WO2018055865A1 - 力覚センサ - Google Patents

力覚センサ Download PDF

Info

Publication number
WO2018055865A1
WO2018055865A1 PCT/JP2017/024020 JP2017024020W WO2018055865A1 WO 2018055865 A1 WO2018055865 A1 WO 2018055865A1 JP 2017024020 W JP2017024020 W JP 2017024020W WO 2018055865 A1 WO2018055865 A1 WO 2018055865A1
Authority
WO
WIPO (PCT)
Prior art keywords
stopper
opening
force sensor
movable body
distance
Prior art date
Application number
PCT/JP2017/024020
Other languages
English (en)
French (fr)
Inventor
鈴木 隆史
池田 隆男
Original Assignee
日本電産コパル電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産コパル電子株式会社 filed Critical 日本電産コパル電子株式会社
Priority to EP17852646.3A priority Critical patent/EP3517918B1/en
Priority to KR1020197006095A priority patent/KR102215343B1/ko
Priority to CN201780054397.4A priority patent/CN109661567A/zh
Publication of WO2018055865A1 publication Critical patent/WO2018055865A1/ja
Priority to US16/294,010 priority patent/US10976208B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/161Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance
    • G01L5/1627Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance of strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/30Supports specially adapted for an instrument; Supports specially adapted for a set of instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/06Measuring force or stress, in general by measuring the permanent deformation of gauges, e.g. of compressed bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2206Special supports with preselected places to mount the resistance strain gauges; Mounting of supports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/26Auxiliary measures taken, or devices used, in connection with the measurement of force, e.g. for preventing influence of transverse components of force, for preventing overload
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L25/00Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0009Force sensors associated with a bearing
    • G01L5/0019Force sensors associated with a bearing by using strain gages, piezoelectric, piezo-resistive or other ohmic-resistance based sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force

Definitions

  • the embodiment of the present invention relates to a six-axis force sensor used for a robot arm, for example.
  • the force sensor is used, for example, in a robot arm or the like, and detects external force and torque in the XYZ directions (see, for example, Patent Documents 1 and 2).
  • an external force applied to a force receiving body as a movable part is transmitted to, for example, a diaphragm part as a strain generating body, and deformation of the diaphragm part is converted into an electric signal and detected.
  • a protection mechanism such as a stopper for restricting the displacement of the force receiving body is provided.
  • JP 2010-8343 A Japanese Patent Publication No. 6-43937
  • the present invention has been made in view of the above circumstances, and provides a force sensor capable of managing the distance between a force receiving body and a stopper with high accuracy.
  • the force sensor includes a cylindrical main body, a cylindrical movable body that is operable with respect to the main body, a fixed body that is fixed to the main body and the movable body, and can be deformed according to the operation of the movable body.
  • a stopper having a first side surface having a first outer diameter smaller than the diameter of the portion and a second side surface having a second outer diameter smaller than the first outer diameter, and a fixing member for fixing the stopper to the main body.
  • the present invention can provide a force sensor capable of managing the distance between the force receiving body and the stopper with high accuracy.
  • FIG. 4 is a cross-sectional view showing a force sensor along IV-IV in FIG. 3. Sectional drawing for demonstrating the external force detection operation
  • FIG. 1 is a perspective view showing a force sensor according to the first embodiment.
  • FIG. 2 is an exploded perspective view showing the force sensor according to the first embodiment.
  • the force sensor 10 according to the first embodiment is used for a robot arm or the like, for example, and a six-axis force sensor for detecting force and torque in the XYZ directions will be described as an example.
  • the force sensor 10 includes a cylindrical main body 11 and a cylindrical movable body 12 operable with respect to the main body 11.
  • the main body 11 is fixed to the main body of a robot arm (not shown) by a plurality of mounting screws 19 penetrating through a plurality of screw holes 19 a formed at the bottom of the main body 11.
  • the movable body 12 functions as a hand mounting plate for removing a hand portion of a robot arm (not shown) on the upper surface thereof.
  • the main body 11 is a base member serving as a base of the force sensor 10, and the movable body 12 has six axial directions (X-axis direction, Y-axis) with respect to the main body 11 with a strain-generating body 16 capable of elastic deformation. (Axial direction, Z-axis direction, and directions around each axis). That is, as shown in FIG. 2, the strain body 16 is fixed to the main body 11 by the strain body fixing screws 17 that respectively penetrate the plurality of screw holes 17 a formed in the strain body 16, and the plurality of screw holes It is also fixed to the movable body 12 by hand plate fixing screws 18 penetrating 18a.
  • the surface of the strain body 16 is arranged in parallel with the surface formed by the X axis and the Y axis, and the line passing through the center of the strain body 16 perpendicularly coincides with the Z axis.
  • the strain generating body 16 is provided with a strain sensor which will be described later, and the displacement of the strain generating body 16 is detected by the strain sensor.
  • each opening 13 is arranged in the X-axis direction and the Y-axis direction.
  • the number of openings 13 is not limited to four, and may be three or more.
  • a stopper 14 is disposed inside each opening 13, and each stopper 14 is fixed to the main body 11 by a stopper mounting bolt 15.
  • the stopper 14 regulates the operating range of the movable body 12, and the outermost peripheral portion of the stopper 14 is provided with a first side surface 14a with which the inner surface of the opening 13 can abut. That is, the first side surface 14a is protected to prevent excessive deformation of the strain generating body 16 by contacting the inner surface of the opening 13 of the movable body 12 when the strain generating body 16 is deformed with the operation of the movable body 12. Acts as a mechanism.
  • a substrate 20 is provided inside the main body 11 so as to face the strain body 16.
  • the substrate 20 has a plurality of screw holes 21a, and is fixed to the main body 11 by fixing screws 21 that pass through the screw holes 21a.
  • a strain sensor provided on the strain body 16 is electrically connected to the substrate 20.
  • a cover 22 that closes the opening 11 a is attached to the bottom of the main body 11. That is, the cover 22 has a plurality of screw holes 23 a and is fixed to the main body 11 by the fixing screws 23 that pass through the screw holes 23 a.
  • a wiring 25 for transmitting a detection signal to the outside is drawn out on the side surface of the main body 11.
  • the wiring 25 is electrically connected to the substrate 20.
  • FIG. 3 is a plan view showing the force sensor 10.
  • FIG. 4 is a cross-sectional view showing the force sensor 10 along IV-IV in FIG.
  • the above-described strain sensor (not shown) is attached to a predetermined location on the surface of the strain generating body 16, and by measuring the displacement of each location of the strain generating body 16, the force and torque in the six axial directions are obtained. To detect.
  • the configuration and arrangement of the strain sensor are not particularly limited and can be modified.
  • an FPC (Flexible printed circuit) 26 for electrically connecting the strain sensor provided on the strain generating body 16 and the substrate 20 is provided between the strain generating body 16 and the substrate 20, an FPC (Flexible printed circuit) 26 for electrically connecting the strain sensor provided on the strain generating body 16 and the substrate 20 is provided.
  • the FPC 26 includes an insulating flexible film and a predetermined electric circuit wired on the film, and is configured to be able to bend freely according to the movement of the movable body 12.
  • the stopper 14 has the first side surface 14a and the second side surface 14b described above.
  • the first side surface 14 a is positioned on the inner side of the movable body 12 than the second side surface 14 b and has a first outer diameter R 14 a that is smaller than the diameter R 13 of the opening 13 of the movable body 12.
  • the second side surface 14b has a second outer diameter R14b smaller than the first outer diameter R14a. Accordingly, the distance W14 between the first side surface 14b and the inner surface of the opening 13 is configured to be smaller than the distance W30 between the second side surface 14b and the inner surface of the opening 13 (W14 ⁇ W30). ).
  • a gap corresponding to the distance W30 is also provided on the side surfaces of the movable body 12 and the main body 11 so that the movable body 12 can operate with respect to the main body 11.
  • the distance W30 is about several mm, for example.
  • the distance (clearance) W14 between the first side surface 14a and the inner surface of the opening 13 is, for example, about 20 ⁇ m to 40 ⁇ m, and is very narrow.
  • the distance W14 when the movable body 12 is operated, it is necessary to manage the distance W14 with extremely high accuracy in order to prevent the strain body 16 from being damaged.
  • a predetermined distance W15a is provided between the inner side surface of the stopper 14 parallel to the first side surface 14a and the shaft of the fixing bolt 15.
  • a gap is provided.
  • a predetermined gap of a distance W15b is also provided between the inner side surface of the stopper 14 parallel to the first and second side surfaces 14a and 14b and the side surface of the head of the fixing bolt 15.
  • the distances W15a and W15b are, for example, about 0.2 mm. In the following description, illustration of these gaps is omitted.
  • the stopper 14 is fixed to the main body 11 with the fixing bolt 15 in a state where a shim as an adjustment jig is inserted between the second side surface 14b and the inner surface of the opening 13.
  • the shim has an insert having a thickness substantially the same as the distance W30. Since the stopper 14 can move by the distances W15a and 15b of the gap, adjustment using such a shim allows the inner surface of the opening 13 of the movable body 12 and the first side surface 14a of the stopper 14 to be adjusted.
  • the distance (clearance) W14 can be managed with high accuracy, a predetermined movable range of the movable body 12 with respect to the main body 11 can be secured, and the sensitivity of the force sensor 10 can be improved. Details of this will be described later.
  • FIG. 5 is a cross-sectional view for explaining an external force detection operation in the Z-axis direction.
  • the case where the external force (load) FZ applied to the substantially central portion of the movable body 12 in the Z-axis direction is detected is taken as an example.
  • the movable body 12 moves downward along the Z-axis direction by the external force FZ. Since the main body 11 is fixed and does not move even by the external force FZ, the movable body 12 moves downward until the inner surface on the upper side of the opening 13 abuts on the first side surface 14 a on the upper side of the stopper 14.
  • the upper distance W14U becomes substantially 0, and the lower distance W14D increases to about twice as much as the initial state before the movement.
  • the strain body 16 is deformed as the movable body 12 moves.
  • the deformation of the strain body 16 is limited to a predetermined range by the stopper 14. For this reason, the strain body 16 is protected from destruction due to excessive external force.
  • the deformation of the strain generating body 16 is detected by a strain sensor and converted into a detection signal as an electric signal.
  • the detection signal is transmitted to the outside through the FPC 26 and the substrate 20 through the wiring 25, so that the external force FZ can be detected.
  • the strain body 16 returns to its original shape by elastic deformation.
  • the clearance is adjusted by attaching a shim 30 to the opening 13.
  • 6 and 7 show the case where the shim 30 is attached to one opening 13, it is preferable to adjust the shim 30 attached to all the four openings 13. In this case, the adjustment accuracy can be further improved, and the adjustment work time can be shortened.
  • the shim 30 has a cylindrical insertion portion 30 a, a knob portion 30 b, and an opening 33.
  • the knob 30b has an outer diameter R30 that is larger than the diameter R13 of the opening 13.
  • the opening 33 can be inserted into a hexagon wrench (not shown) that passes through the knob 30a and is attached to a hexagon hole provided in the head of the mounting bolt 15.
  • the insertion portion 30a has an outer diameter R13 substantially equal to the diameter of the opening 13 of the movable body 12, and the thickness of the insertion portion 30a is the distance W30 between the second side surface 14b of the stopper 14 and the inner surface of the opening 13. And is set to substantially the same thickness.
  • the insertion portion 30 a of the shim 30 is inserted between the second side surface 14 b of the stopper 14 and the inner surface of the opening portion 13.
  • the outer diameter of the insertion portion 30a is substantially the same as the diameter R13 of the opening 13
  • the inner diameter of the insertion portion 30a is substantially the same as the second outer diameter R14b of the second side surface 14b of the stopper 14.
  • the stopper 14 is fixed to the main body 11 by inserting a hexagon wrench (not shown) from the opening 33 of the shim 30 and tightening the mounting bolt 15.
  • the first side surface 14a of the stopper 14 and the inner surface of the opening portion 13 are It is possible to accurately manage the clearance which is the distance W14.
  • the stopper 14 has the first side surface 14a with which the inner surface of the opening 13 of the movable body 12 abuts, and the second side surface 14b having an outer diameter smaller than that of the first side surface. 14, the shim 30 insertion portion having a thickness corresponding to the distance W30 between the second side surface 14b and the inner surface of the opening portion 13 between the second side surface 14b of the stopper 14 and the inner surface of the opening portion 13 is adjusted. 30a is inserted.
  • the relationship between the displacement [ ⁇ m] of the strain body 16 and the detected load [N] is as shown in FIG. Indicated.
  • the slope (rise angle) of the characteristic line CL10 changes when the displacement in the Z direction is around 0.022 ⁇ m (inflection point). This indicates that the stopper 14 does not function from the state where the displacement is zero to the inflection point (D1) and the strain generating body 16 is deformed, and after the inflection point (D2), the first side surface 14a of the stopper 14 is deformed. It shows that the stopper 14 is functioning to contact the inner surface of the opening 13. After the inflection point (D2), the slope of the characteristic line CL10 increases, the strain body 16 is difficult to deform, and it is clear that the distance W14 that is the clearance can be set accurately. .
  • the adjustment work is performed while reducing the error of the distance W14 as a clearance as much as possible. Can be facilitated.
  • first side surface 14a and the second side surface 14b of the stopper 14 can be formed, for example, by continuously cutting using the same process. Therefore, dimension management and inspection of the first side surface 14a and the second side surface 14b are easy.
  • the movable body 12 since the movable body 12 only needs to manage the dimension of the diameter R13 of the opening 13 in the manufacturing process, the dimension management and inspection are easy.
  • the shim 30 can be formed by continuously cutting the outer surface and the inner surface of the insertion portion 30a using, for example, the same process. Therefore, the dimension management and inspection of the shim 30 can be facilitated, and the degree of concentricity can be improved.
  • the stopper 14 has a very simple shape and has a protective function for all six axes. For this reason, it is possible to provide the force sensor 10 that is highly sensitive and advantageous in reducing the manufacturing cost.
  • the second embodiment relates to an example in which the stopper 14 and the shim 30 have a tapered structure.
  • FIG. 9 is a cross-sectional view showing a force sensor 10A according to the second embodiment.
  • FIG. 10 is a cross-sectional view showing the force sensor 10A in the vicinity of A in FIG. 9 and using a jig.
  • the stopper 14 has a tapered structure configured such that the second outer diameter R14c decreases as the second side surface 14c moves away from the first side surface 14a.
  • the angle ⁇ 14 formed by the second side surface 14c of the stopper 14 and the horizontal plane is an acute angle.
  • the inner surface of the insertion portion 30a of the shim 30 is configured to have an inner diameter that decreases with distance from the first side surface 14a so as to coincide with the tapered structure of the stopper 14. It has a structure.
  • An angle ⁇ 30 formed by the inner side surface of the insertion portion 30a of the shim 30 and the horizontal plane is an acute angle.
  • the second side surface 14c of the stopper 14 and the insertion portion 30a of the shim 30 have a tapered structure.
  • the second side surface 14c of the stopper 14 and the inner side surface of the insertion portion 30a are configured such that the second outer diameter R14c and the inner diameter become smaller as the distance from the first side surface 14a increases. .
  • the insertion portion 30a of the shim 30 can be easily inserted into the opening 13 when positioning the stopper 14. Is possible.
  • the second side surface 14c of the stopper 14 and the insertion portion 30a of the shim 30 have a taper structure, the axial centers of the stopper 14 and the shim 30 can be reliably aligned. Therefore, the distance W14 between the first side surface 14a and the inner surface of the opening 13 can be managed with higher accuracy than in the first embodiment.
  • the stopper 14 is fixed to the main body 11 with the mounting bolt 15, but is not limited to this configuration.
  • the portion where the opening 13 of the movable body 12 is provided is located outside the portion where the mounting bolt 15 of the main body 11 is screwed.
  • a portion in which the portion 13 is provided is provided, a portion in which the mounting bolt 15 is screwed to the movable body 12 is provided, and a portion in which the opening portion 13 provided in the main body 11 is provided is the mounting bolt 15 provided in the movable body 12.
  • a configuration in which the stopper 14 is disposed in the opening 13 provided in the main body 11 may be provided outside the portion to be screwed.
  • the use of the shim 30 is not limited to the inspection of the force sensor 10, 10A, and may be used, for example, during maintenance after the force sensor 10, 10A is moved to some extent.
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
  • the force sensor according to the embodiment of the present invention can be applied to, for example, a robot arm.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

力覚センサにおいて、円筒状の可動体12は、円筒状の本体11に対して動作可能とされている。起歪体16は、本体及び可動体に固定され、可動体12の動作に従って変形可能とされている。歪センサ26は、起歪体に設けられている。可動体12は、周囲に等間隔に少なくとも3つの円形の開口部13を有している。ストッパ14は、開口部13のそれぞれの内部に配置され、開口部13の直径より小さな第1外径を有する第1側面14aと第1外径より小さな第2外径を有する第2側面14bとを有する。固定部材15は、ストッパ14を本体11に固定する。

Description

力覚センサ
 本発明の実施形態は、例えばロボットアーム等に用いられる6軸力覚センサに関する。
 力覚センサは、例えばロボットアーム等に用いられ、XYZ方向の外力およびトルクを検出する(例えば、特許文献1、2参照)。
 力覚センサにおいて、可動部としての受力体に加えられた外力は、例えば起歪体としてのダイアフラム部に伝達され、ダイアフラム部の変形が電気信号に変換されて検出される。
 ここで、ダイアフラム部に過剰な外力が加わると、ダイアフラム部の変形が限界を超え、外力が除去された後であってもダイアフラム部の形状が元に復元しなかったり、ダイアフラム部に破損が生じたりするおそれがある。
 そこで、このような過剰な外力からダイアフラム部を保護するため、受力体の変位を規制するストッパ等の保護機構が設けられている。
特開2010-8343号公報 特公平6-43937号公報
 しかしながら、受力体の変位量は、極僅かであるため、高感度な6軸方向の力覚センサを実現しようとする場合、受力体とストッパとの距離(保護機構が機能するまでの変位量)を6軸方向の全てにおいて極めて高精度に管理する必要がある。
 本発明は、上記事情を鑑みてなされており、受力体とストッパとの距離を高精度に管理することが可能な力覚センサを提供するものである。
 実施形態に係る力覚センサは、円筒状の本体と、前記本体に対して動作可能な円筒状の可動体と、前記本体及び前記可動体に固定され、前記可動体の動作に従って変形可能な起歪体と、前記起歪体に設けられた歪センサと、前記可動体の周囲に等間隔に設けられた少なくとも3つの円形の開口部と、前記開口部のそれぞれの内部に配置され、前記開口部の直径より小さな第1外径を有する第1側面と前記第1外径より小さな第2外径を有する第2側面とを有するストッパと、前記ストッパを前記本体に固定する固定部材とを具備する。
 本発明は、受力体とストッパとの距離を高精度に管理することが可能な力覚センサを提供できる。
第1実施形態に係る力覚センサを示す斜視図。 第1実施形態に係る力覚センサを示す分解斜視図。 第1実施形態に係る力覚センサを示す平面図。 図3のIV-IVに沿った力覚センサを示す断面図。 Z軸方向における外力検出動作を説明するための断面図。 治具が装着された力覚センサを示す平面図。 図6のVII-VIIに沿った力覚センサを示す断面図。 Z方向に荷重を加えた場合の起歪体の変位と荷重との関係を示す図。 第2実施形態に係る力覚センサを示すものであり、要部のみを示す断面図。 図9のAで示す部分を拡大して示す断面図。
 以下、実施の形態について、図面を参照して説明する。なお、以下の説明において、実質的に同一の機能及び要素については、同一符号を付し、必要に応じて説明を行う。また、図面は模式的なものであり、厚みと平面寸法との関係や各層の厚みの比率などは現実のものと異なることがある。
 (第1実施形態)
 [構成]
  全体構成 
 図1および図2を用いて、第1実施形態に係る力覚センサの全体構成について説明する。図1は、第1実施形態に係る力覚センサを示す斜視図である。図2は、第1実施形態に係る力覚センサを示す分解斜視図である。第1実施形態に係る力覚センサ10は、例えばロボットアーム等に用いられ、XYZ方向の力およびトルクを検出するための6軸力覚センサを一例に挙げて説明する。
 力覚センサ10は、円筒状の本体11と、本体11に対して動作可能な円筒状の可動体12とを備える。本体11は、本体11の底部に形成された複数のネジ穴19aを貫通する複数の取付ネジ19により、図示せぬロボットアームの本体に固定される。可動体12は、その上面に図示せぬロボットアームのハンド部分を取りけるためのハンド取付プレートとして機能する。
 本体11は、力覚センサ10のベースとなるベース部材であり、可動体12は、弾性変形が可能な起歪体16を介在して本体11に対して、6軸方向(X軸方向、Y軸方向、Z軸方向、及び各軸周り方向)に動作可能に取着される。すなわち、図2に示すように、起歪体16は、起歪体16に形成された複数のネジ穴17aをそれぞれ貫通する起歪体固定ネジ17により、本体11に固定され、複数のネジ穴18aをそれぞれ貫通するハンドプレート固定ネジ18により、可動体12にも固定される。
 起歪体16の表面は、X軸、Y軸により形成される面と平行に配置され、起歪体16の中心を垂直に通る線は、Z軸と一致されている。可動体12に外力が加えられると、可動体12が動作し、起歪体16が変位する。起歪体16には後述する歪センサが設けられ、歪センサにより起歪体16の変位が検出される。
 可動体12の周面には、例えば4つの円形の開口部13が等間隔に設けられている。すなわち、各開口部13は、X軸方向とY軸方向に配置されている。開口部13の数は、4つに限定されず、3つ以上であればよい。各開口部13の内部にはストッパ14が配置され、各ストッパ14は、ストッパ取付ボルト15により、本体11に固定される。
 ストッパ14は、可動体12の動作範囲を規制するものであり、ストッパ14の最外周部には、開口部13の内面が当接可能な第1側面14aを備えている。すなわち、第1側面14aは、可動体12の動作に伴って起歪体16が変形した際、可動体12の開口部13の内面が当接し、起歪体16の過剰な変形を防止する保護機構として機能する。
 本体11の内部には、起歪体16に対向して基板20が設けられる。基板20は、複数のねじ穴21aを有し、各ネジ穴21aを貫通する固定ネジ21により、本体11に固定される。基板20には、起歪体16に設けられた歪センサが電気的に接続される。
 本体11の底部には、開口部11aを閉塞するカバー22が装着される。すなわち、カバー22は、複数のねじ穴23aを有し、これらネジ穴23aを貫通する固定ネジ23により、本体11に固定される。
 本体11の側面には、検出信号を外部に伝達するための配線25が引き出されている。配線25は、基板20と電気的に接続されている。
  平面構成および断面構成 
 図3および図4を用い、第1実施形態に係る力覚センサの平面構成および断面構成について詳細に説明する。図3は、力覚センサ10を示す平面図である。図4は、図3のIV-IVに沿った力覚センサ10を示す断面図である。
 前述した歪センサ(図示せず)は、起歪体16の表面の所定箇所に張り付けられており、起歪体16のそれぞれの場所の変位を測定することで、6軸方向の力およびトルクを検出する。尚、歪センサの構成、及び配置は、特に限定されるものではなく、変形可能である。また、起歪体16と基板20との間には、起歪体16に設けられた歪センサと基板20とを電気的に接続するためのFPC(Flexible printed circuits)26が設けられている。FPC26は、絶縁性の柔軟なフィルムと当該フィルムに配線された所定の電気回路とを備えており、可動体12の動きに合わせて自在に曲がることが可能な構成となっている。
 ストッパ14は、前述した第1側面14aと、第2側面14bを有している。第1側面14aは、第2側面14bより可動体12の内側に位置され、可動体12の開口部13の直径R13より小さな第1外径R14aを有している。第2側面14bは、第1外径R14aより小さな第2外径R14bを有している。従って、第1側面14bと開口部13の内面との間の距離W14は、第2側面14bと開口部13の内面との間の距離W30よりも小さくなるように構成されている(W14<W30)。尚、可動体12と本体11の側面にも、距離W30に相当する間隙が設けられ、本体11に対して、可動体12が動作可能とされている。距離W30は、例えば数mm程度である。
 ここで、第1側面14aと開口部13の内面との間における距離(クリアランス)W14は、例えば20μm~40μm程度であるため、非常に狭い。しかも、可動体12が動作した際、起歪体16の破損を防止するため、この距離W14を極めて高精度に管理する必要がある。
 さらに、図4の破線で囲った部分を拡大して示すように、実際には、第1側面14aと平行するストッパ14の内側面と固定ボルト15の軸との間には距離W15aの所定の隙間が設けられる。また、第1、第2側面14a、14bと平行するストッパ14の内側面と固定ボルト15の頭部の側面との間にも距離W15bの所定の隙間が設けられている。上記距離W15a、W15bは、例えば0.2mm程度である。尚、以降の説明において、これらの隙間の図示は省略する。
 本実施形態では、第2側面14bと開口部13の内面との間に、調整用の治具としてのシムを挿入した状態で、固定ボルト15によりストッパ14を本体11へ固定する。シムは、距離W30と実質的に同一の厚さを有する挿入部を有する。ストッパ14は、上記隙間の距離W15a、15b分だけ移動可能であるため、このようなシムを用いて調整することで、可動体12の開口部13の内面とストッパ14の第1側面14aとの間の距離(クリアランス)W14を高精度に管理でき、本体11に対する可動体12の所定の可動範囲を確保し、力覚センサ10の感度を向上できる。この詳細については、後述する。
 [検出動作]
 図5を用いて上記構成の力覚センサ10の検出動作について説明する。図5は、Z軸方向における外力検出動作を説明するための断面図である。ここでは、Z軸方向において可動体12のほぼ中央部分に加えられた外力(荷重)FZを検出する場合を一例に挙げる。
 図示するように、Z軸方向において可動体12のほぼ中央部分に外力FZが加えられると、外力FZによって可動体12がZ軸方向に沿って下方に移動する。本体11は固定されており外力FZによっても移動しないため、可動体12は、開口部13の上側の内面がストッパ14の上側の第1側面14aに当接するまで、下方に移動する。上記移動により、上側の距離W14Uは実質的に0となり、下側の距離W14Dは移動前の初期状態に比べて2倍程度まで増大する。
 上記可動体12の移動に伴い起歪体16が変形する。ストッパ14により、起歪体16の変形は所定の範囲に限定される。このため、過剰な外力による破壊から起歪体16が保護される。起歪体16の変形は、歪センサにより検出され、電気信号としての検出信号に変換される。検出信号はFPC26、基板20を介して配線25により外部に伝達されることで、外力FZを検出することができる。
 その後、可動体12への外力FZの印加が解除されると、起歪体16は、弾性変形により、元の形状に復帰する。
 尚、ここでは、Z軸方向における外力検出動作を一例に挙げたが、X軸方向およびY軸方向におけるその他の外力検出動作も同様である。また、X、Y、Z軸方向における各トルク検出動作についても、上記外力検出動作と実質的に同様であるため、詳細な説明を省略する。
 [クリアランスW14の調整]
 次に、図6、図7を用いて、クリアランスの調整について説明する。
 図6、図7に示すように、クリアランスの調整は、開口部13にシム30を装着して行われる。図6、図7は、1つの開口部13にシム30を装着した場合を示しているが、4つの開口部13の全てにシム30を装着した状態で、調整することが好ましい。この場合、調整精度が一層向上し、調整作業の時間を短縮することが可能である。
 図7に示すように、シム30は、筒状の挿入部30aと、つまみ部30b及び開口部33を有している。
 つまみ部30bは、開口部13の直径R13より大きな外径R30を有している。
 開口部33は、つまみ部30aを貫通し、取付ボルト15の頭部に設けられた六角穴に取着される図示せぬ六角レンチが挿入可能とされている。
 挿入部30aは、可動体12の開口部13の直径とほぼ等しい外径R13を有し、挿入部30aの厚みは、ストッパ14の第2側面14bと開口部13の内面との間の距離W30と実質的に同一の厚さに設定されている。
 取付ボルト15を緩めた状態において、図7に示すように、シム30の挿入部30aがストッパ14の第2側面14bと開口部13の内面との間に挿入される。挿入部30aの外径は、開口部13の直径R13と実質的に同一であり、挿入部30aの内径は、ストッパ14の第2側面14bの第2外径R14bと実質的に同一である。このため、シム30の挿入部30aを開口部13に挿入した状態で、シム30の軸心C30とストッパ14の軸心C14とが互いに一致され、同心円となる。すなわち、この状態において、上記隙間の距離W15a、15b分だけストッパ14が移動可能であるため、ストッパ14の第1側面14aと、開口部13の内面との距離W14が正確に設定される。
 この状態において、シム30の開口部33から図示せぬ六角レンチを挿入して取付ボルト15を締め付けることにより、ストッパ14が本体11に固定される。
 このように、距離W30に相当する厚みを有する挿入部30aをストッパ14の第2側面14bと開口部13との間に挿入することにより、ストッパ14の第1側面14aと開口部13の内面との距離W14であるクリアランスを正確に管理することができる。
 [作用効果]
 上記第1実施形態によれば、ストッパ14は、可動体12の開口部13の内面が当接される第1側面14aと、第1側面より外径が小さい第2側面14bを有し、ストッパ14の調整時、ストッパ14の第2側面14bと開口部13の内面との間に、第2側面14bと開口部13の内面との間の距離W30に相当する厚みを有するシム30の挿入部30aを挿入している。このため、シム30の軸心C30とストッパ14の軸心C14とが一致することにより、上記隙間の距離W15a、15b分だけストッパ14が移動し、ストッパ14の第1側面14aと、開口部13の内面との距離W14を正確に設定することができる。
 例えば、本実施形態に係る力覚センサ10に、Z方向に荷重FZを加えた場合、起歪体16の変位[μm]と検出された荷重[N]との関係は、図8のように示される。図8に示すように、特性線CL10は、Z方向の変位が0.022μm付近(変曲点)において、その傾き(立ち上がる角度)が変化している。これは、変位がゼロの状態から変曲点まで(D1)ではストッパ14が機能せず起歪体16が変形することを示し、変曲点以降(D2)ではストッパ14の第1側面14aが開口部13の内面に当接するためストッパ14が機能していることを示す。変曲点以降(D2)では、特性線CL10の傾きが増大し、起歪体16が変形しにくくなっており、クリアランスである距離W14を正確に設定することができていることは明らかである。
 しかも、取付ボルト15を緩めた状態において、シム30を取り付け、シム30の開口部33から取付ボルト15を締め付けるだけで良いため、クリアランスである距離W14の誤差を可能な限り低減しつつ、調整作業を容易化することができる。
 さらに、ストッパ14の第1側面14a及び第2側面14bは、例えば同一の工程を用いて連続的に切削することにより形成できる。そのため、第1側面14aおよび第2側面14bの寸法管理および検査が容易である。
 また、可動体12は、その製造加工においても、開口部13の直径R13の寸法のみを管理すればよいため、寸法管理および検査が容易である。
 さらに、シム30は、挿入部30aの外面および内面を、例えば同一の工程を用いて連続的に切削することにより形成できる。そのため、シム30の寸法管理および検査を容易化することでき、同心の度合いを向上させることができる。
 しかも、ストッパ14は、非常にシンプルな形状であり、6軸方向の全てに対して保護機能を有している。このため、高感度かつ製造コストの低減化に有利な力覚センサ10を提供することが可能となる。
 (第2実施形態(テーパ構造を有する一例))
 次に、図9および図10を用い、第2実施形態に係る力覚センサ10Aについて説明する。第2実施形態は、ストッパ14およびシム30がテーパ構造を有する一例に関する。
 [構造]
 図9は、第2実施形態に係る力覚センサ10Aを示す断面図である。図10は、図9のA近傍であって、治具を使用した状態での力覚センサ10Aを示す断面図である。
 図9に示すように、第2実施形態において、ストッパ14は、第2側面14cが、第1側面14aから離れるに従って第2外径R14cが小さくなるように構成されるテーパ構造を有する。図10に示すように、ストッパ14の第2側面14cと水平面との成す角θ14は、鋭角である。
 さらに、図10に示すように、上記ストッパ14のテーパ構造と一致するように、シム30の挿入部30aの内側面は、第1側面14aから離れるに従ってその内径が小さくなるように構成されるテーパ構造を有する。シム30の挿入部30aの内側面と水平面との成す角θ30は、鋭角である。
 その他の構造は、上記第1実施形態と実質的に同様であるため、その詳細な説明を省略する。また、検出動作に関しても、上記第1実施形態と実質的に同様であるため、その詳細な説明を省略する。
 [作用効果]
 第2実施形態に係る力覚センサ10Aの構造および動作によれば、少なくとも第1実施形態と同様の効果が得られる。
 さらに、第2実施形態に係る力覚センサ10Aでは、ストッパ14の第2側面14cおよびシム30の挿入部30aが、テーパ構造を有する。具体的には、図9に示すように、ストッパ14の第2側面14cおよび挿入部30aの内側面は、第1側面14aから離れるに従って第2外径R14cおよび内径が小さくなるように構成される。
 このように、ストッパ14の第2側面14cおよびシム30の挿入部30aがテーパ構造を有することによって、ストッパ14の位置決めを行う際、開口部13に対してシム30の挿入部30aを容易に挿入することが可能である。
 しかも、ストッパ14の第2側面14cおよびシム30の挿入部30aがテーパ構造を有することにより、ストッパ14とシム30の軸心を確実に一致させることができる。そのため、第1側面14aと開口部13の内面との間の距離W14を、第1実施形態と比較して、より高精度に管理することができる。
 (変形例)
 本発明は、上記第1および第2実施形態の開示に限定されるものではなく、必要に応じて種々の変形が可能であることは勿論である。
 例えば、本実施形態では、ストッパ14は、取付ボルト15により本体11に固定されているが、この構成に限定されない。具体的には、第1実施形態において、可動体12の開口部13が設けられた部分は、本体11の取付ボルト15が螺合される部分より外側に位置しているが、本体11に開口部13が設けられる部分を設け、可動体12に取付ボルト15が螺合される部分を設け、本体11に設けられた開口部13が設けられる部分を可動体12に設けられた取付ボルト15が螺合される部分より外側に配置し、本体11に設けられた開口部13内にストッパ14を配置した構成であってもよい。
 また、シム30の使用は、力覚センサ10、10Aの検査の際に限らず、力覚センサ10、10Aをある程度可動させた後である例えばメンテナンスの際等でもよい。
 その他、本発明は上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
 本発明の実施形態に係る力覚センサは、例えばロボットアーム等に適用することが可能である。
 10、10A…力覚センサ、11…本体、12…可動体、13…開口部、14…ストッパ(保護機構)、15…固定部材(ストッパ取付ボルト)、16…起歪体、30…治具(シム)。

Claims (9)

  1.  円筒状の本体と、
     前記本体に対して動作可能な円筒状の可動体と、
     前記本体及び前記可動体に固定され、前記可動体の動作に従って変形可能な起歪体と、
     前記起歪体に設けられた歪センサと、
     前記可動体の周囲に等間隔に設けられた少なくとも3つの円形の開口部と、
     前記開口部のそれぞれの内部に配置され、前記開口部の直径より小さな第1外径を有する第1側面と、前記第1外径より小さな第2外径を有する第2側面とを有するストッパと、
     前記ストッパを前記本体に固定する固定部材と
     を具備する力覚センサ。
  2.  前記第2側面は、前記第1側面から離れるに従って前記第2外径が小さくなる
     請求項1に記載の力覚センサ。
  3.  前記開口部の内面と前記第2側面との間に挿入され、前記開口部の内面と前記第1側面との距離を調整するための治具を更に具備する
     請求項1に記載の力覚センサ。
  4.  前記治具は、前記開口部の内面と前記第2側面との間に挿入可能な挿入部を有し、
     前記挿入部の内側面の径は、前記第1側面から離れるに従って小さくなる
     請求項3に記載の力覚センサ。
  5.  前記第1側面または前記第2側面と平行する前記ストッパの内側面と前記固定部材との間に、所定の距離を有する隙間を更に具備し、
     前記治具が前記開口部の内面と前記第2側面との間に挿入されたときに、前記隙間の距離分だけ前記ストッパが移動可能となるように構成される
     請求項4に記載の力覚センサ。
  6.  円筒状の本体と、
     前記本体に対して動作可能な円筒状の可動体と、
     前記本体及び前記可動体に固定され、前記可動体の動作に従って変形可能な起歪体と、
     前記起歪体に設けられた歪センサと、
     前記本体の周囲に等間隔に設けられた少なくとも3つの円形の開口部と、
     前記開口部のそれぞれの内部に配置され、前記開口部の直径より小さな第1外径を有する第1側面と、前記第1外径より小さな第2外径を有し、前記開口部の内面との間に調整用の治具が挿入可能な第2側面と、を有するストッパと、
     前記ストッパを前記可動体に固定する固定部材と
     を具備する力覚センサ。
  7.  前記第2側面は、前記第1側面から離れるに従って前記第2外径が小さくなる
     請求項6に記載の力覚センサ。
  8.  前記治具は、前記開口部の内面と前記第2側面との間に挿入可能な挿入部を有し、
     前記挿入部の内側面の径は、前記第1側面から離れるに従って小さくなる
     請求項6に記載の力覚センサ。
  9.  前記第1側面または前記第2側面と平行する前記ストッパの内側面と前記固定部材との間に、所定の距離を有する隙間を更に具備し、
     前記治具が前記開口部の内面と前記第2側面との間に挿入されたときに、前記隙間の距離分だけ前記ストッパが移動可能となるように構成される
     請求項8に記載の力覚センサ。
PCT/JP2017/024020 2016-09-21 2017-06-29 力覚センサ WO2018055865A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17852646.3A EP3517918B1 (en) 2016-09-21 2017-06-29 Force sensor
KR1020197006095A KR102215343B1 (ko) 2016-09-21 2017-06-29 역각 센서
CN201780054397.4A CN109661567A (zh) 2016-09-21 2017-06-29 力传感器
US16/294,010 US10976208B2 (en) 2016-09-21 2019-03-06 Force sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-184669 2016-09-21
JP2016184669A JP2018048915A (ja) 2016-09-21 2016-09-21 力覚センサ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/294,010 Continuation US10976208B2 (en) 2016-09-21 2019-03-06 Force sensor

Publications (1)

Publication Number Publication Date
WO2018055865A1 true WO2018055865A1 (ja) 2018-03-29

Family

ID=61689535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024020 WO2018055865A1 (ja) 2016-09-21 2017-06-29 力覚センサ

Country Status (6)

Country Link
US (1) US10976208B2 (ja)
EP (1) EP3517918B1 (ja)
JP (1) JP2018048915A (ja)
KR (1) KR102215343B1 (ja)
CN (1) CN109661567A (ja)
WO (1) WO2018055865A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6815903B2 (ja) * 2017-03-08 2021-01-20 日本電産コパル電子株式会社 力覚センサ
JP7039502B2 (ja) 2019-01-28 2022-03-22 日本電産コパル電子株式会社 力覚センサ
JP6999586B2 (ja) 2019-01-28 2022-01-18 日本電産コパル電子株式会社 弾性体とそれを用いた力覚センサ
CN115112286A (zh) * 2021-03-19 2022-09-27 美蓓亚三美株式会社 应变体、力传感器装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468630A (en) * 1987-09-10 1989-03-14 Hitachi Construction Machinery Load detector
US20090259412A1 (en) * 2006-02-23 2009-10-15 Abb Ab system for controlling the position and orientation of an object in dependence on received forces and torques from a user
JP2010008343A (ja) * 2008-06-30 2010-01-14 Wacoh Corp 力覚センサおよびその組立方法
JP3168179U (ja) * 2011-03-18 2011-06-02 株式会社トライフォース・マネジメント 力覚センサおよび6次元力検出装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248221B2 (ja) 1975-02-14 1977-12-08
JP3279580B2 (ja) 1991-01-07 2002-04-30 株式会社東郷製作所 位置決め機構におけるモ−タの制御装置
JPH0643930A (ja) 1992-07-24 1994-02-18 Yaskawa Electric Corp プログラム制御装置
JP5297136B2 (ja) * 2008-10-02 2013-09-25 株式会社アイチコーポレーション 高所作業車
JP2010190859A (ja) * 2009-02-20 2010-09-02 Mitsubishi Heavy Ind Ltd テーパねじの締結力管理方法及び管理装置
JP6043936B2 (ja) * 2012-03-13 2016-12-14 株式会社マルイ 穿刺練習用シミュレータ
JP5885249B2 (ja) * 2012-05-16 2016-03-15 株式会社エー・アンド・デイ 軸力センサ
JP6043937B2 (ja) * 2012-08-16 2016-12-14 株式会社片山化学工業研究所 ビニル芳香族モノマーの重合を抑制するための組成物
JP3180316U (ja) * 2012-10-01 2012-12-13 大和製衡株式会社 ロードセルの過負荷防止装置のストッパ
JP6092044B2 (ja) * 2013-08-19 2017-03-08 ミネベアミツミ株式会社 荷重センサユニット
JP6066490B2 (ja) * 2013-12-06 2017-01-25 ミネベア株式会社 荷重センサ
JP6043930B2 (ja) * 2015-03-20 2016-12-14 アクアインテック株式会社 沈砂池の除砂方法
CN105092134B (zh) * 2015-07-23 2017-12-29 北京航空航天大学 一种组合式三轴力传感器及计算方法
CN105651446B (zh) * 2016-03-18 2019-01-11 安徽锐聪机器人有限公司 六维力传感器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468630A (en) * 1987-09-10 1989-03-14 Hitachi Construction Machinery Load detector
US20090259412A1 (en) * 2006-02-23 2009-10-15 Abb Ab system for controlling the position and orientation of an object in dependence on received forces and torques from a user
JP2010008343A (ja) * 2008-06-30 2010-01-14 Wacoh Corp 力覚センサおよびその組立方法
JP3168179U (ja) * 2011-03-18 2011-06-02 株式会社トライフォース・マネジメント 力覚センサおよび6次元力検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3517918A4 *

Also Published As

Publication number Publication date
EP3517918A4 (en) 2020-06-24
CN109661567A (zh) 2019-04-19
US20190204170A1 (en) 2019-07-04
KR20190035829A (ko) 2019-04-03
EP3517918B1 (en) 2021-08-04
US10976208B2 (en) 2021-04-13
EP3517918A1 (en) 2019-07-31
KR102215343B1 (ko) 2021-02-10
JP2018048915A (ja) 2018-03-29

Similar Documents

Publication Publication Date Title
WO2018055865A1 (ja) 力覚センサ
WO2018163579A1 (ja) 力覚センサ
US9200969B2 (en) Force sensor
JP5248221B2 (ja) 力覚センサおよびその組立方法
US20140174239A1 (en) Force sensor and robot
CN111801559B (zh) 应变传感器的固定装置和使用该固定装置的扭矩传感器
JP6878668B2 (ja) 力覚センサ
US11353344B2 (en) Force sensor having a strain body
US11293819B2 (en) Force sensor having a strain body
JP2004045138A (ja) 分力計
US20200371129A1 (en) Acceleration sensor core unit, and method for preventing deflection of a base board on which acceleration sensor is mounted
JP2019133299A (ja) 入力装置、力覚センサ装置
US20220187147A1 (en) Strain sensor fixing device and torque sensor using same
JP2017026337A (ja) 力検出装置及びロボット
JP2021004846A (ja) 力覚センサモジュール、アタッチメント、及びロボットハンド
JPS60155936A (ja) 圧覚センサ
JPWO2013031007A1 (ja) 力センサ及びロボット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852646

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197006095

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017852646

Country of ref document: EP

Effective date: 20190423