conductive film 260B can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a transistor with a low driving voltage can be provided.
  • tungsten is formed as the conductive film 260B by a sputtering method.
  • a conductor may be further provided between the insulating film 250A and the conductive film 260A.
  • the conductor can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • an oxide semiconductor that can be used as the oxide 230 becomes a conductive oxide by performing resistance reduction treatment.
  • an oxide that can be used as the oxide 230 may be formed, and the resistance of the oxide may be reduced in a later step.
  • oxygen can be added to the insulating film 250A by forming an oxide that can be used as the oxide 230 over the insulating film 250A by a sputtering method in an atmosphere containing oxygen. By adding oxygen to the insulating film 250A, the added oxygen can supply oxygen to the oxide 230 through the insulating film 250A.
  • heat treatment can be performed.
  • the heat treatment conditions described above can be used for the heat treatment. Note that heat treatment may not be performed.
  • treatment is performed at a temperature of 400 ° C. for 1 hour in a nitrogen atmosphere.
  • the insulating film 270A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. Since the insulating film 270A functions as a barrier film, an insulating material having a function of suppressing permeation of impurities such as water or hydrogen and oxygen is used. For example, it is preferable to use aluminum oxide, hafnium oxide, hafnium aluminate, or the like. Thereby, oxidation of the conductor 260 can be prevented. In addition, impurities such as water or hydrogen can be prevented from entering the oxide 230 through the conductor 260 and the insulator 250.
  • the insulating film 271A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the thickness of the insulating film 271A is preferably larger than the thickness of the insulating film 272A to be formed in a later step. Accordingly, when the insulator 272 is formed in a later step, the insulator 271 can be easily left on the conductor 260.
  • the insulator 271 functions as a hard mask.
  • the side surface of the insulator 250, the side surface of the conductor 260a, the side surface of the conductor 260b, the side surface of the conductor 260c, and the side surface of the insulator 270 are formed substantially perpendicular to the substrate. Can do.
  • the insulating film 271A is etched to form the insulator 271. Subsequently, using the insulator 271 as a mask, the insulating film 250A, the conductive film 260A, the conductive film 260B, and the insulating film 270A are etched to form the insulator 250, the conductor 260 (conductor 260a, conductor 260b), and the insulating film. A body 270 is formed (see FIG. 14). Even after the processing, a post-process may be performed without removing the hard mask. The hard mask can function as a hard mask even in the addition of a dopant performed in a later step.
  • the side surface of the insulator 250, the side surface of the conductor 260, and the side surface of the insulator 270 are preferably in the same plane.
  • the same surface shared by the side surface of the insulator 250, the side surface of the conductor 260, and the side surface of the insulator 270 is preferably substantially perpendicular to the substrate. That is, in the cross-sectional shape, the insulator 250, the conductor 260, and the insulator 270 are preferably as acute and large as possible with respect to the top surface of the oxide 230.
  • an angle formed by the side surfaces of the insulator 250, the conductor 260, and the insulator 270 and the top surface of the oxide 230 in contact with the insulator 250 may be an acute angle.
  • the angle formed between the side surfaces of the insulator 250, the conductor 260, and the insulator 270 and the upper surface of the oxide 230 in contact with the insulator 250 is preferably as large as possible.
  • the insulator 250, the conductor 260, and the insulator 270 are formed so that at least a part thereof overlaps with the conductor 205 and the oxide 230.
  • the etching may etch the upper portion of the region of the oxide film 230C that does not overlap with the insulator 250.
  • the thickness of the region of the oxide film 230C that overlaps with the insulator 250 may be larger than the thickness of the region that does not overlap with the insulator 250.
  • an insulating film 272A is formed to cover the oxide film 230C, the insulator 250, the conductor 260, the insulator 270, and the insulator 271 (see FIG. 15).
  • the insulating film 272A is preferably formed by an ALD method with excellent coverage.
  • the insulating film 272 ⁇ / b> A having a uniform thickness is formed on the side surfaces of the insulator 250, the conductor 260, and the insulator 270 even in the step portion formed by the conductor 260 and the like. be able to.
  • anisotropic etching is performed on the insulating film 272A to form the insulator 272 in contact with the side surfaces of the insulator 250, the conductor 260, and the insulator 270 (see FIG. 16).
  • anisotropic etching process it is preferable to perform a dry etching process.
  • the insulator 272 can be formed in a self-aligned manner by removing the insulating film formed on the surface substantially parallel to the substrate surface.
  • the insulator 270 can remain even if the insulating film 272A over the insulator 270 is removed. Further, the height of the structure including the insulator 250, the conductor 260, the insulator 270, and the insulator 271 is set higher than the height of the oxide 230a, the oxide 230b, and the oxide film 230C, thereby oxidizing the oxide. The insulating film 272A on the side surfaces of the oxide 230a and the oxide 230b through the film 230C can be removed.
  • the oxide film 230C is etched, and part of the oxide film 230C is removed to form the oxide 230c. (See FIG. 17). Note that in this step, the top surface and side surfaces of the oxide 230b and part of the side surfaces of the oxide 230a may be removed.
  • the region 231, the region 232, and the region 234 may be formed in the oxide 230a, the oxide 230b, and the oxide 230c.
  • the region 231 and the region 232 are regions in which a metal atom such as indium or an impurity is added to a metal oxide provided as the oxide 230a, the oxide 230b, and the oxide 230c to reduce resistance. Note that each region has higher conductivity than at least the oxide 230b in the region 234.
  • a metal element such as indium and a dopant that is at least one of impurities may be added.
  • the dopant is added by an ion implantation method in which ionized source gas is added by mass separation, an ion doping method in which ionized source gas is added without mass separation, a plasma immersion ion implantation method, or the like. Can be used.
  • mass separation the ionic species to be added and the concentration thereof can be strictly controlled.
  • mass separation is not performed, high-concentration ions can be added in a short time.
  • an ion doping method in which atomic or molecular clusters are generated and ionized may be used.
  • the dopant may be referred to as an ion, a donor, an acceptor, an impurity, an element, or the like.
  • the dopant may be added by plasma treatment.
  • plasma treatment can be performed using a plasma CVD apparatus, a dry etching apparatus, or an ashing apparatus, and the dopant can be added to the oxides 230a, 230b, and 230c.
  • a film containing the dopant may be formed so as to be in contact with the region 231.
  • an insulator 274 containing hydrogen, boron, carbon, nitrogen, fluorine, phosphorus, or the like as a dopant is formed so as to be in contact with the region 231 of the oxide 230 (see FIG. 18).
  • the resistance of the region 231 is reduced and the region 232 is formed by the formation of the insulator 274 and heat treatment after the film formation. It is considered that the dopant contained in the insulator 274 diffuses into the region 231 and the region 232 and the region has a low resistance.
  • the oxide 230a, the oxide 230b, and the oxide 230c can have high carrier density and low resistance by increasing the content of indium. Therefore, a metal element such as indium that improves the carrier density of the oxide 230a, the oxide 230b, and the oxide 230c can be used as the dopant.
  • the content of metal atoms such as indium in the oxide 230a, the oxide 230b, and the oxide 230c is increased, so that the electron mobility is increased and the resistance is reduced. Can do.
  • At least the atomic ratio of indium to the element M in the region 231 is larger than the atomic ratio of indium to the element M in the region 234.
  • the above-described element that forms oxygen vacancies or an element that is trapped by oxygen vacancies may be used.
  • examples of such elements typically include hydrogen, boron, carbon, nitrogen, fluorine, phosphorus, sulfur, chlorine, titanium, and rare gases.
  • Typical examples of rare gas elements include helium, neon, argon, krypton, and xenon.
  • the region 232 since the region 232 is provided, a high resistance region is not formed between the region 231 functioning as a source region and a drain region and the region 234 where a channel is formed; Mobility can be increased.
  • the region 232 since the region 232 includes the source region and the drain region and the gate do not overlap with each other in the channel length direction, formation of unnecessary capacitance can be suppressed.
  • leakage current at the time of non-conduction can be reduced.
  • the insulator 274 is formed so as to cover the insulator 224, the oxide 230, the insulator 271, and the insulator 272 (see FIG. 18).
  • silicon nitride, silicon nitride oxide, or silicon oxynitride formed using, for example, a CVD method can be used as the insulator 274.
  • silicon nitride oxide is used as the insulator 274.
  • the thickness thereof is 1 nm to 20 nm, preferably 3 nm to 10 nm.
  • the insulator 274 containing an element that becomes an impurity such as nitrogen is formed in contact with the oxide 230, whereby hydrogen, nitrogen, or the like contained in the deposition atmosphere of the insulator 274 is formed in the region 231a and the region 231b.
  • the impurity element is added. Oxygen vacancies are formed by the added impurity element around the region in contact with the insulator 274 of the oxide 230, and the impurity element enters the oxygen vacancies, whereby the carrier density is increased and the resistance is reduced. At that time, the impurity is diffused also in the region 232 which is not in contact with the insulator 274, so that the resistance is reduced.
  • the concentration of at least one of hydrogen and nitrogen be higher in the region 231a and the region 231b than in the region 234.
  • the concentration of hydrogen or nitrogen may be measured using secondary ion mass spectrometry (SIMS) or the like.
  • SIMS secondary ion mass spectrometry
  • the concentration of hydrogen or nitrogen in the region 234 is approximately equal to the vicinity of the center of the region overlapping with the insulator 250 of the oxide 230b (for example, the distance from both side surfaces in the channel length direction of the insulator 250b of the oxide 230b).
  • the concentration of hydrogen or nitrogen in (part) may be measured.
  • the resistance of the regions 231 and 232 is reduced by adding an element that forms oxygen vacancies or an element that is trapped by oxygen vacancies.
  • elements typically include hydrogen, boron, carbon, nitrogen, fluorine, phosphorus, sulfur, chlorine, titanium, and rare gases.
  • rare gas elements include helium, neon, argon, krypton, and xenon. Therefore, the region 231 and the region 232 may include one or more of the above elements.
  • the insulator 274 may be a film that extracts and absorbs oxygen contained in the regions 231 and 232.
  • oxygen is extracted, oxygen vacancies are generated in the region 231 and the region 232.
  • hydrogen, boron, carbon, nitrogen, fluorine, phosphorus, sulfur, chlorine, titanium, a rare gas, or the like is trapped in the oxygen vacancies, the resistance of the region 231 and the region 232 is reduced.
  • the insulator 274 is formed as an insulator including an element serving as an impurity or an insulator from which oxygen is extracted from the oxide 230
  • the insulator 274 is formed by a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD. This can be done using methods.
  • the insulator 274 including the element serving as an impurity is preferably formed in an atmosphere containing at least one of nitrogen and hydrogen. By performing deposition in such an atmosphere, oxygen vacancies are formed around the oxide 230b and the oxide 250c that do not overlap with the insulator 250, and the oxygen vacancies are bonded to an impurity element such as nitrogen or hydrogen. Thus, the carrier density can be increased. In this manner, the region 231a and the region 231b with reduced resistance can be formed.
  • the insulator 274 for example, silicon nitride, silicon nitride oxide, or silicon oxynitride formed by a CVD method can be used. In this embodiment, silicon nitride oxide is used as the insulator 274.
  • the insulator 274 may have a stacked structure including two or more insulators.
  • the insulator 274 can be formed by a CVD method, an ALD method, a sputtering method, or the like. Since the ALD method has excellent step coverage, excellent thickness uniformity, and excellent film thickness controllability, it is suitable for forming a step portion formed of the oxide 230 or the conductor 260. It is. After an insulator having a thickness of 0.5 nm to 5.0 nm is formed using the ALD method, an insulator of 1 nm to 20 nm, preferably 3 nm to 10 nm is stacked using the plasma CVD method. The insulator 274 may be formed.
  • the insulator 274 may be formed by stacking silicon oxide.
  • an insulator with a thickness of 1 nm to 20 nm, preferably 3 nm to 10 nm may be formed by a plasma CVD method to form a single-layer insulator 274.
  • silicon nitride, silicon nitride oxide, silicon oxynitride, or silicon oxide formed using a plasma CVD method may be used as the insulator 274.
  • the source region and the drain region can be formed in a self-aligned manner by forming the insulator 274. Therefore, a miniaturized or highly integrated semiconductor device can also be manufactured with high yield.
  • an upper surface and side surfaces of the conductor 260 and the insulator 250 are covered with the insulator 270 and the insulator 272, so that an impurity element such as nitrogen or hydrogen is mixed into the conductor 260 and the insulator 250. Can be prevented.
  • an impurity element such as nitrogen or hydrogen can be prevented from entering the region 234 functioning as a channel formation region of the transistor 200 through the conductor 260 and the insulator 250. Therefore, the transistor 200 having favorable electrical characteristics can be provided.
  • the region 231, the region 232, and the region 234 are formed using the reduction in resistance of the oxide 230 by forming the insulator 274, but this embodiment is not limited to this. .
  • dopant addition treatment or plasma treatment may be used, or a plurality of these may be combined to form each region.
  • plasma treatment may be performed on the oxide 230 using the insulator 250, the conductor 260, the insulator 272, the insulator 270, and the insulator 271 as a mask.
  • the plasma treatment may be performed in an atmosphere containing an element that forms oxygen vacancies or an element trapped by oxygen vacancies.
  • plasma treatment may be performed using argon gas and nitrogen gas.
  • heat treatment can be performed.
  • the heat treatment conditions described above can be used for the heat treatment.
  • the added dopant diffuses into the region 232 of the oxide 230, so that the on-state current can be increased.
  • a conductive film 130A is formed so as to cover the insulator 274 (see FIG. 19).
  • the conductive film 130A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the conductive film 130A is processed by a lithography method to form the conductor 130 (see FIG. 20).
  • a dry etching method, a wet etching method, or a combination thereof can be used.
  • the dry etching method is preferable because anisotropic etching can be realized and it is excellent in fine processing.
  • wet etching capable of isotropic etching the conductive film 130A on the side surface of the oxide 230, the side surface of the insulator 250, and the side surface of the insulator 272 can be easily removed. Therefore, the combination of the dry etching method and the wet etching method is preferable because the conductor 130 having a favorable shape can be formed.
  • a part of the conductor 130 provided above the oxide 230 is provided so as to extend to the outside of the oxide 230. Yes. Specifically, in FIG. 20B, the conductor 130 is provided so as to protrude from the oxide 230 to the B side. In FIG. 20D, the conductor 130 is provided from the oxide 230 to the E side. , And the F side.
  • the capacitor 100 can form a capacitor not only between the upper surface of the oxide 230 and the conductor 130 but also between the side surface of the oxide 230 and the conductor 130, which is preferable.
  • the area occupied by the cell 600 is limited, by forming the conductor 130 so as not to protrude as much as possible from the oxide 230, the cell 600 can be miniaturized and high integration of the semiconductor device can be realized. .
  • the insulator 280 is formed over the insulator 274 and the conductor 130 (see FIG. 21).
  • the insulator 280 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a spin coating method, a dip method, a droplet discharge method (such as an ink jet method), a printing method (such as screen printing or offset printing), a doctor knife method, a roll coater method, or a curtain coater method can be used.
  • silicon oxynitride is used as the insulating film.
  • the insulator 280 is preferably formed so that an upper surface thereof has flatness.
  • the top surface of the insulator 280 may have flatness immediately after being formed as an insulating film to be the insulator 280.
  • the insulator 280 may have flatness by removing the insulator and the like from the upper surface so as to be parallel to a reference surface such as the back surface of the substrate after film formation. Such a process is called a flattening process.
  • the planarization process include a CMP process and a dry etching process. In this embodiment, a CMP process is used as the planarization process.
  • the top surface of the insulator 280 is not necessarily flat.
  • the insulator 280 the opening reaching the region 231 of the oxide 230 in the insulator 274, the opening reaching the conductor 130 in the insulator 280, the insulator 280, the insulator 274, the insulator 271 and the insulator 270
  • An opening reaching the conductor 205, an insulator 280, an insulator 274, an insulator 224, an insulator 222, and an opening reaching the conductor 205 are formed in the insulator 220.
  • the opening may be formed using a lithography method.
  • the opening is formed so that the side surface of the oxide 230 is exposed in the opening reaching the oxide 230 so that the conductor 252a is provided in contact with the side surface of the oxide 230.
  • a conductor 252 (a conductor 252a, a conductor 252b, a conductor 252c, and a conductor 252d) is formed (see FIG. 22). Further, a conductor 256 that is electrically connected to the conductor 252 may be formed as needed (see FIG. 22).
  • a semiconductor device including the transistor 200 and the capacitor 100 can be manufactured. As illustrated in FIGS. 5 to 22, the transistor 200 and the capacitor 100 can be manufactured using the method for manufacturing the semiconductor device described in this embodiment.
  • a semiconductor device that can be miniaturized or highly integrated can be provided.
  • a semiconductor device having favorable electrical characteristics can be provided.
  • a semiconductor device with low off-state current can be provided.
  • a transistor with high on-state current can be provided.
  • a highly reliable semiconductor device can be provided.
  • a semiconductor device with reduced power consumption can be provided.
  • a highly productive semiconductor device can be provided.
  • the same material as that of Embodiment 1 can be used for the components denoted by the same reference numerals as those of the semiconductor device described in Embodiment 1.
  • the components manufactured in this embodiment are assumed to have the same structural features and effects as the components described in Embodiment 1, and descriptions thereof are omitted. .
  • FIG. 23A, FIG. 23B, FIG. 23C, and FIG. 23D are a top view and a cross-sectional view of a transistor 202 according to one embodiment of the present invention.
  • FIG. 23A is a top view of the transistor 202.
  • FIG. FIG. 23B, FIG. 23C, and FIG. 23D are cross-sectional views of the transistor 202.
  • FIG. 23B is a cross-sectional view taken along dashed-dotted line AB in FIG. 23A and also a cross-sectional view of the transistor 202 in the channel length direction.
  • FIG. 23C is a cross-sectional view taken along dashed-dotted line CD in FIG. 23A and also a cross-sectional view of the transistor 202 in the channel width direction.
  • FIG. 23D is a cross-sectional view taken along the dashed-dotted line EF in FIG. In the top view of FIG. 23A, some elements are omitted for clarity.
  • a transistor 202 includes an insulator 208 disposed over a substrate (not shown), an insulator 210 disposed over the insulator 208, a conductor 209, and a conductor An insulator 212 disposed so as to be embedded between the conductors 209, an insulator 216 disposed on the conductor 209 and the insulator 212, and a conductor 203 and a conductor disposed so as to be embedded in the insulator 216.
  • insulator 216 conductor 203 and insulator 220 disposed on conductor 205, insulator 222 disposed on insulator 220, and insulator disposed on insulator 222 224, oxide 230 disposed on insulator 224 (oxide 230a, oxide 230b, oxide 230c, and oxide 230d), and insulator disposed on oxide 230 50 (insulator 250a and insulator 250b), conductor 260 (conductor 260a and conductor 260b) disposed on insulator 250, insulator 270 disposed on conductor 260, An insulator 271 disposed on the insulator 270, an insulator 272 disposed so as to be in contact with at least a side surface of the insulator 250 and a side surface of the conductor 260, a part of an upper surface of the insulator 272, And an insulator 273 disposed so as to be in contact with the portion, and at least the oxide 230, the insulator 271, the
  • An insulator 280 is provided so as to cover the transistor 202.
  • the insulator 212 can be formed by polishing an insulating film provided to cover the conductor 209 until the conductor 209 is exposed by a CMP method or the like. Therefore, the insulator 212 and the conductor 209 are excellent in surface flatness.
  • the conductor 203 and the conductor 205 are formed so as to be embedded in an opening provided in the insulator 216.
  • the conductive film arranged to cover the insulator 216 and the opening can be formed by polishing using a CMP method or the like until the insulator 216 is exposed. Therefore, the insulator 216, the conductor 203, and the conductor 205 are excellent in surface flatness.
  • the insulator 220, the insulator 222, the insulator 224, and the oxide 230a have openings.
  • the oxide 230b and the oxide 230c are electrically connected to the conductor 203 through the opening.
  • series resistance and contact resistance can be reduced.
  • a semiconductor device with good electrical characteristics can be obtained. More specifically, a transistor with improved on-state current and a semiconductor device using the transistor can be obtained.
  • the conductor 209 may have a stacked structure.
  • a configuration in which a conductor having superior oxidation resistance as compared with the lower layer conductor is disposed on the conductor having excellent conductivity as compared with the upper layer conductor is preferable.
  • oxidation of the conductor 209 is suppressed when the insulator 216 is formed, when an opening provided in the insulator 216 is formed, and when the conductor 205 is formed. be able to. Thereby, an increase in electrical resistance due to oxidation of the conductor 209 can be suppressed. That is, the contact between the conductor 209 and the conductor 205 is good.
  • the transistor 202 has a structure in which the oxide 230a, the oxide 230b, the oxide 230c, and the oxide 230d are stacked; however, the present invention is not limited thereto. .
  • a two-layer structure of an oxide 230a and an oxide 230c a two-layer structure of an oxide 230b and an oxide 230c, a three-layer structure of an oxide 230a, an oxide 230c, and an oxide 230d, an oxide 230b and an oxide 230c
  • a three-layer structure of the oxide 230d that is, one of the oxide 230a and the oxide 230b may not be provided. Further, the oxide 230d is not necessarily provided.
  • a laminated structure of five or more layers may be provided.
  • a single layer of only the oxide 230c or only the oxide 230c and the oxide 230d may be provided.
  • the transistor 202 a structure in which the conductors 260a and 260b are stacked is described; however, the present invention is not limited to this. For example, a single layer or a stacked structure of three or more layers may be used.
  • FIG. 24 shows an enlarged view of a region 239 near the channel surrounded by a broken line in FIG.
  • the oxide 230 includes a region 234 functioning as a channel formation region of the transistor 202, and a region 231 (region 231a and region 231b) functioning as a source region or a drain region. In between, it has the area
  • the region 231 functioning as a source region or a drain region is a region with high carrier density and low resistance.
  • the region 234 functioning as a channel formation region is a region having a lower carrier density than the region 231 functioning as a source region or a drain region.
  • the region 232 has a lower carrier density than the region 231 that functions as a source region or a drain region and a higher carrier density than the region 234 that functions as a channel formation region.
  • the region 233 connected to the conductor 252a preferably has a higher carrier density and lower resistance than the region 231.
  • the contact resistance between the oxide 230 and the conductor 252a can be reduced, and the transistor 202 can have favorable electrical characteristics.
  • Region 233 can be referred to as a contact region.
  • the region 231, the region 232, and the region 233 can be provided by adding a rare gas typified by helium or argon to the oxide 230.
  • a rare gas typified by helium or argon
  • an ion implantation method in which ionized source gas is added after mass separation an ion doping method in which ionized source gas is added without mass separation, a plasma immersion ion implantation method, plasma Processing etc. can be used.
  • Oxygen vacancies capture impurities such as hydrogen, whereby carriers are generated and the resistance of the oxide 230, that is, the region 231, the region 232, and the region 233 is reduced. Impurities such as hydrogen may be present in the oxide 230. At this time, the impurity may exist in an unbonded state with a metal element or an oxygen atom. Further, an insulator provided in contact with the oxide 230, for example, the insulator 274 can be supplied.
  • the region 234 is a highly purified region in which impurities such as oxygen vacancies and hydrogen are reduced as much as possible.
  • the highly purified oxide becomes a substantially intrinsic region, and the region 234 can function as a channel formation region.
  • the region 232 shows a state where the region 232 overlaps with the conductor 260 functioning as a gate electrode; however, this embodiment is not limited thereto. Depending on the formation method of the region 231 and the region 232, the region 232 may not overlap with the conductor 260 functioning as a gate electrode.
  • the region 232 can have a lower carrier density than the region 231 functioning as a source region or a drain region and a higher carrier density than the region 234 functioning as a channel formation region. In this case, the region 232 functions as a junction region between the channel formation region and the source region or the drain region.
  • a high resistance region is not formed between the region 231 functioning as a source region or a drain region and the region 234 functioning as a channel formation region, so that the on-state current of the transistor can be increased. ,preferable.
  • the region 234 overlaps with the conductor 260.
  • the region 234 is disposed between the region 232 a and the region 232 b, and at least one concentration of a metal element such as indium and an impurity element such as hydrogen and nitrogen is lower than that of the region 231 and the region 232. It is preferable.
  • the boundaries of the region 231, the region 232, the region 233, and the region 234 may not be clearly detected.
  • Concentrations of metal elements such as indium and impurity elements such as hydrogen and nitrogen detected in each region are not limited to stepwise changes in each region, but also continuously change in each region (also referred to as gradation). You may do it. In other words, the closer to the region 234 from the region 231 to the region 232, the lower the concentration of a metal element such as indium and an impurity element such as hydrogen and nitrogen.
  • the region 234, the region 231, the region 232, and the region 233 are formed in the oxide 230a, the oxide 230b, the oxide 230c, and the oxide 230d.
  • the oxide 230c is formed.
  • these regions may be formed only in the oxide 230c and the oxide 230d.
  • the boundary of each region is displayed substantially perpendicular to the interface between the insulator 224 and the oxide 230, but this embodiment is not limited to this.
  • the region 232 may protrude to the region 234 side in the vicinity of the surface of the oxide 230c, and may recede to the region 231 side in the vicinity of the lower surface of the oxide 230c.
  • the insulator 250 has a stacked structure including the insulator 250a and the insulator 250b, and the insulator 250b is formed over the insulator 250a in an atmosphere containing oxygen. Can be included.
  • the insulator 272 is preferably provided in contact with the side surface of the insulator 250.
  • the transistor 202 is preferably surrounded by an insulator having a barrier property to prevent entry of impurities such as water or hydrogen.
  • the conductor 260 may function as the first gate electrode.
  • the conductor 205 may function as a second gate electrode.
  • the threshold voltage of the transistor 202 can be controlled by changing the potential applied to the conductor 205 independently of the potential applied to the conductor 260 without being linked. In particular, by applying a negative potential to the conductor 205, the threshold voltage of the transistor 202 can be substantially shifted to the positive side. Further, when the threshold value of the transistor 202 is set higher than 0 V, off-state current can be reduced. Therefore, the drain current when the voltage applied to the conductor 260 is 0 V can be reduced.
  • the conductor 205 functioning as the second gate electrode is provided so as to overlap with the oxide 230 and the conductor 260.
  • the channel formation region in the region 234 can be electrically surrounded by the electric field of the conductor 260 functioning as the first gate electrode and the electric field of the conductor 205 functioning as the second gate electrode.
  • a transistor structure that electrically surrounds a channel formation region by an electric field of the first gate electrode and the second gate electrode is referred to as a surrounded channel (S-channel) structure.
  • a conductor 205a is formed in contact with the inner walls of the openings of the insulator 214 and the insulator 216, and a conductor 205b is formed further inside.
  • the heights of the upper surfaces of the conductors 205a and 205b and the height of the upper surface of the insulator 216 can be approximately the same.
  • the transistor 202 has a structure in which the conductors 205a and 205b are stacked, the present invention is not limited to this. For example, only the conductor 205b may be provided.
  • the conductor 205a has a function of suppressing diffusion of impurities such as a hydrogen atom, a hydrogen molecule, a water molecule, a nitrogen atom, a nitrogen molecule, a nitric oxide molecule (N 2 O, NO, NO 2, and the like) and a copper atom.
  • impurities such as a hydrogen atom, a hydrogen molecule, a water molecule, a nitrogen atom, a nitrogen molecule, a nitric oxide molecule (N 2 O, NO, NO 2, and the like) and a copper atom.
  • a conductive material that has a function of suppressing diffusion of at least one of oxygen for example, oxygen atoms and oxygen molecules
  • the oxygen is difficult to transmit.
  • the function of suppressing diffusion of impurities or oxygen is a function of suppressing diffusion of any one or all of the impurities and oxygen.
  • the conductor 205a When the conductor 205a has a function of suppressing diffusion of oxygen, the conductivity can be prevented from being reduced due to oxidation of the conductor 205b.
  • a conductive material having a function of suppressing oxygen diffusion for example, tantalum, tantalum nitride, ruthenium, or ruthenium oxide is preferably used. Therefore, the conductor 205a may be a single layer or a stack of the above conductive materials. Thus, diffusion of impurities such as hydrogen and water from the substrate side to the transistor 202 side through the conductor 205 can be suppressed.
  • the conductor 205b is preferably formed using a conductive material containing tungsten, copper, or aluminum as a main component. Note that although the conductor 205b is illustrated as a single layer, it may have a stacked structure, for example, a stack of titanium, titanium nitride, and the above-described conductive material.
  • the conductor 209 can function as an electrode or a wiring.
  • part of the conductor 209 can function as a gate wiring.
  • the conductor 205 and the conductor 252d may be electrically connected through the conductor 207a, the conductor 207 including the conductor 207b provided over the conductor 207a, and the conductor 209.
  • the conductor 207 can be manufactured in the same process as the conductor 203 and the conductor 205.
  • the conductor 209 is electrically connected to the oxide 230 through the conductor 203 and can function as a source wiring or a drain wiring of the transistor 202.
  • the conductor 209 may be used as an electrode for electrically connecting to an element or a wiring located below the insulator 210.
  • the transistor 202 and the conductor 209 are overlaid on the transistor 202. Can be provided. Therefore, the cell size can be reduced, which is preferable.
  • the insulator 210 can be formed using a material similar to that of the insulator 210 described in Embodiment 1.
  • the insulator 212 and the insulator 216 functioning as interlayer films preferably have a lower dielectric constant than the insulator 210.
  • a material having a low dielectric constant as the interlayer film, parasitic capacitance generated between the wirings can be reduced.
  • the same materials as those of the insulator 208, the insulator 216, and the insulator 280 described in Embodiment 1 can be used.
  • the insulator 220, the insulator 222, and the insulator 224 function as gate insulators.
  • the insulator 220, the insulator 222, and the insulator 224 can be formed using a material similar to that of the insulator 220, the insulator 222, and the insulator 224 described in Embodiment 1.
  • the oxide 230 includes an oxide 230a, an oxide 230b on the oxide 230a, an oxide 230c on the oxide 230b, and an oxide 230d on the oxide 230c.
  • the oxide 230 includes a region 231, a region 232, a region 233, and a region 234. Note that at least part of the region 231 is preferably in contact with the insulator 274. In addition, at least part of the region 231 preferably has a concentration of at least one of a metal element such as indium, hydrogen, and nitrogen higher than that of the region 234.
  • the region 231a or the region 231b functions as a source region or a drain region.
  • the region 234 functions as a region where a channel is formed.
  • the oxide 230 preferably includes a region 232.
  • the region 232 as a junction region, the on-state current can be increased and the leakage current (off-state current) during non-conduction can be reduced.
  • the oxide 230c over the oxide 230a and the oxide 230b, diffusion of impurities from the structure formed below the oxide 230a to the oxide 230b can be suppressed. In addition, by including the oxide 230c under the oxide 230d, diffusion of impurities from the structure formed above the oxide 230d to the oxide 230c can be suppressed.
  • the region 234 provided in the oxide 230c is surrounded by the oxide 230a, the oxide 230b, and the oxide 230d, and the concentration of impurities such as hydrogen and nitrogen in the region can be kept low. Can be kept high.
  • a semiconductor device using the oxide 230 having such a structure has favorable electrical characteristics and high reliability.
  • the oxide 230 has a curved surface between the side surface and the upper surface. That is, it is preferable that the end of the side surface and the end of the upper surface are curved (hereinafter also referred to as a round shape).
  • the curved surface has a radius of curvature of 3 nm to 10 nm, preferably 5 nm to 6 nm, for example, at the end of the oxide 230c.
  • oxide 230 a material similar to that of the oxide 230 described in Embodiment 1 can be used.
  • the region 234 preferably has a stacked structure with oxides having different atomic ratios of metal atoms.
  • the atomic ratio of the element M in the constituent elements is the oxide 230b. It is preferably larger than the atomic ratio of the element M in the constituent elements in the metal oxide to be used.
  • the atomic ratio of the element M in the constituent element is preferably larger than the atomic ratio of the element M in the constituent element in the metal oxide used for the oxide 230c.
  • the atomic ratio of the element M to In is preferably larger than the atomic ratio of the element M to In in the metal oxide used for the oxide 230b.
  • the atomic ratio of the element M to In is preferably larger than the atomic ratio of the element M to In in the metal oxide used for the oxide 230c.
  • the atomic ratio of In to the element M is preferably larger than the atomic ratio of In to the element M in the metal oxide used for the oxide 230a.
  • the atomic ratio of In to the element M is preferably larger than the atomic ratio of In to the element M in the metal oxide used for the oxide 230b.
  • a metal oxide that can be used for the oxide 230a, the oxide 230b, or the oxide 230c can be used.
  • the said composition shows the atomic ratio in the oxide formed on the board
  • Ga: Zn 1: 3: 4 as the oxide 230a
  • In: Ga: Zn 1: 1: 1 as the oxide 230b
  • In: Ga: Zn 4: 2: 3 as the oxide 230c
  • the oxide 230c is sandwiched between the oxide 230a, the oxide 230b, and the oxide 230d having a wider energy gap. This is preferable.
  • the oxides 230a, 230b, and 230d having a wide energy gap may be referred to as a wide gap
  • the oxide 230c having a relatively narrow energy gap may be referred to as a narrow gap.
  • the region 231 is a low-resistance region in which a metal oxide provided as the oxide 230 is added with a metal atom such as indium, a rare gas such as helium or argon, or an impurity such as hydrogen or nitrogen. Note that each region has higher conductivity than the oxide 230c in the region 234 at least.
  • a metal atom, a rare gas, or an impurity for example, plasma treatment, an ion implantation method in which an ionized source gas is added by mass separation, or an ionized source gas is separated by mass.
  • a dopant that is at least one of a metal element, a rare gas, and an impurity may be added by using an ion doping method, a plasma immersion ion implantation method, plasma treatment, or the like that is added without first adding.
  • the insulator 274 including an element serving as an impurity can be formed in contact with the oxide 230, whereby the impurity can be added to the region 231.
  • the resistance of the region 231 is reduced by adding an element that forms oxygen vacancies or an element that is captured by oxygen vacancies.
  • elements typically include hydrogen, boron, carbon, nitrogen, fluorine, phosphorus, sulfur, chlorine, titanium, and rare gases.
  • rare gas elements include helium, neon, argon, krypton, and xenon. Therefore, the region 231 may include one or more of the above elements.
  • a film that extracts and absorbs oxygen contained in the region 231 may be used as the insulator 274.
  • oxygen vacancies are generated in the region 231.
  • hydrogen, boron, carbon, nitrogen, fluorine, phosphorus, sulfur, chlorine, titanium, a rare gas, or the like is trapped in the oxygen vacancy, the resistance of the region 231 is reduced.
  • the width of the region 232 in the channel length direction can be controlled by the widths of the insulator 272 and the insulator 273.
  • the insulator 250 functions as a gate insulating film.
  • the insulator 250 is preferably provided in contact with the upper surface of the oxide 230d.
  • the insulator 250 is preferably formed using an insulator from which oxygen is released by heating.
  • the amount of desorbed oxygen converted to oxygen atoms is 1.0 ⁇ 10 18 atoms / cm 3 or more, preferably 3.0 ⁇ 10 20.
  • the surface temperature of the film at the time of the TDS analysis is preferably in the range of 100 ° C. to 700 ° C., or 100 ° C. to 500 ° C.
  • the insulator 250 may have a stacked structure including the insulator 250a and the insulator 250b.
  • oxygen can be effectively supplied to the region 234 of the oxide 230c.
  • the concentration of impurities such as water or hydrogen in the insulator 250a is preferably reduced.
  • the thickness of the insulator 250a is 1 nm to 20 nm, preferably 5 nm to 10 nm.
  • the insulator 250b is preferably an insulator that can supply oxygen to the insulator 250a during or after formation.
  • Such an insulator can be formed in an atmosphere containing oxygen or using a target containing oxygen.
  • aluminum oxide is formed in an atmosphere containing oxygen by a sputtering method.
  • the thickness of the insulator 250b is 1 nm to 20 nm, preferably 5 nm to 10 nm.
  • the insulator 250a can contain more oxygen, that is, excess oxygen.
  • the conductor 260 functioning as the first gate electrode includes a conductor 260a and a conductor 260b over the conductor 260a.
  • As the conductor 260a titanium nitride or the like is preferably used.
  • As the conductor 260b a metal having high conductivity such as tungsten can be used.
  • the channel formation region formed in the oxide 230 can be covered with the electric field generated from the conductor 260 and the electric field generated from the conductor 205.
  • the channel formation region in the region 234 can be electrically surrounded by the electric field of the conductor 260 functioning as the first gate electrode and the electric field of the conductor 205 functioning as the second gate electrode. .
  • An insulator 272 that functions as a barrier film is provided so as to be in contact with the side surface of the insulator 250 and the side surface of the conductor 260.
  • an insulator 270 functioning as a barrier film is provided over the conductor 260.
  • the insulator 270 and the insulator 272 can be formed using a material similar to that of the insulator 270 and the insulator 272 described in Embodiment 1, respectively.
  • the impurity element contained in the structure provided around the transistor 202 is diffused, so that the region 231a and the region 231b or the region There is a risk that 232a and the region 232b are electrically connected.
  • the insulator 272 and the insulator 273 impurities such as hydrogen and water can be prevented from entering the insulator 250 and the conductor 260, and the insulator It is possible to prevent oxygen in 250 from diffusing outside. Therefore, when the first gate voltage is 0 V, the source region and the drain region can be prevented from being electrically connected directly or through the region 232 or the like.
  • the insulator 273 preferably has a lower dielectric constant than the insulator 272.
  • a material having a low dielectric constant as an interlayer film, parasitic capacitance generated between a conductor 130 and a conductor 260 described later can be reduced.
  • the insulator 273 can be formed using a material similar to that of the insulator 212 and the insulator 216.
  • the insulator 274 is provided so as to cover at least the oxide 230, the insulator 271, the insulator 272, and the insulator 273.
  • the insulator 274 is preferably formed using an insulating material having a function of suppressing permeation of impurities such as water or hydrogen and oxygen.
  • the insulator 274 is preferably formed using silicon nitride, silicon nitride oxide, silicon oxynitride, aluminum nitride, aluminum nitride oxide, or the like.
  • oxygen can be prevented from being transmitted through the insulator 274 and supplying oxygen to oxygen vacancies in the regions 231 a and 231 b, thereby reducing the carrier density.
  • impurities such as water or hydrogen which are transmitted through the insulator 274 and mixed into the region 234 can be suppressed.
  • the insulator 274 preferably includes at least one of hydrogen and nitrogen.
  • an impurity such as hydrogen or nitrogen can be added to the oxide 230, whereby the resistance of the region 231 in the oxide 230 can be reduced.
  • An insulator 280 that functions as an interlayer film is preferably provided over the insulator 274.
  • the insulator 280 preferably has a reduced concentration of impurities such as water or hydrogen in the film.
  • the insulator 280 may have a stacked structure including similar insulators.
  • the capacitor 101 has a structure in common with the transistor 202.
  • the capacitor 101 in which part of the region 231 b provided in the oxide 230 of the transistor 202 functions as one of the electrodes of the capacitor 101 is described.
  • the capacitor 101 includes part of the region 231b of the oxide 230, the insulator 274, and the conductor 130 over the insulator 274 (the conductor 130a and the conductor 130b). Furthermore, it is preferable that at least a part of the conductor 130 overlap with a part of the region 231b.
  • Part of the region 231 b of the oxide 230 functions as one of the electrodes of the capacitor 101, and the conductor 130 functions as the other of the electrodes of the capacitor 101. That is, the region 231b has a function as one of a source and a drain of the transistor 202 and a function as one of the electrodes of the capacitor 101. Part of the insulator 274 functions as a dielectric of the capacitor 101.
  • an insulator 272 and an insulator 273 are provided on a side surface of the conductor 260 functioning as the first gate electrode of the transistor 202.
  • the conductor 130 preferably has a stacked structure including a conductor 130a and a conductor 130b disposed on the conductor 130a.
  • the conductor 130a is preferably formed using titanium, titanium nitride, tantalum, or a conductive material whose main component is tantalum nitride
  • the conductor 130b is a conductive material whose main component is tungsten, copper, or aluminum. Is preferably used.
  • the conductor 130 may have a single-layer structure or a stacked structure of three or more layers.
  • the semiconductor device of one embodiment of the present invention includes the transistor 202, the capacitor 101, and the insulator 280 functioning as an interlayer film.
  • a conductor 252 (a conductor 252a, a conductor 252b, a conductor 252c, and a conductor 252d) which is electrically connected to the transistor 202 and the capacitor 101 and functions as a plug is provided.
  • a conductor 252b may be provided as a plug electrically connected to the conductor 130 functioning as an electrode of the capacitor 101.
  • the conductor 130 can share the electrode of the capacitor 101 included in the plurality of cells 601. For this reason, it is not always necessary to provide the conductor 252b in each cell 601, and a smaller number of plugs than the number of the cells may be provided for a plurality of cells. For example, in a cell array in which the cells 601 are arranged in a matrix or matrix, one plug may be provided for each row or one plug for each column.
  • the conductor 252 is formed in contact with the inner wall of the opening of the insulator 280.
  • the height of the upper surface of the conductor 252 and the height of the upper surface of the insulator 280 can be approximately the same.
  • FIG. 23 illustrates a structure in which the conductor 252 has two layers, the present invention is not limited to this.
  • the conductor 252 may have a single layer or a stacked structure including three or more layers.
  • the insulator 280 is preferably provided so as to cover the insulator 274 and the conductor 130. As in the case of the insulator 224, the insulator 280 preferably has a reduced concentration of impurities such as water or hydrogen in the film. Note that the insulator 280 may have a stacked structure including similar insulators.
  • the insulator 280 preferably has a lower dielectric constant than the insulator 210.
  • parasitic capacitance generated between the wirings can be reduced.
  • the insulator 280 functioning as an interlayer film, silicon oxide, silicon oxynitride, silicon nitride oxide, aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO3)
  • an insulator such as (Ba, Sr) TiO 3 (BST) can be used in a single layer or a stacked layer.
  • aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, or zirconium oxide may be added to these insulators.
  • these insulators may be nitrided. Silicon insulator, silicon oxynitride, or silicon nitride may be stacked over the above insulator.
  • the conductor 252a, the conductor 252b, the conductor 252c, and the conductor 252d are provided in the opening formed in the insulator 280 or the like. Note that the upper surfaces of the conductor 252a, the conductor 252b, the conductor 252c, and the conductor 252d may have substantially the same height as the upper surface of the insulator 280.
  • the conductor 252a is in contact with the region 233 functioning as one of the source region and the drain region of the transistor 202 through the opening formed in the insulator 280 and the insulator 274. Since the resistance of the region 233 is reduced, the contact resistance between the conductor 252a and the region 233 can be reduced.
  • the conductor 252b is in contact with the conductor 130 that is one of the electrodes of the capacitor 101 through an opening formed in the insulator 280.
  • the conductor 252c is in contact with the conductor 260 functioning as the first gate electrode of the transistor 202 through the opening formed in the insulator 280, the insulator 274, the insulator 271, and the insulator 270. .
  • the conductor 252d is in contact with the conductor 207 through an opening formed in the insulator 280, the insulator 274, the insulator 222, and the insulator 220, and the second conductor of the transistor 202 is connected to the conductor 209 through the conductor 209. It is electrically connected to a conductor 205 that functions as a gate electrode.
  • the conductor 252a is preferably in contact with at least the upper surface of the oxide 230 and further in contact with the side surface of the oxide 230.
  • the conductor 252a is preferably in contact with both or one of the side surface on the C side and the side surface on the D side on the side surface intersecting the channel width direction of the oxide 230.
  • the conductor 252a may be in contact with the side surface on the A side at the side surface intersecting the channel length direction of the oxide 230.
  • the conductor 252a is in contact with the side surface of the oxide 230 in addition to the top surface of the oxide 230, so that the contact area of the conductor 252a and the oxide 230 is not increased without increasing the contact area.
  • the contact area between the conductor 252a and the oxide 230 can be reduced.
  • the on-current can be increased while miniaturizing the source electrode and the drain electrode of the transistor.
  • the conductor 252 is preferably formed using a conductive material containing tungsten, copper, or aluminum as a main component.
  • the conductor 252 may have a stacked structure, for example, a stack of titanium, titanium nitride, and the above conductive material.
  • the insulator 274 and the conductor in contact with the insulator 280 have a function of suppressing transmission of impurities such as water or hydrogen, as in the conductor 205a.
  • impurities such as water or hydrogen
  • the conductor 205a is preferably used.
  • tantalum, tantalum nitride, titanium, titanium nitride, ruthenium, or ruthenium oxide is preferably used.
  • the conductive material having a function of suppressing permeation of impurities such as water or hydrogen may be used in a single layer or a stacked layer. By using the conductive material, impurities such as hydrogen and water from an upper layer than the insulator 280 can be prevented from entering the oxide 230 through the conductor 252.
  • an insulator having a function of suppressing transmission of impurities such as water or hydrogen may be provided in contact with the inner walls of the openings of the insulator 274 and the insulator 280 in which the conductor 252 is embedded.
  • an insulator that can be used for the insulator 210 for example, aluminum oxide is preferably used. Accordingly, impurities such as hydrogen and water from the insulator 280 and the like can be prevented from entering the oxide 230 through the conductor 252.
  • the insulator can be formed with good coverage by forming the insulator using, for example, an ALD method or a CVD method.
  • a conductor functioning as a wiring may be provided in contact with the upper surface of the conductor 252.
  • a conductive material containing tungsten, copper, or aluminum as a main component is preferably used.
  • 25A, 25B, 25C, and 25D are a top view and a cross-sectional view of the transistor 204, the capacitor 102, and the periphery of the transistor 204 according to one embodiment of the present invention.
  • a cell 602 illustrated in FIG. 25 includes the transistor 204 and the capacitor 102, and the structures of the conductor 203 and the conductor 205 are different from those of the transistor 202 described above. Further, the shapes of the insulator 250, the conductor 260, the insulator 270, and the insulator 271 are different.
  • the conductor 203 and the conductor 205 are provided over the conductor 209 and the insulator 212.
  • the conductor 203 and the conductor 205 can be manufactured using a material similar to that of the conductor 209 in a similar manner.
  • the insulator 216 can be manufactured using a material similar to that of the insulator 212 by a similar method.
  • the side surfaces of the insulator 250, the conductor 260, the insulator 270, and the insulator 271 are inclined. At least the insulator 250 and the insulator 273 are formed on the side surfaces of the insulator 250 and the conductor 260. Is preferably perpendicular to On the other hand, in forming the insulating film to be the insulator 272 and the insulator 273, the side surfaces of the insulator 250 and the conductor 260 are preferably inclined so that the coverage is improved. The angles of the side surfaces of the insulator 250 and the conductor 260 can be appropriately adjusted in consideration of ease of manufacturing in the process.
  • the structure of the conductor 203 and the conductor 205 and the shapes of the insulator 250, the conductor 260, the insulator 270, and the insulator 271 are different from those of the transistor 202. Although illustrated, only one of the structures of the conductor 203 and the conductor 205 and the shapes of the insulator 250, the conductor 260, the insulator 270, and the insulator 271 may be different from that of the transistor 202.
  • 26A, 26B, 26C, and 26D are a top view and a cross-sectional view of the transistor 206, the capacitor 103, and the periphery of the transistor 206 according to one embodiment of the present invention.
  • a cell 603 illustrated in FIG. 26 includes the transistor 206 and the capacitor 103, and the oxide 230 d is not etched over the transistor 202, the region 231, and the region 233 described above, and remains. , Different.
  • an end portion of the oxide 230c is covered with the oxide 230d, which can suppress entry of impurities into the oxide 230, release of oxygen from the oxide 230, and the like.
  • the conductor 203 and the conductor 205 may have the structure illustrated in FIG.
  • the insulator 250, the conductor 260, the insulator 270, and the insulator 271 may have the shapes illustrated in FIGS.
  • the cell array can be formed by arranging the transistor 202 illustrated in FIG. 23, the cell 601 including the capacitor 101, and the transistor 300 electrically connected to the cell 601 in a matrix or matrix.
  • FIG. 27 is a circuit diagram illustrating one mode of a cell array in which the cells 601 illustrated in FIG. 23 and the transistors 300 electrically connected to the cells 601 are arranged in a matrix.
  • FIG. 28A is a circuit diagram in which part of the circuit 620 in the cell array is extracted, and
  • FIG. 28B is a schematic cross-sectional view of the cell 601 and the transistor 300 corresponding to the cell array.
  • the transistor 300 a transistor provided over a semiconductor substrate can be used.
  • the semiconductor substrate preferably includes a semiconductor such as a silicon-based semiconductor, and preferably includes single crystal silicon.
  • a semiconductor substrate including Ge (germanium), SiGe (silicon germanium), GaAs (gallium arsenide), GaAlAs (gallium aluminum arsenide), or the like may be used.
  • the transistor 300 may be either a p-channel type or an n-channel type.
  • a transistor including an oxide semiconductor can be used as in the transistor 202.
  • one of the source and the drain of the transistor 202 included in the cell 601 adjacent in the row direction is electrically connected to a common wiring (S01, S02, S03).
  • the wiring is also electrically connected to one of a source and a drain of the transistor 202 included in the cell arranged in the column direction.
  • the first gate of the transistor 202 included in the cell 601 adjacent in the row direction is electrically connected to different wirings WL (WL01 to WL06).
  • the second gate of the transistor 202 included in each cell 601 may be electrically connected to the transistor 400.
  • the threshold value of the transistor can be controlled by a potential applied to the second gate of the transistor 202 through the transistor 400.
  • the first electrode of the capacitor 101 included in the cell 601 is electrically connected to the other of the source and the drain of the transistor 202 and the gate of the transistor 300. At this time, the first electrode of the capacitor 101 may be formed of part of a structure included in the transistor 202 in some cases.
  • the second electrode of the capacitor 101 included in the cell 601 is electrically connected to the wiring PL.
  • the wiring PL electrically connected to the second electrode of the capacitor 101 may have a different potential in each cell 601 or may have a common potential.
  • the wiring PL may have a common potential for each column, or may have a common potential for each row.
  • One of a source and a drain of the transistor 300 is electrically connected to the wiring SL (SL01 to SL06), and the other of the source and the drain of the transistor 300 is electrically connected to the wiring BL (BL01 to BL06).
  • the cell 601a includes a transistor 202a and a capacitor 101a, and is electrically connected to the gate of the transistor 300a.
  • the cell 601b includes the transistor 202b and the capacitor 101b, and is electrically connected to the gate of the transistor 300b.
  • One of the source and the drain of the transistor 202a and one of the source and the drain of the transistor 202b are both electrically connected to S02.
  • One of the source and the drain of the transistor 202 is electrically connected to the gate of the transistor 300 and the first electrode of the capacitor 101a, whereby a desired potential can be applied to and held in the gate of the transistor 300.
  • the transistor 202 using an oxide semiconductor for a channel formation region has extremely small leakage current in a non-conduction state. Thus, the potential applied to the gate electrode of the transistor 300 can be maintained for a long time.
  • Such a cell array can be used as a memory device or an arithmetic circuit.
  • FIG. 29 is a schematic cross-sectional view illustrating one embodiment of the transistor 400.
  • the transistor 400 may have a structure different from that of the transistor 202.
  • the transistor 400 is preferably manufactured using a material common to the transistor 202.
  • the conductor 409 can be formed using the same material as the conductor 209 in the same step.
  • the conductor 403 and the conductor 405 can be formed using the same material as the conductor 203 and the conductor 205 in the same step.
  • the conductor 405 can function as the second gate electrode of the transistor 400.
  • the oxide 430a, the oxide 430b, the oxide 430c, and the oxide 430d can be formed using the same material as the oxide 230a, the oxide 230b, the oxide 230c, and the oxide 230d, respectively, in the same step. .
  • part of the oxide 430d functions as a channel formation region
  • the oxide 430a, the oxide 430b, the oxide 430c, and the oxide 430d each have a low-resistance region like the oxide 230, Functions as a source region or a drain region.
  • the oxide 430a, the oxide 430b, and the oxide 430c are preferably provided with a contact region with lower resistance.
  • the insulator 450a and the insulator 450b can be formed using the same material as that of the insulator 250a and the insulator 250b, respectively, in the same step.
  • the insulator 450a and the insulator 450b including the insulator 450b include It can function as a gate insulating film.
  • the conductor 460a and the conductor 460b can be formed using the same material as the conductor 260a and the conductor 260b, respectively, in the same step.
  • the conductor 460a and the conductor 460b including the conductor 460b include It can function as a first gate electrode.
  • the insulator 470 can be formed using the same material as the insulator 270 and in the same step.
  • the insulator 471 can be formed using the same material as the insulator 271 and in the same step.
  • the insulator 472 can be formed using the same material as the insulator 272 and in the same step.
  • the insulator 473 can be formed using the same material as the insulator 273 and in the same step.
  • the insulator 280 and the insulator 274 are provided with openings, and a conductor 452a and a conductor 452b connected to the oxide 430 are provided.
  • one of the source region and the drain region is electrically connected to the conductor 403 through an opening provided in the oxide 430a, the insulator 224, the insulator 222, and the insulator 220.
  • the conductor 403 is electrically connected to the conductor 405 functioning as the second gate electrode through the conductor 409.
  • one of the source region and the drain region is electrically connected to the conductor 460 functioning as the second gate electrode through the conductor 452b.
  • the transistor 400 forms a diode connection by electrically connecting one of the source region and the drain region, the first gate electrode, and the second gate electrode.
  • One of a source and a drain of the diode-connected transistor 400 is electrically connected to the second gate electrode of the transistor 202 through the conductor 409, the conductor 209, and the like.
  • the potential of the second gate electrode of the transistor 202 can be controlled by the transistor 400.
  • the transistor 400 since the transistor 400 includes the channel formation region in the oxide 430d, leakage current in a non-conduction state is extremely small.
  • the potential of the second gate electrode of the transistor 202 can be maintained for a long time without supply of power to the transistor 400.
  • the transistor 400 is not necessarily provided in each cell 601, and a smaller number of transistors 400 may be provided for a plurality of cells.
  • a cell array in which the cells 601 are arranged in a matrix or matrix one transistor 400 may be provided in the cell array, one transistor 400 in each row, or one transistor 400 in each column.
  • FIGS. 30 to 50 a method for manufacturing a semiconductor device including the transistor 202 according to the present invention will be described with reference to FIGS. 30 to 50, (A) in each drawing shows a top view. Moreover, (B) of each figure is sectional drawing corresponding to the site
  • the same reference numerals as those of the manufacturing method of the semiconductor device described in Embodiment 1 are used for the components, and the same materials, manufacturing methods, and A manufacturing apparatus can be used.
  • the components manufactured in this embodiment are assumed to have the same structural features and effects as the components described in Embodiment 1, and descriptions thereof are omitted. .
  • a substrate (not shown) is prepared, and an insulator 208 is formed over the substrate.
  • the insulator 208 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a silicon oxide film is formed as the insulator 208 by a CVD method.
  • the insulator 210 is formed over the insulator 208.
  • an aluminum oxide film is formed as the insulator 210 by a sputtering method.
  • the insulator 210 may have a multilayer structure.
  • an aluminum oxide film may be formed by a sputtering method, and an aluminum oxide film may be formed on the aluminum oxide by an ALD method.
  • a structure in which an aluminum oxide film is formed by an ALD method and an aluminum oxide film is formed on the aluminum oxide by a sputtering method may be employed.
  • a conductive film 209 ⁇ / b> A is formed over the insulator 210.
  • the conductive film 209A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • tungsten is formed by a sputtering method as the conductive film 209A.
  • a conductor such as aluminum or copper can be used in addition to tungsten.
  • the conductive film 209A may have a stacked structure, and a conductor containing titanium or tantalum may be stacked over the conductor.
  • a metal nitride such as titanium nitride or tantalum nitride can be used on the conductor.
  • a mask 262 is formed over the conductive film 209A by a lithography method (see FIG. 30).
  • the conductive film 209A is processed using the mask 262 to form the conductor 209 (see FIG. 31).
  • a dry etching method or a wet etching method can be used for the processing. Processing by the dry etching method is suitable for fine processing.
  • a dry etching apparatus can be used, and a CCP etching apparatus, an ICP etching apparatus, or the like can be used.
  • the etching treatment may be performed after the resist mask used for forming the hard mask is removed or may be performed with the resist mask left. In the latter case, the resist mask may disappear during etching.
  • the hard mask may be removed by etching after the conductive film is etched.
  • the material of the hard mask does not affect the subsequent process or can be used in the subsequent process, it is not always necessary to remove the hard mask.
  • an insulating film 212A is formed over the insulator 210 and the conductor 209 (see FIG. 32).
  • the insulating film 212A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • silicon oxide is formed as the insulating film 212A by a CVD method.
  • a part of the insulating film 212A is removed by performing a CMP process, and the conductor 209 is exposed.
  • the insulator 212 remains between the conductors 209 and around these conductors.
  • the insulator 212 and the conductor 209 having a flat upper surface can be formed (see FIG. 33). Note that part of the conductor 209 may be removed by the CMP treatment.
  • the insulator 216 is formed over the insulator 212 and the conductor 209.
  • the insulator 216 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • silicon oxide is formed as the insulator 216 by a CVD method.
  • an opening is formed in the insulator 216.
  • the opening includes, for example, a groove and a slit. In some cases, the opening is pointed to a region where the opening is formed. Wet etching may be used to form the opening, but dry etching is preferable for fine processing.
  • the conductor 209 may be used as an etching stopper film when the insulator 216 is etched to form a groove.
  • a conductive film to be the conductor 203a and the conductor 205a is formed.
  • the conductive film preferably includes a conductor having a function of suppressing permeation of oxygen.
  • tantalum nitride, tungsten nitride, titanium nitride, or the like can be used.
  • a stacked film of tantalum, tungsten, titanium, molybdenum, aluminum, copper, or molybdenum tungsten alloy can be used.
  • the conductor 203a and the conductor to be the conductor 205a can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • tantalum nitride or a film in which titanium nitride is stacked over tantalum nitride is formed by a sputtering method.
  • a metal nitride as the conductor 203a and the conductor 205a, even if a metal that easily diffuses such as copper in the conductor 203b and the conductor 205b to be described later is used, the metal becomes the conductor 203a and It is possible to prevent the conductor 205a from diffusing outside.
  • a conductive film to be the conductor 203b and the conductor 205b is formed over the conductive film to be the conductor 203a and the conductor 205a.
  • the conductive film can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a low-resistance conductive material such as tungsten or copper is formed as the conductive film to be the conductor 203b and the conductor 205b.
  • the conductive film to be the conductor 203a and the conductor 205a and the conductive film to be the conductor 203b and the conductor 205b are partially removed, so that the insulator 216 is exposed.
  • the conductive film to be the conductor 203a and the conductor 205a, and the conductive film to be the conductor 203b and the conductor 205b remain only in the opening. Accordingly, the conductor 203 including the conductor 203a and the conductor 203b and the conductor 205 including the conductor 205a and the conductor 205b with a flat upper surface can be formed (see FIG. 34). Note that part of the insulator 216 may be removed by the CMP treatment.
  • the insulator 220, the insulator 222, and the insulator 224 are formed over the insulator 216, the conductor 203, and the conductor 205.
  • the insulator 220, the insulator 222, and the insulator 224 can be formed using a similar material by a method similar to that in Embodiment 1 (see FIG. 34).
  • heat treatment is preferably performed.
  • the method described in Embodiment 1 can be used.
  • impurities such as hydrogen and water contained in the insulator 224 can be removed. Note that the first heat treatment may not be performed.
  • the heat treatment can also be performed after the insulator 220 is formed and after the insulator 222 is formed. Although the above heat treatment conditions can be used for the heat treatment, the heat treatment after the formation of the insulator 220 is preferably performed in an atmosphere containing nitrogen.
  • treatment is performed for 1 hour at a temperature of 400 ° C. in a nitrogen atmosphere after the insulator 224 is formed.
  • an oxide film 230A to be the oxide 230a is formed over the insulator 224.
  • Oxide film 230A can be formed using a similar material by a method similar to that in Embodiment 1.
  • an opening reaching the conductor 203 is formed in the insulator 220, the insulator 222, the insulator 224, and the oxide film 230A by using a lithography method.
  • a mask 263 is formed over the oxide film 230A (see FIG. 34).
  • the mask 263 used for forming the opening may be a resist mask or a hard mask.
  • the insulator 220, the insulator 222, the insulator 224, and the oxide film 230A are processed using the mask 263 to expose the surface of the conductor 203, so that an opening is formed (see FIG. 35). ).
  • a dry etching method or a wet etching method can be used. Processing by the dry etching method is suitable for fine processing. Note that the insulator 220, the insulator 222, and the insulator 224 are processed through the oxide film 230A.
  • a mask made of a resist mask, a hard mask, or the like is formed over the oxide film 230A, and then the insulator 220, the insulator 222, the insulator 224, Then, the oxide film 230A is processed. That is, a mask is not formed on the surface of the insulator (insulator 220, insulator 222, and insulator 224) functioning as a gate insulating film.
  • the gate insulation is caused by impurities contained in the resist mask, components contained in the hard mask, and components contained in the chemical solution or plasma used for mask removal Contamination and damage of the film can be suppressed. With such a process, a method for manufacturing a highly reliable semiconductor device can be provided.
  • an oxide film 230B and an oxide film 230C are formed over the oxide film 230A (see FIG. 36).
  • the oxide film 230B and the oxide film 230C are also formed inside the opening, and are electrically connected to the conductor 203 through the opening.
  • series resistance and contact resistance can be reduced.
  • a semiconductor device with good electrical characteristics can be obtained. More specifically, a transistor with improved on-state current and a semiconductor device using the transistor can be obtained.
  • the oxide film 230B and the oxide film 230C can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the oxide film 230C is preferably formed continuously without being exposed to the air atmosphere.
  • the oxide film 230B and the oxide film 230C are formed by using a multi-chamber film formation apparatus, so that the oxide film 230B is formed on the oxide film 230B without exposing the surface of the oxide film 230B to the air atmosphere. be able to.
  • contamination at the interface between the oxide film 230B and the oxide film 230C can be prevented, and a semiconductor device using these oxide films has good characteristics. And can have high reliability.
  • the oxide film 230B and the oxide film 230C are formed by a sputtering method
  • oxygen or a mixed gas of oxygen and a rare gas is used as a sputtering gas.
  • excess oxygen in the oxide film to be formed can be increased.
  • the oxide film is formed by a sputtering method
  • the In-M-Zn oxide target can be used.
  • oxygen-deficient oxidation is performed by forming the film so that the proportion of oxygen contained in the sputtering gas is 1% to 30%, preferably 5% to 20%.
  • a physical semiconductor is formed.
  • a transistor including an oxygen-deficient oxide semiconductor can have a relatively high field-effect mobility.
  • the oxide film 230B and the oxide film 230C are continuously formed using a multi-chamber sputtering apparatus without being exposed to the air atmosphere.
  • the oxide film is preferably formed in accordance with characteristics required for the oxide 230 by appropriately selecting a deposition condition and an atomic ratio.
  • heat treatment may be performed.
  • the heat treatment conditions described above can be used for the heat treatment.
  • impurities such as hydrogen and water in the oxide film 230A, the oxide film 230B, and the oxide film 230C can be removed.
  • the processing is continuously performed for one hour at a temperature of 400 ° C. in an oxygen atmosphere.
  • the oxide film 230A, the oxide film 230B, and the oxide film 230C are processed into island shapes, so that the oxide 230a, the oxide 230b, and the oxide 230c are formed (see FIG. 37).
  • the width in the EF direction is preferably wider than the width of the opening. Therefore, the widths of the oxide 230a, the oxide 230b, and the oxide 230c in the E-F direction in the region are the regions where the channel is formed, the oxide 230a, the oxide 230b, and the oxide The width in the CD direction of the oxide 230c may be wider.
  • the oxide 230 b and the oxide 230 c can be reliably in contact with the conductor 203.
  • the area of the capacitor 101 can be increased, and an increase in the capacity of the capacitor 101 can be expected.
  • the insulator 224 may be processed into an island shape. Further, half etching may be performed on the insulator 224. By performing half-etching on the insulator 224, the insulator 224 is formed under the oxide 230d formed in a later step. Note that the insulator 224 can be processed into an island shape when the conductive film 260A and the conductive film 260B, or the insulating film 272A, which are later steps, are processed. In that case, the insulator 222 may be used as an etching stopper film.
  • the oxide 230a, the oxide 230b, and the oxide 230c are formed so as to overlap at least partly with the conductor 205.
  • the side surface of the oxide 230b and the side surface of the oxide 230c preferably have the same plane as the side surface of the oxide 230a.
  • the side surfaces of the oxide 230 a, the oxide 230 b, and the oxide 230 c are preferably substantially perpendicular to the insulator 222. At this time, an end portion of the oxide 230b and an end portion of the oxide 230c substantially coincide with the end portion of the oxide 230a.
  • the side surfaces of the oxide 230a, the oxide 230b, and the oxide 230c are substantially perpendicular to the insulator 222, when the plurality of transistors 202 are provided, the area can be reduced and the density can be increased.
  • an angle formed by the side surfaces of the oxide 230a, the oxide 230b, and the oxide 230c and the top surface of the insulator 222 may be an acute angle. In that case, the angle formed between the side surfaces of the oxide 230a, the oxide 230b, and the oxide 230c and the top surface of the insulator 222 is preferably as large as possible.
  • a curved surface is provided between the side surfaces of the oxide 230a, the oxide 230b, and the oxide 230c and the upper surface of the oxide 230c. That is, it is preferable that the end of the side surface and the end of the upper surface are curved (hereinafter also referred to as a round shape).
  • the curved surface has a radius of curvature of 3 nm to 10 nm, preferably 5 nm to 6 nm, for example, at the ends of the oxide 230a, the oxide 230b, and the oxide 230c.
  • membrane coverage in a subsequent film-forming process improves by not having a corner
  • the oxide film can be processed and cleaning for removing impurities attached during the processing can be performed by the method described in Embodiment 1.
  • heat treatment may be performed.
  • the heat treatment conditions the above-described heat treatment conditions can be used.
  • an oxide film 230D to be the oxide 230d is formed over the insulator 224, the oxide 230a, the oxide 230b, and the oxide 230c (see FIG. 38).
  • the oxide film 230D can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the oxide film 230D may be formed using a film formation method similar to that of the oxide film 230A, the oxide film 230B, or the oxide film 230C in accordance with characteristics required for the oxide 230d.
  • the oxide film 230D may be processed into an island shape as shown in FIG.
  • the oxide film 230D By processing the oxide film 230D before the formation of the insulator 250 and the conductor 260, the insulator 250 formed in a later step and a part of the oxide film 230D positioned below the conductor 260 are removed. be able to. Thereby, the oxide film 230D of the adjacent cells 601 is separated, and leakage through the oxide film 230D between the cells 601 can be prevented, which is preferable.
  • oxide film 230D dry etching or wet etching can be used.
  • the method used for processing the oxide film 230A, the oxide film 230B, and the oxide film 230C may be used.
  • the insulating film 250A, the insulating film 250B, the conductive film 260A, the conductive film 260B, the insulating film 270A, and the insulating film 271A are sequentially formed over the insulator 224 and the oxide film 230D (see FIG. 40).
  • the insulating film 250A and the insulating film 250B can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • silicon oxynitride is formed by a CVD method as the insulating film 250A
  • aluminum oxide is formed by a sputtering method as the insulating film 250B.
  • the thickness of the insulating film 250A is 1 nm to 20 nm, preferably 5 nm to 10 nm.
  • the insulating film 250B has a thickness of 1 nm to 20 nm, preferably 5 nm to 10 nm. It is preferable to form the insulating film 250B by a sputtering method in an atmosphere containing oxygen because the insulating film 250A can contain more oxygen, that is, excess oxygen.
  • heat treatment may be performed.
  • the heat treatment conditions described above can be used for the heat treatment.
  • the moisture concentration and the hydrogen concentration in the insulating film 250A and the insulating film 250B can be reduced.
  • the conductive film 260A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • titanium nitride is formed as the conductive film 260A by a sputtering method.
  • the conductive film 260B can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a transistor with a low driving voltage can be provided.
  • tungsten is formed as the conductive film 260B by a sputtering method.
  • heat treatment can be performed.
  • the heat treatment conditions described above can be used for the heat treatment. Note that heat treatment may not be performed.
  • treatment is performed at a temperature of 400 ° C. for 1 hour in a nitrogen atmosphere.
  • the insulating film 270A and the insulating film 271A can be formed using a similar material by a method similar to that in Embodiment 1.
  • the insulator 271 functions as a hard mask.
  • the side surface of the insulator 250a, the side surface of the insulator 250b, the side surface of the conductor 260a, the side surface of the conductor 260b, and the side surface of the insulator 270 are formed substantially perpendicular to the substrate. Can do.
  • the insulating film 271A is etched to form the insulator 271. Subsequently, using the insulator 271 as a mask, the insulating film 250A, the insulating film 250B, the conductive film 260A, the conductive film 260B, and the insulating film 270A are etched to form the insulator 250 (insulator 250a and insulator 250b) and conductor. 260 (conductor 260a, conductor 260b) and insulator 270 are formed (see FIG. 41). Even after the processing, a post-process may be performed without removing the hard mask. The hard mask can function as a hard mask even in the addition of a dopant performed in a later step.
  • the etching may etch the upper portion of the region of the oxide film 230D that does not overlap the insulator 250.
  • the thickness of the region of the oxide film 230D that overlaps with the insulator 250 may be larger than the thickness of the region that does not overlap with the insulator 250.
  • the above-described etching may etch a region of the insulator 224 that does not overlap with the oxide film 230D.
  • the insulator 222 is exposed in a region that does not overlap with the oxide film 230D and the conductor 260.
  • heat treatment can be performed.
  • the heat treatment conditions described above can be used for the heat treatment. Note that heat treatment may not be performed.
  • treatment is performed at a temperature of 400 ° C. for 1 hour in a nitrogen atmosphere.
  • an insulating film 272A is formed to cover the oxide film 230D, the insulator 250, the conductor 260, the insulator 270, and the insulator 271 (see FIG. 42).
  • a rare gas is added to the oxide 230 using the insulator 250, the conductor 260, the insulator 270, and the insulator 271 covered with the insulating film 272A as masks.
  • the rare gas for example, an ion implantation method in which ionized source gas is added after mass separation, an ion doping method in which ionized source gas is added without mass separation, a plasma immersion ion implantation method, plasma Processing etc. can be used.
  • the oxide 230 is provided with a region 234 and a region 232 (see FIG. 42).
  • an insulating film 273A is formed to cover the insulating film 272A (see FIG. 43).
  • a material with a low dielectric constant is preferably used, and a material similar to that of the insulator 212 and the insulator 216 can be used.
  • the insulating film 273A and the insulating film 272A are subjected to anisotropic etching, and are in contact with the side surfaces of the insulator 250, the conductor 260, and the insulator 270, and the insulator 272 functioning as a barrier, and sidewalls
  • An insulator 273 that functions as the above is formed (see FIG. 44).
  • an anisotropic etching process it is preferable to perform a dry etching process. Accordingly, the insulator 272 and the insulator 273 can be formed in a self-aligning manner.
  • the insulator 270 can remain even if the insulating film 273A and the insulating film 272A over the insulator 270 are removed.
  • the height of the structure including the insulator 250, the conductor 260, the insulator 270, and the insulator 271 is set higher than the heights of the oxide 230a, the oxide 230b, the oxide 230c, and the oxide film 230D.
  • the oxide 230a, the oxide 230b, the insulating film 273A on the side surface of the oxide 230c, and the insulating film 272A that are formed through the oxide film 230D can be removed.
  • the oxide 230a, the oxide 230b, and the oxide 230c are formed on the side surfaces through the oxide film 230D.
  • the time for removing the insulating film 273A and the insulating film 272A is shortened, and the insulator 272 and the insulator 273 can be formed more easily.
  • the oxide film 230D is etched, and part of the oxide film 230D is removed. 230d is formed (see FIG. 45). Note that in this step, the top surface and side surfaces of the oxide 230c and part of the side surfaces of the oxide 230a and the oxide 230b may be removed.
  • the region 231 may be formed in the oxide 230a, the oxide 230b, the oxide 230c, and the oxide 230d.
  • the region 231 is a region in which a metal atom such as indium or an impurity is added to a metal oxide provided as the oxide 230a, the oxide 230b, the oxide 230c, and the oxide 230d to reduce resistance. Note that each region has higher conductivity than at least the oxide 230b in the region 234.
  • a dopant that is at least one of a metal atom such as indium, a rare gas such as helium or argon, or an impurity such as hydrogen or nitrogen may be added.
  • the dopant may be added by plasma treatment.
  • plasma treatment can be performed using a plasma CVD apparatus, a dry etching apparatus, or an ashing apparatus, and a dopant can be added to the oxide 230a, the oxide 230b, the oxide 230c, and the oxide 230d.
  • a film including the dopant may be formed so as to be in contact with the oxide 230.
  • the insulator 274 containing hydrogen, boron, carbon, nitrogen, fluorine, phosphorus, or the like as a dopant is formed so as to be in contact with the oxide 230d, the insulator 272, and the oxide 230 located outside the insulator 273.
  • the region 231 is formed (see FIG. 46).
  • the resistance of the region 231 is reduced by the formation of the insulator 274 and heat treatment after the formation. It is considered that the dopant contained in the insulator 274 diffuses into the region 231 and the region has a low resistance. Further, the dopant contained in the insulator 274 may also diffuse into the region 232, and the region 232 may have a lower resistance than the resistance value that has been decreased by the addition of the rare gas.
  • the oxide 230a, the oxide 230b, the oxide 230c, and the oxide 230d can have high carrier density and low resistance by increasing the indium content.
  • a metal element such as indium that improves the carrier density of the oxide 230a, the oxide 230b, the oxide 230c, and the oxide 230d can be used as the dopant.
  • the electron mobility is increased and the resistance is reduced. Can be achieved.
  • At least the atomic ratio of indium to the element M in the region 231 is larger than the atomic ratio of indium to the element M in the region 234.
  • the region 232 since the region 232 is provided, a high-resistance region is not formed between the region 231 functioning as the source region and the drain region and the region 234 where the channel is formed; Mobility can be increased.
  • the region 232 since the region 232 includes the source region and the drain region and the gate do not overlap with each other in the channel length direction, formation of unnecessary capacitance can be suppressed.
  • leakage current at the time of non-conduction can be reduced.
  • the insulator 274 is formed so as to cover the insulator 224, the oxide 230, the insulator 271, the insulator 272, and the insulator 273 (see FIG. 46).
  • the insulator 274 can be formed using a similar material by a method similar to that in Embodiment 1. Accordingly, oxygen vacancies are formed around a region of the oxide 230c and the oxide 230d that do not overlap with the insulator 250, and the oxygen vacancies are combined with an impurity element such as nitrogen or hydrogen so that the carrier density is increased. Can do. In this manner, the region 231a and the region 231b with reduced resistance can be formed.
  • the insulator 274 may have a single-layer structure or a stacked structure including two or more insulators.
  • the source region and the drain region can be formed in a self-aligned manner by forming the insulator 274. Therefore, a miniaturized or highly integrated semiconductor device can also be manufactured with high yield.
  • an upper surface and side surfaces of the conductor 260 and the insulator 250 are covered with the insulator 270 and the insulator 272, so that an impurity element such as nitrogen or hydrogen is mixed into the conductor 260 and the insulator 250. Can be prevented.
  • an impurity element such as nitrogen or hydrogen can be prevented from entering the region 234 functioning as a channel formation region of the transistor 202 through the conductor 260 and the insulator 250. Accordingly, the transistor 202 having favorable electrical characteristics can be provided.
  • the region 231 is formed using the reduction in resistance of the oxide 230 by forming the insulator 274; however, this embodiment is not limited thereto.
  • dopant addition treatment or plasma treatment may be used, or a plurality of these may be combined to form each region.
  • plasma treatment may be performed on the oxide 230 using the insulator 250, the conductor 260, the insulator 272, the insulator 273, the insulator 270, and the insulator 271 as a mask.
  • the plasma treatment may be performed in an atmosphere containing an element that forms oxygen vacancies or an element trapped by oxygen vacancies.
  • plasma treatment may be performed using argon gas and nitrogen gas.
  • heat treatment can be performed.
  • the heat treatment conditions described above can be used for the heat treatment.
  • the added dopant diffuses into the region 231 of the oxide 230, so that the on-state current can be increased. Further, the added dopant may diffuse into the region 232 by this heat treatment.
  • a conductive film 130A and a conductive film 130B are formed so as to cover the insulator 274 (see FIG. 46).
  • the conductive film 130A and the conductive film 130B can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • titanium nitride is formed by a sputtering method as the conductive film 130A
  • tungsten is formed by a sputtering method as the conductive film 130B.
  • the conductive films 130A and 130B are processed by a lithography method to form the conductors 130 (the conductors 130a and 130b) (see FIG. 47).
  • the conductive film 130A and the conductive film 130B can be processed by a method similar to that of the conductive film 130A described in Embodiment 1.
  • part of the conductor 130 provided above the oxide 230 is provided so as to extend to the outside of the oxide 230. Yes. Specifically, in FIG. 47D, the conductor 130 is provided so as to protrude from the oxide 230 to the E side and the F side.
  • the capacitor 101 can form a capacitor not only between the upper surface of the oxide 230 and the conductor 130 but also between the side surface of the oxide 230 and the conductor 130, which is preferable. . Therefore, in FIG. 47B, the conductor 130 may be provided so as to protrude from the oxide 230 to the B side.
  • the cell 601 when the area occupied by the cell 601 is limited, the cell 601 can be miniaturized and the semiconductor device can be highly integrated by forming the conductor 130 so as not to protrude from the oxide 230 as much as possible. .
  • the conductor 130 may be formed so as to be connected to the conductor 130 of the adjacent cell 601.
  • the insulator 280 is formed over the insulator 274 and the conductor 130 (see FIG. 48).
  • the insulator 280 can be formed using a similar material by a method similar to that in Embodiment 1.
  • the insulator 280 the opening reaching the region 231 of the oxide 230 in the insulator 274, the opening reaching the conductor 130 in the insulator 280, the insulator 280, the insulator 274, the insulator 271 and the insulator 270
  • An opening reaching the conductor 260, an insulator 280, an insulator 274, an insulator 222, and an opening reaching the conductor 205 in the insulator 220 are formed.
  • the opening may be formed using a lithography method.
  • the opening is formed so that the side surface of the oxide 230 is exposed in the opening reaching the oxide 230 so that the conductor 252a is provided in contact with the side surface of the oxide 230.
  • a rare gas is added to the oxide 230 exposed through the opening.
  • the rare gas for example, an ion implantation method in which ionized source gas is added after mass separation, an ion doping method in which ionized source gas is added without mass separation, plasma immersion ion in, as described above. A plantation method, plasma treatment, or the like can be used.
  • a region 233 is provided in the region 231 of the oxide 230 (see FIG. 49).
  • a conductor 252 (a conductor 252a, a conductor 252b, a conductor 252c, and a conductor 252d) is formed (see FIG. 50). Further, a conductor that is electrically connected to the conductor 252 may be formed as necessary.
  • a semiconductor device including the transistor 202 and the capacitor 101 can be manufactured. As illustrated in FIGS. 30 to 50, the transistor 202 and the capacitor 101 can be manufactured using the method for manufacturing the semiconductor device described in this embodiment.
  • a semiconductor device that can be miniaturized or highly integrated can be provided.
  • a semiconductor device having favorable electrical characteristics can be provided.
  • a semiconductor device with low off-state current can be provided.
  • a transistor with high on-state current can be provided.
  • a highly reliable semiconductor device can be provided.
  • a semiconductor device with reduced power consumption can be provided.
  • a highly productive semiconductor device can be provided.
  • the memory device illustrated in FIG. 51 includes the transistor 200, the capacitor 100, and the transistor 300.
  • the transistor 200 is a transistor in which a channel is formed in a semiconductor layer including an oxide semiconductor. Since the transistor 200 has a low off-state current, stored data can be held for a long time by using the transistor 200 for a memory device. That is, the refresh operation is not required or the frequency of the refresh operation is extremely low, so that the power consumption of the storage device can be sufficiently reduced.
  • the wiring 3001 is electrically connected to the source of the transistor 300, and the wiring 3002 is electrically connected to the drain of the transistor 300.
  • the wiring 3003 is electrically connected to one of a source and a drain of the transistor 200, the wiring 3004 is electrically connected to the first gate of the transistor 200, and the wiring 3006 is electrically connected to the second gate of the transistor 200. It is connected to the.
  • the other of the source and the drain of the transistor 200 functions as one of electrodes of the capacitor 100, and the transistor 300 is formed through an opening formed in the insulator 220, the insulator 222, the insulator 224, and the oxide 230a. Is electrically connected to the gate.
  • the wiring 3005 is electrically connected to the other electrode of the capacitor 100.
  • the memory device illustrated in FIG. 51 has the characteristic that the potential of the gate of the transistor 300 can be held; thus, information can be written, held, and read as described below.
  • the potential of the fourth wiring 3004 is set to a potential at which the transistor 200 is turned on, so that the transistor 200 is turned on. Accordingly, the potential of the third wiring 3003 is supplied to the node SN that is electrically connected to one of the gate of the transistor 300 and the electrode of the capacitor 100. That is, predetermined charge is given to the gate of the transistor 300 (writing).
  • predetermined charge is given to the gate of the transistor 300 (writing).
  • the potential of the fourth wiring 3004 is set to a potential at which the transistor 200 is turned off and the transistor 200 is turned off, so that charge is held at the node SN (holding).
  • the second wiring 3002 has a charge held in the node SN. Take a potential according to the amount. This is because, when the transistor 300 is an n-channel type, the apparent threshold voltage V th_H when the gate of the transistor 300 is supplied with a high level charge is the low level charge applied to the gate of the transistor 300. This is because it becomes lower than the apparent threshold voltage V th_L in the case of being present.
  • the apparent threshold voltage refers to the potential of the fifth wiring 3005 necessary for bringing the transistor 300 into a “conductive state”.
  • the potential of the fifth wiring 3005 when the potential of the fifth wiring 3005 is set to the potential V 0 between V th_H and V th_L , the charge given to the node SN can be determined. For example, in writing, in the case where a high-level charge is applied to the node SN, the transistor 300 is turned “on” when the potential of the fifth wiring 3005 becomes V 0 (> V th_H ). On the other hand, when a low-level charge is supplied to the node SN, the transistor 300 remains in a “non-conduction state” even when the potential of the fifth wiring 3005 becomes V 0 ( ⁇ V th_L ). Therefore, by determining the potential of the second wiring 3002, information held in the node SN can be read.
  • a memory device of one embodiment of the present invention includes a transistor 300, a transistor 200, and a capacitor 100 as illustrated in FIG.
  • the transistor 200 is provided above the transistor 300, and the capacitor 100 is provided in the same layer as the transistor 200.
  • the transistor 300 includes a conductor 316, an insulator 315, a semiconductor region 313 including a part of the substrate 311, a low resistance region 314a which functions as a source region or a drain region, and a low resistance region 314b. Have.
  • the transistor 300 may be either a p-channel type or an n-channel type.
  • the region in which the channel of the semiconductor region 313 is formed, the region in the vicinity thereof, the low resistance region 314a that serves as the source region or the drain region, the low resistance region 314b, and the like preferably include a semiconductor such as a silicon-based semiconductor. It preferably contains crystalline silicon. Alternatively, a material containing Ge (germanium), SiGe (silicon germanium), GaAs (gallium arsenide), GaAlAs (gallium aluminum arsenide), or the like may be used. A structure using silicon in which effective mass is controlled by applying stress to the crystal lattice and changing the lattice spacing may be employed. Alternatively, the transistor 300 may be a HEMT (High Electron Mobility Transistor) by using GaAs, GaAlAs, or the like.
  • HEMT High Electron Mobility Transistor
  • the low-resistance region 314a and the low-resistance region 314b provide an n-type conductivity element such as arsenic or phosphorus, or a p-type conductivity property such as boron, in addition to the semiconductor material used for the semiconductor region 313. Containing elements.
  • the insulator 315 functions as a gate insulating film of the transistor 300.
  • the conductor 316 functioning as a gate electrode includes a semiconductor material such as silicon, a metal material, an alloy containing an element imparting n-type conductivity such as arsenic or phosphorus, or an element imparting p-type conductivity such as boron.
  • a conductive material such as a material or a metal oxide material can be used.
  • the threshold voltage can be adjusted by determining the work function depending on the material of the conductor. Specifically, it is preferable to use a material such as titanium nitride or tantalum nitride for the conductor. Further, in order to achieve both conductivity and embeddability, it is preferable to use a metal material such as tungsten or aluminum as a laminate for the conductor, and tungsten is particularly preferable from the viewpoint of heat resistance.
  • transistor 300 illustrated in FIGS. 51A and 51B is an example and is not limited to the structure, and an appropriate transistor may be used depending on a circuit configuration or a driving method.
  • An insulator 320, an insulator 322, an insulator 324, and an insulator 326 are sequentially stacked so as to cover the transistor 300.
  • the insulator 320, the insulator 322, the insulator 324, and the insulator 326 for example, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, aluminum oxide, aluminum oxynitride, aluminum nitride oxide, aluminum nitride, or the like is used. That's fine.
  • the insulator 322 may function as a planarization film for planarizing a step generated by the transistor 300 or the like provided thereunder.
  • the upper surface of the insulator 322 may be planarized by a planarization process using a chemical mechanical polishing (CMP) method or the like to improve planarity.
  • CMP chemical mechanical polishing
  • the insulator 324 is preferably formed using a film having a barrier property so that hydrogen and impurities do not diffuse from the substrate 311 or the transistor 300 to a region where the transistor 200 is provided.
  • a film having a barrier property against hydrogen for example, silicon nitride formed by a CVD method can be used.
  • silicon nitride formed by a CVD method when hydrogen diffuses into a semiconductor element including an oxide semiconductor such as the transistor 200, characteristics of the semiconductor element may be reduced. Therefore, a film for suppressing hydrogen diffusion is preferably used between the transistor 200 and the transistor 300.
  • the film that suppresses the diffusion of hydrogen is a film with a small amount of hydrogen desorption.
  • the amount of desorption of hydrogen can be analyzed using, for example, a temperature programmed desorption gas analysis method (TDS).
  • TDS temperature programmed desorption gas analysis method
  • the amount of hydrogen desorbed from the insulator 324 is 10 ⁇ 10 5 in terms of the amount of desorbed hydrogen atoms converted to hydrogen atoms per area of the insulator 324 in the range of 50 ° C. to 500 ° C. in TDS analysis. It may be 15 atoms / cm 2 or less, preferably 5 ⁇ 10 15 atoms / cm 2 or less.
  • the insulator 326 preferably has a lower dielectric constant than the insulator 324.
  • the dielectric constant of the insulator 326 is preferably less than 4, and more preferably less than 3.
  • the relative dielectric constant of the insulator 326 is preferably equal to or less than 0.7 times, more preferably equal to or less than 0.6 times that of the insulator 324.
  • the insulator 320, the insulator 322, the insulator 324, and the insulator 326 are embedded with a conductor 328 that is electrically connected to the capacitor 100 or the transistor 200, the conductor 330, and the like.
  • the conductor 328 and the conductor 330 function as plugs or wirings.
  • a conductor having a function as a plug or a wiring may be given the same reference numeral by collecting a plurality of structures.
  • the wiring and the plug electrically connected to the wiring may be integrated. That is, a part of the conductor may function as a wiring, and a part of the conductor may function as a plug.
  • a conductive material such as a metal material, an alloy material, a metal nitride material, or a metal oxide material is used as a single layer or a stacked layer.
  • a high melting point material such as tungsten or molybdenum that has both heat resistance and conductivity, and it is preferable to use tungsten.
  • a low-resistance conductive material such as aluminum or copper. Wiring resistance can be lowered by using a low-resistance conductive material.
  • a wiring layer may be provided over the insulator 326 and the conductor 330.
  • an insulator 350, an insulator 352, and an insulator 354 are sequentially stacked.
  • a conductor 356 is formed in the insulator 350, the insulator 352, and the insulator 354.
  • the conductor 356 functions as a plug or a wiring. Note that the conductor 356 can be provided using a material similar to that of the conductor 328 and the conductor 330.
  • an insulator having a barrier property against hydrogen is preferably used as in the case of the insulator 324.
  • the conductor 356 preferably includes a conductor having a barrier property against hydrogen.
  • a conductor having a barrier property against hydrogen is formed in an opening portion of the insulator 350 having a barrier property against hydrogen.
  • tantalum nitride may be used as the conductor having a barrier property against hydrogen. Further, by stacking tantalum nitride and tungsten having high conductivity, diffusion of hydrogen from the transistor 300 can be suppressed while maintaining conductivity as a wiring. In this case, it is preferable that the tantalum nitride layer having a barrier property against hydrogen be in contact with the insulator 350 having a barrier property against hydrogen.
  • a wiring layer may be provided over the insulator 354 and the conductor 356.
  • an insulator 360, an insulator 362, and an insulator 364 are sequentially stacked.
  • a conductor 366 is formed in the insulator 360, the insulator 362, and the insulator 364.
  • the conductor 366 functions as a plug or a wiring. Note that the conductor 366 can be provided using a material similar to that of the conductor 328 and the conductor 330.
  • the insulator 360 is preferably an insulator having a barrier property against hydrogen, similarly to the insulator 324.
  • the conductor 366 preferably includes a conductor having a barrier property against hydrogen.
  • a conductor having a barrier property against hydrogen is formed in an opening of the insulator 360 having a barrier property against hydrogen.
  • a wiring layer may be provided over the insulator 364 and the conductor 366.
  • an insulator 370, an insulator 372, and an insulator 374 are sequentially stacked.
  • a conductor 376 is formed in the insulator 370, the insulator 372, and the insulator 374.
  • the conductor 376 functions as a plug or a wiring. Note that the conductor 376 can be provided using a material similar to that of the conductor 328 and the conductor 330.
  • an insulator having a barrier property against hydrogen is preferably used as the insulator 370.
  • the conductor 376 preferably includes a conductor having a barrier property against hydrogen.
  • a conductor having a barrier property against hydrogen is formed in an opening portion of the insulator 370 having a barrier property against hydrogen.
  • a wiring layer may be provided over the insulator 374 and the conductor 376.
  • an insulator 380, an insulator 382, and an insulator 384 are sequentially stacked.
  • a conductor 386 is formed over the insulator 380, the insulator 382, and the insulator 384.
  • the conductor 386 functions as a plug or a wiring. Note that the conductor 386 can be provided using a material similar to that of the conductor 328 and the conductor 330.
  • an insulator having a barrier property against hydrogen is preferably used as the insulator 380.
  • the conductor 386 preferably includes a conductor having a barrier property against hydrogen.
  • a conductor having a barrier property against hydrogen is formed in an opening portion of the insulator 380 having a barrier property against hydrogen.
  • An insulator 210 is provided over the insulator 384 and the conductor 386.
  • the insulator 210 is preferably formed using a substance having a barrier property against oxygen or hydrogen.
  • a conductor 203, a conductor 205, and an insulator 216 are provided over the insulator 210.
  • a film having a barrier property so that hydrogen and impurities do not diffuse from a region where the substrate 311 or the transistor 300 is provided to a region where the transistor 200 is provided is preferably used. Therefore, a material similar to that of the insulator 324 can be used.
  • silicon nitride formed by a CVD method can be used as an example of a film having a barrier property against hydrogen.
  • silicon nitride formed by a CVD method when hydrogen diffuses into a semiconductor element including an oxide semiconductor such as the transistor 200, characteristics of the semiconductor element may be reduced. Therefore, a film for suppressing hydrogen diffusion is preferably used between the transistor 200 and the transistor 300.
  • the film that suppresses the diffusion of hydrogen is a film with a small amount of hydrogen desorption.
  • a metal oxide such as aluminum oxide, hafnium oxide, or tantalum oxide is preferably used for the insulator 210.
  • aluminum oxide has a high blocking effect that prevents the film from permeating both oxygen and impurities such as hydrogen and moisture, which cause variation in electrical characteristics of the transistor. Therefore, aluminum oxide can prevent impurities such as hydrogen and moisture from entering the transistor 200 during and after the manufacturing process of the transistor. In addition, release of oxygen from the oxide included in the transistor 200 can be suppressed. Therefore, it is suitable for use as a protective film for the transistor 200.
  • the transistor 200 and the capacitor 100 are provided above the insulator 210, the transistor 200 and the capacitor 100 are provided. Note that the transistor 200 and the capacitor 100 described in the above embodiment may be used for the structures of the transistor 200 and the capacitor 100. In addition, the transistor 200 illustrated in FIGS. 51A and 51B is an example and is not limited to the structure, and an appropriate transistor may be used depending on a circuit configuration or a driving method.
  • FIG. 52 illustrates an example in which the capacitor 100 is provided above the transistor 200.
  • a conductor 256 that is electrically connected to the other of the source and the drain of the transistor 200 is used.
  • the conductor 256 is electrically connected to the gate of the transistor 300.
  • An insulator 120 that functions as a dielectric of the capacitor 100 is provided over the conductor 256.
  • a conductor 131 is provided so as to overlap with the conductor 256 with the insulator 120 interposed therebetween.
  • the conductor 131 functions as the other electrode of the capacitor 100 and is electrically connected to the wiring 3005.
  • the insulator 120 may be provided so as to cover the side surface of the conductor 256. Further, the conductor 131 may be provided on the side surface of the conductor 256 with the insulator 120 interposed therebetween. With such a structure, the capacitor element 100 can be formed using not only the upper surface of the conductor 256 and the conductor 131 facing the conductor 256 but also the side surface of the conductor 256 and the conductor 131 facing the conductor 256. The capacitance value can be increased without increasing the upper surface area, which is preferable.
  • the same components as those in Embodiments 1 to 3 are used for the components denoted by the same reference numerals as those of the semiconductor devices described in Embodiments 1 to 3. Can be used.
  • the structural elements manufactured in this embodiment can obtain the same structural features and effects as the structural elements described in Embodiments 1 to 3. The description is omitted.
  • the memory device illustrated in FIGS. 53A and 54 includes the transistor 202, the capacitor 101, and the transistor 300 described in Embodiment 2.
  • the memory device illustrated in FIG. 53A includes the transistor 300, the insulator 350 provided with the conductor 356, the insulator 352, the insulator 354, the insulator 354, and the conductor 356 over the transistor 300.
  • the insulator 210, the transistor 202 over the insulator 210, and the capacitor 101 are included.
  • the 54 includes the transistor 300, the insulator 350 provided with the conductor 356, the insulator 352, the insulator 354, and the insulator 360 provided with the conductor 366 on the transistor 300.
  • the insulator 210 over the conductor 386, the transistor 202 over the insulator 210, and the capacitor 101.
  • the transistor 202 illustrated in FIGS. 53A and 54 and the capacitor 101 have a common structure, the projected area is small, and miniaturization and high integration are possible.
  • Information writing, holding, and reading in the memory device illustrated in FIGS. 53A and 54 may be performed in a manner similar to the method described in Embodiment 3, and description thereof is omitted.
  • transistor 300 illustrated in FIGS. 53A and 54 is an example and is not limited to the structure, and an appropriate transistor may be used depending on a circuit configuration or a driving method.
  • FIG. 53A and FIG. 54 a cross-sectional view in the W width direction of the transistor 300 denoted by W1-W2 is illustrated in FIG.
  • a semiconductor region 313 (a part of the substrate 311) where a channel is formed has a convex shape.
  • a conductor 316 is provided so as to cover a side surface and an upper surface of the semiconductor region 313 with an insulator 315 interposed therebetween. Note that the conductor 316 may be formed using a material that adjusts a work function.
  • Such a transistor 300 is also called a FIN-type transistor because it uses a convex portion of a semiconductor substrate.
  • an insulator functioning as a mask for forming the convex portion may be provided in contact with the upper portion of the convex portion.
  • the SOI substrate may be processed to form a semiconductor film having a convex shape.
  • the insulator 324 is preferably formed using a film having a barrier property such that hydrogen and impurities do not diffuse from the substrate 311 or the transistor 300 to a region where the transistor 202 is provided.
  • An insulator 210, an insulator 212, and an insulator 216 are stacked in this order over the insulator 354 and the conductor 356. Any of the insulator 210, the insulator 212, and the insulator 216 is preferably formed using a substance having a barrier property against oxygen or hydrogen.
  • a metal oxide such as aluminum oxide, hafnium oxide, or tantalum oxide is preferably used for the insulator 210, the insulator 212, and the insulator 216.
  • the insulator 212 and the insulator 216 can be formed using an interlayer film made of a material having a relatively low dielectric constant, whereby parasitic capacitance generated between wirings can be reduced.
  • a silicon oxide film, a silicon oxynitride film, or the like can be used as the insulator 212 and the insulator 216.
  • conductors that form the transistor 202 such as the conductor 209, the conductor 203, and the conductor 205 are embedded.
  • the conductor 203 and the conductor 209 function as a plug or a wiring for electrically connecting the transistor 202 and the transistor 300.
  • the conductor 209, the conductor 203, and the conductor 205 can be provided using a material similar to that of the conductor 328 and the conductor 330.
  • the insulator 210 and the conductor 209 in a region in contact with the insulator 212 are preferably conductors having a barrier property against oxygen, hydrogen, and water.
  • the transistor 300 and the transistor 202 can be separated by a layer having a barrier property against oxygen, hydrogen, and water, and diffusion of hydrogen from the transistor 300 to the transistor 202 can be suppressed.
  • a transistor 202 and a capacitor 101 are provided above the insulator 212. Note that the transistor 202 and the capacitor 101 described in the above embodiment may be used for the structures of the transistor 202 and the capacitor 101. In addition, the transistor 202 and the capacitor 101 illustrated in FIG. 53A are examples, and the structure is not limited thereto, and an appropriate transistor may be used depending on a circuit configuration or a driving method.
  • the gate of the transistor 300 and the other of the source and the drain of the transistor 202 are electrically connected to each other through four conductors of a conductor 356, a conductor 366, a conductor 376, and a conductor 386.
  • the conductor provided between the gate of the transistor 300 and the other of the source and the drain of the transistor 202 may be the conductor 356 alone, or two, three, or five or more conductors.
  • the conductor 330 that is electrically connected to the gate of the transistor 300 and the conductor 209 that is electrically connected to the other of the source and the drain of the transistor 202 may be directly connected.
  • FIGS. 55 and 56 An example of a modification of the present embodiment is shown in FIGS. 55 and 56.
  • a memory cell array can be formed by integrating the memory device shown in FIG. 55 as a memory cell.
  • a plurality of memory devices may be provided so that memory cells are arranged in a matrix.
  • FIG. 55 is an example of a cross-sectional view of the memory cell array in the case where the transistors 202 are integrated in the memory device illustrated in FIG.
  • 55 and 56 illustrate a memory device including the transistor 300a, the transistor 202a, and the capacitor 101a, a memory device including the transistor 300b, the transistor 202b, and the capacitor 101b, a wiring SL, and a wiring RBL (RBL01 and RBL02).
  • a memory cell array including wiring WBL (WBL01 and WBL02), wiring WWL, and wiring RWL.
  • the transistor 202a and the transistor 202b can be provided to overlap each other.
  • the wiring SL can be provided in common in the transistor 300a and the transistor 300b.
  • the transistor 300a and the transistor 300b by providing the low resistance region 314a in common as the wiring SL, formation of a wiring or a plug becomes unnecessary, and the process can be shortened.
  • the semiconductor device can be reduced in area, highly integrated, and miniaturized.
  • NOSRAM Nonvolatile Oxide Semiconductor RAM
  • 2T type, 3T type a memory device using an OS transistor such as NOSRAM
  • OS memory a memory device using an OS transistor such as NOSRAM
  • OS memory a memory device using an OS transistor as a memory cell (hereinafter referred to as “OS memory”) is applied.
  • the OS memory is a memory that includes at least a capacitor and an OS transistor that controls charging and discharging of the capacitor. Since the OS transistor is a transistor with a minimum off-state current, the OS memory has excellent retention characteristics and can function as a nonvolatile memory.
  • FIG. 57 shows a configuration example of NOSRAM.
  • the NOSRAM 1600 illustrated in FIG. 57 includes a memory cell array 1610, a controller 1640, a row driver 1650, a column driver 1660, and an output driver 1670.
  • the NOSRAM 1600 is a multi-value NOSRAM that stores multi-value data in one memory cell.
  • the memory cell array 1610 includes a plurality of memory cells 1611, a plurality of word lines WWL and RWL, a bit line BL, and a source line SL.
  • the word line WWL is a write word line
  • the word line RWL is a read word line.
  • one memory cell 1611 stores 3-bit (eight values) data.
  • the controller 1640 comprehensively controls the entire NOSRAM 1600 and writes data WDA [31: 0] and reads data RDA [31: 0].
  • the controller 1640 processes command signals from the outside (for example, a chip enable signal, a write enable signal, etc.), and generates control signals for the row driver 1650, the column driver 1660, and the output driver 1670.
  • the row driver 1650 has a function of selecting a row to be accessed.
  • the row driver 1650 includes a row decoder 1651 and a word line driver 1652.
  • the column driver 1660 drives the source line SL and the bit line BL.
  • the column driver 1660 includes a column decoder 1661, a write driver 1662, and a DAC (digital-analog conversion circuit) 1663.
  • the DAC 1663 converts 3-bit digital data into an analog voltage.
  • the DAC 1663 converts 32-bit data WDA [31: 0] into an analog voltage every 3 bits.
  • the write driver 1662 has a function of precharging the source line SL, a function of electrically floating the source line SL, a function of selecting the source line SL, and a write voltage generated by the DAC 1663 to the selected source line SL.
  • the output driver 1670 includes a selector 1671, an ADC (analog-digital conversion circuit) 1672, and an output buffer 1673.
  • the selector 1671 selects the source line SL to be accessed and transmits the voltage of the selected source line SL to the ADC 1672.
  • the ADC 1672 has a function of converting an analog voltage into 3-bit digital data. The voltage of the source line SL is converted into 3-bit data in the ADC 1672, and the output buffer 1673 holds data output from the ADC 1672.
  • the structures of the row driver 1650, the column driver 1660, and the output driver 1670 described in this embodiment are not limited to the above.
  • the arrangement of these drivers and wirings connected to the drivers may be changed, or the functions of these drivers and wirings connected to the drivers may be changed. Or you may add.
  • the bit line BL may have a part of the function of the source line SL.
  • the amount of information stored in each memory cell 1611 is 3 bits.
  • the amount of information held in each memory cell 1611 may be 2 bits or less, or 4 bits or more.
  • the DAC 1663 and the ADC 1672 may be omitted.
  • FIG. 58A is a circuit diagram illustrating a structural example of the memory cell 1611.
  • the memory cell 1611 is a 2T type gain cell, and the memory cell 1611 is electrically connected to the word lines WWL and RWL, the bit line BL, the source line SL, and the wiring BGL.
  • the memory cell 1611 includes a node SN, an OS transistor MO61, a transistor MP61, and a capacitor C61.
  • the OS transistor MO61 is a write transistor.
  • the transistor MP61 is a read transistor, and is composed of, for example, a p-channel Si transistor.
  • the capacitive element C61 is a holding capacitor for holding the voltage of the node SN.
  • the node SN is a data holding node and corresponds to the gate of the transistor MP61 here.
  • the NOSRAM 1600 can hold data for a long time.
  • bit line WBL functioning as the writing bit line and the reading bit line
  • bit line RBL that functions as:
  • 58 (C) to 58 (E) show other structural examples of the memory cell.
  • 58C to 58E show an example in which a write bit line WBL and a read bit line RBL are provided. As shown in FIG. 58A, the write and read bits are shared. A bit line may be provided.
  • a memory cell 1612 illustrated in FIG. 58C is a modification example of the memory cell 1611 in which the reading transistor is changed to an n-channel transistor (MN61).
  • the transistor MN61 may be an OS transistor or a Si transistor.
  • the OS transistor MO61 may be an OS transistor without a back gate.
  • a memory cell 1613 illustrated in FIG. 58D is a 3T-type gain cell and is electrically connected to the word lines WWL and RWL, the bit lines WBL and RBL, the source line SL, and the wirings BGL and PCL.
  • the memory cell 1613 includes a node SN, an OS transistor MO62, a transistor MP62, a transistor MP63, and a capacitor C62.
  • the OS transistor MO62 is a write transistor.
  • the transistor MP62 is a read transistor, and the transistor MP63 is a selection transistor.
  • a memory cell 1614 shown in FIG. 58E is a modification example of the memory cell 1613, in which a read transistor and a selection transistor are changed to n-channel transistors (MN62 and MN63).
  • the transistors MN62 and MN63 may be OS transistors or Si transistors.
  • the OS transistor provided in the memory cells 1611 to 1614 may be a transistor without a back gate or a transistor with a back gate.
  • NOR memory device in which the memory cells 1611 and the like are connected in parallel has been described; however, the memory device described in this embodiment is not limited thereto.
  • NAND memory device in which memory cells 1615 as described below are connected in series may be used.
  • FIG. 59 is a circuit diagram showing a configuration example of a NAND type memory cell array 1610.
  • a memory cell array 1610 illustrated in FIG. 59 includes a source line SL, a bit line RBL, a bit line WBL, a word line WWL, a word line RWL, a wiring BGL, and a memory cell 1615.
  • the memory cell 1615 includes a node SN, an OS transistor MO63, a transistor MN64, and a capacitor C63.
  • the transistor MN64 is composed of, for example, an n-channel Si transistor. Without being limited thereto, the transistor MN64 may be a p-channel Si transistor or an OS transistor.
  • the memory cell 1615a and the memory cell 1615b illustrated in FIG. 59 will be described as an example.
  • the reference numerals of the wirings or circuit elements connected to either the memory cell 1615a or the memory cell 1615b are denoted by a or b.
  • the gate of the transistor MN64a, one of the source and the drain of the transistor MO63a, and one of the electrodes of the capacitor C63a are electrically connected. Further, the bit line WBL and the other of the source and the drain of the transistor MO63a are electrically connected. In addition, the word line WWLa and the gate of the transistor MO63a are electrically connected. Further, the wiring BGLa and the back gate of the transistor MO63a are electrically connected. The word line RWLa and the other electrode of the capacitor C63a are electrically connected.
  • the memory cell 1615b can be provided symmetrically with the memory cell 1615a with the contact portion with the bit line WBL as an axis of symmetry. Accordingly, the circuit elements included in the memory cell 1615b are also connected to the wiring in the same manner as the memory cell 1615a.
  • the source of the transistor MN64a included in the memory cell 1615a is electrically connected to the drain of the transistor MN64b in the memory cell 1615b.
  • the drain of the transistor MN64a included in the memory cell 1615a is electrically connected to the bit line RBL.
  • the source of the transistor MN64b included in the memory cell 1615b is electrically connected to the source line SL through the transistor MN64 included in the plurality of memory cells 1615. In this manner, in the NAND type memory cell array 1610, the plurality of transistors MN64 are connected in series between the bit line RBL and the source line SL.
  • FIG. 60 shows a cross-sectional view corresponding to the memory cell 1615a and the memory cell 1615b.
  • Memory cell 1615a and memory cell 1615b have a structure similar to that of the memory device illustrated in FIG. That is, the capacitor C63a and the capacitor C63b have the same structure as the capacitor 100, the OS transistor MO63a and the OS transistor MO63b have the same structure as the transistor 200, and the transistor MN64a and the transistor MN64b have the same structure as the transistor 300. It has a structure. Note that in the structure illustrated in FIG. 60, components having the same reference numerals as those illustrated in FIG. 29 can be referred to.
  • the conductor 130b is extended to function as the word line RWLa
  • the conductor 260 is extended to function as the word line WWLa
  • the conductor 209 in contact with the lower surface of the conductor 205 is It extends and functions as the wiring BGLa.
  • the memory cell 1615b is provided with a word line RWLb, a word line WWLb, and a wiring BGLb.
  • the low resistance region 314b illustrated in FIG. 60 functions as the source of the transistor MN64a and the drain of the transistor MN64b.
  • the low resistance region 314a functioning as the drain of the transistor MN64a is electrically connected to the bit line RBL through the conductor 328 and the conductor 330.
  • the source of the transistor MN64b is electrically connected to the source line SL through the transistor MN64 included in the plurality of memory cells 1615, the conductor 328, and the conductor 330.
  • the conductor 256 is extended and functions as the bit line WBL.
  • the conductor 252a functions as a contact portion of the word line WBL, and is used in common by the transistor MO63a and the transistor MO63b.
  • the memory cell 1615a and the memory cell 1615b share the contact portion of the bit line WBL, thereby reducing the number of contact portions of the bit line WBL and reducing the occupied area of the memory cell 1615 in a top view. Can do.
  • the storage device according to the present embodiment can be further highly integrated, and the storage capacity per unit area can be increased.
  • a write operation and a read operation are performed for each of a plurality of memory cells (hereinafter referred to as memory cell columns) connected to the same word line WWL (or word line RWL).
  • the write operation can be performed as follows. A potential at which the transistor MO63 is turned on is applied to the word line WWL connected to the memory cell column to be written, so that the transistor MO63 of the memory cell column to be written is turned on. As a result, the potential of the bit line WBL is applied to one of the gate of the transistor MN64 and the electrode of the capacitor C63 in the designated memory cell column, and a predetermined charge is applied to the gate. In this manner, data can be written into the memory cell 1615 in the designated memory cell column.
  • the read operation can be performed as follows. First, a potential that turns on the transistor MN64 is applied to the word line RWL that is not connected to the memory cell column to be read regardless of the charge applied to the gate of the transistor MN64, and the memory cell column to be read is read. The other transistors MN64 are turned on. Then, a potential (read potential) is applied to the word line RWL connected to the memory cell column from which reading is performed, so that the on state or the off state of the transistor MN64 is selected by the charge of the gate of the transistor MN64. Then, a constant potential is applied to the source line SL, and the reading circuit connected to the bit line RBL is set in an operating state.
  • the conductance between the source line SL and the bit line RBL is read. It is determined by the state (ON state or OFF state) of the transistor MN64 in the memory cell column. Since the conductance of the transistor varies depending on the charge of the gate of the transistor MN64 of the memory cell column to be read, the potential of the bit line RBL takes a different value accordingly. By reading the potential of the bit line RBL by the reading circuit, information can be read from the memory cell 1615 of the designated memory cell column.
  • the NOSRAM 1600 Since data is rewritten by charging / discharging the capacitive element C61, the capacitive element C62, or the capacitive element C63, the NOSRAM 1600 has no limitation on the number of times of rewriting in principle, and can write and read data with low energy. Further, since the data can be held for a long time, the refresh frequency can be reduced.
  • the transistor 200 is used as the OS transistors MO61, MO62, and MO63
  • the capacitor 100 is used as the capacitors C61, C62, and C63.
  • the transistor 300 can be used as the transistors MP61, MP62, MP63, MN61, MN62, MN63, and MN64. Accordingly, the area occupied by the transistor and the capacitor element in a top view can be reduced, so that the memory device according to this embodiment can be further integrated. Thus, the storage capacity per unit area of the storage device according to this embodiment can be increased.
  • DOSRAM is described as an example of a memory device to which an OS transistor and a capacitor are applied according to one embodiment of the present invention, with reference to FIGS.
  • DOSRAM registered trademark
  • OS memory is applied to DOSRAM as well as NOSRAM.
  • FIG. 61 shows a configuration example of DOSRAM.
  • the DOSRAM 1400 includes a controller 1405, a row circuit 1410, a column circuit 1415, a memory cell, and a sense amplifier array 1420 (hereinafter referred to as “MC-SA array 1420”).
  • MC-SA array 1420 a sense amplifier array 1420
  • the row circuit 1410 includes a decoder 1411, a word line driver circuit 1412, a column selector 1413, and a sense amplifier driver circuit 1414.
  • the column circuit 1415 includes a global sense amplifier array 1416 and an input / output circuit 1417.
  • the global sense amplifier array 1416 has a plurality of global sense amplifiers 1447.
  • the MC-SA array 1420 includes a memory cell array 1422, a sense amplifier array 1423, and global bit lines GBLL and GBLR.
  • the MC-SA array 1420 has a stacked structure in which the memory cell array 1422 is stacked on the sense amplifier array 1423.
  • Global bit lines GBLL and GBLR are stacked on the memory cell array 1422.
  • a hierarchical bit line structure in which a local bit line and a global bit line are hierarchized is adopted as the bit line structure.
  • the memory cell array 1422 includes N (N is an integer of 2 or more) local memory cell arrays 1425 ⁇ 0> -1425 ⁇ N-1>.
  • FIG. 62A shows a configuration example of the local memory cell array 1425.
  • the local memory cell array 1425 includes a plurality of memory cells 1445, a plurality of word lines WL, and a plurality of bit lines BLL and BLR.
  • the structure of the local memory cell array 1425 is an open bit line type, but may be a folded bit line type.
  • FIG. 62B illustrates a circuit configuration example of the memory cell 1445.
  • the memory cell 1445 includes a transistor MW1, a capacitor CS1, and terminals B1 and B2.
  • the transistor MW1 has a function of controlling charging / discharging of the capacitor CS1.
  • the gate of the transistor MW1 is electrically connected to the word line WL, the first terminal is electrically connected to the bit line (BLL or BLR), and the second terminal is electrically connected to the first terminal of the capacitor CS1.
  • BLL or BLR bit line
  • the second terminal of the capacitive element CS1 is electrically connected to the terminal B2.
  • a constant voltage (for example, a low power supply voltage) is input to the terminal B2.
  • the transistor 200 can be used as the transistor MW1 and the capacitor 100 can be used as the capacitor CS1.
  • the area occupied by the transistor and the capacitor element in a top view can be reduced, so that the memory device according to this embodiment can be highly integrated.
  • the storage capacity per unit area of the storage device according to this embodiment can be increased.
  • the transistor MW1 includes a back gate, and the back gate is electrically connected to the terminal B1. Therefore, the threshold voltage of the transistor MW1 can be changed by the voltage of the terminal B1.
  • the voltage at the terminal B1 may be a fixed voltage (for example, a negative constant voltage), or the voltage at the terminal B1 may be changed according to the operation of the DOSRAM 1400.
  • the back gate of the transistor MW1 may be electrically connected to the gate, the first terminal, or the second terminal of the transistor MW1. Alternatively, a back gate is not necessarily provided in the transistor MW1.
  • the sense amplifier array 1423 includes N local sense amplifier arrays 1426 ⁇ 0> -1426 ⁇ N-1>.
  • the local sense amplifier array 1426 includes one switch array 1444 and a plurality of sense amplifiers 1446.
  • a bit line pair is electrically connected to the sense amplifier 1446.
  • the sense amplifier 1446 has a function of precharging the bit line pair, a function of amplifying the voltage difference between the bit line pair, and a function of holding this voltage difference.
  • the switch array 1444 has a function of selecting a bit line pair and bringing the selected bit line pair and the global bit line pair into a conductive state.
  • bit line pair refers to two bit lines that are simultaneously compared by the sense amplifier.
  • a global bit line pair refers to two global bit lines that are simultaneously compared by a global sense amplifier.
  • a bit line pair can be called a pair of bit lines, and a global bit line pair can be called a pair of global bit lines.
  • bit line BLL and the bit line BLR form one bit line pair.
  • Global bit line GBLL and global bit line GBLR form a pair of global bit lines.
  • bit line pair (BLL, BLR) and the global bit line pair (GBLL, GBLR) are also represented.
  • the controller 1405 has a function of controlling the overall operation of the DOSRAM 1400.
  • the controller 1405 performs a logical operation on an externally input command signal to determine an operation mode, and a function to generate control signals for the row circuit 1410 and the column circuit 1415 so that the determined operation mode is executed. , A function of holding an address signal input from the outside, and a function of generating an internal address signal.
  • the row circuit 1410 has a function of driving the MC-SA array 1420.
  • the decoder 1411 has a function of decoding an address signal.
  • the word line driver circuit 1412 generates a selection signal for selecting the word line WL of the access target row.
  • a column selector 1413 and a sense amplifier driver circuit 1414 are circuits for driving the sense amplifier array 1423.
  • the column selector 1413 has a function of generating a selection signal for selecting the bit line of the access target column.
  • the switch array 1444 of each local sense amplifier array 1426 is controlled by a selection signal from the column selector 1413.
  • the plurality of local sense amplifier arrays 1426 are independently driven by the control signal of the sense amplifier driver circuit 1414.
  • the column circuit 1415 has a function of controlling input of the data signal WDA [31: 0] and a function of controlling output of the data signal RDA [31: 0].
  • the data signal WDA [31: 0] is a write data signal
  • the data signal RDA [31: 0] is a read data signal.
  • the global sense amplifier 1447 is electrically connected to a global bit line pair (GBLL, GBLR).
  • the global sense amplifier 1447 has a function of amplifying a voltage difference between the global bit line pair (GBLL, GBLR) and a function of holding this voltage difference.
  • Data input / output to / from the global bit line pair (GBLL, GBLR) is performed by an input / output circuit 1417.
  • Data is written to the global bit line pair by the input / output circuit 1417.
  • Data of the global bit line pair is held by the global sense amplifier array 1416.
  • the data of the global bit line pair is written to the bit line pair of the target column by the switch array 1444 of the local sense amplifier array 1426 specified by the address signal.
  • the local sense amplifier array 1426 amplifies and holds the written data.
  • the row circuit 1410 selects the word line WL of the target row, and the data held in the local sense amplifier array 1426 is written into the memory cell 1445 of the selected row.
  • One row of the local memory cell array 1425 is designated by the address signal.
  • the word line WL in the target row is selected, and the data in the memory cell 1445 is written to the bit line.
  • the local sense amplifier array 1426 detects and holds the voltage difference between the bit line pairs in each column as data.
  • the switch array 1444 writes the data in the column specified by the address signal among the data held in the local sense amplifier array 1426 to the global bit line pair.
  • the global sense amplifier array 1416 detects and holds data of the global bit line pair. Data held in the global sense amplifier array 1416 is output to the input / output circuit 1417. This completes the read operation.
  • the DOSRAM 1400 Since data is rewritten by charging / discharging the capacitive element CS1, the DOSRAM 1400 has no restriction on the number of times of rewriting in principle, and data can be written and read with low energy. Further, since the circuit configuration of the memory cell 1445 is simple, the capacity can be easily increased.
  • the transistor MW1 is an OS transistor. Since the off-state current of the OS transistor is extremely small, leakage of charge from the capacitor CS1 can be suppressed. Therefore, the retention time of the DOSRAM 1400 is very long compared to the DRAM. Therefore, since the frequency of refresh can be reduced, the power required for the refresh operation can be reduced. Therefore, the DOSRAM 1400 is suitable for a memory device that rewrites a large amount of data at a high frequency, for example, a frame memory used for image processing.
  • the bit line can be shortened to the same length as the local sense amplifier array 1426. By shortening the bit line, the bit line capacitance can be reduced and the storage capacity of the memory cell 1445 can be reduced. Further, by providing the switch array 1444 in the local sense amplifier array 1426, the number of long bit lines can be reduced. For the above reasons, the load driven when accessing the DOSRAM 1400 is reduced, and the power consumption can be reduced.
  • an FPGA field programmable gate array
  • OS-FPGA field programmable gate array
  • FIG. 63A illustrates a configuration example of the OS-FPGA.
  • the OS-FPGA 3110 shown in FIG. 63A is capable of NOFF (normally off) computing that performs context switching by a multi-context structure and fine-grain power gating for each PLE.
  • the OS-FPGA 3110 includes a controller 3111, a word driver 3112, a data driver 3113, and a programmable area 3115.
  • the programmable area 3115 includes two input / output blocks (IOB) 3117 and a core (Core) 3119.
  • the IOB 3117 has a plurality of programmable input / output circuits.
  • the core 3119 includes a plurality of logic array blocks (LAB) 3120 and a plurality of switch array blocks (SAB) 3130.
  • the LAB 3120 includes a plurality of PLE 3121s.
  • FIG. 63B shows an example in which the LAB 3120 is composed of five PLE 3121s.
  • the SAB 3130 includes a plurality of switch blocks (SB) 3131 arranged in an array.
  • the LAB 3120 is connected to its own input terminal and the LAB 3120 in the 4 (up / down / left / right) direction via the SAB 3130.
  • the SB 3131 will be described with reference to FIGS. 64 (A) to 64 (C).
  • Data, dataab, signals context [1: 0], and word [1: 0] are input to SB3131 shown in FIG. data and datab are configuration data, and data and datab have a complementary logic relationship.
  • the number of contexts of the OS-FPGA 3110 is 2, and the signal context [1: 0] is a context selection signal.
  • the signal word [1: 0] is a word line selection signal, and the wiring to which the signal word [1: 0] is input is a word line.
  • the SB 3131 includes PRSs (programmable routing switches) 3133 [0] and 3133 [1].
  • the PRSs 3133 [0] and 3133 [1] have a configuration memory (CM) that can store complementary data. Note that PRS 3133 [0] and PRS 3133 [1] are referred to as PRS 3133 when they are not distinguished. The same applies to other elements.
  • FIG. 64B illustrates a circuit configuration example of the PRS 3133 [0].
  • PRS 3133 [0] and PRS 3133 [1] have the same circuit configuration.
  • PRS 3133 [0] and PRS 3133 [1] are different in the input context selection signal and word line selection signal.
  • the signals context [0] and word [0] are input to the PRS 3133 [0]
  • the signals context [1] and word [1] are input to the PRS 3133 [1].
  • the PRS 3133 [0] becomes active.
  • the PRS 3133 [0] includes a CM 3135 and a Si transistor M31.
  • the Si transistor M31 is a pass transistor controlled by the CM 3135.
  • the CM 3135 includes memory circuits 3137 and 3137B.
  • the memory circuits 3137 and 3137B have the same circuit configuration.
  • the memory circuit 3137 includes a capacitor C31 and OS transistors MO31 and MO32.
  • the memory circuit 3137B includes a capacitor CB31 and OS transistors MOB31 and MOB32.
  • the transistor 200 can be used as the OS transistors MO31 and MOB31, and the capacitor 100 can be used as the capacitors C31 and CB31. Accordingly, the area occupied by the transistor and the capacitor element in a top view can be reduced, so that the semiconductor device according to this embodiment can be highly integrated.
  • the OS transistors MO31, MO32, MOB31, and MOB32 each have a back gate, and each of these back gates is electrically connected to a power supply line that supplies a fixed voltage.
  • the gate of the Si transistor M31 is the node N31
  • the gate of the OS transistor MO32 is the node N32
  • the gate of the OS transistor MOB32 is the node NB32.
  • Nodes N32 and NB32 are charge holding nodes of the CM 3135.
  • the OS transistor MO32 controls a conduction state between the node N31 and the signal line for the signal context [0].
  • the OS transistor MOB32 controls a conduction state between the node N31 and the low potential power supply line VSS.
  • the logic of data held in the memory circuits 3137 and 3137B has a complementary relationship. Therefore, either one of the OS transistors MO32 or MOB32 becomes conductive.
  • the PRS 3133 [0] While the signal context [0] is “L”, the PRS 3133 [0] is inactive. During this period, even if the input terminal (input) of the PRS 3133 [0] transits to “H”, the gate of the Si transistor M31 is maintained at “L”, and the output terminal (output) of the PRS 3133 [0] is also “L”. "Is maintained.
  • the PRS 3133 [0] is active.
  • the gate of the Si transistor M31 changes to “H” according to the configuration data stored in the CM 3135.
  • the OS transistor MO32 of the memory circuit 3137 is a source follower, so that the gate voltage of the Si transistor M31 increases due to boosting. To do. As a result, the OS transistor MO32 of the memory circuit 3137 loses drive capability, and the gate of the Si transistor M31 is in a floating state.
  • the CM 3135 also has a multiplexer function.
  • FIG. 65 shows a configuration example of the PLE 3121.
  • the PLE 3121 includes an LUT (Look Up Table) block (LUT block) 3123, a register block 3124, a selector 3125, and a CM 3126.
  • the LUT block 3123 is configured to select and output data according to the inputs inA-inD.
  • the selector 3125 selects the output of the LUT block 3123 or the output of the register block 3124 according to the configuration data stored in the CM 3126.
  • the PLE 3121 is electrically connected to the power line for the voltage VDD via the power switch 3127. On / off of the power switch 3127 is set by configuration data stored in the CM 3128. By providing a power switch 3127 for each PLE 3121, fine-grain power gating is possible. Since the fine-grained power gating function can power gating the PLE 3121 that is not used after context switching, standby power can be effectively reduced.
  • the register block 3124 is configured by a nonvolatile register.
  • the nonvolatile register in the PLE 3121 is a flip-flop (hereinafter referred to as [OS-FF]) including an OS memory.
  • the register block 3124 includes OS-FFs 3140 [1] and 3140 [2]. Signals user_res, load, and store are input to the OS-FFs 3140 [1] and 3140 [2].
  • the clock signal CLK1 is input to the OS-FF 3140 [1]
  • the clock signal CLK2 is input to the OS-FF 3140 [2].
  • FIG. 66A illustrates a configuration example of the OS-FF 3140.
  • the OS-FF 3140 includes an FF 3141 and a shadow register 3142.
  • the FF 3141 includes nodes CK, R, D, Q, and QB.
  • a clock signal is input to the node CK.
  • a signal user_res is input to the node R.
  • the signal user_res is a reset signal.
  • Node D is a data input node
  • node Q is a data output node.
  • Nodes Q and QB have a complementary logic relationship.
  • the shadow register 3142 functions as a backup circuit for the FF 3141.
  • the shadow register 3142 backs up the data of the nodes Q and QB according to the signal store, and writes back up the backed up data to the nodes Q and QB according to the signal load.
  • the shadow register 3142 includes inverter circuits 3188 and 3189, Si transistors M37 and MB37, and memory circuits 3143 and 3143B.
  • the memory circuits 3143 and 3143B have the same circuit configuration as the memory circuit 3137 of the PRS 3133.
  • the memory circuit 3143 includes a capacitor C36 and OS transistors MO35 and MO36.
  • the memory circuit 3143B includes a capacitor CB36, an OS transistor MOB35, and an OS transistor MOB36.
  • Nodes N36 and NB36 are gates of the OS transistor MO36 and the OS transistor MOB36, respectively, and are charge holding nodes.
  • Nodes N37 and NB37 are gates of the Si transistors M37 and MB37.
  • the transistor 200 can be used as the OS transistors MO35 and MOB35, and the capacitor 100 can be used as the capacitors C36 and CB36. Accordingly, the area occupied by the transistor and the capacitor element in a top view can be reduced, so that the semiconductor device according to this embodiment can be highly integrated.
  • the OS transistors MO35, MO36, MOB35, and MOB36 each have a back gate, and these back gates are each electrically connected to a power supply line that supplies a fixed voltage.
  • the shadow register 3142 backs up the data in the FF 3141.
  • the node N36 becomes “L” when the data of the node Q is written, and the node NB36 becomes “H” when the data of the node QB is written. Thereafter, power gating is executed and the power switch 3127 is turned off. Although the data of the nodes Q and QB of the FF 3141 are lost, the shadow register 3142 holds the backed up data even when the power is turned off.
  • the power switch 3127 is turned on to supply power to the PLE 3121. After that, when the “H” signal load is input to the OS-FF 3140, the shadow register 3142 writes back-up data back to the FF 3141. Since the node N36 is “L”, the node N37 is maintained at “L”, and the node NB36 is “H”, so that the node NB37 is “H”. Therefore, the node Q becomes “H” and the node QB becomes “L”. That is, the OS-FF 3140 returns to the state during the backup operation.
  • the power consumption of the OS-FPGA 3110 can be effectively reduced.
  • An error that may occur in the memory circuit is a soft error due to the incidence of radiation.
  • a soft error is a secondary universe that is generated when a nuclear reaction occurs between alpha rays emitted from the materials that make up the memory and package, or primary cosmic rays incident on the atmosphere from space and atomic nuclei in the atmosphere. This is a phenomenon in which a malfunction such as inversion of data held in a memory occurs due to irradiation of a line neutron or the like to a transistor to generate an electron-hole pair.
  • An OS memory using an OS transistor has high soft error resistance. Therefore, the OS-FPGA 3110 with high reliability can be provided by installing the OS memory.
  • FIG. 67 is a block diagram illustrating a configuration example of the AI system 4041.
  • the AI system 4041 includes a calculation unit 4010, a control unit 4020, and an input / output unit 4030.
  • the arithmetic unit 4010 includes an analog arithmetic circuit 4011, DOSRAM 4012, NOSRAM 4013, and FPGA 4014.
  • DOSRAM 4012, the NOSRAM 4013, and the FPGA 4014, the DOSRAM 1400, the NOSRAM 1600, and the OS-FPGA 3110 described in the above embodiment can be used.
  • the control unit 4020 includes a CPU (Central Processing Unit) 4021, a GPU (Graphics Processing Unit) 4022, a PLL (Phase Locked Loop) 4023, and a SRAM (Static Random Access MemoryPROM 40 Memory, Memory Memory 4024).
  • the input / output unit 4030 includes an external storage control circuit 4031, an audio codec 4032, a video codec 4033, a general-purpose input / output module 4034, and a communication module 4035.
  • the arithmetic unit 4010 can execute learning or inference using a neural network.
  • the analog operation circuit 4011 includes an A / D (analog / digital) conversion circuit, a D / A (digital / analog) conversion circuit, and a product-sum operation circuit.
  • the analog arithmetic circuit 4011 is preferably formed using an OS transistor.
  • An analog operation circuit 4011 using an OS transistor has an analog memory, and can perform a product-sum operation necessary for learning or inference with low power consumption.
  • the DOSRAM 4012 is a DRAM formed using an OS transistor, and the DOSRAM 4012 is a memory that temporarily stores digital data sent from the CPU 4021.
  • the DOSRAM 4012 includes a memory cell including an OS transistor and a reading circuit portion including a Si transistor. Since the memory cell and the reading circuit portion can be provided in different stacked layers, the DOSRAM 4012 can reduce the entire circuit area.
  • the input data may exceed 1000.
  • the SRAM has a limited circuit area and has a small storage capacity, so the input data must be stored in small portions.
  • the DOSRAM 4012 can arrange memory cells highly integrated even with a limited circuit area, and has a larger storage capacity than an SRAM. Therefore, the DOSRAM 4012 can store the input data efficiently.
  • a NOSRAM 4013 is a non-volatile memory using an OS transistor.
  • the NOSRAM 4013 consumes less power when writing data than other non-volatile memories such as flash memory, ReRAM (Resistive Random Access Memory), and MRAM (Magnetorescent Random Access Memory). Further, unlike the flash memory and the ReRAM, the element is not deteriorated when data is written, and the number of times data can be written is not limited.
  • the NOSRAM 4013 can store multi-value data of 2 bits or more in addition to 1-bit binary data.
  • the NOSRAM 4013 stores multi-value data, so that the memory cell area per bit can be reduced.
  • the NOSRAM 4013 can store analog data in addition to digital data. Therefore, the analog arithmetic circuit 4011 can also use the NOSRAM 4013 as an analog memory. Since the NOSRAM 4013 can store analog data as it is, no D / A conversion circuit or A / D conversion circuit is required. Therefore, the NOSRAM 4013 can reduce the area of the peripheral circuit.
  • analog data refers to data having a resolution of 3 bits (8 values) or more. The multi-value data described above may be included in the analog data.
  • Data and parameters used for calculation of the neural network can be temporarily stored in the NOSRAM 4013.
  • the data and parameters may be stored in the memory provided outside the AI system 4041 via the CPU 4021.
  • the data and parameters provided by the internal NOSRAM 4013 are faster and consume less power. Can be stored. Further, since the bit line of the NOSRAM 4013 can be made longer than that of the DOSRAM 4012, the storage capacity can be increased.
  • the FPGA 4014 is an FPGA using an OS transistor.
  • the AI system 4041 uses a FPGA 4014, which will be described later in hardware, a deep neural network (DNN), a convolutional neural network (CNN), a recursive neural network (RNN), a self-encoder, a deep Boltzmann machine (DBM).
  • a neural network connection such as a deep belief network (DBN), can be constructed. By configuring the above-mentioned neural network connection with hardware, it can be executed at higher speed.
  • the FPGA 4014 is an FPGA having an OS transistor.
  • the OS-FPGA can reduce the area of the memory compared to the FPGA configured with SRAM. Therefore, even if a context switching function is added, the area increase is small.
  • the OS-FPGA can transmit data and parameters at high speed by boosting.
  • the analog arithmetic circuit 4011, the DOSRAM 4012, the NOSRAM 4013, and the FPGA 4014 can be provided on one die (chip). Therefore, the AI system 4041 can execute neural network calculations at high speed and with low power consumption.
  • the analog arithmetic circuit 4011, the DOSRAM 4012, the NOSRAM 4013, and the FPGA 4014 can be manufactured through the same manufacturing process. Therefore, the AI system 4041 can be manufactured at low cost.
  • the arithmetic unit 4010 need not have all of the DOSRAM 4012, the NOSRAM 4013, and the FPGA 4014.
  • One or more of the DOSRAM 4012, the NOSRAM 4013, and the FPGA 4014 may be selected and provided depending on the problem that the AI system 4041 wants to solve.
  • the AI system 4041 includes a deep neural network (DNN), a convolutional neural network (CNN), a recursive neural network (RNN), a self-encoder, a deep Boltzmann machine (DBM), a deep belief network (DBM). DBN) etc. can be performed.
  • the PROM 4025 can store a program for executing at least one of these methods. Also, a part or all of the program may be stored in the NOSRAM 4013.
  • the AI system 4041 preferably includes a GPU 4022.
  • the AI system 4041 can execute a product-sum operation that is rate-limiting among the product-sum operations used in learning and inference by the arithmetic unit 4010, and can execute other product-sum operations by the GPU 4022. By doing so, learning and inference can be performed at high speed.
  • the power supply circuit 4027 not only generates a low power supply potential for a logic circuit but also generates a potential for analog calculation.
  • the power supply circuit 4027 may use an OS memory.
  • the power supply circuit 4027 can reduce power consumption by storing the reference potential in the OS memory.
  • the PMU 4028 has a function of temporarily turning off the power supply of the AI system 4041.
  • the CPU 4021 and the GPU 4022 preferably have an OS memory as a register. Since the CPU 4021 and the GPU 4022 have the OS memory, even if the power supply is turned off, the data (logical value) can be continuously held in the OS memory. As a result, the AI system 4041 can save power.
  • the PLL 4023 has a function of generating a clock.
  • the AI system 4041 operates based on the clock generated by the PLL 4023.
  • the PLL 4023 preferably has an OS memory. Since the PLL 4023 has an OS memory, it can hold an analog potential for controlling the clock oscillation period.
  • the AI system 4041 may store data in an external memory such as a DRAM. Therefore, the AI system 4041 preferably includes a memory controller 4026 that functions as an interface with an external DRAM.
  • the memory controller 4026 is preferably arranged near the CPU 4021 or the GPU 4022. By doing so, data can be exchanged at high speed.
  • Part or all of the circuit shown in the controller 4020 can be formed on the same die as the arithmetic unit 4010. By doing so, the AI system 4041 can execute the calculation of the neural network at high speed and with low power consumption.
  • the AI system 4041 preferably includes an external storage control circuit 4031 that functions as an interface with an external storage device.
  • the AI system 4041 includes an audio codec 4032 and a video codec 4033.
  • the audio codec 4032 performs encoding (encoding) and decoding (decoding) of audio data
  • the video codec 4033 encodes and decodes video data.
  • the AI system 4041 can perform learning or inference using data obtained from an external sensor. Therefore, the AI system 4041 has a general-purpose input / output module 4034.
  • the general-purpose input / output module 4034 includes, for example, USB (Universal Serial Bus) and I2C (Inter-Integrated Circuit).
  • the AI system 4041 can perform learning or inference using data obtained via the Internet. Therefore, the AI system 4041 preferably includes a communication module 4035.
  • the analog arithmetic circuit 4011 may use a multi-value flash memory as an analog memory.
  • the flash memory has a limited number of rewritable times.
  • it is very difficult to form a multi-level flash memory in an embedded manner an arithmetic circuit and a memory are formed on the same die.
  • the analog arithmetic circuit 4011 may use ReRAM as an analog memory.
  • ReRAM has a limited number of rewritable times and has a problem in terms of storage accuracy.
  • circuit design for separating data writing and reading becomes complicated.
  • the analog arithmetic circuit 4011 may use MRAM as an analog memory.
  • MRAM has a low resistance change rate and has a problem in terms of storage accuracy.
  • the analog arithmetic circuit 4011 preferably uses an OS memory as an analog memory.
  • FIG. 68A shows an AI system 4041A in which the AI systems 4041 described in FIG. 67 are arranged in parallel and signals can be transmitted and received between the systems via a bus line.
  • the AI system 4041A illustrated in FIG. 68A includes a plurality of AI systems 4041_1 to 4041_n (n is a natural number).
  • the AI systems 4041_1 to 4041_n are connected to each other via a bus line 4098.
  • FIG. 68B shows an AI system 4041B in which the AI system 4041 described in FIG. 67 is arranged in parallel as in FIG. 68A, and signals can be transmitted and received between systems via a network. is there.
  • the AI system 4041B illustrated in FIG. 68B includes a plurality of AI systems 4041_1 to 4041_n.
  • the AI systems 4041_1 to 4041_n are connected to each other via a network 4099.
  • the network 4099 may have a configuration in which a communication module is provided in each of the AI systems 4041_1 to 4041_n to perform wireless or wired communication.
  • the communication module can communicate via an antenna.
  • the Internet Intranet, Extranet, PAN (Personal Area Network), LAN (Local Area Network), MAN (Campure Area Network, MAN (MetropoliAwareNetwork), MAN (MetropoliAureNetwork), which are the foundations of the World Wide Web (WWW).
  • Each electronic device can be connected to a computer network such as Network) or GAN (Global Area Network) to perform communication.
  • LTE Long Term Evolution
  • GSM Global System for Mobile Communication: registered trademark
  • EDGE Enhanced Data Rates for GSM Evolvement, CDMA Emulsion, CDMA Emulsion
  • Communication standards such as W-CDMA (registered trademark), or specifications standardized by IEEE such as Wi-Fi (registered trademark), Bluetooth (registered trademark), ZigBee (registered trademark) can be used.
  • analog signals obtained by an external sensor or the like can be processed by separate AI systems.
  • information such as electroencephalogram, pulse, blood pressure, body temperature, etc., such as biological information
  • various sensors such as an electroencephalogram sensor, a pulse wave sensor, a blood pressure sensor, and a temperature sensor
  • analog signals can be processed by separate AI systems. it can.
  • the amount of information processing per AI system can be reduced. Therefore, signal processing or learning can be performed with a smaller amount of calculation. As a result, recognition accuracy can be increased. From the information obtained by each AI system, it can be expected that changes in biological information that change in a complex manner can be instantaneously and integratedly grasped.
  • the AI system described in the above embodiment integrates a digital processing circuit composed of Si transistors such as a CPU, an analog arithmetic circuit using OS transistors, and OS memories such as OS-FPGA, DOSRAM, and NOSRAM into one die. be able to.
  • FIG. 69 shows an example of an IC incorporating an AI system.
  • An AI system IC 7000 illustrated in FIG. 69 includes a lead 7001 and a circuit portion 7003.
  • the AI system IC 7000 is mounted on a printed circuit board 7002, for example. A plurality of such IC chips are combined and each is electrically connected on the printed circuit board 7002 to complete a substrate on which electronic components are mounted (a mounting substrate 7004).
  • the circuit portion 7003 is provided with the various circuits described in the above embodiment in one die.
  • the circuit portion 7003 has a stacked structure, and is roughly divided into a Si transistor layer 7031, a wiring layer 7032, and an OS transistor layer 7033. Since the OS transistor layer 7033 can be stacked over the Si transistor layer 7031, the AI system IC 7000 can be easily downsized.
  • QFP Quad Flat Package
  • a digital processing circuit such as a CPU, an analog arithmetic circuit using an OS transistor, and OS memories such as OS-FPGA and DOSRAM and NOSRAM can all be formed in the Si transistor layer 7031, the wiring layer 7032, and the OS transistor layer 7033. it can. That is, the elements constituting the AI system can be formed by the same manufacturing process. Therefore, the IC shown in this embodiment mode does not need to increase the manufacturing process even if the number of elements constituting the IC is increased, and the AI system can be incorporated at low cost.
  • FIG. 70 illustrates specific examples of electronic devices using the semiconductor device according to one embodiment of the present invention.
  • FIG. 70A shows a monitor 830.
  • the monitor 830 includes a display portion 831, a housing 832, a speaker 833, and the like. Furthermore, an LED lamp, operation keys (including a power switch or an operation switch), a connection terminal, various sensors, a microphone, and the like can be provided.
  • the monitor 830 can be operated with a remote controller 834.
  • the monitor 830 can function as a television device by receiving broadcast radio waves.
  • Broadcast radio waves that can be received by the monitor 830 include terrestrial waves or radio waves transmitted from satellites.
  • broadcast radio waves there are analog broadcasts, digital broadcasts, etc., and video and audio, or audio-only broadcasts.
  • broadcast radio waves transmitted in a specific frequency band in the UHF band (300 MHz to 3 GHz) or the VHF band (30 MHz to 300 MHz) can be received.
  • the transfer rate can be increased and more information can be obtained.
  • an image having a resolution exceeding full high-definition can be displayed on the display unit 831. For example, an image having a resolution of 4K-2K, 8K-4K, 16K-8K, or higher can be displayed.
  • the monitor 830 may not have a tuner.
  • the monitor 830 can be connected to a computer and used as a computer monitor.
  • a monitor 830 connected to a computer can be viewed by a plurality of people at the same time, and can be used for a conference system. Further, the monitor 830 can be used in a video conference system by displaying computer information via the network or connecting the monitor 830 itself to the network.
  • the monitor 830 can also be used as digital signage.
  • the semiconductor device of one embodiment of the present invention can be used for a driver circuit of a display portion or an image processing portion.
  • the semiconductor device of one embodiment of the present invention for the driver circuit of the display portion or the image processing portion, high-speed operation and signal processing can be realized with low power consumption.
  • image processing such as noise removal processing, gradation conversion processing, color tone correction processing, and luminance correction processing is performed. Can do. Also, inter-pixel interpolation processing associated with resolution up-conversion, inter-frame interpolation processing associated with frame frequency up-conversion, and the like can be performed.
  • the gradation conversion process can not only convert the number of gradations of an image but also perform interpolation of gradation values when the number of gradations is increased. Further, a high dynamic range (HDR) process for expanding the dynamic range is also included in the gradation conversion process.
  • HDR high dynamic range
  • a video camera 2940 illustrated in FIG. 70B includes a housing 2941, a housing 2942, a display portion 2944, operation switches 2944, a lens 2945, a connection portion 2946, and the like.
  • the operation switch 2944 and the lens 2945 are provided on the housing 2941
  • the display portion 2944 is provided on the housing 2942.
  • the video camera 2940 includes an antenna, a battery, and the like inside the housing 2941.
  • the housing 2941 and the housing 2942 are connected to each other by a connection portion 2946.
  • the angle between the housing 2941 and the housing 2942 can be changed by the connection portion 2946.
  • the orientation of the image displayed on the display portion 2943 can be changed, and display / non-display of the image can be switched.
  • the semiconductor device of one embodiment of the present invention can be used for a driver circuit of a display portion or an image processing portion.
  • the semiconductor device of one embodiment of the present invention for the driver circuit of the display portion or the image processing portion, high-speed operation and signal processing can be realized with low power consumption.
  • an AI system including the semiconductor device of one embodiment of the present invention for the image processing portion of the video camera 2940, shooting according to the environment around the video camera 2940 can be realized. Specifically, shooting can be performed with an optimal exposure according to the ambient brightness. In addition, when shooting under different lighting conditions, such as shooting in backlight or indoor and outdoor, high dynamic range (HDR) shooting can be performed.
  • HDR high dynamic range
  • the AI system can learn a photographer's habit and can assist in photographing. Specifically, by learning the camera shake of the photographer and correcting the camera shake during shooting, it is possible to minimize the image disturbance caused by the camera shake. Further, when using the zoom function during shooting, the direction of the lens and the like can be controlled so that the subject is always shot at the center of the image.
  • An information terminal 2910 illustrated in FIG. 70C includes a housing 2911, a display portion 2912, a microphone 2917, a speaker portion 2914, a camera 2913, an external connection portion 2916, an operation switch 2915, and the like.
  • the display portion 2912 includes a display panel using a flexible substrate and a touch screen.
  • the information terminal 2910 includes an antenna, a battery, and the like inside the housing 2911.
  • the information terminal 2910 can be used as, for example, a smartphone, a mobile phone, a tablet information terminal, a tablet personal computer, an electronic book terminal, or the like.
  • a memory device using the semiconductor device of one embodiment of the present invention can hold the control information of the above-described information terminal 2910, the control program, and the like for a long period.
  • image processing such as noise removal processing, tone conversion processing, color tone correction processing, and luminance correction processing is performed.
  • image processing such as noise removal processing, tone conversion processing, color tone correction processing, and luminance correction processing is performed.
  • inter-pixel interpolation processing associated with resolution up-conversion, inter-frame interpolation processing associated with frame frequency up-conversion, and the like can be performed.
  • the gradation conversion process can not only convert the number of gradations of an image but also perform interpolation of gradation values when the number of gradations is increased.
  • a high dynamic range (HDR) process for expanding the dynamic range is also included in the gradation conversion process.
  • the AI system can learn the user's habit and assist the operation of the information terminal 2910.
  • An information terminal 2910 equipped with an AI system can predict a touch input from the movement of a user's finger, the line of sight, and the like.
  • a laptop personal computer 2920 illustrated in FIG. 70D includes a housing 2921, a display portion 2922, a keyboard 2923, a pointing device 2924, and the like.
  • the laptop personal computer 2920 includes an antenna, a battery, and the like inside the housing 2921.
  • a memory device using the semiconductor device of one embodiment of the present invention can hold control information, a control program, and the like of the laptop personal computer 2920 for a long period.
  • images such as noise removal processing, gradation conversion processing, color tone correction processing, and luminance correction processing can be used. Processing can be performed. Also, inter-pixel interpolation processing associated with resolution up-conversion, inter-frame interpolation processing associated with frame frequency up-conversion, and the like can be performed.
  • the gradation conversion process can not only convert the number of gradations of an image but also perform interpolation of gradation values when the number of gradations is increased. Further, a high dynamic range (HDR) process for expanding the dynamic range is also included in the gradation conversion process.
  • HDR high dynamic range
  • the AI system can learn a user's habit and assist the operation of the laptop personal computer 2920.
  • a laptop personal computer 2920 equipped with an AI system can predict a touch input to the display unit 2922 from the movement of a user's finger, a line of sight, or the like.
  • input prediction is performed based on past text input information and figures such as preceding and following texts and photographs, and conversion is assisted. Thereby, input mistakes and conversion mistakes can be reduced as much as possible.
  • FIG. 70E is an external view illustrating an example of an automobile
  • FIG. 70F illustrates a navigation device 860.
  • the automobile 2980 includes a vehicle body 2981, wheels 2982, a dashboard 2983, lights 2984, and the like.
  • the automobile 2980 includes an antenna, a battery, and the like.
  • the navigation device 860 includes a display unit 861, operation buttons 862, and an external input terminal 863.
  • the automobile 2980 and the navigation device 860 may be independent of each other, but it is preferable that the navigation device 860 is incorporated in the automobile 2980 and functions in conjunction with the automobile 2980.
  • a memory device using the semiconductor device of one embodiment of the present invention can hold control information, a control program, and the like of the automobile 2980 and the navigation device 860 for a long period.
  • the AI system learns driving skills and habits of the driver, assists in safe driving, and uses gasoline or batteries. It is possible to assist driving that efficiently uses such fuel. Assisting safe driving not only learns the driver's driving skills and habits, but also learns driving behavior such as the speed and movement method of the car 2980, road information stored in the navigation device 860, etc.
  • the navigation device 860 can transmit the road information to the automobile 2980 to control the speed of the automobile 2980 and assist the steering operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Semiconductor Memories (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Non-Volatile Memory (AREA)
  • Noodles (AREA)
  • Bipolar Transistors (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

要約書 微細化または高集積化が可能な半導体装置を提供する。 第1の導電体と、 第1の導電体上の第2の導電体と、 第2の導電体を覆う第1の絶縁体と、 第1の 絶縁体上の第1の酸化物と、 第1の酸化物上の第2の酸化物と、 を有し、 第1の酸化物および第1の 絶縁体には、 少なくとも第1の導電体の一部と重なる開口が設けられ、 第2の酸化物は、 開口を介し て第1の導電体と電気的に接続する。

Description

半導体装置、および半導体装置の作製方法
 本発明の一態様は、半導体装置、ならびに半導体装置の作製方法に関する。または、本発明の一態様は、半導体ウエハ、モジュールおよび電子機器に関する。
 なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。トランジスタなどの半導体素子をはじめ、半導体回路、演算装置、記憶装置は、半導体装置の一態様である。表示装置(液晶表示装置、発光表示装置など)、投影装置、照明装置、電気光学装置、蓄電装置、記憶装置、半導体回路、撮像装置および電子機器などは、半導体装置を有すると言える場合がある。
 なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。
半導体素子を用いた集積回路(Integrated Circuit:IC)の開発がすすめられている。CPUやメモリの開発および製造には、より高い集積度のICからなるLSIや超LSIの技術が用いられている。このようなICは、回路基板、例えばプリント配線板に実装され、コンピュータ、情報端末、表示装置、自動車などを構成する、様々な電子機器の部品の一つとして用いられる。また、これらを人工知能(Artificial Intelligence:AI)システムに用いる研究も進められている。
コンピュータや情報端末として、デスクトップ型コンピュータ、ラップトップ型コンピュータ、タブレット型コンピュータ、スマートフォン、携帯電話などが知られている。
半導体素子に用いられる半導体材料としてシリコン系半導体材料が広く知られているが、その他の材料として酸化物半導体が注目されている。
 また、酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さいことが知られている。例えば、酸化物半導体を用いたトランジスタのリーク電流が低いという特性を応用した低消費電力のCPUなどが開示されている(特許文献1参照。)。
 また、近年では電子機器の小型化、軽量化に伴い、集積回路のさらなる高密度化への要求が高まっている。また、集積回路を含む半導体装置の生産性の向上が求められている。
ここで、酸化物半導体としては、例えば、酸化インジウム、酸化亜鉛などの一元系金属の酸化物のみでなく、多元系金属の酸化物も知られている。多元系金属の酸化物の中でも、特に、In−Ga−Zn酸化物(以下、IGZOとも呼ぶ。)に関する研究が盛んに行われている。
IGZOに関する研究により、酸化物半導体において、単結晶でも非晶質でもない、CAAC(c−axis aligned crystalline)構造およびnc(nanocrystalline)構造が見出された(非特許文献1乃至非特許文献3参照。)。非特許文献1および非特許文献2では、CAAC構造を有する酸化物半導体を用いてトランジスタを作製する技術も開示されている。さらに、CAAC構造およびnc構造よりも結晶性の低い酸化物半導体でさえも、微小な結晶を有することが、非特許文献4および非特許文献5に示されている。
さらに、IGZOを活性層として用いたトランジスタは極めて低いオフ電流を持ち(非特許文献6参照。)、その特性を利用したLSIおよびディスプレイが報告されている(非特許文献7および非特許文献8参照。)。
特開2012−257187号公報
S.Yamazaki et al.,"SID Symposium Digest of Technical Papers",2012,volume 43,issue 1,p.183−186 S.Yamazaki et al.,"Japanese Journal of Applied Physics",2014,volume 53,Number 4S,p.04ED18−1−04ED18−10 S.Ito et al.,"The Proceedings of AM−FPD’13 Digest of Technical Papers",2013,p.151−154 S.Yamazaki et al.,"ECS Journal of Solid State Science and Technology",2014,volume 3,issue 9,p.Q3012−Q3022 S.Yamazaki,"ECS Transactions",2014,volume 64,issue 10,p.155−164 K.Kato et al.,"Japanese Journal of Applied Physics",2012,volume 51,p.021201−1−021201−7 S.Matsuda et al.,"2015 Symposium on VLSI Technology Digest of Technical Papers",2015,p.T216−T217 S.Amano et al.,"SID Symposium Digest of Technical Papers",2010,volume 41,issue 1,p.626−629
 本発明の一態様は、良好な電気特性を有する半導体装置およびその作製方法を提供することを課題の一つとする。本発明の一態様は、信頼性の高い半導体装置およびその作製方法を提供することを課題の一つとする。本発明の一態様は、微細化または高集積化が可能な半導体装置およびその作製方法を提供することを課題の一つとする。本発明の一態様は、生産性の高い半導体装置およびその作製方法を提供することを課題の一つとする。
 本発明の一態様は、電気特性の変動を抑制し、安定した電気特性を有すると共に、信頼性を向上させた半導体装置を提供することを課題の一つとする。また、本発明の一態様は、長期間においてデータの保持が可能な半導体装置を提供することを課題の一つとする。また、本発明の一態様は、データの書き込み速度が速い半導体装置を提供することを課題の一つとする。また、本発明の一態様は、新規な半導体装置を提供することを課題の一つとする。
 本発明の一態様は、設計自由度が高い半導体装置を提供することを課題の一つとする。また、本発明の一態様は、消費電力を抑えることができる半導体装置を提供することを課題の一つとする。
本発明の一態様は、作製工程が簡略化された半導体装置およびその作製方法を提供することを課題の一つとする。また、本発明の一態様は、面積が縮小された半導体装置およびその作製方法を提供することを課題の一つとする。
 なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、第1の導電体と、第1の導電体上の第2の導電体と、第2の導電体を覆う第1の絶縁体と、第1の絶縁体上の第1の酸化物と、第1の酸化物上の第2の酸化物と、を有し、第1の酸化物および第1の絶縁体には、少なくとも第1の導電体の一部と重なる開口が設けられ、第2の酸化物は、開口を介して第1の導電体と電気的に接続する半導体装置である。
上記において、第2の酸化物の端部は、第1の酸化物の端部と概略一致することが好ましい。
上記において、半導体装置は、さらに、第3の導電体と、第3の導電体上の第4の導電体と、第2の酸化物上の第3の酸化物と、第3の酸化物上の第2の絶縁体と、第2の絶縁体上の第5の導電体を有していてもよく、第4の導電体は、第1の絶縁体に覆われ、第5の導電体は、第1の絶縁体、第1の酸化物、第2の酸化物、第3の酸化物、および第2の絶縁体を間に挟み、第3の導電体および第4の導電体と重なることが好ましい。
上記において、第1の導電体と、第3の導電体は、同じ材料からなることが好ましく、第2の導電体と、第4の導電体は、同じ材料からなることが好ましい。
上記において、第2の導電体は、金属窒化物を含むことが好ましい。
上記において、金属窒化物は、窒化チタンまたは窒化タンタルであることが好ましい。
本発明の一態様は、絶縁表面上に第1の導電膜を形成し、第1の導電膜上に第2の導電膜を形成し、第2の導電膜および第1の導電膜をパターニングして、第1の導電体および第1の導電体上の第2の導電体を形成し、第1の導電体および第2の導電体を覆うように第1の絶縁膜を形成し、第1の絶縁膜を、第2の導電体が露出するように加工して、第1の絶縁体を形成し、第1の絶縁体および第2の導電体上に第2の絶縁体を形成し、第2の絶縁体上に第1の酸化膜を形成し、第1の酸化膜および第2の絶縁体に、少なくとも第1の導電体の一部と重なる開口を形成し、第1の酸化膜上に第2の酸化膜を形成し、第2の酸化膜および第1の酸化膜をパターニングして、第1の酸化物、および第1の酸化物上の第2の酸化物を形成し、第2の酸化物は、開口を介して、第1の導電体と電気的に接続する半導体装置の作製方法である。
上記において、第2の導電膜および第1の導電膜のパターニングにより、さらに、第3の導電体および第3の導電体上の第4の導電体を形成し、第2の酸化物上に第3の酸化膜を形成し、第3の酸化膜上に第2の絶縁膜を形成し、第2の絶縁膜上に第3の導電膜を形成し、第3の導電膜をパターニングして第5の導電体を形成し、第2の絶縁膜をパターニングして第3の絶縁体を形成し、第3の酸化膜をパターニングして第3の酸化物を形成してもよく、第5の導電体は、第2の絶縁体、第1の酸化物、第2の酸化物、第3の酸化物、および第3の絶縁体を間に挟み、第3の導電体および第4の導電体と重なることが好ましい。
上記において、第2の導電膜は、金属窒化物を含むことが好ましい。
上記において、金属窒化物は、窒化チタンまたは窒化タンタルであることが好ましい。
本発明の一態様は、第1の導電体と、第1の導電体上の第1の絶縁体と、第1の絶縁体上の第1の酸化物と、第1の酸化物上の第2の酸化物と、第2の酸化物上の第3の酸化物と、第3の酸化物上の第2の絶縁体と、第2の絶縁体上の第2の導電体と、第2の絶縁体の側面と、第2の導電体の側面に設けられた第3の絶縁体と、第3の絶縁体の側面に設けられた第4の絶縁体を有し、第1の酸化物および第1の絶縁体には、第1の導電体の一部と重なる開口が設けられ、第2の酸化物は、開口を介して第1の導電体と電気的に接続する半導体装置である。
上記において、第2の酸化物の側面、および第3の酸化物の側面は、第1の酸化物の側面と同一平面を有することが好ましい。
上記において、第2の酸化物の端部、および第3の酸化物の端部は、第1の酸化物の端部と概略一致することが好ましい。
上記において、当該半導体装置は、さらに、第3の導電体と、第4の酸化物を有していてもよく、第4の酸化物は、第3の酸化物と第2の絶縁体の間に設けられ、第3の導電体は、第1の絶縁体、第1の酸化物、第2の酸化物、第3の酸化物、第4の酸化物、および第2の絶縁体を間に挟み、第2の導電体と重なることが好ましい。
上記において、第1の導電体と、第3の導電体は、同じ材料を有することが好ましい。
本発明の一態様は、第1の導電体および第2の導電体上に第1の絶縁膜を形成し、第1の絶縁膜上に第1の酸化膜を形成し、第1の酸化膜および第1の絶縁膜に、少なくとも第1の導電体の一部と重なる開口を形成し、第1の酸化膜および第1の導電体上に第2の酸化膜を形成し、第2の酸化膜上に第3の酸化膜を形成し、第3の酸化膜、第2の酸化膜および第1の酸化膜をパターニングして、第1の酸化物、第1の酸化物上の第2の酸化物、および第2の酸化物上の第3の酸化物を形成し、第1の酸化物、第2の酸化物、および第3の酸化物を覆うように第2の絶縁膜を形成し、第2の絶縁膜上に第1の導電膜を形成し、第1の導電膜、および第2の絶縁膜をパターニングして、第3の導電体、および第1の絶縁体を形成し、第3の導電体、および第1の絶縁体を覆うように第3の絶縁膜を形成し、第3の絶縁膜上に第4の絶縁膜を形成し、第4の絶縁膜および第3の絶縁膜をエッチングにより加工して、第3の導電体の側面、および第1の絶縁体の側面に第2の絶縁体、および第2の絶縁体の側面に第3の絶縁体を形成する半導体装置の作製方法である。
上記において、第3の導電体は、第1の絶縁膜、第1の酸化物、第2の酸化物、第3の酸化物、および第1の絶縁体を間に挟み、第2の導電体と重なることが好ましい。
本発明の一態様により、良好な電気特性を有する半導体装置およびその作製方法を提供することができる。本発明の一態様により、信頼性の高い半導体装置およびその作製方法を提供することができる。本発明の一態様により、微細化または高集積化が可能な半導体装置およびその作製方法を提供することができる。本発明の一態様により、生産性の高い半導体装置およびその作製方法を提供することができる。
本発明の一態様により、電気特性の変動を抑制し、安定した電気特性を有すると共に、信頼性を向上させた半導体装置を提供することができる。または、長期間においてデータの保持が可能な半導体装置を提供することができる。または、データの書き込み速度が速い半導体装置を提供することができる。または、新規な半導体装置を提供することができる。
本発明の一態様により、設計自由度が高い半導体装置を提供することができる。または、消費電力を抑えることができる半導体装置を提供することができる。
本発明の一態様により、作製工程が簡略化された半導体装置およびその作製方法を提供することができる。また、本発明の一態様により、面積が縮小された半導体装置およびその作製方法を提供することができる。
 なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
本発明の一態様に係る半導体装置を示す上面図および断面図。 本発明の一態様に係る半導体装置を示す断面図。 本発明の一態様に係る半導体装置を示す上面図および断面図。 本発明の一態様に係る半導体装置を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の上面図および断面図。 本発明の一態様に係る半導体装置の断面図。 本発明の一態様に係る半導体装置の上面図および断面図。 本発明の一態様に係る半導体装置の上面図および断面図。 本発明の一態様に係る半導体装置の回路図。 本発明の一態様に係る半導体装置の回路図、および断面図。 本発明の一態様に係る半導体装置の断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る記憶装置の構成を示す断面図。 本発明の一態様に係る記憶装置の構成を示す断面図。 本発明の一態様に係る記憶装置の構成を示す断面図。 本発明の一態様に係る記憶装置の構成を示す断面図。 本発明の一態様に係る記憶装置の構成を示す断面図。 本発明の一態様に係る記憶装置の構成を示す回路図。 本発明の一態様に係る記憶装置の構成例を示すブロック図。 本発明の一態様に係る記憶装置の構成例を示す回路図。 本発明の一態様に係る記憶装置の構成例を示す回路図。 本発明の一態様に係る記憶装置の構成を示す断面図。 本発明の一態様に係る記憶装置の構成例を示すブロック図。 本発明の一態様に係る記憶装置の構成例を示すブロック図、および回路図。 本発明の一態様に係る半導体装置の構成例を示すブロック図。 本発明の一態様に係る半導体装置の構成例を示すブロック図、回路図、および半導体装置の動作例を示すタイミングチャート。 本発明の一態様に係る半導体装置の構成例を示すブロック図。 本発明の一態様に係る半導体装置の構成例を示す回路図、および半導体装置の動作例を示すタイミングチャート。 本発明の一態様に係るAIシステムの構成例を示すブロック図。 本発明の一態様に係るAIシステムの応用例を説明するブロック図。 本発明の一態様に係るAIシステムを組み込んだICの構成例を示す斜視模式図。 本発明の一態様に係る電子機器を示す図。
 以下、実施の形態について図面を参照しながら説明する。但し、実施の形態は多くの異なる態様で実施することが可能であり、趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
 また、図面において、大きさ、層の厚さ、又は領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお図面は、理想的な例を模式的に示したものであり、図面に示す形状又は値などに限定されない。例えば、実際の製造工程において、エッチングなどの処理により層やレジストマスクなどが意図せずに目減りすることがあるが、理解を容易とするために省略して示すことがある。また、図面において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する場合がある。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
 また、特に上面図(「平面図」ともいう。)や斜視図などにおいて、発明の理解を容易とするため、一部の構成要素の記載を省略する場合がある。また、一部の隠れ線などの記載を省略する場合がある。
 また、本明細書などにおいて、第1、第2等として付される序数詞は便宜上用いるものであり、工程順又は積層順を示すものではない。そのため、例えば、「第1の」を「第2の」又は「第3の」などと適宜置き換えて説明することができる。また、本明細書等に記載されている序数詞と、本発明の一態様を特定するために用いられる序数詞は一致しない場合がある。
 また、本明細書において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。従って、明細書で説明した語句に限定されず、状況に応じて適切に言い換えることができる。
 例えば、本明細書等において、XとYとが接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、XとYとが直接接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続関係以外のものも、図または文章に記載されているものとする。
 ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
 XとYとが直接的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)が、XとYとの間に接続されていない場合であり、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)を介さずに、XとYとが、接続されている場合である。
 XとYとが電気的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)が、XとYとの間に1個以上接続されることが可能である。なお、スイッチは、オンオフが制御される機能を有している。つまり、スイッチは、導通状態(オン状態)、または、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有している。または、スイッチは、電流を流す経路を選択して切り替える機能を有している。なお、XとYとが電気的に接続されている場合は、XとYとが直接的に接続されている場合を含むものとする。
 XとYとが機能的に接続されている場合の一例としては、XとYとの機能的な接続を可能とする回路(例えば、論理回路(インバータ、NAND回路、NOR回路など)、信号変換回路(DA変換回路、AD変換回路、ガンマ補正回路など)、電位レベル変換回路(電源回路(昇圧回路、降圧回路など)、信号の電位レベルを変えるレベルシフタ回路など)、電圧源、電流源、切り替え回路、増幅回路(信号振幅または電流量などを大きく出来る回路、オペアンプ、差動増幅回路、ソースフォロワ回路、バッファ回路など)、信号生成回路、記憶回路、制御回路など)が、XとYとの間に1個以上接続されることが可能である。なお、一例として、XとYとの間に別の回路を挟んでいても、Xから出力された信号がYへ伝達される場合は、XとYとは機能的に接続されているものとする。なお、XとYとが機能的に接続されている場合は、XとYとが直接的に接続されている場合と、XとYとが電気的に接続されている場合とを含むものとする。
 また、本明細書等において、トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの端子を有する素子である。そして、ドレイン(ドレイン端子、ドレイン領域またはドレイン電極)とソース(ソース端子、ソース領域またはソース電極)の間にチャネル形成領域を有しており、チャネル形成領域を介して、ソースとドレインとの間に電流を流すことができるものである。なお、本明細書等において、チャネル形成領域とは、電流が主として流れる領域をいう。
 また、ソースやドレインの機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書等においては、ソースやドレインの用語は、入れ替えて用いることができる場合がある。
 なお、チャネル長とは、例えば、トランジスタの上面図において、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが互いに重なる領域、またはチャネルが形成される領域における、ソース(ソース領域またはソース電極)とドレイン(ドレイン領域またはドレイン電極)との間の距離をいう。なお、一つのトランジスタにおいて、チャネル長が全ての領域で同じ値をとるとは限らない。即ち、一つのトランジスタのチャネル長は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル長は、チャネルの形成される領域における、いずれか一の値、最大値、最小値または平均値とする。
 チャネル幅とは、例えば、トランジスタの上面図において、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが互いに重なる領域、またはチャネルが形成される領域における、ソースとドレインとが向かい合っている部分の長さをいう。なお、一つのトランジスタにおいて、チャネル幅がすべての領域で同じ値をとるとは限らない。即ち、一つのトランジスタのチャネル幅は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル幅は、チャネルの形成される領域における、いずれか一の値、最大値、最小値または平均値とする。
 なお、トランジスタの構造によっては、実際にチャネルの形成される領域におけるチャネル幅(以下、「実効的なチャネル幅」ともいう。)と、トランジスタの上面図において示されるチャネル幅(以下、「見かけ上のチャネル幅」ともいう。)と、が異なる場合がある。例えば、ゲート電極が半導体の側面を覆う場合、実効的なチャネル幅が、見かけ上のチャネル幅よりも大きくなり、その影響が無視できなくなる場合がある。例えば、微細かつゲート電極が半導体の側面を覆うトランジスタでは、半導体の側面に形成されるチャネル形成領域の割合が大きくなる場合がある。その場合は、見かけ上のチャネル幅よりも、実効的なチャネル幅の方が大きくなる。
 このような場合、実効的なチャネル幅の、実測による見積もりが困難となる場合がある。例えば、設計値から実効的なチャネル幅を見積もるためには、半導体の形状が既知という仮定が必要である。したがって、半導体の形状が正確にわからない場合には、実効的なチャネル幅を正確に測定することは困難である。
 そこで、本明細書では、見かけ上のチャネル幅を、「囲い込みチャネル幅(SCW:Surrounded Channel Width)」と呼ぶ場合がある。また、本明細書では、単にチャネル幅と記載した場合には、囲い込みチャネル幅または見かけ上のチャネル幅を指す場合がある。または、本明細書では、単にチャネル幅と記載した場合には、実効的なチャネル幅を指す場合がある。なお、チャネル長、チャネル幅、実効的なチャネル幅、見かけ上のチャネル幅、囲い込みチャネル幅などは、断面TEM像などを解析することなどによって、値を決定することができる。
 なお、半導体の不純物とは、例えば、半導体を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物と言える。不純物が含まれることにより、例えば、半導体のDOS(Density of States)が高くなることや、結晶性が低下することなどが起こる場合がある。半導体が酸化物半導体である場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第13族元素、第14族元素、第15族元素、および酸化物半導体の主成分以外の遷移金属などがあり、例えば、水素、リチウム、ナトリウム、シリコン、ホウ素、リン、炭素、窒素などがある。酸化物半導体の場合、水も不純物として機能する場合がある。また、酸化物半導体の場合、例えば不純物の混入によって酸素欠損を形成する場合がある。また、半導体がシリコンである場合、半導体の特性を変化させる不純物としては、例えば、酸素、水素を除く第1族元素、第2族元素、第13族元素、第15族元素などがある。
 なお、本明細書等において、酸化窒化シリコン膜とは、その組成として、窒素よりも酸素の含有量が多いものである。例えば、好ましくは酸素が55原子%以上65原子%以下、窒素が1原子%以上20原子%以下、シリコンが25原子%以上35原子%以下、水素が0.1原子%以上10原子%以下の濃度範囲で含まれるものをいう。また、窒化酸化シリコン膜とは、その組成として、酸素よりも窒素の含有量が多いものである。例えば、好ましくは窒素が55原子%以上65原子%以下、酸素が1原子%以上20原子%以下、シリコンが25原子%以上35原子%以下、水素が0.1原子%以上10原子%以下の濃度範囲で含まれるものをいう。
 また、本明細書等において、「膜」という用語と、「層」という用語とは、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。
 また、本明細書等において、「絶縁体」という用語を、絶縁膜または絶縁層と言い換えることができる。また、「導電体」という用語を、導電膜または導電層と言い換えることができる。また、「半導体」という用語を、半導体膜または半導体層と言い換えることができる。
 また、本明細書等に示すトランジスタは、明示されている場合を除き、電界効果トランジスタとする。また、本明細書等に示すトランジスタは、明示されている場合を除き、nチャネル型のトランジスタとする。よって、そのしきい値電圧(「Vth」ともいう。)は、明示されている場合を除き、0Vよりも大きいものとする。
 また、本明細書等において、「平行」とは、二つの直線が−10°以上10°以下の角度で配置されている状態をいう。したがって、−5°以上5°以下の場合も含まれる。また、「略平行」とは、二つの直線が−30°以上30°以下の角度で配置されている状態をいう。また、「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう。したがって、85°以上95°以下の場合も含まれる。また、「略垂直」とは、二つの直線が60°以上120°以下の角度で配置されている状態をいう。
 また、本明細書において、結晶が三方晶または菱面体晶である場合、六方晶系に含まれるものとする。
 なお、本明細書において、バリア膜とは、水素などの不純物および酸素の透過を抑制する機能を有する膜のことであり、該バリア膜に導電性を有する場合は、導電性バリア膜と呼ぶことがある。
 本明細書等において、金属酸化物(metal oxide)とは、広い表現での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む)、酸化物半導体(Oxide Semiconductorまたは単にOSともいう)などに分類される。例えば、トランジスタの活性層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、OS FETと記載する場合においては、酸化物または酸化物半導体を有するトランジスタと換言することができる。
(実施の形態1)
<半導体装置の構成例1>
以下では、本発明の一態様に係るトランジスタ200を有する半導体装置の一例について説明する。
なお、本実施の形態では、トランジスタ200と同じ層に容量素子100を設ける例を示す。また、容量素子100は、トランジスタ200を構成する構造の一部を、容量素子100を構成する構造の一部として用いる例を示す。
この場合、トランジスタ200に、容量素子100の一部、または全体を重畳させることができ、トランジスタ200の投影面積、および容量素子100の投影面積の合計した面積を小さくすることができるため、好ましい。
しかしながら、本実施の形態は、これに限らない。容量素子100は、トランジスタ200と異なる層に設けてもよく、例えば、トランジスタ200を覆うように設けられた絶縁体(層間膜)上に容量素子100を設けてもよい。また、半導体装置が動作するうえで、あるいは回路構成上、容量素子が不要な場合、容量素子100は設けなくてもよい。
図1(A)、図1(B)、図1(C)、および図1(D)は、本発明の一態様に係るトランジスタ200、容量素子100、およびトランジスタ200周辺の上面図、および断面図である。なお、本明細書では、1つの容量素子、および少なくとも1つのトランジスタを有する半導体装置をセルと称する。
図1(A)は、トランジスタ200、および容量素子100を有するセル600の上面図である。また、図1(B)、図1(C)、および図1(D)はセル600の断面図である。ここで、図1(B)は、図1(A)にA−Bの一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、図1(C)は、図1(A)にC−Dの一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。また、図1(D)は、図1(A)にE−Fの一点鎖線で示す部位の断面図であり、酸化物230と導電体203との接続部や、容量素子100などの断面図でもある。図1(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
[セル600]
本発明の一態様の半導体装置は、トランジスタ200と、容量素子100、層間膜として機能する絶縁体280を有する。また、トランジスタ200と電気的に接続し、プラグとして機能する導電体252(導電体252a、導電体252b、導電体252c、および導電体252d)とを有する。
なお、導電体252は、絶縁体280の開口の内壁に接して形成されている。ここで、導電体252の上面の高さと、絶縁体280の上面の高さは同程度にできる。なお、トランジスタ200では、導電体252が2層である構成について示しているが、本発明はこれに限られるものではない。例えば、導電体252は、単層、または3層以上の積層構造でもよい。
[トランジスタ200]
図1に示すように、トランジスタ200は、基板(図示せず)の上に配置された絶縁体208、絶縁体210、絶縁体210上に配置された導電体203(導電体203a、導電体203b)および導電体205(導電体205a、導電体205b)と、導電体203および導電体205の間およびこれら導電体の周辺に設けられた絶縁体216と、絶縁体216、導電体203、導電体205の上に配置された絶縁体220と、絶縁体220の上に配置された絶縁体222と、絶縁体222の上に配置された絶縁体224と、絶縁体224の上に配置された酸化物230(酸化物230a、酸化物230b、および酸化物230c)と、酸化物230の上に配置された絶縁体250と、絶縁体250の上に配置された導電体260(導電体260a、および導電体260b)と、導電体260の上に配置された絶縁体270、および絶縁体271と、少なくとも絶縁体250、および導電体260の側面に接して配置された絶縁体272と、酸化物230、および絶縁体272と接して配置された絶縁体274と、を有する。
なお、絶縁体216は、導電体203および導電体205を覆うように配置した絶縁膜を、CMP法などを用いて導電体203および導電体205が露出するまで研磨することで形成することができる。そのため、絶縁体216、導電体203、および導電体205は、表面の平坦性に優れる。
また、絶縁体220、絶縁体222、絶縁体224、および酸化物230aは、開口を有している。また、酸化物230bは、上記開口を介して導電体203と電気的に接続している。酸化物230bと、導電体203とが、酸化物230aを介さずに接続する構成とすることで、直列抵抗及び接触抵抗を低減することが可能となる。このような構成により、電気特性の良好な半導体装置が得られる。より具体的には、オン電流の向上したトランジスタ、および当該トランジスタを用いた半導体装置が得られる。
また、導電体203および導電体205は積層構造を有しているのが好ましい。さらに、導電体203bおよび導電体205bは、導電体203aおよび導電体205aよりも酸化しにくい、すなわち耐酸化性に優れた材料を用いることが好ましい。導電体203bおよび導電体205bに酸化しにくい材料を用いることで、絶縁体216となる絶縁膜の形成時、絶縁体216の形成時、絶縁体220の形成時、絶縁体220、絶縁体222、絶縁体224、および酸化物230aに設けられる開口の形成時、および酸化物230bとなる酸化物の形成時に、導電体203および導電体205の酸化を抑制することができる。これにより、導電体203および導電体205の酸化による電気抵抗の増加を抑制することができる。特に導電体203上面の酸化が抑制されることで、導電体203と酸化物230bのコンタクトは良好なものになる。
導電体203aおよび導電体205aは、導電体203bおよび導電体205bより低抵抗な材料を用いることが好ましい。導電体203aおよび導電体205a上には、それぞれ耐酸化性に優れた材料からなる導電体203bおよび導電体205bが設けられている。そのため、トランジスタ200等の作製工程において、導電体203aおよび導電体205aの酸化などによる電気抵抗の増加を抑制することができる。
なお、トランジスタ200では、図1に示すように、酸化物230a、酸化物230b、および酸化物230cを積層する構成について示しているが、本発明はこれに限られるものではない。例えば、酸化物230a、酸化物230bの2層構造、または4層以上の積層構造としてもよい。また、酸化物230bのみの単層、または酸化物230bと酸化物230cのみを設ける構成にしてもよい。また、トランジスタ200では、導電体260a、および導電体260bを積層する構成について示しているが、本発明はこれに限られるものではない。例えば、単層、または3層以上の積層構造としてもよい。
ここで、図1(B)における一点鎖線で囲む、チャネル近傍の領域239の拡大図を図2に示す。
図1(B)および図2に示すように、酸化物230は、トランジスタ200のチャネル形成領域として機能する領域234と、ソース領域またはドレイン領域として機能する領域231(領域231a、および領域231b)との間に、領域232(領域232a、および領域232b)を有する。ソース領域またはドレイン領域として機能する領域231は、キャリア密度が高い、低抵抗化した領域である。また、チャネル形成領域として機能する領域234は、ソース領域またはドレイン領域として機能する領域231よりも、キャリア密度が低い領域である。また、領域232は、ソース領域またはドレイン領域として機能する領域231よりもキャリア密度が低く、チャネル形成領域として機能する領域234よりもキャリア密度が高い領域である。すなわち領域232は、チャネル形成領域と、ソース領域またはドレイン領域との間の接合領域(junction region)としての機能を有する。
接合領域を設けることで、ソース領域またはドレイン領域として機能する領域231と、チャネル形成領域として機能する領域234との間に高抵抗領域が形成されず、トランジスタのオン電流を大きくすることができる。
また、領域232は、ゲート電極として機能する導電体260と重なる領域を有する。特に、領域232においてゲート電極として機能する導電体260と重なる領域は、いわゆるオーバーラップ領域(Lov領域ともいう)として機能する場合がある。
領域231は、絶縁体274と接することが好ましい。また、領域231は、インジウムなどの金属元素、並びに水素、および窒素などの不純物元素、の少なくとも一の濃度が領域232、および領域234よりも大きいことが好ましい。
領域232は、絶縁体272と重畳する領域を有する。領域232は、インジウムなどの金属元素、並びに水素、および窒素などの不純物元素、の少なくとも一の濃度が領域234よりも大きいことが好ましい。一方、インジウムなどの金属元素、並びに水素、および窒素などの不純物元素、の少なくとも一の濃度が領域231よりも、小さいことが好ましい。
領域234は、導電体260と重畳する。領域234は、領域232a、および領域232bとの間に配置しており、インジウムなどの金属元素、並びに水素、および窒素などの不純物元素、の少なくとも一の濃度が領域231、および領域232より、小さいことが好ましい。
また、酸化物230において、領域231、領域232、および領域234の境界は明確に検出できない場合がある。各領域内で検出されるインジウムなどの金属元素、並びに水素、および窒素などの不純物元素の濃度は、領域ごとの段階的な変化に限らず、各領域内でも連続的に変化(グラデーションともいう)していてもよい。つまり、領域231から領域232へ、領域234に近い領域であるほど、インジウムなどの金属元素、並びに水素、および窒素などの不純物元素の濃度が減少していればよい。
また、図1(B)および図2では、領域234、領域231、および領域232が、酸化物230bに形成されているが、これに限られることなく、例えばこれらの領域は酸化物230a、または酸化物230cにも形成されていてもよい。また、図では、各領域の境界を、酸化物230の上面に対して略垂直に表示しているが、本実施の形態はこれに限られるものではない。例えば、領域232が酸化物230bの表面近傍では導電体260側に張り出し、酸化物230bの下面近傍では、導電体252a側または導電体252b側に後退する形状になる場合がある。
なお、トランジスタ200において、酸化物230は、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう)を用いることが好ましい。酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流(オフ電流)が小さいため、低消費電力の半導体装置が提供できる。また、酸化物半導体は、スパッタリング法などを用いて成膜できるため、高集積型の半導体装置を構成するトランジスタに用いることができる。
一方で、酸化物半導体を用いたトランジスタは、酸化物半導体中の不純物及び酸素欠損によって、その電気特性が変動しやすく、信頼性が悪くなる場合がある。また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。従って、チャネル形成領域に酸素欠損が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、チャネル形成領域中の酸素欠損はできる限り低減されていることが好ましい。
特に、酸化物230におけるチャネルが形成される領域234と、ゲート絶縁膜として機能する絶縁体250との界面に、酸素欠損が存在すると、電気特性の変動が生じやすく、また信頼性が悪くなる場合がある。
そこで、酸化物230の領域234と重畳する絶縁体250が化学量論的組成を満たす酸素よりも多くの酸素(過剰酸素ともいう)を含むことが好ましい。つまり、絶縁体250が有する過剰酸素が、領域234へと拡散することで、領域234中の酸素欠損を低減することができる。
また、絶縁体250と接して、絶縁体272を設けることが好ましい。例えば、絶縁体272は、酸素(例えば、酸素原子、酸素分子など)の少なくとも一の拡散を抑制する機能を有する(上記酸素が透過しにくい)ことが好ましい。絶縁体272が、酸素の拡散を抑制する機能を有することで、過剰酸素領域の酸素は絶縁体274側へ拡散することなく、効率よく領域234へ供給される。従って、酸化物230と、絶縁体250との界面における酸素欠損の形成が抑制され、トランジスタ200の信頼性を向上させることができる。
さらに、トランジスタ200は、水または水素などの不純物の混入を防ぐバリア性を有する絶縁体で覆われていることが好ましい。バリア性を有する絶縁体とは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい)絶縁性材料を用いた絶縁体である。また、酸素(例えば、酸素原子、酸素分子など)の少なくとも一の拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料を用いることが好ましい。
以下では、本発明の一態様に係るトランジスタ200を有する半導体装置の詳細な構成について説明する。
トランジスタ200において、導電体260は、第1のゲート電極として機能する場合がある。また、導電体205は、第2のゲート電極として機能する場合がある。その場合、導電体205に印加する電位を、導電体260に印加する電位と、連動させず、独立して変化させることで、トランジスタ200のしきい値電圧を制御することができる。特に、導電体205に負の電位を印加することにより、トランジスタ200のしきい値電圧を0Vより大きくし、オフ電流を低減することが可能となる。従って、導電体260に印加する電圧が0Vのときのドレイン電流を小さくすることができる。
第2のゲート電極として機能する導電体205は、酸化物230および導電体260と重なるように配置する。
ここで、導電体205は、酸化物230における領域234よりも、チャネル幅方向の長さが大きくなるように大きく設けるとよい。特に、導電体205は、酸化物230の領域234がチャネル幅方向と交わる端部よりも外側の領域においても、延伸していることが好ましい。つまり、酸化物230のチャネル幅方向における側面において、導電体205と、導電体260とは、絶縁体を介して重畳していることが好ましい。
導電体203は導電体205と同じ工程で形成することができる。導電体203は、酸化物230の領域231に電気的に接続する電極や配線としての機能を有する。
絶縁体216は、導電体203および導電体205の間、およびこれら導電体の周辺に形成されている。ここで、導電体203、および導電体205の上面の高さと、絶縁体216の上面の高さは同程度にできる。
ここで、導電体203b、および導電体205bは、導電体203a、および導電体205aに比べ、酸化しにくい、すなわち耐酸化性に優れた導電性材料を用いることが好ましい。このような導電性材料として、窒化タンタルや窒化チタンなどの金属窒化物を用いることができる。
導電体203b、および導電体205bとして、耐酸化性に優れた材料を用いることにより、導電体203、および導電体205が酸化して導電率が低下することを防ぐことができる。また、導電体203の上面の酸化が抑制されることで、酸化物230bと導電体203とのコンタクトは良好なものになる。
また、導電体203a、および導電体205aは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。本実施の形態では、導電体203a、および導電体205aとして、タングステンを用いた。
また、図3に示すように、導電体205と電気的に接続する導電体209を設けてもよい。導電体209は、絶縁体210の上にさらに絶縁体212を設け、絶縁体212に設けられた開口に埋め込むように形成することができる。この場合、導電体209は、絶縁体212に設けられた開口の側面および底面に接するように設けられる第1の導電体と、第1の導電体上に設けられる第2の導電体からなる積層構造としてもよい。この場合、第1の導電体は、導電性バリアとすることが好ましい。また、導電体209は単層構造、あるいは3層以上の積層構造としてもよい。導電体209を3層以上の積層構造とする場合、導電性バリアを2層以上設ける構成としてもよい。導電性バリアとしては、水素、水、窒素などの不純物の透過を抑制するバリア膜、酸素の透過を抑制するバリア膜、あるいは金属成分の透過を抑制するバリア膜から一または複数を選んで設けることができる。
または、導電体209は、絶縁体210上に、単層または2層以上からなる導電膜を設けた後、リソグラフィー法やエッチング法を用いて形成してもよい。さらに、絶縁体210上に、導電体209を覆うように絶縁膜を形成してもよく、当該絶縁膜をCMP法やエッチング法により加工し、絶縁体212を形成する。
導電体209は、電極や配線として機能することができる。導電体205を、トランジスタ200の第2のゲート電極として用いる場合、導電体209の一部は、ゲート配線として機能することができる。このとき、導電体207aおよび、導電体207a上に設けられた導電体207bからなる導電体207、および導電体209を介して、導電体205と導電体252dを電気的に接続してもよい。導電体207は、導電体203および導電体205と同じ工程で作製することができる。
また、導電体209は、導電体203を介して酸化物230bと電気的に接続しており、トランジスタ200のソース配線またはドレイン配線として機能することができる。また、導電体209は、絶縁体210より下層に位置する素子や配線と電気的に接続するための電極として用いてもよい。
絶縁体210は、水または水素などの不純物が、基板側からトランジスタに混入するのを防ぐ絶縁性バリア膜として機能することが好ましい。従って、絶縁体210は、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい)絶縁性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子など)の少なくとも一の拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料を用いることが好ましい。
例えば、絶縁体210として、酸化アルミニウムや窒化シリコンなどを用いることが好ましい。これにより、水素、水などの不純物が絶縁体210よりトランジスタ側に拡散するのを抑制することができる。または、絶縁体224などに含まれる酸素が、絶縁体210より基板側に、拡散するのを抑制することができる。
また、層間膜として機能する絶縁体208、絶縁体216、および絶縁体280は、絶縁体210よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
例えば、層間膜として機能する絶縁体208、絶縁体216、および絶縁体280として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)などの絶縁体を単層または積層で用いることができる。またはこれらの絶縁体に例えば酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理しても良い。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
絶縁体220、絶縁体222、および絶縁体224は、ゲート絶縁体としての機能を有する。
ここで、酸化物230と接する絶縁体224は、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁体を用いることが好ましい。つまり、絶縁体224には、過剰酸素領域が形成されていることが好ましい。このような過剰酸素を含む絶縁体を酸化物230に接して設けることにより、酸化物230中の酸素欠損を低減し、信頼性を向上させることができる。
過剰酸素領域を有する絶縁体として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素が脱離する酸化物とは、TDS(Thermal Desorption Spectroscopy)分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは3.0×1020atoms/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、または100℃以上400℃以下の範囲が好ましい。
また、絶縁体224が、過剰酸素領域を有する場合、絶縁体222は、酸素(例えば、酸素原子、酸素分子など)の少なくとも一の拡散を抑制する機能を有する(上記酸素が透過しにくい)ことが好ましい。
絶縁体222が、酸素の拡散を抑制する機能を有することで、過剰酸素領域の酸素は、絶縁体220側へ拡散することなく、効率よく酸化物230へ供給することができる。また、導電体205が、絶縁体224が有する過剰酸素領域の酸素と反応することを抑制することができる。
絶縁体222は、例えば、酸化アルミニウム、酸化ハフニウム、ハフニウムアルミネート、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)などのいわゆるhigh−k材料を含む絶縁体を単層または積層で用いることが好ましい。ゲート絶縁体として機能する絶縁体に、high−k材料を用いることで、トランジスタの微細化、および高集積化が可能となる。特に、酸化アルミニウム、酸化ハフニウム、およびハフニウムアルミネート、などの、不純物、および酸素などの拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料を用いることが好ましい。このような材料を用いて形成した場合、酸化物230からの酸素の放出や、トランジスタ200の周辺部からの水素等の不純物の混入を防ぐ層として機能する。
または、これらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化二オブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理しても良い。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
また、絶縁体220は、熱的に安定していることが好ましい。例えば、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、high−k材料の絶縁体と組み合わせることで、熱的に安定かつ比誘電率の高い積層構造とすることができる。
なお、絶縁体220、絶縁体222、および絶縁体224が、2層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。また、トランジスタ200で絶縁体220、絶縁体222、および絶縁体224がゲート絶縁体として機能する構成を示したが、本実施の形態はこれに限られるものではない。例えば、ゲート絶縁体として、絶縁体220、絶縁体222、および絶縁体224のいずれか2層または1層を設ける構成にしてもよい。
酸化物230は、酸化物230aと、酸化物230a上の酸化物230bと、酸化物230b上の酸化物230cと、を有する。また、酸化物230は、領域231、領域232、および領域234を有する。なお、領域231の少なくとも一部は、絶縁体274と接することが好ましい。また、領域231の少なくとも一部は、インジウムなどの金属元素、水素、および窒素の少なくとも一の濃度が領域234よりも大きいことが好ましい。
トランジスタ200をオンさせると、領域231a、または領域231bは、ソース領域、またはドレイン領域として機能する。一方、領域234の少なくとも一部は、チャネルが形成される領域として機能する。
絶縁体220、絶縁体222、絶縁体224、および酸化物230aは、開口を有しており、酸化物230bの領域231は、導電体203と電気的に接続している。すなわち、トランジスタ200のソースおよびドレインの一方は、絶縁体220、絶縁体222、絶縁体224、および酸化物230aに設けられた開口を介して、導電体203と電気的に接続しており、導電体203はソース電極およびドレイン電極の一方、あるいはソース配線とドレイン配線の一方として機能することができる。
図1(A)および図1(D)に示すように、酸化物230aおよび酸化物230bは、絶縁体220、絶縁体222、絶縁体224、および酸化物230aに形成された開口を包含するように、当該開口と重なる領域における、E−F方向の幅を、当該開口の幅より広く形成することが好ましい。よって、当該領域における、酸化物230aおよび酸化物230bのE−F方向の幅は、チャネルが形成される領域や、A側の領域における、酸化物230aおよび酸化物230bのC−D方向の幅よりも広くなる場合がある。このような構造にすることで、酸化物230bと導電体203のコンタクトを確実に行うことができる。また、容量素子100の面積を大きくすることができ、容量素子100の大容量化が期待できる。
ここで、図2に示すように、酸化物230は、領域232を有することが好ましい。当該構成とすることで、トランジスタ200において、オン電流を大きくし、かつ、非導通時のリーク電流(オフ電流)を小さくすることができる。
また、酸化物230a上に、酸化物230bを有することで、酸化物230aよりも下方に形成された構造物から、酸化物230bに対する不純物の拡散を抑制することができる。また、酸化物230c下に、酸化物230bを有することで、酸化物230cよりも上方に形成された構造物から、酸化物230bに対する不純物の拡散を抑制することができる。
また、酸化物230は、その側面と、上面との間に、湾曲面を有する。つまり、側面の端部と上面の端部は、湾曲していることが好ましい(以下、ラウンド状ともいう)。湾曲面は、例えば、酸化物230bの端部において、曲率半径が、3nm以上10nm以下、好ましくは、5nm以上6nm以下とすることが好ましい。
酸化物230は、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう)を用いることが好ましい。例えば、領域234となる金属酸化物としては、エネルギーギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、エネルギーギャップの広い金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
なお、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。
酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さいため、低消費電力の半導体装置が提供できる。また、酸化物半導体は、スパッタリング法などを用いて成膜できるため、高集積型の半導体装置を構成するトランジスタに用いることができる。
例えば、酸化物230として、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種)等の金属酸化物を用いるとよい。また、酸化物230として、In−Ga酸化物、In−Zn酸化物を用いてもよい。
ここで、酸化物230の領域234について説明する。
領域234は、各金属原子の原子数比が異なる酸化物により、積層構造を有することが好ましい。具体的には、酸化物230a、および酸化物230bの積層構造を有する場合、酸化物230aに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物230bに用いる金属酸化物における、構成元素中の元素Mの原子数比より、大きいことが好ましい。また、酸化物230aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物230bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物230aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。また、酸化物230cは、酸化物230aまたは酸化物230bに用いることができる金属酸化物を、用いることができる。
酸化物230aには、例えばIn:Ga:Zn=1:3:4、In:Ga:Zn=1:3:2、またはIn:Ga:Zn=1:1:1の組成を有する金属酸化物を用いることができる。また、酸化物230bには、例えばIn:Ga:Zn=4:2:3、In:Ga:Zn=1:1:1、またはIn:Ga:Zn=5:1:6の組成を有する金属酸化物を用いることができる。酸化物230cには、例えばIn:Ga:Zn=1:3:4、In:Ga:Zn=1:3:2、In:Ga:Zn=4:2:3、またはIn:Ga:Zn=1:1:1の組成を有する金属酸化物を用いることができる。なお、上記組成は、基板上に形成された酸化物中の原子数比、またはスパッタターゲットにおける原子数比を示す。
特に、酸化物230aとしてIn:Ga:Zn=1:3:4、酸化物230bとしてIn:Ga:Zn=4:2:3、酸化物230cとしてIn:Ga:Zn=1:3:4の組成を有する金属酸化物の組み合わせ、または酸化物230aとしてIn:Ga:Zn=1:3:4、酸化物230bとしてIn:Ga:Zn=4:2:3、酸化物230cとしてIn:Ga:Zn=1:1:1の組成を有する金属酸化物の組み合わせは、酸化物230bを、よりエネルギーギャップの広い酸化物230aと酸化物230cで挟むことができ、好ましい。この時、エネルギーギャップの広い酸化物230aと酸化物230cをワイドギャップ、相対的にエネルギーギャップが狭い酸化物230bをナローギャップと呼ぶことがある。ワイドギャップ、およびナローギャップについては、[金属酸化物の構成]にて説明する。
続いて、酸化物230の領域231、および領域232について説明する。
領域231、および領域232は、酸化物230として設けられた金属酸化物に、インジウムなどの金属原子、または不純物を添加し、低抵抗化した領域である。なお、各領域は、少なくとも、領域234における酸化物230bよりも、導電性が高い。なお、領域231、および領域232に、不純物を添加するために、例えば、プラズマ処理、イオン化された原料ガスを質量分離して添加するイオン注入法、イオン化された原料ガスを質量分離せずに添加するイオンドーピング法、プラズマイマージョンイオンインプランテーション法などを用いて、インジウムなどの金属元素、および不純物の少なくとも一であるドーパントを添加すればよい。
つまり、領域231、および領域232において、酸化物230のインジウムなどの金属原子の含有率を高くすることで、電子移動度を高くし、低抵抗化を図ることができる。
または、酸化物230に接して、不純物となる元素を含む絶縁体274を成膜することで、領域231、および領域232に、不純物を添加することができる。
つまり、領域231、および領域232は、酸素欠損を形成する元素、または酸素欠損に捕獲される元素が添加されることで低抵抗化される。このような元素としては、代表的には水素、ホウ素、炭素、窒素、フッ素、リン、硫黄、塩素、チタン、希ガス等が挙げられる。また、希ガス元素の代表例としては、ヘリウム、ネオン、アルゴン、クリプトン、及びキセノン等がある。よって、領域231、および領域232は、上記元素の一つまたは複数を含む構成にすればよい。
または、絶縁体274として、領域231、および領域232に含まれる酸素を引き抜き、吸収する膜を用いてもよい。酸素が引き抜かれると、領域231、および領域232には酸素欠損が生じる。酸素欠損に水素、ホウ素、炭素、窒素、フッ素、リン、硫黄、塩素、チタン、希ガス等が捕獲されることにより、領域231、および領域232は低抵抗化する。
絶縁体274は、単層で形成してもよいし、2層以上の積層構造としてもよい。絶縁体274は、CVD法、ALD法、スパッタリング法などを用いて形成することができる。ALD法は、優れた段差被覆性、優れた厚さの均一性、および優れた膜厚の制御性を有するため、酸化物230や、導電体260により形成された段差部の成膜には好適である。ALD法を用いて、0.5nm以上5.0nm以下の膜厚を有する絶縁体を形成後、プラズマCVD法を用いて、1.0nm以上10.0nm以下の絶縁体を積層して絶縁体274を形成してもよい。例えば、ALD法を用いて形成した酸化アルミニウム、酸化ハフニウム、またはアルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)上に、プラズマCVD法を用いて形成した窒化シリコン、窒化酸化シリコン、酸化窒化シリコン、または酸化シリコンを積層して絶縁体274としてもよい。または、プラズマCVD法を用いて、1.0nm以上10.0nm以下の絶縁体を形成して、単層の絶縁体274としてもよい。例えば、プラズマCVD法を用いて形成した窒化シリコン、窒化酸化シリコン、酸化窒化シリコン、または酸化シリコンを絶縁体274としてもよい。
また、トランジスタ200において、領域232を設けることで、ソース領域およびドレイン領域として機能する領域231と、チャネルが形成される領域234との間に高抵抗領域が形成されないため、トランジスタのオン電流、および移動度を大きくすることができる。また、領域232を有することで、チャネル長方向において、ソース領域およびドレイン領域と、ゲートとが重ならないため、不要な容量が形成されるのを抑制することができる。また、領域232を有することで、非導通時のリーク電流を小さくすることができる。
従って、領域232の範囲を適宜選択することにより、回路設計に合わせて、要求に見合う電気特性を有するトランジスタを容易に提供することができる。
絶縁体250は、ゲート絶縁膜として機能する。絶縁体250は、酸化物230cの上面に接して配置することが好ましい。絶縁体250は、加熱により酸素が放出される絶縁体を用いて形成することが好ましい。例えば、昇温脱離ガス分光法分析(TDS分析)にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは3.0×1020atoms/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、または100℃以上500℃以下の範囲が好ましい。
加熱により酸素が放出される絶縁体を、絶縁体250として、酸化物230cの上面に接して設けることにより、酸化物230bの領域234に効果的に酸素を供給することができる。また、絶縁体224と同様に、絶縁体250中の水または水素などの不純物濃度が低減されていることが好ましい。絶縁体250の膜厚は、1nm以上20nm以下とするのが好ましい。
第1のゲート電極として機能する導電体260は、導電体260a、および導電体260a上の導電体260bを有する。
導電体260aは、窒化チタンなどを用いることが好ましい。また、導電体260bとして、例えばタングステンなどの、導電性が高い金属を用いることができる。
また、絶縁体250と導電体260aの間に、導電性酸化物からなる導電体を設けてもよい。例えば、酸化物230aまたは酸化物230bとして用いることができる金属酸化物を用いることができる。特に、In−Ga−Zn系酸化物のうち、導電性が高い、金属の原子数比が[In]:[Ga]:[Zn]=4:2:3から4.1、およびその近傍値のものを用いることが好ましい。このような導電体を絶縁体250上に設けることで、導電体260aへの酸素の透過を抑制し、酸化によって導電体260aの電気抵抗値が増加することを防ぐことができる。
また、上記導電性酸化物を、スパッタリング法を用いて成膜することで、絶縁体250に酸素を添加し、酸化物230bに酸素を供給することが可能となる。これにより、酸化物230の領域234の酸素欠損を低減することができる。
また、導電体260cの上に、バリア膜として機能する絶縁体270を配置してもよい。絶縁体270は、水または水素などの不純物、および酸素の透過を抑制する機能を有する絶縁性材料を用いるとよい。例えば、アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体を用いることができる。アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。これにより、導電体260の酸化を防ぐことができる。また、導電体260および絶縁体250を介して、水または水素などの不純物が酸化物230に混入することを防ぐことができる。
また、絶縁体270上に、ハードマスクとして機能する絶縁体271を配置することが好ましい。絶縁体270を設けることで、導電体260の加工の際、導電体260の側面が概略垂直、具体的には、導電体260の側面と基板表面のなす角を、75度以上100度以下、好ましくは80度以上95度以下とすることができる。導電体をこのような形状に加工することで、次に形成する絶縁体272を所望の形状に形成することができる。
また、バリア膜として機能する絶縁体272を、絶縁体250、導電体260、および絶縁体270の側面に接して設ける。
ここで、絶縁体272は、水または水素などの不純物、および酸素の透過を抑制する機能を有する絶縁性材料を用いるとよい。例えば、アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体を用いることができる。アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。これにより、絶縁体250中の酸素が外部に拡散することを防ぐことができる。また、絶縁体250の端部などから酸化物230に水素、水などの不純物が混入するのを抑制することができる。
絶縁体272を設けることで、水または水素などの不純物、および酸素の透過を抑制する機能を有する絶縁体で導電体260の上面と側面および絶縁体250の側面を覆うことができる。これにより、導電体260および絶縁体250を介して、水または水素などの不純物が酸化物230に混入することを防ぐことができる。従って、絶縁体272は、ゲート電極およびゲート絶縁膜の側面を保護するサイドバリアとしての機能を有する。
また、トランジスタが微細化され、チャネル長が10nm以上30nm以下程度に形成されている場合、トランジスタ200の周辺に設けられる構造体に含まれる不純物元素が拡散し、領域231aと領域231b、あるいは、領域232aと領域232bと、が電気的に導通する恐れがある。
そこで、本実施の形態に示すように、絶縁体272を形成することにより、絶縁体250および導電体260に水素、水などの不純物が混入するのを抑制し、かつ、絶縁体250中の酸素が外部に拡散することを防ぐことができる。従って、第1のゲート電圧が0Vのときに、ソース領域とドレイン領域が直接、あるいは領域232などを介して電気的に導通することを防ぐことができる。
絶縁体274は、絶縁体271、絶縁体272、酸化物230および絶縁体224などを覆って設ける。
また、絶縁体274は、水または水素などの不純物、および酸素の透過を抑制する機能を有する絶縁性材料を用いることが好ましい。例えば、絶縁体274として、窒化シリコン、窒化酸化シリコン、酸化窒化シリコン、窒化アルミニウム、窒化酸化アルミニウムなどを用いることが好ましい。また、酸化アルミニウム、酸化ハフニウム、またはアルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)上に前記絶縁性材料を積層して設けることで絶縁体274としてもよい。このような絶縁体274を形成することで、絶縁体274を透過して酸素が混入し、領域231aおよび領域231bの酸素欠損に酸素を供給して、キャリア密度が低下するのを防ぐことができる。また、絶縁体274を透過して水または水素などの不純物が混入し、領域231aおよび領域231bが過剰に領域234側に拡張するのを防ぐことができる。
なお、絶縁体274を成膜することにより、領域231、および領域232を設ける場合、絶縁体274は、酸化物230内に酸素欠損を形成する元素、または酸化物230中の酸素欠損に捕獲される元素を有することが好ましい。このような元素としては、代表的には水素、ホウ素、炭素、窒素、フッ素、リン、硫黄、塩素、チタン、希ガス等が挙げられる。また、希ガス元素の代表例としては、ヘリウム、ネオン、アルゴン、クリプトン、及びキセノン等がある。このような元素を有する絶縁体を絶縁体274に用いることで、当該元素を酸化物230に添加して、酸化物230において、領域231、および領域232を形成することができる。
または、絶縁体274として、領域231、および領域232に含まれる酸素を引き抜き、吸収する膜を用いてもよい。酸素が引き抜かれると、領域231、および領域232には酸素欠損が生じる。酸素欠損に水素、ホウ素、炭素、窒素、フッ素、リン、硫黄、塩素、チタン、希ガス等が捕獲されることにより、領域231、および領域232は低抵抗化する。
トランジスタ200と同じ層に容量素子100を設ける場合、絶縁体274を間に挟み、容量素子の一方の電極として機能する酸化物230の領域231と重なるように導電体130を設ける。
絶縁体274の上に、また、絶縁体274上に導電体130を設ける場合は、絶縁体274および導電体130の上に、層間膜として機能する絶縁体280を設けることが好ましい。絶縁体280は、絶縁体224などと同様に、膜中の水または水素などの不純物濃度が低減されていることが好ましい。なお、絶縁体280は、同様の絶縁体からなる積層構造としてもよい。
次に、トランジスタ200と電気的に接続する導電体252(導電体252a、導電体252b、導電体252c、および導電体252d)を設ける。絶縁体280および絶縁体274に形成された開口に、酸化物230と電気的に接続する導電体252aを配置し、絶縁体280に形成された開口に、導電体130と電気的に接続する導電体252bを配置し、絶縁体280、絶縁体274、絶縁体271、および絶縁体270に形成された開口に、第1のゲートとして機能する導電体260と電気的に接続する導電体252cを配置し、絶縁体280、絶縁体274、絶縁体224、絶縁体222、および絶縁体220に形成された開口に、第2のゲートとして機能する導電体205と電気的に接続する導電体252dを配置する。なお、導電体130を設けない場合は、導電体252bは、絶縁体280および絶縁体274に形成された開口を介して、酸化物230と電気的に接続することができる。なお、導電体252a、導電体252b、導電体252c、および導電体252dの上面は、絶縁体280の上面と、同一平面上としてもよい。
また、導電体252bが設けられる開口は、導電体203の少なくとも一部、または絶縁体220、絶縁体222、絶縁体224、および酸化物230aに設けられた開口の少なくとも一部と重なるように設けることで、半導体装置の微細化や高集積化が実現できるため好ましい。
なお、導電体252は、ダマシン法を用いて形成することができる。
また、導電体252aは、トランジスタ200のソース領域およびドレイン領域の一方として機能する領域231aと接している。また、導電体203はトランジスタ200のソース領域およびドレイン領域の他方として機能する領域231bと接している。領域231aおよび領域231bは低抵抗化されているので、導電体252aと領域231aの接触抵抗、および導電体203と領域231bの接触抵抗を低減し、トランジスタ200のオン電流を大きくすることができる。
ここで、導電体252aは、少なくとも酸化物230の上面と接し、さらに酸化物230の側面と接することが好ましい。特に、導電体252aは、酸化物230のチャネル幅方向と交わる側面において、C側の側面、およびD側の側面の双方または一方と接することが好ましい。また、導電体252aが、酸化物230のチャネル長方向と交わる側面において、A側の側面と接する構成にしてもよい。このように、導電体252aが酸化物230の上面に加えて、酸化物230の側面と接する構成にすることにより、導電体252aと酸化物230のコンタクト部の上面積を増やすことなく、コンタクト部の接触面積を増加させ、導電体252aと酸化物230の接触抵抗を低減することができる。これにより、トランジスタのソース電極およびドレイン電極の微細化を図りつつ、オン電流を大きくすることができる。
図1(D)は、導電体203と酸化物230の接続部、および容量素子100の断面を示している。導電体130は、酸化物230よりE−F方向に広いことが好ましい。これにより、酸化物230の上面と導電体130だけでなく、酸化物230の側面と導電体130でも容量を形成することができ、容量を増加することができる。
導電体252は、それぞれの開口の内壁に接する第1の導電体と、さらに内側に設けられた第2の導電体により形成することができる。ここで、第1の導電体、および第2の導電体の上面の高さと、絶縁体280の上面の高さは同程度にできる。なお、本実施の形態では、導電体252として、2層からなる導電体を用いる例を示したが、これに限らない。単層、または3層以上の積層膜により、導電体252を形成してもよい。
ここで、導電体252に用いられる第1の導電体は、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい)導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子など)の少なくとも一の拡散を抑制する機能を有する(上記酸素が透過しにくい)導電性材料を用いることが好ましい。なお、本明細書において、不純物、または酸素の拡散を抑制する機能とは、上記不純物、または上記酸素のいずれか一または、すべての拡散を抑制する機能とする。本明細書中、このような機能を有する導電体を、導電性バリア膜と呼ぶことがある。
導電体252に用いられる第1の導電体が酸素の拡散を抑制する機能を持つことにより、導電体252に用いられる第2の導電体が絶縁体280中の酸素を吸収することや、酸化による導電率の低下を防ぐことができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、チタン、窒化チタン、タンタル、窒化タンタル、ルテニウムまたは酸化ルテニウムなどを用いることが好ましい。従って、導電体252に用いられる第1の導電体としては、上記導電性材料を単層または積層とすればよい。また、導電体252に用いられる第1の導電体が水素、水、窒素などの不純物の拡散を抑制する機能を持つことにより、絶縁体280より上方から、水素、水などの不純物が、導電体252を通じて、トランジスタ200へ混入するのを抑制することができる。本実施の形態では、導電体252に用いられる第1の導電体として、窒化チタンを用いた。
また、導電体252に用いられる第2の導電体は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。本実施の形態では、導電体252に用いられる第2の導電体として、タングステンを用いた。
また、導電体252が埋め込まれた絶縁体274および絶縁体280の開口の内壁に接して、水または水素などの不純物の透過を抑制する機能を有する絶縁体が設けられる構成にしてもよい。このような絶縁体としては、絶縁体270や絶縁体272に用いることができる絶縁体、例えば、酸化アルミニウムなどを用いることが好ましい。これにより、絶縁体280などから水素、水などの不純物が、導電体252を通じて酸化物230に混入するのを抑制することができる。また、当該絶縁体は、例えばALD法またはCVD法などを用いて成膜することで被覆性良く成膜することができる。
また、導電体252の上面に接して配線として機能する導電体256を配置してもよい。配線として機能する導電体256は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。
[容量素子100]
図1に示すように、容量素子100は、トランジスタ200と共通の構造を有する構成である。本実施の形態では、トランジスタ200の酸化物230に設けられた領域231bの少なくとも一部が、容量素子100の電極の一方として機能する容量素子100の例について示す。
容量素子100は、酸化物230の領域231bの少なくとも一部、領域231上の絶縁体274、絶縁体274上の導電体130を有する。導電体130の少なくとも一部は、絶縁体274の上に、領域231bと重なるように配置されることが好ましい。
酸化物230の領域231bの少なくとも一部は、容量素子100の電極の一方として機能し、導電体130は容量素子100の電極の他方として機能する。すなわち、領域231bは、トランジスタ200のソースおよびドレインの一方として機能し、且つ容量素子100の電極の一方として機能する。絶縁体274は容量素子100の誘電体として機能する。
絶縁体280は、絶縁体274および導電体130を覆うように設けることが好ましい。
導電体130は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、図示しないが、導電体130は積層構造としても良く、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。
また、導電体252bは、容量素子100の電極の一方である導電体130と接している。導電体252bは、導電体252a、導電体252c、および導電体252dと同時に形成することができるため、工程短縮が可能である。
<半導体装置の構成材料>
以下では、半導体装置に用いることができる構成材料について説明する。
<<基板>>
トランジスタ200を形成する基板としては、例えば、絶縁体基板、半導体基板または導電体基板を用いればよい。絶縁体基板としては、例えば、ガラス基板、石英基板、サファイア基板、安定化ジルコニア基板(イットリア安定化ジルコニア基板など)、樹脂基板などがある。また、半導体基板としては、例えば、シリコン、ゲルマニウムなどの半導体基板、または炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、酸化ガリウムからなる化合物半導体基板などがある。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えばSOI(Silicon On Insulator)基板などがある。導電体基板としては、黒鉛基板、金属基板、合金基板、導電性樹脂基板などがある。または、金属の窒化物を有する基板、金属の酸化物を有する基板などがある。さらには、絶縁体基板に導電体または半導体が設けられた基板、半導体基板に導電体または絶縁体が設けられた基板、導電体基板に半導体または絶縁体が設けられた基板などがある。または、これらの基板に素子が設けられたものを用いてもよい。基板に設けられる素子としては、容量素子、抵抗素子、スイッチ素子、発光素子、記憶素子などがある。
また、基板として、可とう性基板を用いてもよい。なお、可とう性基板上にトランジスタを設ける方法としては、非可とう性の基板上にトランジスタを作製した後、トランジスタを剥離し、可とう性基板である基板に転置する方法もある。その場合には、非可とう性基板とトランジスタとの間に剥離層を設けるとよい。また、基板が伸縮性を有してもよい。また、基板は、折り曲げや引っ張りをやめた際に、元の形状に戻る性質を有してもよい。または、元の形状に戻らない性質を有してもよい。基板は、例えば、5μm以上700μm以下、好ましくは10μm以上500μm以下、さらに好ましくは15μm以上300μm以下の厚さとなる領域を有する。基板を薄くすると、トランジスタを有する半導体装置を軽量化することができる。また、基板を薄くすることで、ガラスなどを用いた場合にも伸縮性を有する場合や、折り曲げや引っ張りをやめた際に、元の形状に戻る性質を有する場合がある。そのため、落下などによって基板上の半導体装置に加わる衝撃などを緩和することができる。即ち、丈夫な半導体装置を提供することができる。
可とう性基板である基板としては、例えば、金属、合金、樹脂もしくはガラス、またはそれらの繊維などを用いることができる。また、基板として、繊維を編みこんだシート、フィルムまたは箔などを用いてもよい。可とう性基板である基板は、線膨張率が低いほど環境による変形が抑制されて好ましい。可とう性基板である基板としては、例えば、線膨張率が1×10−3/K以下、5×10−5/K以下、または1×10−5/K以下である材質を用いればよい。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネート、アクリルなどがある。特に、アラミドは、線膨張率が低いため、可とう性基板である基板として好適である。
<<絶縁体>>
絶縁体としては、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物などがある。
ここで、ゲート絶縁体として機能する絶縁体には、ゲート絶縁体として機能する絶縁体に、比誘電率の高いhigh−k材料を用いることで、トランジスタの微細化、および高集積化が可能となる。一方、層間膜として機能する絶縁体には、比誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。従って、絶縁体の機能に応じて、材料を選択するとよい。
また、比誘電率の高い絶縁体としては、酸化アルミニウム、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物またはシリコンおよびハフニウムを有する窒化物などがある。
また、比誘電率が低い絶縁体としては、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンまたは樹脂などがある。
また、特に、酸化シリコンおよび酸化窒化シリコンは、熱的に安定である。そのため、例えば、樹脂と組み合わせることで、熱的に安定かつ比誘電率の低い積層構造とすることができる。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネートまたはアクリルなどがある。また、例えば、酸化シリコン、および酸化窒化シリコンは、比誘電率の高い絶縁体と組み合わせることで、熱的に安定かつ比誘電率の高い積層構造とすることができる。
また、酸化物半導体を用いたトランジスタは、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体で囲うことによって、トランジスタの電気特性を安定にすることができる。
水素などの不純物および酸素の透過を抑制する機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、または積層で用いればよい。具体的には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体として、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウムまたは酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いることができる。
例えば、絶縁体222、および絶縁体210として、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体を用いればよい。なお、絶縁体222、および絶縁体210は、アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体を用いることができる。アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。
絶縁体220、絶縁体224、絶縁体250、および絶縁体271、としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、または積層で用いればよい。具体的には、酸化シリコン、酸化窒化シリコンまたは、窒化シリコンを有することが好ましい。
例えば、ゲート絶縁体として機能する絶縁体224および絶縁体250において、酸化アルミニウム、酸化ガリウム、ハフニウムアルミネート、または酸化ハフニウムを酸化物230と接する構造とすることで、酸化シリコンまたは酸化窒化シリコンに含まれるシリコンが、酸化物230に混入することを抑制することができる。一方、絶縁体224および絶縁体250において、酸化シリコンまたは酸化窒化シリコンを酸化物230と接する構造とすることで、酸化アルミニウム、酸化ガリウム、ハフニウムアルミネート、または酸化ハフニウムと、酸化シリコンまたは酸化窒化シリコンと、の界面にトラップセンターが形成される場合がある。該トラップセンターは、電子を捕獲することでトランジスタのしきい値電圧をプラス方向に変動させることができる場合がある。
例えば、誘電体として機能する絶縁体274は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウム、酸化ハフニウム、酸化窒化ハフニウム、窒化酸化ハフニウム、窒化ハフニウム、ハフニウムアルミネートなどを用いればよく、積層または単層で設ける。例えば、酸化アルミニウムなどのhigh−k材料と、酸化窒化シリコンなどの絶縁耐力が大きい材料の積層構造とすることが好ましい。当該構成により、容量素子100は、high−k材料により十分な容量を確保でき、絶縁耐力が大きい材料により絶縁耐力が向上するため、容量素子100の静電破壊を抑制し、容量素子100の信頼性を向上させることができる。
絶縁体208、絶縁体212、絶縁体216、および絶縁体280は、比誘電率の低い絶縁体を有することが好ましい。例えば、絶縁体208、絶縁体212、絶縁体216、および絶縁体280は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンまたは樹脂などを有することが好ましい。または、絶縁体208、絶縁体212、絶縁体216、および絶縁体280は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコンまたは空孔を有する酸化シリコンと、樹脂と、の積層構造を有することが好ましい。酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、樹脂と組み合わせることで、熱的に安定かつ比誘電率の低い積層構造とすることができる。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネートまたはアクリルなどがある。
絶縁体270、および絶縁体272としては、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体を用いればよい。絶縁体270および絶縁体272としては、例えば、酸化アルミニウム、酸化ハフニウム、ハフニウムアルミネート、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジムまたは酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いればよい。
<<導電体>>
導電体としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウムなどから選ばれた金属元素を1種以上含む材料を用いることができる。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
また、上記の材料で形成される導電層を複数積層して用いてもよい。例えば、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、酸素を含む導電性材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。
なお、トランジスタのチャネル形成領域に酸化物を用いる場合において、ゲート電極として機能する導電体には、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造を用いることが好ましい。この場合は、酸素を含む導電性材料をチャネル形成領域側に設けるとよい。酸素を含む導電性材料をチャネル形成領域側に設けることで、当該導電性材料から離脱した酸素がチャネル形成領域に供給されやすくなる。
特に、ゲート電極として機能する導電体として、チャネルが形成される金属酸化物に含まれる金属元素および酸素を含む導電性材料を用いることが好ましい。また、前述した金属元素および窒素を含む導電性材料を用いてもよい。例えば、窒化チタン、窒化タンタルなどの窒素を含む導電性材料を用いてもよい。また、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、シリコンを添加したインジウム錫酸化物を用いてもよい。また、窒素を含むインジウムガリウム亜鉛酸化物を用いてもよい。このような材料を用いることで、チャネルが形成される金属酸化物に含まれる水素を捕獲することができる場合がある。または、外方の絶縁体などから混入する水素を捕獲することができる場合がある。
導電体260、導電体205、導電体203、導電体207、導電体209、導電体130、導電体252、および導電体256としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウムなどから選ばれた金属元素を1種以上含む材料を用いることができる。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
<<金属酸化物>>
酸化物230として、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう)を用いることが好ましい。以下では、本発明に係る酸化物230に適用可能な金属酸化物について説明する。
酸化物半導体は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウムまたはスズなどが含まれていることが好ましい。また、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。
ここでは、酸化物半導体が、インジウム、元素Mおよび亜鉛を有するIn−M−Zn酸化物である場合を考える。なお、元素Mは、アルミニウム、ガリウム、イットリウムまたはスズなどとする。そのほかの元素Mに適用可能な元素としては、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウムなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。
なお、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。
酸化物半導体は、単結晶酸化物半導体と、非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、多結晶酸化物半導体、および非晶質酸化物半導体などが知られている。
トランジスタの半導体に用いる酸化物半導体として、結晶性の高い薄膜を用いることが好ましい。該薄膜を用いることで、トランジスタの安定性または信頼性を向上させることができる。該薄膜として、例えば、単結晶酸化物半導体の薄膜または多結晶酸化物半導体の薄膜が挙げられる。しかしながら、単結晶酸化物半導体の薄膜または多結晶酸化物半導体の薄膜を基板上に形成するには、高温またはレーザー加熱の工程が必要とされる。よって、製造工程のコストが増加し、さらに、スループットも低下してしまう。
2009年に、CAAC構造を有するIn−Ga−Zn酸化物(CAAC−IGZOと呼ぶ。)が発見されたことが、非特許文献1および非特許文献2で報告されている。ここでは、CAAC−IGZOは、c軸配向性を有する、結晶粒界が明確に確認されない、低温で基板上に形成可能である、ことが報告されている。さらに、CAAC−IGZOを用いたトランジスタは、優れた電気特性および信頼性を有することが報告されている。
また、2013年には、nc構造を有するIn−Ga−Zn酸化物(nc−IGZOと呼ぶ。)が発見された(非特許文献3参照。)。ここでは、nc−IGZOは、微小な領域(例えば、1nm以上3nm以下の領域)において原子配列に周期性を有し、異なる該領域間で結晶方位に規則性が見られないことが報告されている。
非特許文献4および非特許文献5では、上記のCAAC−IGZO、nc−IGZO、および結晶性の低いIGZOのそれぞれの薄膜に対する電子線の照射による平均結晶サイズの推移が示されている。結晶性の低いIGZOの薄膜において、電子線が照射される前でさえ、1nm程度の結晶性IGZOが観察されている。よって、ここでは、IGZOにおいて、完全な非晶質構造(completely amorphous structure)の存在を確認できなかった、と報告されている。さらに、結晶性の低いIGZOの薄膜と比べて、CAAC−IGZOの薄膜およびnc−IGZOの薄膜は電子線照射に対する安定性が高いことが示されている。よって、トランジスタの半導体として、CAAC−IGZOの薄膜またはnc−IGZOの薄膜を用いることが好ましい。
酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さい、具体的には、トランジスタのチャネル幅1μmあたりのオフ電流がyA/μm(10−24A/μm)オーダである、ことが非特許文献6に示されている。例えば、酸化物半導体を用いたトランジスタのリーク電流が低いという特性を応用した低消費電力のCPUなどが開示されている(非特許文献7参照。)。
また、酸化物半導体を用いたトランジスタのリーク電流が低いという特性を利用した、該トランジスタの表示装置への応用が報告されている(非特許文献8参照。)。表示装置では、表示される画像が1秒間に数十回切り換っている。1秒間あたりの画像の切り換え回数はリフレッシュレートと呼ばれている。また、リフレッシュレートを駆動周波数と呼ぶこともある。このような人の目で知覚が困難である高速の画面の切り換えが、目の疲労の原因として考えられている。そこで、表示装置のリフレッシュレートを低下させて、画像の書き換え回数を減らすことが提案されている。また、リフレッシュレートを低下させた駆動により、表示装置の消費電力を低減することが可能である。このような駆動方法を、アイドリング・ストップ(IDS)駆動と呼ぶ。
CAAC構造およびnc構造の発見は、CAAC構造またはnc構造を有する酸化物半導体を用いたトランジスタの電気特性および信頼性の向上、ならびに、製造工程のコスト低下およびスループットの向上に貢献している。また、該トランジスタのリーク電流が低いという特性を利用した、該トランジスタの表示装置およびLSIへの応用研究が進められている。
[金属酸化物の構成]
以下では、本発明の一態様で開示されるトランジスタに用いることができるCAC(Cloud−Aligned Composite)−OSの構成について説明する。
なお、本明細書等において、CAAC(c−axis aligned crystal)、及びCAC(Cloud−Aligned Composite)と記載する場合がある。なお、CAACは結晶構造の一例を表し、CACは機能、または材料の構成の一例を表す。
CAC−OSまたはCAC−metal oxideとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC−OSまたはCAC−metal oxideを、トランジスタの活性層に用いる場合、導電性の機能は、キャリアとなる電子(またはホール)を流す機能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC−OSまたはCAC−metal oxideに付与することができる。CAC−OSまたはCAC−metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。
また、CAC−OSまたはCAC−metal oxideは、導電性領域、及び絶縁性領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子レベルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に偏在する場合がある。また、導電性領域は、周辺がぼけてクラウド状に連結して観察される場合がある。
また、CAC−OSまたはCAC−metal oxideにおいて、導電性領域と、絶縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。
また、CAC−OSまたはCAC−metal oxideは、異なるバンドギャップを有する成分により構成される。例えば、CAC−OSまたはCAC−metal oxideは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップを有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有する成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記CAC−OSまたはCAC−metal oxideをトランジスタのチャネル形成領域に用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、及び高い電界効果移動度を得ることができる。
すなわち、CAC−OSまたはCAC−metal oxideは、マトリックス複合材(matrix composite)、または金属マトリックス複合材(metal matrix composite)と呼称することもできる。
[金属酸化物の構造]
酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、CAAC−OS(c−axis aligned crystalline oxide semiconductor)、多結晶酸化物半導体、nc−OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)および非晶質酸化物半導体などがある。
CAAC−OSは、c軸配向性を有し、かつa−b面方向において複数のナノ結晶が連結し、歪みを有した結晶構造となっている。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。
ナノ結晶は、六角形を基本とするが、正六角形状とは限らず、非正六角形状である場合がある。また、歪みにおいて、五角形、および七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリーともいう)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。
また、CAAC−OSは、インジウム、および酸素を有する層(以下、In層)と、元素M、亜鉛、および酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能であり、(M,Zn)層の元素Mがインジウムと置換した場合、(In,M,Zn)層と表すこともできる。また、In層のインジウムが元素Mと置換した場合、(In,M)層と表すこともできる。
CAAC−OSは結晶性の高い酸化物半導体である。一方、CAAC−OSは、明確な結晶粒界を確認することはできないため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。
nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆または低密度領域を有する。即ち、a−like OSは、nc−OSおよびCAAC−OSと比べて、結晶性が低い。
酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
[酸化物半導体を有するトランジスタ]
続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
なお、上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
また、トランジスタには、キャリア密度の低い酸化物半導体を用いることが好ましい。酸化物半導体膜のキャリア密度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性と言う。例えば、酸化物半導体は、キャリア密度が8×1011/cm未満、好ましくは1×1011/cm未満、さらに好ましくは1×1010/cm未満であり、1×10−9/cm以上とすればよい。
また、高純度真性または実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネルが形成されるトランジスタは、電気特性が不安定となる場合がある。
従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
[不純物]
ここで、酸化物半導体中における各不純物の影響について説明する。
酸化物半導体において、第14族元素の一つであるシリコンや炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体におけるシリコンや炭素の濃度と、酸化物半導体との界面近傍のシリコンや炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
また、酸化物半導体にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属またはアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中のアルカリ金属またはアルカリ土類金属の濃度を低減することが好ましい。具体的には、SIMSにより得られる酸化物半導体中のアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア密度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。従って、該酸化物半導体において、窒素はできる限り低減されていることが好ましい。例えば、酸化物半導体中の窒素濃度は、SIMSにおいて、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下とする。
また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。
不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
<半導体装置の構成例2>
以下では、図4を用いて、本発明の一態様に係る半導体装置の一例について説明する。
図4(A)は、トランジスタ201の上面図である。また、図4(B)、図4(C)、および図4(D)はトランジスタ201の断面図である。ここで、図4(B)は、図4(A)にA−Bの一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、図4(C)は、図4(A)にC−Dの一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。また、図4(D)は、図4(A)にE−Fの一点鎖線で示す部位の断面図であり、酸化物230と、導電体203との接続部、および導電体252bと、酸化物230との接続部を示す断面図でもある。図4(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
なお、図4に示す半導体装置において、<半導体装置の構成例1>に示した半導体装置を構成する構造と同機能を有する構造には、同符号を付記する。
以下、トランジスタ201の構成についてそれぞれ図4を用いて説明する。なお、本項目においても、トランジスタ201の構成材料については<半導体装置の構成例1>で詳細に説明した材料を用いることができる。
トランジスタ201において、酸化物230b上には、ソース電極またはドレイン電極として機能する導電体285が設けられている。また、導電体285の上には絶縁体286が設けられている。導電体285は、導電体203、および導電体205、あるいは導電体260と同様の材料を用いることができる。特に、導電体285として、窒化タンタルやタングステンを用いることが好ましい。また、絶縁体286は、絶縁体270や絶縁体272と同様の材料を用いることができる。絶縁体286を設けることで、導電体285の酸化を抑制し、導電体285の電気抵抗の増加を抑制することができる。特に、絶縁体286として、酸化アルミニウムを用いることが好ましい。また、トランジスタ201のチャネル長は導電体285間の長さに依存して決まるが、向かい合う導電体285の端部が酸化することで、トランジスタ201のチャネル長は意図せずに長くなるという不具合が生じる恐れがある。このような不具合を軽減するためにも、絶縁体286を設けることは好ましい。
図4(B)に示すように、酸化物230bにおいて点線で示す、導電体285と接する領域はn型化し、低抵抗領域となる。これは、導電体285が酸化物230bの酸素を引き抜き、酸化物230bに酸素欠損を生じさせていることに起因していると考えられる。酸化物230b中の酸素欠損に、酸化物230b内部あるいは外部に存在する不純物が捕獲され、当該領域は低抵抗化する。
酸化物230bの低抵抗領域は、絶縁体220、絶縁体222、絶縁体224、および酸化物230aに設けられた開口を介して、導電体203と電気的に接続する。
酸化物230b、導電体285、および絶縁体286の一部を覆うように、酸化物230c、酸化物230d、絶縁体250、導電体260、および絶縁体270が設けられる。なお、導電体260は、図4(A)、図4(B)、および図4(C)に示すようにA−B方向における幅、およびC−D方向における長さが酸化物230c、酸化物230d、絶縁体250、および絶縁体270に比べて小さい。よって、絶縁体270は絶縁体250の上面および側面を覆い、導電体260の外側で絶縁体250と接する構造となる。絶縁体270には酸素の透過を抑制する材料を用いていることから、このように設けられた絶縁体270により、導電体260の酸化は抑制され、電気抵抗の増加を抑制することができる。
酸化物230cには、酸化物230bと同様の材料を用いることができる。また、酸化物230dには、酸化物230cと同様の材料を用いることができる。なお、酸化物230cは形成しなくてもよい。
トランジスタ201では、チャネルは、酸化物230bおよび酸化物230c内において一対の導電体285、または一対の低抵抗領域に挟まれた領域に形成される。
絶縁体280上には、絶縁体287および絶縁体288が形成される。絶縁体287は、スパッタリング法を用いて成膜された酸化物絶縁体を用いることが好ましく、例えば酸化アルミニウム、酸化ハフニウム、またはハフニウムアルミネートを用いることが好ましい。このような絶縁体287を用いることにより、絶縁体280の絶縁体287と接する面を介して絶縁体280に酸素を添加して、絶縁体280を酸素過剰な状態にできる。絶縁体280に供給された酸素は、酸化物230に供給される。
さらに、絶縁体287として、酸化アルミニウム、酸化ハフニウム、またはハフニウムアルミネートなどの酸素が透過しにくい絶縁性材料を用いることにより、絶縁体224及び絶縁体280に添加した酸素が、成膜中に上方拡散するのを抑制することができる。これにより、さらに効率よく絶縁体280に酸素を添加することができる。
絶縁体288は、絶縁体208、絶縁体216、および絶縁体280と同様の材料を用いることができる。
図4(B)、図4(C)、および図4(D)に示すように、絶縁体280、絶縁体287、および絶縁体288などの絶縁体には開口が設けられ、開口内部には、導電体252(導電体252a、導電体252b、導電体252c、および導電体252d)が設けられる。絶縁体280、絶縁体287、および絶縁体288などの絶縁体と、導電体252の間には、絶縁体289が設けられる。絶縁体289は、絶縁体270と同様の材料を用いることができ、絶縁体280および上方の絶縁体や導電体から酸化物230への不純物の混入を抑制する。
ここで、導電体252aは酸化物230上の導電体285と接するだけでなく、酸化物230の側面とも接することで、酸化物230と電気的に接続することが好ましい。特に、導電体252aは、酸化物230のチャネル幅方向と交わる側面において、C側の側面、およびD側の側面の双方または一方と接することが好ましい。また、導電体252aが、酸化物230のチャネル長方向と交わる側面において、A側の側面と接する構成にしてもよい。このように、導電体252aが導電体285に加えて、酸化物230の側面と接する構成にすることにより、導電体252aと酸化物230のコンタクト部の上面積を増やすことなく、コンタクト部の接触面積を増加させ、導電体252aと酸化物230の接触抵抗を低減することができる。これにより、トランジスタのソース電極およびドレイン電極の微細化を図りつつ、オン電流を大きくすることができる。
図4(D)は、酸化物230と、導電体203との接続部、および導電体252bと、酸化物230との接続部、の断面を示している。酸化物230bは、絶縁体220、絶縁体222、絶縁体224、および酸化物230aに設けられた開口を介して、導電体203と電気的に接続している。なお、導電体252bにおいても、上述した導電体252aと同様に、導電体285の上面だけでなく、酸化物230の側面に接する構造としてもよい。
図4(A)および図4(D)に示すように、酸化物230aおよび酸化物230bは、絶縁体220、絶縁体222、絶縁体224、および酸化物230aに形成された開口を包含するように、当該開口と重なる領域における、E−F方向の幅を、当該開口の幅より広く形成することが好ましい。よって、当該領域における、酸化物230aおよび酸化物230bのE−F方向の幅は、チャネルが形成される領域や、A側の領域における、酸化物230aおよび酸化物230bのC−D方向の幅よりも広くなる場合がある。このような構造にすることで、酸化物230bと導電体203のコンタクトを確実に行うことができる。
<トランジスタの作製方法>
次に、本発明に係るトランジスタ200を有する半導体装置について、作製方法を図5乃至図22を用いて説明する。また、図5乃至図22において、各図の(A)は上面図を示す。また、各図の(B)は(A)に示すA−Bの一点鎖線で示す部位に対応する断面図である。また、各図の(C)は、(A)にC−Dの一点鎖線で示す部位に対応する断面図である。また、各図の(D)は、(A)にE−Fの一点鎖線で示す部位に対応する断面図である。
まず、基板(図示しない)を準備し、当該基板上に絶縁体208を成膜する。絶縁体208の成膜は、スパッタリング法、化学気相成長(CVD:Chemical Vapor Deposition)法、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法、パルスレーザ堆積(PLD:Pulsed Laser Deposition)法またはALD(Atomic Layer Deposition)法などを用いて行うことができる。
なお、CVD法は、プラズマを利用するプラズマCVD(PECVD:Plasma Enhanced CVD)法、熱を利用する熱CVD(TCVD:Thermal CVD)法、光を利用する光CVD(Photo CVD)法などに分類できる。さらに用いる原料ガスによって金属CVD(MCVD:Metal CVD)法、有機金属CVD(MOCVD:Metal Organic CVD)法に分けることができる。
プラズマCVD法は、比較的低温で高品質の膜が得られる。また、熱CVD法は、プラズマを用いないため、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。例えば、半導体装置に含まれる配線、電極、素子(トランジスタ、容量素子など)などは、プラズマから電荷を受け取ることでチャージアップする場合がある。このとき、蓄積した電荷によって、半導体装置に含まれる配線、電極、素子などが破壊される場合がある。一方、プラズマを用いない熱CVD法の場合、こういったプラズマダメージが生じないため、半導体装置の歩留まりを高くすることができる。また、熱CVD法では、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。
また、ALD法も、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。また、ALD法も、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。
CVD法およびALD法は、ターゲットなどから放出される粒子が堆積する成膜方法とは異なり、被処理物の表面における反応により膜が形成される成膜方法である。したがって、被処理物の形状の影響を受けにくく、良好な段差被覆性を有する成膜方法である。特に、ALD法は、優れた段差被覆性と、優れた厚さの均一性を有するため、アスペクト比の高い開口部の表面を被覆する場合などに好適である。ただし、ALD法は、比較的成膜速度が遅いため、成膜速度の速いCVD法などの他の成膜方法と組み合わせて用いることが好ましい場合もある。
CVD法およびALD法は、原料ガスの流量比によって、得られる膜の組成を制御することができる。例えば、CVD法およびALD法では、原料ガスの流量比によって、任意の組成の膜を成膜することができる。また、例えば、CVD法およびALD法では、成膜しながら原料ガスの流量比を変化させることによって、組成が連続的に変化した膜を成膜することができる。原料ガスの流量比を変化させながら成膜する場合、複数の成膜室を用いて成膜する場合と比べて、搬送や圧力調整に掛かる時間の分、成膜に掛かる時間を短くすることができる。したがって、半導体装置の生産性を高めることができる場合がある。
本実施の形態では、絶縁体208として、CVD法によって酸化シリコンを成膜する。
次に、絶縁体208上に絶縁体210を形成する。本実施の形態では、絶縁体210として、スパッタリング法によって酸化アルミニウムを成膜する。また、絶縁体210は、多層構造としてもよい。例えばスパッタリング法によって酸化アルミニウムを成膜し、該酸化アルミニウム上にALD法によって酸化アルミニウムを成膜する構造としてもよい。または、ALD法によって酸化アルミニウムを成膜し、該酸化アルミニウム上に、スパッタリング法によって酸化アルミニウムを成膜する構造としてもよい。
次に、絶縁体210上に導電膜203Aおよび導電膜203Bを順に成膜する。導電膜203Aおよび導電膜203Bの形成は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。本実施の形態では、導電膜203Aとして、スパッタリング法によってタングステンを成膜し、導電膜203Bとして、スパッタリング法によって窒化チタンを成膜する。なお、導電膜203Aとして、タングステンの他に、アルミニウムや銅などの導電体を用いることができる。また、導電膜203Bは、導電膜203Aよりも耐酸化性を有する(酸化しにくい)材料を用いるのが好ましく、例えば金属窒化物を用いることができる。金属窒化物としては、窒化チタンの他に、窒化タンタルなどを用いることができる。
次に、導電膜203B上にリソグラフィー法を用いてマスク262を形成する(図5参照。)。
なお、リソグラフィー法では、まず、マスクを介してレジストを露光する。次に、露光された領域を、現像液を用いて除去または残存させてレジストマスクを形成する。次に、当該レジストマスクを介してエッチング処理することで導電体、半導体または絶縁体などを所望の形状に加工することができる。例えば、KrFエキシマレーザ光、ArFエキシマレーザ光、EUV(Extreme Ultra violet)光などを用いて、レジストを露光することでレジストマスクを形成すればよい。また、基板と投影レンズとの間に液体(例えば水)を満たして露光する、液浸技術を用いてもよい。また、前述した光に代えて、電子ビームやイオンビームを用いてもよい。なお、電子ビームやイオンビームを用いる場合には、マスクは不要となる。なお、レジストマスクの除去には、アッシングなどのドライエッチング処理を行う、ウェットエッチング処理を行う、ドライエッチング処理後にウェットエッチング処理を行う、またはウェットエッチング処理後にドライエッチング処理を行うことができる。
また、レジストマスクの代わりに絶縁体や導電体からなるハードマスクを用いてもよい。ハードマスクを用いる場合、導電膜203B上にハードマスク材料となる絶縁膜や導電膜を形成し、その上にレジストマスクを形成し、ハードマスク材料をエッチングすることで所望の形状のハードマスクを形成することができる。
次に、マスク262を用いて、導電膜203Aおよび導電膜203Bを加工し、導電体203aと、導電体203a上の導電体203bからなる導電体203と、導電体205aと、導電体205a上の導電体205bからなる導電体205を形成する(図6参照。)。
該加工はドライエッチング法やウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。
ドライエッチング装置としては、平行平板型電極を有する容量結合型プラズマ(CCP:Capacitively Coupled Plasma)エッチング装置を用いることができる。平行平板型電極を有する容量結合型プラズマエッチング装置は、平行平板型電極の一方の電極に高周波電源を印加する構成でもよい。または平行平板型電極の一方の電極に複数の異なった高周波電源を印加する構成でもよい。または平行平板型電極それぞれに同じ周波数の高周波電源を印加する構成でもよい。または平行平板型電極それぞれに周波数の異なる高周波電源を印加する構成でもよい。または高密度プラズマ源を有するドライエッチング装置を用いることができる。高密度プラズマ源を有するドライエッチング装置は、例えば、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)エッチング装置などを用いることができる。
導電膜203A、および導電膜203Bのエッチングにハードマスクを用いる場合、当該エッチング処理は、ハードマスクの形成に用いたレジストマスクを除去してから行っても良いし、レジストマスクを残したまま行っても良い。後者の場合、エッチング中にレジストマスクが消失することがある。上記導電膜のエッチング後にハードマスクをエッチングにより除去しても良い。一方、ハードマスクの材料が後工程に影響が無い、あるいは後工程で利用できる場合、必ずしもハードマスクを除去する必要は無い。
次に絶縁体210、導電体203、および導電体205上に絶縁膜216Aを形成する(図7参照)。絶縁膜216Aの形成は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。本実施の形態では、絶縁膜216Aとして、CVD法によって酸化シリコンを形成する。
次に、CMP処理を行うことで絶縁膜216Aの一部を除去し、導電体203および導電体205を露出する。その結果、導電体203および導電体205の間、およびこれら導電体の周囲に絶縁体216が残存する。これにより、上面が平坦な、絶縁体216、導電体203、および導電体205を形成することができる(図8参照。)。なお、当該CMP処理により、導電体203b、および導電体205bの一部が除去される場合がある。
次に、絶縁体216、導電体203、および導電体205上に絶縁体220を成膜する。絶縁体220の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。
次に、絶縁体220上に絶縁体222を成膜する。絶縁体222の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。
特に、絶縁体222として、アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体を用いることが好ましい。アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。絶縁体222は、ALD法により形成されることが好ましい。ALD法により成膜された絶縁体222は、酸素、水素、および水に対するバリア性を有する。絶縁体222が、水素および水に対するバリア性を有することで、トランジスタ200の周辺に設けられた構造体に含まれる水素、および水は、トランジスタ200の内側へ拡散することなく、酸化物230中の酸素欠損の生成を抑制することができる。
次に、絶縁体222上に絶縁体224を成膜する。絶縁体224の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる(図9参照。)。
続いて、加熱処理を行うと好ましい。加熱処理は、250℃以上650℃以下、好ましくは300℃以上500℃以下、さらに好ましくは320℃以上450℃以下で行えばよい。第1の加熱処理は、窒素または不活性ガス雰囲気、または酸化性ガスを10ppm以上、1%以上もしくは10%以上含む雰囲気で行う。第1の加熱処理は減圧状態で行ってもよい。または、第1の加熱処理は、窒素または不活性ガス雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1%以上または10%以上含む雰囲気で加熱処理を行ってもよい。
上記加熱処理によって、絶縁体224に含まれる水素や水などの不純物を除去することなどができる。
または、加熱処理として、減圧状態で酸素を含むプラズマ処理を行ってもよい。酸素を含むプラズマ処理は、例えばマイクロ波を用いた高密度プラズマを発生させる電源を有する装置を用いることが好ましい。または、基板側にRF(Radio Frequency)を印加する電源を有してもよい。高密度プラズマを用いることより高密度の酸素ラジカルを生成することができ、基板側にRFを印加することで高密度プラズマによって生成された酸素ラジカルを効率よく絶縁体224内に導くことができる。または、この装置を用いて不活性ガスを含むプラズマ処理を行った後に脱離した酸素を補うために酸素を含むプラズマ処理を行ってもよい。尚、第1の加熱処理は行わなくても良い場合がある。
また、加熱処理は、絶縁体220成膜後、および絶縁体222の成膜後のそれぞれに行うこともできる。該加熱処理は、上述した加熱処理条件を用いることができるが、絶縁体220成膜後の加熱処理は、窒素を含む雰囲気中で行うことが好ましい。
本実施の形態では、加熱処理として、絶縁体224成膜後に窒素雰囲気にて400℃の温度で1時間の処理を行なう。
次に、絶縁体224上に、酸化物230aとなる酸化膜230Aを形成する。
酸化膜230Aの形成はスパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。
例えば、酸化膜230Aをスパッタリング法によって形成する場合は、スパッタリングガスとして酸素、または、酸素と希ガスの混合ガスを用いる。スパッタリングガスに含まれる酸素の割合を高めることで、成膜される酸化膜中の過剰酸素を増やすことができる。また、上記の酸化膜をスパッタリング法によって形成する場合は、上記のIn−M−Zn酸化物ターゲットを用いることができる。
特に、酸化膜230Aの形成時に、スパッタリングガスに含まれる酸素の一部が絶縁体224に供給される場合がある。なお、酸化膜230Aのスパッタリングガスに含まれる酸素の割合は70%以上、好ましくは80%以上、より好ましくは100%とすればよい。
本実施の形態では、酸化膜230Aとして、スパッタリング法によって、In:Ga:Zn=1:3:4[原子数比]のターゲットを用いて形成する。なお、酸化膜は、成膜条件、および原子数比を適宜選択することで、酸化物230に求める特性に合わせて形成するとよい。
次に、リソグラフィー法を用いて、絶縁体220、絶縁体222、絶縁体224、および酸化膜230Aに、導電体203へ到達する開口を形成する。まず、酸化膜230A上にマスク263を形成する(図9参照。)。開口の形成に用いるマスク263は、レジストマスクでもよいし、ハードマスクでもよい。
次に、マスク263を用いて、絶縁体220、絶縁体222、絶縁体224、および酸化膜230Aを加工し、導電体203の表面を露出することで、開口が形成される(図10参照。)。該加工は、ドライエッチング法やウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。なお、絶縁体220、絶縁体222、及び絶縁体224は、酸化膜230Aを介して加工される。詳述すると、導電体203の表面の一部を露出させる際に、酸化膜230A上にレジストマスクやハードマスクなどからなるマスクを形成し、その後、絶縁体220、絶縁体222、絶縁体224、および酸化膜230Aを加工する。すなわち、ゲート絶縁膜として機能する絶縁体(絶縁体220、絶縁体222、および絶縁体224)の表面にマスクが形成されない。したがって、ゲート絶縁膜として機能する絶縁体の表面に、マスクが付着しないため、レジストマスク等に含まれる不純物、ハードマスクに含まれる成分、およびマスク除去に用いる薬液やプラズマに含まれる成分によるゲート絶縁膜の汚染やダメージを抑制できる。このようなプロセスにより、信頼性の高い半導体装置の作製方法を提供できる。
次に、酸化膜230A上に酸化膜230Bを形成する(図11参照。)。このとき、酸化膜230Bは上記開口内部にも形成され、当該開口を介して導電体203と電気的に接続する。酸化物230bと、導電体203とが、酸化物230aを介さずに接続する構成とすることで、直列抵抗及び接触抵抗を低減することが可能となる。このような構成により、電気特性の良好な半導体装置が得られる。より具体的には、オン電流の向上したトランジスタ、および当該トランジスタを用いた半導体装置が得られる。
酸化膜230Bの形成はスパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。
例えば、酸化膜230Bをスパッタリング法によって形成する場合は、スパッタリングガスとして酸素、または、酸素と希ガスの混合ガスを用いる。スパッタリングガスに含まれる酸素の割合を高めることで、成膜される酸化膜中の過剰酸素を増やすことができる。また、上記の酸化膜をスパッタリング法によって形成する場合は、上記のIn−M−Zn酸化物ターゲットを用いることができる。
酸化膜230Bをスパッタリング法で形成する場合、スパッタリングガスに含まれる酸素の割合を1%以上30%以下、好ましくは5%以上20%以下として成膜すると、酸素欠乏型の酸化物半導体が形成される。酸素欠乏型の酸化物半導体を用いたトランジスタは、比較的高い電界効果移動度が得られる。
本実施の形態では、酸化膜230Bとして、スパッタリング法によって、In:Ga:Zn=4:2:4.1[原子数比]のターゲットを用いて成膜する。なお、酸化膜は、成膜条件、および原子数比を適宜選択することで、酸化物230に求める特性に合わせて形成するとよい。
次に、加熱処理を行ってもよい。加熱処理は、上述した加熱処理条件を用いることができる。加熱処理によって、酸化膜230A、および酸化膜230B中の水素や水などの不純物を除去することなどができる。本実施の形態では、窒素雰囲気にて400℃の温度で1時間の処理を行なった後に、連続して酸素雰囲気にて400℃の温度で1時間の処理を行う。
次に、酸化膜230A、および酸化膜230Bを島状に加工して、酸化物230a、および酸化物230bを形成する(図12参照。)。
図12(A)および図12(D)に示すように酸化物230aおよび酸化物230bの絶縁体220、絶縁体222、絶縁体224、および酸化物230aに形成された開口と重なる領域における、E−F方向の幅を、当該開口の幅より広く形成することが好ましい。よって、当該領域における、酸化物230aおよび酸化物230bのE−F方向の幅は、チャネルが形成される領域や、A側の領域における、酸化物230aおよび酸化物230bのC−D方向の幅よりも広くなる場合がある。このような構造にすることで、酸化物230bと導電体203のコンタクトを確実に行うことができる。また、容量素子100の面積を大きくすることができ、容量素子100の大容量化が期待できる。
なお、上記工程において、絶縁体224を島状に加工してもよい。また、絶縁体224に対しては、ハーフエッチングを行ってもよい。絶縁体224に対してハーフエッチングを行うことで、後の工程で形成する酸化物230cの下にも絶縁体224が残った状態で形成される。なお、絶縁体224は、後の工程である絶縁膜272Aを加工する際に、島状に加工することができる。その場合、絶縁体222をエッチングストッパ膜として用いてもよい。
ここで、酸化物230a、および酸化物230bは、少なくとも一部が導電体205と重なるように形成する。また、酸化物230a、および酸化物230bの側面は、絶縁体222に対し、概略垂直であることが好ましい。酸化物230a、および酸化物230bの側面が、絶縁体222に対し、概略垂直であることで、複数のトランジスタ200を設ける際に、小面積化、高密度化が可能となる。なお、酸化物230a、および酸化物230bの側面と絶縁体222の上面のなす角が鋭角になる構成にしてもよい。その場合、酸化物230a、および酸化物230bの側面と絶縁体222の上面のなす角は大きいほど好ましい。
また、酸化物230a、および酸化物230bの側面と、酸化物230bの上面との間に、湾曲面を有する。つまり、側面の端部と上面の端部は、湾曲していることが好ましい(以下、ラウンド状ともいう)。湾曲面は、例えば、酸化物230a、および酸化物230bの端部において、曲率半径が、3nm以上10nm以下、好ましくは、5nm以上6nm以下とすることが好ましい。
なお、端部に角を有さないことで、以降の成膜工程における膜の被覆性が向上する。
なお、当該酸化膜の加工はリソグラフィー法を用いて行えばよい。また、該加工はドライエッチング法やウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。
なお、リソグラフィー法では、まず、マスクを介してレジストを露光する。次に、露光された領域を、現像液を用いて除去または残存させてレジストマスクを形成する。次に、当該レジストマスクを介してエッチング処理することで導電体、半導体または絶縁体などを所望の形状に加工することができる。例えば、KrFエキシマレーザ光、ArFエキシマレーザ光、EUV(Extreme Ultra violet)光などを用いて、レジストを露光することでレジストマスクを形成すればよい。また、基板と投影レンズとの間に液体(例えば水)を満たして露光する、液浸技術を用いてもよい。また、前述した光に代えて、電子ビームやイオンビームを用いてもよい。なお、電子ビームやイオンビームを用いる場合には、マスクは不要となる。なお、レジストマスクの除去には、アッシングなどのドライエッチング処理を行う、ウェットエッチング処理を行う、ドライエッチング処理後にウェットエッチング処理を行う、またはウェットエッチング処理後にドライエッチング処理を行うことができる。
また、レジストマスクの代わりに絶縁体や導電体からなるハードマスクを用いてもよい。ハードマスクを用いる場合、酸化膜230B上にハードマスク材料となる絶縁膜や導電膜を形成し、その上にレジストマスクを形成し、ハードマスク材料をエッチングすることで所望の形状のハードマスクを形成することができる。酸化膜230A、および酸化膜230Bのエッチングは、レジストマスクを除去してから行っても良いし、レジストマスクを残したまま行っても良い。後者の場合、エッチング中にレジストマスクが消失することがある。上記酸化膜のエッチング後にハードマスクをエッチングにより除去しても良い。一方、ハードマスクの材料が後工程に影響が無い、あるいは後工程で利用できる場合、必ずしもハードマスクを除去する必要は無い。
ドライエッチング装置としては、平行平板型電極を有する容量結合型プラズマ(CCP:Capacitively Coupled Plasma)エッチング装置を用いることができる。平行平板型電極を有する容量結合型プラズマエッチング装置は、平行平板型電極の一方の電極に高周波電源を印加する構成でもよい。または平行平板型電極の一方の電極に複数の異なった高周波電源を印加する構成でもよい。または平行平板型電極それぞれに同じ周波数の高周波電源を印加する構成でもよい。または平行平板型電極それぞれに周波数の異なる高周波電源を印加する構成でもよい。または高密度プラズマ源を有するドライエッチング装置を用いることができる。高密度プラズマ源を有するドライエッチング装置は、例えば、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)エッチング装置などを用いることができる。
また、上記ドライエッチングなどの処理を行うことによって、エッチングガスなどに起因した不純物が酸化物230a、および酸化物230bなどの表面または内部に付着または拡散することがある。不純物としては、例えば、フッ素または塩素などがある。
上記の不純物などを除去するために、洗浄を行う。洗浄方法としては、洗浄液など用いたウェット洗浄、プラズマを用いたプラズマ処理または、熱処理による洗浄などがあり、上記洗浄を適宜組み合わせて行ってもよい。
ウェット洗浄としては、シュウ酸、リン酸またはフッ化水素酸などを炭酸水または純水で希釈した水溶液を用いて洗浄処理を行ってもよい。または、純水または炭酸水を用いた超音波洗浄を行ってもよい。本実施の形態では、純水または炭酸水を用いた超音波洗浄を行う。
続いて、加熱処理を行っても良い。加熱処理の条件は、前述の加熱処理の条件を用いることができる。
次に、絶縁体224、酸化物230a、および酸化物230bの上に、酸化膜230C、絶縁膜250A、導電膜260A、導電膜260B、絶縁膜270A、および絶縁膜271Aを順に成膜する(図13参照。)。
酸化膜230Cの成膜はスパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。酸化物230cに求める特性に合わせて、酸化膜230A、または酸化膜230Bと同様の成膜方法を用いて、酸化膜230Cを成膜すればよい。本実施の形態では、酸化膜230Cとして、スパッタリング法によって、In:Ga:Zn=1:3:4[原子数比]のターゲットを用いて成膜する。
絶縁膜250Aは、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて成膜することができる。
なお、マイクロ波で酸素を励起し、高密度な酸素プラズマを発生させ、該酸素プラズマに絶縁膜250Aを曝すことで、絶縁膜250A、酸化物230a、酸化物230b、および酸化膜230Cへ酸素を導入することができる。
また、加熱処理を行ってもよい。加熱処理は、前述の加熱処理条件を用いることができる。該加熱処理によって、絶縁膜250Aの水分濃度および水素濃度を低減させることができる。
導電膜260Aは、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて成膜することができる。本実施の形態では、導電膜260Aとしてスパッタリング法を用いて窒化チタンを形成した。
また、導電膜260Bは、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて成膜することができる。導電膜260Bとして、低抵抗の金属膜を積層することで、駆動電圧が小さなトランジスタを提供することができる。本実施の形態では、導電膜260Bとしてスパッタリング法を用いてタングステンを形成した。
また、絶縁膜250Aと導電膜260Aの間にさらに導電体を設けてもよい。当該導電体は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて成膜することができる。ここで、例えば、酸化物230として用いることができる酸化物半導体は、低抵抗化処理を施すことで、導電性酸化物となる。そこで、酸化物230として用いることができる酸化物を成膜し、後の工程で該酸化物を低抵抗化してもよい。なお、絶縁膜250A上に、酸化物230として用いることができる酸化物を、酸素を含む雰囲気において、スパッタリング法を用いて成膜することで、絶縁膜250Aに酸素を添加することができる。絶縁膜250Aに酸素を添加することで、添加された酸素は、絶縁膜250Aを介して、酸化物230に酸素を供給することが可能となる。
続いて、加熱処理を行うことができる。加熱処理は、前述の加熱処理条件を用いることができる。なお、加熱処理は行わなくてもよい場合がある。本実施の形態では、窒素雰囲気にて400℃の温度で1時間の処理を行う。
絶縁膜270Aは、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて成膜することができる。絶縁膜270Aは、バリア膜として機能するため、水または水素などの不純物、および酸素の透過を抑制する機能を有する絶縁性材料を用いる。例えば、酸化アルミニウム、酸化ハフニウム、またはハフニウムアルミネートなどを用いることが好ましい。これにより、導電体260の酸化を防ぐことができる。また、導電体260および絶縁体250を介して、水または水素などの不純物が酸化物230に混入することを防ぐことができる。
絶縁膜271Aは、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて成膜することができる。ここで、絶縁膜271Aの膜厚は、後の工程で成膜する絶縁膜272Aの膜厚より厚くすることが好ましい。これにより、後の工程で絶縁体272を形成する際、導電体260の上に絶縁体271を、容易に残存させることができる。
また、絶縁体271は、ハードマスクとして機能する。絶縁体271を設けることで、絶縁体250の側面、導電体260aの側面、導電体260bの側面、導電体260cの側面、および絶縁体270の側面を、基板に対し、概略垂直に形成することができる。
次に、絶縁膜271Aを、エッチングし、絶縁体271を形成する。続いて、絶縁体271をマスクとして、絶縁膜250A、導電膜260A、導電膜260B、および絶縁膜270Aを、エッチングし、絶縁体250、導電体260(導電体260a、導電体260b)、および絶縁体270を形成する(図14参照。)。なお、当該加工後も、当該ハードマスクは除去せずに後工程を進めてもよい。当該ハードマスクは、後工程で実施されるドーパントの添加においてもハードマスクとして機能することができる。
また、絶縁体250の側面、導電体260の側面、および絶縁体270の側面は、同一面内であることが好ましい。また、絶縁体250の側面、導電体260の側面、および絶縁体270の側面が共有する同一面は、基板に対し、概略垂直であることが好ましい。つまり、断面形状において、絶縁体250、導電体260、および絶縁体270は、酸化物230の上面に対する角度が、鋭角、かつ大きいほど好ましい。なお、断面形状において、絶縁体250、導電体260、および絶縁体270の側面と、絶縁体250と接する酸化物230の上面のなす角が鋭角になる構成にしてもよい。その場合、絶縁体250、導電体260、および絶縁体270の側面と、絶縁体250と接する酸化物230の上面のなす角は大きいほど好ましい。
また、絶縁体250、導電体260、および絶縁体270は、少なくとも一部が、導電体205および酸化物230と重なるように形成する。
また、上記エッチングにより、酸化膜230Cの絶縁体250と重ならない領域の上部がエッチングされる場合がある。この場合、酸化膜230Cの絶縁体250と重なる領域の膜厚が、絶縁体250と重ならない領域の膜厚より厚くなる場合がある。
次に、酸化膜230C、絶縁体250、導電体260、絶縁体270、および絶縁体271を覆って、絶縁膜272Aを成膜する(図15参照。)。絶縁膜272Aとして、被覆性に優れたALD法により成膜することが好ましい。ALD法を用いることで、導電体260などにより形成された段差部においても、絶縁体250、導電体260、および絶縁体270の側面に対して、均一な厚さを有する絶縁膜272Aを形成することができる。
次に、絶縁膜272Aに異方性のエッチング処理を行い、絶縁体250、導電体260、および絶縁体270の側面に接して、絶縁体272を形成する(図16参照。)。異方性のエッチング処理としては、ドライエッチング処理を行うことが好ましい。これにより、基板面に略平行な面に成膜された該絶縁膜を除去して、絶縁体272を自己整合的に形成することができる。
ここで、絶縁体270上に絶縁体271を形成しておくことで、絶縁体270上部の絶縁膜272Aが除去されても、絶縁体270を残存させることができる。また、絶縁体250、導電体260、絶縁体270、および絶縁体271からなる構造体の高さを、酸化物230a、酸化物230b、および酸化膜230Cの高さよりも、高くすることで、酸化膜230Cを介した酸化物230a、酸化物230bの側面の絶縁膜272Aを、除去することができる。さらに、酸化物230a、酸化物230bの端部をラウンド形状にしておくと、酸化物230a、酸化物230bの側面に、酸化膜230Cを介して成膜された絶縁膜272Aを除去するための時間が短縮され、より容易に絶縁体272を形成することができる。
次に、絶縁体250、導電体260、絶縁体270、絶縁体271、および絶縁体272をマスクとして、酸化膜230Cをエッチングし、酸化膜230Cの一部を除去し、酸化物230cを形成する(図17参照。)。なお、本工程により、酸化物230bの上面および側面と、酸化物230aの側面の一部が除去される場合がある。
ここで、酸化物230a、酸化物230b、および酸化物230cにおいて、領域231、領域232、および領域234を形成してもよい。領域231、および領域232は、酸化物230a、酸化物230b、および酸化物230cとして設けられた金属酸化物に、インジウムなどの金属原子、または不純物を添加し、低抵抗化した領域である。なお、各領域は、少なくとも、領域234における酸化物230bよりも、導電性が高い。
領域231および領域232を低抵抗化するために、例えば、インジウムなどの金属元素、および不純物の少なくとも一であるドーパントを添加すればよい。
なお、ドーパントの添加方法としては、イオン化された原料ガスを質量分離して添加するイオン注入法、イオン化された原料ガスを質量分離せずに添加するイオンドーピング法、プラズマイマージョンイオンインプランテーション法などを用いることができる。質量分離を行う場合、添加するイオン種およびその濃度を厳密に制御することができる。一方、質量分離を行わない場合、短時間で高濃度のイオンを添加することができる。また、原子または分子のクラスターを生成してイオン化するイオンドーピング法を用いてもよい。なお、ドーパントを、イオン、ドナー、アクセプター、不純物または元素などと言い換えてもよい。
また、ドーパントは、プラズマ処理にて添加されてもよい。この場合、プラズマCVD装置、ドライエッチング装置、アッシング装置を用いてプラズマ処理を行い、酸化物230a、酸化物230b、および酸化物230cにドーパントを添加することができる。
また、不純物をドーパントとして添加する場合、領域231に接するようにドーパントを含む膜を成膜してもよい。例えば、ドーパントとして水素、ホウ素、炭素、窒素、フッ素、またはリンなどを含む絶縁体274を酸化物230の領域231に接するように成膜する(図18参照。)。絶縁体274の成膜や成膜後の熱処理により、領域231は低抵抗化し、領域232が形成される。絶縁体274に含まれるドーパントが領域231および領域232へ拡散し、当該領域は低抵抗化すると考えられる。
酸化物230a、酸化物230b、および酸化物230cは、インジウムの含有率を高くすることで、キャリア密度を高くし、低抵抗化を図ることができる。よって、ドーパントとして酸化物230a、酸化物230b、および酸化物230cのキャリア密度を向上させるインジウムなどの金属元素を用いることができる。
つまり、領域231、および領域232において、酸化物230a、酸化物230b、および酸化物230cのインジウムなどの金属原子の含有率を高くすることで、電子移動度を高くし、低抵抗化を図ることができる。
従って、少なくとも領域231における元素Mに対するインジウムの原子数比が、領域234の元素Mに対するインジウムの原子数比よりも大きくなる。
また、ドーパントとしては、上述の酸素欠損を形成する元素、または酸素欠損に捕獲される元素などを用いればよい。このような元素としては、代表的には水素、ホウ素、炭素、窒素、フッ素、リン、硫黄、塩素、チタン、希ガス等が挙げられる。また、希ガス元素の代表例としては、ヘリウム、ネオン、アルゴン、クリプトン、及びキセノン等がある。
また、トランジスタ200において、領域232を設けることで、ソース領域およびドレイン領域として機能する領域231と、チャネルが形成される領域234との間に高抵抗領域が形成されないため、トランジスタのオン電流、および移動度を大きくすることができる。また、領域232を有することで、チャネル長方向において、ソース領域およびドレイン領域と、ゲートとが重ならないため、不要な容量が形成されるのを抑制することができる。また、領域232を有することで、非導通時のリーク電流を小さくすることができる。
従って、領域231a、および領域231bの範囲を適宜選択することにより、回路設計に合わせて、要求に見合う電気特性を有するトランジスタを容易に提供することができる。
本実施の形態では、絶縁体224、酸化物230、絶縁体271、および絶縁体272を覆って、絶縁体274を成膜する(図18参照。)。
絶縁体274として、例えばCVD法を用いて成膜した、窒化シリコン、窒化酸化シリコン、酸化窒化シリコンを用いることができる。本実施の形態では、絶縁体274として、窒化酸化シリコンを用いる。また、絶縁体274を容量素子100の誘電体として用いる場合、その膜厚を1nm以上20nm以下、好ましくは、3nm以上10nm以下とする。
酸化物230に接して、窒素などの不純物となる元素を含む絶縁体274を成膜することで、領域231a、および領域231bには、絶縁体274の成膜雰囲気に含まれる、水素または窒素などの不純物元素が添加される。酸化物230の絶縁体274と接する領域を中心に、添加された不純物元素により酸素欠損が形成され、さらに当該不純物元素が酸素欠損に入り込むことで、キャリア密度が高くなり、低抵抗化される。その際、絶縁体274と接しない領域232にも不純物が拡散することで、低抵抗化される。
よって、領域231a、および領域231bは、領域234より、水素および窒素の少なくとも一方の濃度が大きくなることが好ましい。水素または窒素の濃度は、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)などを用いて測定すればよい。ここで、領域234の水素または窒素の濃度としては、酸化物230bの絶縁体250と重なる領域の中央近傍(例えば、酸化物230bの絶縁体250のチャネル長方向の両側面からの距離が概略等しい部分)の水素または窒素の濃度を測定すればよい。
なお、領域231、および領域232は、酸素欠損を形成する元素、または酸素欠損に捕獲される元素が添加されることで低抵抗化される。このような元素としては、代表的には水素、ホウ素、炭素、窒素、フッ素、リン、硫黄、塩素、チタン、希ガス等が挙げられる。また、希ガス元素の代表例としては、ヘリウム、ネオン、アルゴン、クリプトン、及びキセノン等がある。よって、領域231、および領域232は、上記元素の一つまたは複数を含む構成にすればよい。
または、絶縁体274として、領域231、および領域232に含まれる酸素を引き抜き、吸収する膜を用いてもよい。酸素が引き抜かれると、領域231、および領域232には酸素欠損が生じる。酸素欠損に水素、ホウ素、炭素、窒素、フッ素、リン、硫黄、塩素、チタン、希ガス等が捕獲されることにより、領域231、および領域232は低抵抗化する。
不純物となる元素を含む絶縁体、あるいは酸化物230から酸素を引き抜く絶縁体として絶縁体274を成膜する場合、絶縁体274の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。
不純物となる元素を含む絶縁体274の成膜は、窒素または水素の少なくとも一方を含む雰囲気で行うことが好ましい。このような雰囲気で成膜を行うことで、酸化物230bおよび酸化物230cの絶縁体250と重ならない領域を中心に、酸素欠損を形成し、当該酸素欠損と窒素または水素などの不純物元素を結合させて、キャリア密度を高くすることができる。このようにして、低抵抗化された、領域231aおよび領域231bを形成することができる。絶縁体274として、例えばCVD法を用いて形成した、窒化シリコン、窒化酸化シリコン、酸化窒化シリコンを用いることができる。本実施の形態では、絶縁体274として、窒化酸化シリコンを用いる。
また、絶縁体274を2層以上の絶縁体からなる積層構造としてもよい。絶縁体274は、CVD法、ALD法、スパッタリング法などを用いて形成することができる。ALD法は、優れた段差被覆性、優れた厚さの均一性、および優れた膜厚の制御性を有するため、酸化物230や、導電体260により形成された段差部の成膜には好適である。ALD法を用いて、0.5nm以上5.0nm以下の膜厚を有する絶縁体を形成後、プラズマCVD法を用いて、1nm以上20nm以下、好ましくは、3nm以上10nm以下の絶縁体を積層して絶縁体274を形成してもよい。例えば、ALD法を用いて形成した酸化アルミニウム、酸化ハフニウム、またはアルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)上に、プラズマCVD法を用いて形成した窒化シリコン、窒化酸化シリコン、酸化窒化シリコン、または酸化シリコンを積層して絶縁体274としてもよい。または、プラズマCVD法を用いて、1nm以上20nm以下、好ましくは、3nm以上10nm以下の絶縁体を形成して、単層の絶縁体274としてもよい。例えば、プラズマCVD法を用いて形成した窒化シリコン、窒化酸化シリコン、酸化窒化シリコン、または酸化シリコンを絶縁体274としてもよい。
従って、絶縁体274の成膜により、ソース領域およびドレイン領域を自己整合的に形成することができる。よって、微細化または高集積化された半導体装置も、歩留まり良く製造することができる。
ここで、導電体260および絶縁体250の上面および側面を、絶縁体270および絶縁体272で覆っておくことで、窒素または水素などの不純物元素が、導電体260および絶縁体250に混入することを防ぐことができる。これにより、窒素または水素などの不純物元素が、導電体260および絶縁体250を通って、トランジスタ200のチャネル形成領域として機能する領域234に混入することを防ぐことができる。従って、良好な電気特性を有するトランジスタ200を提供することができる。
なお、上記において、絶縁体274の成膜による酸化物230の低抵抗化、を用いて、領域231、領域232、および領域234を形成したが、本実施の形態はこれに限られるものではない。例えば、ドーパントの添加処理、またはプラズマ処理を用いてもよいし、これらを複数組み合わせて、各領域などを形成してもよい。
例えば、絶縁体250、導電体260、絶縁体272、絶縁体270、および絶縁体271をマスクとして、酸化物230にプラズマ処理を行ってもよい。プラズマ処理は、上述の酸素欠損を形成する元素、または酸素欠損に捕獲される元素を含む雰囲気などで行えばよい。例えば、アルゴンガスと窒素ガスを用いてプラズマ処理を行えばよい。
続いて、加熱処理を行うことができる。加熱処理は、前述の加熱処理条件を用いることができる。加熱処理を行うことで、添加されたドーパントが、酸化物230の領域232へと拡散し、オン電流を大きくすることができる。
次に、絶縁体274を覆って導電膜130Aを形成する(図19参照。)。導電膜130Aは、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて成膜することができる。
次に、導電膜130Aをリソグラフィー法を用いて加工し、導電体130を形成する(図20参照。)。導電膜130Aの加工には、ドライエッチング法、ウェットエッチング法、あるいはこれらを組み合わせて用いることができる。ドライエッチング法では、異方性エッチングが実現できることから、微細加工に優れているため好ましい。一方、等方性エッチングが可能なウェットエッチングを用いることで、酸化物230の側面、絶縁体250の側面、および絶縁体272の側面の導電膜130Aの除去が容易となる。よって、ドライエッチング法とウェットエッチング法を組み合わせた加工は、良好な形状の導電体130を形成することができ好ましい。
本実施の形態では、図20(B)および図20(D)に示すように、酸化物230の上方に設けられる導電体130の一部が、酸化物230の外側まで広がるように設けられている。具体的には、図20(B)において、導電体130は、酸化物230よりB側にはみ出るように設けられており、図20(D)において、導電体130は、酸化物230よりE側、およびF側にはみ出るように設けられている。
このような形状とすることで、容量素子100は、酸化物230の上面と導電体130の間だけでなく、酸化物230の側面と導電体130の間でも容量を形成することができ、好ましい。一方、セル600が占める面積に制限がある場合、導電体130が酸化物230からなるべくはみ出さないように形成することで、セル600の微細化が可能となり、半導体装置の高集積化が実現できる。
次に、絶縁体274および導電体130の上に、絶縁体280を成膜する(図21参照。)。絶縁体280の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。または、スピンコート法、ディップ法、液滴吐出法(インクジェット法など)、印刷法(スクリーン印刷、オフセット印刷など)、ドクターナイフ法、ロールコーター法またはカーテンコーター法などを用いて行うことができる。本実施の形態では、該絶縁膜として、酸化窒化シリコンを用いる。
なお、絶縁体280は、上面が平坦性を有するように形成することが好ましい。例えば、絶縁体280は、絶縁体280となる絶縁膜として成膜した直後に上面が平坦性を有していてもよい。または、例えば、絶縁体280は、成膜後に基板裏面などの基準面と平行になるよう絶縁体などを上面から除去していくことで平坦性を有してもよい。このような処理を、平坦化処理と呼ぶ。平坦化処理としては、CMP処理、ドライエッチング処理などがある。本実施の形態では、平坦化処理として、CMP処理を用いる。ただし、絶縁体280の上面は必ずしも平坦性を有さなくてもよい。
次に、絶縁体280、および絶縁体274に酸化物230の領域231に達する開口、絶縁体280に導電体130に達する開口、絶縁体280、絶縁体274、絶縁体271、および絶縁体270に導電体260に達する開口、絶縁体280、絶縁体274、絶縁体224、絶縁体222、および絶縁体220に導電体205に達する開口を形成する。当該開口の形成は、リソグラフィー法を用いて行えばよい。
なお、導電体252aが酸化物230の側面に接して設けられるように、酸化物230に達する開口において、酸化物230の側面が露出するように、当該開口を形成する。
次に、導電体252(導電体252a、導電体252b、導電体252c、導電体252d)を形成する(図22参照。)。また、必要に応じて導電体252と電気的に接続する導電体256を形成してもよい(図22参照。)。
以上により、トランジスタ200および容量素子100を有する半導体装置を作製することができる。図5乃至図22に示すように、本実施の形態に示す半導体装置の作製方法を用いることで、トランジスタ200および容量素子100を作製することができる。
本発明の一態様により、微細化または高集積化が可能な半導体装置を提供することができる。または、本発明の一態様により、良好な電気特性を有する半導体装置を提供することができる。または、本発明の一態様により、オフ電流の小さい半導体装置を提供することができる。または、本発明の一態様により、オン電流の大きいトランジスタを提供することができる。または、本発明の一態様により、信頼性の高い半導体装置を提供することができる。または、本発明の一態様により、消費電力が低減された半導体装置を提供することができる。または、本発明の一態様により、生産性の高い半導体装置を提供することができる。
以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み合わせて用いることができる。
(実施の形態2)
以下では、本発明の一態様に係るトランジスタ202を有する半導体装置の一例について説明する。
また、本実施の形態の半導体装置において、実施の形態1に示した半導体装置と同じ符号を記した構成要素には、実施の形態1と同様な材料を用いることができる。また、特段記載のない限り、本実施の形態で作製された構成要素は、実施の形態1に示した構成要素と同様な構造上の特徴や、効果が得られるものとし、その説明は省略する。
<半導体装置の構成例3>
図23(A)、図23(B)、図23(C)、および図23(D)は、本発明の一態様に係るトランジスタ202の上面図、および断面図である。
図23(A)は、トランジスタ202の上面図である。また、図23(B)、図23(C)、および図23(D)はトランジスタ202の断面図である。ここで、図23(B)は、図23(A)にA−Bの一点鎖線で示す部位の断面図であり、トランジスタ202のチャネル長方向の断面図でもある。また、図23(C)は、図23(A)にC−Dの一点鎖線で示す部位の断面図であり、トランジスタ202のチャネル幅方向の断面図でもある。また、図23(D)は、図23(A)にE−Fの一点鎖線で示す部位の断面図である。図23(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
[トランジスタ202]
図23に示すように、トランジスタ202は、基板(図示せず)の上に配置された絶縁体208、および絶縁体208上に配置された絶縁体210の上に、導電体209と、導電体209の間を埋め込むように配置された絶縁体212と、導電体209および絶縁体212の上に配置された絶縁体216と、絶縁体216に埋め込まれるように配置された導電体203および導電体205と、絶縁体216、導電体203および導電体205の上に配置された絶縁体220と、絶縁体220の上に配置された絶縁体222と、絶縁体222の上に配置された絶縁体224と、絶縁体224の上に配置された酸化物230(酸化物230a、酸化物230b、酸化物230c、および酸化物230d)と、酸化物230の上に配置された絶縁体250(絶縁体250a、および絶縁体250b)と、絶縁体250の上に配置された導電体260(導電体260a、および導電体260b)と、導電体260上に配置された絶縁体270と、絶縁体270上に配置された絶縁体271と、少なくとも絶縁体250の側面、および導電体260の側面に接するように配置された絶縁体272と、絶縁体272の上面の一部および側面の一部に接するように配置された絶縁体273と、少なくとも酸化物230、絶縁体271、絶縁体272、および絶縁体273を覆うように配置された絶縁体274と、を有する。
また、トランジスタ202を覆うように絶縁体280が配置される。
なお、絶縁体212は、導電体209を覆うように配置した絶縁膜を、CMP法などを用いて導電体209が露出するまで研磨することで形成することができる。そのため、絶縁体212、および導電体209は、表面の平坦性に優れる。
また、導電体203、および導電体205は、絶縁体216に設けられた開口部に導電体を埋め込むように形成する。絶縁体216および開口部を覆うように配置した導電膜を、CMP法等を用いて絶縁体216が露出するまで研磨することで形成することができる。そのため、絶縁体216、導電体203および導電体205は、表面の平坦性に優れる。
また、絶縁体220、絶縁体222、絶縁体224、および酸化物230aは、開口を有している。また、酸化物230b、および酸化物230cは、上記開口を介して導電体203と電気的に接続している。酸化物230b、および酸化物230cと、導電体203とが、酸化物230aを介さずに接続する構成とすることで、直列抵抗及び接触抵抗を低減することが可能となる。このような構成により、電気特性の良好な半導体装置が得られる。より具体的には、オン電流の向上したトランジスタ、および当該トランジスタを用いた半導体装置が得られる。
また、導電体209は積層構造を有していてもよい。この場合、上層の導電体と比較して、導電性に優れた導電体上に、下層の導電体と比較して、耐酸化性に優れた導電体を配置する構成が好ましい。導電体209の上層に酸化しにくい材料を用いることで、絶縁体216の形成時、絶縁体216に設けられる開口部の形成時、および導電体205の形成時に、導電体209の酸化を抑制することができる。これにより、導電体209の酸化による電気抵抗の増加を抑制することができる。すなわち、導電体209と導電体205のコンタクトは良好なものになる。
なお、トランジスタ202では、図23に示すように、酸化物230a、酸化物230b、および酸化物230c、および酸化物230dを積層する構成について示しているが、本発明はこれに限られるものではない。例えば、酸化物230a、酸化物230cの2層構造、酸化物230b、酸化物230cの2層構造、酸化物230a、酸化物230c、および酸化物230dの3層構造、酸化物230b、酸化物230c、および酸化物230dの3層構造、としてもよい。すなわち、酸化物230aおよび酸化物230bの一方を設けなくてもよい。また、酸化物230dを設けなくてもよい。または5層以上の積層構造としてもよい。また、酸化物230cのみの単層、または酸化物230cと酸化物230dのみを設ける構成にしてもよい。また、トランジスタ202では、導電体260a、および導電体260bを積層する構成について示しているが、本発明はこれに限られるものではない。例えば、単層、または3層以上の積層構造としてもよい。
ここで、図23(B)における破線で囲む、チャネル近傍の領域239の拡大図を図24に示す。
図23(B)および図24に示すように、酸化物230は、トランジスタ202のチヤネル形成領域として機能する領域234と、ソース領域またはドレイン領域として機能する領域231(領域231a、および領域231b)との間に、領域232(領域232a、および領域232b)を有する。ソース領域またはドレイン領域として機能する領域231は、キャリア密度が高い、低抵抗化した領域である。また、チャネル形成領域として機能する領域234は、ソース領域またはドレイン領域として機能する領域231よりも、キャリア密度が低い領域である。また、領域232は、ソース領域またはドレイン領域として機能する領域231よりも、キャリア密度が低く、チャネル形成領域として機能する領域234よりも、キャリア密度が高い領域である。
領域231において、導電体252aと接続する領域233は、領域231よりもキャリア密度が高く、低抵抗化されていることが好ましい。領域231に領域233を設けることで、酸化物230と導電体252aのコンタクト抵抗を低減することができ、トランジスタ202は良好な電気特性を有することができる。領域233は、コンタクト領域と呼ぶことができる。
領域231、領域232、および領域233は、酸化物230に、ヘリウムやアルゴンに代表される希ガスを添加することで設けることができる。希ガスの添加には、例えば、イオン化された原料ガスを質量分離して添加するイオン注入法、イオン化された原料ガスを質量分離せずに添加するイオンドーピング法、プラズマイマージョンイオンインプランテーション法、プラズマ処理などを用いることができる。
酸化物230に希ガスが添加されると、酸化物230中の金属元素と酸素原子の結合が切れ、酸化物230中に酸素欠損が生じると考えられる。酸素欠損が水素などの不純物を捕獲することで、キャリアが生じ、酸化物230、すなわち領域231、領域232、および領域233は低抵抗化する。水素などの不純物は、酸化物230中に存在している場合がある。このとき、当該不純物は、金属元素や酸素原子とは未結合の状態で存在していてもよい。また、酸化物230に接して設けられる絶縁体、例えば、絶縁体274から供給することができる。
領域234は、酸素欠損や、水素などの不純物が極力低減された、高純度化された領域である。高純度化された酸化物は実質真性領域となり、領域234はチャネル形成領域として機能することができる。
また、図23および図24において、領域232は、ゲート電極として機能する導電体260と重なる様子を示しているが、本実施の形態はこれに限らない。領域231、および領域232の形成方法によっては、領域232はゲート電極として機能する導電体260と重ならない場合がある。
領域232は、ソース領域またはドレイン領域として機能する領域231よりもキャリア密度が低く、チャネル形成領域として機能する領域234よりもキャリア密度が高い領域とすることができる。この場合、領域232は、チャネル形成領域と、ソース領域またはドレイン領域との間の接合領域(junction region)として機能する。
接合領域を設けることで、ソース領域またはドレイン領域として機能する領域231と、チャネル形成領域として機能する領域234との間に高抵抗領域が形成されず、トランジスタのオン電流を大きくすることができるため、好ましい。
領域234は、導電体260と重畳する。領域234は、領域232a、および領域232bとの間に配置しており、インジウムなどの金属元素、並びに水素、および窒素などの不純物元素、の少なくとも一の濃度が領域231、および領域232より、小さいことが好ましい。
また、酸化物230において、領域231、領域232、領域233、および領域234の境界は明確に検出できない場合がある。各領域内で検出されるインジウムなどの金属元素、並びに水素、および窒素などの不純物元素の濃度は、領域ごとの段階的な変化に限らず、各領域内でも連続的に変化(グラデーションともいう)していてもよい。つまり、領域231から領域232へ、領域234に近い領域であるほど、インジウムなどの金属元素、並びに水素、および窒素などの不純物元素の濃度が減少していればよい。
また、図23(B)および図24では、領域234、領域231、領域232、および領域233が、酸化物230a、酸化物230b、酸化物230c、および酸化物230dに形成されているが、これに限られることなく、少なくとも酸化物230cに形成されていればよい。また、例えばこれらの領域は酸化物230c、および酸化物230dのみに形成されていてもよい。また、図では、各領域の境界を、絶縁体224と酸化物230の界面に対して略垂直に表示しているが、本実施の形態はこれに限られるものではない。例えば、領域232が酸化物230cの表面近傍では領域234側に張り出し、酸化物230cの下面近傍では、領域231側に後退する形状になる場合がある。
例えば、絶縁体250を絶縁体250a、および絶縁体250bを有する積層構造とし、絶縁体250aの上に、酸素を含む雰囲気で絶縁体250bを形成することで、250aにより多くの酸素、すなわち過剰酸素を含ませることができる。
また、絶縁体250の側面と接して、絶縁体272を設けることが好ましい。
さらに、トランジスタ202は、水または水素などの不純物の混入を防ぐバリア性を有する絶縁体で囲まれていることが好ましい。
以下では、本発明の一態様に係るトランジスタ202を有する半導体装置の詳細な構成について説明する。
トランジスタ202において、導電体260は、第1のゲート電極として機能する場合がある。また、導電体205は、第2のゲート電極として機能する場合がある。その場合、導電体205に印加する電位を、導電体260に印加する電位と、連動させず、独立して変化させることで、トランジスタ202のしきい値電圧を制御することができる。特に、導電体205に負の電位を印加することにより、実質的にトランジスタ202のしきい値電圧をプラス側にシフトすることができる。また、トランジスタ202のしきい値を0Vより大きくすることで、オフ電流を低減することが可能となる。従って、導電体260に印加する電圧が0Vのときのドレイン電流を小さくすることができる。
第2のゲート電極として機能する導電体205は、酸化物230および導電体260と重なるように配置する。
つまり、第1のゲート電極としての機能を有する導電体260の電界と、第2のゲート電極としての機能を有する導電体205の電界によって、領域234のチャネル形成領域を電気的に取り囲むことができる。本明細書において、第1のゲート電極、および第2のゲート電極の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S−channel)構造とよぶ。
導電体205は、絶縁体214および絶縁体216の開口の内壁に接して導電体205aが形成され、さらに内側に導電体205bが形成されている。ここで、導電体205aおよび導電体205bの上面の高さと、絶縁体216の上面の高さは同程度にできる。なお、トランジスタ202では、導電体205aおよび導電体205bを積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体205bのみを設ける構成にしてもよい。
ここで、導電体205aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい)導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子など)の少なくとも一の拡散を抑制する機能を有する(上記酸素が透過しにくい)導電性材料を用いることが好ましい。なお、本明細書において、不純物、または酸素の拡散を抑制する機能とは、上記不純物、または上記酸素のいずれか一または、すべての拡散を抑制する機能とする。
導電体205aが酸素の拡散を抑制する機能を持つことにより、導電体205bが酸化して導電率が低下することを防ぐことができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウムまたは酸化ルテニウムなどを用いることが好ましい。従って、導電体205aとしては、上記導電性材料を単層または積層とすればよい。これにより、絶縁体214より基板側から、水素、水などの不純物が、導電体205を通じて、トランジスタ202側に拡散するのを抑制することができる。
また、導電体205bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。なお、導電体205bを単層で図示したが、積層構造としても良く、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。
導電体209は、電極や配線として機能することができる。導電体205を、トランジスタ202の第2のゲート電極として用いる場合、導電体209の一部は、ゲート配線として機能することができる。このとき、導電体207aおよび、導電体207a上に設けられた導電体207bからなる導電体207、および導電体209を介して、導電体205と導電体252dを電気的に接続してもよい。導電体207は、導電体203および導電体205と同じ工程で作製することができる。
また、導電体209は、導電体203を介して酸化物230と電気的に接続しており、トランジスタ202のソース配線またはドレイン配線として機能することができる。また、導電体209は、絶縁体210より下層に位置する素子や配線と電気的に接続するための電極として用いてもよい。
酸化物230の下に、重なるように導電体203および導電体209を設けることで、トランジスタ202と、絶縁体210より下層に位置する素子や配線と接続するためのプラグや電極をトランジスタ202に重ねて設けることができる。よって、セルサイズを縮小できるため、好ましい。
絶縁体210は、実施の形態1に示す絶縁体210と同様の材料を用いることができる。
また、層間膜として機能する絶縁体212、および絶縁体216は、絶縁体210よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。層間膜として機能する絶縁体212、および絶縁体216は、実施の形態1に示す絶縁体208、絶縁体216、および絶縁体280と同様の材料を用いることができる。
絶縁体220、絶縁体222、および絶縁体224は、ゲート絶縁体としての機能を有する。絶縁体220、絶縁体222、および絶縁体224は、実施の形態1に示す絶縁体220、絶縁体222、および絶縁体224と同様の材料を用いることができる。
酸化物230は、酸化物230aと、酸化物230a上の酸化物230bと、酸化物230b上の酸化物230cと、酸化物230c上の酸化物230dと、を有する。また、酸化物230は、領域231、領域232、領域233、および領域234を有する。なお、領域231の少なくとも一部は、絶縁体274と接することが好ましい。また、領域231の少なくとも一部は、インジウムなどの金属元素、水素、および窒素の少なくとも一の濃度が領域234よりも大きいことが好ましい。
トランジスタ202をオンさせると、領域231a、または領域231bは、ソース領域、またはドレイン領域として機能する。一方、領域234の少なくとも一部は、チャネルが形成される領域として機能する。
ここで、図24に示すように、酸化物230は、領域232を有することが好ましい。領域232を接合領域とすることで、オン電流を大きくし、かつ、非導通時のリーク電流(オフ電流)を小さくすることができる。
また、酸化物230a、および酸化物230b上に、酸化物230cを有することで、酸化物230aよりも下方に形成された構造物から、酸化物230bへの不純物の拡散を抑制することができる。また、酸化物230d下に、酸化物230cを有することで、酸化物230dよりも上方に形成された構造物から、酸化物230cへの不純物の拡散を抑制することができる。
すなわち、酸化物230cに設けられた領域234は、酸化物230a、酸化物230b、および酸化物230dに囲われ、当該領域の水素や窒素などの不純物濃度を低く維持することができ、酸素濃度を高く維持することができる。このような構造を有する酸化物230を用いた半導体装置は、良好な電気特性を有し、高い信頼性を有する。
また、酸化物230は、側面と上面との間に、湾曲面を有する。つまり、側面の端部と上面の端部は、湾曲していることが好ましい(以下、ラウンド状ともいう)。湾曲面は、例えば、酸化物230cの端部において、曲率半径が、3nm以上10nm以下、好ましくは、5nm以上6nm以下とすることが好ましい。
酸化物230は、実施の形態1に示す酸化物230と同様の材料を用いることができる。
ここで、酸化物230の領域234にについて説明する。
領域234は、各金属原子の原子数比が異なる酸化物により、積層構造を有することが好ましい。具体的には、酸化物230a、酸化物230b、および酸化物230cの積層構造を有する場合、酸化物230aに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物230bに用いる金属酸化物における、構成元素中の元素Mの原子数比より、大きいことが好ましい。また、酸化物230bに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物230cに用いる金属酸化物における、構成元素中の元素Mの原子数比より、大きいことが好ましい。また、酸化物230aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物230bに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物230cに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物230bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物230aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。また、酸化物230cに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物230bに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。また、酸化物230dは、酸化物230a、酸化物230b、または酸化物230cに用いることができる金属酸化物を、用いることができる。
酸化物230a、および酸化物230bには、例えばIn:Ga:Zn=1:3:4、In:Ga:Zn=1:3:2、またはIn:Ga:Zn=1:1:1の組成を有する金属酸化物を用いることができる。また、酸化物230cには、例えばIn:Ga:Zn=4:2:3、In:Ga:Zn=1:1:1、またはIn:Ga:Zn=5:1:6の組成を有する金属酸化物を用いることができる。酸化物230dには、例えばIn:Ga:Zn=1:3:4、In:Ga:Zn=1:3:2、In:Ga:Zn=4:2:3、またはIn:Ga:Zn=1:1:1の組成を有する金属酸化物を用いることができる。なお、上記組成は、基板上に形成された酸化物中の原子数比、またはスパッタターゲットにおける原子数比を示す。
特に、酸化物230aとしてIn:Ga:Zn=1:3:4、酸化物230bとしてIn:Ga:Zn=1:1:1、酸化物230cとしてIn:Ga:Zn=4:2:3、酸化物230dとしてIn:Ga:Zn=1:1:1の組成を有する金属酸化物の組み合わせは、酸化物230cを、よりエネルギーギャップの広い酸化物230a、酸化物230bと酸化物230dで挟むことができ、好ましい。このとき、エネルギーギャップの広い酸化物230a、酸化物230b、および酸化物230dをワイドギャップ、相対的にエネルギーギャップが狭い酸化物230cをナローギャップと呼ぶことがある。
続いて、酸化物230の領域231について説明する。
領域231は、酸化物230として設けられた金属酸化物に、インジウムなどの金属原子、ヘリウムやアルゴンなどの希ガス、または水素や窒素などの不純物を添加し、低抵抗した領域である。なお、各領域は、少なくとも、領域234における酸化物230cよりも、導電性が高い。なお、領域231に、金属原子、希ガス、または不純物を添加するために、例えば、プラズマ処理、イオン化された原料ガスを質量分離して添加するイオン注入法、イオン化された原料ガスを質量分離せずに添加するイオンドーピング法、プラズマイマージョンイオンインプランテーション法、プラズマ処理などを用いて、金属元素、希ガス、および不純物の少なくとも一であるドーパントを添加すればよい。
つまり、領域231において、酸化物230のインジウムなどの金属原子の含有率を高くすることで、電子移動度を高くし、低抵抗化を図ることができる。
または、酸化物230に接して、不純物となる元素を含む絶縁体274を成膜することで、領域231に、不純物を添加することができる。
つまり、領域231は、酸素欠損を形成する元素、または酸素欠損に捕獲される元素が添加されることで低抵抗化される。このような元素としては、代表的には水素、ホウ素、炭素、窒素、フッ素、リン、硫黄、塩素、チタン、希ガス等が挙げられる。また、希ガス元素の代表例としては、ヘリウム、ネオン、アルゴン、クリプトン、及びキセノン等がある。よって、領域231は、上記元素の一つまたは複数を含む構成にすればよい。
または、絶縁体274として、領域231に含まれる酸素を引き抜き、吸収する膜を用いてもよい。酸素が引き抜かれると、領域231には酸素欠損が生じる。酸素欠損に水素、ホウ素、炭素、窒素、フッ素、リン、硫黄、塩素、チタン、希ガス等が捕獲されることにより、領域231は低抵抗化する。
領域232のチャネル長方向の幅は、絶縁体272および絶縁体273の幅により制御することができる。
従って、領域232の範囲を適宜選択することにより、回路設計に合わせて、要求に見合う電気特性を有するトランジスタを容易に提供することができる。
絶縁体250は、ゲート絶縁膜として機能する。絶縁体250は、酸化物230dの上面に接して配置することが好ましい。絶縁体250は、加熱により酸素が放出される絶縁体を用いて形成することが好ましい。例えば、昇温脱離ガス分光法分析(TDS分析)にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは3.0×1020atoms/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、または100℃以上500℃以下の範囲が好ましい。
例えば、絶縁体250を絶縁体250a、および絶縁体250bを有する積層構造としてもよい。加熱により酸素が放出される絶縁体を、絶縁体250aとして、酸化物230dの上面に接して設けることにより、酸化物230cの領域234に効果的に酸素を供給することができる。また、絶縁体224と同様に、絶縁体250a中の水または水素などの不純物濃度が低減されていることが好ましい。絶縁体250aの膜厚は、1nm以上20nm以下、好ましくは5nm以上10nmとする。
絶縁体250bは、形成時、あるいは形成後に、絶縁体250aに酸素を供給できる絶縁体であることが好ましい。このような絶縁体は、酸素を含む雰囲気で、あるいは酸素を含むターゲットを用いて形成することができる。例えば、スパッタリング法を用いて、酸素を含む雰囲気中で、酸化アルミニウムを形成する。絶縁体250bの膜厚は、1nm以上20nm以下、好ましくは5nm以上10nmとする。
絶縁体250aの上に絶縁体250bを設けることで、絶縁体250aに、より多くの酸素、すなわち過剰酸素を含ませることができる。
第1のゲート電極として機能する導電体260は、導電体260a、および導電体260a上の導電体260bを有する。導電体260aは、窒化チタンなどを用いることが好ましい。また、導電体260bとして、例えばタングステンなどの、導電性が高い金属を用いることができる。
導電体260、および導電体205に電位を印加した場合、導電体260から生じる電界と、導電体205から生じる電界により、酸化物230に形成されるチャネル形成領域を覆うことができる。
つまり、第1のゲート電極としての機能を有する導電体260の電界と、第2のゲート電極としての機能を有する導電体205の電界によって、領域234のチャネル形成領域を電気的に取り囲むことができる。
また、バリア膜として機能する絶縁体272を、絶縁体250の側面、および導電体260の側面に接するように設ける。また、バリア膜として機能する絶縁体270を導電体260の上部に設ける。
ここで、絶縁体270、および絶縁体272は、それぞれ実施の形態1に示す絶縁体270、および絶縁体272と同様の材料を用いることができる。
また、トランジスタが微細化され、チャネル長が10nm以上30nm以下程度に形成されている場合、トランジスタ202の周辺に設けられる構造体に含まれる不純物元素が拡散し、領域231aと領域231b、あるいは、領域232aと領域232bと、が電気的に導通する恐れがある。
そこで、本実施の形態に示すように、絶縁体272および絶縁体273を形成することにより、絶縁体250および導電体260に水素、水などの不純物が混入するのを抑制し、かつ、絶縁体250中の酸素が外部に拡散することを防ぐことができる。従って、第1のゲート電圧が0Vのときに、ソース領域とドレイン領域が直接、あるいは領域232などを介して電気的に導通することを防ぐことができる。
絶縁体273は、絶縁体272よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、後述する導電体130と導電体260間に生じる寄生容量を低減することができる。絶縁体273は、絶縁体212、および絶縁体216と同様の材料を用いることができる。
絶縁体274は、少なくとも酸化物230、絶縁体271、絶縁体272、および絶縁体273を覆うように設ける。
また、絶縁体274は、水または水素などの不純物、および酸素の透過を抑制する機能を有する絶縁性材料を用いることが好ましい。例えば、絶縁体274として、窒化シリコン、窒化酸化シリコン、酸化窒化シリコン、窒化アルミニウム、窒化酸化アルミニウムなどを用いることが好ましい。このような絶縁体274を形成することで、絶縁体274を透過して酸素が混入し、領域231aおよび領域231bの酸素欠損に酸素を供給して、キャリア密度が低下するのを防ぐことができる。また、絶縁体274を透過して水または水素などの不純物が混入し、領域234に拡散するのを抑制することができる。
なお、絶縁体274を成膜することにより、領域231を設ける場合、絶縁体274は、水素および窒素の少なくとも一方を有することが好ましい。水素、または窒素などの不純物を有する絶縁体を絶縁体274に用いることで、水素または窒素などの不純物を酸化物230に添加して、酸化物230において、領域231を低抵抗化することができる。
絶縁体274の上に、層間膜として機能する絶縁体280を設けることが好ましい。絶縁体280は、絶縁体224などと同様に、膜中の水または水素などの不純物濃度が低減されていることが好ましい。なお、絶縁体280は、同様の絶縁体からなる積層構造としてもよい。
[容量素子101]
図23に示すように、容量素子101は、トランジスタ202と共通の構造を有する構成である。本実施の形態では、トランジスタ202の酸化物230に設けられた領域231bの一部が、容量素子101の電極の一方として機能する容量素子101の例について示す。
容量素子101は、酸化物230の領域231bの一部、絶縁体274、絶縁体274上の導電体130(導電体130a、導電体130b)を有する。さらに、導電体130の少なくとも一部が領域231bの一部と重なるように配置されることが好ましい。
酸化物230の領域231bの一部は、容量素子101の電極の一方として機能し、導電体130は容量素子101の電極の他方として機能する。すなわち、領域231bは、トランジスタ202のソースまたはドレインの一方としての機能と、容量素子101の電極の一方としての機能を兼ねている。絶縁体274の一部は、容量素子101の誘電体として機能する。
ここで、トランジスタ202の第1のゲート電極として機能する導電体260の側面には、絶縁体272、および絶縁体273が設けられている。導電体260と導電体130の間に絶縁体272、および絶縁体273が設けられることで、導電体260と導電体130の間の寄生容量を低減することができる。
導電体130は、導電体130a、および導電体130a上に配置された導電体130bを含む積層構造であることが好ましい。例えば、導電体130aは、チタン、窒化チタン、タンタル、または窒化タンタルを主成分とする導電性材料を用いることが好ましく、導電体130bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。導電体130は、単層構造としてもよいし、3層以上の積層構造としてもよい。
[セル601]
本発明の一態様の半導体装置は、トランジスタ202と、容量素子101、層間膜として機能する絶縁体280を有する。また、トランジスタ202および容量素子101と電気的に接続し、プラグとして機能する導電体252(導電体252a、導電体252b、導電体252c、および導電体252d)とを有する。
容量素子101の電極として機能する導電体130と電気的に接続するプラグとして、導電体252bを設けてもよい。導電体130は、複数のセル601が有する容量素子101の電極を共有することができる。このため、必ずしも各セル601に導電体252bを設ける必要はなく、複数のセルに対して、当該セルの数より少ないプラグを設けてもよい。例えば、セル601が、行列、またはマトリクス状に配置されたセルアレイにおいて、各行に一つのプラグ、または各列に一つのプラグを設けてもよい。
なお、導電体252は、絶縁体280の開口の内壁に接して形成されている。ここで、導電体252の上面の高さと、絶縁体280の上面の高さは同程度にできる。なお、図23では、導電体252が2層である構成について示しているが、本発明はこれに限られるものではない。例えば、導電体252は、単層、または3層以上の積層構造でもよい。
絶縁体280は、絶縁体274および導電体130を覆うように設けることが好ましい。絶縁体280は、絶縁体224などと同様に、膜中の水または水素などの不純物濃度が低減されていることが好ましい。なお、絶縁体280は、同様の絶縁体からなる積層構造としてもよい。
絶縁体280は、絶縁体210よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
例えば、層間膜として機能する絶縁体280として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO3)または(Ba,Sr)TiO3(BST)などの絶縁体を単層または積層で用いることができる。またはこれらの絶縁体に例えば酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理しても良い。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
また、絶縁体280などに形成された開口に、導電体252a、導電体252b、導電体252c、および導電体252dを配置する。なお、導電体252a、導電体252b、導電体252c、および導電体252dの上面は、絶縁体280の上面と、概略同じ高さとしてもよい。
導電体252aは、絶縁体280、および絶縁体274に形成された開口を介して、トランジスタ202のソース領域およびドレイン領域の一方として機能する領域233と接している。領域233は低抵抗化されているので、導電体252aと領域233の接触抵抗を低減することができる。また、導電体252bは、絶縁体280に形成された開口を介して、容量素子101の電極の一方である導電体130と接している。また、導電体252cは、絶縁体280、絶縁体274、絶縁体271、および絶縁体270に形成された開口を介して、トランジスタ202の第1のゲート電極として機能する導電体260と接している。また、導電体252dは、絶縁体280、絶縁体274、絶縁体222、および絶縁体220に形成された開口を介して、導電体207と接し、導電体209を介して、トランジスタ202の第2のゲート電極として機能する導電体205と電気的に接続している。
ここで、導電体252aは、少なくとも酸化物230の上面と接し、さらに酸化物230の側面と接することが好ましい。特に、導電体252aは、酸化物230のチャネル幅方向と交わる側面において、C側の側面、およびD側の側面の双方または一方と接することが好ましい。また、導電体252aが、酸化物230のチャネル長方向と交わる側面において、A側の側面と接する構成にしてもよい。このように、導電体252aが酸化物230の上面に加えて、酸化物230の側面と接する構成にすることにより、導電体252aと酸化物230のコンタクト部の上面積を増やすことなく、コンタクト部の接触面積を増加させ、導電体252aと酸化物230の接触抵抗を低減することができる。これにより、トランジスタのソース電極およびドレイン電極の微細化を図りつつ、オン電流を大きくすることができる。
導電体252は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体252は積層構造としても良く、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。
導電体252を積層構造とする場合、絶縁体274、および絶縁体280と接する導電体には、導電体205aなどと同様に、水または水素などの不純物の透過を抑制する機能を有する導電性材料を用いることが好ましい。例えば、タンタル、窒化タンタル、チタン、窒化チタン、ルテニウムまたは酸化ルテニウムなどを用いることが好ましい。また、水または水素などの不純物の透過を抑制する機能を有する導電性材料は、単層または積層で用いてもよい。該導電性材料を用いることで、絶縁体280より上層から水素、水などの不純物が、導電体252を通じて酸化物230に混入するのを抑制することができる。
また、導電体252が埋め込まれた絶縁体274および絶縁体280の開口の内壁に接して、水または水素などの不純物の透過を抑制する機能を有する絶縁体が設けられる構成にしてもよい。このような絶縁体としては、絶縁体210に用いることができる絶縁体、例えば、酸化アルミニウムなどを用いることが好ましい。これにより、絶縁体280などから水素、水などの不純物が、導電体252を通じて酸化物230に混入するのを抑制することができる。また、当該絶縁体は、例えばALD法またはCVD法などを用いて成膜することで被覆性良く成膜することができる。
また、図示しないが、導電体252の上面に接して配線として機能する導電体を配置してもよい。配線として機能する導電体は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。
<半導体装置の構成例4>
図25(A)、図25(B)、図25(C)、および図25(D)は、本発明の一態様に係るトランジスタ204、容量素子102、およびトランジスタ204周辺の上面図、および断面図である。なお、本明細書では、1つの容量素子、および少なくとも1つのトランジスタを有する半導体装置をセルと称する。
図25に示すセル602は、トランジスタ204と容量素子102を有しており、先に説明したトランジスタ202と比較して、導電体203、および導電体205の構造が異なる。また、絶縁体250、導電体260、絶縁体270、および絶縁体271の形状が異なる。
導電体203、および導電体205は、導電体209および絶縁体212の上に設けられている。導電体203、および導電体205は、導電体209と同様の材料を用いて、同様の方法で作製することができる。一方、導電体203、および導電体205の加工の際、導電体209の形状不良を引き起こす恐れがある場合は、導電体203、および導電体205は、導電体209と異なる材料を用いることが好ましい。また、絶縁体216は、絶縁体212と同様の材料を用いて、同様の方法で作製することができる。
絶縁体250、導電体260、絶縁体270、および絶縁体271は、その側面が傾斜している。少なくとも、絶縁体250、および導電体260の側面に絶縁体272および絶縁体273を形成する上で、絶縁体250、および導電体260の側面は、基板表面または絶縁体220や絶縁体222の表面に対して垂直であることが好ましい。一方、絶縁体272および絶縁体273となる絶縁膜を形成する上では、絶縁体250、および導電体260の側面は、傾斜を有していることで被覆性が向上し好ましい。絶縁体250、および導電体260の側面の角度は、プロセス上の作りやすさも考慮して適宜調整することができる。
図25に示すセル602においては、トランジスタ202と比較して、導電体203、および導電体205の構造、および絶縁体250、導電体260、絶縁体270、および絶縁体271の形状が異なる例を示したが、導電体203、および導電体205の構造、および絶縁体250、導電体260、絶縁体270、および絶縁体271の形状の一方のみをトランジスタ202と異ならせる構成としてもよい。
<半導体装置の構成例5>
図26(A)、図26(B)、図26(C)、および図26(D)は、本発明の一態様に係るトランジスタ206、容量素子103、およびトランジスタ206周辺の上面図、および断面図である。なお、本明細書では、1つの容量素子、および少なくとも1つのトランジスタを有する半導体装置をセルと称する。
図26に示すセル603は、トランジスタ206と容量素子103を有しており、先に説明したトランジスタ202と、領域231、および領域233上に酸化物230dがエッチングされず、残存している点で、異なる。
この場合、酸化物230cの端部が酸化物230dに覆われ、酸化物230への不純物の混入や、酸化物230からの酸素の放出などを抑制することができ、好ましい。
また、導電体203、および導電体205を、図25に示した構造としてもよい。また、絶縁体250、導電体260、絶縁体270、および絶縁体271を、図25に示した形状としてもよい。
<セルアレイの構造>
ここで、本実施の形態のセルアレイの一例を、図27および図28に示す。例えば、図23に示すトランジスタ202、および容量素子101を有するセル601、およびセル601と電気的に接続するトランジスタ300を、行列、またはマトリクス状に配置することで、セルアレイを構成することができる。
図27は、図23に示すセル601、およびセル601と電気的に接続するトランジスタ300を、マトリクス状に配置したセルアレイの一形態を示す回路図である。また、図28(A)は、当該セルアレイの一部の回路620を抜き出した回路図であり、図28(B)は、当該セルアレイに相当するセル601およびトランジスタ300の断面模式図である。
トランジスタ300は、半導体基板に設けられたトランジスタを用いることができる。当該半導体基板は、シリコン系半導体などの半導体を含むことが好ましく、単結晶シリコンを含むことが好ましい。または、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)などを有する半導体基板を用いてもよい。この場合、トランジスタ300は、pチャネル型、あるいはnチャネル型のいずれでもよい。また、トランジスタ300として、トランジスタ202と同様に、酸化物半導体を用いたトランジスタを用いることもできる。
図27においては、行方向に隣り合うセル601が有するトランジスタ202のソースおよびドレインの一方が共通の配線(S01、S02、S03)と電気的に接続する。また、当該配線は、列方向に配置されたセルが有するトランジスタ202のソースおよびドレインの一方とも電気的に接続する。一方、行方向に隣り合うセル601が有するトランジスタ202の第1のゲートは、異なる配線WL(WL01乃至WL06)と電気的に接続する。また、各セル601が有するトランジスタ202の第2ゲートは、トランジスタ400と電気的に接続してもよい。トランジスタ400を介してトランジスタ202の第2ゲートに印加される電位により、トランジスタのしきい値を制御することができる。
また、セル601が有する容量素子101の第1の電極は、トランジスタ202のソースおよびドレインの他方、およびトランジスタ300のゲートと電気的に接続する。この時、容量素子101の第1の電極は、トランジスタ202を構成する構造の一部からなる場合がある。また、セル601が有する容量素子101の第2の電極は、配線PLと電気的に接続する。容量素子101の第2の電極と電気的に接続する配線PLは、各セル601で異なる電位を有していてもよいし、共通の電位を有していてもよい。例えば、配線PLは、列毎に共通の電位を有していても良いし、行毎に共通の電位を有していてもよい。
トランジスタ300のソースおよびドレインの一方は、配線SL(SL01乃至SL06)と電気的に接続し、トランジスタ300のソースおよびドレインの他方は、配線BL(BL01乃至BL06)と電気的に接続する。
図28(B)に示すように、セル601aは、トランジスタ202aおよび容量素子101aを有し、トランジスタ300aのゲートと電気的に接続している。セル601bは、トランジスタ202bおよび容量素子101bを有し、トランジスタ300bのゲートと電気的に接続している。
トランジスタ202aのソースおよびドレインの一方と、トランジスタ202bのソースおよびドレインの一方は、いずれもS02と電気的に接続している。
トランジスタ202のソースおよびドレインの一方が、トランジスタ300のゲートおよび容量素子101aの第1の電極と電気的に接続することで、トランジスタ300のゲートに所望の電位を印加し、保持することができる。また、チャネル形成領域に酸化物半導体を用いるトランジスタ202は、非導通状態におけるリーク電流が極めて小さい。よって、トランジスタ300のゲート電極に印加された電位を長時間維持することができる。
このようなセルアレイは、記憶装置や、演算回路として用いることができる。
[トランジスタ400]
図29は、トランジスタ400の一態様を示す断面模式図である。トランジスタ400は、トランジスタ202と異なる構造を有していてもよい。
トランジスタ400は、トランジスタ202と共通の材料を用いて作製されるのが好ましい。
導電体409は、導電体209と同様の材料を用い、同じ工程で形成することができる。導電体403および導電体405は、導電体203および導電体205と同様の材料を用い、同じ工程で形成することができる。導電体405は、トランジスタ400の第2のゲート電極として機能することができる。
酸化物430a、酸化物430b、酸化物430c、および酸化物430dは、それぞれ酸化物230a、酸化物230b、酸化物230c、および酸化物230dと同様の材料を用い、同じ工程で形成することができる。トランジスタ400において、酸化物430dの一部は、チャネル形成領域として機能し、酸化物430a、酸化物430b、酸化物430c、および酸化物430dは、酸化物230と同様に低抵抗領域を有し、ソース領域またはドレイン領域として機能する。また、酸化物430a、酸化物430b、および酸化物430cには、より低抵抗なコンタクト領域が設けられていることが好ましい。
絶縁体450a、および絶縁体450bは、それぞれ絶縁体250a、および絶縁体250bと同様の材料を用い、同じ工程で形成することができ、絶縁体450a、および絶縁体450bを有する絶縁体450は、ゲート絶縁膜として機能することができる。導電体460a、および導電体460bは、それぞれ導電体260a、および導電体260bと同様の材料を用い、同じ工程で形成することができ、導電体460a、および導電体460bを有する導電体460は、第1のゲート電極として機能することができる。
絶縁体470は、絶縁体270と同様の材料を用い、同じ工程で形成することができる。絶縁体471は、絶縁体271と同様の材料を用い、同じ工程で形成することができる。絶縁体472は、絶縁体272と同様の材料を用い、同じ工程で形成することができる。絶縁体473は、絶縁体273と同様の材料を用い、同じ工程で形成することができる。
絶縁体280および絶縁体274には開口部が設けられ、酸化物430に接続する導電体452aおよび導電体452bが配置される。
トランジスタ400において、ソース領域およびドレイン領域の一方は、酸化物430a、絶縁体224、絶縁体222、および絶縁体220に設けられた開口を介して、導電体403と電気的に接続する。また、導電体403は、導電体409を介して、第2のゲート電極として機能する導電体405と電気的に接続する。また、当該ソース領域およびドレイン領域の一方は、導電体452bを介して第2のゲート電極として機能する導電体460と電気的に接続する。すなわち、トランジスタ400は、ソース領域およびドレイン領域の一方、第1のゲート電極、および第2のゲート電極が電気的に接続することで、ダイオード接続を構成している。
ダイオード接続したトランジスタ400のソースおよびドレインの一方は、導電体409および導電体209などを介して、トランジスタ202の第2のゲート電極と電気的に接続する。これにより、トランジスタ202の第2のゲート電極の電位は、トランジスタ400により制御することができる。また、トランジスタ400は、酸化物430dにチャネル形成領域が設けられているため、非導通状態におけるリーク電流は極めて小さい。よって、例えばトランジスタ202の第2のゲート電極に負電位を印加する場合、トランジスタ400に電源の供給を行わなくても、トランジスタ202の第2のゲート電極の電位を長時間維持することができる。
トランジスタ400は、各セル601に設ける必要はなく、複数のセルに対して、当該セルの数より少ないトランジスタ400を設けてもよい。例えば、セル601が、行列、またはマトリクス状に配置されたセルアレイにおいて、セルアレイに一つのトランジスタ400、各行に一つのトランジスタ400、または各列に一つのトランジスタ400を設けてもよい。
<半導体装置の作製方法>
次に、本発明に係るトランジスタ202を有する半導体装置について、作製方法を図30乃至図50を用いて説明する。また、図30乃至図50において、各図の(A)は上面図を示す。また、各図の(B)は(A)に示すA−Bの一点鎖線で示す部位に対応する断面図である。また、各図の(C)は、(A)にC−Dの一点鎖線で示す部位に対応する断面図である。また、各図の(D)は、(A)にE−Fの一点鎖線で示す部位に対応する断面図である。
また、本実施の形態の半導体装置の作製方法において、実施の形態1に示した半導体装置の作製方法と同じ符号を記した構成要素には、実施の形態1と同様な材料、作製方法、および作製装置を用いることができる。また、特段記載のない限り、本実施の形態で作製された構成要素は、実施の形態1に示した構成要素と同様な構造上の特徴や、効果が得られるものとし、その説明は省略する。
まず、基板(図示しない)を準備し、当該基板上に絶縁体208を成膜する。絶縁体208の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。
本実施の形態では、絶縁体208として、CVD法によって酸化シリコンを成膜する。
次に、絶縁体208上に絶縁体210を形成する。本実施の形態では、絶縁体210として、スパッタリング法によって酸化アルミニウムを成膜する。また、絶縁体210は、多層構造としてもよい。例えばスパッタリング法によって酸化アルミニウムを成膜し、該酸化アルミニウム上にALD法にによって酸化アルミニウムを成膜する構造としてもよい。または、ALD法によって酸化アルミニウムを成膜し、該酸化アルミニウム上に、スパッタリング法によって酸化アルミニウムを成膜する構造としてもよい。
次に、絶縁体210上に導電膜209Aを形成する。導電膜209Aの形成は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。本実施の形態では、導電膜209Aとして、スパッタリング法によってタングステンを成膜した。なお、導電膜209Aとして、タングステンの他に、アルミニウムや銅などの導電体を用いることができる。また、導電膜209Aを積層構造としてもよく、上記導電体上にチタンやタンタルを含む導電体を積層して設けてもよい。例えば、上記導電体上に窒化チタン、または窒化タンタルなどの金属窒化物を用いることができる。
次に、導電膜209A上にリソグラフィー法を用いてマスク262を形成する(図30参照。)。
次に、マスク262を用いて、導電膜209Aを加工し、導電体209を形成する(図31参照。)。
該加工はドライエッチング法やウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。
ドライエッチング装置としては、ドライエッチング装置を用いることができ、CCPエッチング装置や、ICPエッチング装置などを用いることができる。
導電膜209Aのエッチングにハードマスクを用いる場合、当該エッチング処理は、ハードマスクの形成に用いたレジストマスクを除去してから行っても良いし、レジストマスクを残したまま行っても良い。後者の場合、エッチング中にレジストマスクが消失することがある。上記導電膜のエッチング後にハードマスクをエッチングにより除去しても良い。一方、ハードマスクの材料が後工程に影響が無い、あるいは後工程で利用できる場合、必ずしもハードマスクを除去する必要は無い。
次に絶縁体210、導電体209上に絶縁膜212Aを形成する(図32参照)。絶縁膜212Aの形成は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。本実施の形態では、絶縁膜212Aとして、CVD法によって酸化シリコンを形成する。
次に、CMP処理を行うことで絶縁膜212Aの一部を除去し、導電体209を露出する。その結果、導電体209の間、およびこれら導電体の周囲に絶縁体212が残存する。これにより、上面が平坦な、絶縁体212、および導電体209を形成することができる(図33参照。)。なお、当該CMP処理により、導電体209の一部が除去される場合がある。
次に絶縁体212、および導電体209上に絶縁体216を成膜する。絶縁体216の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。本実施の形態では、絶縁体216として、CVD法によって酸化シリコンを成膜する。
次に、絶縁体216に開口を形成する。開口とは、例えば、溝やスリットなども含まれる。また、開口が形成された領域を指して開口部とする場合がある。開口の形成はウェットエッチングを用いてもよいが、ドライエッチングを用いるほうが微細加工には好ましい。また、絶縁体216に開口を形成する場合、導電体209は、絶縁体216をエッチングして溝を形成する際のエッチングストッパ膜として用いてもよい。
開口の形成後に、導電体203a、および導電体205aとなる導電膜を成膜する。該導電膜は、酸素の透過を抑制する機能を有する導電体を含むことが望ましい。たとえば、窒化タンタル、窒化タングステン、窒化チタンなどを用いることができる。またはタンタル、タングステン、チタン、モリブデン、アルミニウム、銅、モリブデンタングステン合金との積層膜とすることができる。導電体203a、および導電体205aとなる導電体の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。
本実施の形態では、導電体203a、および導電体205aとなる導電膜として、スパッタリング法によって窒化タンタルまたは、窒化タンタルの上に窒化チタンを積層した膜を成膜する。導電体203a、および導電体205aとしてこのような金属窒化物を用いることにより、後述する導電体203b、および導電体205bで銅など拡散しやすい金属を用いても、当該金属が導電体203a、および導電体205aから外に拡散するのを防ぐことができる。
次に、導電体203a、および導電体205aとなる導電膜上に、導電体203b、および導電体205bとなる導電膜を成膜する。該導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。本実施の形態では、導電体203b、および導電体205bとなる導電膜として、タングステンや、銅などの低抵抗導電性材料を成膜する。
次に、CMP処理を行うことで、導電体203a、および導電体205aとなる導電膜、ならびに導電体203b、および導電体205bとなる導電膜の一部を除去し、絶縁体216を露出する。その結果、開口部のみに、導電体203a、および導電体205aとなる導電膜、ならびに導電体203b、および導電体205bとなる導電膜が残存する。これにより、上面が平坦な、導電体203aおよび導電体203bを含む導電体203、および導電体205aおよび導電体205bを含む導電体205を形成することができる(図34参照。)。なお、当該CMP処理により、絶縁体216の一部が除去される場合がある。
次に、絶縁体216、導電体203、および導電体205上に絶縁体220、絶縁体222、および絶縁体224を成膜する。絶縁体220、絶縁体222、および絶縁体224は、実施の形態1と同様の方法により、同様の材料を用いて形成することができる(図34参照。)。
続いて、加熱処理を行うと好ましい。加熱処理は、実施の形態1に示す方法を用いることができる。上記加熱処理によって、絶縁体224に含まれる水素や水などの不純物を除去することなどができる。尚、第1の加熱処理は行わなくても良い場合がある。
また、加熱処理は、絶縁体220成膜後、および絶縁体222の成膜後のそれぞれに行うこともできる。該加熱処理は、上述した加熱処理条件を用いることができるが、絶縁体220成膜後の加熱処理は、窒素を含む雰囲気中で行うことが好ましい。
本実施の形態では、加熱処理として、絶縁体224成膜後に窒素雰囲気にて400℃の温度で1時間の処理を行なう。
次に、絶縁体224上に、酸化物230aとなる酸化膜230Aを形成する。
酸化膜230Aは、実施の形態1と同様の方法により、同様の材料を用いて形成することができる。
次に、リソグラフィー法を用いて、絶縁体220、絶縁体222、絶縁体224、および酸化膜230Aに、導電体203へ到達する開口を形成する。まず、酸化膜230A上にマスク263を形成する(図34参照。)。開口の形成に用いるマスク263は、レジストマスクでもよいし、ハードマスクでもよい。
次に、マスク263を用いて、絶縁体220、絶縁体222、絶縁体224、および酸化膜230Aを加工し、導電体203の表面を露出することで、開口が形成される(図35参照。)。該加工は、ドライエッチング法やウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。なお、絶縁体220、絶縁体222、及び絶縁体224は、酸化膜230Aを介して加工される。詳述すると、導電体203の表面の一部を露出させる際に、酸化膜230A上にレジストマスクやハードマスクなどからなるマスクを形成し、その後、絶縁体220、絶縁体222、絶縁体224、および酸化膜230Aを加工する。すなわち、ゲート絶縁膜として機能する絶縁体(絶縁体220、絶縁体222、および絶縁体224)の表面にマスクが形成されない。したがって、ゲート絶縁膜として機能する絶縁体の表面に、マスクが付着しないため、レジストマスク等に含まれる不純物、ハードマスクに含まれる成分、およびマスク除去に用いる薬液やプラズマに含まれる成分によるゲート絶縁膜の汚染やダメージを抑制できる。このようなプロセスにより、信頼性の高い半導体装置の作製方法を提供できる。
次に、酸化膜230A上に酸化膜230B、および酸化膜230Cを形成する(図36参照。)。このとき、酸化膜230B、および酸化膜230Cは上記開口内部にも形成され、当該開口を介して導電体203と電気的に接続する。酸化物230b、および酸化物230cと、導電体203とが、酸化物230aを介さずに接続する構成とすることで、直列抵抗及び接触抵抗を低減することが可能となる。このような構成により、電気特性の良好な半導体装置が得られる。より具体的には、オン電流の向上したトランジスタ、および当該トランジスタを用いた半導体装置が得られる。
酸化膜230B、および酸化膜230Cの形成はスパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。
酸化膜230Bの形成後、酸化膜230Cの形成は、大気雰囲気に曝すことなく、連続で行われることが好ましい。酸化膜230Bの形成、および酸化膜230Cの形成は、マルチチャンバ式の成膜装置を用いることで、酸化膜230Bの表面を大気雰囲気に曝すことなく、酸化膜230B上に酸化膜230Cを形成することができる。酸化膜230Bの形成、および酸化膜230Cの形成を連続で行うことにより、酸化膜230B、および酸化膜230Cの界面の汚染を防ぐことができ、これら酸化膜を用いた半導体装置は、良好な特性および高い信頼性を有することができる。
例えば、酸化膜230B、および酸化膜230Cをスパッタリング法によって形成する場合は、スパッタリングガスとして酸素、または、酸素と希ガスの混合ガスを用いる。スパッタリングガスに含まれる酸素の割合を高めることで、成膜される酸化膜中の過剰酸素を増やすことができる。また、上記の酸化膜をスパッタリング法によって形成する場合は、上記のIn−M−Zn酸化物ターゲットを用いることができる。
酸化膜230B、および酸化膜230Cをスパッタリング法で形成する場合、スパッタリングガスに含まれる酸素の割合を1%以上30%以下、好ましくは5%以上20%以下として成膜すると、酸素欠乏型の酸化物半導体が形成される。酸素欠乏型の酸化物半導体を用いたトランジスタは、比較的高い電界効果移動度が得られる。
本実施の形態では、酸化膜230Bとして、スパッタリング法によって、In:Ga:Zn=1:1:1[原子数比]のターゲットを用いて成膜し、酸化膜230Cとして、スパッタリング法によって、In:Ga:Zn=4:2:4.1[原子数比]のターゲットを用いて成膜する。また、酸化膜230B、および酸化膜230Cの形成は、マルチチャンバ式のスパッタリング装置を用い、大気雰囲気に曝すことなく連続で行う。なお、酸化膜は、成膜条件、および原子数比を適宜選択することで、酸化物230に求める特性に合わせて形成するとよい。
次に、加熱処理を行ってもよい。加熱処理は、上述した加熱処理条件を用いることができる。加熱処理によって、酸化膜230A、酸化膜230B、および酸化膜230C中の水素や水などの不純物を除去することなどができる。本実施の形態では、窒素雰囲気にて400℃の温度で1時間の処理を行なった後に、連続して酸素雰囲気にて400℃の温度で1時間の処理を行う。
次に、酸化膜230A、酸化膜230B、および酸化膜230Cを島状に加工して、酸化物230a、酸化物230b、および酸化物230cを形成する(図37参照。)。
図37(A)および図37(D)に示すように酸化物230a、酸化物230b、および酸化物230cの絶縁体220、絶縁体222、絶縁体224、および酸化物230aに形成された開口と重なる領域における、E−F方向の幅を、当該開口の幅より広く形成することが好ましい。よって、当該領域における、酸化物230a、酸化物230b、および酸化物230cのE−F方向の幅は、チャネルが形成される領域や、A側の領域における、酸化物230a、酸化物230b、および酸化物230cのC−D方向の幅よりも広くなる場合がある。このような構造にすることで、酸化物230b、および酸化物230cと導電体203のコンタクトを確実に行うことができる。また、容量素子101の面積を大きくすることができ、容量素子101の大容量化が期待できる。
なお、上記工程において、絶縁体224を島状に加工してもよい。また、絶縁体224に対しては、ハーフエッチングを行ってもよい。絶縁体224に対してハーフエッチングを行うことで、後の工程で形成する酸化物230dの下にも絶縁体224が残った状態で形成される。なお、絶縁体224は、後の工程である導電膜260Aおよび導電膜260B、または絶縁膜272Aを加工する際に、島状に加工することができる。その場合、絶縁体222をエッチングストッパ膜として用いてもよい。
ここで、酸化物230a、酸化物230b、および酸化物230cは、少なくとも一部が導電体205と重なるように形成する。また、酸化物230bの側面、および酸化物230cの側面は、酸化物230aの側面と同一平面を有していることが好ましい。また、酸化物230a、酸化物230b、および酸化物230cの側面は、絶縁体222に対し、概略垂直であることが好ましい。このとき、酸化物230bの端部、および酸化物230cの端部は、酸化物230aの端部と概略一致する。酸化物230a、酸化物230b、および酸化物230cの側面が、絶縁体222に対し、概略垂直であることで、複数のトランジスタ202を設ける際に、小面積化、高密度化が可能となる。なお、酸化物230a、酸化物230b、および酸化物230cの側面と絶縁体222の上面のなす角が鋭角になる構成にしてもよい。その場合、酸化物230a、酸化物230b、および酸化物230cの側面と絶縁体222の上面のなす角は大きいほど好ましい。
また、酸化物230a、酸化物230b、および酸化物230cの側面と、酸化物230cの上面との間に、湾曲面を有する。つまり、側面の端部と上面の端部は、湾曲していることが好ましい(以下、ラウンド状ともいう)。湾曲面は、例えば、酸化物230a、酸化物230b、および酸化物230cの端部において、曲率半径が、3nm以上10nm以下、好ましくは、5nm以上6nm以下とすることが好ましい。
なお、端部に角を有さないことで、以降の成膜工程における膜の被覆性が向上する。
なお、当該酸化膜の加工、および加工時に付着した不純物除去のための洗浄は、実施の形態1に示す方法にて行うことができる。
続いて、加熱処理を行っても良い。加熱処理の条件は、前述の加熱処理の条件を用いることができる。
次に、絶縁体224、酸化物230a、酸化物230b、および酸化物230cの上に、酸化物230dとなる酸化膜230Dを成膜する(図38参照。)。
酸化膜230Dの形成は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。酸化物230dに求める特性に合わせて、酸化膜230A、酸化膜230B、または酸化膜230Cと同様の成膜方法を用いて、酸化膜230Dを成膜すればよい。本実施の形態では、酸化膜230Dとして、スパッタリング法によって、In:Ga:Zn=1:3:4[原子数比]のターゲットを用いて成膜する。
酸化膜230Dは、図39に示すように、島状に加工してもよい。絶縁体250、および導電体260形成前に、酸化膜230Dを加工することで、後工程で形成される絶縁体250、および導電体260の下側に位置する酸化膜230Dの一部を除去することができる。これにより、隣り合うセル601の酸化膜230Dが分離され、セル601間の酸化膜230Dを介したリークを防ぐことができ、好ましい。
酸化膜230Dの加工は、ドライエッチングやウェットエッチングを用いることができる。酸化膜230A、酸化膜230B、および酸化膜230Cの加工に用いた方法を用いてもよい。
次に、絶縁体224、酸化膜230Dの上に、絶縁膜250A、絶縁膜250B、導電膜260A、導電膜260B、絶縁膜270A、および絶縁膜271Aを順に形成する(図40参照。)。
絶縁膜250A、および絶縁膜250Bは、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて成膜することができる。
本実施の形態では、絶縁膜250Aとして、CVD法を用いて酸化窒化シリコンを形成し、絶縁膜250Bとして、スパッタリング法を用いて、酸化アルミニウムを形成する。絶縁膜250Aの膜厚は、1nm以上20nm以下、好ましくは5nm以上10nmとする。また、絶縁膜250Bの膜厚は、1nm以上20nm以下、好ましくは5nm以上10nmとする。絶縁膜250Bを、酸素を含む雰囲気中でスパッタリング法を用いて形成することで、絶縁膜250Aに、より多くの酸素、すなわち過剰酸素を含ませることができるため好ましい。
また、加熱処理を行ってもよい。加熱処理は、前述の加熱処理条件を用いることができる。該加熱処理によって、絶縁膜250A、および絶縁膜250Bの水分濃度および水素濃度を低減させることができる。
導電膜260Aは、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて成膜することができる。本実施の形態では、導電膜260Aとしてスパッタリング法を用いて窒化チタンを形成した。
また、導電膜260Bは、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて成膜することができる。導電膜260Bとして、低抵抗の金属膜を積層することで、駆動電圧が小さなトランジスタを提供することができる。本実施の形態では、導電膜260Bとしてスパッタリング法を用いてタングステンを形成した。
続いて、加熱処理を行うことができる。加熱処理は、前述の加熱処理条件を用いることができる。なお、加熱処理は行わなくてもよい場合がある。本実施の形態では、窒素雰囲気にて400℃の温度で1時間の処理を行う。
絶縁膜270A、および絶縁膜271Aは、実施の形態1と同様の方法により、同様の材料を用いて形成することができる。
また、絶縁体271は、ハードマスクとして機能する。絶縁体271を設けることで、絶縁体250aの側面、絶縁体250bの側面、導電体260aの側面、導電体260bの側面、および絶縁体270の側面を、基板に対し、概略垂直に形成することができる。
次に、絶縁膜271Aを、エッチングし、絶縁体271を形成する。続いて、絶縁体271をマスクとして、絶縁膜250A、絶縁膜250B、導電膜260A、導電膜260B、および絶縁膜270Aを、エッチングし、絶縁体250(絶縁体250a、絶縁体250b)、導電体260(導電体260a、導電体260b)、および絶縁体270を形成する(図41参照。)。なお、当該加工後も、当該ハードマスクは除去せずに後工程を進めてもよい。当該ハードマスクは、後工程で実施されるドーパントの添加においてもハードマスクとして機能することができる。
また、上記エッチングにより、酸化膜230Dの絶縁体250と重ならない領域の上部がエッチングされる場合がある。この場合、酸化膜230Dの絶縁体250と重なる領域の膜厚が、絶縁体250と重ならない領域の膜厚より厚くなる場合がある。
また、上記エッチングにより、絶縁体224の酸化膜230Dと重ならない領域がエッチングされる場合がある。この場合、酸化膜230Dおよび導電体260と重ならない領域において、絶縁体222が露出する。
続いて、加熱処理を行うことができる。加熱処理は、前述の加熱処理条件を用いることができる。なお、加熱処理は行わなくてもよい場合がある。本実施の形態では、窒素雰囲気にて400℃の温度で1時間の処理を行う。
次に、酸化膜230D、絶縁体250、導電体260、絶縁体270、および絶縁体271を覆って、絶縁膜272Aを成膜する(図42参照。)。
次に、絶縁膜272Aで覆われた、絶縁体250、導電体260、絶縁体270、および絶縁体271をマスクに用いて、酸化物230に希ガスを添加する。希ガスの添加には、例えば、イオン化された原料ガスを質量分離して添加するイオン注入法、イオン化された原料ガスを質量分離せずに添加するイオンドーピング法、プラズマイマージョンイオンインプランテーション法、プラズマ処理などを用いることができる。希ガスを添加することで、酸化物230には、領域234と領域232が設けられる(図42参照。)。
次に、絶縁膜272Aを覆って、絶縁膜273Aを成膜する(図43参照。)。絶縁膜273Aには、誘電率が低い材料を用いることが好ましく、絶縁体212、および絶縁体216と同様の材料を用いることができる。
次に、絶縁膜273A、および絶縁膜272Aに異方性のエッチング処理を行い、絶縁体250、導電体260、および絶縁体270の側面に接して、バリアとして機能する絶縁体272、およびサイドウォールとして機能する絶縁体273を形成する(図44参照。)。異方性のエッチング処理としては、ドライエッチング処理を行うことが好ましい。これにより、絶縁体272、および絶縁体273を自己整合的に形成することができる。
ここで、絶縁体270上に絶縁体271を形成しておくことで、絶縁体270上部の絶縁膜273A、および絶縁膜272Aが除去されても、絶縁体270を残存させることができる。また、絶縁体250、導電体260、絶縁体270、および絶縁体271からなる構造体の高さを、酸化物230a、酸化物230b、酸化物230c、および酸化膜230Dの高さよりも、高くすることで、酸化膜230Dを介して成膜された酸化物230a、酸化物230b、酸化物230cの側面の絶縁膜273A、および絶縁膜272Aを、除去することができる。さらに、酸化物230a、酸化物230b、および酸化物230cの端部をラウンド形状にしておくと、酸化物230a、酸化物230b、および酸化物230cの側面に、酸化膜230Dを介して成膜された絶縁膜273A、および絶縁膜272Aを除去するための時間が短縮され、より容易に絶縁体272、および絶縁体273を形成することができる。
次に、絶縁体250、導電体260、絶縁体270、絶縁体271、絶縁体272、および絶縁体273をマスクとして、酸化膜230Dをエッチングし、酸化膜230Dの一部を除去し、酸化物230dを形成する(図45参照。)。なお、本工程により、酸化物230cの上面および側面と、酸化物230a、および酸化物230bの側面の一部が除去される場合がある。
ここで、酸化物230a、酸化物230b、酸化物230c、および酸化物230dにおいて、領域231を形成してもよい。領域231は、酸化物230a、酸化物230b、酸化物230c、および酸化物230dとして設けられた金属酸化物に、インジウムなどの金属原子、または不純物を添加し、低抵抗化した領域である。なお、各領域は、少なくとも、領域234における酸化物230bよりも、導電性が高い。
領域231および領域232を低抵抗化するために、例えば、インジウムなどの金属原子、ヘリウムやアルゴンなどの希ガス、または水素や窒素などの不純物の少なくとも一であるドーパントを添加すればよい。
なお、ドーパントの添加には、実施の形態1と同様のドーパント、および添加方法を用いることができる。
また、ドーパントは、プラズマ処理にて添加されてもよい。この場合、プラズマCVD装置、ドライエッチング装置、アッシング装置を用いてプラズマ処理を行い、酸化物230a、酸化物230b、酸化物230c、および酸化物230dにドーパントを添加することができる。
また、不純物をドーパントとして添加する場合、酸化物230に接するようにドーパントを含む膜を形成してもよい。例えば、ドーパントとして水素、ホウ素、炭素、窒素、フッ素、またはリンなどを含む絶縁体274を、酸化物230d、絶縁体272、および絶縁体273の外側に位置する酸化物230に接するように成膜し、領域231を形成する(図46参照。)。絶縁体274の成膜や成膜後の熱処理により、領域231は低抵抗化する。絶縁体274に含まれるドーパントが領域231へ拡散し、当該領域は低抵抗化すると考えられる。また、絶縁体274に含まれるドーパントが領域232にも拡散し、領域232は、先の希ガスの添加により低下した抵抗値よりも、さらに低抵抗化する場合がある。
酸化物230a、酸化物230b、酸化物230c、および酸化物230dは、インジウムの含有率を高くすることで、キャリア密度を高くし、低抵抗化を図ることができる。よって、ドーパントとして酸化物230a、酸化物230b、酸化物230c、および酸化物230dのキャリア密度を向上させるインジウムなどの金属元素を用いることができる。
つまり、領域231、および領域232において、酸化物230a、酸化物230b、酸化物230c、および酸化物230dのインジウムなどの金属原子の含有率を高くすることで、電子移動度を高くし、低抵抗化を図ることができる。
その場合、少なくとも領域231における元素Mに対するインジウムの原子数比が、領域234の元素Mに対するインジウムの原子数比よりも大きくなる。
また、トランジスタ202において、領域232を設けることで、ソース領域およびドレイン領域として機能する領域231と、チャネルが形成される領域234との間に高抵抗領域が形成されないため、トランジスタのオン電流、および移動度を大きくすることができる。また、領域232を有することで、チャネル長方向において、ソース領域およびドレイン領域と、ゲートとが重ならないため、不要な容量が形成されるのを抑制することができる。また、領域232を有することで、非導通時のリーク電流を小さくすることができる。
従って、領域231a、および領域231bの範囲を適宜選択することにより、回路設計に合わせて、要求に見合う電気特性を有するトランジスタを容易に提供することができる。
本実施の形態では、絶縁体224、酸化物230、絶縁体271、絶縁体272、および絶縁体273を覆って、絶縁体274を成膜する(図46参照。)。
絶縁体274は、実施の形態1と同様の方法により、同様の材料を用いて形成することができる。これにより、酸化物230cおよび酸化物230dの絶縁体250と重ならない領域を中心に、酸素欠損を形成し、当該酸素欠損と窒素または水素などの不純物元素を結合させて、キャリア密度を高くすることができる。このようにして、低抵抗化された、領域231aおよび領域231bを形成することができる。
また、実施の形態1に示すように、絶縁体274は、単層構造でもよいし、2層以上の絶縁体からなる積層構造としてもよい。
従って、絶縁体274の成膜により、ソース領域およびドレイン領域を自己整合的に形成することができる。よって、微細化または高集積化された半導体装置も、歩留まり良く製造することができる。
ここで、導電体260および絶縁体250の上面および側面を、絶縁体270および絶縁体272で覆っておくことで、窒素または水素などの不純物元素が、導電体260および絶縁体250に混入することを防ぐことができる。これにより、窒素または水素などの不純物元素が、導電体260および絶縁体250を通って、トランジスタ202のチャネル形成領域として機能する領域234に混入することを防ぐことができる。従って、良好な電気特性を有するトランジスタ202を提供することができる。
なお、上記において、絶縁体274の成膜による酸化物230の低抵抗化、を用いて、領域231を形成したが、本実施の形態はこれに限られるものではない。例えば、ドーパントの添加処理、またはプラズマ処理を用いてもよいし、これらを複数組み合わせて、各領域などを形成してもよい。
例えば、絶縁体250、導電体260、絶縁体272、絶縁体273、絶縁体270、および絶縁体271をマスクとして、酸化物230にプラズマ処理を行ってもよい。プラズマ処理は、上述の酸素欠損を形成する元素、または酸素欠損に捕獲される元素を含む雰囲気などで行えばよい。例えば、アルゴンガスと窒素ガスを用いてプラズマ処理を行えばよい。
続いて、加熱処理を行うことができる。加熱処理は、前述の加熱処理条件を用いることができる。加熱処理を行うことで、添加されたドーパントが、酸化物230の領域231へと拡散し、オン電流を大きくすることができる。また、この加熱処理により、添加されたドーパントが、領域232へと拡散する場合がある。
次に、絶縁体274を覆って導電膜130A、および導電膜130Bを形成する(図46参照。)。導電膜130A、および導電膜130Bは、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて成膜することができる。本実施の形態では、導電膜130Aとして、スパッタリング法を用いて窒化チタンを形成し、導電膜130Bとして、スパッタリング法を用いてタングステンを形成する。
次に、導電膜130A、および導電膜130Bをリソグラフィー法を用いて加工し、導電体130(導電体130a、導電体130b)を形成する(図47参照。)。導電膜130A、および導電膜130Bの加工は、実施の形態1に示す導電膜130Aの加工と同様の方法を用いることができる。
本実施の形態では、図47(B)および図47(D)に示すように、酸化物230の上方に設けられる導電体130の一部が、酸化物230の外側まで広がるように設けられている。具体的には、図47(D)において、導電体130は、酸化物230よりE側、およびF側にはみ出るように設けられている。
このような形状とすることで、容量素子101は、酸化物230の上面と導電体130の間だけでなく、酸化物230の側面と導電体130の間でも容量を形成することができ、好ましい。よって、図47(B)において、導電体130が、酸化物230よりB側にはみ出るように設けてもよい。一方、セル601が占める面積に制限がある場合、導電体130が酸化物230からなるべくはみ出さないように形成することで、セル601の微細化が可能となり、半導体装置の高集積化が実現できる。
導電体130は、隣り合うセル601の導電体130と繋がるように形成してもよい。
次に、絶縁体274および導電体130の上に、絶縁体280を成膜する(図48参照。)。絶縁体280は、実施の形態1と同様の方法により、同様の材料を用いて形成することができる。
次に、絶縁体280、および絶縁体274に酸化物230の領域231に達する開口、絶縁体280に導電体130に達する開口、絶縁体280、絶縁体274、絶縁体271、および絶縁体270に導電体260に達する開口、絶縁体280、絶縁体274、絶縁体222、および絶縁体220に導電体205に達する開口、を形成する。当該開口の形成は、リソグラフィー法を用いて行えばよい。
なお、導電体252aが酸化物230の側面に接して設けられるように、酸化物230に達する開口において、酸化物230の側面が露出するように、当該開口を形成する。
次に、上記開口により露出した酸化物230に希ガスを添加する。希ガスの添加には、上記と同様に例えば、イオン化された原料ガスを質量分離して添加するイオン注入法、イオン化された原料ガスを質量分離せずに添加するイオンドーピング法、プラズマイマージョンイオンインプランテーション法、プラズマ処理などを用いることができる。希ガスを添加することで、酸化物230の領域231には、領域233が設けられる(図49参照。)。
次に、導電体252(導電体252a、導電体252b、導電体252c、導電体252d)を形成する(図50参照。)。また、必要に応じて導電体252と電気的に接続する導電体を形成してもよい。
以上により、トランジスタ202および容量素子101を有する半導体装置を作製することができる。図30乃至図50に示すように、本実施の形態に示す半導体装置の作製方法を用いることで、トランジスタ202および容量素子101を作製することができる。
本発明の一態様により、微細化または高集積化が可能な半導体装置を提供することができる。または、本発明の一態様により、良好な電気特性を有する半導体装置を提供することができる。または、本発明の一態様により、オフ電流の小さい半導体装置を提供することができる。または、本発明の一態様により、オン電流の大きいトランジスタを提供することができる。または、本発明の一態様により、信頼性の高い半導体装置を提供することができる。または、本発明の一態様により、消費電力が低減された半導体装置を提供することができる。または、本発明の一態様により、生産性の高い半導体装置を提供することができる。
以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み合わせて用いることができる。
(実施の形態3)
本実施の形態では、半導体装置の一形態を、図51、および図52を用いて説明する。
[記憶装置1]
図51に示す記憶装置は、トランジスタ200、容量素子100、およびトランジスタ300と、を有している。
トランジスタ200は、酸化物半導体を有する半導体層にチャネルが形成されるトランジスタである。トランジスタ200は、オフ電流が小さいため、これを記憶装置に用いることにより長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作を必要としない、あるいは、リフレッシュ動作の頻度が極めて少ないため、記憶装置の消費電力を十分に低減することができる。
図51に示す記憶装置において、配線3001はトランジスタ300のソースと電気的に接続され、配線3002はトランジスタ300のドレインと電気的に接続されている。また、配線3003はトランジスタ200のソースおよびドレインの一方と電気的に接続され、配線3004はトランジスタ200の第1のゲートと電気的に接続され、配線3006はトランジスタ200の第2のゲートと電気的に接続されている。そして、トランジスタ200のソースおよびドレインの他方は、容量素子100の電極の一方として機能し、絶縁体220、絶縁体222、絶縁体224、および酸化物230aに形成された開口を介して、トランジスタ300のゲートと電気的に接続されている。配線3005は容量素子100の電極の他方と電気的に接続されている。
図51に示す記憶装置は、トランジスタ300のゲートの電位が保持可能という特性を有することで、以下に示すように、情報の書き込み、保持、読み出しが可能である。
情報の書き込みおよび保持について説明する。まず、第4の配線3004の電位を、トランジスタ200が導通状態となる電位にして、トランジスタ200を導通状態とする。これにより、第3の配線3003の電位が、トランジスタ300のゲート、および容量素子100の電極の一方と電気的に接続するノードSNに与えられる。即ち、トランジスタ300のゲートには、所定の電荷が与えられる(書き込み)。ここでは、異なる二つの電位レベルを与える電荷(以下Lowレベル電荷、Highレベル電荷という。)のどちらかが与えられるものとする。その後、第4の配線3004の電位を、トランジスタ200が非導通状態となる電位にして、トランジスタ200を非導通状態とすることにより、ノードSNに電荷が保持される(保持)。
トランジスタ200のオフ電流が小さい場合、ノードSNの電荷は長期間にわたって保持される。
次に情報の読み出しについて説明する。第1の配線3001に所定の電位(定電位)を与えた状態で、第5の配線3005に適切な電位(読み出し電位)を与えると、第2の配線3002は、ノードSNに保持された電荷量に応じた電位をとる。これは、トランジスタ300をnチャネル型とすると、トランジスタ300のゲートにHighレベル電荷が与えられている場合の見かけ上のしきい値電圧Vth_Hは、トランジスタ300のゲートにLowレベル電荷が与えられている場合の見かけ上のしきい値電圧Vth_Lより低くなるためである。ここで、見かけ上のしきい値電圧とは、トランジスタ300を「導通状態」とするために必要な第5の配線3005の電位をいうものとする。したがって、第5の配線3005の電位をVth_HとVth_Lの間の電位Vとすることにより、ノードSNに与えられた電荷を判別できる。例えば、書き込みにおいて、ノードSNにHighレベル電荷が与えられていた場合には、第5の配線3005の電位がV(>Vth_H)となれば、トランジスタ300は「導通状態」となる。一方、ノードSNにLowレベル電荷が与えられていた場合には、第5の配線3005の電位がV(<Vth_L)となっても、トランジスタ300は「非導通状態」のままである。このため、第2の配線3002の電位を判別することで、ノードSNに保持されている情報を読み出すことができる。
<記憶装置1の構造>
本発明の一態様の記憶装置は、図51に示すようにトランジスタ300、トランジスタ200、容量素子100を有する。トランジスタ200はトランジスタ300の上方に設けられ、容量素子100はトランジスタ200と同じ層に設けられている。
トランジスタ300は、基板311上に設けられ、導電体316、絶縁体315、基板311の一部からなる半導体領域313、およびソース領域またはドレイン領域として機能する低抵抗領域314a、および低抵抗領域314bを有する。
トランジスタ300は、pチャネル型、あるいはnチャネル型のいずれでもよい。
半導体領域313のチャネルが形成される領域、その近傍の領域、ソース領域、またはドレイン領域となる低抵抗領域314a、および低抵抗領域314bなどにおいて、シリコン系半導体などの半導体を含むことが好ましく、単結晶シリコンを含むことが好ましい。または、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)などを有する材料で形成してもよい。結晶格子に応力を与え、格子間隔を変化させることで有効質量を制御したシリコンを用いた構成としてもよい。またはGaAsとGaAlAs等を用いることで、トランジスタ300をHEMT(High Electron Mobility Transistor)としてもよい。
低抵抗領域314a、および低抵抗領域314bは、半導体領域313に適用される半導体材料に加え、ヒ素、リンなどのn型の導電性を付与する元素、またはホウ素などのp型の導電性を付与する元素を含む。
絶縁体315は、トランジスタ300のゲート絶縁膜として機能する。
ゲート電極として機能する導電体316は、ヒ素、リンなどのn型の導電性を付与する元素、もしくはホウ素などのp型の導電性を付与する元素を含むシリコンなどの半導体材料、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。
なお、導電体の材料により、仕事関数を定めることで、しきい値電圧を調整することができる。具体的には、導電体に窒化チタンや窒化タンタルなどの材料を用いることが好ましい。さらに導電性と埋め込み性を両立するために導電体にタングステンやアルミニウムなどの金属材料を積層として用いることが好ましく、特にタングステンを用いることが耐熱性の点で好ましい。
なお、図51に示すトランジスタ300は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。
トランジスタ300を覆って、絶縁体320、絶縁体322、絶縁体324、および絶縁体326が順に積層して設けられている。
絶縁体320、絶縁体322、絶縁体324、および絶縁体326として、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウムなどを用いればよい。
絶縁体322は、その下方に設けられるトランジスタ300などによって生じる段差を平坦化する平坦化膜としての機能を有していてもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP)法等を用いた平坦化処理により平坦化されていてもよい。
また、絶縁体324には、基板311、またはトランジスタ300などから、トランジスタ200が設けられる領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。
水素に対するバリア性を有する膜の一例として、例えば、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ200等の酸化物半導体を有する半導体素子に、水素が拡散することで、該半導体素子の特性が低下する場合がある。従って、トランジスタ200と、トランジスタ300との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
水素の脱離量は、例えば、昇温脱離ガス分析法(TDS)などを用いて分析することができる。例えば、絶縁体324の水素の脱離量は、TDS分析において、50℃から500℃の範囲において、水素原子に換算した脱離量が、絶縁体324の面積当たりに換算して、10×1015atoms/cm以下、好ましくは5×1015atoms/cm以下であればよい。
なお、絶縁体326は、絶縁体324よりも誘電率が低いことが好ましい。例えば、絶縁体326の比誘電率は4未満が好ましく、3未満がより好ましい。また例えば、絶縁体326の比誘電率は、絶縁体324の比誘電率の0.7倍以下が好ましく、0.6倍以下がより好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
また、絶縁体320、絶縁体322、絶縁体324、および絶縁体326には容量素子100、またはトランジスタ200と電気的に接続する導電体328、および導電体330等が埋め込まれている。なお、導電体328、および導電体330はプラグ、または配線としての機能を有する。また、プラグまたは配線としての機能を有する導電体は、複数の構造をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と電気的に接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。
各プラグ、および配線(導電体328、および導電体330等)の材料としては、金属材料、合金材料、金属窒化物材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。または、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
絶縁体326、および導電体330上に、配線層を設けてもよい。例えば、図51において、絶縁体350、絶縁体352、及び絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、及び絶縁体354には、導電体356が形成されている。導電体356は、プラグ、または配線としての機能を有する。なお導電体356は、導電体328、および導電体330と同様の材料を用いて設けることができる。
なお、例えば、絶縁体350は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体356は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体350が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ200とは、バリア層により分離することができ、トランジスタ300からトランジスタ200への水素の拡散を抑制することができる。
なお、水素に対するバリア性を有する導電体としては、例えば、窒化タンタル等を用いるとよい。また、窒化タンタルと導電性が高いタングステンを積層することで、配線としての導電性を保持したまま、トランジスタ300からの水素の拡散を抑制することができる。この場合、水素に対するバリア性を有する窒化タンタル層が、水素に対するバリア性を有する絶縁体350と接する構造であることが好ましい。
絶縁体354、および導電体356上に、配線層を設けてもよい。例えば、図51において、絶縁体360、絶縁体362、及び絶縁体364が順に積層して設けられている。また、絶縁体360、絶縁体362、及び絶縁体364には、導電体366が形成されている。導電体366は、プラグ、または配線としての機能を有する。なお導電体366は、導電体328、および導電体330と同様の材料を用いて設けることができる。
なお、例えば、絶縁体360は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体366は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体360が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ200とは、バリア層により分離することができ、トランジスタ300からトランジスタ200への水素の拡散を抑制することができる。
絶縁体364、および導電体366上に、配線層を設けてもよい。例えば、図51において、絶縁体370、絶縁体372、及び絶縁体374が順に積層して設けられている。また、絶縁体370、絶縁体372、及び絶縁体374には、導電体376が形成されている。導電体376は、プラグ、または配線としての機能を有する。なお導電体376は、導電体328、および導電体330と同様の材料を用いて設けることができる。
なお、例えば、絶縁体370は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体376は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体370が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ200とは、バリア層により分離することができ、トランジスタ300からトランジスタ200への水素の拡散を抑制することができる。
絶縁体374、および導電体376上に、配線層を設けてもよい。例えば、図51において、絶縁体380、絶縁体382、及び絶縁体384が順に積層して設けられている。また、絶縁体380、絶縁体382、及び絶縁体384には、導電体386が形成されている。導電体386は、プラグ、または配線としての機能を有する。なお導電体386は、導電体328、および導電体330と同様の材料を用いて設けることができる。
なお、例えば、絶縁体380は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体386は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体380が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ200とは、バリア層により分離することができ、トランジスタ300からトランジスタ200への水素の拡散を抑制することができる。
絶縁体384、および導電体386上には絶縁体210が設けられている。絶縁体210は、酸素や水素に対してバリア性のある物質を用いることが好ましい。
絶縁体210上に、導電体203、導電体205、および絶縁体216が設けられる。
絶縁体210には、例えば、基板311、またはトランジスタ300を設ける領域などから、トランジスタ200を設ける領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。従って、絶縁体324と同様の材料を用いることができる。
水素に対するバリア性を有する膜の一例として、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ200等の酸化物半導体を有する半導体素子に、水素が拡散することで、該半導体素子の特性が低下する場合がある。従って、トランジスタ200と、トランジスタ300との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
また、水素に対するバリア性を有する膜として、例えば、絶縁体210には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
特に、酸化アルミニウムは、酸素、およびトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中および作製後において、水素、水分などの不純物のトランジスタ200への混入を防止することができる。また、トランジスタ200を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ200に対する保護膜として用いることに適している。
絶縁体210の上方には、トランジスタ200および容量素子100が設けられている。なお、トランジスタ200および容量素子100の構造は、先の実施の形態で説明したトランジスタ200および容量素子100を用いればよい。また、図51に示すトランジスタ200は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。
図52は、トランジスタ200の上方に容量素子100を設けた例である。容量素子100の電極の一方には、トランジスタ200のソースおよびドレインの他方と電気的に接続する導電体256を用いる。導電体256は、トランジスタ300のゲートと電気的に接続する。導電体256上には、容量素子100の誘電体として機能する絶縁体120が設けられる。また、絶縁体120を間に挟んで、導電体256と重なるように導電体131が設けられる。導電体131は容量素子100の電極の他方として機能し、配線3005と電気的に接続する。
絶縁体120は、導電体256の側面を覆うように設けてもよい。また、導電体131は、絶縁体120を介して導電体256の側面に設けられてもよい。このような構成にすることで、導電体256の上面とそれと向かい合う導電体131だけでなく、導電体256の側面とそれと向かい合う導電体131で容量素子100を構成することができ、容量素子100の上面面積を増やすことなく容量値を増加させることができ、好ましい。
以上が構成例についての説明である。本構成を用いることで、酸化物半導体を有するトランジスタを用いた半導体装置において、電気特性の変動を抑制すると共に、信頼性を向上させることができる。または、オン電流が大きい酸化物半導体を有するトランジスタを提供することができる。または、オフ電流が小さい酸化物半導体を有するトランジスタを提供することができる。または、消費電力が低減された半導体装置を提供することができる。
以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み合わせて用いることができる。
(実施の形態4)
本実施の形態では、半導体装置の一形態を、図53乃至図56を用いて説明する。
また、本実施の形態の半導体装置において、実施の形態1乃至実施の形態3に示した半導体装置と同じ符号を記した構成要素には、実施の形態1乃至実施の形態3と同様な材料を用いることができる。また、特段記載のない限り、本実施の形態で作製された構成要素は、実施の形態1乃至実施の形態3に示した構成要素と同様な構造上の特徴や、効果が得られるものとし、その説明は省略する。
[記憶装置2]
図53(A)および図54に示す記憶装置は、実施の形態2に示すトランジスタ202、および容量素子101と、トランジスタ300と、を有している。
<記憶装置2の構造>
図53(A)に示す記憶装置は、トランジスタ300と、トランジスタ300上の、導電体356が設けられた絶縁体350、絶縁体352、および絶縁体354と、絶縁体354、および導電体356上の絶縁体210と、絶縁体210上のトランジスタ202、および容量素子101を有している。
図54に示す記憶装置は、トランジスタ300と、トランジスタ300上の、導電体356が設けられた絶縁体350、絶縁体352、および絶縁体354と、導電体366が設けられた絶縁体360、絶縁体362、および絶縁体364と、導電体376が設けられた絶縁体370、絶縁体372、および絶縁体374と、導電体386が設けられた絶縁体380、絶縁体382、および絶縁体384と、絶縁体384、および導電体386上の絶縁体210と、絶縁体210上のトランジスタ202、および容量素子101を有している。
また、図53(A)および図54に示すトランジスタ202と、容量素子101とは、共通する構造を有しているため、投影面積が小さく、微細化および高集積化が可能である。
図53(A)および図54に示す記憶装置における、情報の書き込み、保持、および読み出しについては、実施の形態3に示す方法と同様に行えばよく、その説明は省略する。
なお、図53(A)および図54に示すトランジスタ300は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。
ここで、図53(A)および図54において、W1−W2で示すトランジスタ300のW幅方向の断面図を、図53(B)に示す。図53(B)に示すように、トランジスタ300はチャネルが形成される半導体領域313(基板311の一部)が凸形状を有する。また、半導体領域313の側面および上面を、絶縁体315を介して、導電体316が覆うように設けられている。なお、導電体316は仕事関数を調整する材料を用いてもよい。このようなトランジスタ300は半導体基板の凸部を利用していることからFIN型トランジスタとも呼ばれる。なお、凸部の上部に接して、凸部を形成するためのマスクとして機能する絶縁体を有していてもよい。また、ここでは半導体基板の一部を加工して凸部を形成する場合を示したが、SOI基板を加工して凸形状を有する半導体膜を形成してもよい。
また、絶縁体324には、基板311、またはトランジスタ300などから、トランジスタ202が設けられる領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。
絶縁体354、および導電体356の上方には絶縁体210、絶縁体212、および絶縁体216が、順に積層して設けられている。絶縁体210、絶縁体212、および絶縁体216のいずれかは、酸素や水素に対してバリア性のある物質を用いることが好ましい。
絶縁体210、絶縁体212、および絶縁体216には、例えば、基板311、またはトランジスタ300を設ける領域などから、トランジスタ202を設ける領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。従って、絶縁体324と同様の材料を用いることができる。
また、水素に対するバリア性を有する膜として、例えば、絶縁体210、絶縁体212、および絶縁体216には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
また、例えば、絶縁体212、および絶縁体216には、比較的誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体212、および絶縁体216として、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。
また、絶縁体210、絶縁体212、および絶縁体216には、導電体209、導電体203、および導電体205など、トランジスタ202を構成する導電体が埋め込まれている。なお、導電体203、および導電体209は、トランジスタ202、およびトランジスタ300を電気的に接続するプラグ、または配線としての機能を有する。導電体209、導電体203、および導電体205は、導電体328、および導電体330と同様の材料を用いて設けることができる。
特に、絶縁体210、および絶縁体212と接する領域の導電体209は、酸素、水素、および水に対するバリア性を有する導電体であることが好ましい。当該構成により、トランジスタ300とトランジスタ202とは、酸素、水素、および水に対するバリア性を有する層により分離することができ、トランジスタ300からトランジスタ202への水素の拡散を抑制することができる。
絶縁体212の上方には、トランジスタ202および容量素子101が設けられている。なお、トランジスタ202および容量素子101の構造は、先の実施の形態で説明したトランジスタ202および容量素子101を用いればよい。また、図53(A)に示すトランジスタ202および容量素子101は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。
ここで、図54では、トランジスタ300のゲートと、トランジスタ202のソースおよびドレインの他方は、導電体356、導電体366、導電体376、および導電体386の4つの導電体を介して電気的に接続される例を示したが、本実施の形態はこれに限定されない。トランジスタ300のゲートと、トランジスタ202のソースおよびドレインの他方の間に設けられる導電体は、導電体356のみでも良いし、2つ、3つ、または5以上設けてもよい。または、トランジスタ300のゲートと電気的に接続する導電体330と、トランジスタ202のソースおよびドレインの他方と電気的に接続する導電体209を直接接続してもよい。
以上が構成例についての説明である。本構成を用いることで、酸化物半導体を有するトランジスタを用いた半導体装置において、電気特性の変動を抑制すると共に、信頼性を向上させることができる。または、オン電流が大きい酸化物半導体を有するトランジスタを提供することができる。または、オフ電流が小さい酸化物半導体を有するトランジスタを提供することができる。または、消費電力が低減された半導体装置を提供することができる。
<記憶装置2の変形例>
また、本実施の形態の変形例の一例を、図55、および図56に示す。
図55に示す記憶装置をメモリセルとして、集積することで、メモリセルアレイを構成することができる。例えば、図56に示す回路図において、メモリセルがマトリクス状となるように、複数の記憶装置を設けるとよい。図55は、図53に示す記憶装置において、トランジスタ202を集積した場合におけるメモリセルアレイの断面図の一例である。
図55、および図56は、トランジスタ300a、トランジスタ202a、および容量素子101aを有する記憶装置と、トランジスタ300b、トランジスタ202b、および容量素子101bを有する記憶装置と、配線SL、配線RBL(RBL01およびRBL02)、配線WBL(WBL01およびWBL02)、配線WWL、配線RWLと、を有するメモリセルアレイである。
例えば、図55に示すように、トランジスタ202aと、トランジスタ202bを重畳して設けることができる。また、トランジスタ300a、およびトランジスタ300bにおいて、配線SLを共通して設けることができる。例えば、トランジスタ300a、およびトランジスタ300bにおいて、配線SLとして、低抵抗領域314aを共通に設けることで、配線やプラグの形成が不要となり、工程の短縮が可能となる。また、当該構成により、半導体装置の小面積化、高集積化、微細化が可能となる。
以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み合わせて用いることができる。
(実施の形態5)
本実施の形態では、図57乃至図60を用いて、本発明の一態様に係る、酸化物を半導体に用いたトランジスタ(以下、OSトランジスタと呼ぶ。)、および容量素子が適用されている記憶装置の一例として、NOSRAMについて説明する。NOSRAM(登録商標)とは「Nonvolatile Oxide Semiconductor RAM」の略称であり、ゲインセル型(2T型、3T型)のメモリセルを有するRAMを指す。なお、以下において、NOSRAMのようにOSトランジスタを用いたメモリ装置を、OSメモリと呼ぶ場合がある。
NOSRAMでは、メモリセルにOSトランジスタが用いられるメモリ装置(以下、「OSメモリ」と呼ぶ。)が適用されている。OSメモリは、少なくとも容量素子と、容量素子の充放電を制御するOSトランジスタを有するメモリである。OSトランジスタが極小オフ電流のトランジスタであるので、OSメモリは優れた保持特性をもち、不揮発性メモリとして機能させることができる。
<<NOSRAM>>
図57にNOSRAMの構成例を示す。図57に示すNOSRAM1600は、メモリセルアレイ1610、コントローラ1640、行ドライバ1650、列ドライバ1660、出力ドライバ1670を有する。なお、NOSRAM1600は、1のメモリセルで多値データを記憶する多値NOSRAMである。
メモリセルアレイ1610は複数のメモリセル1611、複数のワード線WWL、RWL、ビット線BL、ソース線SLを有する。ワード線WWLは書き込みワード線であり、ワード線RWLは読み出しワード線である。NOSRAM1600では、1のメモリセル1611で3ビット(8値)のデータを記憶する。
コントローラ1640は、NOSRAM1600全体を統括的に制御し、データWDA[31:0]の書き込み、データRDA[31:0]の読み出しを行う。コントローラ1640は、外部からのコマンド信号(例えば、チップイネーブル信号、書き込みイネーブル信号など)を処理して、行ドライバ1650、列ドライバ1660および出力ドライバ1670の制御信号を生成する。
行ドライバ1650は、アクセスする行を選択する機能を有する。行ドライバ1650は、行デコーダ1651、およびワード線ドライバ1652を有する。
列ドライバ1660は、ソース線SLおよびビット線BLを駆動する。列ドライバ1660は、列デコーダ1661、書き込みドライバ1662、DAC(デジタル−アナログ変換回路)1663を有する。
DAC1663は3ビットのデジタルデータをアナログ電圧に変換する。DAC1663は32ビットのデータWDA[31:0]を3ビットごとに、アナログ電圧に変換する。
書き込みドライバ1662は、ソース線SLをプリチャージする機能、ソース線SLを電気的に浮遊状態にする機能、ソース線SLを選択する機能、選択されたソース線SLにDAC1663で生成した書き込み電圧を入力する機能、ビット線BLをプリチャージする機能、ビット線BLを電気的に浮遊状態にする機能等を有する。
出力ドライバ1670は、セレクタ1671、ADC(アナログ−デジタル変換回路)1672、出力バッファ1673を有する。セレクタ1671は、アクセスするソース線SLを選択し、選択されたソース線SLの電圧をADC1672に送信する。ADC1672は、アナログ電圧を3ビットのデジタルデータに変換する機能を持つ。ソース線SLの電圧はADC1672において、3ビットのデータに変換され、出力バッファ1673はADC1672から出力されるデータを保持する。
なお、本実施の形態に示す、行ドライバ1650、列ドライバ1660、および出力ドライバ1670の構成は、上記に限定されるものではない。メモリセルアレイ1610の構成または駆動方法などに応じて、これらのドライバおよび当該ドライバに接続される配線の配置を変更してもよいし、これらのドライバおよび当該ドライバに接続される配線の有する機能を変更または追加してもよい。例えば、上記のソース線SLが有する機能の一部を、ビット線BLに有せしめる構成にしてもよい。
 なお、上記においては、各メモリセル1611に保持させる情報量を3ビットとしたが、本実施の形態に示す記憶装置の構成はこれに限られない。各メモリセル1611に保持させる情報量を2ビット以下にしてもよいし、4ビット以上にしてもよい。例えば、各メモリセル1611に保持させる情報量を1ビットにする場合、DAC1663およびADC1672を設けない構成にしてもよい。
<メモリセル>
図58(A)はメモリセル1611の構成例を示す回路図である。メモリセル1611は2T型のゲインセルであり、メモリセル1611はワード線WWL、RWL、ビット線BL、ソース線SL、配線BGLに電気的に接続されている。メモリセル1611は、ノードSN、OSトランジスタMO61、トランジスタMP61、容量素子C61を有する。OSトランジスタMO61は書き込みトランジスタである。トランジスタMP61は読み出しトランジスタであり、例えばpチャネル型Siトランジスタで構成される。容量素子C61はノードSNの電圧を保持するための保持容量である。ノードSNはデータの保持ノードであり、ここではトランジスタMP61のゲートに相当する。
メモリセル1611の書き込みトランジスタがOSトランジスタMO61で構成されているため、NOSRAM1600は長時間データを保持することが可能である。
図58(A)の例では、ビット線は、書き込みと読み出しで共通のビット線であるが、図58(B)に示すように、書き込みビット線として機能する、ビット線WBLと、読み出しビット線として機能する、ビット線RBLとを設けてもよい。
図58(C)−図58(E)にメモリセルの他の構成例を示す。図58(C)−図58(E)には、書き込み用のビット線WBLと読み出し用のビット線RBLを設けた例を示しているが、図58(A)のように書き込みと読み出しで共有されるビット線を設けてもよい。
図58(C)に示すメモリセル1612は、メモリセル1611の変形例であり、読み出しトランジスタをnチャネル型トランジスタ(MN61)に変更したものである。トランジスタMN61はOSトランジスタであってもよいし、Siトランジスタであってもよい。
メモリセル1611、1612において、OSトランジスタMO61はバックゲートの無いOSトランジスタであってもよい。
図58(D)に示すメモリセル1613は、3T型ゲインセルであり、ワード線WWL、RWL、ビット線WBL、RBL、ソース線SL、配線BGL、PCLに電気的に接続されている。メモリセル1613は、ノードSN、OSトランジスタMO62、トランジスタMP62、トランジスタMP63、容量素子C62を有する。OSトランジスタMO62は書き込みトランジスタである。トランジスタMP62は読み出しトランジスタであり、トランジスタMP63は選択トランジスタである。
図58(E)に示すメモリセル1614は、メモリセル1613の変形例であり、読み出しトランジスタおよび選択トランジスタをnチャネル型トランジスタ(MN62、MN63)に変更したものである。トランジスタMN62、MN63はOSトランジスタであってもよいし、Siトランジスタであってもよい。
メモリセル1611乃至メモリセル1614に設けられるOSトランジスタは、バックゲートの無いトランジスタでもよいし、バックゲートが有るトランジスタであってもよい。
上記においては、メモリセル1611などが並列に接続された、いわゆるNOR型の記憶装置について説明したが、本実施の形態に示す記憶装置はこれに限られるものではない。例えば、以下に示すようなメモリセル1615が直列に接続された、いわゆるNAND型の記憶装置にしてもよい。
図59はNAND型のメモリセルアレイ1610の構成例を示す回路図である。図59に示すメモリセルアレイ1610は、ソース線SL、ビット線RBL、ビット線WBL、ワード線WWL、ワード線RWL、配線BGL、およびメモリセル1615を有する。メモリセル1615は、ノードSN、OSトランジスタMO63、トランジスタMN64、容量素子C63を有する。ここで、トランジスタMN64は、例えばnチャネル型Siトランジスタで構成される。これに限られず、トランジスタMN64は、pチャネル型Siトランジスタ、であってもよいし、OSトランジスタであってもよい。
以下では、図59に示すメモリセル1615aおよびメモリセル1615bを例として説明する。ここで、メモリセル1615aまたはメモリセル1615bのいずれかに接続する配線、または回路素子の符号については、aまたはbの符号を付して表す。
 メモリセル1615aにおいて、トランジスタMN64aのゲートと、トランジスタMO63aのソースおよびドレインの一方と、容量素子C63aの電極の一方とは、電気的に接続されている。また、ビット線WBLとトランジスタMO63aのソースおよびドレインの他方とは、電気的に接続されている。また、ワード線WWLaと、トランジスタMO63aのゲートとは、電気的に接続されている。また、配線BGLaと、トランジスタMO63aのバックゲートとは、電気的に接続されている。そして、ワード線RWLaと、容量素子C63aの電極の他方は電気的に接続されている。
 メモリセル1615bは、ビット線WBLとのコンタクト部を対称の軸として、メモリセル1615aと対称的に設けることができる。よって、メモリセル1615bに含まれる回路素子も、上記メモリセル1615aと同じように配線と接続される。
 さらに、メモリセル1615aが有するトランジスタMN64aのソースは、メモリセル1615bのトランジスタMN64bのドレインと電気的に接続される。メモリセル1615aが有するトランジスタMN64aのドレインは、ビット線RBLと電気的に接続される。メモリセル1615bが有するトランジスタMN64bのソースは、複数のメモリセル1615が有するトランジスタMN64を介してソース線SLと電気的に接続される。このように、NAND型のメモリセルアレイ1610では、ビット線RBLとソース線SLの間に、複数のトランジスタMN64が直列に接続される。
ここで、図60に、メモリセル1615aおよびメモリセル1615bに対応する断面図を示す。メモリセル1615aおよびメモリセル1615bは、図29に示す記憶装置と同様の構造を有する。すなわち、容量素子C63aおよび容量素子C63bは容量素子100と同様の構造を有し、OSトランジスタMO63aおよびOSトランジスタMO63bはトランジスタ200と同様の構造を有し、トランジスタMN64aおよびトランジスタMN64bはトランジスタ300と同様の構造を有する。なお、図60に示す構成で、図29に示す構成と同じ符号が付されたものは、その記載を参酌することができる。
メモリセル1615aにおいて、導電体130bは伸長して設けられてワード線RWLaとして機能し、導電体260は伸長して設けられてワード線WWLaとして機能し、導電体205の下面に接する導電体209は伸長して設けられて配線BGLaとして機能する。メモリセル1615bでも同様に、ワード線RWLb、ワード線WWLb、および配線BGLbが設けられる。
図60に示す低抵抗領域314bは、トランジスタMN64aのソース、およびトランジスタMN64bのドレインとして機能する。また、トランジスタMN64aのドレインとして機能する低抵抗領域314aは、導電体328および導電体330を介してビット線RBLと電気的に接続される。また、トランジスタMN64bのソースは、複数のメモリセル1615が有するトランジスタMN64、導電体328、および導電体330を介してソース線SLと電気的に接続される。
また、導電体256は伸長して設けられてビット線WBLとして機能する。ここで、導電体252aはワード線WBLのコンタクト部として機能し、トランジスタMO63aとトランジスタMO63bで共通して用いられる。このように、メモリセル1615aとメモリセル1615bで、ビット線WBLのコンタクト部を共有することにより、ビット線WBLのコンタクト部の数を削減し、メモリセル1615の上面視における占有面積を低減することができる。これにより、本実施の形態に係る記憶装置をさらに高集積化させることができ、単位面積当たりの記憶容量を増加させることができる。
 図59に示すメモリセルアレイ1610を有する記憶装置では、同じワード線WWL(またはワード線RWL)に接続された複数のメモリセル(以下、メモリセル列と呼ぶ。)ごとに、書き込み動作および読み出し動作を行う。例えば、書き込み動作は次のように行うことができる。書き込みを行うメモリセル列に接続されたワード線WWLにトランジスタMO63がオン状態となる電位を与え、書き込みを行うメモリセル列のトランジスタMO63をオン状態にする。これにより、指定したメモリセル列のトランジスタMN64のゲートおよび容量素子C63の電極の一方にビット線WBLの電位が与えられ、該ゲートに所定の電荷が与えられる。このようにして、指定したメモリセル列のメモリセル1615にデータを書き込むことができる。
 また、例えば、読み出し動作は次のように行うことができる。まず、読み出しを行うメモリセル列に接続されていないワード線RWLに、トランジスタMN64のゲートに与えられた電荷によらず、トランジスタMN64がオン状態となるような電位を与え、読み出しを行うメモリセル列以外のトランジスタMN64をオン状態とする。それから、読み出しを行うメモリセル列に接続されたワード線RWLに、トランジスタMN64のゲートが有する電荷によって、トランジスタMN64のオン状態またはオフ状態が選択されるような電位(読み出し電位)を与える。そして、ソース線SLに定電位を与え、ビット線RBLに接続されている読み出し回路を動作状態とする。ここで、ソース線SL−ビット線RBL間の複数のトランジスタMN64は、読み出しを行うメモリセル列を除いてオン状態となっているため、ソース線SL−ビット線RBL間のコンダクタンスは、読み出しを行うメモリセル列のトランジスタMN64の状態(オン状態またはオフ状態)によって決定される。読み出しを行うメモリセル列のトランジスタMN64のゲートが有する電荷によって、トランジスタのコンダクタンスは異なるから、それに応じて、ビット線RBLの電位は異なる値をとることになる。ビット線RBLの電位を読み出し回路によって読み出すことで、指定したメモリセル列のメモリセル1615から情報を読み出すことができる。
容量素子C61、容量素子C62、または容量素子C63の充放電によってデータを書き換えるため、NOSRAM1600は原理的には書き換え回数に制約はなく、かつ、低エネルギーで、データの書き込みおよび読み出しが可能である。また、長時間データを保持することが可能であるので、リフレッシュ頻度を低減できる。
上記実施の形態に示す半導体装置をメモリセル1611、1612、1613、1614、1615に用いる場合、OSトランジスタMO61、MO62、MO63としてトランジスタ200を用い、容量素子C61、C62、C63として容量素子100を用い、トランジスタMP61、MP62、MP63、MN61、MN62、MN63、MN64としてトランジスタ300を用いることができる。これにより、トランジスタと容量素子一組当たりの上面視における占有面積を低減することができるので、本実施の形態に係る記憶装置をさらに高集積化させることができる。よって、本実施の形態に係る記憶装置の単位面積当たりの記憶容量を増加させることができる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態6)
本実施の形態では、図61および図62を用いて、本発明の一態様に係る、OSトランジスタ、および容量素子が適用されている記憶装置の一例として、DOSRAMについて説明する。DOSRAM(登録商標)とは、「Dynamic Oxide Semiconductor RAM」の略称であり、1T(トランジスタ)1C(容量)型のメモリセルを有するRAMを指す。DOSRAMも、NOSRAMと同様に、OSメモリが適用されている。
<<DOSRAM1400>>
図61にDOSRAMの構成例を示す。図61に示すように、DOSRAM1400は、コントローラ1405、行回路1410、列回路1415、メモリセルおよびセンスアンプアレイ1420(以下、「MC−SAアレイ1420」と呼ぶ。)を有する。
行回路1410はデコーダ1411、ワード線ドライバ回路1412、列セレクタ1413、センスアンプドライバ回路1414を有する。列回路1415はグローバルセンスアンプアレイ1416、入出力回路1417を有する。グローバルセンスアンプアレイ1416は複数のグローバルセンスアンプ1447を有する。MC−SAアレイ1420はメモリセルアレイ1422、センスアンプアレイ1423、グローバルビット線GBLL、GBLRを有する。
(MC−SAアレイ1420)
MC−SAアレイ1420は、メモリセルアレイ1422をセンスアンプアレイ1423上に積層した積層構造をもつ。グローバルビット線GBLL、GBLRはメモリセルアレイ1422上に積層されている。DOSRAM1400では、ビット線の構造に、ローカルビット線とグローバルビット線とで階層化された階層ビット線構造が採用されている。
メモリセルアレイ1422は、N個(Nは2以上の整数)のローカルメモリセルアレイ1425<0>−1425<N−1>を有する。図62(A)にローカルメモリセルアレイ1425の構成例を示す。ローカルメモリセルアレイ1425は、複数のメモリセル1445、複数のワード線WL、複数のビット線BLL、BLRを有する。図62(A)の例では、ローカルメモリセルアレイ1425の構造はオープンビット線型であるが、フォールデッドビット線型であってもよい。
図62(B)にメモリセル1445の回路構成例を示す。メモリセル1445はトランジスタMW1、容量素子CS1、端子B1、B2を有する。トランジスタMW1は容量素子CS1の充放電を制御する機能をもつ。トランジスタMW1のゲートはワード線WLに電気的に接続され、第1端子はビット線(BLL、またはBLR)に電気的に接続され、第2端子は容量素子CS1の第1端子に電気的に接続されている。容量素子CS1の第2端子は端子B2に電気的に接続されている。端子B2には、定電圧(例えば、低電源電圧)が入力される。
上記実施の形態に示す半導体装置をメモリセル1445に用いる場合、トランジスタMW1としてトランジスタ200を用い、容量素子CS1として容量素子100を用いることができる。これにより、トランジスタと容量素子一組当たりの上面視における占有面積を低減することができるので、本実施の形態に係る記憶装置を高集積化させることができる。よって、本実施の形態に係る記憶装置の単位面積当たりの記憶容量を増加させることができる。
トランジスタMW1はバックゲートを備えており、バックゲートは端子B1に電気的に接続されている。そのため、端子B1の電圧によって、トランジスタMW1の閾値電圧を変更することができる。例えば、端子B1の電圧は固定電圧(例えば、負の定電圧)であってもよいし、DOSRAM1400の動作に応じて、端子B1の電圧を変化させてもよい。
トランジスタMW1のバックゲートをトランジスタMW1のゲート、第1の端子、または第2の端子に電気的に接続してもよい。あるいは、トランジスタMW1にバックゲートを設けなくてもよい。
センスアンプアレイ1423は、N個のローカルセンスアンプアレイ1426<0>−1426<N−1>を有する。ローカルセンスアンプアレイ1426は、1のスイッチアレイ1444、複数のセンスアンプ1446を有する。センスアンプ1446には、ビット線対が電気的に接続されている。センスアンプ1446は、ビット線対をプリチャージする機能、ビット線対の電圧差を増幅する機能、この電圧差を保持する機能を有する。スイッチアレイ1444は、ビット線対を選択し、選択したビット線対とグローバルビット線対との間を導通状態にする機能を有する。
ここで、ビット線対とは、センスアンプによって、同時に比較される2本のビット線のことをいう。グローバルビット線対とは、グローバルセンスアンプによって、同時に比較される2本のグローバルビット線のことをいう。ビット線対を一対のビット線と呼ぶことができ、グローバルビット線対を一対のグローバルビット線と呼ぶことができる。ここでは、ビット線BLLとビット線BLRが1組のビット線対を成す。グローバルビット線GBLLとグローバルビット線GBLRとが1組のグローバルビット線対をなす。以下、ビット線対(BLL,BLR)、グローバルビット線対(GBLL,GBLR)とも表す。
(コントローラ1405)
コントローラ1405は、DOSRAM1400の動作全般を制御する機能を有する。コントローラ1405は、外部からの入力されるコマンド信号を論理演算して、動作モードを決定する機能、決定した動作モードが実行されるように、行回路1410、列回路1415の制御信号を生成する機能、外部から入力されるアドレス信号を保持する機能、内部アドレス信号を生成する機能を有する。
(行回路1410)
行回路1410は、MC−SAアレイ1420を駆動する機能を有する。デコーダ1411はアドレス信号をデコードする機能を有する。ワード線ドライバ回路1412は、アクセス対象行のワード線WLを選択する選択信号を生成する。
列セレクタ1413、センスアンプドライバ回路1414はセンスアンプアレイ1423を駆動するための回路である。列セレクタ1413は、アクセス対象列のビット線を選択するための選択信号を生成する機能をもつ。列セレクタ1413の選択信号によって、各ローカルセンスアンプアレイ1426のスイッチアレイ1444が制御される。センスアンプドライバ回路1414の制御信号によって、複数のローカルセンスアンプアレイ1426は独立して駆動される。
(列回路1415)
列回路1415は、データ信号WDA[31:0]の入力を制御する機能、データ信号RDA[31:0]の出力を制御する機能を有する。データ信号WDA[31:0]は書き込みデータ信号であり、データ信号RDA[31:0]は読み出しデータ信号である。
グローバルセンスアンプ1447はグローバルビット線対(GBLL,GBLR)に電気的に接続されている。グローバルセンスアンプ1447はグローバルビット線対(GBLL,GBLR)間の電圧差を増幅する機能、この電圧差を保持する機能を有する。グローバルビット線対(GBLL,GBLR)へのデータの書き込み、および読み出しは、入出力回路1417によって行われる。
DOSRAM1400の書き込み動作の概要を説明する。入出力回路1417によって、データがグローバルビット線対に書き込まれる。グローバルビット線対のデータは、グローバルセンスアンプアレイ1416によって保持される。アドレス信号が指定するローカルセンスアンプアレイ1426のスイッチアレイ1444によって、グローバルビット線対のデータが、対象列のビット線対に書き込まれる。ローカルセンスアンプアレイ1426は、書き込まれたデータを増幅し、保持する。指定されたローカルメモリセルアレイ1425において、行回路1410によって、対象行のワード線WLが選択され、選択行のメモリセル1445にローカルセンスアンプアレイ1426の保持データが書き込まれる。
DOSRAM1400の読み出し動作の概要を説明する。アドレス信号によって、ローカルメモリセルアレイ1425の1行が指定される。指定されたローカルメモリセルアレイ1425において、対象行のワード線WLが選択状態となり、メモリセル1445のデータがビット線に書き込まれる。ローカルセンスアンプアレイ1426によって、各列のビット線対の電圧差がデータとして検出され、かつ保持される。スイッチアレイ1444によって、ローカルセンスアンプアレイ1426の保持データの内、アドレス信号が指定する列のデータが、グローバルビット線対に書き込まれる。グローバルセンスアンプアレイ1416は、グローバルビット線対のデータを検出し、保持する。グローバルセンスアンプアレイ1416の保持データは入出力回路1417に出力される。以上で、読み出し動作が完了する。
容量素子CS1の充放電によってデータを書き換えるため、DOSRAM1400には原理的には書き換え回数に制約はなく、かつ、低エネルギーで、データの書き込みおよび読み出しが可能である。また、メモリセル1445の回路構成が単純であるため、大容量化が容易である。
トランジスタMW1はOSトランジスタである。OSトランジスタはオフ電流が極めて小さいため、容量素子CS1から電荷がリークすることを抑えることができる。したがって、DOSRAM1400の保持時間はDRAMに比べて非常に長い。したがってリフレッシュの頻度を低減できるため、リフレッシュ動作に要する電力を削減できる。よって、DOSRAM1400は大容量のデータを高頻度で書き換えるメモリ装置、例えば、画像処理に利用されるフレームメモリに好適である。
MC−SAアレイ1420が積層構造であることよって、ローカルセンスアンプアレイ1426の長さと同程度の長さにビット線を短くすることができる。ビット線を短くすることで、ビット線容量が小さくなり、メモリセル1445の保持容量を低減することができる。また、ローカルセンスアンプアレイ1426にスイッチアレイ1444を設けることで、長いビット線の本数を減らすことができる。以上の理由から、DOSRAM1400のアクセス時に駆動する負荷が低減され、消費電力を低減することができる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態7)
本実施の形態では、図63から図66を用いて、本発明の一態様に係る、OSトランジスタ、および容量素子が適用されている半導体装置の一例として、FPGA(フィールドプログラマブルゲートアレイ)について説明する。本実施の形態のFPGAは、コンフィギュレーションメモリ、およびレジスタにOSメモリが適用されている。ここでは、このようなFPGAを「OS−FPGA」と呼ぶ。
<<OS−FPGA>>
図63(A)にOS−FPGAの構成例を示す。図63(A)に示すOS−FPGA3110は、マルチコンテキスト構造によるコンテキスト切り替えとPLE毎の細粒度パワーゲーティングを実行するNOFF(ノーマリオフ)コンピューティングが可能である。OS−FPGA3110は、コントローラ(Controller)3111、ワードドライバ(Word driver)3112、データドライバ(Data driver)3113、プログラマブルエリア(Programmable area)3115を有する。
プログラマブルエリア3115は、2個の入出力ブロック(IOB)3117、コア(Core)3119を有する。IOB3117は複数のプログラマブル入出力回路を有する。コア3119は、複数のロジックアレイブロック(LAB)3120、複数のスイッチアレイブロック(SAB)3130を有する。LAB3120は複数のPLE3121を有する。図63(B)には、LAB3120を5個のPLE3121で構成する例を示す。図63(C)に示すようにSAB3130はアレイ状に配列された複数のスイッチブロック(SB)3131を有する。LAB3120は自身の入力端子と、SAB3130を介して4(上下左右)方向のLAB3120に接続される。
図64(A)乃至図64(C)を参照して、SB3131について説明する。図64(A)に示すSB3131には、data、datab、信号context[1:0]、word[1:0]が入力される。data、databはコンフィギュレーションデータであり、dataとdatabは論理が相補的な関係にある。OS−FPGA3110のコンテキスト数は2であり、信号context[1:0]はコンテキスト選択信号である。信号word[1:0]はワード線選択信号であり、信号word[1:0]が入力される配線がそれぞれワード線である。
SB3131は、PRS(プログラマブルルーティングスイッチ)3133[0]、3133[1]を有する。PRS3133[0]、3133[1]は、相補データを格納できるコンフィギュレーションメモリ(CM)を有する。なお、PRS3133[0]とPRS3133[1]とを区別しない場合、PRS3133と呼ぶ。他の要素についても同様である。
図64(B)にPRS3133[0]の回路構成例を示す。PRS3133[0]とPRS3133[1]とは同じ回路構成を有する。PRS3133[0]とPRS3133[1]とは入力されるコンテキスト選択信号、ワード線選択信号が異なる。信号context[0]、word[0]はPRS3133[0]に入力され、信号context[1]、word[1]はPRS3133[1]に入力される。例えば、SB3131において、信号context[0]が“H”になることで、PRS3133[0]がアクティブになる。
PRS3133[0]は、CM3135、SiトランジスタM31を有する。SiトランジスタM31は、CM3135により制御されるパストランジスタである。CM3135は、メモリ回路3137、3137Bを有する。メモリ回路3137、3137Bは同じ回路構成である。メモリ回路3137は、容量素子C31、OSトランジスタMO31、MO32を有する。メモリ回路3137Bは、容量素子CB31、OSトランジスタMOB31、MOB32を有する。
上記実施の形態に示す半導体装置をSAB3130に用いる場合、OSトランジスタMO31、MOB31としてトランジスタ200を用い、容量素子C31、CB31として容量素子100を用いることができる。これにより、トランジスタと容量素子一組当たりの上面視における占有面積を低減することができるので、本実施の形態に係る半導体装置を高集積化させることができる。
OSトランジスタMO31、MO32、MOB31、MOB32はバックゲートを有し、これらバックゲートはそれぞれ固定電圧を供給する電源線に電気的に接続されている。
SiトランジスタM31のゲートがノードN31であり、OSトランジスタMO32のゲートがノードN32であり、OSトランジスタMOB32のゲートがノードNB32である。ノードN32、NB32はCM3135の電荷保持ノードである。OSトランジスタMO32はノードN31と信号context[0]用の信号線との間の導通状態を制御する。OSトランジスタMOB32はノードN31と低電位電源線VSSとの間の導通状態を制御する。
メモリ回路3137、3137Bが保持するデータの論理は相補的な関係にある。したがって、OSトランジスタMO32またはMOB32の何れか一方が導通する。
図64(C)を参照して、PRS3133[0]の動作例を説明する。PRS3133[0]にコンフィギュレーションデータが既に書き込まれており、PRS3133[0]のノードN32は“H”であり、ノードNB32は“L”である。
信号context[0]が“L”である間はPRS3133[0]は非アクティブである。この期間に、PRS3133[0]の入力端子(input)が“H”に遷移しても、SiトランジスタM31のゲートは“L”が維持され、PRS3133[0]の出力端子(output)も“L”が維持される。
信号context[0]が“H”である間はPRS3133[0]はアクティブである。信号context[0]が“H”に遷移すると、CM3135が記憶するコンフィギュレーションデータによって、SiトランジスタM31のゲートは“H”に遷移する。
PRS3133[0]がアクティブである期間に、入力端子が“H”に遷移すると、メモリ回路3137のOSトランジスタMO32がソースフォロアであるために、ブースティング(boosting)によってSiトランジスタM31のゲート電圧は上昇する。その結果、メモリ回路3137のOSトランジスタMO32は駆動能力を失い、SiトランジスタM31のゲートは浮遊状態となる。
マルチコンテキスト機能を備えるPRS3133において、CM3135はマルチプレクサの機能を併せ持つ。
図65にPLE3121の構成例を示す。PLE3121はLUT(ルックアップテーブル)ブロック(LUT block)3123、レジスタブロック3124、セレクタ3125、CM3126を有する。LUTブロック3123は、入力inA−inDに従ってデータを選択し、出力する構成である。セレクタ3125は、CM3126が格納するコンフィギュレーションデータに従って、LUTブロック3123の出力またはレジスタブロック3124の出力を選択する。
PLE3121は、パワースイッチ3127を介して電圧VDD用の電源線に電気的に接続されている。パワースイッチ3127のオンオフは、CM3128が格納するコンフィギュレーションデータによって設定される。各PLE3121にパワースイッチ3127を設けることで、細粒度パワーゲーティングが可能である。細粒度パワーゲーティング機能により、コンテキストの切り替え後に使用されないPLE3121をパワーゲーティングすることができるので、待機電力を効果的に低減できる。
NOFFコンピューティングを実現するため、レジスタブロック3124は、不揮発性レジスタで構成される。PLE3121内の不揮発性レジスタはOSメモリを備えるフリップフロップ(以下[OS−FF]と呼ぶ)である。
レジスタブロック3124は、OS−FF3140[1]、3140[2]を有する。信号user_res、load、storeがOS−FF3140[1]、3140[2]に入力される。クロック信号CLK1はOS−FF3140[1]に入力され、クロック信号CLK2はOS−FF3140[2]に入力される。図66(A)にOS−FF3140の構成例を示す。
OS−FF3140は、FF3141、シャドウレジスタ3142を有する。FF3141は、ノードCK、R、D、Q、QBを有する。ノードCKにはクロック信号が入力される。ノードRには信号user_resが入力される。信号user_resはリセット信号である。ノードDはデータ入力ノードであり、ノードQはデータ出力ノードである。ノードQとノードQBとは論理が相補関係にある。
シャドウレジスタ3142は、FF3141のバックアップ回路として機能する。シャドウレジスタ3142は、信号storeに従いノードQ、QBのデータをそれぞれバックアップし、また、信号loadに従い、バックアップしたデータをノードQ、QBに書き戻す。
シャドウレジスタ3142は、インバータ回路3188、3189、SiトランジスタM37、MB37、メモリ回路3143、3143Bを有する。メモリ回路3143、3143Bは、PRS3133のメモリ回路3137と同じ回路構成である。メモリ回路3143は容量素子C36、OSトランジスタMO35、MO36を有する。メモリ回路3143Bは容量素子CB36、OSトランジスタMOB35、OSトランジスタMOB36を有する。ノードN36、NB36はOSトランジスタMO36、OSトランジスタMOB36のゲートであり、それぞれ電荷保持ノードである。ノードN37、NB37は、SiトランジスタM37、MB37のゲートである。
上記実施の形態に示す半導体装置をLAB3120に用いる場合、OSトランジスタMO35、MOB35としてトランジスタ200を用い、容量素子C36、CB36として容量素子100を用いることができる。これにより、トランジスタと容量素子一組当たりの上面視における占有面積を低減することができるので、本実施の形態に係る半導体装置を高集積化させることができる。
OSトランジスタMO35、MO36、MOB35、MOB36はバックゲートを有し、これらバックゲートはそれぞれ固定電圧を供給する電源線に電気的に接続されている。
図66(B)を参照して、OS−FF3140の動作方法例を説明する。
(バックアップ(Backup))
“H”の信号storeがOS−FF3140に入力されると、シャドウレジスタ3142はFF3141のデータをバックアップする。ノードN36は、ノードQのデータが書き込まれることで、“L”となり、ノードNB36は、ノードQBのデータが書き込まれることで、“H”となる。しかる後、パワーゲーティングが実行され、パワースイッチ3127をオフにする。FF3141のノードQ、QBのデータは消失するが、電源オフであっても、シャドウレジスタ3142はバックアップしたデータを保持する。
(リカバリ(Recovery))
パワースイッチ3127をオンにし、PLE3121に電源を供給する。しかる後、“H”の信号loadがOS−FF3140に入力されると、シャドウレジスタ3142はバックアップしているデータをFF3141に書き戻す。ノードN36は“L”であるので、ノードN37は“L”が維持され、ノードNB36は“H”であるので、ノードNB37は“H”となる。よって、ノードQは“H”になり、ノードQBは“L”になる。つまり、OS−FF3140はバックアップ動作時の状態に復帰する。
細粒度パワーゲーティングと、OS−FF3140のバックアップ/リカバリ動作とを組み合わせることで、OS−FPGA3110の消費電力を効果的に低減できる。
メモリ回路において発生しうるエラーとして放射線の入射によるソフトエラーが挙げられる。ソフトエラーは、メモリやパッケージを構成する材料などから放出されるα線や、宇宙から大気に入射した一次宇宙線が大気中に存在する原子の原子核と核反応を起こすことにより発生する二次宇宙線中性子などがトランジスタに照射され、電子正孔対が生成されることにより、メモリに保持されたデータが反転するなどの誤作動が生じる現象である。OSトランジスタを用いたOSメモリはソフトエラー耐性が高い。そのため、OSメモリを搭載することで、信頼性の高いOS−FPGA3110を提供することができる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態8)
本実施の形態では、図67を用いて、上記実施の形態に示す半導体装置を適用した、AIシステムについて説明を行う。
図67はAIシステム4041の構成例を示すブロック図である。AIシステム4041は、演算部4010と、制御部4020と、入出力部4030を有する。
演算部4010は、アナログ演算回路4011と、DOSRAM4012と、NOSRAM4013と、FPGA4014と、を有する。DOSRAM4012、NOSRAM4013、およびFPGA4014として、上記実施の形態に示す、DOSRAM1400、NOSRAM1600、およびOS−FPGA3110を用いることができる。
制御部4020は、CPU(Central Processing Unit)4021と、GPU(Graphics Processing Unit)4022と、PLL(Phase Locked Loop)4023と、SRAM(Static Random Access Memory)4024と、PROM(Programmable Read Only Memory)4025と、メモリコントローラ4026と、電源回路4027と、PMU(Power Management Unit)4028と、を有する。
入出力部4030は、外部記憶制御回路4031と、音声コーデック4032と、映像コーデック4033と、汎用入出力モジュール4034と、通信モジュール4035と、を有する。
演算部4010は、ニューラルネットワークによる学習または推論を実行することができる。
アナログ演算回路4011はA/D(アナログ/デジタル)変換回路、D/A(デジタル/アナログ)変換回路、および積和演算回路を有する。
アナログ演算回路4011はOSトランジスタを用いて形成することが好ましい。OSトランジスタを用いたアナログ演算回路4011は、アナログメモリを有し、学習または推論に必要な積和演算を、低消費電力で実行することが可能になる。
DOSRAM4012は、OSトランジスタを用いて形成されたDRAMであり、DOSRAM4012は、CPU4021から送られてくるデジタルデータを一時的に格納するメモリである。DOSRAM4012は、OSトランジスタを含むメモリセルと、Siトランジスタを含む読み出し回路部を有する。上記メモリセルと読み出し回路部は、積層された異なる層に設けることができるため、DOSRAM4012は、全体の回路面積を小さくすることができる。
ニューラルネットワークを用いた計算は、入力データが1000を超えることがある。上記入力データをSRAMに格納する場合、SRAMは回路面積に制限があり、記憶容量が小さいため、上記入力データを小分けにして格納せざるを得ない。DOSRAM4012は、限られた回路面積でも、メモリセルを高集積に配置することが可能であり、SRAMに比べて記憶容量が大きい。そのため、DOSRAM4012は、上記入力データを効率よく格納することができる。
NOSRAM4013はOSトランジスタを用いた不揮発性メモリである。NOSRAM4013は、フラッシュメモリや、ReRAM(Resistive Random Access Memory)、MRAM(Magnetoresistive Random Access Memory)などの他の不揮発性メモリと比べて、データを書き込む際の消費電力が小さい。また、フラッシュメモリやReRAMのように、データを書き込む際に素子が劣化することもなく、データの書き込み可能回数に制限が無い。
また、NOSRAM4013は、1ビットの2値データの他に、2ビット以上の多値データを記憶することができる。NOSRAM4013は多値データを記憶することで、1ビット当たりのメモリセル面積を小さくすることができる。
また、NOSRAM4013は、デジタルデータの他にアナログデータを記憶することができる。そのため、アナログ演算回路4011は、NOSRAM4013をアナログメモリとして用いることもできる。NOSRAM4013は、アナログデータのまま記憶することができるため、D/A変換回路やA/D変換回路が不要である。そのため、NOSRAM4013は周辺回路の面積を小さくすることができる。なお、本明細書においてアナログデータとは、3ビット(8値)以上分解能を有するデータのことを指す。上述した多値データがアナログデータに含まれる場合もある。
ニューラルネットワークの計算に用いられるデータやパラメータは、一旦、NOSRAM4013に格納することができる。上記データやパラメータは、CPU4021を介して、AIシステム4041の外部に設けられたメモリに格納してもよいが、内部に設けられたNOSRAM4013の方が、より高速且つ低消費電力に上記データやパラメータを格納することができる。また、NOSRAM4013は、DOSRAM4012よりもビット線を長くすることができるので、記憶容量を大きくすることができる。
FPGA4014は、OSトランジスタを用いたFPGAである。AIシステム4041は、FPGA4014を用いることによって、ハードウェアで後述する、ディープニューラルネットワーク(DNN)、畳み込みニューラルネットワーク(CNN)、再帰型ニューラルネットワーク(RNN)、自己符号化器、深層ボルツマンマシン(DBM)、深層信念ネットワーク(DBN)などの、ニューラルネットワークの接続を構成することができる。上記のニューラルネットワークの接続をハードウェアで構成することで、より高速に実行することができる。
FPGA4014はOSトランジスタを有するFPGAである。OS−FPGAは、SRAMで構成されるFPGAよりもメモリの面積を小さくすることができる。そのため、コンテキスト切り替え機能を追加しても面積増加が少ない。また、OS−FPGAはブースティングによりデータやパラメータを高速に伝えることができる。
AIシステム4041は、アナログ演算回路4011、DOSRAM4012、NOSRAM4013、およびFPGA4014を1つのダイ(チップ)の上に設けることができる。そのため、AIシステム4041は、高速且つ低消費電力に、ニューラルネットワークの計算を実行することができる。また、アナログ演算回路4011、DOSRAM4012、NOSRAM4013、およびFPGA4014は、同じ製造プロセスで作製することができる。そのため、AIシステム4041は、低コストで作製することができる。
なお、演算部4010は、DOSRAM4012、NOSRAM4013、およびFPGA4014を、全て有する必要はない。AIシステム4041が解決したい課題に応じて、DOSRAM4012、NOSRAM4013、およびFPGA4014の一または複数を、選択して設ければよい。
AIシステム4041は、解決したい課題に応じて、ディープニューラルネットワーク(DNN)、畳み込みニューラルネットワーク(CNN)、再帰型ニューラルネットワーク(RNN)、自己符号化器、深層ボルツマンマシン(DBM)、深層信念ネットワーク(DBN)などの手法を実行することができる。PROM4025は、これらの手法の少なくとも1つを実行するためのプログラムを保存することができる。また、当該プログラムの一部または全てを、NOSRAM4013に保存してもよい。
ライブラリとして存在する既存のプログラムは、GPUの処理を前提としているものが多い。そのため、AIシステム4041はGPU4022を有することが好ましい。AIシステム4041は、学習と推論で用いられる積和演算のうち、律速となる積和演算を演算部4010で実行し、それ以外の積和演算をGPU4022で実行することができる。そうすることで、学習と推論を高速に実行することができる。
電源回路4027は、論理回路用の低電源電位を生成するだけではなく、アナログ演算のための電位生成も行う。電源回路4027はOSメモリを用いてもよい。電源回路4027は、基準電位をOSメモリに保存することで、消費電力を下げることができる。
PMU4028は、AIシステム4041の電力供給を一時的にオフにする機能を有する。
CPU4021およびGPU4022は、レジスタとしてOSメモリを有することが好ましい。CPU4021およびGPU4022はOSメモリを有することで、電力供給がオフになっても、OSメモリ中にデータ(論理値)を保持し続けることができる。その結果、AIシステム4041は、電力を節約することができる。
PLL4023は、クロックを生成する機能を有する。AIシステム4041は、PLL4023が生成したクロックを基準に動作を行う。PLL4023はOSメモリを有することが好ましい。PLL4023はOSメモリを有することで、クロックの発振周期を制御するアナログ電位を保持することができる。
AIシステム4041は、DRAMなどの外部メモリにデータを保存してもよい。そのため、AIシステム4041は、外部のDRAMとのインターフェースとして機能するメモリコントローラ4026を有することが好ましい。また、メモリコントローラ4026は、CPU4021またはGPU4022の近くに配置することが好ましい。そうすることで、データのやり取りを高速に行うことができる。
制御部4020に示す回路の一部または全ては、演算部4010と同じダイの上に形成することができる。そうすることで、AIシステム4041は、高速且つ低消費電力に、ニューラルネットワークの計算を実行することができる。
ニューラルネットワークの計算に用いられるデータは外部記憶装置(HDD(Hard Disk Drive)、SSD(Solid State Drive)など)に保存される場合が多い。そのため、AIシステム4041は、外部記憶装置とのインターフェースとして機能する外部記憶制御回路4031を有することが好ましい。
ニューラルネットワークを用いた学習と推論は、音声や映像を扱うことが多いので、AIシステム4041は音声コーデック4032および映像コーデック4033を有する。音声コーデック4032は、音声データのエンコード(符号化)およびデコード(復号)を行い、映像コーデック4033は、映像データのエンコードおよびデコードを行う。
AIシステム4041は、外部センサから得られたデータを用いて学習または推論を行うことができる。そのため、AIシステム4041は汎用入出力モジュール4034を有する。汎用入出力モジュール4034は、例えば、USB(Universal Serial Bus)やI2C(Inter−Integrated Circuit)などを含む。
AIシステム4041は、インターネットを経由して得られたデータを用いて学習または推論を行うことができる。そのため、AIシステム4041は、通信モジュール4035を有することが好ましい。
アナログ演算回路4011は、多値のフラッシュメモリをアナログメモリとして用いてもよい。しかし、フラッシュメモリは書き換え可能回数に制限がある。また、多値のフラッシュメモリは、エンベディッドで形成する(演算回路とメモリを同じダイの上に形成する)ことが非常に難しい。
また、アナログ演算回路4011は、ReRAMをアナログメモリとして用いてもよい。しかし、ReRAMは書き換え可能回数に制限があり、記憶精度の点でも問題がある。さらに、2端子でなる素子であるため、データの書き込みと読み出しを分ける回路設計が複雑になる。
また、アナログ演算回路4011は、MRAMをアナログメモリとして用いてもよい。しかし、MRAMは抵抗変化率が低く、記憶精度の点で問題がある。
以上を鑑み、アナログ演算回路4011は、OSメモリをアナログメモリとして用いることが好ましい。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態9)
<AIシステムの応用例>
本実施の形態では、上記実施の形態に示すAIシステムの応用例について図68を用いて説明を行う。
図68(A)は、図67で説明したAIシステム4041を並列に配置し、バス線を介してシステム間での信号の送受信を可能にした、AIシステム4041Aである。
図68(A)に図示するAIシステム4041Aは、複数のAIシステム4041_1乃至AIシステム4041_n(nは自然数)を有する。AIシステム4041_1乃至AIシステム4041_nは、バス線4098を介して互いに接続されている。
また図68(B)は、図67で説明したAIシステム4041を図68(A)と同様に並列に配置し、ネットワークを介してシステム間での信号の送受信を可能にした、AIシステム4041Bである。
図68(B)に図示するAIシステム4041Bは、複数のAIシステム4041_1乃至AIシステム4041_nを有する。AIシステム4041_1乃至AIシステム4041_nは、ネットワーク4099を介して互いに接続されている。
ネットワーク4099は、AIシステム4041_1乃至AIシステム4041_nのそれぞれに通信モジュールを設け、無線または有線による通信を行う構成とすればよい。通信モジュールは、アンテナを介して通信を行うことができる。例えばWorld Wide Web(WWW)の基盤であるインターネット、イントラネット、エクストラネット、PAN(Personal Area Network)、LAN(Local Area Network)、CAN(Campus Area Network)、MAN(Metropolitan Area Network)、WAN(Wide Area Network)、GAN(Global Area Network)等のコンピュータネットワークに各電子装置を接続させ、通信を行うことができる。無線通信を行う場合、通信プロトコル又は通信技術として、LTE(Long Term Evolution)、GSM(Global System for Mobile Communication:登録商標)、EDGE(Enhanced Data Rates for GSM Evolution)、CDMA2000(Code Division Multiple Access 2000)、W−CDMA(登録商標)などの通信規格、またはWi−Fi(登録商標)、Bluetooth(登録商標)、ZigBee(登録商標)等のIEEEにより通信規格化された仕様を用いることができる。
図68(A)、(B)の構成とすることで、外部のセンサ等で得られたアナログ信号を別々のAIシステムで処理することができる。例えば、生体情報のように、脳波、脈拍、血圧、体温等といった情報を脳波センサ、脈波センサ、血圧センサ、温度センサといった各種センサで取得し、別々のAIシステムでアナログ信号を処理することができる。別々のAIシステムのそれぞれで信号の処理、または学習を行うことで一つのAIシステムあたりの情報処理量を少なくできる。そのため、より少ない演算量で信号の処理、または学習を行うことができる。その結果、認識精度を高めることができる。それぞれのAIシステムで得られた情報から、複雑に変化する生体情報の変化を瞬時に統合的に把握することができるといったことが期待できる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態10)
本実施の形態は、上記実施の形態に示すAIシステムが組み込まれたICの一例を示す。
上記実施の形態に示すAIシステムは、CPU等のSiトランジスタでなるデジタル処理回路と、OSトランジスタを用いたアナログ演算回路、OS−FPGAおよびDOSRAM、NOSRAM等のOSメモリを、1のダイに集積することができる。
図69に、AIシステムを組み込んだICの一例を示す。図69に示すAIシステムIC7000は、リード7001及び回路部7003を有する。AIシステムIC7000は、例えばプリント基板7002に実装される。このようなICチップが複数組み合わされて、それぞれがプリント基板7002上で電気的に接続されることで電子部品が実装された基板(実装基板7004)が完成する。回路部7003には、上記実施の形態で示した各種の回路が1のダイに設けられている。回路部7003は積層構造をもち、Siトランジスタ層7031、配線層7032、OSトランジスタ層7033に大別される。OSトランジスタ層7033をSiトランジスタ層7031に積層して設けることができるため、AIシステムIC7000の小型化が容易である。
図69では、AIシステムIC7000のパッケージにQFP(Quad Flat Package)を適用しているが、パッケージの態様はこれに限定されない。
CPU等のデジタル処理回路と、OSトランジスタを用いたアナログ演算回路、OS−FPGAおよびDOSRAM、NOSRAM等のOSメモリは、全て、Siトランジスタ層7031、配線層7032およびOSトランジスタ層7033に形成することができる。すなわち、上記AIシステムを構成する素子は、同一の製造プロセスで形成することが可能である。そのため、本実施の形態に示すICは、構成する素子が増えても製造プロセスを増やす必要がなく、上記AIシステムを低コストで組み込むことができる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態11)
<電子機器>
本発明の一態様に係る半導体装置は、様々な電子機器に用いることができる。図70に、本発明の一態様に係る半導体装置を用いた電子機器の具体例を示す。
 図70(A)に、モニタ830を示す。モニタ830は、表示部831、筐体832、スピーカ833等を有する。さらに、LEDランプ、操作キー(電源スイッチ、または操作スイッチを含む)、接続端子、各種センサ、マイクロフォン等を有することができる。またモニタ830は、リモコン操作機834により、操作することができる。
 またモニタ830は、放送電波を受信して、テレビジョン装置として機能することができる。
 モニタ830が受信できる放送電波としては、地上波、または衛星から送信される電波などが挙げられる。また放送電波として、アナログ放送、デジタル放送などがあり、また映像及び音声、または音声のみの放送などがある。例えばUHF帯(300MHz以上3GHz以下)またはVHF帯(30MHz以上300MHz以下)のうちの特定の周波数帯域で送信される放送電波を受信することができる。また例えば、複数の周波数帯域で受信した複数のデータを用いることで、転送レートを高くすることができ、より多くの情報を得ることができる。これによりフルハイビジョンを超える解像度を有する映像を、表示部831に表示させることができる。例えば、4K−2K、8K−4K、16K−8K、またはそれ以上の解像度を有する映像を表示させることができる。
 また、インターネットやLAN(Local Area Network)、Wi−Fi(登録商標)などのコンピュータネットワークを介したデータ伝送技術により送信された放送のデータを用いて、表示部831に表示する画像を生成する構成としてもよい。このとき、モニタ830にチューナを有さなくてもよい。
また、モニタ830は、コンピュータと接続し、コンピュータ用モニタとして用いることができる。また、コンピュータと接続したモニタ830は、複数の人が同時に閲覧可能となり、会議システムに用いることができる。また、ネットワークを介したコンピュータの情報の表示や、モニタ830自体のネットワークへの接続により、モニタ830をテレビ会議システムに用いることができる。
また、モニタ830はデジタルサイネージとして用いることもできる。
例えば、本発明の一態様の半導体装置を表示部の駆動回路や、画像処理部に用いることができる。本発明の一態様の半導体装置を表示部の駆動回路や、画像処理部に用いることで、高速な動作や信号処理を低消費電力にて実現できる。
また、本発明の一態様の半導体装置を用いたAIシステムをモニタ830の画像処理部に用いることで、ノイズ除去処理、階調変換処理、色調補正処理、輝度補正処理などの画像処理を行うことができる。また、解像度のアップコンバートに伴う画素間補間処理や、フレーム周波数のアップコンバートに伴うフレーム間補間処理などを実行することができる。また、階調変換処理は、画像の階調数を変換するだけでなく、階調数を大きくする場合の階調値の補間を行うことができる。また、ダイナミックレンジを広げる、ハイダイナミックレンジ(HDR)処理も、階調変換処理に含まれる。
図70(B)に示すビデオカメラ2940は、筐体2941、筐体2942、表示部2943、操作スイッチ2944、レンズ2945、および接続部2946等を有する。操作スイッチ2944およびレンズ2945は筐体2941に設けられており、表示部2943は筐体2942に設けられている。また、ビデオカメラ2940は、筐体2941の内側にアンテナ、バッテリなどを備える。そして、筐体2941と筐体2942は、接続部2946により接続されており、筐体2941と筐体2942の間の角度は、接続部2946により変えることが可能な構造となっている。筐体2941に対する筐体2942の角度によって、表示部2943に表示される画像の向きの変更や、画像の表示/非表示の切り換えを行うことができる。
例えば、本発明の一態様の半導体装置を表示部の駆動回路や、画像処理部に用いることができる。本発明の一態様の半導体装置を表示部の駆動回路や、画像処理部に用いることで、高速な動作や信号処理を低消費電力にて実現できる。
また、本発明の一態様の半導体装置を用いたAIシステムをビデオカメラ2940の画像処理部に用いることで、ビデオカメラ2940周囲の環境に応じた撮影が実現できる。具体的には、周囲の明るさに応じて最適な露出で撮影を行うことができる。また、逆光における撮影や屋内と屋外など、明るさの異なる状況を同時に撮影する場合では、ハイダイナミックレンジ(HDR)撮影を行うことができる。
また、AIシステムは、撮影者の癖を学習し、撮影のアシストを行うことができる。具体的には、撮影者の手振れの癖を学習し、撮影中の手振れを補正することで、撮影した画像には手振れによる画像の乱れが極力含まれないようにすることができる。また、撮影中にズーム機能を用いる際には、被写体が常に画像の中心で撮影されるようにレンズの向きなどを制御することができる。
図70(C)に示す情報端末2910は、筐体2911、表示部2912、マイク2917、スピーカ部2914、カメラ2913、外部接続部2916、および操作スイッチ2915等を有する。表示部2912には、可撓性基板が用いられた表示パネルおよびタッチスクリーンを備える。また、情報端末2910は、筐体2911の内側にアンテナ、バッテリなどを備える。情報端末2910は、例えば、スマートフォン、携帯電話、タブレット型情報端末、タブレット型パーソナルコンピュータ、電子書籍端末等として用いることができる。
例えば、本発明の一態様の半導体装置を用いた記憶装置は、上述した情報端末2910の制御情報や、制御プログラムなどを長期間保持することができる。
また、本発明の一態様の半導体装置を用いたAIシステムを情報端末2910の画像処理部に用いることで、ノイズ除去処理、階調変換処理、色調補正処理、輝度補正処理などの画像処理を行うことができる。また、解像度のアップコンバートに伴う画素間補間処理や、フレーム周波数のアップコンバートに伴うフレーム間補間処理などを実行することができる。また、階調変換処理は、画像の階調数を変換するだけでなく、階調数を大きくする場合の階調値の補間を行うことができる。また、ダイナミックレンジを広げる、ハイダイナミックレンジ(HDR)処理も、階調変換処理に含まれる。
また、AIシステムは、ユーザーの癖を学習し、情報端末2910の操作のアシストを行うことができる。AIシステムを搭載した情報端末2910は、ユーザーの指の動きや、目線などからタッチ入力を予測することができる。
図70(D)に示すラップトップ型パーソナルコンピュータ2920は、筐体2921、表示部2922、キーボード2923、およびポインティングデバイス2924等を有する。また、ラップトップ型パーソナルコンピュータ2920は、筐体2921の内側にアンテナ、バッテリなどを備える。
例えば、本発明の一態様の半導体装置を用いた記憶装置は、ラップトップ型パーソナルコンピュータ2920の制御情報や、制御プログラムなどを長期間保持することができる。
また、本発明の一態様の半導体装置を用いたAIシステムをラップトップ型パーソナルコンピュータ2920の画像処理部に用いることで、ノイズ除去処理、階調変換処理、色調補正処理、輝度補正処理などの画像処理を行うことができる。また、解像度のアップコンバートに伴う画素間補間処理や、フレーム周波数のアップコンバートに伴うフレーム間補間処理などを実行することができる。また、階調変換処理は、画像の階調数を変換するだけでなく、階調数を大きくする場合の階調値の補間を行うことができる。また、ダイナミックレンジを広げる、ハイダイナミックレンジ(HDR)処理も、階調変換処理に含まれる。
また、AIシステムは、ユーザーの癖を学習し、ラップトップ型パーソナルコンピュータ2920の操作のアシストを行うことができる。AIシステムを搭載したラップトップ型パーソナルコンピュータ2920は、ユーザーの指の動きや、目線などから表示部2922へのタッチ入力を予測することができる。また、テキストの入力においては、過去のテキスト入力情報や、前後のテキストや写真などの図から入力予測を行い、変換のアシストを行う。これにより、入力ミスや変換ミスを極力低減することができる。
図70(E)は、自動車の一例を示す外観図、図70(F)は、ナビゲーション装置860を示している。自動車2980は、車体2981、車輪2982、ダッシュボード2983、およびライト2984等を有する。また、自動車2980は、アンテナ、バッテリなどを備える。ナビゲーション装置860は、表示部861、操作ボタン862、及び外部入力端子863を具備する。自動車2980とナビゲーション装置860は、それぞれ独立していても良いが、ナビゲーション装置860が自動車2980に組み込まれ、連動して機能する構成とするのが好ましい。
例えば、本発明の一態様の半導体装置を用いた記憶装置は、自動車2980やナビゲーション装置860の制御情報や、制御プログラムなどを長期間保持することができる。また、本発明の一態様の半導体装置を用いたAIシステムを自動車2980の制御装置などに用いることで、AIシステムは、ドライバーの運転技術や癖を学習し、安全運転のアシストや、ガソリンやバッテリなどの燃料を効率的に利用する運転のアシストを行うことができる。安全運転のアシストとしては、ドライバーの運転技術や癖を学習するだけでなく、自動車2980の速度や移動方法といった自動車の挙動、ナビゲーション装置860に保存された道路情報などを複合的に学習し、走行中のレーンから外れることの防止や、他の自動車、歩行者、構造体などとの衝突回避が実現できる。具体的には、進行方向に急カーブが存在する場合、ナビゲーション装置860はその道路情報を自動車2980に送信し、自動車2980の速度の制御や、ハンドル操作のアシストを行うことができる。
本実施の形態は、他の実施の形態や実施例などに記載した構成と適宜組み合わせて実施することが可能である。
100  容量素子、130  導電体、200  トランジスタ、203  導電体、203a  導電体、203b  導電体、205  導電体、205a  導電体、205b  導電体、208  絶縁体、210  絶縁体、216  絶縁体、220  絶縁体、222  絶縁体、224  絶縁体、230  酸化物、230a  酸化物、230b  酸化物、230c  酸化物、231  領域、231a  領域、231b  領域、232  領域、232a  領域、232b  領域、234  領域、239  領域、250  絶縁体、250a  絶縁体、252  導電体、252a  導電体、252b  導電体、252c  導電体、252d  導電体、256  導電体、260  導電体、260a  導電体、260b  導電体、270  絶縁体、271  絶縁体、272  絶縁体、274  絶縁体、280  絶縁体、600  セル

Claims (17)

  1.  第1の導電体と、
     前記第1の導電体上の第2の導電体と、
     前記第2の導電体を覆う第1の絶縁体と、
     前記第1の絶縁体上の第1の酸化物と、
     前記第1の酸化物上の第2の酸化物と、
     を有し、
     前記第1の酸化物および前記第1の絶縁体には、少なくとも前記第1の導電体の一部と重なる開口が設けられ、
     前記第2の酸化物は、前記開口を介して前記第1の導電体と電気的に接続することを特徴とする半導体装置。
  2.  請求項1において、
     前記第2の酸化物の端部は、前記第1の酸化物の端部と概略一致することを特徴とする半導体装置。
  3.  請求項1において、
     前記半導体装置は、さらに、
     第3の導電体と、
     前記第3の導電体上の第4の導電体と、
     前記第2の酸化物上の第3の酸化物と、
     前記第3の酸化物上の第2の絶縁体と、
     前記第2の絶縁体上の第5の導電体を有し、
     前記第4の導電体は、前記第1の絶縁体に覆われ、
     前記第5の導電体は、前記第1の絶縁体、前記第1の酸化物、前記第2の酸化物、前記第3の酸化物、および前記第2の絶縁体を間に挟み、前記第3の導電体および前記第4の導電体と重なることを特徴とする半導体装置。
  4.  請求項3において、
     前記第1の導電体と、前記第3の導電体は、同じ材料を有し、
     前記第2の導電体と、前記第4の導電体は、同じ材料を有することを特徴とする半導体装置。
  5.  請求項1において、
     前記第2の導電体は、金属窒化物を含むことを特徴とする半導体装置。
  6.  請求項5において、
     前記金属窒化物は、窒化チタンまたは窒化タンタルであることを特徴とする半導体装置。
  7.  絶縁表面上に第1の導電膜を形成し、
     前記第1の導電膜上に第2の導電膜を形成し、
     前記第2の導電膜および前記第1の導電膜をパターニングして第1の導電体および前記第1の導電体上の第2の導電体を形成し、
     前記第1の導電体および前記第2の導電体を覆うように第1の絶縁膜を形成し、
     前記第1の絶縁膜を、前記第2の導電体が露出するように加工して、第1の絶縁体を形成し、
     前記第1の絶縁体および前記第2の導電体上に第2の絶縁体を形成し、
     前記第2の絶縁体上に第1の酸化膜を形成し、
     前記第1の酸化膜および前記第2の絶縁体に、少なくとも前記第1の導電体の一部と重なる開口を形成し、
     前記第1の酸化膜および前記第1の導電体上に第2の酸化膜を形成し、
     前記第2の酸化膜および前記第1の酸化膜をパターニングして、第1の酸化物、および前記第1の酸化物上の第2の酸化物を形成することを特徴とする半導体装置の作製方法。
  8.  請求項7において、
     前記第2の導電膜および前記第1の導電膜のパターニングにより、さらに第3の導電体および前記第3の導電体上の第4の導電体を形成し、
     前記第2の酸化物上に第3の酸化膜を形成し、
     前記第3の酸化膜上に第2の絶縁膜を形成し、
     前記第2の絶縁膜上に第3の導電膜を形成し、
     前記第3の導電膜をパターニングして第5の導電体を形成し、
     前記第2の絶縁膜をパターニングして第3の絶縁体を形成し、
     前記第3の酸化膜をパターニングして第3の酸化物を形成し、
     前記第5の導電体は、前記第2の絶縁体、前記第1の酸化物、前記第2の酸化物、前記第3の酸化物、および前記第3の絶縁体を間に挟み、前記第3の導電体および前記第4の導電体と重なることを特徴とする半導体装置の作製方法。
  9.  請求項7において、
     前記第2の導電膜は、金属窒化物を含むことを特徴とする半導体装置の作製方法。
  10.  請求項9において、
     前記金属窒化物は、窒化チタンまたは窒化タンタルであることを特徴とする半導体装置の作製方法。
  11.  第1の導電体と、
     前記第1の導電体上の第1の絶縁体と、
     前記第1の絶縁体上の第1の酸化物と、
     前記第1の酸化物上の第2の酸化物と、
     前記第2の酸化物上の第3の酸化物と、
     前記第3の酸化物上の第2の絶縁体と、
     前記第2の絶縁体上の第2の導電体と、
     前記第2の絶縁体の側面と、前記第2の導電体の側面に設けられた第3の絶縁体と、
     前記第3の絶縁体の側面に設けられた第4の絶縁体と、
     を有し、
     前記第1の酸化物および前記第1の絶縁体には、前記第1の導電体の一部と重なる開口が設けられ、
     前記第2の酸化物は、前記開口を介して前記第1の導電体と電気的に接続することを特徴とする半導体装置。
  12.  請求項11において、
     前記第2の酸化物の側面、および前記第3の酸化物の側面は、前記第1の酸化物の側面と同一平面を有することを特徴とする半導体装置。
  13.  請求項11において、
     前記第2の酸化物の端部、および前記第3の酸化物の端部は、前記第1の酸化物の端部と概略一致することを特徴とする半導体装置。
  14.  請求項11において、
     前記半導体装置は、さらに、
     第3の導電体と、
     第4の酸化物と、
     を有し、
     前記第4の酸化物は、前記第3の酸化物と前記第2の絶縁体の間に設けられ、
     前記第3の導電体は、前記第1の絶縁体、前記第1の酸化物、前記第2の酸化物、前記第3の酸化物、前記第4の酸化物、および前記第2の絶縁体を間に挟み、前記第2の導電体と重なることを特徴とする半導体装置。
  15.  請求項14において、
     前記第1の導電体と、前記第3の導電体は、同じ材料を有することを特徴とする半導体装置。
  16.  第1の導電体および第2の導電体上に第1の絶縁膜を形成し、
     前記第1の絶縁膜上に第1の酸化膜を形成し、
     前記第1の酸化膜および前記第1の絶縁膜に、少なくとも前記第1の導電体の一部と重なる開口を形成し、
     前記第1の酸化膜および前記第1の導電体上に第2の酸化膜を形成し、
     前記第2の酸化膜上に第3の酸化膜を形成し、
     前記第3の酸化膜、前記第2の酸化膜および前記第1の酸化膜をパターニングして、第1の酸化物、前記第1の酸化物上の第2の酸化物、および前記第2の酸化物上の第3の酸化物を形成し、
     前記第1の酸化物、前記第2の酸化物、および前記第3の酸化物を覆うように第2の絶縁膜を形成し、
     前記第2の絶縁膜上に第1の導電膜を形成し、
     前記第1の導電膜、および前記第2の絶縁膜をパターニングして、第3の導電体、および第1の絶縁体を形成し、
     前記第3の導電体、および前記第1の絶縁体を覆うように第3の絶縁膜を形成し、
     前記第3の絶縁膜上に第4の絶縁膜を形成し、
     前記第4の絶縁膜および前記第3の絶縁膜をエッチングにより加工して、前記第3の導電体の側面、および前記第1の絶縁体の側面に第2の絶縁体、および前記第2の絶縁体の側面に第3の絶縁体を形成することを特徴とする半導体装置の作製方法。
  17.  請求項16において、
     前記第3の導電体は、前記第1の絶縁膜、前記第1の酸化物、前記第2の酸化物、前記第3の酸化物、および前記第1の絶縁体を間に挟み、前記第2の導電体と重なることを特徴とする半導体装置の作製方法。
PCT/IB2018/051253 2017-03-13 2018-02-28 半導体装置、および半導体装置の作製方法 WO2018167591A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US16/492,282 US11004961B2 (en) 2017-03-13 2018-02-28 Semiconductor device and method for manufacturing semiconductor device
CN201880016444.0A CN110678989B (zh) 2017-03-13 2018-02-28 半导体装置及半导体装置的制造方法
CN202410057392.9A CN118102714A (zh) 2017-03-13 2018-02-28 半导体装置及半导体装置的制造方法
KR1020197029067A KR102447148B1 (ko) 2017-03-13 2018-02-28 반도체 장치 및 반도체 장치의 제작 방법
JP2019505302A JP7118948B2 (ja) 2017-03-13 2018-02-28 半導体装置
DE112018001295.6T DE112018001295T5 (de) 2017-03-13 2018-02-28 Halbleitervorrichtung und Herstellungsverfahren für eine Halbleitervorrichtung
US17/176,211 US11670705B2 (en) 2017-03-13 2021-02-16 Semiconductor device and method for manufacturing semiconductor device
JP2022124059A JP7351986B2 (ja) 2017-03-13 2022-08-03 半導体装置
US18/135,793 US11955538B2 (en) 2017-03-13 2023-04-18 Semiconductor device and method for manufacturing semiconductor device
JP2023149022A JP2023164563A (ja) 2017-03-13 2023-09-14 半導体装置
US18/624,488 US20240258409A1 (en) 2017-03-13 2024-04-02 Semiconductor device and method for manufacturing semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017047420 2017-03-13
JP2017-047420 2017-03-13
JP2017-072177 2017-03-31
JP2017072177 2017-03-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/492,282 A-371-Of-International US11004961B2 (en) 2017-03-13 2018-02-28 Semiconductor device and method for manufacturing semiconductor device
US17/176,211 Continuation US11670705B2 (en) 2017-03-13 2021-02-16 Semiconductor device and method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2018167591A1 true WO2018167591A1 (ja) 2018-09-20

Family

ID=63522676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/051253 WO2018167591A1 (ja) 2017-03-13 2018-02-28 半導体装置、および半導体装置の作製方法

Country Status (6)

Country Link
US (4) US11004961B2 (ja)
JP (3) JP7118948B2 (ja)
KR (1) KR102447148B1 (ja)
CN (2) CN118102714A (ja)
DE (1) DE112018001295T5 (ja)
WO (1) WO2018167591A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118102714A (zh) 2017-03-13 2024-05-28 株式会社半导体能源研究所 半导体装置及半导体装置的制造方法
US20210151437A1 (en) * 2020-12-23 2021-05-20 Intel Corporation Two transistor gain cell memory with indium gallium zinc oxide
US12101966B2 (en) 2022-04-28 2024-09-24 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210744A (ja) * 2010-03-26 2011-10-20 Toshiba Corp 半導体装置及びその製造方法
JP2015109429A (ja) * 2013-10-22 2015-06-11 株式会社半導体エネルギー研究所 半導体装置
JP2015109425A (ja) * 2013-10-22 2015-06-11 株式会社半導体エネルギー研究所 半導体装置および半導体装置の作製方法
JP2015144271A (ja) * 2013-12-26 2015-08-06 株式会社半導体エネルギー研究所 半導体装置
JP2016039375A (ja) * 2014-08-08 2016-03-22 株式会社半導体エネルギー研究所 半導体装置および電子機器

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
KR101644406B1 (ko) * 2008-09-12 2016-08-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
KR101722409B1 (ko) 2008-09-19 2017-04-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR101711249B1 (ko) 2008-11-07 2017-02-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
US20100224878A1 (en) * 2009-03-05 2010-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9391209B2 (en) 2010-02-05 2016-07-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011096275A1 (en) 2010-02-05 2011-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20110107130A (ko) * 2010-03-24 2011-09-30 삼성전자주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR101809105B1 (ko) 2010-08-06 2017-12-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 집적 회로
TWI570920B (zh) 2011-01-26 2017-02-11 半導體能源研究所股份有限公司 半導體裝置及其製造方法
WO2013039126A1 (en) 2011-09-16 2013-03-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9082663B2 (en) 2011-09-16 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR102089505B1 (ko) 2011-09-23 2020-03-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR101829858B1 (ko) * 2011-09-30 2018-02-21 엘지디스플레이 주식회사 산화물 박막트랜지스터 및 이의 제조방법
JP5806905B2 (ja) 2011-09-30 2015-11-10 株式会社半導体エネルギー研究所 半導体装置
US8981367B2 (en) * 2011-12-01 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6111398B2 (ja) * 2011-12-20 2017-04-12 株式会社Joled 表示装置および電子機器
US9337213B2 (en) * 2012-04-04 2016-05-10 Sharp Kabushiki Kaisha Semiconductor device and method for manufacturing same
KR101957972B1 (ko) * 2012-06-05 2019-07-04 엘지디스플레이 주식회사 박막 트랜지스터 기판 및 그 제조 방법
JP6071524B2 (ja) * 2012-12-19 2017-02-01 株式会社東芝 不揮発性半導体記憶装置
TWI607510B (zh) * 2012-12-28 2017-12-01 半導體能源研究所股份有限公司 半導體裝置及半導體裝置的製造方法
TWI664731B (zh) * 2013-05-20 2019-07-01 半導體能源研究所股份有限公司 半導體裝置
JP6570817B2 (ja) * 2013-09-23 2019-09-04 株式会社半導体エネルギー研究所 半導体装置
JP6509596B2 (ja) * 2014-03-18 2019-05-08 株式会社半導体エネルギー研究所 半導体装置
TWI663726B (zh) * 2014-05-30 2019-06-21 Semiconductor Energy Laboratory Co., Ltd. 半導體裝置、模組及電子裝置
US20160155849A1 (en) * 2014-12-02 2016-06-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing semiconductor device, module, and electronic device
WO2016128859A1 (en) 2015-02-11 2016-08-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2016154225A (ja) 2015-02-12 2016-08-25 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
TWI718125B (zh) 2015-03-03 2021-02-11 日商半導體能源研究所股份有限公司 半導體裝置及其製造方法
CN104810375B (zh) 2015-04-28 2018-09-04 合肥鑫晟光电科技有限公司 一种阵列基板及其制作方法和一种显示装置
US9837547B2 (en) * 2015-05-22 2017-12-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide conductor and display device including the semiconductor device
WO2017132153A1 (en) * 2016-01-27 2017-08-03 Gynesonics, Inc. Disposable sheath for ultrasound probe mounted on reusable needle structure
CN118102714A (zh) * 2017-03-13 2024-05-28 株式会社半导体能源研究所 半导体装置及半导体装置的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210744A (ja) * 2010-03-26 2011-10-20 Toshiba Corp 半導体装置及びその製造方法
JP2015109429A (ja) * 2013-10-22 2015-06-11 株式会社半導体エネルギー研究所 半導体装置
JP2015109425A (ja) * 2013-10-22 2015-06-11 株式会社半導体エネルギー研究所 半導体装置および半導体装置の作製方法
JP2015144271A (ja) * 2013-12-26 2015-08-06 株式会社半導体エネルギー研究所 半導体装置
JP2016039375A (ja) * 2014-08-08 2016-03-22 株式会社半導体エネルギー研究所 半導体装置および電子機器

Also Published As

Publication number Publication date
JP7118948B2 (ja) 2022-08-16
DE112018001295T5 (de) 2020-01-02
US20210167194A1 (en) 2021-06-03
US11955538B2 (en) 2024-04-09
JP2023164563A (ja) 2023-11-10
US11670705B2 (en) 2023-06-06
JP2022145780A (ja) 2022-10-04
US20230299183A1 (en) 2023-09-21
KR20190122804A (ko) 2019-10-30
US20240258409A1 (en) 2024-08-01
JPWO2018167591A1 (ja) 2020-01-09
JP7351986B2 (ja) 2023-09-27
KR102447148B1 (ko) 2022-09-23
CN110678989A (zh) 2020-01-10
CN118102714A (zh) 2024-05-28
US11004961B2 (en) 2021-05-11
CN110678989B (zh) 2024-02-13
US20200052099A1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
JP7245371B2 (ja) 半導体装置
JP2019029666A (ja) 半導体装置、および半導体装置の作製方法
JP2018190976A (ja) 半導体装置、および半導体装置の作製方法
JP7351986B2 (ja) 半導体装置
JP7208891B2 (ja) 半導体装置の作製方法
JP2023086808A (ja) 半導体装置
JP2018133563A (ja) 半導体装置、および半導体装置の作製方法
WO2018167588A1 (ja) 半導体装置、および半導体装置の作製方法
JP7086934B2 (ja) 半導体装置
JP2019054244A (ja) 半導体装置、および半導体装置の作製方法
JP6894726B2 (ja) 半導体装置、および半導体装置の作製方法
WO2018167601A1 (ja) 半導体装置、および半導体装置の作製方法
WO2018163012A1 (ja) 半導体装置、および半導体装置の作製方法
WO2018163020A1 (ja) 導電体、導電体の作製方法、半導体装置、および半導体装置の作製方法
WO2018163013A1 (ja) 半導体装置、および半導体装置の作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767800

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505302

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197029067

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18767800

Country of ref document: EP

Kind code of ref document: A1