WO2018163251A1 - 車両用かご形誘導電動機 - Google Patents

車両用かご形誘導電動機 Download PDF

Info

Publication number
WO2018163251A1
WO2018163251A1 PCT/JP2017/008817 JP2017008817W WO2018163251A1 WO 2018163251 A1 WO2018163251 A1 WO 2018163251A1 JP 2017008817 W JP2017008817 W JP 2017008817W WO 2018163251 A1 WO2018163251 A1 WO 2018163251A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
short
core
bar
outer peripheral
Prior art date
Application number
PCT/JP2017/008817
Other languages
English (en)
French (fr)
Inventor
辰郎 大久保
英男 寺澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/008817 priority Critical patent/WO2018163251A1/ja
Priority to US16/480,402 priority patent/US11183910B2/en
Priority to JP2019503842A priority patent/JP6587773B2/ja
Priority to DE112017007176.3T priority patent/DE112017007176T5/de
Publication of WO2018163251A1 publication Critical patent/WO2018163251A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • H02K17/165Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors characterised by the squirrel-cage or other short-circuited windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • H02K17/20Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors having deep-bar rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/24Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/006Structural association of a motor or generator with the drive train of a motor vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • This invention relates to a vehicular squirrel-cage induction motor used for a railway vehicle.
  • a squirrel-cage induction motor is used as a main motor for driving an electric railway vehicle.
  • a squirrel-cage rotor conductor of a squirrel-cage induction motor has a rod-shaped rotor bar inserted in a groove formed in parallel to the rotation axis on the outer peripheral side of the rotor core, and annular conductors at both ends of the rotor bar. It is formed by joining a short-circuited ring.
  • a rotating magnetic field is generated when an alternating current flows through a stator coil provided in a groove formed in the stator core.
  • An induced electromotive force is generated when the cage rotor conductor is linked to the rotating magnetic field.
  • the rotor bar and the short ring are joined by silver brazing or welding. If the electrical contact between the rotor bar and the short ring is insufficient due to insufficient silver brazing or welding, the rotor bar will vibrate due to electromagnetic vibration or rotational vibration and the rotor bar will break. Sometimes. Therefore, in the squirrel-cage induction motor disclosed in Patent Document 1, a meat part is formed on the short-circuit ring side at a lower contact portion between the rotor bar and the rotor core side end surface of the short-circuit ring, and the meat part and the rotor bar Are connected by silver brazing or welding.
  • a fillet part of silver brazing or welding with the rotor bar can be formed on both sides and the lower surface of the meat part.
  • the reliability of silver brazing or welding is increased, and stress concentration at the maximum stress point of the rotor bar is alleviated to prevent the rotor bar from being broken.
  • the alternating voltage applied to the induction motor used as the main motor is a rectangular wave voltage converted from direct current to alternating current by the inverter
  • the alternating current flowing through the stator coil includes harmonics. Therefore, harmonics are also included in the rotating magnetic field generated in the stator, the induced current flowing in the cage rotor conductor, and the output torque of the rotor shaft.
  • the output torque has a variation at a harmonic frequency called torque ripple.
  • Rotational speed of the rotor core is subject to minute fluctuations at the same frequency as the torque ripple.
  • relative torsional vibration is generated with respect to the rotor core at the same frequency as the torque ripple.
  • Torsional vibration is minute vibration, and the stress generated in the rotor bar joined to the short ring is sufficiently small.
  • the frequency of the torque ripple matches the torsional natural frequency of the rotor conductor, a resonance state occurs, and thus excessive stress is generated in the rotor conductor.
  • the torsional natural frequency of the rotor conductor is set to a sufficiently high value.
  • the torque ripple frequency matches the torsional natural frequency of the rotor conductor, so that excessive stress may be generated in the rotor conductor.
  • the fundamental frequency (inverter frequency) of the alternating current flowing through the stator coil varies, so the torque ripple frequency also varies. Therefore, it is necessary to set the torsional natural frequency of the rotor conductor so that it does not coincide with the torsional natural frequency of the rotor conductor even if the torque ripple frequency varies.
  • the present invention has been made in view of the above circumstances, and an object thereof is to suppress the occurrence of excessive stress on the rotor bar in a squirrel-cage induction motor that drives a railway vehicle.
  • a squirrel-cage induction motor for a vehicle includes a rotating shaft that is rotatably supported, a rotor that is fitted to the rotating shaft and rotates integrally with the rotating shaft, and an outer periphery of the rotor.
  • a stator facing the surface with a space is provided.
  • the rotor includes a rotor iron core, a plurality of rotor bars, a pair of short-circuit rings, a pair of iron core pressing members, and a deformation suppressing unit.
  • the rotor core is in the shape of a cylinder that fits with the rotation axis and the center axis coincides with the rotation axis, and a plurality of grooves extending in parallel with the rotation axis are formed on the outer peripheral side of the cylinder.
  • Each of the plurality of rotor bars is a conductor that is accommodated in a groove formed on the outer peripheral side of the rotor core, and that both ends in a direction parallel to the rotation axis protrude outward from the rotor core.
  • the pair of shorting rings are opposed to each other in a direction parallel to the rotation axis with the plurality of rotor bars interposed therebetween, and each of the shorting rings is joined to an end of the plurality of rotor bars to thereby connect the plurality of rotor bars.
  • a conductor to be electrically connected, and a cross-sectional shape orthogonal to the rotation axis is annular.
  • the pair of iron core holding members are provided with the rotor iron core sandwiched in the direction of the rotation axis, and suppress the movement and deformation of the rotor iron core in the direction of the rotation axis.
  • the cross-sectional shape perpendicular to the rotation axis of the iron core holding member is annular.
  • transformation suppression part is provided in the position between each of a short circuit ring and a rotor iron core, Comprising: At least one part opposes the outer peripheral surface of an iron core pressing member. It is fixed to the short-circuit ring and at least a part of at least one rotor bar, and the bending deformation in the tangential direction of the outer peripheral surface of the rotor core of at least a part of the fixed at least one rotor bar is suppressed.
  • excessive stress is generated in the rotor bar in the squirrel-cage induction motor for a vehicle by suppressing the bending deformation in the tangential direction of the outer peripheral surface of at least a part of the rotor core of the rotor bar. It is possible to suppress this.
  • Sectional drawing of the rotor which concerns on Embodiment 1 of this invention Sectional drawing of the rotor which concerns on Embodiment 1 Partial sectional view of the rotor according to the first embodiment
  • the figure which looked at the rotor which concerns on Embodiment 1 from the outer side of radial direction The figure which shows the example of a deformation
  • Partial sectional view of a rotor according to Embodiment 2 of the present invention The figure which looked at the rotor which concerns on Embodiment 2 from the radial direction outer side Partial sectional view of a rotor according to Embodiment 3 of the present invention The figure which looked at the rotor which concerns on Embodiment 3 from the outer side of radial direction The figure which shows the deformation
  • FIG. Partial sectional view of a rotor according to Embodiment 4 of the present invention The figure which looked at the rotor which concerns on Embodiment 4 from the radial direction outer side The figure which shows the example of a deformation
  • FIG. 1 is a cross-sectional view of a rotor according to Embodiment 1 of the present invention.
  • the squirrel-cage induction motor for a vehicle is fixed to a rotor 1, a rotary shaft 7, and a housing that rotatably supports the rotary shaft 7 via a bearing, and is fixed to face the outer peripheral surface of the rotor 1 with a gap.
  • FIG. 1 is a cross-sectional view taken along a plane parallel to the rotation shaft 7.
  • FIG. 1 shows only the rotor 1 and the rotating shaft 7.
  • FIG. 2 is a cross-sectional view of the rotor according to the first embodiment. 2 is a cross-sectional view taken along line AA in FIG. FIG.
  • FIG. 3 is a partial cross-sectional view of the rotor according to the first embodiment.
  • FIG. 3 is an enlarged view of a portion B indicated by a broken line in FIG.
  • FIG. 4 is a view of the rotor according to Embodiment 1 as viewed from the outside in the radial direction.
  • the rotor 1 is fitted with the rotating shaft 7.
  • the rotor 1 includes a rotor core 11 that is fitted into the rotation shaft 7 and has a cylindrical shape whose center axis coincides with the rotation shaft 7, and a rotor conductor 10 that the rotor core 11 holds.
  • a plurality of grooves 17 extending in parallel with the rotation shaft 7 are formed on the outer peripheral side of the cylinder of the rotor core 11.
  • the rotor conductor 10 has a rotor bar 12 and a short-circuit ring 13. Each of the plurality of rotor bars 12 that are conductors is accommodated in the groove 17. Both ends of the rotor bar 12 in the direction parallel to the rotation axis 7 protrude outward from the rotor core 11.
  • Each of the rotors 1 further includes a pair of short-circuit rings 13 whose main surfaces face each other in the direction of the rotation shaft 7 with the plurality of rotor bars 12 interposed therebetween.
  • the short-circuit ring 13 is a conductor that electrically connects the plurality of rotor bars 12 by being joined to the end portions of the plurality of rotor bars 12.
  • the cross-sectional shape of the short-circuit ring 13 orthogonal to the rotation axis 7 is annular.
  • the rotor 1 further includes a pair of core pressing members 14 and 18 that are provided in the direction of the rotating shaft 7 with the rotor core 11 interposed therebetween, and whose cross-sectional shape orthogonal to the rotating shaft 7 is annular.
  • the iron core holding members 14 and 18 suppress the displacement and movement of the rotor core 11, which is a laminate of thin plates, in the direction of the rotating shaft 7.
  • the pair of iron core holding members 14 and 18 are provided with the rotor iron core 11 sandwiched between the end plates 15.
  • the end plate 15 suppresses the opening of the rotor core 11, which is a laminate of thin plates, that is, displacement in a direction parallel to the rotation shaft 7.
  • the end plate 15 has an annular cross section orthogonal to the rotation shaft 7, and a groove having a shape corresponding to the groove 17 is formed on the outer peripheral side.
  • the rotor 1 further includes a deformation suppressing portion 16 provided between each of the short-circuit rings 13 and the rotor core 11, at least a part of which is provided at a position facing the outer peripheral surface of the core pressing members 14 and 18. .
  • the deformation suppressing unit 16 is fixed to the short-circuit ring 13 and at least a part of at least one rotor bar 12, and is formed on the outer peripheral surface of the rotor core 11 of at least a part of the fixed at least one rotor bar 12. Suppresses bending deformation in the tangential direction.
  • the shape of the cross section orthogonal to the rotating shaft 7 of the deformation suppressing portion 16 is annular.
  • the short-circuit ring 13 and the deformation suppressing portion 16 are integrally formed. That is, the shape of the cross section passing through the rotating shaft 7 of the integrally molded product of the short-circuit ring 13 and the deformation suppressing portion 16 is substantially L-shaped.
  • the outer peripheral surface of the deformation suppressing portion 16 is fixed to at least a part of the rotor bar 12 including the end portion in each of the plurality of rotor bars 12. At least a part of the inner peripheral surface of the deformation suppressing portion 16 faces the outer peripheral surfaces of the iron core pressing members 14 and 18.
  • the short-circuit ring 13 and the deformation suppression portion 16 are integrally formed, the surface of the deformation suppression portion 16 that faces the short-circuit ring 13 is integrated with the short-circuit ring 13.
  • the rotor bar 12 is joined to the short-circuit ring 13 by silver brazing or welding as shown by the range surrounded by the dotted line. Further, a part of the surface of the rotor bar 12 facing the rotation shaft 7 and the deformation suppressing portion 16 are joined.
  • the short-circuit ring 13 and the deformation suppression unit 16 are shown by dot filling.
  • the deformation suppression unit 16 is fixed to at least a part of the rotor bar 12 including the short-circuit ring 13 and the end of the rotor bar 12, so that at least a part of the outer peripheral surface of the rotor core 11 of the rotor bar 12 is tangent. Bending deformation in the direction is suppressed.
  • FIG. 5 is a diagram showing an example of deformation of the rotor bar.
  • the rotor 6 shown in FIG. 5 is similar to the rotor 1 shown in FIG. 4, and a rotor core 61 having a cylindrical shape that fits with a rotary shaft (not shown) and whose center axis coincides with the rotary shaft, and the rotor.
  • a rotor conductor 60 held by the iron core 61 is provided.
  • the rotor 6 is fitted to the rotation shaft and rotates integrally with the rotation shaft.
  • a plurality of grooves 66 extending in parallel with the rotation axis are formed on the outer peripheral side of the cylinder of the rotor core 61.
  • the rotor conductor 60 has a rotor bar 62 and a short-circuit ring 63.
  • Each of the plurality of rotor bars 62 that are conductors is accommodated in the groove 66. Both ends of the rotor bar 62 in the direction parallel to the rotation axis protrude outward from the rotor core 61.
  • Each of the rotors 6 further includes a pair of short-circuit rings 63 whose main surfaces face each other in a direction parallel to the rotation axis with the plurality of rotor bars 62 interposed therebetween.
  • the shape of the cross section orthogonal to the rotation axis of the short circuit ring 63 is annular.
  • the rotor 6 further includes an iron core pressing member 64 having a circular cross-sectional shape orthogonal to the rotation axis.
  • the rotor 6 further includes an iron core holding member (not shown) provided on the opposite side of the iron core holding member 64 with respect to the rotor iron core 61, and the iron core holding member and the iron core holding member 64 are connected via an end plate 65.
  • the rotor iron core 61 is sandwiched in the direction of the rotation axis.
  • the rotor 6 does not have a member that is fixed to the short-circuit ring 63 and at least a part of the rotor bar 62 like the deformation suppressing portion 16 included in the rotor 1.
  • a part of the rotor bar 62 is bent in the tangential direction of the outer peripheral surface of the rotor core 61 according to the twist of the short-circuit ring 63. Deform. In the example of FIG.
  • the amount of displacement in the tangential direction of the outer peripheral surface of the rotor core 11 at the end of the rotor bar 62 is ⁇ 1.
  • the position inside the groove 66, which is one end of the deformed portion of the rotor bar 62 having the length L1, depends on the variation of the thin plate of the rotor core 61, the size of the gap between the groove 66 and the rotor bar 62, and the like. Determined.
  • each end of the rotor bar 62 is ⁇ 1 in the tangential direction of the outer peripheral surface of the rotor core 11.
  • a torque T for twisting the short-circuit ring 63, which is necessary for displacing only the displacement, is expressed by the following equation (2).
  • the twist angle ⁇ of the short-circuit ring 63 when the end of the rotor bar 62 is displaced by ⁇ 1 in the tangential direction of the outer peripheral surface of the rotor core 11 is expressed by the following equation (3).
  • the torsional rigidity K of the short-circuit ring 63 with respect to the rotor core 61 when the end of the rotor bar 62 is displaced by ⁇ 1 in the tangential direction of the outer peripheral surface of the rotor core 11 is expressed by the following equation (4).
  • the inertia in the above equation (5) is used. It is necessary to reduce the moment J and the length L1 of the deformed portion of the rotor bar 62. By reducing the cross-sectional area of the cross section parallel to the rotation axis of the short-circuit ring 63, the moment of inertia J can be reduced. However, when the cross-sectional area of the short ring 63 is reduced, the current density increases, and as a result, the temperature of the short ring 63 increases.
  • FIG. 6 is a diagram showing an example of deformation of the rotor bar in the first embodiment.
  • the short-circuit ring 13 is twisted in the direction around the axis of the rotary shaft 7 with respect to the rotor core 11, a part of the rotor bar 12 is bent and deformed according to the twist of the short-circuit ring 13. .
  • FIG. 5 shows that when the short-circuit ring 13 is twisted in the direction around the axis of the rotary shaft 7 with respect to the rotor core 11, a part of the rotor bar 12 is bent and deformed according to the twist of the short-circuit ring 13. .
  • a portion of the rotor bar 12 having a length L2 from the end on the rotor core 11 side where the rotor bar 12 and the deformation suppressing portion 16 are joined to the position inside the groove 17 is provided.
  • the part is deformed.
  • the rotor bar 12 is not deformed at the portion where the rotor bar 12 and the deformation suppressing portion 16 are joined.
  • the amount of displacement in the tangential direction of the outer peripheral surface of the rotor core 11 at the end of the rotor bar 12 is ⁇ 2.
  • L2 is shorter than L1, and ⁇ 2 is smaller than ⁇ 1.
  • the inertia moment J in the example of FIG. 6 is, for example, 1.2 times the inertia moment J in the example of FIG. 5, and the length L2 of the deformed portion of the rotor bar 12 is, for example, 60% of L1.
  • the torsional natural frequency f1 of the rotor conductor 10 is expressed by the following equation (6).
  • the torsional natural frequency f1 of the rotor conductor 10 of the rotor 1 according to the first embodiment is equal to the torsional natural frequency f0 of the rotor conductor 60 of the rotor 6 that does not have the deformation suppressing unit 16. It can be considered that it is twice.
  • the length of the deformed portion of the rotor bar 12 can be shortened, and the torsional natural frequency of the rotor conductor 10 can be increased. Thereby, it is possible to prevent the rotor conductor 10 of the rotor 1 from being in a resonance state, and to prevent an excessive stress from being generated in the rotor conductor 10.
  • the rotor bar 62 is inserted into a groove 66 formed on the outer peripheral side of the rotor core 61 and fixed by caulking work called a sedge.
  • a tension force is generated from the rotor bar 62 to each of the two opposing surfaces of the groove 66, so that the rotor bar 62 rotates in the groove 66 during use of the squirrel-cage induction motor having the rotor 6. Movement in the direction of the axis is suppressed.
  • the tension force may be reduced by expansion and contraction due to a temperature change of the rotor bar 62 when the squirrel-cage induction motor for a vehicle is used.
  • the rotor bar 62 having the short-circuit ring 63 bonded to both ends is displaced with respect to the rotor core 61 in the direction of the rotation axis. Due to the displacement of the rotor bar 62, the balance of the entire rotor 6 is biased, and vibration increases. Therefore, in the rotor 1 according to the first embodiment, as shown in FIG. 3, the interval W1 between the deformation suppressing portion 16 and the end plate 15 is less than or equal to half the thickness W0 of the end plate 15 in the direction of the rotation shaft 7.
  • the displacement of the rotor bar 12 in the direction of the rotary shaft 7 with respect to the rotor core 11 can be suppressed to half or less of the thickness of the end plate 15 in the direction of the rotary shaft 7, and vibration due to the displacement of the rotor bar 12. Can be suppressed.
  • the rotor bars 12 are positioned at intervals in the circumferential direction of the rotor core 11. As the rotor 1 rotates, the air on the inner peripheral side of the rotor bar 12 is discharged to the outer peripheral side. That is, the rotor 1 has a function as a fan.
  • the stator that faces the outer peripheral surface of the rotor 1 includes a stator core and a stator coil that protrudes outside the stator core in a direction parallel to the rotation shaft 7.
  • noise is generated.
  • the frequency of the noise is a value obtained by multiplying the rotation frequency of the rotor 1 by the number of rotor bars 12.
  • the frequency of the noise changes.
  • the resonance frequency of the space inside the housing of the squirrel-cage induction motor for vehicles coincides with the noise frequency
  • the noise becomes a pure tone and the noise increases greatly.
  • the interval W1 between the deformation suppressing portion 16 and the end plate 15 is set to be equal to or less than half the thickness W0 of the end plate 15 in the direction of the rotation shaft 7, the inner peripheral side to the outer peripheral side of the rotor bar 12 is used. The air volume of the air discharged to is reduced, and the increase in noise is suppressed.
  • the squirrel-cage induction motor for a vehicle according to the first embodiment of the present invention, it is possible to generate excessive stress on the rotor bar 12 by providing the rotor 1 with the deformation suppressing portion 16. It is possible to suppress. Further, by setting the interval W1 between the deformation suppressing portion 16 and the end plate 15 to be equal to or less than half of the thickness W0 of the end plate 15 in the direction of the rotation shaft 7, vibration and noise are increased due to the displacement of the rotor bar 12. It is possible to suppress.
  • FIG. 7 is a partial cross-sectional view of a rotor according to Embodiment 2 of the present invention.
  • FIG. 7 is an enlarged view of a part of the sectional view of the rotor 2 according to the second embodiment, as in FIG. 3.
  • FIG. 8 is a view of the rotor according to the second embodiment as viewed from the outside in the radial direction.
  • the rotor conductor 20 included in the rotor 2 according to the second embodiment includes a short-circuit ring 21 and a deformation suppressing unit 22 instead of the short-circuit ring 13 included in the rotor conductor 10 included in the rotor 1 according to the first embodiment.
  • the short ring 21 and the deformation suppressing unit 22 are independent members.
  • the pair of shorting rings 21 face each other in the direction parallel to the rotation axis 7 with the plurality of rotor bars 12 in between.
  • the short-circuit ring 21 is a conductor that electrically connects the plurality of rotor bars 12 by being joined to the end portions of the plurality of rotor bars 12.
  • the shape of the cross section of the short-circuit ring 21 orthogonal to the rotation axis 7 is annular.
  • the shape of the cross section orthogonal to the rotation axis 7 of the deformation suppressing portion 22 is annular.
  • the outer peripheral surface of the deformation suppressing portion 22 is fixed to at least a part of the rotor bar 12 including the end portion in each of the plurality of rotor bars 12.
  • At least a part of the inner peripheral surface of the deformation suppressing portion 22 faces the outer peripheral surface of the iron core pressing members 14 and 18.
  • the surface of the deformation suppression unit 22 facing the short-circuit ring 21 is joined to the short-circuit ring 21 by silver brazing or welding.
  • the rotor bar 12 is joined to the short ring 21 by silver brazing or welding.
  • the outer peripheral surface of the deformation suppressing unit 22 is joined to a part of the surface facing the rotation shaft 7 of the rotor bar 12 that continues from the end of the rotor bar 12.
  • the production cost can be reduced by dividing the short-circuit ring 21 and the deformation suppression unit 22.
  • Bending deformation of the rotor bar 12 in the rotor 2 according to the second embodiment is the same as that in FIG. Similar to the example of FIG. 6, when the short-circuit ring 21 is twisted in the direction around the axis of the rotary shaft 7 with respect to the rotor core 11, a part of the rotor bar 12 is rotated according to the twist of the short-circuit ring 21. 11 is bent and deformed in the tangential direction of the outer peripheral surface. By providing the deformation suppressing portion 22, the rotor bar 12 is not deformed at the portion where the rotor bar 12 and the deformation suppressing portion 22 are joined.
  • the length of the deformed portion of the rotor bar 12 can be shortened, and the torsional natural frequency of the rotor conductor 20 can be increased. Thereby, it is possible to prevent the rotor conductor 20 of the rotor 2 from being in a resonance state and to suppress an excessive stress from being generated in the rotor conductor 20.
  • the interval W2 between the deformation suppressing portion 22 and the end plate 15 is set to be equal to or less than half the thickness W0 of the end plate 15 in the direction of the rotating shaft 7.
  • transformation suppression part 22 and the end plate 15 is made into below half the thickness W0 of the direction of the rotating shaft 7 of the end plate 15, and it discharges
  • the air volume is reduced and the increase in noise is suppressed.
  • the squirrel-cage induction motor for a vehicle it is possible to generate excessive stress on the rotor bar 12 by providing the rotor 2 with the deformation suppressing portion 22. It is possible to suppress. Moreover, it is possible to reduce a manufacturing cost by dividing
  • the interval W2 between the deformation suppressing portion 22 and the end plate 15 By setting the interval W2 between the deformation suppressing portion 22 and the end plate 15 to be equal to or less than half of the thickness W0 of the end plate 15 in the direction of the rotation shaft 7, an increase in vibration due to the displacement of the rotor bar 12 and an increase in noise are suppressed. Is possible.
  • FIG. 9 is a partial cross-sectional view of a rotor according to Embodiment 3 of the present invention.
  • FIG. 9 is an enlarged view of a part of the cross-sectional view of the rotor 3 according to the third embodiment, as in FIG. 3.
  • the rotor conductor 30 included in the rotor 3 according to the third embodiment includes a short-circuit ring 31 and a deformation suppressing unit 32 instead of the short-circuit ring 13 included in the rotor conductor 10 included in the rotor 1 according to the first embodiment.
  • FIG. 10 is a view of the rotor according to the third embodiment as viewed from the outside in the radial direction.
  • FIG. 11 is a diagram illustrating a deformation suppressing unit according to the third embodiment.
  • the shape of the cross section orthogonal to the rotation axis 7 of the deformation suppressing portion 32 is annular.
  • the same number of grooves 33 as the rotor bars 12 are formed on the outer peripheral surface of the deformation suppressing portion 32.
  • the groove 33 is fitted to at least a part of the rotor bar 12 including the end of the rotor bar 12.
  • the deformation suppressing portion 32 is fixed to at least a part of the rotor bar 12 by fitting the groove 33 and at least a part of the rotor bar 12.
  • At least a part of the inner peripheral surface of the deformation suppressing portion 32 faces the outer peripheral surface of the iron core pressing members 14 and 18.
  • the surface of the deformation suppression unit 32 that faces the short-circuit ring 31 is joined to the short-circuit ring 31 by silver brazing or welding.
  • Bending deformation in the tangential direction of the outer peripheral surface of the rotor core 11 of the rotor bar 12 in the rotor 3 according to the third embodiment is the same as that in FIG. Similar to the example of FIG. 6, when the short-circuit ring 31 is twisted in the direction around the axis of the rotary shaft 7 with respect to the rotor core 11, a part of the rotor bar 12 is bent and deformed according to the twist of the short-circuit ring 31. .
  • the deformation suppressing portion 32 By providing the deformation suppressing portion 32, the rotor bar 12 is not deformed in a portion where the rotor bar 12 and the groove 33 formed in the deformation suppressing portion 32 are fitted.
  • the length of the deformed portion of the rotor bar 12 can be shortened, and the torsional natural frequency of the rotor conductor 30 can be increased. Thereby, it is possible to prevent the rotor conductor 30 of the rotor 3 from being in a resonance state, and to suppress an excessive stress from being generated in the rotor conductor 30.
  • the rotor bar 12 and the deformation suppressing portion 32 may be joined by silver brazing or welding in a state where the rotor bar 12 and the groove 33 are fitted.
  • the interval W3 between the deformation suppressing portion 32 and the end plate 15 is set to be equal to or less than half of the thickness W0 of the end plate 15 in the direction of the rotating shaft 7.
  • transformation suppression part 32 and the end plate 15 is made into below half the thickness W0 of the direction of the rotating shaft 7 of the end plate 15, and it discharges
  • the air volume is reduced and the increase in noise is suppressed.
  • the squirrel-cage induction motor for a vehicle it is possible to generate excessive stress on the rotor bar 12 by providing the rotor 3 with the deformation suppressing portion 32. It is possible to suppress.
  • the interval W3 between the deformation suppressing portion 32 and the end plate 15 By setting the interval W3 between the deformation suppressing portion 32 and the end plate 15 to be equal to or less than half of the thickness W0 of the end plate 15 in the direction of the rotation shaft 7, an increase in vibration due to the displacement of the rotor bar 12 and an increase in noise are suppressed. Is possible.
  • FIG. 12 is a partial cross-sectional view of a rotor according to Embodiment 4 of the present invention.
  • FIG. 12 is an enlarged view of a part of the sectional view of the rotor 4 according to the fourth embodiment, as in FIG. 3.
  • FIG. 13 is a view of the rotor according to the fourth embodiment as viewed from the outside in the radial direction.
  • the length that the end of the rotor bar 42 protrudes to the outside of the rotor core 11 is such that the end of the rotor bar 12 in the first embodiment is that of the rotor core 11. It is shorter than the length protruding outward.
  • the rotor conductor 40 included in the rotor 4 according to the fourth embodiment includes a short-circuit ring 41 instead of the short-circuit ring 13 included in the rotor conductor 10 included in the rotor 1 according to the first embodiment.
  • the pair of short-circuiting rings 41 are opposed to each other in a direction in which the main surface is parallel to the rotation shaft 7 with the plurality of rotor bars 42 interposed therebetween.
  • the short-circuit ring 41 is a conductor that electrically connects the plurality of rotor bars 42 by being joined to the end portions of the plurality of rotor bars 42.
  • the cross-sectional shape of the short-circuit ring 41 along the rotation axis 7 is a concave shape having a depression in the direction from the center of the rotation axis 7 toward the end.
  • the rotor bar 42 is joined to the recess of the short ring 41 by, for example, silver brazing or welding. At least a part of the inner peripheral surface of the short-circuit ring 41 faces the outer peripheral surfaces of the iron core pressing members 14 and 18.
  • the interval W4 between the short-circuit ring 41 and the rotor core 11 is a value within a range determined according to the gap required for the operation of joining the short-circuit ring 41 and the rotor bar 42.
  • the distance between the short-circuit ring 41 and the rotor core 11 may be a minimum distance necessary for the operation of joining the short-circuit ring 41 and the rotor bar 42.
  • FIG. 14 is a diagram showing an example of deformation of the rotor bar in the fourth embodiment.
  • the short-circuit ring 41 is twisted in the direction around the axis of the rotary shaft 7 with respect to the rotor core 11, a part of the rotor bar 42 is tangential to the outer peripheral surface of the rotor core 11 according to the twist of the short-circuit ring 41. Bend and deform.
  • a part of the rotor bar 42 having a length L3 from the end on the rotor core 11 side of the portion joined to the short-circuit ring 41 to the position inside the groove 17 is deformed.
  • the rotor bar 42 In the portion where the rotor bar 42 and the short-circuit ring 41 are joined, the rotor bar 42 is not deformed.
  • the amount of displacement in the tangential direction of the outer peripheral surface of the rotor core 11 at the end of the rotor bar 42 is ⁇ 3.
  • L3 is shorter than L1, and ⁇ 3 is smaller than ⁇ 1. That is, by setting the interval W4 between the short-circuit ring 41 and the rotor core 11 to a value within a range determined according to the gap required for the joining work between the short-circuit ring 41 and the rotor bar 42, the rotor bar 42 Bending deformation is suppressed.
  • the length of the deformed portion of the rotor bar 42 can be shortened and the torsional natural frequency of the rotor conductor 40 can be increased. Thereby, it is possible to prevent the rotor conductor 40 of the rotor 4 from entering a resonance state, and to suppress an excessive stress from being generated in the rotor conductor 40.
  • the distance W4 between the short-circuit ring 41 of the rotor 4 and the rotor core 11 is set to the short-circuit ring 41 and the rotor bar 42. It is possible to suppress the occurrence of excessive stress on the rotor bar 42 by setting the value within a range determined according to the gap required for the joining work.
  • FIG. 15 is a partial cross-sectional view of a rotor according to Embodiment 5 of the present invention.
  • FIG. 15 is an enlarged view of a part of the sectional view of the rotor 5 according to the fifth embodiment, as in FIG. 3.
  • FIG. 16 is a view of the rotor according to the fifth embodiment as viewed from the outside in the radial direction.
  • the rotor conductor 50 included in the rotor 5 according to the fifth embodiment includes a short-circuit ring 51 and a deformation suppressing unit 52 instead of the short-circuit ring 13 included in the rotor conductor 10 included in the rotor 1 according to the first embodiment. Prepare.
  • the pair of short-circuit rings 51 face each other in a direction in which the main surface is parallel to the rotation shaft 7 with the plurality of rotor bars 12 interposed therebetween.
  • the short-circuit ring 51 is a conductor that electrically connects the plurality of rotor bars 12 by being joined to the end portions of the plurality of rotor bars 12.
  • the shape of the cross section of the short-circuit ring 51 orthogonal to the rotation axis 7 is annular.
  • the rotor 5 further includes an iron core pressing member 53 whose cross-sectional shape orthogonal to the rotation axis is annular.
  • the rotor 5 further includes an iron core holding member (not shown) provided on the opposite side of the iron core holding member 53 with respect to the rotor iron core 11, and the iron core holding member and the iron core holding member 53 are interposed via the end plate 15.
  • the rotor core 11 is sandwiched in the direction of the rotating shaft 7.
  • the shape of the core pressing member 53 included in the rotor 5 according to the fifth embodiment is different from the shape of the core pressing member 14 included in the rotor 1 according to the first embodiment.
  • the rotor 5 may include iron core pressing members 14 and 18.
  • Each of the rotors 5 includes at least one set of deformation suppressing portions 52 that are provided between adjacent rotor bars 12 and face each other with the rotation shaft 7 interposed therebetween.
  • the deformation suppressing unit 52 may be provided between all adjacent rotor bars 12 or may be provided between some adjacent rotor bars 12.
  • the deformation suppressing portion 52 is joined to the short-circuit ring 51 and at least one of the adjacent rotor bars 12 by silver brazing or welding. In the example of FIG. 16, the deformation suppressing unit 52 is joined to the short-circuit ring 51 and each of the adjacent rotor bars 12.
  • FIG. 17 shows an example of deformation of the rotor bar in the fifth embodiment.
  • the short-circuit ring 51 is twisted in the direction around the axis of the rotary shaft 7 with respect to the rotor core 11, a part of the rotor bar 12 is tangential to the outer peripheral surface of the rotor core 11 according to the twist of the short-circuit ring 51. Bend and deform.
  • a portion of the rotor bar 12 having a length L4 from the end on the rotor core 11 side where the rotor bar 12 and the deformation suppressing portion 52 are joined to a position inside the groove 17 is provided. The part is deformed.
  • the rotor bar 12 is not deformed at the portion where the rotor bar 12 and the deformation suppressing portion 52 are joined.
  • the amount of displacement in the tangential direction of the outer peripheral surface of the rotor core 11 at the end of the rotor bar 12 is ⁇ 4.
  • L4 is shorter than L1, and ⁇ 4 is smaller than ⁇ 1.
  • the deformation suppression unit 52 is smaller than the deformation suppression unit 16 included in the rotor 1 according to the first embodiment. Therefore, even if the deformation suppression unit 52 is provided, it can be considered that the moment of inertia J does not change. If the number of the rotor bars 12 to which the deformation suppressing portions 52 are joined is Z1, and the length L4 of the deformed portion of the rotor bar 12 is, for example, 60% of the length L1, the rotor conductor 50 The torsional natural frequency f2 is expressed by the following equation (7).
  • the shape of the deformation suppressing unit 52 is not limited to the above example.
  • the shape of the deformation suppressing portion 52 viewed from the outside in the radial direction may be a V shape, a U shape, an L shape, or the like.
  • FIG. 18 is a view of the rotor according to the fifth embodiment as viewed from the outside in the radial direction.
  • the shape of the deformation suppressing portion 52 viewed from the outside in the radial direction is a triangle, and the deformation suppressing portion 52 is joined to the short-circuit ring 51 and one of the adjacent rotor bars 12.
  • the deformation suppressing unit 52 may be provided between all the adjacent rotor bars 12 or may be provided between some of the adjacent rotor bars 12.
  • the interval W5 between the deformation suppressing portion 52 and the end plate 15 may be equal to or less than half the thickness W0 of the end plate 15 in the direction of the rotation shaft 7. Displacement of the rotor bar 12 in the direction of the rotary shaft 7 with respect to the rotor core 11 by setting the interval W5 between the deformation suppressing portion 52 and the end plate 15 to be equal to or less than half the thickness W0 of the end plate 15 in the direction of the rotary shaft 7. Can be suppressed to half or less of the thickness of the end plate 15 in the direction of the rotation shaft 7, and an increase in vibration due to the displacement of the rotor bar 12 can be suppressed.
  • FIG. 19 is a view of the rotor according to the fifth embodiment viewed from the outside in the radial direction.
  • the deformation suppressing portion 52 has a protruding portion 54 that protrudes from the surface facing the rotor core 11 toward the rotor core 11.
  • the interval W6 between the protruding part 54 and the end plate 15 is less than half the thickness W0 of the end plate 15 in the direction of the rotating shaft 7.
  • the displacement of the rotor bar 12 in the direction of the rotating shaft 7 with respect to the rotor core 11 can be suppressed to be equal to or less than the distance between the protrusion 54 and the end plate 15, and the increase in vibration due to the displacement of the rotor bar 12 can be suppressed. It is possible to suppress.
  • the squirrel-cage induction motor for a vehicle according to Embodiment 5 of the present invention by providing the deformation suppression portion 52 in the rotor 5, excessive stress is generated in the rotor bar 12. It is possible to suppress.
  • the interval W5 between the deformation suppressing portion 52 and the end plate 15 By setting the interval W5 between the deformation suppressing portion 52 and the end plate 15 to be equal to or less than half the thickness W0 of the end plate 15 in the direction of the rotation shaft 7, it is possible to suppress an increase in vibration due to the displacement of the rotor bar 12. It is.
  • the protrusion 54 is provided in the deformation suppressing portion 52, and the interval W6 between the protrusion 54 and the end plate 15 is set to be equal to or less than half of the thickness W0 of the end plate 15 in the direction of the rotation shaft 7, so that the rotor bar 12 It is possible to suppress an increase in vibration due to the displacement.
  • the embodiment of the present invention is not limited to the above-described embodiment. You may provide the protrusion part 54 in the deformation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Induction Machinery (AREA)

Abstract

回転子(1)は、回転子バー(12)が収容される溝が外周側に形成される回転子鉄心(11)、回転子バー(12)の端部と接合されて回転子バー(12)を電気的に接続する短絡環(13)、回転軸(7)の方向に回転子鉄心(11)を挟んで設けられる鉄心押さえ部材(14,18)、および短絡環(13)と回転子鉄心(11)との間に設けられる変形抑制部(16)を備える。変形抑制部(16)は、短絡環(13)と、少なくとも1つの回転子バー(12)の少なくとも一部とに固着することで、少なくとも1つの回転子バー(12)の少なくとも一部の回転子鉄心(11)の外周面の接線方向への曲げ変形を抑制する。

Description

車両用かご形誘導電動機
 この発明は、鉄道車両に用いられる車両用かご形誘導電動機に関する。
 電気鉄道車両を駆動する主電動機には、かご形誘導電動機が用いられる。かご形誘導電動機が有するかご形の回転子導体は、回転子鉄心の外周側に回転軸に平行に形成された溝に棒状の回転子バーを挿入し、回転子バーの両端に環状の導体である短絡環を接合させることで形成される。固定子鉄心に形成された溝に設けられる固定子コイルに交流電流が流れることで回転磁界が発生する。かご形の回転子導体が、回転磁界と鎖交することにより、誘導起電圧が発生する。誘導起電圧により、閉回路を形成するかご形の回転子導体に誘導電流が流れ、回転子鉄心に磁極が発生する。回転子鉄心の磁極と回転磁界の磁極との相互作用により、回転子鉄心の外周面の接線方向の力が回転子鉄心に発生し、回転軸の出力トルクとなる。
 回転子バーと短絡環とは、銀ろう付けまたは溶接によって接合される。銀ろう付けまたは溶接が不十分であるために、回転子バーと短絡環との電気的接触が不十分である場合、回転子バーが電磁振動または回転振動によって振動し、回転子バーが折損することがある。そこで、特許文献1に開示されるかご形誘導電動機においては、回転子バーと短絡環の回転子鉄心側端面との下部接触部に短絡環側に肉部が形成され、肉部と回転子バーとが銀ろう付または溶接により接続される。短絡環に肉部が形成されることにより、回転子バーとの銀ろう付けまたは溶接のすみ肉部が、両側および肉部の下面にもできる。これにより、銀ろう付けまたは溶接の信頼性が増し、また回転子バーの最大応力点における応力集中が緩和されて回転子バーの折損事故が防止される。
特開平4-91649号公報
 主電動機として用いられる誘導電動機に印加される交流電圧は、インバータによって直流から交流に変換された矩形波状の電圧であるため、固定子コイルに流れる交流電流には高調波が含まれる。そのため、固定子で発生する回転磁界、かご形の回転子導体に流れる誘導電流、および回転子軸の出力トルクにも高調波が含まれる。出力トルクには、トルクリップルと呼ばれる、高調波周波数での変動が生じる。
 回転子鉄心の回転数には、トルクリップルと同じ周波数での微小変動が生じる。回転子バーに接合される短絡環には、トルクリップルと同じ周波数で、回転子鉄心に対して、相対的なねじり振動が生じる。ねじり振動は微小振動であり、短絡環と接合されている回転子バーに発生する応力は、十分に小さい。しかしながら、トルクリップルの周波数が回転子導体のねじり固有振動数と一致すると、共振状態となるため、回転子導体に過大な応力が発生する。
 トルクリップル周波数が回転子導体のねじり固有振動数と一致するのを防ぐため、回転子導体のねじり固有振動数は十分に高い値に設定される。しかしながら、経年劣化のため、ねじり固有振動数が低下すると、トルクリップル周波数が回転子導体のねじり固有振動数と一致するために、回転子導体に過大な応力が発生することがある。また鉄道車両を駆動する主電動機として用いられるかご形誘導電動機においては、固定子コイルに流れる交流電流の基本周波数(インバータ周波数)が変動するため、トルクリップル周波数も変動する。そのため、トルクリップル周波数が変動しても、回転子導体のねじり固有振動数と一致しないように、回転子導体のねじり固有振動数を設定する必要がある。
 本発明は上述の事情に鑑みてなされたものであり、鉄道車両を駆動するかご形誘導電動機において、回転子バーに過大な応力が発生することを抑制することが目的である。
 上記目的を達成するために、本発明の車両用かご形誘導電動機は、回転可能に支持される回転軸、回転軸と嵌合し、回転軸と一体に回転する回転子、および回転子の外周面と間隔をあけて対向する固定子を備える。回転子は、回転子鉄心、複数の回転子バー、一対の短絡環、一対の鉄心押さえ部材、および変形抑制部を有する。回転子鉄心は、回転軸と嵌合し、中心軸が回転軸と一致する円筒の形状であり、回転軸と平行に延びる複数の溝が円筒の外周側に形成される。複数の回転子バーのそれぞれは、回転子鉄心の外周側に形成される溝に収容され、回転軸と平行な方向の端部の両方が回転子鉄心より外側に突出する導体である。一対の短絡環は、複数の回転子バーを挟んで主面が回転軸と平行な方向に対向し、それぞれが、複数の回転子バーの端部と接合されることで複数の回転子バーを電気的に接続する導体であって、回転軸と直交する断面の形状が環状である。一対の鉄心押さえ部材は、回転軸の方向に回転子鉄心を挟んで設けられ、回転子鉄心の回転軸の方向への移動および変形を抑制する。鉄心押さえ部材の回転軸と直交する断面の形状は環状である。変形抑制部は、短絡環のそれぞれと、回転子鉄心との間であって、少なくとも一部が鉄心押さえ部材の外周面と対向する位置に設けられる。短絡環と、少なくとも1つの回転子バーの少なくとも一部とに固着され、固着された少なくとも1つの回転子バーの少なくとも一部の回転子鉄心の外周面の接線方向への曲げ変形を抑制する。
 本発明によれば、回転子バーの少なくとも一部の回転子鉄心の外周面の接線方向への曲げ変形を抑制することで、車両用かご形誘導電動機において、回転子バーに過大な応力が発生することを抑制することが可能である。
本発明の実施の形態1に係る回転子の断面図 実施の形態1に係る回転子の断面図 実施の形態1に係る回転子の部分断面図 実施の形態1に係る回転子を径方向の外側から見た図 回転子バーの変形の例を示す図 実施の形態1における回転子バーの変形の例を示す図 本発明の実施の形態2に係る回転子の部分断面図 実施の形態2に係る回転子を径方向の外側から見た図 本発明の実施の形態3に係る回転子の部分断面図 実施の形態3に係る回転子を径方向の外側から見た図 実施の形態3に係る変形抑制部を示す図 本発明の実施の形態4に係る回転子の部分断面図 実施の形態4に係る回転子を径方向の外側から見た図 実施の形態4における回転子バーの変形の例を示す図 本発明の実施の形態5に係る回転子の部分断面図 実施の形態5に係る回転子を径方向の外側から見た図 実施の形態5における回転子バーの変形の例を示す図 実施の形態5に係る回転子を径方向の外側から見た図 実施の形態5に係る回転子を径方向の外側から見た図
 以下、本発明の実施の形態について図面を参照して詳細に説明する。なお図中、同一または同等の部分には同一の符号を付す。
 (実施の形態1)
 図1は、本発明の実施の形態1に係る回転子の断面図である。車両用かご形誘導電動機は、回転子1、回転軸7、および、軸受を介して回転軸7を回転可能に支持するハウジングに固定され、回転子1の外周面と間隔をあけて対向する固定子を備える。図1は、回転軸7に平行な面での断面図である。図1には、回転子1および回転軸7のみ図示した。図2は、実施の形態1に係る回転子の断面図である。図2は、図1におけるA-A線での断面図である。図3は、実施の形態1に係る回転子の部分断面図である。図3は、図1の破線で示すB部分の拡大図である。図4は、実施の形態1に係る回転子を径方向の外側から見た図である。
 回転子1は、回転軸7と嵌合する。回転子1は、回転軸7と嵌合し、中心軸が回転軸7と一致する円筒の形状である回転子鉄心11、および回転子鉄心11が保持する回転子導体10を備える。回転子鉄心11の円筒の外周側には、回転軸7と平行に延びる複数の溝17が形成される。回転子導体10は、回転子バー12および短絡環13を有する。溝17には、導体である複数の回転子バー12のそれぞれが収容される。回転子バー12の回転軸7と平行な方向の端部の両方は、回転子鉄心11より外側に突出する。回転子1は、それぞれ、複数の回転子バー12を挟んで主面が回転軸7の方向に対向する一対の短絡環13をさらに備える。短絡環13は、複数の回転子バー12の端部と接合されることで複数の回転子バー12を電気的に接続する導体である。短絡環13の回転軸7と直交する断面の形状は環状である。回転子1は、回転軸7の方向に、回転子鉄心11を挟んで設けられる、回転軸7と直交する断面の形状が環状である一対の鉄心押さえ部材14,18をさらに備える。鉄心押さえ部材14,18によって、薄板の積層体である回転子鉄心11の回転軸7の方向のずれおよび移動が抑制される。
 実施の形態1においては、一対の鉄心押さえ部材14,18は、端板15を介して、回転子鉄心11を挟んで設けられる。端板15は、薄板の積層体である回転子鉄心11の開き、すなわち回転軸7に平行な方向のずれを抑制する。端板15は、回転軸7と直交する断面が環状であり、外周側に溝17に応じた形状の溝が形成される。回転子1は、短絡環13のそれぞれと、回転子鉄心11との間であって、少なくとも一部が鉄心押さえ部材14,18の外周面と対向する位置に設けられる変形抑制部16をさらに備える。変形抑制部16は、短絡環13と、少なくとも1つの回転子バー12の少なくとも一部とに固着され、固着された少なくとも1つの回転子バー12の少なくとも一部の回転子鉄心11の外周面の接線方向への曲げ変形を抑制する。
 実施の形態1においては、変形抑制部16の回転軸7と直交する断面の形状は環状である。また短絡環13と変形抑制部16とは一体成形される。すなわち、短絡環13と変形抑制部16の一体成形品の回転軸7を通る断面の形状は略L字型である。変形抑制部16の外周面は、複数の回転子バー12のそれぞれにおいて、端部を含む回転子バー12の少なくとも一部と固着される。変形抑制部16の内周面の少なくとも一部は、鉄心押さえ部材14,18の外周面と対向する。短絡環13と変形抑制部16とは一体成形されているため、変形抑制部16の短絡環13に対向する面は短絡環13と一体化されている。図3の例では、点線で囲まれた範囲で示すように、回転子バー12は、短絡環13と、銀ろう付けまたは溶接により接合される。また回転子バー12の回転軸7と対向する面の一部と変形抑制部16とが接合される。図4において、短絡環13および変形抑制部16を、ドットの塗りつぶしによって示した。変形抑制部16が短絡環13と回転子バー12の端部を含む回転子バー12の少なくとも一部と固着することで、回転子バー12の少なくとも一部の回転子鉄心11の外周面の接線方向への曲げ変形が抑制される。
 図5は、回転子バーの変形の例を示す図である。図5に示す回転子6は、図4に示す回転子1と同様に、図示しない回転軸と嵌合し、中心軸が回転軸と一致する円筒の形状である回転子鉄心61、および回転子鉄心61が保持する回転子導体60を備える。回転子6は、回転軸と嵌合し、回転軸と一体に回転する。回転子鉄心61の円筒の外周側には、回転軸と平行に伸びる複数の溝66が形成される。回転子導体60は、回転子バー62および短絡環63を有する。溝66には、導体である複数の回転子バー62のそれぞれが収容される。回転子バー62の回転軸と平行な方向の端部の両方は、回転子鉄心61より外側に突出する。回転子6は、それぞれ、複数の回転子バー62を挟んで主面が回転軸と平行な方向に対向する一対の短絡環63をさらに備える。短絡環63の回転軸と直交する断面の形状は環状である。回転子6は、回転軸と直交する断面の形状が環状である鉄心押さえ部材64をさらに備える。回転子6は、回転子鉄心61に対して鉄心押さえ部材64の反対側に設けられる、図示しない鉄心押さえ部材をさらに備え、該鉄心押さえ部材と鉄心押さえ部材64とは、端板65を介して、回転軸の方向に回転子鉄心61を挟んで設けられる。
 回転子6は、回転子1が備える変形抑制部16のように、短絡環63と回転子バー62の少なくとも一部とに固着される部材を有さない。短絡環63が回転子鉄心61に対して回転軸の軸回りの方向にねじれると、短絡環63のねじれに応じて回転子バー62の一部が回転子鉄心61の外周面の接線方向に曲げ変形する。図5の例では、回転子バー62と短絡環63とが接合される位置から、回転子バー62が収容される回転子鉄心61の外周側に形成された溝66の内部の位置までの長さL1の回転子バー62の一部が変形する。回転子バー62は溝66に収容されているため、回転子バー62の曲げ変形は、長さL1の回転子バー62の変形部分の両端の傾きが0である固定支持状態で生じる。回転子バー62の曲げ変形における、回転子バー62の端部の回転子鉄心11の外周面の接線方向における変位量はδ1である。長さL1の回転子バー62の変形部分の一端である溝66の内部の位置は、回転子鉄心61の薄板のばらつき、溝66と回転子バー62との間の隙間の大きさ等に応じて決まる。
 回転子バー62の変形についての断面二次モーメントをIとし、縦弾性係数をEとすると、1本の回転子バー62の端部を回転子鉄心11の外周面の接線方向にδ1だけ変位させる、回転子鉄心11の外周面の接線方向における力Fは、下記(1)式で表される。
Figure JPOXMLDOC01-appb-M000001
 回転子バー62の本数をZとし、回転子バー62と回転軸との中心間距離をRとすると、回転子バー62のそれぞれの端部を、回転子鉄心11の外周面の接線方向にδ1だけ変位させるために必要な、短絡環63をねじるトルクTは、下記(2)式で表される。
Figure JPOXMLDOC01-appb-M000002
 回転子バー62の端部が回転子鉄心11の外周面の接線方向にδ1だけ変位する際の、短絡環63のねじれ角度φは、下記(3)式で表される。
Figure JPOXMLDOC01-appb-M000003
 回転子バー62の端部が回転子鉄心11の外周面の接線方向にδ1だけ変位する際の、回転子鉄心61に対する短絡環63のねじり剛性Kは、下記(4)式で表される。
Figure JPOXMLDOC01-appb-M000004
 短絡環63の回転軸の軸回り方向の回転における慣性モーメントをJとすると、短絡環63が回転子鉄心61に対してねじり振動する際の回転子導体60のねじり固有振動数f0は、下記(5)式で表される。
Figure JPOXMLDOC01-appb-M000005
 回転子バー62の材質、寸法および本数、ならびに回転子鉄心61の外径が同じであるとみなせる場合、回転子導体60のねじり固有振動数を増大させるためには、上記(5)式における慣性モーメントJおよび回転子バー62の変形部分の長さL1を低減させる必要がある。短絡環63の回転軸に平行な断面の断面積を低減することで、慣性モーメントJを低減することができる。しかしながら、短絡環63の断面積を低減すると、電流密度が増大し、その結果、短絡環63の温度が上昇してしまう。
 そのため、本実施の形態1では、回転子バー12の変形部分の長さを短くすることで、回転子導体10のねじり固有振動数を増大させる。図6は、実施の形態1における回転子バーの変形の例を示す図である。図5の例と同様に、短絡環13が回転子鉄心11に対して回転軸7の軸回りの方向にねじれると、短絡環13のねじれに応じて回転子バー12の一部が曲げ変形する。図6の例では、回転子バー12と変形抑制部16とが接合される部分の回転子鉄心11の側の端部から溝17の内部の位置までの長さL2の回転子バー12の一部が変形する。変形抑制部16を設けることで、回転子バー12と変形抑制部16とが接合される部分において、回転子バー12は変形しない。図6の例では、回転子バー12の端部の回転子鉄心11の外周面の接線方向の変位量はδ2である。L2はL1より短く、δ2はδ1より小さい。すなわち、変形抑制部16を設けることで、回転子バー12の一部の曲げ変形が抑制される。一方、短絡環13の一部を回転子鉄心11の方向に突出させて変形抑制部16を形成することで、慣性モーメントJは増大する。図6の例の場合の慣性モーメントJが図5の例の場合の慣性モーメントJの、例えば、1.2倍であり、回転子バー12の変形部分の長さL2を、例えばL1の60%の長さであるとすると、回転子導体10のねじり固有振動数f1は、下記(6)式で表される。
Figure JPOXMLDOC01-appb-M000006
 上述の例では、実施の形態1に係る回転子1の回転子導体10のねじり固有振動数f1は、変形抑制部16を有さない回転子6の回転子導体60のねじり固有振動数f0の2倍であるとみなせる。変形抑制部16を設けることで、回転子バー12の変形部分の長さを短くし、回転子導体10のねじり固有振動数を増大させることが可能である。これにより、回転子1の回転子導体10が共振状態となるのを防ぎ、回転子導体10に過大な応力が生じることを抑制することが可能である。
 回転子バー62は、回転子鉄心61の外周側に形成された溝66に挿入され、スエッジとよばれるかしめ作業によって固定される。回転子バー62から溝66の対向する二面のそれぞれへの突っ張り力が生じることで、回転子6を有する車両用かご形誘導電動機の使用中に、回転子バー62が溝66の中で回転軸の方向に移動することが抑制される。車両用かご形誘導電動機の使用時の回転子バー62の温度変化による伸縮によって、該突っ張り力が低下することがある。突っ張り力が低下すると、両端に短絡環63が接合されている回転子バー62が回転軸の方向に回転子鉄心61に対して変位する。回転子バー62の変位により、回転子6全体のバランスに偏りが生じ、振動が増大する。そこで、実施の形態1に係る回転子1においては、図3に示すように、変形抑制部16と端板15との間隔W1を、端板15の回転軸7の方向の厚みW0の半分以下とする。これにより、回転子バー12の回転子鉄心11に対する回転軸7の方向の変位を、端板15の回転軸7の方向の厚みの半分以下に抑えることができ、回転子バー12の変位による振動の増大を抑制することが可能である。
 回転子バー12は、回転子鉄心11の周方向に間隔をあけて位置する。回転子1の回転によって、回転子バー12の内周側の空気が、外周側に排出される。すなわち、回転子1は、ファンとしての機能を有する。回転子1の外周面と対向する固定子は、固定子鉄心、および回転軸7と平行な方向に固定子鉄心の外側に突出する固定子コイルを備える。回転子バー12の内周側から外周側に排出された空気が固定子コイルに衝突すると、騒音が発生する。この騒音の周波数は、回転子1の回転周波数に回転子バー12の本数を乗じた値である。回転子1の回転数に応じて、騒音の周波数は変化する。車両用かご形誘導電動機のハウジング内部の空間の共鳴周波数と騒音の周波数とが一致すると、騒音はピュアトーンとなり、騒音は大幅に増大する。上述のように、変形抑制部16と端板15との間隔W1を、端板15の回転軸7の方向の厚みW0の半分以下とすることで、回転子バー12の内周側から外周側へ排出される空気の風量が低減され、騒音の増大が抑制される。
 以上説明したとおり、本発明の実施の形態1に係る車両用かご形誘導電動機によれば、回転子1に変形抑制部16を設けることで、回転子バー12に過大な応力が発生することを抑制することが可能である。また変形抑制部16と端板15との間隔W1を、端板15の回転軸7の方向の厚みW0の半分以下とすることで、回転子バー12の変位による振動の増大および騒音の増大を抑制することが可能である。
 (実施の形態2)
 図7は、本発明の実施の形態2に係る回転子の部分断面図である。図7は、図3と同様に、実施の形態2に係る回転子2の断面図の一部を拡大した図である。図8は、実施の形態2に係る回転子を径方向の外側から見た図である。実施の形態2に係る回転子2が備える回転子導体20は、実施の形態1に係る回転子1が備える回転子導体10が有する短絡環13に代えて、短絡環21および変形抑制部22を有する。短絡環21と変形抑制部22はそれぞれ独立した部材である。実施の形態1と同様に、一対の短絡環21は、複数の回転子バー12を挟んで主面が回転軸7と平行な方向に対向する。短絡環21は、複数の回転子バー12の端部と接合されることで複数の回転子バー12を電気的に接続する導体である。短絡環21の回転軸7と直交する断面の形状は環状である。
 変形抑制部22の回転軸7と直交する断面の形状は環状である。変形抑制部22の外周面は、複数の回転子バー12のそれぞれにおいて、端部を含む回転子バー12の少なくとも一部と固着される。変形抑制部22の内周面の少なくとも一部は、鉄心押さえ部材14,18の外周面と対向する。変形抑制部22の短絡環21に対向する面は、短絡環21と銀ろう付けまたは溶接によって接合される。図7の例では、回転子バー12は、短絡環21と、銀ろう付けまたは溶接により接合される。変形抑制部22の外周面は、回転子バー12の端部から連続する回転子バー12の回転軸7と対向する面の一部と接合される。短絡環21および変形抑制部22に分割することで、製造コストを低減することが可能である。
 実施の形態2に係る回転子2における、回転子バー12の曲げ変形は図6と同様である。図6の例と同様に、短絡環21が回転子鉄心11に対して回転軸7の軸回りの方向にねじれると、短絡環21のねじれに応じて回転子バー12の一部が回転子鉄心11の外周面の接線方向に曲げ変形する。変形抑制部22を設けることで、回転子バー12と変形抑制部22とが接合される部分において、回転子バー12は変形しない。変形抑制部22を設けることで、回転子バー12の変形部分の長さを短くし、回転子導体20のねじり固有振動数を増大させることが可能である。これにより、回転子2の回転子導体20が共振状態となるのを防ぎ、回転子導体20に過大な応力が生じることを抑制することが可能である。
 実施の形態1と同様に、変形抑制部22と端板15との間隔W2を、端板15の回転軸7の方向の厚みW0の半分以下とする。これにより、回転子バー12の回転子鉄心11に対する回転軸7の方向の変位を、端板15の回転軸7の方向の厚みの半分以下に抑えることができ、回転子バー12の変位による振動の増大を抑制することが可能である。また変形抑制部22と端板15との間隔W2を、端板15の回転軸7の方向の厚みW0の半分以下とすることで、回転子バー12の内周側から外周側へ排出される空気の風量が低減され、騒音の増大が抑制される。
 以上説明したとおり、本発明の実施の形態2に係る車両用かご形誘導電動機によれば、回転子2に変形抑制部22を設けることで、回転子バー12に過大な応力が発生することを抑制することが可能である。また短絡環21および変形抑制部22に分割することで、製造コストを低減することが可能である。変形抑制部22と端板15との間隔W2を、端板15の回転軸7の方向の厚みW0の半分以下とすることで、回転子バー12の変位による振動の増大および騒音の増大を抑制することが可能である。
 (実施の形態3)
 図9は、本発明の実施の形態3に係る回転子の部分断面図である。図9は、図3と同様に、実施の形態3に係る回転子3の断面図の一部を拡大した図である。実施の形態3に係る回転子3が備える回転子導体30は、実施の形態1に係る回転子1が備える回転子導体10が有する短絡環13に代えて、短絡環31および変形抑制部32を有する。短絡環31の形状は、実施の形態2に係る回転子2が備える回転子導体20が有する短絡環21と同様である。図10は、実施の形態3に係る回転子を径方向の外側から見た図である。図11は、実施の形態3に係る変形抑制部を示す図である。
 変形抑制部32の回転軸7と直交する断面の形状は環状である。変形抑制部32の外周面には、回転子バー12と同数の溝33が形成される。溝33は、回転子バー12の端部を含む回転子バー12の少なくとも一部と嵌合する。溝33と回転子バー12の少なくとも一部とが嵌合することで、変形抑制部32が回転子バー12の少なくとも一部に固着される。変形抑制部32の内周面の少なくとも一部は、鉄心押さえ部材14,18の外周面と対向する。変形抑制部32の短絡環31に対向する面は、短絡環31と銀ろう付けまたは溶接によって接合される。
 実施の形態3に係る回転子3における、回転子バー12の回転子鉄心11の外周面の接線方向への曲げ変形は、図6と同様である。図6の例と同様に、短絡環31が回転子鉄心11に対して回転軸7の軸回りの方向にねじれると、短絡環31のねじれに応じて回転子バー12の一部が曲げ変形する。変形抑制部32を設けることで、回転子バー12と変形抑制部32に形成される溝33とが嵌合する部分において、回転子バー12は変形しない。変形抑制部32を設けることで、回転子バー12の変形部分の長さを短くし、回転子導体30のねじり固有振動数を増大させることが可能である。これにより、回転子3の回転子導体30が共振状態となるのを防ぎ、回転子導体30に過大な応力が生じることを抑制することが可能である。回転子バー12と変形抑制部32とは、回転子バー12と溝33が嵌合した状態で、銀ろう付けまたは溶接によって接合されてもよい。
 実施の形態1と同様に、変形抑制部32と端板15との間隔W3を、端板15の回転軸7の方向の厚みW0の半分以下とする。これにより、回転子バー12の回転子鉄心11に対する回転軸7の方向の変位を、端板15の回転軸7の方向の厚みの半分以下に抑えることができ、回転子バー12の変位による振動の増大を抑制することが可能である。また変形抑制部32と端板15との間隔W3を、端板15の回転軸7の方向の厚みW0の半分以下とすることで、回転子バー12の内周側から外周側へ排出される空気の風量が低減され、騒音の増大が抑制される。
 以上説明したとおり、本発明の実施の形態3に係る車両用かご形誘導電動機によれば、回転子3に変形抑制部32を設けることで、回転子バー12に過大な応力が発生することを抑制することが可能である。変形抑制部32と端板15との間隔W3を、端板15の回転軸7の方向の厚みW0の半分以下とすることで、回転子バー12の変位による振動の増大および騒音の増大を抑制することが可能である。
 (実施の形態4)
 図12は、本発明の実施の形態4に係る回転子の部分断面図である。図12は、図3と同様に、実施の形態4に係る回転子4の断面図の一部を拡大した図である。図13は、実施の形態4に係る回転子を径方向の外側から見た図である。実施の形態4に係る回転子4において、回転子バー42の端部が回転子鉄心11の外側に突出する長さは、実施の形態1における回転子バー12の端部が回転子鉄心11の外側に突出する長さよりも短い。実施の形態4に係る回転子4が備える回転子導体40は、実施の形態1に係る回転子1が備える回転子導体10が有する短絡環13に代えて、短絡環41を有する。一対の短絡環41は、複数の回転子バー42を挟んで主面が回転軸7と平行な方向に対向する。短絡環41は、複数の回転子バー42の端部と接合されることで、複数の回転子バー42を電気的に接続する導体である。短絡環41の回転軸7に沿った断面の形状は、回転軸7の中心から端部に向かう方向の窪みを有する凹状である。短絡環41の窪みに、例えば、銀ろう付けまたは溶接によって、回転子バー42が接合される。短絡環41の少なくとも一部の内周面は、鉄心押さえ部材14,18の外周面と対向する。短絡環41と回転子鉄心11との間隔W4は、短絡環41と回転子バー42との上記接合の作業に要する空隙に応じて定められた範囲内の値である。例えば、短絡環41と回転子鉄心11との間は、短絡環41と回転子バー42との接合の作業に必要な最低限の距離としてもよい。
 図14は、実施の形態4における回転子バーの変形の例を示す図である。短絡環41が回転子鉄心11に対して回転軸7の軸回りの方向にねじれると、短絡環41のねじれに応じて回転子バー42の一部が回転子鉄心11の外周面の接線方向に曲げ変形する。図14の例では、短絡環41と接合される部分の回転子鉄心11の側の端部から溝17の内部の位置までの長さL3の回転子バー42の一部が変形する。回転子バー42と短絡環41とが接合される部分において、回転子バー42は変形しない。図14の例では、回転子バー42の端部の回転子鉄心11の外周面の接線方向の変位量はδ3である。L3はL1より短く、δ3はδ1より小さい。すなわち、短絡環41と回転子鉄心11との間隔W4を、短絡環41と回転子バー42との接合作業に要する空隙に応じて定められた範囲内の値とすることで、回転子バー42の曲げ変形が抑制される。上記定められた範囲を可能な限り小さい値とすることで、回転子バー42の変形部分の長さを短くし、回転子導体40のねじり固有振動数を増大させることが可能である。これにより、回転子4の回転子導体40が共振状態となるのを防ぎ、回転子導体40に過大な応力が生じることを抑制することが可能である。
 以上説明したとおり、本発明の実施の形態4に係る車両用かご形誘導電動機によれば、回転子4の短絡環41と回転子鉄心11との間隔W4を、短絡環41と回転子バー42との接合作業に要する空隙に応じて定められた範囲内の値とすることで、回転子バー42に過大な応力が発生することを抑制することが可能である。
 (実施の形態5)
 図15は、本発明の実施の形態5に係る回転子の部分断面図である。図15は、図3と同様に、実施の形態5に係る回転子5の断面図の一部を拡大した図である。図16は、実施の形態5に係る回転子を径方向の外側から見た図である。実施の形態5に係る回転子5が備える回転子導体50は、実施の形態1に係る回転子1が備える回転子導体10が有する短絡環13に代えて、短絡環51および変形抑制部52を備える。実施の形態1と同様に、一対の短絡環51は、複数の回転子バー12を挟んで主面が回転軸7と平行な方向に対向する。短絡環51は、複数の回転子バー12の端部と接合されることで複数の回転子バー12を電気的に接続する導体である。短絡環51の回転軸7と直交する断面の形状は環状である。回転子5は、回転軸と直交する断面の形状が環状である鉄心押さえ部材53をさらに備える。回転子5は、回転子鉄心11に対して鉄心押さえ部材53の反対側に設けられる、図示しない鉄心押さえ部材をさらに備え、該鉄心押さえ部材と鉄心押さえ部材53とは、端板15を介して、回転軸7の方向に回転子鉄心11を挟んで設けられる。図15の例では、実施の形態5に係る回転子5が備える鉄心押さえ部材53の形状は、実施の形態1に係る回転子1が備える鉄心押さえ部材14の形状と異なる。なお回転子5は、鉄心押さえ部材14,18を備えてもよい。
 実施の形態5に係る回転子5は、それぞれが、隣接する回転子バー12の間に設けられ、回転軸7を挟んで対向する少なくとも1組の変形抑制部52を備える。変形抑制部52は、全ての隣接する回転子バー12の間に設けられてもよいし、一部の隣接する回転子バー12の間に設けられてもよい。変形抑制部52は、短絡環51と、隣接する回転子バー12の少なくとも一方とに銀ろう付けまたは溶接によって接合される。図16の例では、変形抑制部52は、短絡環51と、隣接する回転子バー12のそれぞれとに接合される。
 図17は、実施の形態5における回転子バーの変形の例を示す図である。短絡環51が回転子鉄心11に対して回転軸7の軸回りの方向にねじれると、短絡環51のねじれに応じて回転子バー12の一部が回転子鉄心11の外周面の接線方向に曲げ変形する。図17の例では、回転子バー12と変形抑制部52とが接合される部分の回転子鉄心11の側の端部から溝17の内部の位置までの長さL4の回転子バー12の一部が変形する。変形抑制部52を設けることで、回転子バー12と変形抑制部52とが接合される部分において、回転子バー12は変形しない。図17の例では、回転子バー12の端部の回転子鉄心11の外周面の接線方向の変位量はδ4である。L4はL1より短く、δ4はδ1より小さい。
 変形抑制部52は、実施の形態1に係る回転子1が有する変形抑制部16と比べて小さい。そのため、変形抑制部52を設けても、慣性モーメントJは変化しないとみなすことができる。変形抑制部52が接合される回転子バー12の本数がZ1であり、回転子バー12の変形部分の長さL4が、例えばL1の60%の長さであるとすると、回転子導体50のねじり固有振動数f2は、下記(7)式で表される。
Figure JPOXMLDOC01-appb-M000007
 全ての回転子バー12に変形抑制部52が接合された場合、Z1=Zであり、f2は、上記(5)式で表される回転子導体60のねじり固有振動数f0の2.15倍である。少なくとも一部の回転子バー12に変形抑制部52を接合することで、少なくとも一部の回転子バー12の一部の曲げ変形が抑制される。変形抑制部52を設けることで、回転子バー12の変形部分の長さを短くし、回転子導体50のねじり固有振動数を増大させることが可能である。これにより、回転子5の回転子導体50が共振状態となるのを防ぎ、回転子導体50に過大な応力が生じることを抑制することが可能である。
 変形抑制部52の形状は上述の例に限られない。変形抑制部52の径方向の外側から見た形状はV字型、U字型、L字型等でもよい。図18は、実施の形態5に係る回転子を径方向の外側から見た図である。図18の例では、変形抑制部52の径方向の外側から見た形状は三角形であり、変形抑制部52は、短絡環51と、隣接する回転子バー12の一方とに接合される。上述の例と同様に、変形抑制部52は、全ての隣接する回転子バー12の間に設けられてもよいし、一部の隣接する回転子バー12の間に設けられてもよい。
 実施の形態1と同様に、変形抑制部52と端板15との間隔W5を、端板15の回転軸7の方向の厚みW0の半分以下としてもよい。変形抑制部52と端板15との間隔W5を端板15の回転軸7の方向の厚みW0の半分以下とすることで、回転子バー12の回転子鉄心11に対する回転軸7の方向の変位を、端板15の回転軸7の方向の厚みの半分以下に抑えることができ、回転子バー12の変位による振動の増大を抑制することが可能である。
 図19は、実施の形態5に係る回転子を径方向の外側から見た図である。図19の例では、変形抑制部52は、回転子鉄心11に対向する面から回転子鉄心11に向かって突出する突出部54を有する。図19の例のように、変形抑制部52が突出部54を有する場合は、突出部54と端板15との間隔W6を、端板15の回転軸7の方向の厚みW0の半分以下とする。これにより、回転子バー12の回転子鉄心11に対する回転軸7の方向の変位を、突出部54と端板15との間隔以下に抑えることができ、回転子バー12の変位による振動の増大を抑制することが可能である。
 以上説明したとおり、本発明の実施の形態5に係る車両用かご形誘導電動機によれば、回転子5に変形抑制部52を設けることで、回転子バー12に過大な応力が発生することを抑制することが可能である。変形抑制部52と端板15との間隔W5を、端板15の回転軸7の方向の厚みW0の半分以下とすることで、回転子バー12の変位による振動の増大を抑制することが可能である。また変形抑制部52に突出部54を設け、突出部54と端板15との間隔W6を、端板15の回転軸7の方向の厚みW0の半分以下とすることで、回転子バー12の変位による振動の増大を抑制することが可能である。
 本発明の実施の形態は上述の実施の形態に限られない。変形抑制部16,22,32に突出部54を設けてもよい。
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。
 1,2,3,4,5,6 回転子、7 回転軸、10,20,30,40,50,60 回転子導体、11,61 回転子鉄心、12,42,62 回転子バー、13,21,31,41,51,63 短絡環、14,18,53,64 鉄心押さえ部材、15,65 端板、16,22,32,52 変形抑制部、17,33,66 溝、54 突出部。

Claims (7)

  1.  回転可能に支持される回転軸と、
     前記回転軸と嵌合し、前記回転軸と一体に回転する回転子と、
     前記回転子の外周面と間隔をあけて対向する固定子と、
     を備え、
     前記回転子は、
     前記回転軸と嵌合し、中心軸が前記回転軸と一致する円筒の形状であり、前記回転軸と平行に延びる複数の溝が前記円筒の外周側に形成される回転子鉄心と、
     それぞれが、前記回転子鉄心の前記外周側に形成される前記溝に収容され、前記回転軸と平行な方向の端部の両方が前記回転子鉄心より外側に突出する導体である複数の回転子バーと、
     前記複数の回転子バーを挟んで主面が前記回転軸と平行な方向に対向し、それぞれが、前記複数の回転子バーの前記端部と接合されることで前記複数の回転子バーを電気的に接続する導体であって、前記回転軸と直交する断面の形状が環状である一対の短絡環と、
     前記回転軸の方向に、前記回転子鉄心を狭んで設けられ、前記回転子鉄心の前記回転軸の方向への移動および変形を抑制する、前記回転軸と直交する断面の形状が環状である一対の鉄心押さえ部材と、
     前記短絡環のそれぞれと、前記回転子鉄心との間であって、少なくとも一部が前記鉄心押さえ部材の外周面と対向する位置に設けられ、前記短絡環と、少なくとも1つの前記回転子バーの少なくとも一部とに固着され、前記固着された前記少なくとも1つの前記回転子バーの前記少なくとも一部の前記回転子鉄心の外周面の接線方向への曲げ変形を抑制する変形抑制部と、を有する、
     車両用かご形誘導電動機。
  2.  前記変形抑制部は、前記回転軸と直交する断面の形状が環状であり、前記変形抑制部の外周面は、前記複数の回転子バーのそれぞれにおいて、前記端部を含む前記回転子バーの前記少なくとも一部と固着され、前記変形抑制部の内周面の少なくとも一部は、前記鉄心押さえ部材の外周面と対向し、前記変形抑制部の前記短絡環に対向する面は前記短絡環と固着される請求項1に記載の車両用かご形誘導電動機。
  3.  前記変形抑制部は、前記回転軸と直交する断面の形状が環状であり、前記回転軸と平行に延びる、前記回転子バーと同数の第2の溝が外周側に形成され、前記第2の溝は前記回転子バーの前記端部を含む前記回転子バーの前記少なくとも一部と嵌合し、前記変形抑制部の内周面の少なくとも一部は、前記鉄心押さえ部材の外周面と対向し、前記変形抑制部の前記短絡環に対向する面は前記短絡環と固着される請求項1に記載の車両用かご形誘導電動機。
  4.  それぞれが、隣接する前記回転子バーの間に設けられ、前記回転軸を挟んで対向する少なくとも1組の前記変形抑制部を備え、
     前記変形抑制部は、前記短絡環と、前記隣接する前記回転子バーの少なくとも一方とに固着される、
     請求項1に記載の車両用かご形誘導電動機。
  5.  前記変形抑制部は、前記回転子鉄心に対向する面から前記回転子鉄心に向かって突出する突出部を有する請求項1から4のいずれか1項に記載の車両用かご形誘導電動機。
  6.  前記鉄心押さえ部材と前記回転子鉄心との間に設けられる端板をさらに備え、
     前記変形抑制部と前記端板との間隔は、前記端板の前記回転軸の方向の厚みの半分以下である、
     請求項1から5のいずれか1項に記載の車両用かご形誘導電動機。
  7.  回転可能に支持される回転軸と、
     前記回転軸と嵌合し、前記回転軸と一体に回転する回転子と、
     前記回転子の外周面と間隔をあけて対向する固定子と、
     を備え、
     前記回転子は、
     前記回転軸と嵌合し、中心軸が前記回転軸と一致する円筒の形状であり、前記回転軸と平行に延びる複数の溝が前記円筒の外周側に形成される回転子鉄心と、
     それぞれが、前記回転子鉄心の前記外周側に形成される前記溝に収容され、前記回転軸と平行な方向の端部の両方が前記回転子鉄心より外側に突出する導体である複数の回転子バーと、
     前記複数の回転子バーを挟んで主面が前記回転軸と平行な方向に対向し、それぞれが、前記複数の回転子バーの前記端部と接合されることで前記複数の回転子バーを電気的に接続する導体であって、前記回転軸と直交する断面の形状が環状である一対の短絡環と、
     前記回転軸の方向に、前記回転子鉄心を挟んで設けられ、前記回転軸と直交する断面の形状が環状である一対の鉄心押さえ部材と、を有し、
     前記短絡環の前記回転軸に沿った断面の形状は、前記回転軸の中心から端部に向かう方向の窪みを有する凹状であり、前記短絡環の前記窪みに、前記回転子バーの端部が接合され、
     前記短絡環の少なくとも一部の内周面は、前記鉄心押さえ部材の外周面と対向し、
     前記短絡環と前記回転子鉄心との間隔は、前記短絡環の前記窪みと前記回転子バーの端部との前記接合の作業に要する空隙に応じて定められた範囲内の値であり、
     前記短絡環の前記窪みに接合された前記回転子バーの端部の前記回転子鉄心の外周面の接線方向への曲げ変形が抑制される、
     車両用かご形誘導電動機。
PCT/JP2017/008817 2017-03-06 2017-03-06 車両用かご形誘導電動機 WO2018163251A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2017/008817 WO2018163251A1 (ja) 2017-03-06 2017-03-06 車両用かご形誘導電動機
US16/480,402 US11183910B2 (en) 2017-03-06 2017-03-06 Squirrel cage induction motor for vehicle
JP2019503842A JP6587773B2 (ja) 2017-03-06 2017-03-06 車両用かご形誘導電動機
DE112017007176.3T DE112017007176T5 (de) 2017-03-06 2017-03-06 Käfigläuferinduktionsmotor für ein Fahrzeug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/008817 WO2018163251A1 (ja) 2017-03-06 2017-03-06 車両用かご形誘導電動機

Publications (1)

Publication Number Publication Date
WO2018163251A1 true WO2018163251A1 (ja) 2018-09-13

Family

ID=63449059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008817 WO2018163251A1 (ja) 2017-03-06 2017-03-06 車両用かご形誘導電動機

Country Status (4)

Country Link
US (1) US11183910B2 (ja)
JP (1) JP6587773B2 (ja)
DE (1) DE112017007176T5 (ja)
WO (1) WO2018163251A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5295005U (ja) * 1976-01-14 1977-07-16
JPS56106072U (ja) * 1980-01-17 1981-08-18
JPS57104743U (ja) * 1980-12-16 1982-06-28
JPS57156643A (en) * 1981-03-20 1982-09-28 Hitachi Ltd Rotor for rotary electric machine
JPS58115855U (ja) * 1982-01-29 1983-08-08 株式会社日立製作所 かご形回転子
JPS59138339U (ja) * 1983-03-02 1984-09-14 三菱電機株式会社 かご形回転子
JPS637976U (ja) * 1986-07-01 1988-01-19
JP2004304930A (ja) * 2003-03-31 2004-10-28 Hitachi Ltd かご型誘導電動機の回転子およびその製造方法。

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2192841A (en) * 1938-04-05 1940-03-05 Rendell Edward Frank Rotor construction for squirrel cage induction motors
US2242339A (en) * 1938-05-26 1941-05-20 Westinghouse Electric & Mfg Co Squirrel-cage dynamoelectric machine
JPS5219611U (ja) 1975-07-31 1977-02-12
JPS5970170A (ja) 1982-10-13 1984-04-20 Toshiba Corp かご形誘導電動機の回転子
JPS62135245A (ja) 1985-12-05 1987-06-18 Fuji Electric Co Ltd 誘導機のかご形回転子
JPH042966U (ja) 1990-04-20 1992-01-10
JPH0491649A (ja) 1990-08-07 1992-03-25 Toshiba Corp かご形誘導電動機
JP3438154B2 (ja) 1996-06-11 2003-08-18 株式会社日立製作所 回転電機の回転子
JPH10117468A (ja) * 1996-10-09 1998-05-06 Hitachi Ltd 回転電機の回転子
JP4228713B2 (ja) 2003-02-14 2009-02-25 株式会社安川電機 かご形回転子
EP2296258A1 (en) * 2009-09-09 2011-03-16 ANSALDOBREDA S.p.A. Squirrel-cage rotor for asynchronous motors

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5295005U (ja) * 1976-01-14 1977-07-16
JPS56106072U (ja) * 1980-01-17 1981-08-18
JPS57104743U (ja) * 1980-12-16 1982-06-28
JPS57156643A (en) * 1981-03-20 1982-09-28 Hitachi Ltd Rotor for rotary electric machine
JPS58115855U (ja) * 1982-01-29 1983-08-08 株式会社日立製作所 かご形回転子
JPS59138339U (ja) * 1983-03-02 1984-09-14 三菱電機株式会社 かご形回転子
JPS637976U (ja) * 1986-07-01 1988-01-19
JP2004304930A (ja) * 2003-03-31 2004-10-28 Hitachi Ltd かご型誘導電動機の回転子およびその製造方法。

Also Published As

Publication number Publication date
JP6587773B2 (ja) 2019-10-09
JPWO2018163251A1 (ja) 2019-06-27
DE112017007176T5 (de) 2019-12-24
US20190386550A1 (en) 2019-12-19
US11183910B2 (en) 2021-11-23

Similar Documents

Publication Publication Date Title
JP4413018B2 (ja) 交流回転電機
JP2003339141A (ja) 車両用回転電機
JPWO2012090295A1 (ja) ステータおよびこのステータを備える回転電機
JP2012115075A (ja) 車両用回転電機の固定子
JP5910673B2 (ja) 電動機
JP2021164390A (ja) インナーロータ型ブラシレスモータ
WO2018056359A1 (ja) 永久磁石電動機
JP2008125243A (ja) 回転電機
JP2018191498A (ja) ステーター装置
JP6587773B2 (ja) 車両用かご形誘導電動機
JP6752159B2 (ja) アキシャルギャップ型回転電機
US11342809B2 (en) Rotating electric machine
JP4640851B2 (ja) 磁石発電機
JP2009171704A (ja) モータ
JP7163417B2 (ja) 回転電機の回転子
JP7483150B2 (ja) 電動機
CN111684684B (zh) 旋转电机、定子
JP2019162005A (ja) ブラシレスモータ、及び送風装置
JP2020036437A (ja) 多相クローポールモータ
JP6451886B2 (ja) モータ
WO2023032188A1 (ja) 固定子、電動機及び送風機
EP4187561A1 (en) Core, rotating electrical machine, and stationary apparatus
WO2021205890A1 (ja) ステータコア
JP6294426B2 (ja) モータ
WO2021210249A1 (ja) 回転子及び電動機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900152

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019503842

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17900152

Country of ref document: EP

Kind code of ref document: A1