WO2018166195A1 - 带安装座的血管内压力测量导管 - Google Patents

带安装座的血管内压力测量导管 Download PDF

Info

Publication number
WO2018166195A1
WO2018166195A1 PCT/CN2017/106230 CN2017106230W WO2018166195A1 WO 2018166195 A1 WO2018166195 A1 WO 2018166195A1 CN 2017106230 W CN2017106230 W CN 2017106230W WO 2018166195 A1 WO2018166195 A1 WO 2018166195A1
Authority
WO
WIPO (PCT)
Prior art keywords
mount
pressure sensor
pressure measuring
measuring catheter
distal
Prior art date
Application number
PCT/CN2017/106230
Other languages
English (en)
French (fr)
Inventor
宋亮
陈丽丽
Original Assignee
深圳北芯生命科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳北芯生命科技有限公司 filed Critical 深圳北芯生命科技有限公司
Priority to EP17901305.7A priority Critical patent/EP3597101B1/en
Priority to ES17901305T priority patent/ES2908222T3/es
Publication of WO2018166195A1 publication Critical patent/WO2018166195A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/0215Measuring pressure in heart or blood vessels by means inserted into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6867Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
    • A61B5/6876Blood vessel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors

Definitions

  • stenosis of blood vessels affects the normal supply of blood, and even causes vascular occlusion when severe stenosis, which may lead to serious lesions such as myocardial infarction.
  • Percutaneous coronary intervention (PCI) is currently a more effective treatment for these diseases.
  • PCI percutaneous coronary intervention
  • the traditional method of judging whether to perform interventional therapy is usually a doctor or the like to visually measure the degree of coronary vascular stenosis by coronary angiography.
  • this traditional method of judgment does not help doctors to make accurate judgments, and may cause over-treatment of doctors due to misjudgment.
  • FFR Fractional Flow Reverse
  • the distal end of the stenosis eg, downstream of the stenosis, away from the aorta
  • the proximal side of the stenosis eg, stenosis
  • Blood pressure readings upstream close to the aorta.
  • Clinical studies have shown that the higher the stenosis, the lower the FFR value, and whether the FFR value is less than the evaluation value (eg, 0.8) can be used as a useful criterion by which the physician can decide whether to perform interventional therapy for such a patient. The validity of this criterion has also been confirmed by a number of large clinical studies in Europe and the United States (such as the FAME clinical study).
  • a pressure sensing catheter having a rapid exchange (RX) port has been used in recent years.
  • the distal end portion thereof has a lumen through which the guide wire is passed, The distal portion is nested over the guidewire whereby the pressure sensing catheter can be moved along the guidewire to a predetermined position.
  • the pressure sensing catheter Prior to coronary intervention, the pressure sensing catheter was passed through the stenotic distal and proximal sides to record distal and proximal blood pressure, respectively. Thereby, a narrow FFR value can be calculated.
  • pressure sensing catheters may pass through well-shaped, variable-end blood vessels, such as the coronary vessels of the heart, due to the need to perform pressure measurements at different locations within the body.
  • the pressure sensing catheter is inevitably deformed by being squeezed during the movement of the guide wire in the blood vessel. If the pressure sensor (especially the sensing portion) provided in the pressure sensing catheter is, for example, also squeezed or the like, it is possible to adversely affect the measurement accuracy or accuracy of the pressure sensing catheter.
  • the present invention has been made in view of the above-described state of the art, and an object thereof is to provide an intravascular pressure measuring catheter with a mount capable of effectively improving the measurement accuracy or accuracy of a pressure sensing catheter.
  • the present invention provides an intravascular pressure measuring catheter with a mount comprising: a distal cannula having a guidewire lumen slidably receiving a separate medical guidewire; a proximal portion, which is The distal sleeve is coupled; and a pressure sensor disposed to the mount and including a sensing portion and a lead portion, the sensing portion having a sensing region that senses pressure, the lead portion to be A blood pressure signal generated by the sensing region is derived, and the sensing portion of the pressure sensor has a gap with the mount.
  • a mount for mounting a pressure sensor is provided, and the sensing portion of the pressure sensor is not in contact with the mount, in which case even if the intravascular pressure measuring catheter enters a blood vessel having a shape change
  • the sensing portion of the pressure sensor in particular the pressure sensor
  • the body of the pressure measuring catheter whereby the pressure measurement of the pressure sensor, for example, the bending deformation of the pressure measuring catheter (especially the distal sleeve) can be effectively suppressed.
  • the resulting effect increases the measurement accuracy of the intravascular pressure measurement catheter.
  • the lead portion may be electrically connected to a wire extending along the proximal portion to thereby derive a blood pressure signal to the outside of the body.
  • the mount has a step portion, the lead portion of the pressure sensor is fixed to the step portion, and the sensing portion is There is a gap in the step portion.
  • the sensing portion of the pressure sensor can be well contacted with the mount.
  • the step portion includes a first surface and a second surface, and a height difference between the first surface and the second surface is
  • the lead portion of the pressure sensor is fixed to the first surface, and the first surface is a slope that is inclined toward the proximal portion. In this case, the adverse effect of the deformation of the distal sleeve on the pressure sensor can be further suppressed.
  • the mount is fixed to the distal sleeve.
  • the mount and the pressure sensor disposed within the mount are capable of reaching the lesion with the distal cannula.
  • the mount can be secured to the distal sleeve by gluing or welding.
  • the mount has a bottom surface configured to match an outer surface of the distal sleeve, the mount being The bottom surface is fixed to the distal sleeve. Thereby, the mount can be firmly fixed to the distal sleeve.
  • an outer tube covering at least the mount is further included, and a portion of the outer tube corresponding to the sensing region is provided with an opening.
  • the pressure sensor can obtain both the protection of the outer tube and the full contact with the blood in the blood vessel through the opening to more accurately measure the blood pressure.
  • the mount has mounting grooves and wiring grooves which are disposed along the longitudinal direction of the distal sleeve and communicate with each other, and the pressure A sensor is disposed in the mounting groove, and the wires are disposed along the wiring groove.
  • the mount can accommodate both the pressure sensor and the lead from the pressure sensor.
  • the width of the mounting groove is larger than the width of the pressure sensor, and the length of the mounting groove is larger than The length of the pressure sensor is described, and the depth of the mounting groove is greater than the thickness of the pressure sensor.
  • the lead portion has a pad region, and the lead wire is connected to the pad region via soldering. Thereby, the bonding strength of the wire to the pad region can be enhanced.
  • the hardness of the mount is greater than the hardness of the distal sleeve.
  • the material of the mount may be composed of one or more selected from the group consisting of stainless steel or stainless steel modified materials, cobalt alloys, chromium alloys, or molybdenum alloys.
  • the material of the mount may also be a high-strength modified polymer material or the like.
  • the Young's modulus of the mount is larger than the Young's modulus of the distal sleeve.
  • the Young's modulus reflects the physical quantity of the solid material against deformation, and the higher the Young's modulus, the better the ability of the solid material to resist deformation. Therefore, making the Young's modulus of the mount larger than the Young's modulus of the distal sleeve ensures that the mount has sufficient bending strength, whereby the mount is even if the distal sleeve is bent. It can be easily deformed to ensure the measurement accuracy of the pressure sensor mounted on the mount.
  • the guide wire lumen of the distal sleeve includes an extended section and a curved section.
  • a predetermined angle formed by a center line of the extended section and a center line of the curved section is greater than zero and less than 90 degrees. In this case, an increase in the cross-sectional area of the distal cannula portion can be suppressed, thereby suppressing the adverse effect of the cross-sectional area of the distal cannula on the blood pressure measurement accuracy.
  • the guide wire lumen includes a receiving port at the foremost end of the distal sleeve and a guide at the side of the distal sleeve
  • the medical guide wire enters the guide wire lumen from the receiving port and protrudes from the guide port. Thereby, damage to the distal cannula or the proximal end portion of the medical guide wire can be suppressed.
  • the The guidewire lumen includes a distal end receiving port at the distal cannula and a guide port at a side of the distal cannula from which the medical guidewire enters the guidewire lumen And extending from the receiving opening.
  • an intravascular pressure measuring catheter with a mount that suppresses the influence of the bending deformation of the medical catheter on the pressure measurement result and improves the measurement accuracy of the intravascular pressure measuring catheter.
  • FIG. 1 is a perspective view showing a three-dimensional structure of an intravascular pressure measuring catheter with a mount according to an embodiment of the present invention
  • Figure 2 is a perspective view showing another perspective of the intravascular pressure measuring catheter shown in Figure 1;
  • Figure 3 is a schematic cross-sectional view showing the lumen of the guide wire of the intravascular pressure measuring catheter
  • Figure 4 is a partial cross-sectional view showing the proximal end portion of the intravascular pressure measuring catheter
  • Figure 5 is a schematic view showing the structure of a pressure sensor of an intravascular pressure measuring catheter
  • Figure 6 is a perspective view showing the mounting structure of the mount of the intravascular pressure measuring catheter
  • FIG. 7(a) is a partial cross-sectional view showing an intravascular pressure measuring catheter
  • FIG. 7(b) is a partially enlarged schematic view showing the intravascular pressure measuring catheter including the mounting seat shown in FIG. 7(a);
  • Fig. 8 is a perspective view showing the structure of the distal end cannula sheathed outer tube of the blood pressure measuring catheter of the present embodiment.
  • 1 blood pressure measuring catheter, 10... distal sleeve, 20... proximal end, 23... wire, 30... mount, 40... pressure sensor, 41... sensing part, 42... lead part, 50... medical guide wire, 60... outer tube.
  • the intravascular pressure measuring catheter with a mount according to the present invention has a mount for mounting a pressure sensor for measuring blood pressure, and ensures that the sensing portion of the pressure sensor is not in contact with the mount.
  • the intravascular pressure measuring catheter according to the present invention enters a blood vessel having a shape change end such as a high degree of curvature, it is possible to suppress contact between the sensing portion of the pressure sensor, particularly the pressure sensor, and the pressure measuring catheter main body. Thereby, it is possible to effectively suppress the influence of, for example, the bending deformation of the pressure measuring catheter (especially the distal cannula) on the pressure measurement result of the pressure sensor, and improve the measurement accuracy of the intravascular pressure measuring catheter.
  • an intravascular pressure measuring catheter is sometimes also referred to as a "blood pressure measuring catheter” or a “medical measuring catheter.”
  • the intravascular pressure measuring catheter according to the present invention is, for example, suitable for measuring a blood pressure or a pressure gradient in a coronary artery of a patient, but the present invention is not limited thereto, and for example, the intravascular pressure measuring catheter according to the present invention is also applicable to a vein. Blood pressure or pressure gradients in the heart valve and its vicinity or other blood vessels, as well as other uses for measuring fluid pressure within the body.
  • Fig. 1 is a schematic perspective view showing the intravascular pressure measuring catheter 1 with a mount according to the present embodiment.
  • Fig. 2 is a schematic perspective view showing another angle of the intravascular pressure measuring catheter 1 shown in Fig. 1.
  • the proximal portion 20 of the intravascular pressure measurement catheter 1 shows only a portion of the distal cannula 10 proximate.
  • an intravascular pressure measurement catheter 1 (also sometimes referred to as “blood pressure measurement catheter 1" or “medical measurement catheter 1”) can include a distal cannula 10, and can be coupled (or connected) to the distal cannula 10.
  • the blood pressure measuring catheter 1 may further include a pressure sensor 40 disposed at the mount 30. The pressure sensor 40 draws a blood pressure signal to an external device outside the body via a wire 23 described later.
  • the mount 30 can be disposed on the distal sleeve 10.
  • the pressure sensor 40 disposed on the mount 30 can also be positioned within the patient's anatomy (eg, a coronary vessel) with the distal cannula 10.
  • the mount 30 of the present embodiment is not limited to being disposed at the distal cannula 10.
  • the mount 30 can also be disposed in the proximal portion 20, in which case the mount 30 is disposed in the proximal portion.
  • the cross-sectional area of the portion of the distal cannula 10 can be reduced, whereby the influence of the increase in the cross-sectional area of the distal end portion of the blood pressure measuring catheter on the blood flow in the blood vessel can be suppressed, thereby improving the accuracy of the blood pressure measuring catheter.
  • the mount 30 can also be disposed at the junction of the distal sleeve 10 and the proximal portion 20.
  • the blood pressure measuring catheter 1 enters the patient's body, at which time the distal cannula 10 of the blood pressure measuring catheter 1 is positioned at a specific location within the body anatomy, such as the narrowing of the coronary artery.
  • the proximal portion 20 coupled to the distal cannula 10 extends from the patient to the outside of the patient and is coupled to an external device (not shown).
  • the external device includes, for example, a host that can be used to process blood pressure signals generated by the pressure sensor 40.
  • a host may have a display screen, in which case the host computer may also display blood pressure, blood pressure gradient or FFR readings, etc. at specific locations of the blood vessel measured by the pressure sensor 40 directly on its display screen.
  • a physician, medical technician, or other operator or the like can move the distal cannula 10 by operating a proximal portion 20 that is external to the patient's body that is coupled to the distal cannula 10, thereby enabling The end cannula 10 is pushed to, for example, a stenotic lesion of the blood vessel in the patient, and blood pressure measurement is performed using the pressure sensor 40 to obtain the desired FFR value.
  • the distal cannula 10 is located at the front end of the blood pressure measurement catheter 1.
  • the distal cannula 10 has a guidewire lumen 11 (see Fig. 2) that slidably receives a separate medical guidewire 50 (see Figure 8 described later).
  • the distal cannula 10 can thread a separate medical guidewire 50 and can be pushed along the medical guidewire 50 to, for example, a particular location within the patient.
  • the separate medical guide wire 50 refers to a medical guide wire that is separated from the blood pressure measurement catheter 1. That is, the medical guide wire 50 does not belong to an essential component of the blood pressure measurement catheter 1 according to the present embodiment.
  • the medical guide wire 50 is not particularly limited, and for example, the medical guide wire 50 may use a guide wire which is commonly used in interventional surgery.
  • the diameter of the medical guidewire 50 is, for example, 0.1 mm to 0.6 mm
  • the diameter of a typical or standard medical guidewire 50 is, for example, 0.36 mm (0.014 inch), 0.40 mm (0.016 inch), 0.64 mm (0.025 inch). )Wait.
  • the inner diameter of the guide wire lumen 11 of the distal cannula 10 is slightly larger than the outer diameter of the medical guide wire 50. In this case, the doctor or the like can conveniently select the medical guide wires 50 of different sizes.
  • the outer diameter of the medical guide wire 50 can be ensured to be smaller than the inner diameter of the guide wire lumen 11.
  • the distal cannula 10 can be easily threaded through the medical guidewire 50 and the medical guidewire 50 can be positioned within the guidewire lumen 11 of the distal cannula 10 Movement or relative sliding, on the other hand, can also suppress an increase in the cross-sectional area of the blood pressure measuring catheter 1, in particular the cross-sectional area of the distal cannula 10.
  • the guidewire lumen 11 preferably utilizes a smooth inner surface.
  • the guidewire lumen 11 for threading the medical guidewire 50 can be disposed only on the distal cannula 10. That is, the guidewire lumen 11 is only confined to the distal cannula 10, spaced apart from the proximal portion 20. In this case, since the guidewire lumen 11 of the received medical guidewire 50 is only disposed in the distal cannula 10, only the distal cannula 10 is worn when the medical guidewire 50 is threaded to the blood pressure measurement catheter 1. It is introduced on the medical guide wire 50, whereby different types of medical guide wires 50 can be conveniently used or replaced.
  • the manner of coupling the distal sleeve 10 to the proximal portion 20 is not particularly limited.
  • the distal sleeve 10 may be coupled to the proximal portion 20 by bonding, or may be coupled by a connector such as a cannula.
  • the distal sleeve 10 may be joined to the proximal portion 20 in a continuous manner to the outer surface, or may not be in a continuous manner, such as in a staggered position.
  • the distal cannula 10 can have a portion that overlaps the proximal portion 20 in the length direction of the blood pressure measurement catheter 1.
  • the distal cannula 10 can be separated from the proximal portion 20 by a coupling sleeve.
  • the shape of the distal sleeve 10 is not particularly limited, and as shown in Fig. 1, it may have a substantially circular tubular shape.
  • the present embodiment is not limited thereto, and the distal sleeve 10 according to the present embodiment may have a rectangular tubular shape, an elliptical tubular shape, or the like which is extended.
  • the distal sleeve 10 is preferably circular in shape from the standpoint of ease of processing and facilitating movement within the blood vessel.
  • the length of the distal cannula 10 is not particularly limited as long as the distal cannula 10 can be easily threaded through the medical guide wire 50 and can support the guidewire 50 at the distal cannula 10 It is sufficient to slide inside the wire lumen 11.
  • the length of the distal cannula 10 can be, for example, from about 0.5 cm to about 20 cm, preferably from 5 cm to 15 cm.
  • FIG. 3 shows a schematic cross-sectional view of the guide wire lumen 11 of the intravascular pressure measuring catheter 1.
  • the illustration of the mount 30 and the pressure sensor 40 according to the present embodiment is omitted.
  • the guide wire lumen 11 of the distal cannula 10 may have a receiving port 11a and a guiding port 11b.
  • the guidewire lumen 11 of the distal cannula 10 can receive the medical guidewire 50 through the receiving port 11a, and the medical guidewire 50 then slides along the guidewire lumen 11 and from the guidewire The guide port 11b of the inner chamber 11 is led out.
  • the blood pressure measuring catheter 1 can be smoothly slid along the medical guidewire 50, thereby positioning the distal cannula 10 to a specific position within the patient's body (eg, at the lesion).
  • the guidewire lumen 11 of the distal cannula 10 can also receive the medical guidewire 50 through the introducer port 11b (see Figure 3), thereby also positioning the distal cannula 10 into the patient's body.
  • Specific location eg lesion
  • the receiving opening 11a of the guide wire lumen 11 can be disposed at the foremost end of the distal cannula 10, whereby the medical guide wire 50 can be easily threaded from the receiving opening 11a to the distal cannula 10.
  • the guide port 11b of the guide wire lumen 11 may be disposed at the side of the blood pressure measuring catheter 1 (specifically, the side of the distal cannula 10), in which case the medical guide wire 50 may be from the guide wire
  • the receiving port 11a of the inner chamber 11 slides along the guide wire lumen 11 and is withdrawn from the guide port 11b, whereby the increase in the cross-sectional area of the distal cannula 10 can be suppressed, thereby suppressing the cross-sectional area of the distal cannula 10. Adverse effects of blood pressure measurement accuracy.
  • the guidewire lumen 11 can include an extension 111 and a curved section 112 (see FIG. 3) in communication with the extension 111.
  • the extended section 111 includes the above-described receiving opening 11a
  • the curved section 112 includes the above-described guiding opening 11b.
  • the broken line L1 and the broken line L2 represent the center line of the extended section 111 of the distal sleeve 10 and the center line of the curved section 112, respectively.
  • the extension section 111 communicates with the curved section 112 to form a through lumen, whereby a separate medical guidewire 50 can be received.
  • the medical guidewire 50 is received by the guidewire lumen 11 including the extension section 111 and the curved section 112, thereby enabling the distal cannula 10 to slide along the medical guidewire 50 to a predetermined location within the patient's body (eg, a lesion) At).
  • the extension 111 of the guidewire lumen 11 can extend along the length of the distal cannula 10. Thereby, it can be ensured that the extending section 111 substantially coincides with the moving direction of the distal sleeve 10.
  • the curved section 112 of the guide wire lumen 11 can be Curved. In this case, an increase in the cross-sectional area of the distal cannula 10 can be suppressed, thereby suppressing the adverse effect of the cross-sectional area of the distal cannula 10 on the blood pressure measurement accuracy.
  • the center line L1 of the extended section 111 and the center line L2 of the curved section 112 form a predetermined angle ⁇ .
  • the predetermined angle ⁇ formed by the center line of the extended section 111 and the center line of the curved section 112 may preferably be greater than zero by less than 90° from the viewpoint of suppressing an increase in the sectional area of the distal sleeve 10.
  • the predetermined angle ⁇ formed by the centerline of the extended section 111 and the centerline of the curved section 112 may be, for example, 20° to 60°.
  • the predetermined angle ⁇ formed by the center line of the extended section 111 and the center line of the curved section 112 is preferably 30° to 50° from the viewpoint of easy threading of the medical guide wire 50.
  • the medical guide wire 50 can enter from the receiving opening 11a of the extension 111 of the guide wire lumen 11 and relatively move along the extended section 111, then enter the curved section 112, and finally from the guide opening 11b of the curved section 112. Export. Additionally, in some examples, the medical guidewire 50 can also enter the guidewire lumen 11 from the guide port 11b of the curved section 112 and move relative to or relative to each other within the guidewire lumen 11 for receipt from the extension section 111. The mouth 11a is extended.
  • the medical guide wire 50 when the medical guide wire 50 is relatively moved along the guide wire lumen 11, it is constrained by the curved section 112, so that the moving direction of the medical guide wire 50 changes accordingly. Thereby, it is possible to suppress damage to the distal cannula 10 or the proximal end portion 20 by the medical guide wire 50 (specifically, the medical guide wire 50 first enters the end of the guide wire lumen 11).
  • the medical guide wire 50 can protrude or enter from the side of the distal sleeve 10 (specifically, the guide opening 11b of the curved section 112), the distal sleeve 10 and the proximal end portion 20 For example, it can be coupled in a coaxial manner (for example, refer to FIG. 1).
  • it is possible to effectively suppress an increase in the cross-sectional area of the blood pressure measuring catheter 1 as a whole (particularly, the junction of the distal cannula 10 and the proximal end portion 20), thereby facilitating the movement of the blood pressure measuring catheter 1 within the blood vessel, And the blood pressure measuring catheter 1 can be sent to a narrower blood vessel in the body.
  • the guide wire lumen 11 has been described above including the extended section 111 and the curved section 112, the present invention is not limited thereto.
  • the guidewire lumen 11 can be constructed solely of the extensions 111 described above.
  • the distal sleeve 10 and the proximal portion 20 may also not be coupled in a continuous manner, such as a staggered position (not shown).
  • the distal sleeve 10 can preferably be comprised of at least one selected from the group consisting of polyimide (PI), polyester, or nylon.
  • PI polyimide
  • the distal sleeve 10 passes through the shape When a complicated blood vessel is bent, it can be deformed in accordance with the shape of the blood vessel, thereby suppressing damage to the blood vessel caused by the distal cannula 10 of the blood pressure measuring catheter 1.
  • FIG. 4 shows a partial cross-sectional schematic view of the proximal portion 20 of the intravascular pressure measurement catheter.
  • Figure 4 only a portion of the proximal portion 20 of the intravascular pressure measurement catheter, particularly the portion adjacent the distal cannula 10, is shown.
  • the proximal portion 20 is coupled to the distal cannula 10.
  • the proximal portion 20 is located at the rear end of the blood pressure measuring catheter 1 (relative to the distal cannula 10 located at the front end of the blood pressure measuring catheter 1) (see Fig. 1).
  • the proximal portion 20 can include a proximal outer tube 21 and a mandrel 22 disposed within the proximal outer tube 21.
  • a medium or protective glue can be filled between the proximal outer tube 21 and the mandrel 22.
  • proximal outer tube 21 and mandrel 22 shown in Figure 4 are not necessarily drawn to scale, for example, in some examples, the diameter of the mandrel 22 may be larger, and in other examples, the core
  • the shaft 22 can fill the lumen of the proximal outer tube 21.
  • the mandrel proximal portion 20 of the proximal portion 20 can, for example, connect the distal portion 10 to an external device (not shown) external to the body.
  • a wire 23 (see FIG. 1) connected to the pressure sensor 40 may be disposed within the mandrel 22 of the proximal portion 20 such that the wire 23 may be led out along the mandrel 22 to an external device external to the body, thereby enabling The blood pressure signal sensed by the pressure sensor 40 is transmitted to an external device.
  • the wire 23 may also be disposed between the mandrel 22 and the proximal outer tube 21, in which case the wire 23 is also capable of transmitting a blood pressure signal sensed by the pressure sensor 40 to an external device.
  • the proximal outer tube 21 can be constructed, for example, from a stainless steel hypotube.
  • the proximal portion 20 may be constructed of other materials such as nickel titanium alloy, nylon, plastic, and the like.
  • the mandrel 22 can extend through the proximal outer tube 21 along the length of the proximal portion 20.
  • proximal portion 20 is coupled to the distal cannula 10 and the other end extends along the anatomy of the body (e.g., a blood vessel) to the outside of the body, for example, to an external device as described above.
  • the proximal portion 20 outside the patient's body is not shown in the drawings.
  • the proximal portion 20 located outside the patient's body can generally be operated as a part of the blood pressure measuring catheter 1 by a doctor or the like. By operating the portion, the blood pressure measuring catheter 1 can be further deepened into the blood vessel of the patient. Advance or withdraw from the blood vessels in the patient. Additionally, the proximal portion 20 located outside the patient's body will be coupled to an external device (not shown).
  • the mandrel 22 can support the proximal outer tube 21 to provide physical support for the proximal outer tube 21, thereby ensuring that the proximal end portion 21 can be moved by a physician or the like to reliably move and push the proximal portion 20 and a distal portion 10 coupled to the proximal portion 20.
  • the mandrel 22 may be a higher hardness material such as stainless steel, rigid plastic, or the like. In this case, the mandrel 22 is better able to support the proximal outer tube 21, thereby enabling better pushing of the proximal portion 20.
  • a physician or the like can be placed in the body by manipulation of the proximal portion 20 of the body (eg, in a coronary vessel) The distal cannula 10 is pushed to a predetermined position (eg, at a lesion) and an intravascular blood pressure measurement can be made by the pressure sensor 40.
  • the shape of the proximal end portion 20 is not particularly limited, and in some examples, the proximal end portion 20 may be an elongated tubular shape, and in other examples, the proximal end portion 20 may also be extended. Rectangular tubular, elliptical tubular, etc. In the present embodiment, the proximal end portion 20 is preferably elongated tubular from the viewpoint of ease of processing and facilitating movement within the blood vessel.
  • the length of the proximal portion 20 is not particularly limited as long as the length of the proximal portion 20 can be extended from a predetermined position (for example, a lesion) of a patient (for example, a vein, an artery) to a monitoring device outside the patient's body or the like.
  • a typical length of the proximal portion 20 is, for example, from 100 cm to 200 cm, although the length of the proximal portion 20 may also be longer, for example 300 cm, or shorter, for example 50 cm.
  • FIG. 5 shows a schematic structural view of the pressure sensor 40 of the blood pressure measuring catheter 1.
  • the pressure sensor 40 may be a pressure sensor for measuring blood pressure (fluid pressure) in a blood vessel. As shown in FIG. 5, the pressure sensor 40 may have two output terminals (refer to the pad 421, the pad 422 described later). However, the embodiment is not limited thereto, and a plurality of output pressure sensors 40 may be used.
  • the pressure sensor 40 can be disposed on the mount 30.
  • the distal cannula 10 or the proximal cannula 20 will not deform directly when moved within the blood vessel.
  • the induced stress change is directly transmitted to the pressure sensor 40, whereby the measurement accuracy of the pressure sensor 40 can be improved.
  • the blood pressure signal sensed by the pressure sensor 40 can be output to the outside of the body via the wire 23.
  • the blood pressure signal sensed by the pressure sensor 40 can also be output to the outside of the body via a wireless connection such as Bluetooth, wifi, or infrared transmission.
  • the pressure sensor 40 may include a sensing portion 41 and a lead portion 42.
  • the pressure sensor 40 may be divided into a sensing portion 41 and a lead portion 42, that is, the pressure sensor 40 may be composed of the sensing portion 41 and the lead portion 42.
  • the sensing portion 41 may have a sensing region 410 that senses pressure within the blood vessel. Through the sensing region 410, the pressure sensor 40 is able to obtain a corresponding blood pressure signal. Additionally, the lead portion 42 can derive the blood pressure signal generated by the sensing region 410. Additionally, lead portion 42 can be electrically coupled to a lead 23 (see FIG. 1) that extends along proximal portion 20 to direct blood pressure signals to the body via lead 23.
  • the pressure sensor 40 may be a resistive pressure sensor, a capacitive pressure sensor, a piezoelectric pressure sensor, an inductive pressure sensor, a thermoelectric pressure sensor, or a photoelectric pressure sensor. Additionally, in some examples, pressure sensor 40 can be a silicon-based pressure device. Additionally, in some examples, to suppress noise during the detection process, the pressure sensor 40 can be a differential pressure sensor.
  • the pressure sensor 40 may have a rectangular parallelepiped shape.
  • the shape of the pressure sensor 40 is not particularly limited.
  • the pressure sensor 40 may also be in the shape of a cylinder or the like.
  • the shape of the pressure sensor 40 may be Regular three-dimensional shapes, etc., can be set to corresponding shapes according to specific situations.
  • the sensing portion 41 has the sensing region 410 capable of sensing the pressure within the blood vessel.
  • the sensing region 410 may have a sensing film that can be deformed by force.
  • the sensing region 410 of the sensing portion 41 is capable of sensing blood pressure within the blood vessel by sensing the action of the pressure change in the blood vessel on the sensing film.
  • the lead portion 42 is electrically connected to the sensing portion 41 (not shown), and the blood pressure signal obtained by the sensing portion 41 is output via the lead portion 42.
  • the connection of the lead portion 42 and the sensing portion 41 can be realized by an internal lead embedded in the rectangular body (not shown).
  • the lead portion 42 is electrically connected to the wire 23, whereby the sensing portion 41 outputs the sensed blood pressure signal to the outside of the body via the lead portion 42 and the wire 23 electrically connected to the lead portion 42.
  • the lead portion 42 can have a pad region 420 through which the wires 23 can be electrically connected, for example, by soldering.
  • the pad region 420 may include two pads 421 and pads 423 arranged side by side (see FIG. 5).
  • the blood pressure signal obtained by the sensing portion 41 can be transmitted to the pad 421 and the pad 423 via an internal lead (not shown).
  • the pad 421 and the pad 423 transmit the blood pressure signal to the external device such as an external body via the wire 231 and the wire 233, respectively. That is, the pad 421 is connected to the wire 231, and the pad 423 is connected to the wire 233.
  • pad region 420 may have more pads, each of which may be soldered with one wire.
  • the wires 23 can extend along the proximal portion 20.
  • the lead 23 can extend within the proximal outer tube 21 of the proximal portion 20.
  • the wire 23 can be drawn from the pad region 420 of the pressure sensor 40 and extending along the outer wall of the distal cannula 10 (see Figure 1), then from the junction of the distal cannula 10 and the proximal portion 20. The interior of the proximal outer tube 21 of the proximal portion 20 extends. Thereby, the blood pressure signal generated by the pressure sensor 40 can be transmitted via the wire 23 to a processing device (not shown) such as an external body.
  • a processing device not shown
  • the wires 23 will be secured to the distal cannula 10 by bonding. In this case, it is possible to avoid the separation of the wire 23 from the distal sleeve 10 during the pushing of the blood pressure measuring catheter 1, and to improve the welding reliability between the wire 23 and the pad region 420.
  • FIG. 6 shows a schematic perspective view of the mount 30 of the blood pressure measuring catheter 1.
  • the mount 30 can be disposed on the distal sleeve 10.
  • the mount 30 can be secured to the distal sleeve 10 by gluing or welding.
  • the mount 30 can be disposed on an outer surface of the distal cannula 10. In this case, the mount 30 does not affect the guidewire lumen 11 of the distal cannula 10 to receive a separate medical guidewire 50.
  • the mount 30 can be elongated and extend generally along the length of the distal sleeve 10.
  • the mount 30 according to the present embodiment is not limited to the above shape, and may be, for example, a block shape or an irregular shape.
  • the width of the mount 30 can be comparable to or smaller than the outer diameter of the distal cannula 10 . Thereby, the influence of the increase in the size of the mount 30 on the distal cannula 10 can be suppressed.
  • the pressure sensor 40 can be disposed on the mount 30.
  • the sensing portion 41 of the pressure sensor 40 has a gap with the mount 30.
  • the sensing portion 41 of the pressure sensor 40 is not in contact with the mount 30.
  • the adverse effect of the deformation of the mount 30 on the pressure sensor 40, particularly the sensing portion 41 of the pressure sensor 40 can be suppressed, thereby improving the measurement accuracy of the pressure sensor 40.
  • the sensing portion 41 of the pressure sensor 40 may have a gap with the bottom of the mount 30, and the sensing portion 41 of the pressure sensor 40 also has a gap with other portions of the mount 30 (eg, the front end).
  • the lead portion 42 of the pressure sensor 40 is fixed to the mount 30, and the sensing portion 41 is suspended from the mount 30, and there is a gap with the mount 30.
  • the distal cannula 10 may be deformed by an external force when passing through a complex and variable blood vessel.
  • the sensing portion 41 of the pressure sensor 40 according to the present embodiment has a gap or no contact with the mount 30, it is possible to effectively suppress the pressure against the deformation of the distal sleeve 10, for example.
  • the adverse effects of the sensing portion 41 of the sensor 40 increase the measurement accuracy of the pressure sensor 40.
  • the bottom of the mount 30 may be stepped. That is, the mount 30 may have a step portion 31. As shown in FIG. 6, the step portion 31 may include a surface 311 and a surface 312, and a height difference between the surface 311 and the surface 312. At the step portion 31, the surface 312 is higher than the surface 311 in a direction away from the bottom of the mount 30. In this case, the lead portion 42 of the pressure sensor 40 may be fixed to the surface 312, and the sensing portion 41 of the pressure sensor 40 has a gap with the surface 311.
  • the Young's modulus of the mount 30 can be greater than the Young's modulus of the distal sleeve 10.
  • the Young's modulus reflects the physical quantity of the solid material against deformation, and the higher the Young's modulus, the better the ability of the solid material to resist deformation. Therefore, make Ann
  • the Young's modulus of the mount 30 is greater than the Young's modulus of the distal sleeve 10 to ensure that the mount 30 has sufficient flexural strength, thereby providing a mount even in the event of a bend in the distal sleeve 10.
  • the 30 can also be easily deformed, and the measurement accuracy of the pressure sensor 40 mounted on the mount 30 can be ensured.
  • mount 30 can be constructed from stainless steel, metal alloy, or hard engineering plastic.
  • the metal alloy may be a cobalt chromium alloy, a titanium alloy, a molybdenum alloy, or an alloy of any of the above materials doped with stainless steel, or a composite material of any of the above alloys.
  • the hard engineering plastics may be ABS, PMMA, PET, PBT, or the like.
  • the surface 312 may be a slope (not shown).
  • surface 312 can be a slope that slopes toward proximal portion 20, that is, along away from proximal portion 20, surface 312 is further away from surface 311.
  • the average distance between the sensing region 410 of the pressure sensor 40 and the surface 311 can be increased, whereby the influence of the stress on the sensing portion 41 of the pressure sensor 40 can be further suppressed.
  • the mount 30 can have a bottom surface that is configured to match the shape of the outer surface of the distal cannula 10, in which case the mount 30 can be secured to the distal cannula via the bottom surface. 10, whereby the mount 30 can be securely fastened to the distal sleeve 10.
  • the mount 30 may have mounting slots and wiring slots (not shown) that are disposed along the length direction of the mount 30 and that communicate with each other.
  • the mount 30 is formed with side walls on both sides along its length direction, and the two side walls constitute a mounting groove and a wiring groove.
  • the pressure sensor 40 may be disposed in the mounting groove, and the sensing portion 41 of the pressure sensor 40 has a gap with the mounting groove.
  • the lead portion 42 of the pressure sensor 40 may be disposed in the mounting groove, and the sensing portion 41 of the pressure sensor 40 has a gap with the surface 311 (ie, in the suspended mounting groove).
  • the sensing portion 41 of the pressure sensor 40 can be prevented from coming into contact with the mount 30, whereby the adverse effect of the deformation of the mount 30 on the measurement accuracy of the pressure sensor 40 can be suppressed.
  • the wires 23 connected to the pad region 420 of the pressure sensor 40 are taken out through the wiring grooves. That is, the wires 23 may be arranged along the wiring grooves, and the wiring grooves may limit the wires 23 The direction is taken out, whereby the pressure sensor 40 can be conveniently placed in the mount 30.
  • the shape of the mounting groove of the mount 30 is not particularly limited, and it may be formed to accommodate the shape of the pressure sensor 40, whereby the pressure sensor 40 can be easily accommodated.
  • the width of the mounting groove may be greater than the width of the wiring groove, the length of the mounting groove is greater than the length of the pressure sensor 40, and the depth of the mounting groove is greater than the thickness of the pressure sensor 40.
  • the mount 30 may have a front end portion 32.
  • the front end portion 32 of the mount 30 closer to the foremost end of the distal sleeve 10 may extend tapered away from the proximal portion 20, for example, the front end portion 32 may have a circular arc-shaped surface.
  • the transition from the front end portion 32 of the mount 30 to the distal cannula 10 is made gentler, thereby reducing the resistance of the blood pressure measuring catheter 1 to blood flow during pushing in the blood vessel, and improving operability.
  • Fig. 7(a) is a partial cross-sectional view showing the distal end portion 10 of the intravascular pressure measuring catheter 1
  • Fig. 7(b) is the intravascular pressure measuring catheter 1 including the mounting seat 30 shown in Fig. 7(a). Partially enlarged schematic.
  • the mount 30 can be disposed on the outer wall of the distal cannula 10.
  • the pressure sensor 40 is disposed on the mount 30.
  • the lead portion 42 of the pressure sensor 40 can be fixed to the surface 312 of the mount 30, and the sensing portion 41 of the pressure sensor 40 has a gap with the mount 40.
  • the lead portion 42 may be fixed to the surface 312 by soldering or bonding, for example, while the sensing portion 41 of the pressure sensor 40 and the surface 311 of the mount 30 are in a floating state with a gap. In this case, the influence of the stress formed by the pressure sensor 40 due to the deformation of the distal sleeve 10 can be suppressed.
  • Fig. 8 is a perspective view showing the structure of the distal end cannula sheathed outer tube of the blood pressure measuring catheter of the present embodiment.
  • the distal sleeve 10, the mount 30, and the pressure sensor 40 disposed on the mount 30 may be covered by an outer tube 60. Thereby, the distal sleeve 10, the mount 30 and the pressure sensor 40 can be protected. Additionally, the outer tube 60 can further provide support for the distal sleeve 10, the mount 30, and the pressure sensor 40.
  • the outer tube 60 can include a sensing opening 61 and a side opening 62.
  • the sensing opening 61 may correspond to the sensing region 410 of the pressure sensor 40.
  • the sensing opening 61 may be disposed at a side of the outer tube 60 and adjacent to the sensing region 410, whereby the sensing region 410 of the pressure sensor 40 can sense the blood pressure of the blood vessel via the sensing opening 61.
  • two symmetric sensing openings may be provided on the side of the outer tube 60, whereby the adverse effect of the flow of blood on the measurement accuracy of the pressure sensor 40 can be suppressed. Further, three or more sensing openings may be provided on the side of the outer tube 60.
  • the side opening 62 may correspond to the guide opening 11b of the guide wire lumen 11.
  • the medical guidewire 50 can exit or enter the guidewire lumen 11 via the side opening 62 of the outer tube 60.
  • the constituent material of the outer tube 60 is not particularly limited, and may be composed of at least one selected from the group consisting of polyester, polyamide, nylon, nylon elastomer, polyurethane, and polyimide.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

一种带安装座(30)的血管内压力测量导管(1),包括:远端套管(10),其具有可滑动地接收单独的医用导丝(50)的导丝内腔(11);近端部分(20),其与远端套管(10)联接;以及压力传感器(40),其设置于安装座(30),并且包括感测部分(41)和引线部分(42),感测部分(41)具有感测压力的感测区(410),引线部分(42)将由感测区(410)产生的血压信号导出,压力传感器(40)的感测部分(41)与安装座(30)存在间隙。通过将压力传感器(40)设置于安装座(30),并且使压力传感器(40)的感测部分(41)与安装座(30)存在间隙而不接触,因此能够抑制血管内压力测量导管(1)的弯曲变形对压力测量结果造成的影响,提高血管内压力测量导管(1)的测量精度。

Description

带安装座的血管内压力测量导管 技术领域
本发明涉及一种血管内压力测量导管,特别涉及一种带安装座的血管内压力测量导管。
背景技术
对于许多心血管病例如冠心病,血管的狭窄化(例如由血管斑块引起血管的狭窄)会影响血液的正常供给,狭窄化严重时甚至引起血管堵塞,有可能导致严重的病变例如心肌梗死。经皮冠状动脉介入治疗(PCI)是针对这类疾病目前比较有效的治疗手段。传统判断是否实施介入治疗(例如血管成形术或放置支架)的方法通常是医生等通过冠脉造影来目测冠脉血管的狭窄程度。然而,这种传统的判断方法并不能很好地帮助医生做出准确的判断,并且有可能会造成医生由于误判而导致的过度治疗。
近年来,为了更准确地判断患者是否真正需要实施介入治疗,使用评估狭窄病变阻塞血液流过血管的程度的血流储备分数(Fractional Flow Reverse,简称FFR)越来越得到应用和推广。FFR定义为狭窄动脉内的最大血流与正常最大血流的比值。为了计算血管内给定狭窄(即有可能放置血管支架的部位)的FFR,需要分别测量并采集狭窄的远端侧(例如,狭窄的下游,远离主动脉)和狭窄的近端侧(例如狭窄的上游,靠近主动脉)的血压读数。临床研究表明,狭窄度越高,FFR值就越低,FFR值是否小于评估值(例如0.8)可以作为有用的判断标准,基于该标准医生可以决定对这样的病人是否实施介入治疗。该判断标准的有效性也已经得到欧美多个大型临床研究结果(例如FAME临床研究)的证实。
目前,作为测量血管内血压以测量血管狭窄的FFR值的方法,近年来也有采用具有快速交换(rapid exchange,RX)口的压力感测导管。在这样的压力感测导管中,其远端部分具有穿引导丝的内腔,通过将 该远端部分套装于导丝上,由此可以能够沿着该导丝将压力感测导管移动至预定位置。在进行冠脉介入之前,将压力感测导管经过狭窄的远端侧和近端侧,分别记录远端血压和近端血压。由此,能够计算出狭窄的FFR值。
发明内容
发明所要解决的问题
然而,对于现有的压力感测导管,由于需要在进入身体内而在不同的位置进行压力测量,因此压力感测导管有可能会经过形状复杂、变化多端的血管例如心脏的冠状动脉血管,在这种情况下,压力感测导管沿着导丝在血管内移动的过程中例如难免会受到挤压而变形。倘若设置在压力感测导管内的压力传感器(特别是感测部分)例如也受到挤压等,则有可能对压力感测导管的测量准确度或精度带来不利影响。
解决问题的技术手段
本发明有鉴于上述现有技术的状况而完成,其目的在于提供一种能够有效地提高压力感测导管的测量准确度或精度的带安装座的血管内压力测量导管。
为此,本发明提供了一种带安装座的血管内压力测量导管,其包括:远端套管,其具有可滑动地接收单独的医用导丝的导丝内腔;近端部分,其与所述远端套管联接;以及压力传感器,其设置于所述安装座,并且包括感测部分和引线部分,所述感测部分具有感测压力的感测区,所述引线部分将由所述感测区产生的血压信号导出,所述压力传感器的所述感测部分与所述安装座存在间隙。
在本发明中,设置了用于安装压力传感器的安装座,并且使压力传感器的感测部分与安装座不接触,在这种情况下,即使血管内压力测量导管进入到形状变化多端的血管时,也能够抑制压力传感器特别是压力传感器的感测部分与压力测量导管主体的接触,由此,能够有效地抑制例如压力测量导管(特别是远端套管)的弯曲变形对压力传感器的压力测量结果造成的影响,提高血管内压力测量导管的测量精度。
另外,在本发明所涉及的血管内压力测量导管中,可选地,所述引线部分可以与沿着所述近端部分延伸的导线电连接,从而将血压信号导出到体外。
另外,在本发明所涉及的血管内压力测量导管中,可选地,所述安装座具有台阶部,所述压力传感器的所述引线部分固定于所述台阶部,并且所述感测部分与所述台阶部存在间隙。由此,能够很好地使压力传感器的感测部分与安装座不接触。
另外,在本发明所涉及的血管内压力测量导管中,可选地,所述台阶部包括第一表面和第二表面,且所述第一表面与所述第二表面之间有高度差,所述压力传感器的所述引线部分固定于所述第一表面,并且所述第一表面为朝向所述近端部分倾斜的斜面。在这种情况下,能够进一步抑制远端套管的形变对压力传感器的不良影响。
另外,在本发明所涉及的血管内压力测量导管中,可选地,所述安装座固定于所述远端套管。在这种情况下,将导丝穿引到远端套管时,安装座及设置在安装座内的压力传感器能够随着远端套管到达病灶位置。另外,安装座也可以通过粘接或焊接的方式固定于远端套管。
另外,在本发明所涉及的带安装座的血管内压力测量导管中,可选地,所述安装座具有被配置成与所述远端套管的外表面匹配的底面,所述安装座经由所述底面而固定于所述远端套管。由此,能够使安装座牢固地固定于远端套管。
另外,在本发明所涉及的血管内压力测量导管中,可选地,还包括至少包覆所述安装座的外管,并且所述外管与所述感测区对应的部分设置有开口。由此,压力传感器既能够得到外管的保护,同时也能够经由开口与血管内的血液充分接触,以便更准确地测量血压。
另外,在本发明所涉及的血管内压力测量导管中,可选地,所述安装座具有沿着所述远端套管的长度方向设置且彼此连通的安装槽和布线槽,并且所述压力传感器布置于所述安装槽内,所述导线沿着所述布线槽布置。在这种情况下,该安装座既能够容纳压力传感器,也能够方便地导引从压力传感器引出的导线。
另外,在本发明所涉及的血管内压力测量导管中,可选地,所述安装槽的宽度大于所述压力传感器的宽度,所述安装槽的长度大于所 述压力传感器的长度,并且所述安装槽的深度大于所述压力传感器的厚度。由此,安装座能够完全将压力传感器容纳于其内,起到了良好的保护作用。
另外,在本发明所涉及的血管内压力测量导管中,可选地,所述引线部分具有焊盘区,所述导线经由焊接而与所述焊盘区连接。由此,可以增强导线与焊盘区的结合强度。
另外,在本发明所涉及的血管内压力测量导管中,可选地,所述安装座的硬度大于所述远端套管的硬度。由此,能够确保安装座具有足够的抗弯折强度,即使在远端套管出现弯曲的情况下,安装座也能够不易变形,确保安装在安装座上的压力传感器的测量精度。另外,安装座的材料可以由选自不锈钢或不锈钢改性材料、钴合金、铬合金或钼合金当中的一种以上构成。此外,安装座的材料也可以为高强度的改性高分子材料等。
另外,在本发明所涉及的血管内压力测量导管中,可选地,所述安装座的杨氏模量大于所述远端套管的杨氏模量。一般而言,杨氏模量反映了固体材料抵抗形变能力的物理量,杨氏模量越高表明固体材料抵抗形变的能力越好。因此,使安装座的杨氏模量大于远端套管的杨氏模量能够确保安装座具有足够的抗弯折强度,由此,即使在远端套管出现弯曲的情况下,安装座也能够不易变形,确保安装在安装座上的压力传感器的测量精度。
另外,在本发明所涉及的血管内压力测量导管中,可选地,所述远端套管的导丝内腔包括延伸段和弯曲段。进一步地,所述延伸段的中心线与所述弯曲段的中心线所形成的规定角度大于零小于90°。在这种情况下,能够抑制远端套管部分截面积的增加,从而抑制远端套管的截面积对血压测量精度的不良影响。
另外,在本发明所涉及的血管内压力测量导管中,可选地,所述导丝内腔包括位于远端套管的最前端的接收口和位于所述远端套管侧部的导引口,所述医用导丝从所述接收口进入到所述导丝内腔并且从所述导引口伸出。由此,能够抑制医用导丝对远端套管或近端部分造成损伤。
此外,在本发明所涉及的血管内压力测量导管中,可选地,所述 导丝内腔包括位于远端套管的最前端的接收口和位于所述远端套管侧部的导引口,所述医用导丝从所述导引口进入到所述导丝内腔并且从所述接收口伸出。由此,能够抑制医用导丝对远端套管或近端部分造成损伤。
发明的有益效果
根据本发明,能够提供一种抑制医用导管弯曲变形对压力测量结果造成的影响并且提高血管内压力测量导管的测量精度的带安装座的血管内压力测量导管。
附图说明
图1示出了本发明的实施方式所涉及的带安装座的血管内压力测量导管的立体结构示意图;
图2示出了图1所示的血管内压力测量导管的另一角度的立体结构示意图;
图3示出了血管内压力测量导管的导丝内腔的截面示意图;
图4示出了血管内压力测量导管的近端部分的部分截面示意图;
图5示出了血管内压力测量导管的压力传感器的结构示意图;
图6示出了血管内压力测量导管的安装座的立体结构示意图;
图7(a)示出了血管内压力测量导管的部分截面示意图,图7(b)是图7(a)所示的包括安装座的血管内压力测量导管的局部放大示意图;
图8示出了本实施方式的血压测量导管的远端套管包覆外管的立体结构示意图。
主要标号说明:
1…血压测量导管,10…远端套管,20…近端部分,23…导线,30…安装座,40…压力传感器,41…感测部分,42…引线部分,50…医用导丝,60…外管。
具体实施方式
以下,参考附图,详细地说明本发明的优选实施方式。在下面的说明中,对于相同的部件赋予相同的符号,省略重复的说明。另外, 附图只是示意性的图,部件相互之间的尺寸的比例或者部件的形状等可以与实际的不同。
本发明所涉及的带安装座的血管内压力测量导管具有用于安装用于测量血液压力的压力传感器的安装座,并且确保压力传感器的感测部分与安装座不接触。在这种情况下,即使本发明所涉及的血管内压力测量导管进入到形状变化多端例如弯曲度高的血管时,也能够抑制压力传感器特别是压力传感器的感测部分与压力测量导管主体的接触,由此,能够有效地抑制例如压力测量导管(特别是远端套管)的弯曲变形对压力传感器的压力测量结果造成的影响,提高血管内压力测量导管的测量精度。
在本发明中,血管内压力测量导管有时也称为“血压测量导管”或“医用测量导管”。另外,本发明所涉及的血管内压力测量导管例如适用于测量例如患者冠状动脉内的血液压力或压力梯度,但本发明不限于此,例如本发明所涉及的血管内压力测量导管也适用于静脉、心脏瓣膜及其附近或其他血管内的血液压力或压力梯度,以及其他测量身体内的流体压力的用途。
(压力测量导管)
图1示出了本实施方式所涉及的带安装座的血管内压力测量导管1的立体结构示意图。图2示出了图1所示的血管内压力测量导管1的另一角度的立体结构示意图。在图1和图2中,作为示意,血管内压力测量导管1的近端部分20仅示出了靠近远端套管10的一部分。
如图1所示,血管内压力测量导管1(有时也称为“血压测量导管1”或“医用测量导管1”)可以包括远端套管10、以及与远端套管10联接(或连接)的近端部分20。另外,血压测量导管1还可以包括设置于安装座30的压力传感器40。压力传感器40经由稍后描述的导线23而将血压信号引出到体外的外部设备。
另外,如图1所示,安装座30可以设置于远端套管10。在这种情况下,设置于安装座30的压力传感器40也能够随着远端套管10定位在患者的解剖结构(例如冠状血管)内。然而,本实施方式所涉及安装座30不限于设置在远端套管10。例如在一些示例中,安装座30也可以设置于近端部分20,在这种情况下,将安装座30设置于近端部分 20可以减小远端套管10部分的截面面积,由此,能够抑制血压测量导管远端套管部分截面积的增大对血管内血流的影响,从而提高血压测量导管的精度。另外,在其他一些示例中,安装座30也可以设置在远端套管10与近端部分20的联接处。
在本实施方式中,在对患者实施介入手术时,血压测量导管1进入到患者身体内,此时血压测量导管1的远端套管10定位在身体解剖结构内的特定位置例如冠状动脉的狭窄处,与远端套管10联接的近端部分20则从患者体内延伸至患者体外,并且与外部设备(未图示)连接。外部设备例如包括可以用于处理由压力传感器40产生的血压信号的主机。在本实施方式中,这样的主机可以具有显示屏,在这种情况下,主机也可以直接在其显示屏显示压力传感器40所测量的血管特定位置的血压、血压梯度或FFR读数等。
另外,在实施介入手术过程中,医生、医学技师或其他操作员等可以通过操作位于患者体外的与远端套管10相联接的近端部分20来移动远端套管10,从而能够将远端套管10推送至例如患者体内的血管狭窄病变处,并利用压力传感器40进行血压测量以获得所需要的FFR值。
(远端套管)
在本实施方式中,如图1或图2所示,远端套管10位于血压测量导管1的前端。远端套管10具有可滑动地接收单独的医用导丝50(参见稍后描述的图8)的导丝内腔11(参见图2)。在这种情况下,远端套管10可以穿引单独的医用导丝50,并且可以沿着医用导丝50推送到例如病人体内的特定位置。这里,单独的医用导丝50是指与血压测量导管1分离的医用导丝。也即,医用导丝50并不属于本实施方式所涉及的血压测量导管1的必要组成部分。
在本实施方式中,医用导丝50没有特别限制,例如医用导丝50可以使用介入手术中常用的导丝。在一些示例中,医用导丝50的直径例如为0.1mm~0.6mm,典型或标准的医用导丝50的直径例如有0.36mm(0.014英寸)、0.40mm(0.016英寸)、0.64mm(0.025英寸)等。另外,远端套管10的导丝内腔11的内径稍大于医用导丝50的外径,在这种情况下,医生等可以方便地选择不同尺寸的医用导丝50, 只要能够确保该医用导丝50的外径小于导丝内腔11的内径即可。由此,一方面,在使用这样的医用导丝50时,能够方便远端套管10穿引医用导丝50,并且使医用导丝50在远端套管10的导丝内腔11内相对移动或相对滑动,另一方面也能够抑制血压测量导管1的横截面积(特别是远端套管10的横截面积)的增加。另外,为了使医用导丝50在远端套管10的导丝内腔11内移动或滑动,导丝内腔11优选使用光滑的内表面。
另外,在一些示例中,用于穿引医用导丝50的导丝内腔11可以仅设置于远端套管10。也即,导丝内腔11仅限制在远端套管10,与近端部分20相隔。在这种情况下,由于接收的医用导丝50的导丝内腔11仅设置于远端套管10,在将医用导丝50穿引到血压测量导管1时,仅远端套管10穿引在医用导丝50上,由此能够方便使用或更换不同类型的医用导丝50。
另外,远端套管10与近端部分20的联接方式没有特别限制,例如远端套管10可以与近端部分20通过粘接方式联接,也可以通过连接件例如套管联接。此外,远端套管10与近端部分20可以以外表面连续的方式相接,也可以不以连续的方式例如错开位置相接。在一些示例中,远端套管10可以与近端部分20在血压测量导管1的长度方向上存在重叠的部分。在另一些示例中,远端套管10可以与近端部分20相互分离而由连接套管联接。
另外,在本实施方式中,远端套管10的形状没有特别限制,如图1所示,可以大体呈延伸状的圆管状。然而,本实施方式不限于此,本实施方式所涉及的远端套管10也可以呈延伸状的矩形管状、椭圆形管状等。另外,在一些示例中,从易于加工和有利于在血管内移动的观点看,远端套管10优选呈圆管状。
另外,在本实施方式中,远端套管10的长度没有特别限制,只要确保远端套管10能够方便地穿引医用导丝50且能够支撑医用导丝50在远端套管10的导丝内腔11内滑动即可。在一些示例中,远端套管10的长度例如可以约为0.5cm~20cm,优选为5cm~15cm。
图3示出了血管内压力测量导管1的导丝内腔11的截面示意图。另外,为了清楚表示,省略了例如本实施方式所涉及的安装座30及压力传感器40的图示。
在本实施方式中,如图3所示,远端套管10的导丝内腔11可以具有接收口11a和导引口11b。在本实施方式中,如上所述,远端套管10的导丝内腔11可以通过接收口11a接收医用导丝50,医用导丝50接着沿着导丝内腔11滑动,并从导丝内腔11的导引口11b导出。由此,使得血压测量导管1能够顺利地沿着医用导丝50滑动,从而将远端套管10定位到患者身体内的特定位置(例如病灶处)。另外,在一些示例中,远端套管10的导丝内腔11也可以通过导引口11b(参见图3)接收医用导丝50,从而也能够将远端套管10定位到患者身体内的特定位置(例如病灶处)
在本实施方式中,导丝内腔11的接收口11a可以设置在远端套管10的最前端,由此可以方便将医用导丝50从接收口11a穿引到远端套管10。另外,导丝内腔11的导引口11b可以设置在血压测量导管1的侧部(具体可以是远端套管10的侧部),在这种情况下,医用导丝50可以从导丝内腔11的接收口11a沿着导丝内腔11滑动并从导引口11b引出,由此,能够抑制远端套管10部分截面积的增加,从而抑制远端套管10的截面积对血压测量精度的不良影响。
另外,导丝内腔11可以包括延伸段111、以及与延伸段111连通的弯曲段112(参考图3)。此时,延伸段111包括上述的接收口11a,弯曲段112包括上述的导引口11b。另外,在图3中,虚线L1和虚线L2分别表示远端套管10的延伸段111的中心线和弯曲段112的中心线。延伸段111与弯曲段112连通而形成贯通腔,由此可以接收单独的医用导丝50。也即,通过包括延伸段111和弯曲段112的导丝内腔11接收医用导丝50,由此使远端套管10能够沿着医用导丝50滑动到患者身体内的预定位置(例如病灶处)。
在本实施方式中,如图3所示,导丝内腔11的延伸段111可以沿着远端套管10的长度方向延伸。由此,能够确保延伸段111与远端套管10的移动方向大体一致。另外,导丝内腔11的弯曲段112可以呈 弯曲状。在这种情况下,能够抑制远端套管10部分截面积的增加,从而抑制远端套管10的截面积对血压测量精度的不良影响。
此外,如图3所示,延伸段111的中心线L1与弯曲段112的中心线L2形成规定角度θ。从抑制远端套管10的截面积增加的角度看,延伸段111的中心线与弯曲段112的中心线所形成的规定角度θ优选可以大于零小于90°。在一些示例中,延伸段111的中心线与弯曲段112的中心线所形成的规定角度θ例如可以为20°至60°。另外,从易于穿引医用导丝50的观点看,延伸段111的中心线与弯曲段112的中心线所形成的规定角度θ优选为30°至50°
如上所述,医用导丝50可以从导丝内腔11的延伸段111的接收口11a进入,并沿着延伸段111相对移动,然后进入弯曲段112,最后从弯曲段112的导引口11b导出。另外,在一些示例中,医用导丝50也可以从弯曲段112的导引口11b进入到导丝内腔11并在导丝内腔11内相对移动或相对滑动,而从延伸段111的接收口11a伸出。
另外,在本实施方式中,医用导丝50沿着导丝内腔11相对移动时会受到弯曲段112的约束,使得医用导丝50的移动方向会发生相应的变化。由此,能够抑制医用导丝50(具体是医用导丝50先进入到导丝内腔11的一端)对远端套管10或近端部分20造成损伤。
另外,在本实施方式中,由于医用导丝50可以从远端套管10的侧面(具体是弯曲段112的导引口11b)伸出或进入,因此远端套管10与近端部分20例如能够以同轴的方式相联接(例如参考图1)。在这种情况下,能够有效地抑制血压测量导管1整体(特别是远端套管10与近端部分20的联接处)的横截面积的增加,从而便于血压测量导管1在血管内移动,并且能够将血压测量导管1送至体内更狭小的血管。
此外,尽管上面描述了导丝内腔11包括延伸段111和弯曲段112,但是本发明并不限于此。例如,在一些示例中,导丝内腔11可以仅由上述的延伸段111构成。在这种情况下,远端套管10与近端部分20也可以不以连续的方式例如错开位置相联接(未图示)。
另外,在一些示例中,远端套管10可以优选由选自聚酰亚胺(PI)、聚酯或尼龙当中的至少一种构成。由此,能够确保远端套管10通过形 状弯曲复杂的血管时能够适应血管的形状而发生形变,从而抑制血压测量导管1的远端套管10对血管造成的损伤。
(近端部分)
图4示出了血管内压力测量导管的近端部分20的部分截面示意图。在图4中,仅示出了血管内压力测量导管的近端部分20的一部分,特别是靠近远端套管10的部分。
在本实施方式中,近端部分20与远端套管10联接。近端部分20位于血压测量导管1的后端(相对于位于血压测量导管1的前端的远端套管10而言)(参见图1)。如图4所示,近端部分20可以包括近端外管21和设置于近端外管21内部的芯轴22。另外,在近端部分20中,近端外管21与芯轴22之间可以填充介质或保护胶。
应该注意,图4中所示的近端外管21和芯轴22不一定按照比例描绘,例如,在一些示例中,芯轴22的直径可以更大些,另外,在另一些示例中,芯轴22可以填充近端外管21的管腔。
另外,近端部分20的芯轴近端部分20例如可以将远端部分10与位于体外的外部设备(未图示)连接。另外,与压力传感器40相连接的导线23(参见图1)可以设置在近端部分20的芯轴22内,使得导线23可以沿着芯轴22而被引出到体外的外部设备,由此能够将压力传感器40所感测的血压信号传给外部设备。此外,在一些示例中,导线23也可以布置在芯轴22与近端外管21之间,在这种情况下,导线23同样能够将由压力传感器40感测的血压信号传给外部设备。
在一些示例中,近端外管21例如可以由不锈钢海波管构成。另外,近端部分20也可以由其他材料例如镍钛合金、尼龙、塑料等构成。另外,在一些示例中,芯轴22可以沿着近端部分20的长度方向贯穿近端外管21。
另外,近端部分20的一端与远端套管10联接,另一端沿着身体的解剖结构(例如血管)延伸至体外例如与上述的外部设备连接。为了方便表示,附图中并未示出位于病人体外的近端部分20。位于病人体外的近端部分20一般可以作为医生等操作血压测量导管1的部分,通过操作该部分,可以使血压测量导管1进一步向病人体内的血管深 处推进或从病人体内的血管退出。另外,位于病人体外的近端部分20将与外部设备(未图示)连接。
另外,在一些示例中,芯轴22可以支撑近端外管21,为近端外管21提供物理支撑,由此确保能够通过医生等移动近端外管21来可靠地移动并推送近端部分20以及与近端部分20相连接的远端部分10。
在一些示例中,芯轴22可以采用硬度较高的材料,例如不锈钢、硬质塑料等。在这种情况下,芯轴22能够更好地支撑近端外管21,由此能够更好地推送近端部分20。另外,如上所述,由于近端部分20与远端套管10联接,因此,在例如冠状动脉的介入手术中,医生等可以通过操控体外的近端部分20来将位于体内(例如冠状血管内)的远端套管10推送至预定位置(例如病灶处),并可以通过压力传感器40进行血管内血压测量。
另外,在本实施方式中,近端部分20的形状没有特别限制,在一些示例中,近端部分20可以呈延伸状的长管状,在另一些示例中,近端部分20也可以呈延伸状的矩形管状、椭圆形管状等。在本实施方式中,从易于加工和有利于在血管内移动的观点看,近端部分20优选呈长管状。
此外,近端部分20的长度没有特别限制,只要确保近端部分20的长度能够从病人体内(例如静脉、动脉)的预定位置(例如病灶处)延伸至病人体外的监测设备等即可。近端部分20的典型长度例如为100cm至200cm,当然近端部分20的长度也可以更长例如为300cm,或者更短例如为50cm。
(压力传感器)
图5示出了血压测量导管1的压力传感器40的结构示意图。
在本实施方式中,压力传感器40可以是用于测量血管中的血液压力(流体压力)的压力传感器。如图5所示,压力传感器40可以具有两个输出端(参考稍后描述的焊盘421、焊盘422)。然而,本实施方式不限于此,也可以使用更多个输出端的压力传感器40。
再参见图1或图2,压力传感器40可以设置于安装座30。在这种情况下,远端套管10或近端套管20在血管内移动时不会直接将形变 所引起的应力变化直接传递给压力传感器40,由此能够提高压力传感器40的测量精度。
另外,由压力传感器40所感测的血压信号可以经由导线23输出至体外。此外,在一些示例中,由压力传感器40所感测的血压信号也可以经由无线连接例如蓝牙、wifi或红外传输的方式输出至体外。
在本实施方式中,如图5所示,压力传感器40可以包括感测部分41和引线部分42。另外,在一些示例中,压力传感器40可以分为感测部分41和引线部分42,也即,压力传感器40可以由感测部分41和引线部分42构成。
在压力传感器40中,感测部分41可以具有感测血管内的压力的感测区410。通过感测区410,压力传感器40能够获得相应的血压信号。另外,引线部分42可以将由感测区410产生的血压信号导出。此外,引线部分42可以与沿着近端部分20延伸的导线23(参见图1)电连接,从而经由导线23将血压信号导出至体外。
在本实施方式中,压力传感器40可以为电阻式压力传感器、电容式压力传感器、压电式压力传感器、电感式压力传感器、热电式压力传感器或光电式压力传感器。另外,在一些示例中,压力传感器40可以是以硅为基材的压力器件。另外,在一些示例中,为了抑制检测过程中的噪声,压力传感器40可以为差分式压力传感器。
另外,如图5所示,压力传感器40可以呈长方体状。然而,在本实施方式中,压力传感器40的形状并没有特别限制,例如,在一些示例中,压力传感器40也可以呈圆柱体状等,在另一些示例中,压力传感器40的形状可以呈不规则三维形状等,可以根据具体情形设置成相应的形状。
如上所述,感测部分41具有能够感测血管内的压力的感测区410。在一些示例中,例如压力传感器40为压电式压力传感器等时,感测区410可以具有能够受力而发生形变的感测薄膜。在这种情况下,感测部分41的感测区410能够通过感测血管内的压力变化对感测薄膜的作用来感测血管内的血液压力。
另外,在压力传感器40中,引线部分42与感测部分41电连接(未图示),感测部分41所获得的血压信号经由引线部分42输出。在压力 传感器40为长方体形状的情况下,引线部分42与感测部分41的连接可以由埋置在长方体内的内部引线来实现(未图示)。
另外,引线部分42与导线23电连接,由此,感测部分41经由引线部分42和与引线部分42电连接的导线23将所感测的血压信号输出至体外。具体而言,引线部分42可以具有焊盘区420,导线23可以经由例如焊接方式与焊盘区420电连接。
在本实施方式中,焊盘区420可以包括两个并列布置的焊盘421、焊盘423(参见图5)。在这种情况下,感测部分41所获得的血压信号可以经由内部引线(未图示)传递至焊盘421和焊盘423。焊盘421和焊盘423分别经由导线231和导线233将血压信号传递至例如体外的外部设备。也即,焊盘421与导线231连接,焊盘423与导线233连接。另外,在一些示例中,焊盘区420可以具有更多个焊盘,每个焊盘可以对应焊接一根导线。
另外,导线23可以沿着近端部分20延伸。在一些示例中,如上所述,导线23可以在近端部分20的近端外管21内延伸。具体而言,导线23可以从压力传感器40的焊盘区420引出并且沿着远端套管10的外壁延伸(参见图1),接着从远端套管10与近端部分20的联接处进入近端部分20的近端外管21的内部延伸。由此,由压力传感器40所产生的血压信号能够经由导线23而被传送到例如体外的处理设备(未图示)。
另外,在一些示例中,在远端套管10的外壁上,导线23通过粘接方式将固定于远端套管10上。在这种情况下,能够避免在血压测量导管1的推送过程中导线23与远端套管10分离,提高导线23与焊盘区420之间的焊接可靠性。
(安装座)
图6示出了血压测量导管1的安装座30的立体结构示意图。
如上所述,在本实施方式中,安装座30可以设置于远端套管10。安装座30可以通过粘接或焊接方式固定于远端套管10。在一些示例中,安装座30可以设置在远端套管10的外表面上。在这种情况下,安装座30不会影响远端套管10的导丝内腔11接收单独的医用导丝50。
如图6所示,安装座30可以呈长条状,并大体沿着远端套管10的长度方向延伸。然而,本实施方式所涉及的安装座30不限于上述形状,例如也可以呈块状、不规则形状等。
在一些示例中,安装座30的宽度可以与远端套管10的外径相当或者小于远端套管10的外径。由此,能够抑制安装座30尺寸的增加对远端套管10的影响。
如上所述,压力传感器40可以设置于安装座30。在本实施方式中,优选地,压力传感器40的感测部分41与安装座30存在间隙。换言之,压力传感器40的感测部分41与安装座30不接触。在这种情况下,能够抑制安装座30的形变对压力传感器40特别是压力传感器40的感测部分41的不良影响,从而提高压力传感器40的测量精度。
在一些示例中,压力传感器40的感测部分41可以与安装座30的底部具有间隙,并且压力传感器40的感测部分41与安装座30的其他部分(例如前端)也具有间隙。具体而言,在本实施方式中,在安装座30中,压力传感器40的引线部分42固定于安装座30,而感测部分41悬空于安装座30,与安装座30存在间隙。
在本实施方式中,在进行介入手术过程中,例如远端套管10在通过复杂且变化多端的血管时有可能会受到外力作用而产生形变。在这种情况下,由于本实施方式所涉及的压力传感器40的感测部分41与安装座30存在间隙或不接触,因此能够有效地抑制例如来自远端套管10的形变而导致的对压力传感器40的感测部分41的不良影响,提高压力传感器40的测量精度。
另外,在本实施方式中,安装座30的底部可以呈台阶状。也即,安装座30可以具有台阶部31。如图6所示,台阶部31可以包括表面311和表面312,并且表面311与表面312之间有高度差。在台阶部31,沿着远离安装座30的底部的方向,表面312高于表面311。在这种情况下,压力传感器40的引线部分42可以固定于表面312,并且压力传感器40的感测部分41与表面311存在间隙。
另外,在一些示例中,安装座30的杨氏模量可以大于远端套管10的杨氏模量。一般而言,杨氏模量反映了固体材料抵抗形变能力的物理量,杨氏模量越高表明固体材料抵抗形变的能力越好。因此,使安 装座30的杨氏模量大于远端套管10的杨氏模量能够确保安装座30具有足够的抗弯折强度,由此,即使在远端套管10出现弯曲的情况下,安装座30也能够不易变形,确保安装在安装座30上的压力传感器40的测量精度。
在一些示例中,安装座30可以由不锈钢、金属合金或硬质工程塑料构成。其中,金属合金可以是钴铬合金、钛合金、钼合金,或者不锈钢掺杂以上任何材料的合金,或以上任何一种合金的复合材料。另外,硬质工程塑料可以是ABS、PMMA、PET、PBT等。通过采用上述材料,可以使安装座30具有足够的抗折强度,由此即使在远端套管10发生弯曲变形,也能够有效地抑制安装座30的应力变形。
另外,在本实施方式中,表面312可以为斜面(未图示)。在一些示例中,表面312可以为朝向近端部分20倾斜的斜面,也即沿着远离近端部分20,表面312越远离表面311。在这种情况下,可以增加压力传感器40的感测区410与表面311的平均距离,由此能够进一步抑制压力传感器40的感测部分41所受的应力影响。
另外,在一些示例中,安装座30可以具有被配置成与远端套管10的外表面的形状匹配的底面,在这种情况下,安装座30可以经由该底面而固定于远端套管10,由此,能够使安装座30牢固地固定在远端套管10上。
另外,在另一些示例中,安装座30可以具有沿着安装座30的长度方向设置且彼此连通的安装槽和布线槽(未图示)。例如,安装座30沿着其长度方向在两侧分别形成有侧壁,并且两个侧壁构成安装槽和布线槽。
此时,压力传感器40可以布置于安装槽内,并且压力传感器40的感测部分41与该安装槽存在间隙。具体而言,压力传感器40的引线部分42可以设置在安装槽内,并且压力传感器40的感测部分41与表面311存在间隙(即悬空安装槽内)。在这种情况下,可以使压力传感器40的感测部分41与安装座30不接触,由此,能够抑制安装座30的形变对压力传感器40测量精度的不良影响。
另外,与压力传感器40的焊盘区420连接的导线23经由布线槽引出。也即导线23可以沿着布线槽布置,布线槽可以限制导线23的 引出方向,由此能够方便将压力传感器40设置在安装座30内。另外,安装座30的安装槽的形状没有特别限制,其可以形成为适应压力传感器40的形状,由此,能够便于容纳压力传感器40。
另外,安装槽的宽度可以大于布线槽的宽度,安装槽的长度大于压力传感器40的长度,并且安装槽的深度大于压力传感器40的厚度。由此,能够确保安装槽完全容纳压力传感器40,从而进一步抑制远端套管10等因形变而导致的应力对压力传感器40的不利影响。
另外,在本实施方式中,在安装座30可以具有前端部32。更靠近远端套管10最前端的安装座30的前端部32可以朝远离近端部分20的方向渐缩地延伸,例如前端部32可以具有呈圆弧形的表面。由此,使得从安装座30的前端部32到远端套管10的过渡更加平缓,从而减小血压测量导管1在血管中推送过程中对血流的阻力,提高可操作性。
图7(a)示出了血管内压力测量导管1的远端部分10的部分截面示意图,图7(b)是图7(a)所示的包括安装座30的血管内压力测量导管1的局部放大示意图。
如图7(a)和图7(b)所示,安装座30可以布置于远端套管10的外壁上。压力传感器40布置于安装座30上。如上所述,压力传感器40的引线部分42可以固定于安装座30的表面312,压力传感器40的感测部分41与安装座40存在间隙。具体而言,引线部分42例如可以通过焊接或粘接的方式固定于表面312上,而压力传感器40的感测部分41与安装座30的表面311处于悬空状态而存在间隙。在这种情况下,可以抑制因远端套管10的形变对压力传感器40所形成的应力影响。
图8示出了本实施方式的血压测量导管的远端套管包覆外管的立体结构示意图。
如图8所示,远端套管10、安装座30和设置在安装座30的压力传感器40可以由外管60包覆。由此,能够保护远端套管10、安装座30和压力传感器40。另外,外管60也可以为远端套管10、安装座30和压力传感器40进一步提供支撑作用。
另外,如图8所示,外管60可以包括感测开口61和侧开口62。感测开口61可以与压力传感器40的感测区410对应。在一些示例中, 感测开口61可以设置在外管60的侧面且靠近感测区410的位置,由此,压力传感器40的感测区410能够经由感测开口61而感测血管的血液压力。
另外,在另一些示例中,可以在外管60的侧面设置对称的两个感测开口,由此可以抑制血液的流动对压力传感器40的测量精度的不良影响。此外,还可以在外管60的侧面设置三个以上的感测开口。
另外,侧开口62可以与导丝内腔11的导引口11b对应。在这种情况下,医用导丝50可以经由外管60的侧开口62穿出或进入导丝内腔11。
另外,在本实施方式中,外管60的构成材料没有特别限制,可以由选自聚酯、聚酰胺、尼龙、尼龙弹性体、聚氨酯、聚酰亚胺当中的至少一种构成。
虽然以上结合附图和实施方式对本发明进行了具体说明,但是其并不是为了限制本发明,应当理解,对于本领域技术人员而言,在不偏离本发明的实质和范围的情况下,可以对本发明进行变形和改变,这些变形和改变均落入本发明的权利要求所保护的范围内。

Claims (14)

  1. 一种带安装座的血管内压力测量导管,其特征在于,
    包括:
    远端套管,其具有可滑动地接收单独的医用导丝的导丝内腔;
    近端部分,其与所述远端套管联接;以及
    压力传感器,其设置于所述安装座,并且包括感测部分和引线部分,所述感测部分具有感测压力的感测区,所述引线部分将由所述感测区产生的血压信号导出,
    所述压力传感器的所述感测部分与所述安装座存在间隙。
  2. 如权利要求1所述的血管内压力测量导管,其特征在于,
    所述安装座具有台阶部,所述压力传感器的所述引线部分固定于所述台阶部,并且所述感测部分与所述台阶部存在间隙。
  3. 如权利要求2所述的血管内压力测量导管,其特征在于,
    所述台阶部包括第一表面和第二表面,且所述第一表面与所述第二表面之间有高度差,
    所述压力传感器的所述引线部分固定于所述第一表面,并且所述压力传感器的所述感测部分与所述第二表面存在间隙。
  4. 如权利要求1所述的血管内压力测量导管,其特征在于,
    所述安装座固定于所述远端套管。
  5. 如权利要求4所述的血管内压力测量导管,其特征在于,
    所述安装座具有被配置成与所述远端套管的外表面的形状匹配的底面,所述安装座经由所述底面而固定于所述远端套管。
  6. 如权利要求1所述的血管内压力测量导管,其特征在于,
    还包括至少包覆所述安装座的外管,并且
    所述外管的与所述感测区对应的部分设置有开口。
  7. 如权利要求1所述的血管内压力测量导管,其特征在于,
    所述安装座具有沿着所述远端套管的长度方向设置且彼此连通的安装槽和布线槽,并且
    所述压力传感器布置于所述安装槽内,所述导线沿着所述布线槽布置。
  8. 如权利要求7所述的血管内压力测量导管,其特征在于,
    所述安装槽的宽度大于所述压力传感器的宽度,所述安装槽的长度大于所述压力传感器的长度,并且所述安装槽的深度大于所述压力传感器的厚度。
  9. 如权利要求1所述的血管内压力测量导管,其特征在于,
    所述引线部分具有焊盘区,所述导线经由焊接而与所述焊盘区连接。
  10. 如权利要求1所述的血管内压力测量导管,其特征在于,
    所述安装座的杨氏模量大于所述远端套管的杨氏模量。
  11. 如权利要求1所述的血管内压力测量导管,其特征在于,
    所述安装座的硬度大于所述远端套管的硬度。
  12. 如权利要求1所述的血管内压力测量导管,其特征在于,
    所述远端套管的导丝内腔包括延伸段和弯曲段。
  13. 如权利要求1所述的血管内压力测量导管,其特征在于,
    所述导丝内腔包括位于远端套管的最前端的接收口和位于所述远端套管侧部的导引口,所述医用导丝从所述接收口进入到所述导丝内腔并且从所述导引口伸出。
  14. 如权利要求1所述的血管内压力测量导管,其特征在于,
    所述导丝内腔包括位于远端套管的最前端的接收口和位于所述远端套管侧部的导引口,所述医用导丝从所述导引口进入到所述导丝内 腔并且从所述接收口伸出。
PCT/CN2017/106230 2017-03-15 2017-10-15 带安装座的血管内压力测量导管 WO2018166195A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17901305.7A EP3597101B1 (en) 2017-03-15 2017-10-15 Intravascular pressure measuring catheter having a mounting base
ES17901305T ES2908222T3 (es) 2017-03-15 2017-10-15 Catéter de medición de presión intravascular que tiene una base de montaje

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710154748.0A CN108618768A (zh) 2017-03-15 2017-03-15 带安装座的血管内压力测量导管
CN201710154748.0 2017-03-15

Publications (1)

Publication Number Publication Date
WO2018166195A1 true WO2018166195A1 (zh) 2018-09-20

Family

ID=63522732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106230 WO2018166195A1 (zh) 2017-03-15 2017-10-15 带安装座的血管内压力测量导管

Country Status (4)

Country Link
EP (1) EP3597101B1 (zh)
CN (4) CN108618769B (zh)
ES (1) ES2908222T3 (zh)
WO (1) WO2018166195A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111076660A (zh) * 2018-10-20 2020-04-28 深圳市道通科技股份有限公司 机器视觉系统的目标靶单元、目标靶组件和机器视觉系统
CN209136594U (zh) * 2018-11-05 2019-07-23 苏州润迈德医疗科技有限公司 用于有创动脉压监测的新型导管
CN112294278B (zh) * 2019-08-02 2023-10-20 深圳北芯生命科技股份有限公司 血管内压力测量导管
US20230134544A1 (en) * 2021-10-28 2023-05-04 Measurement Specialties, Inc. Sensor Assembly of a Sensing Device
CN114470478B (zh) * 2022-03-09 2024-04-23 上海颖特微络医疗科技有限公司 一种腔内治疗导管
CN114832201B (zh) * 2022-03-15 2023-09-01 介入科技发展(深圳)有限公司 可识别血管方向的导管及系统
CN117717704B (zh) * 2024-02-18 2024-05-14 安徽通灵仿生科技有限公司 一种基于心室导管泵的泵血流量估测系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104302345A (zh) * 2012-03-18 2015-01-21 特洛玛泰克解决方案私人有限公司 一种用于血管进入和治疗的设备和方法
US20160081564A1 (en) * 2014-06-16 2016-03-24 Medtronic Vascular, Inc. Microcatheter sensor design for minimizing profile and impact of wire strain on sensor
US20160199003A1 (en) * 2014-06-16 2016-07-14 Medtronic Vascular, Inc. Microcatheter sensor design for mounting sensor to minimize induced strain
CN105769153A (zh) * 2016-02-19 2016-07-20 深圳北芯生命科技有限公司 血管内压力测量导管
CN205866735U (zh) * 2016-04-17 2017-01-11 深圳北芯生命科技有限公司 血管内压力测量导管
CN106456018A (zh) * 2014-06-16 2017-02-22 美敦力瓦斯科尔勒公司 具有来自弯曲应力的减小误差的压力测量导管

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3062386B2 (ja) * 1994-02-24 2000-07-10 川澄化学工業株式会社 圧力センサー付ダブルルーメンカテーテル
JP2000287944A (ja) * 1999-04-06 2000-10-17 Tokai Rika Co Ltd カテーテル用圧力センサブロック
US8808350B2 (en) * 2011-03-01 2014-08-19 Endologix, Inc. Catheter system and methods of using same
CN103519795B (zh) * 2013-10-22 2015-08-26 苏州亘科医疗科技有限公司 测量导管
CN103623495B (zh) * 2013-12-18 2016-02-10 湖南埃普特医疗器械有限公司 一种斑马导丝
JP6100705B2 (ja) * 2014-01-22 2017-03-22 日本光電工業株式会社 血圧測定システム
US9955878B2 (en) * 2014-02-03 2018-05-01 Volcano Corporation Intravascular devices, systems, and methods having a core wire with embedded conductors
EP3209199B1 (en) * 2014-10-24 2019-04-24 Medtronic Vascular Inc. Microcatheter sensor design for minimizing profile and impact of wire strain on sensor
EP3302254B1 (en) * 2015-05-29 2021-06-23 Carag Ag Catheter for measuring the blood flow of a body tissue
CN106361312A (zh) * 2016-10-08 2017-02-01 苏州亘科医疗科技有限公司 一种血管内血压测量导丝

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104302345A (zh) * 2012-03-18 2015-01-21 特洛玛泰克解决方案私人有限公司 一种用于血管进入和治疗的设备和方法
US20160081564A1 (en) * 2014-06-16 2016-03-24 Medtronic Vascular, Inc. Microcatheter sensor design for minimizing profile and impact of wire strain on sensor
US20160199003A1 (en) * 2014-06-16 2016-07-14 Medtronic Vascular, Inc. Microcatheter sensor design for mounting sensor to minimize induced strain
CN106456018A (zh) * 2014-06-16 2017-02-22 美敦力瓦斯科尔勒公司 具有来自弯曲应力的减小误差的压力测量导管
CN105769153A (zh) * 2016-02-19 2016-07-20 深圳北芯生命科技有限公司 血管内压力测量导管
CN205866735U (zh) * 2016-04-17 2017-01-11 深圳北芯生命科技有限公司 血管内压力测量导管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3597101A4 *

Also Published As

Publication number Publication date
EP3597101A4 (en) 2020-12-09
CN108618768A (zh) 2018-10-09
CN112674743A (zh) 2021-04-20
EP3597101B1 (en) 2021-11-17
CN108618769A (zh) 2018-10-09
CN108618769B (zh) 2021-01-15
CN112790745A (zh) 2021-05-14
ES2908222T3 (es) 2022-04-28
EP3597101A1 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
WO2018166195A1 (zh) 带安装座的血管内压力测量导管
KR101754570B1 (ko) 생리학적 센서 공급 장치 및 방법
CN106456018B (zh) 具有来自弯曲应力的减小误差的压力测量导管
US20220160305A1 (en) Intravascular devices, systems, and methods having a core wire with multiple flattened sections
US11826128B2 (en) Physiological sensor delivery device and method
CN107669258B (zh) 用于传感器传送装置的光纤传感器组件
JP6389526B2 (ja) 血液透析動静脈瘻成熟を評価するシステム及び方法
US11006840B2 (en) Device, system, and method for assessing intravascular pressure
US20150272449A1 (en) Hybrid Intravascular Pressure Measurement Devices and Associated Systems and Methods
EP3068287A1 (en) Multi-sensor lesion assessment device and method
CN107736884B (zh) 具有支撑机构的血管内压力测量导管
US20220265152A1 (en) Microcatheter sensor design for mounting sensor to minimize induced strain
CN109124608A (zh) 带显影环的血管内压力测量导管
US10973418B2 (en) Microcatheter sensor design for minimizing profile and impact of wire strain on sensor
CN112336328B (zh) 带显影环的血管内压力测量导管
CN210784316U (zh) 血管内压力测量导管
CN111344799A (zh) 管内装置的自动标准化
CN210784317U (zh) 带显影环的血管内压力测量导管
CN208404552U (zh) 带显影环的血管内压力测量导管
CN112294278B (zh) 血管内压力测量导管
CN208551784U (zh) 具有支撑机构的血管内压力测量导管
CN108882852B (zh) 用于安装传感器以使所引起的应变最小的微导管传感器设计

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017901305

Country of ref document: EP

Effective date: 20191015