WO2018163581A1 - 力覚センサ - Google Patents

力覚センサ Download PDF

Info

Publication number
WO2018163581A1
WO2018163581A1 PCT/JP2017/047121 JP2017047121W WO2018163581A1 WO 2018163581 A1 WO2018163581 A1 WO 2018163581A1 JP 2017047121 W JP2017047121 W JP 2017047121W WO 2018163581 A1 WO2018163581 A1 WO 2018163581A1
Authority
WO
WIPO (PCT)
Prior art keywords
stopper
strain
main body
force sensor
movable body
Prior art date
Application number
PCT/JP2017/047121
Other languages
English (en)
French (fr)
Inventor
嵩幸 遠藤
Original Assignee
日本電産コパル電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産コパル電子株式会社 filed Critical 日本電産コパル電子株式会社
Priority to CN201780087831.9A priority Critical patent/CN110352338B/zh
Priority to EP17899429.9A priority patent/EP3594648B1/en
Publication of WO2018163581A1 publication Critical patent/WO2018163581A1/ja
Priority to US16/563,205 priority patent/US11353344B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/24Housings ; Casings for instruments
    • G01D11/245Housings for sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/085Force or torque sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/26Auxiliary measures taken, or devices used, in connection with the measurement of force, e.g. for preventing influence of transverse components of force, for preventing overload
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/108Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/161Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/06Hermetically-sealed casings
    • H05K5/061Hermetically-sealed casings sealed by a gasket held between a removable cover and a body, e.g. O-ring, packing

Definitions

  • the embodiment of the present invention relates to a six-axis force sensor used for a robot arm, for example.
  • a force sensor that is used for a robot arm or the like and detects force and torque in the XYZ axial directions is known (for example, see Patent Documents 1 and 2).
  • an external force applied to a movable body as a power receiving body is transmitted to, for example, a strain generating body, and the deformation of the strain generating body is converted into an electric signal by a strain sensor (strain gauge). And torque is detected.
  • a strain sensor strain gauge
  • JP 2010-8343 A Japanese Patent Publication No. 6-43937
  • the actual site is an environment where liquids such as oil and water are used and dust is scattered. Liquids and dust may enter.
  • the present invention has been made in view of the above circumstances, and provides a force sensor that can prevent liquid and dust from entering between a main body and a movable body and can improve reliability.
  • the force sensor includes a cylindrical main body, a cylindrical movable body that is operable with respect to the main body and has at least three circular openings around the main body, and is fixed to the main body and the movable body.
  • a strain-generating body that can be deformed in accordance with the operation of the movable body, a strain sensor provided in the strain-generating body, and a first outer diameter that is disposed inside each of the openings and is smaller than the diameter of the openings.
  • a first stopper having a first outer peripheral surface, and a sealing member that covers at least the movable portion between the opening and the main body and the movable body.
  • the present invention it is possible to provide a force sensor that can prevent liquid and dust from entering between the main body and the movable body and can improve reliability.
  • the top view which shows the relationship between the 2nd stopper which concerns on the modification 2, and a main body Sectional view of FIG. 16A The perspective view which cut off some shown in order to demonstrate the thermal expansion member which concerns on the modification 3.
  • FIG. 1 is a perspective view showing a force sensor according to the first embodiment.
  • FIG. 2 is a plan view showing the force sensor according to the first embodiment.
  • the force sensor 10 according to the first embodiment is used, for example, in a robot arm or the like, and detects force and torque in the XYZ axis directions. As an example, a 6-axis force sensor will be described.
  • the force sensor 10 includes a cylindrical main body 11 and a cylindrical movable body 12 operable with respect to the main body 11.
  • the main body 11 is fixed to, for example, a main body of a robot arm (not shown).
  • the movable body 12 functions as, for example, a mounting plate for removing a hand portion of a robot arm (not shown) on the upper surface thereof.
  • the main body 11 is a base member of the force sensor 10, and the movable body 12 has six axial directions (X-axis direction, Y-axis direction, Z-axis) with respect to the main body 11 with a strain-generating body capable of elastic deformation. (Axial direction and direction around each axis).
  • each opening 13 is arranged in the X-axis direction and the Y-axis direction.
  • the number of openings 13 is not limited to four, and may be three or more.
  • a first stopper 14 is disposed inside each opening 13, and each first stopper 14 is fixed to the main body 11 with a bolt 15.
  • the first stopper 14 regulates the operating range of the movable body 12 with respect to torque in the X-axis direction, torque in the Y-axis direction, force in the Z-axis direction, and torque.
  • the outermost peripheral portion of the first stopper 14 includes a first side surface with which the inner surface of the opening 13 can come into contact. That is, on the first side surface, when the movable body 12 is operated by the force and torque in the axial direction and the strain generating body is deformed along with this, the inner surface of the opening 13 of the movable body 12 comes into contact, and the strain generating body It functions as a protection mechanism that prevents excessive deformation of the material.
  • a wiring 125 for transmitting a detection signal to the outside is drawn out on the side surface of the main body 11.
  • the wiring 125 is electrically connected to a substrate described later.
  • FIG. 3 is a cross-sectional view showing the force sensor 10 taken along the line III-III in FIG.
  • the strain body 16 is disposed in the central portion inside the force sensor 10.
  • a central portion 161 of the strain generating body 16 is attached to the movable body 12 via a second stopper 24 with a bolt 18, and an outer peripheral portion 162 surrounding the outer periphery of the central portion of the strain generating body 16 is attached to the main body 11 with a bolt (not shown).
  • the surface of the strain generating body 16 is arranged in parallel with the surface formed by the X axis and the Y axis, and a line passing through the center of the strain generating body 16 perpendicularly coincides with the Z axis.
  • a plurality of strain sensors 16a constituting a bridge circuit are provided in a plurality of connection portions that connect the central portion and the outer peripheral portion of the strain generating body 16, and the strain sensor 16a electrically displaces the strain generating body 16. Detected.
  • the arrangement of the strain sensor 16 a is not limited to this, and the strain sensor 16 a may be provided in the central portion 161 of the strain generating body 16.
  • a substrate 20 is provided inside the main body 11 so as to face the strain body 16.
  • the substrate 20 is fixed to the main body 11 and electrically connected to a plurality of strain sensors 16 a provided on the strain generating body 16.
  • the strain sensor described above is disposed at a predetermined location on the surface of the plurality of connection portions of the strain body 16. By measuring the displacement at each location of the strain generating body 16 by the strain sensor 16a, the force and torque in the six-axis directions are detected.
  • the configuration and arrangement of the strain sensor 16a are not limited to this, and can be modified as appropriate.
  • An FPC (Flexible printed circuit) 26 for electrically connecting the strain sensor 16 a and the substrate 20 is provided on the surface of the strain generating body 16.
  • the FPC 26 includes an insulating flexible film and a predetermined electric circuit wired on the film, and is configured to be able to bend freely according to the movement of the movable body 12.
  • the first stopper 14 has the first side surface (outer peripheral surface) 14a and the second side surface (outer peripheral surface) 14b described above.
  • the first side surface 14 a has a first outer diameter R 14 a that is smaller than the diameter R 13 of the opening 13 of the movable body 12.
  • the second side surface 14b has a second outer diameter R14b that is smaller than the first outer diameter R14a, and is positioned outside the first side surface 14a inside the opening 13. Accordingly, the distance W14 between the first side surface 14a and the inner surface of the opening 13 is configured to be smaller than the distance W30 between the second side surface 14b and the inner surface of the opening 13 (W14 ⁇ W30). ).
  • the distance W30 is about several mm, for example.
  • a gap corresponding to the distance W30 is also provided on the side surfaces of the movable body 12 and the main body 11 so that the movable body 12 can operate with respect to the main body 11.
  • the main body 11 and the movable body 12 are schematically shown here as being in contact with each other.
  • a gap (for example, about 1 mm) that does not hinder the operation is provided in the interior).
  • the illustration of the gap is omitted.
  • the distance (clearance) W14 between the first side surface 14a and the inner surface of the opening 13 is, for example, about 100 ⁇ m ⁇ 20 ⁇ m, and is very narrow. Moreover, in order to prevent damage to the strain generating body 16 when the movable body 12 is operated, it is necessary to manage the distance W14 with extremely high accuracy.
  • a gap having a distance W15a is formed between the inner surface of the first stopper 14 corresponding to the first side surface 14a and the shaft of the bolt 15.
  • a gap having a distance W15b is also provided between the inner surface of the first stopper 14 corresponding to the first and second side surfaces 14a and 14b and the side surface of the head of the bolt 15.
  • the distances W15a and W15b are, for example, about 0.2 mm. In the following description, illustration of these gaps is omitted.
  • a shim as an adjustment jig having an insertion portion having a thickness substantially the same as the distance W30 is provided between the second side surface 14b of the first stopper 14 and the inner surface of the opening 13.
  • the first stopper 14 is fixed to the main body 11 with the bolt 15.
  • the first stopper 14 can be moved by the distances W15a and 15b of the gap, so that the distance between the inner surface of the opening 13 of the movable body 12 and the first side surface 14a of the first stopper 14 is reduced.
  • Distance (clearance) W14 can be managed with high accuracy. Details of this will be described later.
  • a second stopper 24 is provided above the strain generating body 16 and inside the inner peripheral surface 11a of the main body 11.
  • the second stopper 24 has an outer diameter R24 that is smaller than the diameter R11 of the inner peripheral surface 11a. For this reason, a gap having a distance W ⁇ b> 24 is disposed between the inner peripheral surface 11 a of the main body 11 and the outer peripheral surface of the second stopper 24.
  • the second stopper 24 has a cylindrical shape, the center of which coincides with the center of the main body 11, and the axis passing through the center perpendicularly coincides with the Z axis.
  • the second stopper 24 is attached to the movable body 12 by a bolt 25.
  • the second stopper 24 regulates the operating range of the movable body 12 with respect to the force in the X-axis direction and the force in the Y-axis direction, and the outer peripheral surface 24 a of the second stopper 24 is the inner peripheral surface 11 a of the main body 11. It is comprised so that it can contact
  • the force between the second stopper 24 and the main body 11 is changed. Since the distance W24 is smaller than the distance W14 between the opening 13 and the first stopper 14 (W24 ⁇ W14), the outer peripheral surface 24a of the second stopper 24 is first placed before the first stopper 14 in the main body 11. It contacts the inner peripheral surface 11a. In this way, the second stopper 24 functions as a protection mechanism that prevents excessive deformation of the strain body 16 due to the force in the axial direction. Details of this will be described later.
  • FIG. 4 is a cross-sectional view for explaining an external force detection operation in the Z-axis direction.
  • the external force (load) Fz applied to the substantially central part of the movable body 12 in the Z-axis direction will be described.
  • the movable body 12 moves downward along the Z-axis direction by the external force Fz. Since the main body 11 is fixed and does not move even by the external force Fz, the movable body 12 moves downward until the upper inner surface of the opening 13 abuts on the first side surface 14 a of the first stopper 14. Due to the movement of the movable body 12, the upper gap (distance W14U) becomes substantially zero, and the lower gap (distance W14D) increases to about twice that before the movement.
  • the strain body 16 is deformed by the movement of the movable body 12. However, since the deformation of the strain generating body 16 is limited to a predetermined range by the first stopper 14, the strain generating body 16 is protected from destruction due to excessive external force. The deformation of the strain generating body 16 is detected by the strain sensor 16a and converted into a detection signal as an electric signal. The detection signal is transmitted to the outside through the substrate 20 and the wiring 125, and the external force Fz is detected.
  • the strain body 16 returns to its original shape by elastic deformation.
  • FIG. 5 is a cross-sectional view for explaining an external force detection operation in the X-axis direction.
  • FIG. 6A shows an initial state
  • FIG. 6B is a plan view schematically showing an external force detection operation in the X-axis direction during the second stopper function.
  • FIGS. 5, 6A, and 6B A case where an external force (load) Fx applied to the side surface of the movable body 12 in the X-axis direction is detected will be described with reference to FIGS. 5, 6A, and 6B.
  • the outer peripheral surface 24aR of the second stopper 24 is Prior to the one stopper 14, it comes into contact with the inner peripheral surface 11 a of the main body 11.
  • the right gap (distance W24R) of the second stopper 24 becomes substantially 0, and the left gap (distance W24L) increases to about twice that before the movement.
  • the strain body 16 is deformed by the movement of the movable body 12. However, since the deformation of the strain generating body 16 is limited to a predetermined range by the second stopper 24, the strain generating body 16 is protected from destruction due to excessive external force. The deformation of the strain generating body 16 is detected by the strain sensor 16a, converted into a detection signal as an electrical signal, transmitted to the outside through the substrate 20 and the wiring 125, and the external force Fx can be detected.
  • the strain body 16 returns to its original shape by elastic deformation.
  • the external force detection operation in the X-axis direction has been described here, the external force detection operation in the Y-axis direction is substantially the same as the external force detection operation.
  • FIG. 7 is a plan view showing a force sensor to which a first stopper jig is mounted.
  • FIG. 8 is a view showing a cross section taken along line VIII-VIII in FIG.
  • the adjustment of the clearance W14 of the first stopper 14 is performed by attaching a shim 30 to the opening 13.
  • 7 and 8 show the case where the shim 30 is attached to one opening 13, it is preferable that the adjustment is performed with the shims 30 attached to all the four openings 13. In this case, the adjustment accuracy can be further improved, and the adjustment work time can be shortened.
  • the shim 30 has a cylindrical insertion portion 30a, a knob portion 30b, and an opening 33.
  • the insertion portion 30a has an outer diameter R13 that is substantially equal to the diameter of the opening 13 of the movable body 12, and the thickness of the insertion portion 30a is between the second side surface 14b of the first stopper 14 and the inner surface of the opening 13.
  • the thickness is set to be substantially the same as the distance W30.
  • the knob 30b has an outer diameter R30 that is larger than the diameter R13 of the opening 13.
  • the opening 33 can be inserted into a hexagon wrench (not shown) that passes through the knob 30b and is attached to a hexagon hole provided in the head of the bolt 15.
  • the insertion portion 30 a of the shim 30 is inserted between the second side surface 14 b of the first stopper 14 and the inner surface of the opening portion 13.
  • the outer diameter of the insertion portion 30a is substantially the same as the diameter R13 of the opening 13
  • the inner diameter of the insertion portion 30a is substantially the same as the second outer diameter R14b of the second side surface 14b of the first stopper 14. is there.
  • the axial center C30 of the shim 30 and the axial center C14 of the first stopper 14 are aligned to form a concentric circle. That is, in this state, since the first stopper 14 can be moved by the gap distances W15a and 15b shown in an enlarged manner in FIG. Is accurately set.
  • the first stopper 14 is fixed to the main body 11 by inserting a hexagon wrench (not shown) from the opening 33 of the shim 30 and tightening the bolt 15.
  • the insertion portion 30a having a thickness corresponding to the distance W30 between the second side surface 14b of the first stopper 14 and the opening portion 13, the first side surface 14a of the first stopper 14 and the opening portion.
  • the clearance which is the distance W14 with the inner surface of 13 can be managed accurately.
  • FIG. 9 is a cross-sectional view showing a force sensor having a second stopper jig mounted thereon. As shown in FIG. 9, the adjustment of the clearance W ⁇ b> 24 of the second stopper 24 is performed by attaching a shim 36 to the opening 35 provided in the movable portion 12. Although FIG. 9 shows the case where the shim 36 is attached to one opening 35, adjustment is performed with the shim 36 attached to all four openings 35 provided in the movable portion 12. Is preferred. In this case, the adjustment accuracy can be further improved, and the adjustment work time can be shortened.
  • the main body 11 has a stepped portion having an inner peripheral surface 11b along the Z-axis. That is, the inside of the main body 11 has an inner peripheral surface (second inner peripheral surface) that has a diameter larger than the diameter R11 formed by the inner peripheral surface (first inner peripheral surface) 11a with which the side surface 24a of the second stopper 24 abuts. Surface) 11b.
  • the shim 36 has a pin 36a as an insertion portion and a cylindrical knob portion 36b.
  • the pin 36 a has a diameter between the outer peripheral surface 24 a of the second stopper 24 and the inner peripheral surface 11 b of the main body 11.
  • the pin 36a of the shim 36 is inserted from the opening 35 between the outer peripheral surface 24a of the second stopper 24 and the inner peripheral surface 11b of the main body 11 with the bolt 25 loosened. Since the outer diameter of the pin 36a is substantially the same as the distance between the outer peripheral surface 24a of the second stopper 24 and the inner peripheral surface 11b of the main body 11, the axial center C36 of the shim 36, the outer peripheral surface 24a and the inner peripheral surface The axis of the circle whose diameter is the surface 11b coincides with each other to form a concentric circle. Since the second stopper 24 can move by the gap distance W24a, the distance W24 between the outer peripheral surface 24a of the second stopper 24 and the first inner peripheral surface 11a of the main body 11 is accurately set.
  • the second stopper 24 is fixed to the movable body 12 by tightening the bolt 25 to the movable body 12 using a hexagon wrench (not shown).
  • the rigidity of the strain body 16 based on the forces in the X-axis direction and the Y-axis direction and the rigidity of the strain body 16 based on the torques in the XYZ-axis directions are about 6 times. It is known that there is a difference in degree.
  • the force sensor 10 includes the second stopper 24, and the second stopper 24 is spaced from the first inner peripheral surface 11a of the main body 11 by a distance W24, and the diameter of the first inner peripheral surface 11a. It has an outer peripheral surface 24a having an outer diameter R24 smaller than R11, and functions only for forces in the X-axis direction and the Y-axis direction.
  • the second stopper 24 regulates the operating range of the movable body 12 with respect to the force in the X-axis direction and the force in the Y-axis direction, and the outer peripheral surface 24 a of the second stopper 24 contacts the inner peripheral surface 11 a of the main body 11. Configured to be possible (FIG. 3).
  • the distance W24 between the outer peripheral surface 24a of the second stopper 24 and the first inner peripheral surface 11a of the main body 11 is the same as that of the first stopper 14. Since the distance W14 between the first side surface 14a and the opening 13 is smaller (W24 ⁇ W14), the outer peripheral surface 24a of the second stopper 24 is ahead of the first stopper 14 and the inner peripheral surface 11a of the main body 11. Abut. For this reason, the 2nd stopper 24 can prevent the excessive deformation
  • the rigidity of the strain body 16 based on the forces in the X-axis direction and the Y-axis direction and the stiffness of the strain body 16 based on each torque in the XYZ-axis directions are about 6 Even when there is a difference of about twice, excessive deformation of the strain body 16 in the X-axis direction and the Y-axis direction can be prevented. Therefore, the safety of the strain body 16 can be improved, and the reliability can be improved.
  • the clearance W24 of the second stopper 24 is accurately managed by using the shim 36. That is, since the outer diameter of the pin 36a of the shim 36 is substantially the same as the distance between the outer peripheral surface 24a of the second stopper 24 and the second inner peripheral surface 11b of the main body 11, using the shim 36, The center of the circle whose diameter is the outer peripheral surface 24a and the center of the circle whose diameter is the inner peripheral surface 11b can be matched. In this state, by tightening the bolt 25, the second stopper 24 can be attached to the movable body 12 in a state where the clearance W24 is accurately managed (FIG. 9).
  • the strain body 16 and the force sensor 10 can be made smaller and thinner.
  • the strain body 16 needs to have an outer dimension of about 50 ⁇ 50 mm and a thickness of about 5 mm.
  • the strain body 16 can be reduced in size and thickness to an outer dimension of about 35 ⁇ 35 mm and a thickness of about 4 mm.
  • the first stopper 14 has a first side surface 14a with which the inner surface of the opening 13 of the movable body 12 abuts and an outer diameter smaller than the outer diameter of the first side surface 14a.
  • a second side surface 14b and when adjusting the first stopper 14, between the second side surface 14b of the first stopper 14 and the inner surface of the opening 13, between the second side surface 14b and the inner surface of the opening 13;
  • the insertion part 30a of the shim 30 having a thickness corresponding to the distance W30 is inserted. For this reason, when the axial center C30 of the shim 30 and the axial center C14 of the first stopper 14 coincide with each other, the first stopper 14 moves by the distance W15a, 15b of the gap. Therefore, the distance W14 between the first side surface 14a of the first stopper 14 and the inner surface of the opening 13 can be accurately set (FIGS. 7 and 8).
  • the adjustment is completed only by attaching the shim 30 and tightening the bolt 15 from the opening 33 of the shim 30 in a state where the bolt 15 is loosened. For this reason, the adjustment work can be facilitated while reducing the error of the distance W14 as the clearance as much as possible.
  • first side surface 14a and the second side surface 14b of the first stopper 14 can be formed by continuously cutting, for example, in the same manufacturing process. Therefore, dimension management and inspection of the first side surface 14a and the second side surface 14b are easy.
  • the movable body 12 since the movable body 12 only needs to manage the dimension of the diameter R13 of the opening 13 in the manufacturing process, the dimension management and inspection are easy.
  • the shim 30 can be formed by continuously cutting the outer surface and the inner surface of the insertion portion 30a, for example, in the same manufacturing process. Therefore, the concentricity of the outer surface and the inner surface of the insertion portion 30a can be improved, and the dimension management and inspection of the shim 30 can be facilitated.
  • the second embodiment relates to measures for thermal expansion of the strain body 16, and relates to the strain body 16 including a thermal expansion suppressing member.
  • FIG. 10 is a cross-sectional view showing a force sensor 10A according to the second embodiment.
  • the difference between the force sensor 10A shown in FIG. 10 and the first embodiment is that the second stopper 24A is made of the same material as the strain body 16, and the second stopper 24A is a thermal expansion suppressing member of the strain body 16. To function as.
  • the second stopper 24 ⁇ / b> A is in contact with the strain body 16 at least at a portion attached to the strain body 16 by the bolt 18.
  • FIG. 11 is a plan view showing the strain body 16 of the force sensor according to the present embodiment.
  • the strain body 16 includes a central portion 161, an outer peripheral portion 162 that surrounds the periphery of the central portion 161, and four connection portions (beams) 163 that connect the central portion 161 and the outer peripheral portion 162. It has.
  • a strain sensor (not shown) is provided on the surfaces of the central portion 161 and the connecting portion 163.
  • the central portion 161 is fixed to the movable body (first support member) 12 via the second stopper 24 by bolts 18 penetrating the four holes 18a.
  • the outer peripheral part 162 is fixed to the main body 11 (second support member) by bolts (not shown) penetrating the four screw holes 17a.
  • the strain body 16 is made of a material such as stainless steel (eg, SUS630) that is, for example, iron-based or alloy steel from the viewpoint of fatigue characteristics, high strength, and the like.
  • connection part 163 and the outer peripheral part 162 as a beam of the strain body 16 can be schematically shown as springs.
  • the spring constant (rigidity) C163 of the connecting portion 163 is set sufficiently larger (stronger) than the spring constant C162 of the outer peripheral portion 162 (C163> C162).
  • the material constituting the second stopper 24A is not limited to the same material as that of the strain body 16, and may be a material having the same type or a coefficient of thermal expansion as that of the strain body 16.
  • a material having a thermal expansion coefficient close to that of the strain generating body 16 for example, a material whose difference from the thermal expansion coefficient of the strain generating body 16 is about ⁇ 20% is desirable.
  • a material with a difference of about ⁇ 10% is more desirable.
  • the second stopper 24A when the rigidity of the second stopper 24A is low, the dimensional variation of the movable body 12 due to temperature variation cannot be sufficiently suppressed by the second stopper 24A, and therefore the second stopper 24A may be distorted and the strain generating body 16 may be distorted. There is. Therefore, it is desirable that the second stopper 24 ⁇ / b> A has sufficiently higher rigidity than the movable body 12 and the strain body 16.
  • the main body 11 and the movable body 12 as a case body (housing) for holding the strain body 16 are provided around the strain body 16.
  • the main body 11 and the movable body 12 are made of a material such as an aluminum alloy from the viewpoint of weight reduction.
  • the strain body 16 is made of a material such as stainless steel (eg, SUS630), which is an iron-based or alloy steel, from the viewpoint of fatigue characteristics, high strength, and the like.
  • SUS630 stainless steel
  • the strain body 16 and the case body (the main body 11 and the movable body 12) are made of materials having different thermal expansion coefficients, the strain body 16 is formed from the case body due to temperature fluctuations around the case body. Strain associated with expansion / contraction.
  • the zero point serving as the reference value of the bridge circuit constituted by the strain sensor provided on the surface of the strain generating body 16 may fluctuate, and the detection accuracy may be reduced.
  • the strain sensor 16 has a high gauge factor, so that a slight strain of the strain generating body 16 caused by a change in ambient temperature causes a large change in output.
  • the second stopper 24A according to the second embodiment is made of the same material as that of the strain body 16, the second stopper 24A and the strain body 16 have the same thermal expansion coefficient. Moreover, the second stopper 24A is in contact with the strain body 16 at least at a portion attached to the strain body 16 by the bolt 18 (FIG. 10). Therefore, when ambient temperature fluctuations are transmitted to the case body, the second stopper 24A and the strain body 16 undergo substantially the same thermal expansion. Therefore, the fluctuation of the zero point of the bridge circuit accompanying the temperature change of the strain sensor can be suppressed, and the measurement accuracy can be maintained.
  • the second stopper 24A is provided on the central portion 161 of the strain body 16, and is configured to have the same size as the strain body 16 (FIG. 10). Therefore, it is possible to achieve both a reduction in size and weight of the second stopper 24A as the thermal expansion suppressing member.
  • the spring constant (rigidity) C163 of the connection portion 163 of the second stopper 24A is configured to be sufficiently higher (hard) than the spring constant C162 of the outer peripheral portion 162 (C163> C162). (FIG. 11).
  • C163> C162 the spring constant of the outer peripheral portion 162
  • FIG. 11 when temperature fluctuation occurs, distortion occurs in the central portion 161 of the strain generating body 16 based on the difference between the thermal expansion coefficients of the movable body 12 and the second stopper 24A.
  • the central part 161 is high in rigidity, but is configured such that strain is directly applied to the strain sensor provided in the central part 161.
  • the outer peripheral portion 162 is similarly distorted based on the difference from the thermal expansion coefficient with the main body 11, but the strain sensor provided in the connecting portion 163 via a spring (C 162) softer than the central portion 161. Is distorted. Therefore, the displacement of the main body 11 due to thermal expansion is absorbed by the soft spring (C162) of the outer peripheral portion 162. As a result, the strain sensor provided in the connection portion 163 has a small amount corresponding to the reaction force of the soft spring (C162). Only distortion occurs.
  • providing the second stopper 24A above the central portion 161 of the strain body 16 is effective in preventing zero point fluctuation due to thermal expansion.
  • the third embodiment relates to an example of a force sensor having a waterproof and dustproof structure.
  • FIG. 12 is a cross-sectional view showing a force sensor 10B according to the third embodiment.
  • the force sensor 10B differs from the first and second embodiments in that a rubber member 41 (first sealing member) as a waterproof and dustproof member 40 and a foam member (first (3 sealing member) 42 and a cover member (second sealing member) 43 are further provided.
  • the rubber member 41 covers the opening 13 provided on the side surface of the force sensor 10B.
  • the cover member 43 is attached to the movable body 12 and covers the upper surface and side surfaces of the movable body 12 and a part of the rubber member 41.
  • the foam member 42 covers a gap between the main body 11 and the rubber member 41 and the cover member 43.
  • the rubber member 41 is provided so as to cover the opening 13 in order to seal the first stopper 14, and is made of a rubber material.
  • the material constituting the rubber member 41 may be a foamed material, and a closed cell material is more desirable.
  • the foam member 42 is made of a foam material having sufficiently small rigidity (small spring property) compared to the rigidity of the strain body 16 so as not to hinder the movement of the movable body 12 and the cover member 43.
  • the foam member 42 is a closed cell material and is made of a rubber material.
  • the foam member 42 is preferably made of a material having a rigidity that does not hinder the operation of the movable body 12 in order to cover a movable portion (gap) that is a boundary between the main body 11 and the movable body 12.
  • the rigidity ratio between the strain body 16 and the foam member 42 is configured to be approximately 500: 1.
  • the rigidity ratio between the strain body 16 and the foam member 42 is preferably 100: 1 or more, and more preferably 1000: 1 or more.
  • the rigidity refers to difficulty in deformation based on, for example, the Young's modulus and shape of the material.
  • the cover member 43 is provided on the outer periphery of the movable portion 12 and prevents intrusion of liquid and dust from a fixing bolt hole or the like provided on the upper surface of the movable portion 12 or the like.
  • the material of the cover member 43 is not limited to a metal and may be a resin material.
  • FIGS. 13 and 14 are perspective views for explaining an assembly process of the waterproof and dustproof member 40 of the force sensor 10B according to the third embodiment.
  • the movable body 12 to which the second stopper 24 is fixed is attached to the main body 11.
  • the force sensor 10B is completely sealed. It has not been stopped.
  • fitting portions 11 c and 11 d are provided on the side surface of the main body 11 so as to protrude to the outer peripheral side in order to fit the rubber member 41 and the foaming member 42.
  • the rubber member 41 is fitted into the fitting portion 11 c of the main body 11 to cover the opening 13 of the main body 11.
  • a substantially ring-shaped foam member 42 is fitted into a fitting portion 11d as a movable portion between the main body 11 and the movable body 12, and the rubber member 41 is pressed.
  • the cover member 43 is attached to the movable body 12, and the upper surface and side surfaces of the movable body 12 are covered with the cover member 43.
  • the cover member 43 is fixed to the movable body 12 by screwing the screws 44 inserted into the screw holes 12 b into the movable body 12.
  • the pressure with which the cover member 43 presses the foam member 42 is adjusted. Specifically, the thickness of the foam member 42 is reduced to about 20% to 30% compared to the thickness before the cover member 43 is attached to the movable body 12.
  • the rubber member 41, the foam member 42, and the cover member 43 as the waterproof and dustproof member 40 of the force sensor 10B are assembled.
  • the force sensor 10B includes a rubber member 41 as the waterproof and dustproof member 40, a foam member 42, and a cover member 43.
  • the rubber member 41 covers the opening 13 of the main body 11
  • the foaming member 42 covers a movable part as a gap between the main body 11 and the movable body 12, and the cover member 43 covers the upper surface and the side surface of the movable body 12 (FIG. 12).
  • the accuracy of the strain sensor provided in the strain body 16 can be ensured and liquid and dust can be prevented from entering from the outside of the force sensor 10B, and the reliability of the force sensor 10B can be improved. it can.
  • the force sensor 10B since the force sensor 10B includes the opening 13 and the first stopper 14 on the side surface, the surrounding shape is complicated. However, by combining the rubber material 41, the foam member 42, and the cover member 43, it is possible to attach the three rubber members 41, the foam member 42, and the cover member 43 to the force sensor 10B using only the screw 44. (FIGS. 13 and 14). Accordingly, a sufficient waterproof and dustproof function can be obtained with a simple structure, and the manufacturing cost can be reduced.
  • FIG. 15A is a plan view schematically showing the relationship between the second stopper 24B and the main body 11 according to Modification 1, and FIG. 15B shows a cross-sectional view of FIG. 15A.
  • the planar shape of the second stopper 24B is a cross shape.
  • the shape of the main body 11 as the force receiving side of the second stopper 24B is also configured in a cross shape corresponding to the second stopper 24B.
  • Modification 2 (an example having a convex portion in the cross-sectional shape of the second stopper)) 16A is a plan view schematically showing the second stopper 24C and the main body 11 according to the second modification, and FIG. 16B is a cross-sectional view of FIG. 16A.
  • the second stopper 24C has a protruding portion 124 protruding in the X-axis direction.
  • the inner peripheral surface of the main body 11 also has a protruding portion 111 that protrudes in the X-axis direction.
  • the distance W24 is provided between the side surface (lower surface) 24b of the protruding portion 124 of the second stopper 24C and the side surface (upper surface) 11c of the protruding portion 111 of the main body 11.
  • the second stopper 24C has a force Fz in the Z-axis direction, and A protection function against the torques Mx and My in the XY axis directions can be obtained.
  • the first stopper 14 can obtain a protection function against the forces and torques (Fx, Fy, Mz) of the other three axes. Therefore, the modified example 2 can further improve the protection function of the strain generating body.
  • FIG. 17 is a perspective view in which a part shown for explaining the thermal expansion member according to Modification 3 is cut away. Note that a part of the force sensor shown in FIG. 17 is omitted for explanation.
  • a thermal expansion suppressing member 112 is further provided between the main body 11 and the strain body 16.
  • the thermal expansion suppressing member 112 has the same thermal expansion coefficient as that of the strain body 16.
  • the thermal expansion suppressing member 112 is in contact with the outer peripheral portion 162 of the strain generating body 16 and the inside of the main body 11, fastened to the outer peripheral portion 162 of the strain generating body 16 by the bolt 17, and fastened to the main body 11 by the bolt 113.
  • the thermal expansion suppression member 112 is also provided in the outer peripheral portion 162 of the strain body 16.
  • the second stoppers 24 and 24A are separate members from the movable body 12 .
  • the second stoppers 24 and 24A to 24C are the same members as the movable body 12. It may be a monolithic structure.
  • the movable body 12 integrated with the second stoppers 24 and 24A to 24C is made of the same material as the strain body 16 or a material having a thermal expansion coefficient substantially equal to that of the strain body 16. Desirably configured.
  • the inspection using the shim 30 is not limited to when the force sensors 10, 10A to 10C are shipped, and may be performed, for example, during maintenance after the force sensors 10, 10A to 10C are operated to some extent.
  • the rubber member 41 and the foam member 42 may be integrally formed of the same material.
  • these materials are rubber materials or closed cell materials. These materials are desirably materials having sufficiently low rigidity compared to the rigidity of the strain body 16.
  • the present invention is not limited to the above-described embodiments and the respective modifications as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
  • the force sensor according to the embodiment of the present invention can be applied to a joint of a robot arm, for example.

Abstract

本体と可動体との間からの液体および塵埃の浸入を防止でき、信頼性を向上できる力覚センサを提供する。実施形態に係る力覚センサ10Bにおいて、本体11は、円筒状である。円筒状の可動体12は、本体に対して動作可能で、周囲に少なくとも3つの円形の開口部を有する。起歪体16は、本体および可動体に固定され、可動体の動作に従って変形可能である。歪センサ16aは、起歪体に設けられている。第1ストッパ14は、開口部のそれぞれの内部に配置され、開口部の直径より小さな第1外径を有する第1側面を備える。シーリング部材40は、開口部および本体と可動体との間の可動部分を少なくとも覆う。

Description

力覚センサ
 本発明の実施形態は、例えばロボットアーム等に用いられる6軸力覚センサに関する。
 例えばロボットアーム等に用いられ、XYZ軸方向の力およびトルクを検出する力覚センサが知られている(例えば、特許文献1、2参照)。
 この種の力覚センサにおいて、受力体としての可動体に加えられた外力は、例えば起歪体に伝達され、起歪体の変形が歪センサ(歪ゲージ)によって電気信号に変換され、力およびトルクが検出される。
特開2010-8343号公報 特公平6-43937号公報
 力覚センサを例えばロボットアーム等に適用する場合、実際の現場は、油や水等の液体が使用され、塵埃も飛散する環境下であるため、力覚センサの本体と可動体との間から液体および塵埃が侵入するおそれがある。
 本発明は、上記事情を鑑みてなされており、本体と可動体との間からの液体および塵埃の浸入を防止でき、信頼性を向上できる力覚センサを提供するものである。
 実施形態に係る力覚センサは、円筒状の本体と、前記本体に対して動作可能で、周囲に少なくとも3つの円形の開口部を有する円筒状の可動体と、前記本体および前記可動体に固定され、前記可動体の動作に従って変形可能な起歪体と、前記起歪体に設けられた歪センサと、前記開口部のそれぞれの内部に配置され、前記開口部の直径より小さな第1外径を有する第1外周面を備える第1ストッパと、前記開口部および前記本体と前記可動体との間の可動部分を少なくとも覆うシーリング部材と、を具備する。
 本発明によれば、本体と可動体との間からの液体および塵埃の浸入を防止でき、信頼性を向上できる力覚センサを提供できる。
第1実施形態に係る力覚センサを示す斜視図 第1実施形態に係る力覚センサを示す平面図 図2のIII-III線に沿って示す断面図 力覚センサに印加されるZ軸方向の外力を検出するための動作を説明するために示す断面図 力覚センサに印加されるX軸方向の外力を検出するための動作を説明するために示す断面図 第2ストッパの動作を示すものであり、初期状態を概略的に示す平面図 第2ストッパのX軸方向の外力検出動作を概略的に示す平面図 第1ストッパ用の治具が装着された力覚センサを示す平面図 図7のVIII-VIII線に沿って示す断面図 第2ストッパ用の治具が装着された力覚センサを示す断面図 第2実施形態に係る力覚センサを示す断面図 力覚センサの起歪体を示す平面図 第3実施形態に係る力覚センサを示す断面図 第3実施形態に係る力覚センサの防水防塵構造の組み立て工程を説明するための斜視図 第3実施形態に係る力覚センサの防水防塵構造の組み立て工程を説明するための斜視図 変形例1に係る第2ストッパと本体との関係を示す平面図 図15Aの断面図 変形例2に係る第2ストッパと本体との関係を示す平面図 図16Aの断面図 変形例3に係る熱膨張部材を説明するために示す一部を切除した斜視図
 以下、実施の形態について、図面を参照して説明する。なお、以下の説明において、実質的に同一の機能及び要素については、同一符号を付し、必要に応じて説明を行う。また、図面は模式的なものであり、厚みと平面寸法との関係や各層の厚みの比率などは現実のものと異なることがある。
 (第1実施形態)
 [構成]
  全体構成 
 図1は、第1実施形態に係る力覚センサを示す斜視図である。図2は、第1実施形態に係る力覚センサを示す平面図である。第1実施形態に係る力覚センサ10は、例えばロボットアーム等に用いられ、XYZ軸方向の力およびトルクを検出する。一例として6軸力覚センサについて説明する。
 図1および図2に示すように、力覚センサ10は、円筒状の本体11と、本体11に対して動作可能な円筒状の可動体12とを備える。本体11は、例えば、図示せぬロボットアームの本体等に固定される。可動体12は、例えば、その上面に図示せぬロボットアームのハンド部分を取りけるための取付けプレート等として機能する。
 本体11は、力覚センサ10のベース部材であり、可動体12は、弾性変形が可能な起歪体を介在して本体11に対して、6軸方向(X軸方向、Y軸方向、Z軸方向、および各軸周り方向)に動作可能に取付けられている。
 可動体12の周面には、例えば4つの円形の開口部13が等間隔に設けられている。すなわち、各開口部13は、X軸方向とY軸方向に配置されている。開口部13の数は、4つに限定されず、3つ以上であればよい。各開口部13の内部には第1ストッパ14が配置され、各第1ストッパ14は、ボルト15により、本体11に固定されている。
 第1ストッパ14は、X軸方向のトルク、Y軸方向のトルク、Z軸方向の力およびトルクについての可動体12の動作範囲を規制する。第1ストッパ14の最外周部には、後述するように、開口部13の内面が当接可能な第1側面を備えている。すなわち、第1側面は、上記軸方向における力およびトルクにより可動体12が動作し、これに伴って起歪体が変形した際、可動体12の開口部13の内面が当接し、起歪体の過剰な変形を防止する保護機構として機能する。
 本体11の側面には、検出信号を外部に伝達するための配線125が引き出されている。配線125は、後述する基板と電気的に接続されている。
  断面構成 
 図3は、図2のIII-IIIに沿った力覚センサ10を示す断面図である。
 図3に示すように、力覚センサ10の内部の中央部分に、起歪体16が配置される。起歪体16の中央部161はボルト18により第2ストッパ24を介して可動体12に取り付けられ、起歪体16の中央部の外周を囲む外周部162は図示しないボルトにより本体11に取り付けられる。起歪体16の表面は、X軸、Y軸により形成される面と平行に配置され、起歪体16の中心を垂直に通る線は、Z軸と一致されている。可動体12に外力が加えられると、可動体12が動作し、起歪体16が変位する。例えば起歪体16の中央部と外周部とを接続する複数の接続部には、ブリッジ回路を構成する複数の歪センサ16aが設けられ、歪センサ16aにより起歪体16の変位が電気的に検出される。歪センサ16aの配置は、これに限定されるものではなく、起歪体16の中央部161に歪センサ16aが設けられていてもよい。
 本体11の内部には、起歪体16に対向して基板20が設けられる。基板20は、本体11に固定され、起歪体16に設けられた複数の歪センサ16aと電気的に接続される。
 前述した歪センサは、起歪体16の複数の接続部の表面上の所定箇所に配置されている。起歪体16のそれぞれの場所における変位を歪センサ16aにより測定することで、6軸方向の力およびトルクを検出する。尚、歪センサ16aの構成、および配置は、これに限定されるものではなく、適宜、変形可能である。
 起歪体16の表面に、歪センサ16aと基板20とを電気的に接続するためのFPC(Flexible printed circuits)26が設けられている。FPC26は、絶縁性の柔軟なフィルムと当該フィルムに配線された所定の電気回路とを備えており、可動体12の動きに合わせて自在に曲がることが可能な構成となっている。
 第1ストッパ14は、前述した第1側面(外周面)14aと、第2側面(外周面)14bを有している。第1側面14aは、可動体12の開口部13の直径R13より小さな第1外径R14aを有している。第2側面14bは、第1外径R14aより小さな第2外径R14bを有し、開口部13の内部において、第1側面14aより外側に位置される。従って、第1側面14aと開口部13の内面との間の距離W14は、第2側面14bと開口部13の内面との間の距離W30よりも小さくなるように構成されている(W14<W30)。距離W30は、例えば数mm程度である。
 尚、可動体12と本体11の側面にも、距離W30に相当する間隙が設けられ、本体11に対して、可動体12が動作可能とされている。また、断面図では、ここでは模式的に本体11と可動体12とが接触している様に示されているが、実際には、全ての本体11と可動体12との間(側面以外の内部においても)には、動作に支障がない程度の隙間(例えば1mm程度)が設けられている。以下、当該隙間の図示を省略する。
 ここで、第1側面14aと開口部13の内面との間における距離(クリアランス)W14は、例えば100μm±20μm程度であるため、非常に狭い。しかも、可動体12が動作した際の起歪体16の破損を防止するため、この距離W14を極めて高精度に管理する必要がある。
 図3の破線で囲った部分を拡大して示すように、実際には、第1側面14aに対応する第1ストッパ14の内側面とボルト15の軸との間には距離W15aを有する隙間が設けられる。また、第1、第2側面14a、14bと対応する第1ストッパ14の内面とボルト15の頭部の側面との間にも距離W15bを有する隙間が設けられている。上記距離W15a、W15bは、例えば0.2mm程度である。尚、以降の説明において、これらの隙間の図示を省略する。
 本実施形態では、第1ストッパ14の第2側面14bと開口部13の内面との間に、距離W30と実質的に同一の厚さを有する挿入部を有する調整用の治具としてのシムを挿入した状態で、ボルト15により第1ストッパ14を本体11へ固定する。このように調整することで、上記隙間の距離W15a、15b分だけ第1ストッパ14が移動可能であるため、可動体12の開口部13の内面と第1ストッパ14の第1側面14aとの間の距離(クリアランス)W14を高精度に管理できる。この詳細については、後述する。
 さらに、起歪体16の上方で、本体11の内周面11aの内側には、第2ストッパ24が設けられている。第2ストッパ24は、内周面11aの直径R11よりも小さな外径R24を有する。このため、本体11の内周面11aと第2ストッパ24の外周面との間には、距離W24を有する隙間が配置されている。第2ストッパ24は、円筒状であり、その中心は本体11の中心と一致され、中心を垂直に通る軸はZ軸と一致されている。また、第2ストッパ24は、ボルト25により可動体12に取付けられている。
 第2ストッパ24は、X軸方向の力およびY軸方向の力に対して可動体12の動作範囲を規制するものであり、第2ストッパ24の外周面24aが、本体11の内周面11aと当接可能であるように構成されている。換言すれば、第2ストッパ24は、第1ストッパ14が保護する方向からの力以外の方向からの力に対して可動体12の動作範囲を規制するものである。
 上記構成において、X軸方向の力およびY軸方向における力が力覚センサ10に印加され、可動体12の動作に伴って起歪体が変形すると、第2ストッパ24と本体11との間の距離W24は、開口部13と第1ストッパ14との間の距離W14よりも小さいため(W24<W14)、まず第2ストッパ24の外周面24aが、第1ストッパ14よりも先に、本体11の内周面11aに当接する。このように、第2ストッパ24は、上記軸方向における力に起因する起歪体16の過剰な変形を防止する保護機構として機能する。この詳細については、後述する。
 [検出動作]
 (Fz、Mx、My、Mzについて)
 図4は、Z軸方向における外力検出動作を説明するための断面図である。図4を参照して、可動体12のほぼ中央部分にZ軸方向に加えられた外力(荷重)Fzを検出する場合について説明する。
 図4に示すように、Z軸方向において可動体12のほぼ中央部分に外力Fzが加えられると、外力Fzによって可動体12がZ軸方向に沿って下方に移動する。本体11は固定されており外力Fzによっても移動しないため、可動体12は、開口部13の上側の内面が第1ストッパ14の第1側面14aに当接するまで、下方に移動する。可動体12の移動により、上側の隙間(距離W14U)は実質的に0となり、下側の隙間(距離W14D)は移動前に比べて2倍程度まで増大する。
 可動体12の移動により、起歪体16は変形する。しかし、第1ストッパ14により、起歪体16の変形は所定の範囲に限定されているため、過剰な外力による破壊から起歪体16が保護される。起歪体16の変形は、歪センサ16aにより検出され、電気信号としての検出信号に変換される。検出信号は基板20及び配線125を介して外部に伝達され、外力Fzが検出される。
 その後、可動体12への外力Fzの印加が解除されると、起歪体16は、弾性変形により、元の形状に復帰する。
 尚、上記において、Z軸方向の外力の検出動作について説明したが、X、Y、Z軸方向の各トルクを検出する動作も、上述した外力の検出動作と実質的に同様である。
(Fx、Fyについて)
 図5は、X軸方向における外力検出動作を説明するための断面図である。図6Aは、初期状態を示し、図6Bは、第2ストッパ機能時におけるX軸方向の外力検出動作を概略的に示す平面図である。図5及び図6A、図6Bを参照して、可動体12の側面にX軸方向に加えられた外力(荷重)Fxを検出する場合について説明する。
 図5および図6Bに示すように、可動体12の側面にX軸方向に外力Fxが加えられると、可動体12は、外力FxによってX軸方向に沿って図6Bの右側に移動する。本体11は固定されており外力Fxによって移動しないため、可動体12は、第2ストッパ24の右側の外周面24aRが本体11の内周面11aに当接するまで移動する。本体11と第2ストッパ24との間の距離W24は、開口部13と第1ストッパ14との間の距離W14よりも小さいため(W24<W14)、第2ストッパ24の外周面24aRが、第1ストッパ14よりも先に、本体11の内周面11aに当接する。上記移動により、第2ストッパ24の右側の隙間(距離W24R)は実質的に0となり、左側の隙間(距離W24L)は移動前に比べて2倍程度まで増加する。
 可動体12の移動により、起歪体16は変形する。しかし、第2ストッパ24により、起歪体16の変形は所定の範囲に限定されているため、過剰な外力による破壊から起歪体16が保護される。起歪体16の変形は、歪センサ16aにより検出され、電気信号としての検出信号に変換され、基板20及び配線125を介して外部に伝達され、外力Fxを検出することができる。
 その後、可動体12への外力Fxの印加が解除されると、起歪体16は、弾性変形により、元の形状に復帰する。
 尚、ここでは、X軸方向における外力検出動作について説明したが、Y軸方向の外力の検出動作についても、上記外力の検出動作と実質的に同様である。
 [クリアランスの調整]
 (第1ストッパのクリアランスW14の調整)
 図7は、第1ストッパ用の治具が装着された力覚センサを示す平面図である。図8は、図7のVIII-VIII線に沿った断面を示す図である。
 図7、図8に示すように、第1ストッパ14のクリアランスW14の調整は、開口部13にシム30を装着して行われる。図7、図8は、1つの開口部13にシム30を装着した場合を示しているが、4つの開口部13の全てにシム30を装着した状態で、調整することが好ましい。この場合、調整精度が一層向上し、調整作業の時間を短縮することが可能である。
 図8に示すように、シム30は、筒状の挿入部30a、つまみ部30b、および開口部33を有している。
 挿入部30aは、可動体12の開口部13の直径とほぼ等しい外径R13を有し、挿入部30aの厚みは、第1ストッパ14の第2側面14bと開口部13の内面との間の距離W30と実質的に同一の厚さに設定されている。
 つまみ部30bは、開口部13の直径R13より大きな外径R30を有している。
 開口部33は、つまみ部30bを貫通し、ボルト15の頭部に設けられた六角穴に取着される図示せぬ六角レンチが挿入可能とされている。
 図8に示すように、ボルト15を緩めた状態において、シム30の挿入部30aが第1ストッパ14の第2側面14bと開口部13の内面との間に挿入される。挿入部30aの外径は、開口部13の直径R13と実質的に同一であり、挿入部30aの内径は、第1ストッパ14の第2側面14bの第2外径R14bと実質的に同一である。このため、シム30の挿入部30aを開口部13に挿入した状態で、シム30の軸心C30と第1ストッパ14の軸心C14とが一致され、同心円となる。すなわち、この状態において、図3で拡大して示した上記隙間の距離W15a、15b分だけ第1ストッパ14が移動可能であるため、第1ストッパ14の第1側面14aと、開口部13の内面との距離W14が正確に設定される。
 この状態において、シム30の開口部33から図示せぬ六角レンチを挿入してボルト15を締め付けることにより、第1ストッパ14が本体11に固定される。
 このように、距離W30に相当する厚みを有する挿入部30aを第1ストッパ14の第2側面14bと開口部13との間に挿入することにより、第1ストッパ14の第1側面14aと開口部13の内面との距離W14であるクリアランスを正確に管理することができる。
(第2ストッパのクリアランスW24の調整)
 図9は、第2ストッパ用の治具が装着された力覚センサを示す断面図である。図9に示すように、第2ストッパ24のクリアランスW24の調整は、可動部12に設けられた開口部35にシム36を装着して行われる。尚、図9では、1つの開口部35にシム36を装着した場合を示しているが、可動部12に設けられた4つの開口部35の全てにシム36を装着した状態で、調整することが好ましい。この場合、調整精度が一層向上し、調整作業の時間を短縮することが可能である。
 ここで、図9に挿入部分を拡大して示すように、本体11はZ軸に沿った内周面11bを有する段部を有している。すなわち、本体11の内部は、第2ストッパ24の側面24aが当接する内周面(第1内周面)11aにより形成される直径R11よりも大きな直径を形成する内周面(第2内周面)11bを備えている。
 シム36は、挿入部であるピン36aと、円筒状のつまみ部36bとを有している。ピン36aは、第2ストッパ24の外周面24aと本体11の内周面11bとの間の距離を直径としている。
 上記構成において、ボルト25を緩めた状態で、開口部35からシム36のピン36aが、第2ストッパ24の外周面24aと本体11の内周面11bとの間に挿入される。ピン36aの外径は、第2ストッパ24の外周面24aと本体11の内周面11bとの間の距離と実質的に同一であるため、シム36の軸心C36と外周面24aと内周面11bとを直径とする円の軸心とが互いに一致され、同心円となる。第2ストッパ24は、隙間の距離W24aの分だけ移動可能であるため、第2ストッパ24の外周面24aと本体11の第1内周面11aとの距離W24が正確に設定される。
 この状態において、図示せぬ六角レンチを用いて、ボルト25を可動体12に締め付けることにより、第2ストッパ24が可動体12に固定される。
 このように、第2ストッパ24の外周面24aと本体11の第2内周面11bとの間にピン36aを挿入することにより、第2ストッパ24の外周面24aと本体11の第1内周面11aとの間の距離W24であるクリアランスを正確に管理することができる。
[作用効果]
 例えば起歪体の剛性(ばね定数)が軸方向で相違している場合、剛性の高い軸方向においては、保護機構の動作点が、剛性の低い軸方向に比べて高荷重側にずれてしまうため、安全性が低下し、起歪体が破壊されるおそれがある。本実施形態に係る起歪体16の場合、X軸方向およびY軸方向の力に基づく起歪体16の剛性とXYZ軸方向の各トルクに基づく起歪体16の剛性とは、約6倍程度の差があることが分かっている。
 そこで、第1実施形態に係る力覚センサ10は、第2ストッパ24を備え、第2ストッパ24は、本体11の第1内周面11aから距離W24を隔て、第1内周面11aの直径R11よりも小さな外径R24の外周面24aを有し、X軸方向およびY軸方向の力のみに機能する。第2ストッパ24は、X軸方向の力およびY軸方向の力に対して可動体12の動作範囲を規制し、第2ストッパ24の外周面24aが、本体11の内周面11aと当接可能であるように構成される(図3)。
 上記構成において、X軸方向の力が力覚センサ10に印加されると、第2ストッパ24の外周面24aと本体11の第1内周面11aとの間の距離W24は第1ストッパ14の第1側面14aと開口部13との間の距離W14よりも小さいため(W24<W14)、第2ストッパ24の外周面24aが、第1ストッパ14よりも先に、本体11の内周面11aに当接する。このため、第2ストッパ24により、X軸方向およびY軸方向の力に起因する起歪体16の過剰な変形を防止することができる(図5、図6)。
 そのため、本実施形態の起歪体16のように、X軸方向およびY軸方向の力に基づく起歪体16の剛性とXYZ軸方向の各トルクに基づく起歪体16の剛性とが約6倍程度の差がある場合であっても、X軸方向およびY軸方向の起歪体16の過剰な変形を防止することができる。したがって、起歪体16の安全性を向上でき、信頼性を向上することができる。
 しかも、第2ストッパ24のクリアランスW24は、シム36を利用することにより、正確に管理される。すなわち、シム36のピン36aの外径は、第2ストッパ24の外周面24aと本体11の第2内周面11bとの間の距離と実質的に同一であるため、シム36を用いて、外周面24aを直径とする円の中心と内周面11bを直径とする円の中心とを一致させることができる。この状態において、ボルト25を締め付けることにより、第2ストッパ24は、クリアランスW24が正確に管理された状態で、可動体12に取り付けることができる(図9)。
 また、起歪体16の剛性の不均一性を許容できるため、起歪体16および力覚センサ10の小型化および薄型化が可能となる。例えば、第2ストッパ24を備えていない場合、起歪体16は、外形寸法が50×50mm程度で、厚さが5mm程度である必要があった。しかし、本実施形態に係る第2ストッパ24を備える場合、起歪体16は、外形寸法が35×35mm程度で、厚さが4mm程度に小型化および薄型化することが可能である。
 さらに、上記第1実施形態によれば、第1ストッパ14は、可動体12の開口部13の内面が当接される第1側面14aと、第1側面14aの外径より小さい外径を有する第2側面14bを有し、第1ストッパ14の調整時、第1ストッパ14の第2側面14bと開口部13の内面との間に、第2側面14bと開口部13の内面との間の距離W30に相当する厚みを有するシム30の挿入部30aを挿入している。このため、シム30の軸心C30と第1ストッパ14の軸心C14とが一致することにより、上記隙間の距離W15a、15b分だけ第1ストッパ14が移動する。したがって、第1ストッパ14の第1側面14aと、開口部13の内面との距離W14を正確に設定することができる(図7、図8)。
 しかも、ボルト15を緩めた状態において、シム30を取り付け、シム30の開口部33からボルト15を締め付けるだけで調整が完了する。このため、クリアランスである距離W14の誤差を可能な限り低減しつつ、調整作業を容易化することができる。
 さらに、第1ストッパ14の第1側面14aおよび第2側面14bは、例えば同一の製造工程において、連続的に切削することにより形成できる。そのため、第1側面14aおよび第2側面14bの寸法管理および検査が容易である。
 また、可動体12は、その製造加工においても、開口部13の直径R13の寸法のみを管理すればよいため、寸法管理および検査が容易である。
 さらに、シム30は、挿入部30aの外面および内面を、例えば同一の製造工程において連続的に切削することにより形成できる。そのため、挿入部30aの外面および内面の同心性を向上させることができ、シム30の寸法管理および検査を容易化することできる。
 尚、全てのシム30、36を用いて、ボルト15、25を締め付けることによって、第1ストッパ14のクリアランスW14及び第2ストッパ24のクリアランスW24を同時に管理することも可能である。
(第2実施形態(熱膨張を抑制するための部材(熱膨張抑制部材)を備える一例))
 第2実施形態は、起歪体16の熱膨張対策に係り、熱膨張抑制部材を備える起歪体16に関する。図10は、第2実施形態に係る力覚センサ10Aを示す断面図である。
 図10に示す力覚センサ10Aと第1実施形態との相違は、第2ストッパ24Aが、起歪体16と同一の材料で形成され、第2ストッパ24Aが起歪体16の熱膨張抑制部材として機能することである。また、第2ストッパ24Aは、少なくともボルト18により起歪体16に取り付けられる部分が起歪体16と接している。
 図11は、本実施形態に係る力覚センサの起歪体16を示す平面図である。図11に示すように、起歪体16は、中央部161と、中央部161の周囲を囲む外周部162と、中央部161と外周部162とを接続する4つの接続部(梁)163とを備えている。図示しない歪センサは、中央部161と接続部163の表面上に設けられている。中央部161は、4つの穴18aをそれぞれ貫通するボルト18により第2ストッパ24を介して可動体(第1支持部材)12に固定される。外周部162は、4つのネジ穴17aをそれぞれ貫通する図示しないボルトにより、本体11(第2支持部材)に固定される。起歪体16は、疲労特性や高強度等の観点から、例えば鉄系または合金鋼であるステンレス鋼(例えばSUS630)等の材料で構成される。
 また、図11に示すように、起歪体16の梁としての接続部163及び外周部162は、模式的にばねとして示すことができる。接続部163のばね定数(剛性)C163は、外周部162のばね定数C162より十分に大きく(強く)設定される(C163>C162)。
 尚、第2ストッパ24Aを構成する材料は、起歪体16と同一の材料に限られず、起歪体16と同種類または熱膨張係数が近い材料であってもよい。起歪体16と熱膨張係数が近い材料の範囲としては、例えば、起歪体16の熱膨張係数との違いが±20%程度である材料が望ましく、起歪体16の熱膨張係数との違いが±10%程度である材料がより望ましい。
 また、第2ストッパ24Aの剛性が低い場合、温度変動による可動体12の寸法変動を第2ストッパ24Aにより十分に抑えることができないため、第2ストッパ24Aが歪み、起歪体16が歪む可能性がある。そのため、第2ストッパ24Aは、可動体12および起歪体16よりも十分に高い剛性を備えていることが望ましい。
 その他の構成および動作は、上記第1実施形態と実質的に同様であるため、その詳細な説明を省略する。
[作用効果]
 上述したように、起歪体16の周囲には、起歪体16を保持するためのケース体(ハウジング)としての本体11および可動体12が設けられる。本体11および可動体12は、軽量化の観点から、例えばアルミ合金等の材料により構成されている。一方、起歪体16は、疲労特性や高強度等の観点から、例えば鉄系または合金鋼であるステンレス鋼(例えばSUS630)等の材料で構成される。このように、起歪体16とケース体(本体11および可動体12)とが熱膨張係数の異なる材料で構成される場合、ケース体の周囲の温度変動によって、起歪体16はケース体の膨張/収縮に伴う歪を受ける。そのため、起歪体16の表面に設けられた歪センサにより構成されるブリッジ回路の基準値となるゼロ点が変動し、検出精度が低減するおそれがある。例えば、歪センサとしてCr-N等の金属薄膜抵抗体を用いる場合、歪センサのゲージファクターが高いため、周囲の温度変化によって生じた起歪体16の微少な歪が出力に大きな変化をもたらす。
 しかし、第2実施形態に係る第2ストッパ24Aは、起歪体16と同一の材料で構成されるため、第2ストッパ24Aと起歪体16の熱膨張係数は同一である。しかも、第2ストッパ24Aは、少なくともボルト18により起歪体16と取り付けられる部分において、起歪体16と接している(図10)。そのため、周囲の温度変動がケース体に伝わった場合、第2ストッパ24Aと起歪体16とは、実質的に同一の熱膨張を生じる。したがって、歪センサの温度変化に伴うブリッジ回路のゼロ点の変動を抑制でき、測定精度を維持することができる。
 また、第2ストッパ24Aは、起歪体16の中央部161上に設けられ、起歪体16と同程度のサイズとなるように構成されている(図10)。そのため、熱膨張抑制部材としての第2ストッパ24Aの小型化および軽量化を両立することができる。
 より具体的には、第2ストッパ24Aの接続部163のばね定数(剛性)C163は、外周部162のばね定数C162と比較して十分に高い(硬い)ように構成されている(C163>C162)(図11)。ここで、温度変動が生じた場合、可動体12と第2ストッパ24Aとの熱膨張係数との差に基づき、起歪体16の中央部161に歪が生じる。中央部161は、剛性は高いが、中央部161に設けられた歪センサに歪が直接加わるように構成される。
 一方、外周部162では、同様に本体11との熱膨張係数との差に基づき、歪が生じるが、中央部161よりも柔らかいばね(C162)を介して、接続部163に設けられた歪センサが歪む。そのため、熱膨張による本体11の変位は、外周部162の柔らかいばね(C162)により吸収され、結果として接続部163に設けられた歪センサには柔らかいばね(C162)の反力分に相当する小さな歪しか生じない。
 このように、第2ストッパ24Aを起歪体16の中央部161上方に設けることが、熱膨膨張によるゼロ点変動の防止に対して効果的である。
(第3実施形態(防水防塵構造を備える一例))
 第3実施形態は、防水防塵構造を備える力覚センサの一例に関する。図12は、第3実施形態に係る力覚センサ10Bを示す断面図である。
 図12に示すように、第3実施形態に係る力覚センサ10Bは、第1および第2実施形態と異なり、防水防塵部材40としてのゴム部材41(第1シーリング部材)と、発泡部材(第3シーリング部材)42と、カバー部材(第2シーリング部材)43と、を更に備える。ゴム部材41は、力覚センサ10Bの側面に設けられた開口部13を覆う。カバー部材43は、可動体12に装着され、可動体12の上面、側面、およびゴム部材41の一部を覆う。発泡部材42は、本体11及びゴム部材41と、カバー部材43との間の隙間を覆う。
 ゴム部材41は、第1ストッパ14をシールするために開口部13を覆うように設けられており、ゴム材料により構成されている。ゴム部材41を構成する材料は、その他、発泡材料でもよく、独立気泡材料がさらに望ましい。
 発泡部材42は、可動体12及びカバー部材43の動きを阻害しないように、起歪体16の剛性と比較して十分に小さい剛性(小さいばね性)を有する発泡材料により構成されている。発泡部材42は、本実施形態では、独立気泡材料でゴム系材料により構成されている。また、発泡部材42は、本体11と可動体12との境界である可動部分(隙間)を覆うため、可動体12の動作を阻害しない程度の剛性を備えた材料により構成されることが望ましい。
 本実施形態において、起歪体16と発泡部材42との剛性の比は、およそ500:1となるように構成される。起歪体16と発泡部材42との剛性の比は100:1以上が望ましく、1000:1以上であることが更に望ましい。ここでの剛性とは、例えば材料のヤング率や形状等に基づいた変形のし難さを言う。
 カバー部材43は、可動部12の外周に設けられ、可動部12の上面等に設けられる固定用のボルト穴等からの液体および塵埃の浸入を防止している。カバー部材43の材料は、金属に限らず樹脂材料でもよい。
 その他の構成および動作は、上記第1実施形態と実質的に同様であるため、その詳細な説明を省略する。
[組み立て工程]
 図13および図14は、第3実施形態に係る力覚センサ10Bの防水防塵部材40の組み立て工程を説明するための斜視図である。
 図13に示すように、まず、第2ストッパ24が固定された可動体12が、本体11に装着される。この状態において、力覚センサ10Bの側面の開口部13における第1ストッパ14と可動体12との間には上記所定の距離W14等が設けられているため、力覚センサ10Bは完全には封止されていない。本実施形態では、本体11の側面には、ゴム部材41および発泡部材42を嵌合させるために外周側に突出した嵌合部11cおよび11dが設けられている。
 図14に示すように、続いて、本体11の嵌合部11cにゴム部材41が嵌め込まれ、本体11の開口部13が覆われる。続いて、本体11と可動体12との間の可動部分としての嵌合部11dにほぼリング状の発泡部材42が嵌め込まれ、ゴム部材41が押さえられる。
 さらに、カバー部材43が可動体12に装着され、可動体12の上面及び側面がカバー部材43により覆われる。カバー部材43は、ねじ穴12bに挿入されたねじ44が可動体12に螺合されることにより、可動体12に固定される。この際、カバー部材43が発泡部材42を押す圧力が調整される。具体的には、発泡部材42の厚さは、カバー部材43を可動体12に取り付ける前の厚さと比べて、20%~30%程度まで低減される。
 以上の工程により、力覚センサ10Bの防水防塵部材40としてのゴム部材41、発泡部材42、およびカバー部材43が組み立てられる。
[作用効果]
 第3実施形態に係る力覚センサ10Bの構成および動作によれば、少なくとも上記第1および第2実施形態と同様の効果が得られる。
 さらに、第3実施形態に係る力覚センサ10Bは、防水防塵部材40としてのゴム部材41と、発泡部材42と、カバー部材43とを備え、ゴム部材41により本体11の開口部13を覆い、発泡部材42により本体11と可動体12との間の隙間としての可動部分を覆い、カバー部材43により可動体12の上面および側面を覆っている(図12)。
 上記構成によれば、起歪体16に設けられた歪センサの精度を確保して、力覚センサ10Bの外部から液体および塵埃が浸入することを防止でき、力覚センサ10Bの信頼性を向上できる。
 そのため、力覚センサ10Bを例えばロボットアーム等に適用する場合において、油や水等の液体が使用され、塵埃が飛散する環境下であっても、本体11と可動体12との間から液体および塵埃が侵入することを確実に防止することができる。
 しかも、力覚センサ10Bは、側面に開口部13や第1ストッパ14等を備えているため、周囲の形状が複雑である。しかし、ゴム材41、発泡部材42、およびカバー部材43を組み合わせることにより、ねじ44のみを用いて、3つのゴム部材41、発泡部材42、およびカバー部材43を力覚センサ10Bに取り付けることが可能である(図13、図14)。したがって、簡単な構造で、十分な防水及び防塵機能を得ることができ、製造コストを低減することが可能である。
(変形例1(第2ストッパの平面形状が十字型である例))
 図15Aは、変形例1に係る第2ストッパ24Bと本体11との関係を模式的に示す平面図であり、図15Bは、図15Aの断面図を示している。
 図15Aに示すように、第2ストッパ24Bの平面形状は十字型である。第2ストッパ24Bの受力側としての本体11の形状も、第2ストッパ24Bに対応して十字形状に構成されている。
 上記構成によれば、Z軸回りのトルクが加わった際に、第2ストッパ24Bの外周面24aと本体11の内周面11aとが当接する。そのため、新たな部品や部材を追加することなく、第2ストッパ24Bに、XY軸方向の力Fx、Fyに加えて、Z軸回りのトルクMzの保護機能を得ることができる。
(変形例2(第2ストッパの断面形状に凸部を有する一例))
 図16Aは、変形例2に係る第2ストッパ24Cと本体11とを模式的に示す平面図であり、図16Bは、図16Aの断面図である。
 図16Bに示すように、第2ストッパ24Cは、X軸方向に突出した突出部124を有する。本体11の内周面も、X軸方向に突出した突出部111を有する。Z軸方向において、第2ストッパ24Cの突出部124の側面(下面)24bと、本体11の突出部111の側面(上面)11cとの間に、上記距離W24が設けられている。
 上記のように、第2ストッパ24Cの側面24bと本体11の側面11cとの間にZ軸方向の間隔としての距離W24を設けることで、第2ストッパ24Cは、Z軸方向の力Fz、およびXY軸方向のトルクMx、Myに対する保護機能を得ることができる。この場合、第1ストッパ14は、他の3軸の力およびトルク(Fx、Fy、Mz)に対する保護機能を得ることができる。したがって、変形例2は、起歪体の保護機能を一層向上させることが可能である。
(変形例3(本体が起歪体と同じ熱膨張係数を有する部材を備える一例))
 図17は、変形例3に係る熱膨張部材を説明するために示す一部を切除した斜視図である。尚、図17に示す力覚センサは、説明のために一部の構成を省略している。
 図17に拡大して示すように、本体11と起歪体16との間に熱膨張抑制部材112が更に設けられている。熱膨張抑制部材112は起歪体16と同一の熱膨張係数を有している。熱膨張抑制部材112は起歪体16の外周部162と本体11の内部に接し、ボルト17により起歪体16の外周部162に締結され、ボルト113により本体11に締結される。
 上記構成によれば、起歪体16の中央部161に設けられた熱膨張抑制部材としての第2ストッパ24Aに加えて、起歪体16の外周部162にも、熱膨張抑制部材112を設けることにより、熱膨張による歪センサの温度変化に伴うブリッジ回路のゼロ点の変動を抑制できる。
(その他の変形例)
 本発明は、上記第1乃至第3実施形態およびその変形例1乃至3の開示に限定されるものではなく、必要に応じて種々の変形が可能であることは勿論である。
 例えば、第1および第2実施形態において、第2ストッパ24および24Aは、可動体12と別部材である場合について説明したが、第2ストッパ24および24A~24Cは、可動体12と同一の部材による一体構造であってもよい。この場合、熱膨張を抑制するため、第2ストッパ24および24A~24Cと一体化される可動体12は、起歪体16と同一の材料か起歪体16と熱膨張係数がほぼ等しい材料により構成されることが望ましい。
 また、シム30を用いた検査は、力覚センサ10、10A~10Cの出荷時に限らず、力覚センサ10、10A~10Cをある程度稼動させた後の例えばメンテナンス等において行ってもよい。
 さらに、ゴム部材41と発泡部材42は、同一材料により一体的に構成されていてもよい。この場合、これらの材料はゴム材料か独立気泡材料であることが望ましい。これらの材料は、起歪体16の剛性と比較して十分に低い剛性を有する材料であることが望ましい。
 その他、本発明は上記各実施形態および上記各変形例そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
 本発明の実施形態に係る力覚センサは、例えばロボットアームの関節などに適用することが可能である。
 10、10A、10B、10C…力覚センサ、11…本体、12…可動体、13…開口部、14…第1ストッパ(保護機構)、15、18、25…固定部材、16…起歪体、16a…歪センサ、24、24A、24B、24C…第2ストッパ(保護機構)、24A、112…熱膨張抑制部材、30、36…治具(シム)、40…防水防塵部材、41…ゴム部材、42…発泡部材、43…カバー部材。

Claims (10)

  1.  円筒状の本体と、
     前記本体に対して動作可能で、周囲に少なくとも3つの円形の開口部を有する円筒状の可動体と、
     前記本体および前記可動体に固定され、前記可動体の動作に従って変形可能な起歪体と、
     前記起歪体に設けられた歪センサと、
     前記開口部のそれぞれの内部に配置され、前記開口部の直径より小さな第1外径を有する第1外周面を備える第1ストッパと、
     前記開口部および前記本体と前記可動体との間の可動部分を少なくとも覆うシーリング部材と、
     を具備する力覚センサ。
  2.  前記シーリング部材は、
     前記開口部のそれぞれを密閉する第1シーリング部材と、
     前記可動体を密閉する第2シーリング部材と、
     少なくとも前記本体と前記第2シーリング部材の間を密閉する第3シーリング部材と、
     を具備する請求項1に記載の力覚センサ。
  3.  前記第1シーリング部材は、ゴム部材であり、
     前記第2シーリング部材は、金属又は樹脂材料であり、
     前記第3シーリング部材は、発泡材料である、
     請求項2に記載の力覚センサ。
  4.  前記本体の第1内周面から第1の距離を隔てて配置され、前記第1内周面の直径よりも小さな第2外径の第2外周面を備える円筒状の第2ストッパを
     更に具備する請求項1に記載の力覚センサ。
  5.  前記第1の距離は、前記第1ストッパの第1側面と前記開口部の内面との間の第2の距離よりも小さい
     請求項4に記載の力覚センサ。
  6.  前記本体は、前記第1内周面により形成される直径よりも大きな直径を形成する第2内周面を備える
     請求項4に記載の力覚センサ。
  7.  前記第2ストッパの外周面と前記本体の前記第2内周面との間に挿入される調整用の第1治具
     を更に具備する請求項6に記載の力覚センサ。
  8.  前記第1ストッパは、前記第1外径より小さな第3外径の第2側面を有する
     請求項1に記載の力覚センサ。
  9.  前記開口部の内面と前記第2側面との間に挿入される調整用の第2治具
     を更に有する請求項8に記載の力覚センサ。
  10.  前記第1ストッパを前記本体に固定する第1固定部材と、
     前記第2ストッパを前記可動体に固定する第2固定部材と、
     前記起歪体を前記第2ストッパに固定する第3固定部材と、
     を更に具備する請求項4に記載の力覚センサ。
PCT/JP2017/047121 2017-03-08 2017-12-27 力覚センサ WO2018163581A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780087831.9A CN110352338B (zh) 2017-03-08 2017-12-27 力传感器
EP17899429.9A EP3594648B1 (en) 2017-03-08 2017-12-27 Force sensor
US16/563,205 US11353344B2 (en) 2017-03-08 2019-09-06 Force sensor having a strain body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017044187A JP6746517B2 (ja) 2017-03-08 2017-03-08 力覚センサ
JP2017-044187 2017-03-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/563,205 Continuation US11353344B2 (en) 2017-03-08 2019-09-06 Force sensor having a strain body

Publications (1)

Publication Number Publication Date
WO2018163581A1 true WO2018163581A1 (ja) 2018-09-13

Family

ID=63448738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/047121 WO2018163581A1 (ja) 2017-03-08 2017-12-27 力覚センサ

Country Status (5)

Country Link
US (1) US11353344B2 (ja)
EP (1) EP3594648B1 (ja)
JP (1) JP6746517B2 (ja)
CN (1) CN110352338B (ja)
WO (1) WO2018163581A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6815903B2 (ja) 2017-03-08 2021-01-20 日本電産コパル電子株式会社 力覚センサ
USD1021661S1 (en) * 2022-03-30 2024-04-09 Schneider Electric Buildings Americas, Inc. Multi-sensor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193344U (ja) * 1985-05-24 1986-12-02
JPS6469927A (en) * 1987-09-11 1989-03-15 Hitachi Construction Machinery Load detecting apparatus
JP2010008343A (ja) 2008-06-30 2010-01-14 Wacoh Corp 力覚センサおよびその組立方法
US20130340537A1 (en) * 2012-06-14 2013-12-26 Tecsis Gmbh Force sensor including sensor plate with local differences in stiffness
JP2014119347A (ja) * 2012-12-17 2014-06-30 Tryforce Management Co Ltd 力覚センサ

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4259863A (en) * 1979-12-03 1981-04-07 General Motors Corporation Multi-axis load cell
JPS61193344A (ja) 1985-02-20 1986-08-27 Hitachi Ltd プラズマx線装置
US4823618A (en) * 1986-09-17 1989-04-25 Jr3, Inc. Force-moment sensors
JPH0643936B2 (ja) * 1987-09-10 1994-06-08 日立建機株式会社 荷重検出装置
JPH0629804B2 (ja) * 1988-01-23 1994-04-20 ニッタ株式会社 力センサの過負荷保護装置
JP3279580B2 (ja) 1991-01-07 2002-04-30 株式会社東郷製作所 位置決め機構におけるモ−タの制御装置
JPH0629804A (ja) 1992-07-10 1994-02-04 Matsushita Electric Works Ltd ゼロクロス・スイッチングリレー
JP3656689B2 (ja) * 1996-08-30 2005-06-08 株式会社デンソー センサ取付け用弾性部材、それを用いたセンサ取付け構造体およびそのセンサ取付け方法
EP0922946B1 (en) * 1997-12-11 2003-06-25 Nagano Keiki Co., Ltd. Pressure sensor
US6871552B2 (en) * 2002-04-12 2005-03-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Force moment sensor
KR100499143B1 (ko) * 2003-02-27 2005-07-04 삼성전자주식회사 보행 로봇의 지면 반력 측정 모듈 및 이를 장착한 로봇 발구조물
US7570065B2 (en) * 2006-03-01 2009-08-04 Loadstar Sensors Inc Cylindrical capacitive force sensing device and method
JP4622979B2 (ja) * 2006-09-29 2011-02-02 東海ゴム工業株式会社 筒型防振装置用ストッパ並びに筒型防振組付体
JP5270423B2 (ja) * 2009-03-30 2013-08-21 東洋ゴム工業株式会社 筒状弾性部材、ストラットマウント、ならびに該ストラットマウントの製造方法
JP5650131B2 (ja) * 2009-10-14 2015-01-07 国立大学法人東北大学 触覚センサシステム
EP2546625B1 (en) * 2011-07-12 2016-04-13 Sensata Technologies, Inc. Force sensor assembly and method for assembling a force sensor assembly
US9638554B2 (en) * 2012-05-08 2017-05-02 Nuclear Engineering, Ltd. Strain gauge holder
US8726740B1 (en) * 2012-12-13 2014-05-20 King Fahd University Of Petroleum And Minerals Multi-axis dynamometer
JP5723402B2 (ja) * 2013-03-01 2015-05-27 富士重工業株式会社 車輪作用力検出装置
JP6092044B2 (ja) * 2013-08-19 2017-03-08 ミネベアミツミ株式会社 荷重センサユニット
US10527508B2 (en) * 2013-10-05 2020-01-07 Bertec Limited Force measurement system and a method of calibrating the same
WO2015068700A1 (ja) * 2013-11-05 2015-05-14 日本精工株式会社 力覚センサ
JP6252241B2 (ja) * 2014-02-27 2017-12-27 セイコーエプソン株式会社 力検出装置、およびロボット
JP2015184005A (ja) * 2014-03-20 2015-10-22 セイコーエプソン株式会社 力検出装置、およびロボット
US20170023419A1 (en) * 2014-06-27 2017-01-26 Panasonic Intellectual Property Management Co., Lt Strain sensor and load detection device using same
BR112017013131A2 (pt) * 2014-12-17 2017-12-26 Norgren Automation Solutions Llc aparelho para detectar peças de trabalho, sistema de avaliação de peça de trabalho, sistema de fabricação, e, método para processamento de uma peça de trabalho.
JP2016161508A (ja) * 2015-03-04 2016-09-05 セイコーエプソン株式会社 圧力センサー、携帯機器、電子機器および移動体
US9869597B1 (en) * 2015-11-24 2018-01-16 X Development Llc Compound strain gage carrier for multi-axis force/torque sensing
US10239213B1 (en) * 2015-11-24 2019-03-26 X Development Llc Flexure assembly for force/torque sensing
CN106197816A (zh) * 2016-08-05 2016-12-07 机科发展科技股份有限公司 一种测量悬臂支撑件受力的座式传感器
CN106197780A (zh) * 2016-08-05 2016-12-07 浙江工业大学 新型电阻应变式土压力盒传感器
WO2018053361A1 (en) * 2016-09-16 2018-03-22 Verb Surgical Inc. Multi-degree of freedom sensor
US10527509B2 (en) * 2016-09-29 2020-01-07 FUTEK Advanced Sensor Technology Hermetically sealed sensor
JP2018119923A (ja) * 2017-01-27 2018-08-02 セイコーエプソン株式会社 力検出装置およびロボット
JP6815903B2 (ja) 2017-03-08 2021-01-20 日本電産コパル電子株式会社 力覚センサ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193344U (ja) * 1985-05-24 1986-12-02
JPS6469927A (en) * 1987-09-11 1989-03-15 Hitachi Construction Machinery Load detecting apparatus
JPH0643937B2 (ja) 1987-09-11 1994-06-08 日立建機株式会社 荷重検出装置
JP2010008343A (ja) 2008-06-30 2010-01-14 Wacoh Corp 力覚センサおよびその組立方法
US20130340537A1 (en) * 2012-06-14 2013-12-26 Tecsis Gmbh Force sensor including sensor plate with local differences in stiffness
JP2014119347A (ja) * 2012-12-17 2014-06-30 Tryforce Management Co Ltd 力覚センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3594648A4

Also Published As

Publication number Publication date
CN110352338B (zh) 2021-04-30
JP6746517B2 (ja) 2020-08-26
EP3594648B1 (en) 2023-04-19
US20190391027A1 (en) 2019-12-26
CN110352338A (zh) 2019-10-18
JP2018146507A (ja) 2018-09-20
EP3594648A1 (en) 2020-01-15
EP3594648A4 (en) 2021-01-06
US11353344B2 (en) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2018163579A1 (ja) 力覚センサ
CN111801559B (zh) 应变传感器的固定装置和使用该固定装置的扭矩传感器
US20120180575A1 (en) Capacitance-type force sensor
WO2020158166A1 (ja) 弾性体とそれを用いた力覚センサ
WO2018055865A1 (ja) 力覚センサ
WO2018163581A1 (ja) 力覚センサ
WO2018163580A1 (ja) 力覚センサ
WO2020158167A1 (ja) 力覚センサ
JP6878668B2 (ja) 力覚センサ
JP2004045138A (ja) 分力計
JP7305364B2 (ja) 多軸センサ
JP2023142975A (ja) トルクセンサ
WO2020162052A1 (ja) 多軸センサ
JP2020125992A (ja) 多軸センサ
CN114364941A (zh) 应变传感器的固定装置和使用该固定装置的扭矩传感器
JP2008103497A (ja) 組立て構造体およびステージ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017899429

Country of ref document: EP

Effective date: 20191008