WO2018159521A1 - 金型汚染性が改善されたポリエステルエラストマー樹脂組成物 - Google Patents

金型汚染性が改善されたポリエステルエラストマー樹脂組成物 Download PDF

Info

Publication number
WO2018159521A1
WO2018159521A1 PCT/JP2018/006914 JP2018006914W WO2018159521A1 WO 2018159521 A1 WO2018159521 A1 WO 2018159521A1 JP 2018006914 W JP2018006914 W JP 2018006914W WO 2018159521 A1 WO2018159521 A1 WO 2018159521A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester elastomer
resin composition
aliphatic
elastomer resin
mass
Prior art date
Application number
PCT/JP2018/006914
Other languages
English (en)
French (fr)
Inventor
卓也 赤石
祐欣 前田
恵梨 森尾
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2018516884A priority Critical patent/JP6406476B1/ja
Priority to US16/468,404 priority patent/US11059968B2/en
Priority to KR1020197025304A priority patent/KR102165345B1/ko
Priority to CN201880013776.3A priority patent/CN110366578B/zh
Priority to EP18760672.8A priority patent/EP3591006B1/en
Publication of WO2018159521A1 publication Critical patent/WO2018159521A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/025Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/21Urea; Derivatives thereof, e.g. biuret
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer

Definitions

  • the present invention relates to a polyester elastomer resin composition having not only excellent grease resistance but also improved mold contamination.
  • Thermoplastic polyester elastomers have excellent injection moldability and extrusion moldability, high mechanical strength, rubber properties such as elastic recovery, impact resistance, flexibility, and cold resistance. It is used for applications such as electronic parts, fibers and films.
  • thermoplastic polyester elastomer has been unsuitable for blow molding because of its low melt viscosity, but a method of increasing the viscosity with a polyepoxy compound or a polyisocyanate compound has come to be adopted. It is also used in blow-molded products such as flexible boots for the purpose of dust prevention and grease retention of universal shaft joints such as high-speed joints (see Patent Document 1).
  • the characteristics required for functional parts such as flexible boots include bending fatigue resistance, heat aging resistance, oil resistance, and grease resistance, but higher levels are becoming increasingly required year by year.
  • a combination of an antioxidant see Patent Document 2
  • a combination of an antioxidant and an epoxy compound see Patent Document 3
  • a combination of an epoxy compound and a carbodiimide compound see Patent Document 4
  • Patent Documents 2 and 3 can certainly improve the heat aging resistance, oil resistance, grease resistance, etc.
  • the bending resistance is particularly severe in a severe environment exceeding 140 ° C. with respect to grease resistance. In some cases, such as fatigue, it was not sufficient, and there was room for further improvement. Further, in the method of Patent Document 4, a large amount of an epoxy compound is required, and characteristics such as oil resistance and grease resistance of the blow molded product are not taken into consideration at all.
  • Patent Document 5 The applicant has proposed a polyester elastomer resin composition that is also excellent in grease resistance under a high temperature environment in order to solve the problems of the conventional technology (see Patent Document 5).
  • Patent Document 5 Although the method of Patent Document 5 is well considered in terms of grease resistance, there is a problem of mold contamination during long-term continuous molding, and there is room for further improvement.
  • the present invention has been made in view of the current state of the prior art described above, and an object of the present invention is to provide a polyester elastomer resin composition having not only excellent grease resistance under a high temperature environment but also improved mold contamination. It is to provide.
  • the present inventor has intensively investigated the cause of mold contamination that occurs during long-term continuous molding, as a result of improving grease resistance, and as a result, alicyclic polycarbodiimide compound and / or aliphatic as a thickener.
  • a polycarbodiimide compound is blended, although the grease resistance is improved, an isocyanate compound as a decomposition product of the polycarbodiimide compound is generated during long-term continuous molding, and it has been found that the mold contamination is remarkably deteriorated.
  • the present invention has the following configurations (1) to (6).
  • a hard segment comprising a polyester comprising an aromatic dicarboxylic acid and an aliphatic and / or alicyclic diol as a constituent component, an aliphatic polyether, an aliphatic polyester, and an aliphatic polycarbonate.
  • the polycarbodiimide compound (B) is blended in such an amount that the carbodiimide functional group amount is 0.3 to 1.5 equivalents when the terminal carboxy group amount of the thermoplastic polyester elastomer (A) is 1.
  • the antioxidant further comprising at least one antioxidant selected from an aromatic amine-based antioxidant, a hindered phenol-based antioxidant, a sulfur-based antioxidant, and a phosphorus-based antioxidant.
  • the polyester elastomer resin composition according to (1) or (2) which contains 0.01 to 3 parts by mass with respect to 100 parts by mass of the thermoplastic polyester elastomer (A).
  • polyester elastomer resin composition according to any one of (1) to (3), wherein the reduced viscosity of the polyester elastomer resin composition is 2.0 to 3.5 dl / g.
  • the tensile elongation after heat treatment at 140 ° C. for 300 hours with a urea compound-containing grease applied to the polyester elastomer resin composition is 200% or more, (1) to (4) Polyester elastomer resin composition.
  • (6) The polyester elastomer resin composition according to any one of (1) to (5), wherein the soft segment of the thermoplastic polyester elastomer resin (A) is an aliphatic polyether.
  • the polyester elastomer resin composition of the present invention is not only excellent in grease resistance under a high temperature environment, but also has low mold contamination and excellent productivity in long-term continuous use, so that it is resistant to bending fatigue, heat aging resistance, oil resistance Can be suitably used even in a severe environment exceeding 140 ° C.
  • the polyester elastomer resin composition of the present invention comprises a hard segment composed of a polyester comprising an aromatic dicarboxylic acid and an aliphatic and / or alicyclic diol, an aliphatic polyether, an aliphatic polyester, and an aliphatic polycarbonate.
  • the thermoplastic polyester elastomer (A) used in the present invention comprises a hard segment and a soft segment.
  • the hard segment is made of polyester.
  • aromatic dicarboxylic acid constituting the hard segment polyester ordinary aromatic dicarboxylic acids are widely used and are not particularly limited. However, as the main aromatic dicarboxylic acid, terephthalic acid or naphthalenedicarboxylic acid (2 in isomers) , 6-naphthalenedicarboxylic acid is preferred).
  • the content of these aromatic dicarboxylic acids is preferably 70 mol% or more, and more preferably 80 mol% or more, based on the total dicarboxylic acid constituting the hard segment polyester.
  • dicarboxylic acid components include diphenyl dicarboxylic acid, isophthalic acid, aromatic dicarboxylic acid such as 5-sodiumsulfoisophthalic acid, cycloaliphatic dicarboxylic acid, alicyclic dicarboxylic acid such as tetrahydrophthalic anhydride, succinic acid, glutaric acid, Examples thereof include aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, dimer acid and hydrogenated dimer acid. These can be used as long as the melting point of the resin is not greatly reduced, and the amount thereof is 30 mol% or less, preferably 20 mol% or less of the total acid component.
  • thermoplastic polyester elastomer (A) used in the present invention as the aliphatic or alicyclic diol constituting the hard segment polyester, general aliphatic or alicyclic diols are widely used, and are not particularly limited. However, it is desirable that they are mainly alkylene glycols having 2 to 8 carbon atoms. Specific examples include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, and the like. Among these, ethylene glycol or 1,4-butanediol is preferable for imparting heat resistance.
  • the components constituting the hard segment polyester include butylene terephthalate units (units consisting of terephthalic acid and 1,4-butanediol) or butylene naphthalate units (2,6-naphthalenedicarboxylic acid and 1,4-butanediol). From the viewpoints of physical properties, moldability, and cost performance.
  • the aromatic polyester when an aromatic polyester suitable as a polyester constituting the hard segment in the thermoplastic polyester elastomer (A) used in the present invention is produced in advance and then copolymerized with a soft segment component, the aromatic polyester is usually Can be easily obtained according to the production method of polyester.
  • the polyester preferably has a number average molecular weight of 10,000 to 40,000.
  • the soft segment of the thermoplastic polyester elastomer (A) used in the present invention is at least one selected from aliphatic polyether, aliphatic polyester, and aliphatic polycarbonate.
  • Aliphatic polyethers include poly (ethylene oxide) glycol, poly (propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, poly (trimethylene oxide) glycol, and a combination of ethylene oxide and propylene oxide.
  • examples thereof include a polymer, an ethylene oxide adduct of poly (propylene oxide) glycol, and a copolymer of ethylene oxide and tetrahydrofuran.
  • an ethylene oxide adduct of poly (tetramethylene oxide) glycol or poly (propylene oxide) glycol is preferable.
  • Examples of the aliphatic polyester include poly ( ⁇ -caprolactone), polyenantlactone, polycaprylolactone, and polybutylene adipate.
  • poly ( ⁇ -caprolactone) and polybutylene adipate are preferable from the viewpoint of elastic properties.
  • the aliphatic polycarbonate is preferably mainly composed of an aliphatic diol residue having 2 to 12 carbon atoms.
  • these aliphatic diols include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 2, 2-dimethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,9-nonanediol, 2-methyl-1,8- Examples include octanediol.
  • thermoplastic polyester elastomer an aliphatic diol having 5 to 12 carbon atoms is preferable from the viewpoint of flexibility and low temperature characteristics of the obtained thermoplastic polyester elastomer.
  • these components may be used alone or in combination of two or more as required, based on the case described below.
  • the aliphatic polycarbonate diol having a low temperature characteristic and constituting the soft segment of the thermoplastic polyester elastomer (A) used in the present invention has a low melting point (for example, 70 ° C. or less) and a low glass transition temperature. preferable.
  • an aliphatic polycarbonate diol composed of 1,6-hexanediol used to form a soft segment of a thermoplastic polyester elastomer has a low glass transition temperature of around ⁇ 60 ° C. and a melting point of around 50 ° C. Good low temperature characteristics.
  • an aliphatic polycarbonate diol obtained by copolymerizing an appropriate amount of, for example, 3-methyl-1,5-pentanediol with the above aliphatic polycarbonate diol has a glass transition point with respect to the original aliphatic polycarbonate diol. Although the melting point is slightly increased, the melting point is lowered or becomes amorphous, so that it corresponds to an aliphatic polycarbonate diol having good low-temperature characteristics. Also, for example, an aliphatic polycarbonate diol composed of 1,9-nonanediol and 2-methyl-1,8-octanediol has a melting point of about 30 ° C. and a glass transition temperature of about ⁇ 70 ° C., which is sufficiently low. It corresponds to an aliphatic polycarbonate diol having good low-temperature characteristics.
  • thermoplastic polyester elastomer (A) used in the present invention an aliphatic polyether is preferable from the viewpoint of solving the problems of the present invention.
  • thermoplastic polyester elastomer (A) used in the present invention is preferably a copolymer mainly composed of terephthalic acid, 1,4-butanediol, and poly (tetramethylene oxide) glycol.
  • terephthalic acid is preferably 40 mol% or more, more preferably 70 mol% or more, further preferably 80 mol% or more, It is particularly preferably 90 mol% or more.
  • the total of 1,4-butanediol and poly (tetramethylene oxide) glycol is preferably 40 mol% or more, more preferably 70 mol% or more. Preferably, it is 80 mol% or more, more preferably 90 mol% or more.
  • the number average molecular weight of the poly (tetramethylene oxide) glycol is preferably 500 to 4000. If the number average molecular weight is less than 500, it may be difficult to develop elastomeric properties. On the other hand, if the number average molecular weight exceeds 4000, the compatibility with the hard segment component is lowered, and it may be difficult to copolymerize in a block form.
  • the number average molecular weight of poly (tetramethylene oxide) glycol is more preferably 800 or more and 3000 or less, and further preferably 1000 or more and 2500 or less.
  • thermoplastic polyester elastomer (A) used in the present invention can be produced by a known method. For example, a method in which a lower alcohol diester of a dicarboxylic acid, an excess amount of a low molecular weight glycol, and a soft segment component are transesterified in the presence of a catalyst and the resulting reaction product is polycondensed, a dicarboxylic acid and an excess amount of glycol and a soft A method in which a segment component is esterified in the presence of a catalyst and the resulting reaction product is polycondensed. A polyester of a hard segment is prepared in advance, and a soft segment component is added thereto and randomized by a transesterification reaction. Method, a method of linking a hard segment and a soft segment with a chain linking agent, and a method of adding an ⁇ -caprolactone monomer to the hard segment when poly ( ⁇ -caprolactone) is used for the soft segment. .
  • the alicyclic polycarbodiimide compound and / or the aliphatic polycarbodiimide compound (B) used in the present invention has a role as a thickener.
  • the alicyclic polycarbodiimide compound and / or aliphatic polycarbodiimide compound (B) used in the present invention is composed of an alicyclic and / or aliphatic compound, and a carbodiimide group (—N ⁇ C ⁇ N) in one molecule. Any polycarbodiimide having two or more structures (-) may be used.
  • the alicyclic polycarbodiimide compound and / or the aliphatic polycarbodiimide compound (B) used in the present invention can be obtained, for example, by a carbon dioxide removal reaction of a diisocyanate compound.
  • diisocyanate compound that can be used here include hexamethylene diisocyanate, dicyclohexylmethane diisocyanate, cyclohexane-1,4-diisocyanate, xylylene diisocyanate, isophorone diisocyanate, methylcyclohexane diisocyanate, tetramethylxylylene diisocyanate, 1,3,5- Examples include triisopropylphenylene-2,4-diisocyanate.
  • the terminal isocyanate can be used as it is, the degree of polymerization may be controlled by reacting the terminal isocyanate, or a part of the terminal isocyanate may be blocked.
  • alicyclic polycarbodiimide compound and / or aliphatic polycarbodiimide compound (B) used in the present invention in particular, alicyclic polycarbodiimide derived from dicyclohexylmethane diisocyanate, cyclohexane-1,4-diisocyanate, isophorone diisocyanate, etc.
  • polycarbodiimide derived from dicyclohexylmethane diisocyanate or isophorone diisocyanate is preferable.
  • the alicyclic polycarbodiimide compound and / or aliphatic polycarbodiimide compound (B) used in the present invention preferably contains 2 to 50 carbodiimide groups per molecule from the viewpoint of stability and handleability. More preferably, it contains 5 to 30 carbodiimide groups per molecule.
  • the number of carbodiimides in the polycarbodiimide molecule (that is, the number of carbodiimide groups) corresponds to the degree of polymerization if it is a polycarbodiimide obtained from a diisocyanate compound.
  • the polymerization degree of polycarbodiimide obtained by connecting 21 diisocyanate compounds in a chain form is 20, and the number of carbodiimide groups in the molecular chain is 20.
  • a polycarbodiimide compound is a mixture of molecules of various lengths, and the number of carbodiimide groups is represented by an average value. Since it has the number of carbodiimide groups within the above range and is solid at room temperature, it can be pulverized, so it has excellent workability and compatibility when mixed with the thermoplastic polyester elastomer (A), uniform reactivity, and bleed-out resistance. This is also preferable.
  • the number of carbodiimide groups can be measured using, for example, a conventional method (method of dissolving with amine and back titrating with hydrochloric acid).
  • the alicyclic polycarbodiimide compound and / or the aliphatic polycarbodiimide compound (B) used in the present invention has an isocyanate group at the terminal and an isocyanate group content of 0.5 to 4% by mass is stable. Is preferable in terms of safety and handleability. More preferably, the isocyanate group content is 1 to 3% by mass.
  • polycarbodiimide derived from dicyclohexylmethane diisocyanate or isophorone diisocyanate, and those having an isocyanate group content in the above range are preferable.
  • the isocyanate group content can be measured by a conventional method (method of dissolving with amine and back titrating with hydrochloric acid).
  • the content of the alicyclic polycarbodiimide compound and / or the aliphatic polycarbodiimide compound (B) used in the present invention is 0.1 to 5 parts by mass with respect to 100 parts by mass of the thermoplastic polyester elastomer (A).
  • the amount is preferably 0.3 parts by mass or more and 3 parts by mass or less, more preferably 0.5 parts by mass or more and 1.5 parts by mass or less. If the content of the alicyclic polycarbodiimide compound and / or the aliphatic polycarbodiimide compound (B) is less than the above range, the targeted thermoplastic polyester elastomer (A) terminal carboxyl group blocking effect may be insufficient. When the above range is exceeded, hydrolysis of the thermoplastic polyester elastomer (A) occurs due to the basicity of the polycarbodiimide compound, which tends to affect the mechanical properties.
  • the blending ratio of the alicyclic polycarbodiimide compound and / or the aliphatic polycarbodiimide compound (B) used in the present invention is such that the amount of the carbodiimide functional group is 1 when the terminal carboxy group amount of the thermoplastic polyester elastomer (A) is 1.
  • the amount is preferably 0.3 to 1.5 equivalent, more preferably 0.5 equivalent to 1.3 equivalent, and still more preferably 0.8 equivalent to 1.1 equivalent. is there. If the amount of the carbodiimide functional group is less than the above range, the target end effect of blocking the carboxyl group of the thermoplastic polyester elastomer (A) may be insufficient. If the amount exceeds the above range, an excessive amount of polycarbodiimide is molded.
  • the polyamide resin (C) used in the present invention has a role as a urea compound scavenger.
  • the polyamide resin (C) used in the present invention is a polymer compound having an amide bond in the molecular chain, and an aliphatic hydrocarbon group having 2 to 20 carbon atoms or a substituted aliphatic hydrocarbon group thereof, or having a carbon number A diamine having an aromatic hydrocarbon group having 6 to 16 or a substituted aromatic hydrocarbon group thereof, an aliphatic hydrocarbon group having 2 to 20 carbon atoms or a substituted aliphatic hydrocarbon group thereof, or an aromatic having 6 to 16 carbon atoms
  • a polyamide obtained from a dicarboxylic acid having an aromatic hydrocarbon group or a substituted aromatic hydrocarbon group thereof a polymer obtained from a lactam, and a polymer obtained from an ⁇ -aminocarboxylic acid.
  • a salt polymer obtained by a reaction of adipic acid, sebacic acid, linoleic acid, dodecanedioic acid and the like with ethylenediamine, hexamethylenediamine, metaxylylenediamine, etc., these copolymers or two or more kinds thereof May be used in combination.
  • nylon 4 nylon 6, nylon 7, nylon 8, nylon 9, nylon 11, nylon 12, obtained from lactam or ⁇ -aminocarboxylic acid
  • nylon 66 nylon 69 obtained from diamine and dicarboxylic acid
  • nylon 611, nylon 612, nylon 6T, nylon 6I, nylon MXD6, and copolymers such as nylon 6/66, nylon 6/610, nylon 6 / 6T, nylon 6I / 6T, and the like.
  • the content of the polyamide resin (C) used in the present invention is 0.1 to 10 parts by mass with respect to 100 parts by mass of the thermoplastic polyester elastomer (A). If the polyamide resin (C) is more than the above range, the original properties of the thermoplastic polyester elastomer (A) may be impaired, and if it is less than the above range, the polycarbodiimide decomposition product which is a mold contamination component is supplemented with an isocyanate compound. The effect may not be demonstrated.
  • the content of the polyamide resin (C) is preferably 1 to 7 parts by mass and more preferably 2 to 5 parts by mass with respect to 100 parts by mass of the thermoplastic polyester elastomer (A).
  • the polyamide resin (C) used in the present invention must have an amine value of 50 to 2000 eq / t.
  • the amine value is less than 50 eq / t, the effect of supplementing the isocyanate compound of the polycarbodiimide decomposition product that becomes a mold contamination component is weak.
  • the amine value is larger than 2000 eq / t, hydrolysis of the thermoplastic polyester elastomer (A) occurs, which may affect mechanical properties.
  • the amine value is preferably 70 to 1000 eq / t, more preferably 100 to 700 eq / t, and still more preferably 100 to 550 eq / t.
  • the polyester elastomer resin composition in the present invention needs to have an acid value of more than 5 eq / t and not more than 20 eq / t.
  • the acid value is larger than 20 eq / t, in a high temperature environment of 140 ° C. or higher, hydrolysis tends to occur due to the action of the urea compound in the grease, and the mechanical properties tend to be significantly reduced.
  • the acid value is 5 eq / t or less, since polycarbodiimide is excessively contained, an excessive amount of polycarbodiimide is decomposed at the time of molding, and a large amount of isocyanate compound which becomes a mold contamination component is generated.
  • the supplemental effect of the isocyanate compound becomes insufficient, and there is a risk of remarkably deteriorating mold contamination.
  • the acid value is preferably 5.5 eq / t to 19.5 eq / t, and more preferably 6 eq / t to 19.0 eq / t.
  • the polyester elastomer resin composition in the present invention preferably has a reduced viscosity of 2.0 to 3.5 dl / g. More preferably, it is 2.1 to 3.0 dl / g, and more preferably 2.2 to 2.9 dl / g.
  • the reduced viscosity is smaller than the above range, the heat aging resistance as the resin composition is insufficient, and the desired grease resistance performance tends not to be obtained.
  • the reduced viscosity is larger than the above range, there is a tendency that poor appearance of the molded product such as molding processability, particularly a flow mark at the time of injection molding tends to occur.
  • the method using the above thickener is simple, but is not limited to this method. Can be adopted.
  • a known method is adopted.
  • the polycondensation reaction is carried out while allowing the pellets to stand or flow under a flow of inert gas or under reduced pressure at a temperature 20 to 40 ° C. lower than the melting point of the thermoplastic polyester elastomer. There is a method of increasing the viscosity by advancing.
  • the resin composition of the present invention preferably contains a general-purpose antioxidant such as aromatic amine, hindered phenol, phosphorus, or sulfur. Two or more of these may be used in combination.
  • a general-purpose antioxidant such as aromatic amine, hindered phenol, phosphorus, or sulfur. Two or more of these may be used in combination.
  • Specific examples of the aromatic amine antioxidant used in the resin composition of the present invention include phenylnaphthylamine, 4,4′-dimethoxydiphenylamine, 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine, and 4-isopropoxydiphenylamine and the like can be mentioned.
  • antioxidants As hindered phenolic antioxidants, general-purpose compounds can be used, but N, N′-hexamethylene-bis (3,5-di-tert-butyl-4-hydroxyhydrocinnamic acid amide), tetrakis [Methylene-3 (3,5-di-t-butyl-4-hydroxyphenyl) propionate] Those having a molecular weight of 500 or more, such as methane, are preferred because they are difficult to volatilize in a high temperature atmosphere.
  • phosphorus-containing compounds such as phosphoric acid, phosphorous acid, hypophosphorous acid derivatives, phenylphosphonic acid, polyphosphonate, and diphosphite compounds.
  • phosphorus-containing compounds such as phosphoric acid, phosphorous acid, hypophosphorous acid derivatives, phenylphosphonic acid, polyphosphonate, and diphosphite compounds.
  • Specific examples include triphenyl phosphite, diphenyl decyl phosphite, phenyl diisodecyl phosphite, tri (nonylphenyl) phosphite, bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite, bis (2 , 6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite.
  • sulfur-based antioxidants include sulfur-containing compounds such as thioethers, dithioates, mercaptobenzimidazoles, thiocarbanilides, and thiodipropion esters. Specific examples include dilauryl thiodipropionate, distearyl thiodipropionate, didodecyl thiodipropionate, ditetradecyl thiodipropionate, dioctadecyl thiodipropionate, pentaerythritol tetrakis (3-dodecyl thioproionate).
  • sulfur-based antioxidants include sulfur-containing compounds such as thioethers, dithioates, mercaptobenzimidazoles, thiocarbanilides, and thiodipropion esters. Specific examples include dilauryl thiodipropionate, distearyl thiodipropionate, didodecyl thiod
  • thiobis N-phenyl- ⁇ -naphthylamine
  • 2-mercaptobenzothiazole 2-mercaptobenzimidazole
  • tetramethylthiuram monosulfide tetramethylthiuram disulfide
  • nickel dibutyldithiocarbamate nickel isopropylxanthate
  • tri Examples include lauryl trithiophosphite.
  • a thioether-based antioxidant having a thioether structure can be suitably used because it receives oxygen from an oxidized substance and reduces it.
  • the blending amount of each of the above antioxidants is preferably 0.01 to 3 parts by weight, more preferably 0.05 to 2 parts by weight, still more preferably 100 parts by weight of the thermoplastic polyester elastomer (A). 0.1 to 1 part by mass.
  • composition and composition ratio of the polyester elastomer resin composition used in the present invention it is also possible to calculate from a proton integral ratio of 1 H-NMR measured by dissolving a sample in a solvent such as deuterated chloroform. is there.
  • an ultraviolet absorber and / or a hindered amine compound For example, benzophenone-based, benzotriazole-based, triazole-based, nickel-based, and salicyl-based light stabilizers can be used.
  • the addition amount is preferably 0.1% or more and 5% or less based on the mass of the resin composition.
  • additives can be blended in the polyester elastomer resin composition of the present invention.
  • resins other than those described above, inorganic fillers, stabilizers, and anti-aging agents can be added as long as the characteristics of the present invention are not impaired.
  • coloring pigments, inorganic and organic fillers, coupling agents, tackiness improvers, quenchers, stabilizers such as metal deactivators, flame retardants, and the like can also be added.
  • the total amount of these various additives is preferably 20 parts by mass or less and more preferably 10 parts by mass or less with respect to 100 parts by mass of the thermoplastic polyester elastomer (A).
  • the polyester elastomer resin composition of the present invention comprises a total of 70 masses of the thermoplastic polyester elastomer (A), the alicyclic polycarbodiimide compound and / or the aliphatic polycarbodiimide compound (B), and the polyamide resin (C). %, More preferably 80% by mass of the whole, and even more preferably 90% by mass or more of the whole.
  • polyester elastomer resin composition of the present invention is constituted as described above, in the thermal aging test for evaluating the grease resistance described in the section of Examples described later, the tensile elongation after heat treatment at 140 ° C. for 300 hours is performed. The degree is 200% or more. This tensile elongation is the elongation at break as measured in accordance with JIS K6251: 2010 as described in the Examples section.
  • polyester elastomer resin composition of the present invention is configured as described above, a dematcher in a 130 ° C. atmosphere is used in the bending fatigue test for evaluating the grease resistance described in the section of Examples described later.
  • the number of breaks (number of times until breakage) is 4 million times or more.
  • Melting point A differential scanning calorimeter “DSC220 type” manufactured by Seiko Denshi Kogyo Co., Ltd. was used. Specifically, 5 mg of a measurement sample is put in an aluminum pan, sealed with a lid, melted in nitrogen at 250 ° C. for 2 minutes, then cooled to 50 ° C. at a temperature decrease rate of 20 ° C./minute, and further from 50 ° C. The temperature was raised to 250 ° C. at 20 ° C./min, and a thermogram curve was measured. An endothermic peak due to melting was obtained from the obtained thermogram curve, and this was taken as the melting point.
  • DSC220 type manufactured by Seiko Denshi Kogyo Co., Ltd. was used. Specifically, 5 mg of a measurement sample is put in an aluminum pan, sealed with a lid, melted in nitrogen at 250 ° C. for 2 minutes, then cooled to 50 ° C. at a temperature decrease rate of 20 ° C./minute, and further from 50 ° C. The temperature
  • Reduced viscosity (dl / g): 0.02 g of a sufficiently dried polyester elastomer resin composition was dissolved in 10 ml of a mixed solvent of phenol / tetrachloroethane (mass ratio 6/4), and the reduced viscosity was measured at 30 ° C. with an Ubellose viscometer.
  • Acid value (eq / ton): A 0.2 g sample was precisely weighed, dissolved in 20 ml of chloroform, and titrated with 0.01 N potassium hydroxide (ethanol solution) to determine the acid value. Phenolphthalein was used as an indicator.
  • Relative viscosity The method for measuring the relative viscosity of the polyamide resin is generally a method using three kinds of solvents, metacresol, 96% sulfuric acid, and 90% formic acid, depending on the type of solvent used for dissolution.
  • the relative viscosity of (C) was measured with a 98% sulfuric acid solution (polyamide resin concentration 1 g / dl, temperature 25 ° C.).
  • the raw materials used in the examples are as follows.
  • This polyester elastomer A1 had a melting point of 197 ° C., a reduced viscosity of 1.86 dl / g, and an acid value of 38 eq / t.
  • polyester elastomer A2 Thermoplastic polyester having terephthalic acid / 1,4-butanediol / polyoxytetramethylene glycol (PTMG: number average molecular weight 2000) of 100/90/10 (molar ratio) by the method described in JP-A-9-59491
  • PTMG number average molecular weight 2000
  • An elastomer was produced and designated as polyester elastomer A2.
  • This polyester elastomer A2 had a melting point of 205 ° C., a reduced viscosity of 2.15 dl / g, and an acid value of 35 eq / t.
  • Polyyester elastomer A3 The polyester elastomer A1 was treated in a vacuum state at 190 ° C.
  • polyester elastomer A3 had a melting point of 201 ° C., a reduced viscosity of 2.86 dl / g, and an acid value of 21 eq / t.
  • Polybutylene terephthalate (PBT) having a number average molecular weight of 30,000 and 43 parts by weight of a polycarbonate diol (made of 1,6-hexanediol) having a number average molecular weight of 10,000 are stirred at 230 ° C. to 245 ° C. and 130 Pa for 1 hour.
  • polyester elastomer A4 had a melting point of 212 ° C., a reduced viscosity of 1.20 dl / g, and an acid value of 44 eq / t.
  • Alicyclic polycarbodiimide compound and / or aliphatic polycarbodiimide compound (B): Alicyclic polycarbodiimide compound (B1): Carbodilite LA-1 (Nisshinbo Co., Ltd., carbodiimide value: 4050 eq / ton, molar ratio of isocyanate group 15: 2) Alicyclic polycarbodiimide compound (B2): Carbodilite HMV-15CA (Nisshinbo Co., Ltd., carbodiimide value: 3820 eq / ton, isocyanate group inactivated)
  • Release agent Lycowax E (manufactured by Clariant)
  • Aromatic amine antioxidants Nonflex DCD (Ouchi Shinsei Chemical Co., Ltd.) (4,4'-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine)
  • Hindered phenolic antioxidants Irganox 1010 (BASF)
  • Hindered phenolic antioxidants Irganox 1098 (manufactured by BASF)
  • Sulfur-based antioxidants Rasmit LG (Daiichi Kogyo Seiyaku Co., Ltd.) (Dilaurylthiodipropionate)
  • an injection molded product (width 20 mm, length 100 mm, thickness 3.6 mm, hinge portion R2.4) produced at a cylinder temperature of 240 ° C. and a mold temperature of 50 ° C. was used.
  • the test was performed in a state where 3 g of grease was applied to the back surface of the test piece.
  • the test piece was punched into a JIS No. 3 dumbbell shape perpendicular to the flow direction of the resin of an injection molded product (width 100 mm, length 100 mm, thickness 2.0 mm) produced at a cylinder temperature of 240 ° C. and a mold temperature of 50 ° C. Produced.
  • Examples 1 to 8 which are within the scope of the present invention are excellent in both grease resistance and mold contamination.
  • Comparative Example 1 in which the amine value of the polyamide resin (C) is too low is remarkably inferior in mold contamination and inferior in grease resistance.
  • Comparative Example 2 in which the acid value of the polyester resin composition is too low is extremely inferior to mold contamination.
  • Comparative Example 3 in which the acid value of the polyester resin composition is too high is extremely inferior in grease resistance.
  • the polyester elastomer resin composition of the present invention is not only excellent in grease resistance under high temperature environment, but also has low mold contamination and excellent productivity in long-term continuous use. Further, it is possible to obtain a molded product that can be used even in a severe environment exceeding 140 ° C. in applications where oil resistance and grease resistance are required at a high level.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

長期連続使用における金型汚染性と140℃を超える環境下においてグリースと接触することで生じるポリエステルエラストマーの物性低下などの課題を改善する。芳香族ジカルボン酸と脂肪族及び/又は脂環族ジオールとを構成成分とするポリエステルからなるハードセグメントと、脂肪族ポリエーテル、脂肪族ポリエステル、及び脂肪族ポリカーボネートから選ばれる少なくとも1種のソフトセグメントが結合されてなる熱可塑性ポリエステルエラストマー(A)、脂環族ポリカルボジイミド化合物及び/又は脂肪族ポリカルボジイミド化合物(B)、及びアミン価50~2000eq/tのポリアミド樹脂(C)を、(A)100質量部に対して(B)0.1~5質量部、(C)0.1~10質量部の割合で含有するポリエステルエラストマー樹脂組成物であって、ポリエステルエラストマー樹脂組成物の酸価が5eq/tより大きくかつ20eq/t以下であることを特徴とする。

Description

金型汚染性が改善されたポリエステルエラストマー樹脂組成物
 本発明は、耐グリース性に優れるのみならず、金型汚染性が改善されたポリエステルエラストマー樹脂組成物に関する。
 熱可塑性ポリエステルエラストマーは、射出成形性、押出成形性に優れ、機械的強度が高く、弾性回復性、耐衝撃性、柔軟性などのゴム的性質、耐寒性に優れる材料として、自動車部品、電気・電子部品、繊維、フィルムなどの用途に使用されている。
 従来、熱可塑性ポリエステルエラストマーは、溶融粘度が低いためブロー成形用には不適であったが、ポリエポキシ化合物やポリイソシアネート化合物などで増粘する方法が採用されるようになり、近年、自動車の等速ジョイントのような自在軸継手の防塵、グリース保持を目的としたフレキシブルブーツなどのブロー成形品にも熱可塑性ポリエステルエラストマーの特徴を生かして採用されている(特許文献1参照)。
 フレキシブルブーツなどの機能性部品に対する要求特性としては、耐屈曲疲労性、耐熱老化性、耐油性、耐グリース性などがあるが、年々、より高いレベルが要求されるようになってきており、対処法として酸化防止剤の組み合わせ(特許文献2参照)、酸化防止剤とエポキシ化合物との組み合わせ(特許文献3参照)、エポキシ化合物類とカルボジイミド化合物との組み合わせ(特許文献4参照)などが提案されている。
 特許文献2、3の方法では、確かに耐熱老化性、耐油性、耐グリース性などの改善効果が認められるものの、特に、耐グリース性に関し、140℃を超える、より過酷な環境下では、屈曲疲労性などの点で十分ではない場合があり、さらなる改善の余地があった。また、特許文献4の方法では、多量のエポキシ化合物の配合が必要であるとともに、ブロー成形品の耐油性、耐グリース性などの特性に関しては全く考慮されていない。
 出願人は、かかる従来技術の問題を解消するために、高温環境下での耐グリース性にも優れるポリエステルエラストマー樹脂組成物を提案した(特許文献5参照)。しかしながら、この特許文献5の方法は、耐グリース性の点は良く考慮されているが、長期連続成形時の金型汚染の問題が発生し、さらなる改善の余地があった。
特許第3714747号公報 特開平11-323109号公報 特開平11-323110号公報 特開2012-107155号公報 PCT/JP2017/004502
 本発明は、上記従来技術の現状に鑑みなされたものであり、その目的は、高温環境下での耐グリース性にも優れるのみならず、金型汚染性が改善されたポリエステルエラストマー樹脂組成物を提供することにある。
 本発明者は、上記目的を達成するため、耐グリース性の向上と長期連続成形時に発生する金型汚染の原因について鋭意検討した結果、増粘剤として脂環族ポリカルボジイミド化合物及び/又は脂肪族ポリカルボジイミド化合物を配合した場合、耐グリース性の改善が見られるものの、長期連続成形時に、ポリカルボジイミド化合物の分解物のイソシアネート化合物が発生し、著しく金型汚染性を悪化させることを見出した。そして、このポリカルボジイミド化合物の含有量の指標として、ポリエステルエラストマー樹脂組成物の酸価に着目し、この酸価を特定の範囲に限定することで、イソシアネート化合物の発生を効果的に抑制することができることを見出し、本発明の完成に至った。
 即ち、本発明は、以下の(1)~(6)の構成を有するものである。
(1)芳香族ジカルボン酸と脂肪族及び/又は脂環族ジオールとを構成成分とするポリエステルからなるハードセグメントと、脂肪族ポリエーテル、脂肪族ポリエステル、及び脂肪族ポリカーボネートから選ばれる少なくとも1種のソフトセグメントが結合されてなる熱可塑性ポリエステルエラストマー(A)、脂環族ポリカルボジイミド化合物及び/又は脂肪族ポリカルボジイミド化合物(B)、及びアミン価50~2000eq/tのポリアミド樹脂(C)を、(A)100質量部に対して(B)0.1~5質量部、(C)0.1~10質量部の割合で含有するポリエステルエラストマー樹脂組成物であって、ポリエステルエラストマー樹脂組成物の酸価が5eq/tより大きくかつ20eq/t以下であることを特徴とするポリエステルエラストマー樹脂組成物。
(2)ポリカルボジイミド化合物(B)が、熱可塑性ポリエステルエラストマー(A)の末端カルボキシ基量を1とした場合、カルボジイミド官能基量が0.3~1.5当量となるような量で配合されている、(1)に記載のポリエステルエラストマー樹脂組成物。
(3)芳香族アミン系酸化防止剤、ヒンダードフェノール系酸化防止剤、イオウ系酸化防止剤、及びリン系酸化防止剤から選ばれる少なくとも1種の酸化防止剤をさらに含有し、前記酸化防止剤を、熱可塑性ポリエステルエラストマー(A)100質量部に対して0.01~3質量部の割合で含有する、(1)または(2)に記載のポリエステルエラストマー樹脂組成物。
(4)ポリエステルエラストマー樹脂組成物の還元粘度が、2.0~3.5dl/gである、(1)~(3)のいずれかに記載のポリエステルエラストマー樹脂組成物。
(5)ポリエステルエラストマー樹脂組成物に尿素化合物含有グリースを塗布した状態での140℃、300時間熱処理後の引張伸度が、200%以上である、(1)~(4)のいずれかに記載のポリエステルエラストマー樹脂組成物。
(6)熱可塑性ポリエステルエラストマー樹脂(A)のソフトセグメントが、脂肪族ポリエーテルである、(1)~(5)のいずれかに記載のポリエステルエラストマー樹脂組成物。
 本発明のポリエステルエラストマー樹脂組成物は、高温環境下での耐グリース性に優れるだけでなく、長期連続使用において金型汚染が少なく、生産性に優れるため、耐屈曲疲労性、耐熱老化性、耐油性、耐グリース性などが高いレベルで要求される用途で、140℃を超える過酷な環境下においても好適に使用することができる。
 本発明のポリエステルエラストマー樹脂組成物は、芳香族ジカルボン酸と脂肪族及び/又は脂環族ジオールとを構成成分とするポリエステルからなるハードセグメントと、脂肪族ポリエーテル、脂肪族ポリエステル、及び脂肪族ポリカーボネートから選ばれる少なくとも1種のソフトセグメントが結合されてなる熱可塑性ポリエステルエラストマー(A)、脂環族ポリカルボジイミド化合物及び/又は脂肪族ポリカルボジイミド化合物(B)、及びアミン価50~2000eq/tのポリアミド樹脂(C)をそれぞれ特定の割合で含有するものであり、ポリエステルエラストマー樹脂組成物の酸価が5eq/tより大きくかつ20eq/t以下であることを特徴とするものである。以下、その内容を詳述する。
[熱可塑性ポリエステルエラストマー(A)]
 本発明で使用する熱可塑性ポリエステルエラストマー(A)は、ハードセグメントとソフトセグメントからなる。ハードセグメントは、ポリエステルからなる。ハードセグメントのポリエステルを構成する芳香族ジカルボン酸としては、通常の芳香族ジカルボン酸が広く用いられ、特に限定されないが、主たる芳香族ジカルボン酸としてはテレフタル酸又はナフタレンジカルボン酸(異性体の中では2,6-ナフタレンジカルボン酸が好ましい)であることが望ましい。これらの芳香族ジカルボン酸の含有量は、ハードセグメントのポリエステルを構成する全ジカルボン酸中、70モル%以上であることが好ましく、80モル%以上であることがより好ましい。その他のジカルボン酸成分としては、ジフェニルジカルボン酸、イソフタル酸、5-ナトリウムスルホイソフタル酸などの芳香族ジカルボン酸、シクロヘキサンジカルボン酸、テトラヒドロ無水フタル酸などの脂環族ジカルボン酸、コハク酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸、ダイマー酸、水添ダイマー酸などの脂肪族ジカルボン酸などが挙げられる。これらは、樹脂の融点を大きく低下させない範囲で用いられることができ、その量は全酸成分の30モル%以下、好ましくは20モル%以下である。
 また、本発明で使用する熱可塑性ポリエステルエラストマー(A)において、ハードセグメントのポリエステルを構成する脂肪族又は脂環族ジオールとしては、一般の脂肪族又は脂環族ジオールが広く用いられ、特に限定されないが、主として炭素数2~8のアルキレングリコール類であることが望ましい。具体的には、エチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノールなどが挙げられる。これらの中でも、耐熱性を付与する上でエチレングリコール、1,4-ブタンジオールのいずれかであることが好ましい。
 上記のハードセグメントのポリエステルを構成する成分としては、ブチレンテレフタレート単位(テレフタル酸と1,4-ブタンジオールからなる単位)あるいはブチレンナフタレート単位(2,6-ナフタレンジカルボン酸と1,4-ブタンジオールからなる単位)よりなるものが、物性、成形性、コストパフォーマンスの点から好ましい。
 また、本発明で使用する熱可塑性ポリエステルエラストマー(A)におけるハードセグメントを構成するポリエステルとして好適な芳香族ポリエステルを事前に製造し、その後ソフトセグメント成分と共重合させる場合、該芳香族ポリエステルは、通常のポリエステルの製造法に従って容易に得ることができる。また、かかるポリエステルは、数平均分子量10000~40000を有しているものが望ましい。
 本発明で使用する熱可塑性ポリエステルエラストマー(A)のソフトセグメントは、脂肪族ポリエーテル、脂肪族ポリエステル、及び脂肪族ポリカーボネートから選ばれる少なくとも1種である。
 脂肪族ポリエーテルとしては、ポリ(エチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリ(ヘキサメチレンオキシド)グリコール、ポリ(トリメチレンオキシド)グリコール、エチレンオキシドとプロピレンオキシドの共重合体、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加物、エチレンオキシドとテトラヒドロフランの共重合体などが挙げられる。これらの中でも、弾性特性の点から、ポリ(テトラメチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加物が好ましい。
 脂肪族ポリエステルとしては、ポリ(ε-カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペートなどが挙げられる。これらの中でも、弾性特性の点から、ポリ(ε-カプロラクトン)、ポリブチレンアジペートが好ましい。
 脂肪族ポリカーボネートは、主として炭素数2~12の脂肪族ジオール残基からなるものであることが好ましい。これらの脂肪族ジオールとしては、例えば、エチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、2,2-ジメチル-1,3-プロパンジオール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオールなどが挙げられる。特に、得られる熱可塑性ポリエステルエラストマーの柔軟性や低温特性の点から、炭素数5~12の脂肪族ジオールが好ましい。これらの成分は、以下に説明する事例に基づき、単独で用いてもよいし、必要に応じて2種以上を併用してもよい。
 本発明で使用する熱可塑性ポリエステルエラストマー(A)のソフトセグメントを構成する、低温特性が良好な脂肪族ポリカーボネートジオールとしては、融点が低く(例えば、70℃以下)かつ、ガラス転移温度が低いものが好ましい。一般に、熱可塑性ポリエステルエラストマーのソフトセグメントを形成するのに用いられる1,6-ヘキサンジオールからなる脂肪族ポリカーボネートジオールは、ガラス転移温度が-60℃前後と低く、融点も50℃前後となるため、低温特性が良好なものとなる。その他にも、上記脂肪族ポリカーボネートジオールに、例えば、3-メチル-1,5-ペンタンジオールを適当量共重合して得られる脂肪族ポリカーボネートジオールは、元の脂肪族ポリカーボネートジオールに対してガラス転移点が若干高くなるものの、融点が低下もしくは非晶性となるため、低温特性が良好な脂肪族ポリカーボネートジオールに相当する。また、また、例えば、1,9-ノナンジオールと2-メチル-1,8-オクタンジオールからなる脂肪族ポリカーボネートジオールは、融点が30℃程度、ガラス転移温度が-70℃前後と十分に低いため、低温特性が良好な脂肪族ポリカーボネートジオールに相当する。
 本発明で使用する熱可塑性ポリエステルエラストマー(A)のソフトセグメントとしては、本発明の課題を解決する観点から、脂肪族ポリエーテルが好ましい。
 本発明で使用する熱可塑性ポリエステルエラストマー(A)は、テレフタル酸、1,4-ブタンジオール、及びポリ(テトラメチレンオキシド)グリコールを主たる成分とする共重合体であることが好ましい。熱可塑性ポリエステルエラストマー(A)を構成するジカルボン酸成分中、テレフタル酸が40モル%以上であることが好ましく、70モル%以上であることがより好ましく、80モル%以上であることがさらに好ましく、90モル%以上であることが特に好ましい。熱可塑性ポリエステルエラストマー(A)を構成するグリコール成分中、1,4-ブタンジオールとポリ(テトラメチレンオキシド)グリコールの合計が40モル%以上であることが好ましく、70モル%以上であることがより好ましく、80モル%以上であることがさらに好ましく、90モル%以上であることが特に好ましい。
 前記ポリ(テトラメチレンオキシド)グリコールの数平均分子量は、500~4000であることが好ましい。数平均分子量が500未満であると、エラストマー特性を発現しにくい場合がある。一方、数平均分子量が4000を超えると、ハードセグメント成分との相溶性が低下し、ブロック状に共重合することが難しくなる場合がある。ポリ(テトラメチレンオキシド)グリコールの数平均分子量は、800以上3000以下であることがより好ましく、1000以上2500以下であることがさらに好ましい。
 本発明で使用する熱可塑性ポリエステルエラストマー(A)において、ハードセグメントとソフトセグメントの質量比は、一般に、ハードセグメント:ソフトセグメント=30:70~95:5であることが好ましく、より好ましくは40:60~90:10、さらに好ましくは45:55~87:13、最も好ましくは50:50~85:15の範囲である。
 本発明で使用する熱可塑性ポリエステルエラストマー(A)は、公知の方法で製造することができる。例えば、ジカルボン酸の低級アルコールジエステル、過剰量の低分子量グリコール、およびソフトセグメント成分を触媒の存在下エステル交換反応させ、得られる反応生成物を重縮合する方法、ジカルボン酸と過剰量のグリコールおよびソフトセグメント成分を触媒の存在下でエステル化反応させ、得られる反応生成物を重縮合する方法、あらかじめハードセグメントのポリエステルを作っておき、これにソフトセグメント成分を添加してエステル交換反応によりランダム化させる方法、ハードセグメントとソフトセグメントを鎖連結剤でつなぐ方法、さらにポリ(ε-カプロラクトン)をソフトセグメントに用いる場合は、ハードセグメントにε-カプロラクトンモノマーを付加反応させる方法などのいずれの方法をとってもよい。
[脂環族ポリカルボジイミド化合物及び/又は脂肪族ポリカルボジイミド化合物(B)]
 本発明で使用する脂環族ポリカルボジイミド化合物及び/又は脂肪族ポリカルボジイミド化合物(B)は、増粘剤としての役割を有する。本発明で使用する脂環族ポリカルボジイミド化合物及び/又は脂肪族ポリカルボジイミド化合物(B)は、脂環族及び/又は脂肪族の化合物から成り、1分子内にカルボジイミド基(-N=C=N-の構造)を2つ以上有するポリカルボジイミドであればよい。
 本発明で使用する脂環族ポリカルボジイミド化合物及び/又は脂肪族ポリカルボジイミド化合物(B)は、例えば、ジイソシアネート化合物の脱二酸化炭素反応により得ることができる。ここで使用できるジイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、メチルシクロヘキサンジイソシアネート、テトラメチルキシリレンジイソシアネート、1,3,5-トリイソプロピルフェニレン-2,4-ジイソシアネートなどが挙げられる。これらは1種のみを用いてもよいし、2種以上を共重合させて用いることもできる。また、分岐構造を導入したり、カルボジイミド基やイソシアネート基以外の官能基を共重合により導入したりしてもよい。さらに、末端のイソシアネートはそのままでも使用可能であるが、末端のイソシアネートを反応させることにより重合度を制御してもよいし、末端イソシアネートの一部を封鎖してもよい。
 本発明で使用する脂環族ポリカルボジイミド化合物及び/又は脂肪族ポリカルボジイミド化合物(B)としては、特に、ジシクロヘキシルメタンジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネートなどに由来する脂環族ポリカルボジイミドが好ましく、特に、ジシクロヘキシルメタンジイソシアネートやイソホロンジイソシアネートに由来するポリカルボジイミドがよい。
 本発明で使用する脂環族ポリカルボジイミド化合物及び/又は脂肪族ポリカルボジイミド化合物(B)は、1分子あたり2~50個のカルボジイミド基を含有することが、安定性と取り扱い性の点で好ましい。より好ましくは1分子あたりカルボジイミド基を5~30個含有するのがよい。ポリカルボジイミド分子中のカルボジイミドの個数(すなわちカルボジイミド基数)は、ジイソシアネート化合物から得られたポリカルボジイミドであれば、重合度に相当する。例えば、21個のジイソシアネート化合物が鎖状につながって得られたポリカルボジイミドの重合度は20であり、分子鎖中のカルボジイミド基数は20である。通常、ポリカルボジイミド化合物は、種々の長さの分子の混合物であり、カルボジイミド基数は、平均値で表される。前記範囲のカルボジイミド基数を有し、室温付近で固形であると、粉末化できるので、熱可塑性ポリエステルエラストマ(A)との混合時の作業性や相溶性に優れ、均一反応性、耐ブリードアウト性の点でも好ましい。なお、カルボジイミド基数は、例えば、常法(アミンで溶解して塩酸で逆滴定を行う方法)を用いて測定できる。
 本発明で使用する脂環族ポリカルボジイミド化合物及び/又は脂肪族ポリカルボジイミド化合物(B)は、末端にイソシアネート基を有し、イソシアネート基含有率が0.5~4質量%であることが、安定性と取り扱い性の点で好ましい。より好ましくは、イソシアネート基含有率は1~3質量%である。特に、ジシクロヘキシルメタンジイソシアネートやイソホロンジイソシアネートに由来するポリカルボジイミドであって、前記範囲のイソシアネート基含有率を有するものが好ましい。なお、イソシアネート基含有率は常法(アミンで溶解して塩酸で逆滴定を行う方法)を用いて測定できる。
 本発明で使用する脂環族ポリカルボジイミド化合物及び/又は脂肪族ポリカルボジイミド化合物(B)の含有量は、熱可塑性ポリエステルエラストマー(A)100質量部に対して、0.1~5質量部であり、好ましくは0.3質量部以上、3質量部以下であり、より好ましくは0.5質量部以上、1.5質量部以下である。脂環族ポリカルボジイミド化合物及び/又は脂肪族ポリカルボジイミド化合物(B)の含有量が、上記範囲未満であると、目標とした熱可塑性ポリエステルエラストマー(A)末端カルボキシ基封鎖効果が不十分であるおそれがあり、上記範囲を超えると、ポリカルボジイミド化合物の塩基性により熱可塑性ポリエステルエラストマー(A)の加水分解が生じ機械的特性に影響を与える傾向がある。
 本発明で使用する脂環族ポリカルボジイミド化合物及び/又は脂肪族ポリカルボジイミド化合物(B)の配合割合は、熱可塑性ポリエステルエラストマー(A)の末端カルボキシ基量を1とした場合、カルボジイミド官能基量が0.3~1.5当量となる量であることが好ましく、より好ましくは、0.5当量以上、1.3当量以下であり、さらに好ましくは0.8当量以上、1.1当量以下である。カルボジイミド官能基量が上記範囲未満であると、目標とした熱可塑性ポリエステルエラストマー(A)の末端カルボキシ基封鎖効果が不十分であるおそれがあり、上記範囲を超えると、過剰量のポリカルボジイミドが成形時に分解して金型汚染成分となるイソシアネート化合物が多量に発生し、後述するポリアミド樹脂(C)によるイソシアネート化合物の補足効果が不十分となり、著しく金型汚染性を悪化させるおそれがある。
[ポリアミド樹脂(C)]
 本発明で使用するポリアミド樹脂(C)は、尿素化合物捕捉剤としての役割を有する。本発明で使用するポリアミド樹脂(C)とは、分子鎖中にアミド結合を有する高分子化合物であり、炭素数2~20の脂肪族炭化水素基またはその置換脂肪族炭化水素基、または炭素数6~16の芳香族炭化水素基またはその置換芳香族炭化水素基を有するジアミンと、炭素数2~20の脂肪族炭化水素基またはその置換脂肪族炭化水素基、または炭素数6~16の芳香族炭化水素基またはその置換芳香族炭化水素基を有するジカルボン酸から得られるポリアミド、ラクタムから得られる重合体、ω-アミノカルボン酸から得られる重合体などが挙げられる。例えば、アジピン酸、セバシン酸、リノール酸、ドデカンジオン酸などとエチレンジアミン、ヘキサメチレンジアミン、メタキシリレンジアミンなどとの反応により得られる塩の重合体が挙げられ、これらの共重合体または2種類以上を組み合わせて使用してもよい。具体的には、ラクタム又はω-アミノカルボン酸から得られる、ナイロン4、ナイロン6、ナイロン7、ナイロン8、ナイロン9、ナイロン11、ナイロン12、ジアミンとジカルボン酸から得られる、ナイロン66、ナイロン69、ナイロン610、ナイロン611、ナイロン612、ナイロン6T、ナイロン6I、ナイロンMXD6、共重合体である、ナイロン6/66、ナイロン6/610、ナイロン6/6T、ナイロン6I/6T等が挙げられる。
 本発明で使用するポリアミド樹脂(C)の含有量は、熱可塑性ポリエステルエラストマー(A)100質量部に対して、0.1~10質量部である。ポリアミド樹脂(C)が、上記範囲より多いと、熱可塑性ポリエステルエラストマー(A)の本来の特性が損なわれるおそれがあり、上記範囲未満では金型汚染成分となるポリカルボジイミド分解物のイソシアネート化合物の補足効果が発揮されないおそれがある。ポリアミド樹脂(C)の含有量は、熱可塑性ポリエステルエラストマー(A)100質量部に対して、1~7質量部が好ましく、2~5質量部がより好ましい。
 本発明で使用するポリアミド樹脂(C)は、アミン価が50~2000eq/tであることが必要である。アミン価50eq/t未満の場合、金型汚染成分となるポリカルボジイミド分解物のイソシアネート化合物の補足効果が弱い。アミン価2000eq/tよりも大きい場合、熱可塑性ポリエステルエラストマー(A)の加水分解が生じ、機械的特性に影響を与えることがある。アミン価は、70~1000eq/tであることが好ましく、100~700eq/tであることがより好ましく、100~550eq/tであることがさらに好ましい。
 本発明におけるポリエステルエラストマー樹脂組成物は、酸価が5eq/tより大きくかつ20eq/t以下であることが必要である。酸価が20eq/tよりも大きい場合、140℃以上の高温環境下では、グリース中の尿素化合物の作用により加水分解し、機械特性を著しく低下させる傾向がある。酸価が5eq/t以下の場合、ポリカルボジイミドが過剰に含まれるため、過剰量のポリカルボジイミドが成形時に分解して金型汚染成分となるイソシアネート化合物が多量に発生し、ポリアミド樹脂(C)によるイソシアネート化合物の補足効果が不十分となり、著しく金型汚染性に悪化させるおそれがある。酸価は、5.5eq/t~19.5eq/tであることが好ましく、6eq/t~19.0eq/tであることがより好ましい。
 本発明におけるポリエステルエラストマー樹脂組成物は、還元粘度が2.0~3.5dl/gであることが好ましい。より好ましくは、2.1~3.0dl/gであり、より好ましくは、2.2~2.9dl/gである。還元粘度が上記範囲よりも小さい場合、樹脂組成物としての耐熱老化性が不十分であり、目的とする耐グリース性能が得られない傾向がある。還元粘度が上記範囲より大きい場合は、成形加工性、特に射出成形時のフローマークなど成形品の外観不良が生じやすい傾向がある。
 ポリエステルエラストマー樹脂組成物の酸価および還元粘度を上記の範囲とするためには、上記の増粘剤を用いる方法が簡便であるが、この方法には限定されず、例えば固相重合する方法も採用することができる。固相重合は公知の方法が採用されるが、例えば、熱可塑性ポリエステルエラストマーの融点より20~40℃低い温度で不活性気体流通下もしくは減圧下でペレットを静置もしくは流動させつつ重縮合反応を進行させて高粘度化する方法が挙げられる。
 本発明の樹脂組成物には、芳香族アミン系、ヒンダードフェノール系、リン系、硫黄系などの汎用の酸化防止剤を配合することが好ましい。これらは2種以上を併用してもよい。本発明の樹脂組成物に用いられる芳香族アミン系酸化防止剤の具体例としては、フェニルナフチルアミン、4,4’-ジメトキシジフェニルアミン、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン、および4-イソプロポキシジフェニルアミンなどが挙げられる。
 ヒンダードフェノール系酸化防止剤としては、汎用の化合物が使用可能であるが、N,N’-ヘキサメチレン-ビス(3,5-ジ-t-ブチル-4-ヒドロキシヒドロ桂皮酸アミド)、テトラキス[メチレン-3(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタンのような分子量が500以上のものが、高温雰囲気下で揮散しにくいことから好ましい。
 リン系酸化防止剤としては、リン酸、亜リン酸、次亜リン酸誘導体、フェニルホスホン酸、ポリホスホネート、ジホスファイト系化合物などのリンを含む化合物が挙げられる。具体例としては、トリフェニルホスファイト、ジフェニルデシルホスファイト、フェニルジイソデシルホスファイト、トリ(ノニルフェニル)ホスファイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト等が挙げられる。
 硫黄系酸化防止剤としては、チオエーテル系、ジチオ酸塩系、メルカプトベンズイミダゾール系、チオカルバニリド系、チオジプロピオンエステル系などの硫黄を含む化合物が挙げられる。具体例としては、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート、ジドデシルチオジプロピオネート、ジテトラデシルチオジプロピオネート、ジオクタデシルチオジプロピオネート、ペンタエリスリトールテトラキス(3-ドデシルチオプロピオネート)、チオビス(N-フェニル-β-ナフチルアミン)、2-メルカプトベンゾチアゾール、2-メルカプトベンゾイミダゾール、テトラメチルチウラムモノサルファイド、テトラメチルチウラムジサルファイド、ニッケルジブチルジチオカルバメート、ニッケルイソプロピルキサンテート、トリラウリルトリチオホスファイト等が挙げられる。特に、チオエーテル構造を有するチオエーテル系酸化防止剤は、酸化された物質から酸素を受け取って還元するため、好適に使用することができる。
 上記の各酸化防止剤の配合量は、いずれも熱可塑性ポリエステルエラストマー(A)100質量部に対して0.01~3質量部が好ましく、より好ましくは0.05~2質量部、さらに好ましくは0.1~1質量部である。
 本発明に用いるポリエステルエラストマー樹脂組成物の組成、及び組成比を決定する方法としては、試料を重クロロホルム等の溶剤に溶解して測定するH-NMRのプロトン積分比から算出することも可能である。
 さらに本発明の樹脂組成物に耐候性を必要とする場合は、紫外線吸収剤および/またはヒンダードアミン系化合物を添加することが好ましい。例えば、ベンゾフェノン系、ベンゾトリアゾール系、トリアゾール系、ニッケル系、サリチル系の光安定剤が使用可能である。添加量は、樹脂組成物の質量基準で、0.1%以上5%以下であることが好ましい。
 本発明のポリエステルエラストマー樹脂組成物には、その他各種の添加剤を配合することができる。添加剤としては、上記以外の樹脂、無機フィラー、安定剤、及び老化防止剤を本発明の特徴を損なわない範囲で添加することができる。また、その他の添加剤として、着色顔料、無機、有機系の充填剤、カップリング剤、タック性向上剤、クエンチャー、金属不活性化剤等の安定剤、難燃剤等を添加することもできる。これら各種添加剤の配合量は、合計で、熱可塑性ポリエステルエラストマー(A)100質量部に対して20質量部以下であることが好ましく、10質量部以下であることがより好ましい。
 本発明のポリエステルエラストマー樹脂組成物は、熱可塑性ポリエステルエラストマー(A)、脂環族ポリカルボジイミド化合物及び/又は脂肪族ポリカルボジイミド化合物(B)、及びポリアミド樹脂(C)の合計で、全体の70質量%以上を占めることが好ましく、より好ましくは全体の80質量%、さらにより好ましくは全体の90質量%以上を占める。
 本発明のポリエステルエラストマー樹脂組成物は、上記のように構成されているので、後記する実施例の項に記載の耐グリース性を評価する熱老化試験において、140℃、300時間熱処理後の引張伸度が、200%以上であるという特徴を有する。この引張伸度は、実施例の項に記載の通り、JIS K6251:2010に準じて測定した切断時伸びである。
 また、本発明のポリエステルエラストマー樹脂組成物は、上記のように構成されているので、後記する実施例の項に記載の耐グリース性を評価する屈曲疲労性試験において、130℃雰囲気下でのデマッチャ破断回数(破断に至るまでの回数)が、400万回以上であるという特徴を有する。
 本発明の効果を実証するために以下に実施例を挙げるが、本発明はこれらの実施例によって何ら限定されるものではない。なお、実施例に記載された各測定値は、以下の方法によって測定した。
融点:
 セイコー電子工業株式会社製の示差走査熱量分析計「DSC220型」を使用した。具体的には、測定試料5mgをアルミパンに入れ、蓋を押さえて密封し、窒素中で250℃で2分間溶融した後、降温速度20℃/分で50℃まで降温し、さらに50℃から250℃まで20℃/分で昇温し、サーモグラム曲線を測定した。得られたサーモグラム曲線から、融解による、吸熱ピークを求め、これを融点とした。
還元粘度(dl/g):
 充分乾燥したポリエステルエラストマー樹脂組成物0.02gをフェノール/テトラクロロエタン(質量比6/4)の混合溶媒10mlに溶解し、ウベローゼ粘度計で30℃で還元粘度を測定した。
酸価(eq/ton):
 試料0.2gを精秤し、20mlのクロロホルムに溶解し、0.01Nの水酸化カリウム(エタノール溶液)で滴定して、酸価を求めた。指示薬にはフェノールフタレインを用いた。
アミン価(eq/ton):
 試料3gを秤量し、m-クレゾール80mlに溶解させて溶液を調製した。この溶液について、京都電子工業社製「AT-500N」を用い、滴定液として0.05mol/lの過塩素酸メタノール溶液を用いて電位差適定法により滴定を行なった。滴定結果をKOHのmgに換算することにより、アミン価を求めた。
相対粘度:
 ポリアミド樹脂の相対粘度の測定方法は、一般的に、溶解に使用する溶剤の種類により、メタクレゾール、96%硫酸、及び90%ギ酸の三種類の溶剤による方法があるが、本発明におけるポリアミド樹脂(C)の相対粘度は、98%硫酸溶液(ポリアミド樹脂濃度1g/dl、温度25℃)で測定した。
 実施例で使用した原料は下記の通りである。
熱可塑性ポリエステルエラストマー(A):
(ポリエステルエラストマーA1)
 特開平9-59491号公報に記載の方法により、テレフタル酸/1,4-ブタンジオール/ポリオキシテトラメチレングリコール(PTMG:数平均分子量1500)が100/88/12(モル比)の熱可塑性ポリエステルエラストマーを製造して、これをポリエステルエラストマーA1とした。
 このポリエステルエラストマーA1の融点は197℃、還元粘度は1.86dl/g、酸価は38eq/tであった。
(ポリエステルエラストマーA2)
 特開平9-59491号公報に記載の方法により、テレフタル酸/1,4-ブタンジオール/ポリオキシテトラメチレングリコール(PTMG:数平均分子量2000)が100/90/10(モル比)の熱可塑性ポリエステルエラストマーを製造して、これをポリエステルエラストマーA2とした。
 このポリエステルエラストマーA2の融点は205℃、還元粘度は2.15dl/g、酸価は35eq/tであった。
(ポリエステルエラストマーA3)
 ポリエステルエラストマーA1を真空状態で190℃、20時間処理して、これをポリエステルエラストマーA3とした。
 このポリエステルエラストマーA3の融点は201℃、還元粘度は2.86dl/g、酸価は21eq/tであった。
(ポリエステルエラストマーA4)
 数平均分子量30000を有するポリブチレンテレフタレート(PBT)100質量部と数平均分子量10000を有する(1,6-ヘキサンジオールからなる)ポリカーボネートジオール43質量部を230℃~245℃、130Pa下で1時間撹拌し、樹脂が透明になったことを確認し、内容物を取り出し、冷却し、ポリエステルエラストマーA4とした。
 このポリエステルエラストマーA4の融点は、212℃、還元粘度は、1.20dl/g、酸価は、44eq/tであった。
脂環族ポリカルボジイミド化合物及び/又は脂肪族ポリカルボジイミド化合物(B):
・脂環族ポリカルボジイミド化合物(B1):カルボジライトLA-1(日清紡社製、カルボジイミド価:4050eq/ton、イソシアネート基のモル比15:2)
・脂環族ポリカルボジイミド化合物(B2):カルボジライトHMV-15CA(日清紡社製、カルボジイミド価:3820eq/ton、イソシアネート基失活)
ポリアミド樹脂(C):
・ポリアミド樹脂(C1):ポリアミド6(相対粘度2.6、アミン価26eq/ton)
・ポリアミド樹脂(C2):ポリアミドMXD6(相対粘度1.8、アミン価136eq/ton)
・ポリアミド樹脂(C3):ポリアミド6/66/12(相対粘度1.3、アミン価490eq/ton)
[その他の添加剤]
離型剤:
 リコワックスE(クラリアント社製)
芳香族アミン系酸化防止剤:
 ノンフレックスDCD(大内新興化学社製)(4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン)
ヒンダードフェノール系酸化防止剤:
 Irganox1010(BASF社製)
ヒンダードフェノール系酸化防止剤:
 Irganox1098(BASF社製)
硫黄系酸化防止剤:
 ラスミットLG(第一工業製薬社製)(ジラウリルチオジプロピオネート)
実施例1~8、比較例1~3
 表1に記載の配合組成に従って熱可塑性ポリエステルエラストマー100質量部に対して各種添加剤を、二軸スクリュー式押出機を用いて240℃で溶融混練した後、ペレット化して、実施例1~8及び比較例1~3のペレットを得た。これらのペレットを用いて、以下の評価を行った。結果を表1に示す。
[耐グリース性評価試験方法]
 増稠剤として尿素化合物を含有するグリース(レアマックスSLF)を用いて、以下の屈曲疲労試験および熱老化試験で評価した。
[屈曲疲労性試験]
 デマッチャ屈曲き裂試験機BE-102(テスター産業株式会社製)を用い、以下の所定の試験片について、130℃の雰囲気下で、チャック間を75mmと19mmにする繰り返し屈曲を300回/分の速度で実施し、破断に至るまでの回数にて耐屈曲疲労性を評価した。試験片としては、シリンダー温度240℃、金型温度50℃で作製した射出成形品(幅20mm、長さ100mm、厚さ3.6mm、ヒンジ部R2.4)を用いた。なお、耐グリース性を確認するために、試験片の裏面にグリース3gを塗布した状態で試験を行った。
[熱老化試験]
 シリンダー温度240℃、金型温度50℃で作製した射出成形品(幅100mm、長さ100mm、厚み2.0mm)の樹脂の流動方向に対し、直角方向にJIS3号ダンベル形状に打ち抜き、試験片を作製した。試験片の片面にグリース3gを塗布した状態で、140℃の熱風乾燥機で300時間アニールし、その後、JIS K6251:2010に準じて引張伸度(切断時伸び)を測定した。
[金型汚染評価]
 電動射出成形機EC-100N(東芝成形機械製)を使用して、シリンダー温度300℃、金型温度50℃、射出8秒、冷却10秒、100×100×1mmt金型(材質STVAX)で成形し、下記の指標で判断した。
×:500shot未満で金型への貼り付きが発生。
○:500shot以上でも金型への貼り付き無し。
 ここで、金型への貼り付きとは、射出成形後に成形品が固定側に貼り付き、成形品を自動に取り出すことができない状態を示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、本発明の範囲内である実施例1~8はいずれも、耐グリース性と金型汚染性の両方に優れる。これに対して、ポリアミド樹脂(C)のアミン価が低すぎる比較例1は、金型汚染性に著しく劣り、耐グリース性にも劣る。ポリエステル樹脂組成物の酸価が低すぎる比較例2は、金型汚染性に著しく劣る。ポリエステル樹脂組成物の酸価が高すぎる比較例3は、耐グリース性に著しく劣る。
 本発明のポリエステルエラストマー樹脂組成物は、高温環境下での耐グリース性にも優れるのみならず、長期連続使用において、金型汚染が少なく、生産性に優れるため、耐屈曲疲労性、耐熱老化性、耐油性、耐グリース性などが高いレベルで要求される用途で、140℃を超える過酷な環境下においても使用可能な成形品を得ることができる。

Claims (6)

  1.  芳香族ジカルボン酸と脂肪族及び/又は脂環族ジオールとを構成成分とするポリエステルからなるハードセグメントと、脂肪族ポリエーテル、脂肪族ポリエステル、及び脂肪族ポリカーボネートから選ばれる少なくとも1種のソフトセグメントが結合されてなる熱可塑性ポリエステルエラストマー(A)、脂環族ポリカルボジイミド化合物及び/又は脂肪族ポリカルボジイミド化合物(B)、及びアミン価50~2000eq/tのポリアミド樹脂(C)を、(A)100質量部に対して(B)0.1~5質量部、(C)0.1~10質量部の割合で含有するポリエステルエラストマー樹脂組成物であって、ポリエステルエラストマー樹脂組成物の酸価が5eq/tより大きくかつ20eq/t以下であることを特徴とするポリエステルエラストマー樹脂組成物。
  2.  ポリカルボジイミド化合物(B)が、熱可塑性ポリエステルエラストマー(A)の末端カルボキシ基量を1とした場合、カルボジイミド官能基量が0.3~1.5当量となるような量で配合されている、請求項1に記載のポリエステルエラストマー樹脂組成物。
  3.  芳香族アミン系酸化防止剤、ヒンダードフェノール系酸化防止剤、イオウ系酸化防止剤、及びリン系酸化防止剤から選ばれる少なくとも1種の酸化防止剤をさらに含有し、前記酸化防止剤を、熱可塑性ポリエステルエラストマー(A)100質量部に対して0.01~3質量部の割合で含有する、請求項1または2に記載のポリエステルエラストマー樹脂組成物。
  4.  ポリエステルエラストマー樹脂組成物の還元粘度が、2.0~3.5dl/gである、請求項1~3のいずれかに記載のポリエステルエラストマー樹脂組成物。
  5.  ポリエステルエラストマー樹脂組成物に尿素化合物含有グリースを塗布した状態での140℃、300時間熱処理後の引張伸度が、200%以上である、請求項1~4のいずれかに記載のポリエステルエラストマー樹脂組成物。
  6.  熱可塑性ポリエステルエラストマー樹脂(A)のソフトセグメントが、脂肪族ポリエーテルである、請求項1~5のいずれかに記載のポリエステルエラストマー樹脂組成物。
PCT/JP2018/006914 2017-02-28 2018-02-26 金型汚染性が改善されたポリエステルエラストマー樹脂組成物 WO2018159521A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018516884A JP6406476B1 (ja) 2017-02-28 2018-02-26 金型汚染性が改善されたポリエステルエラストマー樹脂組成物
US16/468,404 US11059968B2 (en) 2017-02-28 2018-02-26 Polyester elastomer resin composition having improved mold fouling
KR1020197025304A KR102165345B1 (ko) 2017-02-28 2018-02-26 금형 오염성이 개선된 폴리에스테르 엘라스토머 수지 조성물
CN201880013776.3A CN110366578B (zh) 2017-02-28 2018-02-26 模具污染性得到改善的聚酯弹性体树脂组合物
EP18760672.8A EP3591006B1 (en) 2017-02-28 2018-02-26 Polyester elastomer resin composition having improved mold fouling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017035850 2017-02-28
JP2017-035850 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159521A1 true WO2018159521A1 (ja) 2018-09-07

Family

ID=63371022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006914 WO2018159521A1 (ja) 2017-02-28 2018-02-26 金型汚染性が改善されたポリエステルエラストマー樹脂組成物

Country Status (6)

Country Link
US (1) US11059968B2 (ja)
EP (1) EP3591006B1 (ja)
JP (1) JP6406476B1 (ja)
KR (1) KR102165345B1 (ja)
CN (1) CN110366578B (ja)
WO (1) WO2018159521A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020033463A (ja) * 2018-08-30 2020-03-05 アロン化成株式会社 熱可塑性エラストマー組成物
JP2021066845A (ja) * 2019-10-28 2021-04-30 日清紡ケミカル株式会社 相溶化剤及びポリエステル樹脂組成物
WO2023037959A1 (ja) * 2021-09-07 2023-03-16 東洋紡株式会社 導管および熱可塑性ポリエステルエラストマー樹脂組成物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102082420B1 (ko) * 2018-12-06 2020-02-27 주식회사 삼양사 장기 내열성이 향상된 폴리아미드 수지 조성물
CN111393617B (zh) * 2019-11-29 2023-01-24 开滦(集团)有限责任公司 一种性能可调控的热塑性聚酯弹性体及其制备方法
CN113527870B (zh) * 2021-08-09 2023-08-29 河源市可顺绝缘材料有限公司 一种快速结晶自粘料、自粘绝缘线及其制备方法
EP4190851A1 (de) * 2021-12-01 2023-06-07 LANXESS Deutschland GmbH Polyamid basierte erzeugnisse

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959491A (ja) 1995-08-17 1997-03-04 Toyobo Co Ltd 熱可塑性ポリエステルエラストマー組成物
JPH09235508A (ja) * 1996-02-29 1997-09-09 Nisshinbo Ind Inc 水性プレコートメタル用塗料
JPH11323109A (ja) 1998-03-10 1999-11-26 Du Pont Toray Co Ltd ポリエステルエラストマ樹脂組成物
JPH11323110A (ja) 1998-03-10 1999-11-26 Du Pont Toray Co Ltd ポリエステルエラストマ樹脂組成物
JP3714747B2 (ja) 1995-11-16 2005-11-09 Nok株式会社 自動車等速ジョイントブーツ用樹脂組成物および自動車等速ジョイントブーツ成形品
JP2009263648A (ja) * 2008-03-31 2009-11-12 Wintech Polymer Ltd ポリブチレンテレフタレート樹脂組成物及び燃料チューブ
JP2012107155A (ja) 2010-11-19 2012-06-07 Toyobo Co Ltd ポリエステルエラストマー組成物及びそれからなる成形品
WO2014050961A1 (ja) * 2012-09-27 2014-04-03 東洋紡株式会社 照明器具部品用ポリエステル樹脂組成物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306262A (ja) * 1993-04-23 1994-11-01 Teijin Ltd ポリエステルエラストマー組成物
US5856104A (en) 1996-10-28 1999-01-05 Affymetrix, Inc. Polymorphisms in the glucose-6 phosphate dehydrogenase locus
JP5640740B2 (ja) * 2010-12-28 2014-12-17 東洋紡株式会社 熱可塑性ポリエステル樹脂組成物および発泡成形体
JP6525126B2 (ja) * 2014-03-11 2019-06-05 東レ・デュポン株式会社 熱可塑性ポリエステルエラストマ樹脂組成物の製造方法
JP6582984B2 (ja) * 2014-06-19 2019-10-02 東洋紡株式会社 熱可塑性ポリエステルエラストマー組成物
CN106338418B (zh) 2015-07-02 2021-07-20 生捷科技控股公司 分配和混合试剂的系统和方法
JP6361819B2 (ja) * 2016-02-09 2018-07-25 東洋紡株式会社 耐グリース性に優れたポリエステルエラストマー樹脂組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959491A (ja) 1995-08-17 1997-03-04 Toyobo Co Ltd 熱可塑性ポリエステルエラストマー組成物
JP3714747B2 (ja) 1995-11-16 2005-11-09 Nok株式会社 自動車等速ジョイントブーツ用樹脂組成物および自動車等速ジョイントブーツ成形品
JPH09235508A (ja) * 1996-02-29 1997-09-09 Nisshinbo Ind Inc 水性プレコートメタル用塗料
JPH11323109A (ja) 1998-03-10 1999-11-26 Du Pont Toray Co Ltd ポリエステルエラストマ樹脂組成物
JPH11323110A (ja) 1998-03-10 1999-11-26 Du Pont Toray Co Ltd ポリエステルエラストマ樹脂組成物
JP2009263648A (ja) * 2008-03-31 2009-11-12 Wintech Polymer Ltd ポリブチレンテレフタレート樹脂組成物及び燃料チューブ
JP2012107155A (ja) 2010-11-19 2012-06-07 Toyobo Co Ltd ポリエステルエラストマー組成物及びそれからなる成形品
WO2014050961A1 (ja) * 2012-09-27 2014-04-03 東洋紡株式会社 照明器具部品用ポリエステル樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3591006A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020033463A (ja) * 2018-08-30 2020-03-05 アロン化成株式会社 熱可塑性エラストマー組成物
JP2021066845A (ja) * 2019-10-28 2021-04-30 日清紡ケミカル株式会社 相溶化剤及びポリエステル樹脂組成物
WO2021085050A1 (ja) * 2019-10-28 2021-05-06 日清紡ケミカル株式会社 相溶化剤及びポリエステル樹脂組成物
CN114585685A (zh) * 2019-10-28 2022-06-03 日清纺化学株式会社 相容剂和聚酯树脂组合物
CN114585685B (zh) * 2019-10-28 2023-11-03 日清纺化学株式会社 相容剂和聚酯树脂组合物
WO2023037959A1 (ja) * 2021-09-07 2023-03-16 東洋紡株式会社 導管および熱可塑性ポリエステルエラストマー樹脂組成物

Also Published As

Publication number Publication date
CN110366578B (zh) 2021-07-06
EP3591006A1 (en) 2020-01-08
JP6406476B1 (ja) 2018-10-17
KR102165345B1 (ko) 2020-10-13
EP3591006A4 (en) 2020-11-04
JPWO2018159521A1 (ja) 2019-03-14
KR20190104243A (ko) 2019-09-06
CN110366578A (zh) 2019-10-22
EP3591006B1 (en) 2021-05-26
US20190300699A1 (en) 2019-10-03
US11059968B2 (en) 2021-07-13

Similar Documents

Publication Publication Date Title
JP6406476B1 (ja) 金型汚染性が改善されたポリエステルエラストマー樹脂組成物
JP6304448B2 (ja) ブロー成形用ポリエステルエラストマ樹脂組成物
JP6361819B2 (ja) 耐グリース性に優れたポリエステルエラストマー樹脂組成物
JP4114117B2 (ja) ポリエステルエラストマ樹脂組成物
JP6588273B2 (ja) 熱可塑性ポリエステルエラストマ樹脂組成物
JP6052547B2 (ja) 耐熱熱可塑性エラストマー樹脂組成物
JP6620893B2 (ja) ポリエステルエラストマー樹脂組成物
JP6525126B2 (ja) 熱可塑性ポリエステルエラストマ樹脂組成物の製造方法
JP4114118B2 (ja) ポリエステルエラストマ樹脂組成物
JP6429005B2 (ja) ブロー成形用ポリエステルエラストマ樹脂組成物
JP6582985B2 (ja) 熱可塑性ポリエステルエラストマー組成物
JP2020152893A (ja) 熱可塑性ポリエステルエラストマ樹脂組成物および成形体
WO2022209605A1 (ja) 熱可塑性ポリエステルエラストマー、かかるエラストマーを含有する樹脂組成物、及びそれらから得られる成形品
JP2000191891A (ja) ポリエステルエラストマ樹脂組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018516884

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760672

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197025304

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018760672

Country of ref document: EP

Effective date: 20190930