WO2018159213A1 - 制御装置、該制御装置に搭載された基板、及び該制御装置が適用された真空ポンプ - Google Patents

制御装置、該制御装置に搭載された基板、及び該制御装置が適用された真空ポンプ Download PDF

Info

Publication number
WO2018159213A1
WO2018159213A1 PCT/JP2018/003629 JP2018003629W WO2018159213A1 WO 2018159213 A1 WO2018159213 A1 WO 2018159213A1 JP 2018003629 W JP2018003629 W JP 2018003629W WO 2018159213 A1 WO2018159213 A1 WO 2018159213A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
board
control
power
substrate
Prior art date
Application number
PCT/JP2018/003629
Other languages
English (en)
French (fr)
Inventor
深美 英夫
由雅 江澤
佐藤 光
智優 小川
泰 舘野
Original Assignee
エドワーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エドワーズ株式会社 filed Critical エドワーズ株式会社
Priority to CN201880014023.4A priority Critical patent/CN110300854A/zh
Publication of WO2018159213A1 publication Critical patent/WO2018159213A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/048Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps comprising magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring

Definitions

  • the present invention relates to a control device, a board mounted on the control device, and a vacuum pump to which the control device is applied.
  • the heat dissipation structure is simple, and the cost for replacing parts can be reduced.
  • the present invention relates to a control device that can be configured easily, and is easy to manufacture, a substrate mounted on the control device, and a vacuum pump to which the control device is applied.
  • a vacuum pump is generally used for evacuating the chamber.
  • a turbo molecular pump which is one of the vacuum pumps, is used frequently from the viewpoints of particularly low residual gas and easy maintenance.
  • turbo molecular pump not only evacuates the chamber, but also exhausts these process gases from the chamber. Also used. Furthermore, turbo molecular pumps are also used in equipment such as electron microscopes to prevent the refraction of the electron beam due to the presence of dust, etc., so that the environment in the chamber of the electron microscope or the like is brought into a highly vacuum state. Yes.
  • the turbo molecular pump includes a pump body and a control device that controls the pump body.
  • the pump body and the control device are usually connected by a cable and a connector plug mechanism.
  • the structure which integrated the pump main body and the control apparatus like the prior art document 1 is known. .
  • FIG. 4 An internal block diagram of this control device is shown in FIG.
  • the drive current amplifier 5 and the magnetic bearing levitation control 6 for each electromagnet of the magnetic bearing (Active Magnetic Bearing, hereinafter referred to as AMB) are mainly one sheet mainly because of functional separation and ease of design.
  • the drive current amplifier 7 and the rotational speed control 8 for the motor were carried by a single motor board 2.
  • the AMB board 1 and the motor board 2 transmit a signal to the user 4 or receive a command signal from the user via one interface board 3 including the user interface 9 and the I / O port 11. It was.
  • a power amplifying element including an FET and the like necessary for amplifying a driving current for each electromagnet and a weak electric element including a digital circuit and a sensor circuit for magnetic bearing levitation control were mounted on the same substrate.
  • the motor board 2 is mounted on the same board with a power amplifying element including an FET and the like necessary for driving current amplification for a three-phase motor and a weak electric element including a digital circuit and a sensor circuit for controlling the rotation of the motor. It was.
  • both the AMB substrate 1 and the motor substrate 2 generate heat, both the AMB substrate 1 and the motor substrate 2 are likely to break down. Since there are many cases of replacement in units of substrates in the event of a failure, it is necessary to always keep a certain quantity of both the AMB substrate 1 and the motor substrate 2 for replacement.
  • each of the AMB board 1 and the motor board 2 includes a drive current amplification element and a digital circuit or a low-power circuit of a sensor circuit on one board. In order to prevent noise from getting on the low-power circuit side, it is necessary to divide the areas of the power-related elements and the weak-power-related elements, and the substrate becomes larger accordingly.
  • the AMB substrate 1 and the motor substrate 2 are equipped with amplification elements such as FETs, it was necessary to widen the wiring pattern width according to the amount of current. In addition, due to the wide copper foil, the gap between the elements is increased, and the AMB substrate 1 and the motor substrate 2 are increased.
  • the present invention has been made in view of such a conventional problem, the heat dissipation structure is simple, the cost at the time of component replacement can be reduced, and a control device that can be configured as a smaller pump than ever, and is easy to manufacture, It is an object of the present invention to provide a substrate mounted on the control device and a vacuum pump to which the control device is applied.
  • the present invention is an invention of a control device, comprising a power board on which a driving current amplifier for a magnetic bearing for passing a current to a magnetic bearing and a driving current amplifier for a motor for flowing a current to a motor are mounted;
  • a control board responsible for levitation control by magnetic bearings and rotation speed control of the motor, and a housing for housing the control board and the power board are provided.
  • the drive control for magnetic bearings and motors has been grouped into two types of boards: a board that requires power and a board that requires light electricity, compared to a board that is finely separated from the functional aspect. For this reason, the number of substrates to be accommodated is smaller than in the prior art, and the design can be reduced. In addition, the number of connectors crossing between the boards is reduced, so that the size can be reduced.
  • the layout has been complicated because it has been conventionally necessary to arrange the substrate in the control device in consideration of heat radiation.
  • heat radiation can be concentrated and the layout is simple and the workability is improved.
  • the board can be easily attached and the length of the cable can be minimized.
  • the present invention is an invention of a control device, wherein the control board further includes a user interface for monitoring and controlling the status of the magnetic bearing and the motor, and communication between the user and the user interface.
  • the transmission part which performs is characterized by the above-mentioned.
  • the present invention (Claim 3) is an invention of a control device, characterized in that a heat dissipating means is interposed between the power board and the housing.
  • the heat dissipation means includes a heat sink and a heat dissipation sheet. Since there is only one place to install the heat dissipation means, the heat dissipation can be concentrated and the layout is simple and the workability is improved.
  • the present invention is an invention of a control device, wherein the height of at least one electronic element mounted on the control board is within a maximum height range among the electronic elements mounted on the power board. A part or all of this is included.
  • ⁇ Layout can be designed so that parts between boards do not interfere. Therefore, the height of the control device can be kept low. As a result, the height of the conventional control device can be kept low together with the fact that the number of substrates, which is the effect of claim 1, can be reduced.
  • the present invention (Claim 5) is an invention of a control device, characterized in that the control board is supported inside the casing via a positioning means.
  • the control board is supported by positioning means such as a rod erected from the housing. For this reason, it is possible to perform the work of attaching the board or the connector while the operator confirms with the eyes with the housing lid opened.
  • the assembly is one way. Therefore, attachment work is easy and the length of the cable can be minimized.
  • the present invention is an invention of a control device, wherein the thickness of the copper foil forming the wiring pattern of the power board is 35 ⁇ m or more.
  • the power element can be mounted at a higher density than before by narrowing the width of the copper foil of the wiring pattern and increasing the thickness of the copper foil.
  • the present invention is an invention of a control device, wherein an electric current of 200 mA or more is passed through the electronic element mounted on the power board, while the electronic element mounted on the control board is A current of less than 200 mA is passed.
  • the present invention is an invention of a power board, which is mounted on the control device according to any one of Claims 1 to 7 and includes a power element.
  • the present invention is an invention of a control board, and is mounted on the control device according to any one of Claims 1 to 7, and includes a control including at least one of a digital circuit and a sensor circuit. It is characterized by having a weak electric element of the system.
  • the present invention is an invention of a vacuum pump, and is characterized by applying the control device according to any one of Claims 1 to 7.
  • FIG. 1 shows a configuration diagram of an embodiment of the present invention.
  • a turbo molecular pump 10 includes a pump body 100 and a control device 200 that are integrated. However, even if the pump main body 100 and the control device 200 are separated, the present embodiment can be applied.
  • An intake port 101 is formed at the upper end of the cylindrical outer cylinder 127 of the pump body 100.
  • a rotating body 103 On the inner side of the outer cylinder 127, there is provided a rotating body 103 in which a plurality of rotating blades 102a, 102b, 102c,... By turbine blades for sucking and exhausting gas are formed radially and in multiple stages.
  • a rotor shaft 113 is attached to the center of the rotating body 103, and the rotor shaft 113 is levitated and supported in the air by a so-called 5-axis control magnetic bearing.
  • the upper radial electromagnet 104 is configured such that four electromagnets are paired with an X axis and a Y axis that are the radial coordinate axes of the rotor shaft 113 and are orthogonal to each other.
  • An upper radial sensor 107 composed of four electromagnets is provided adjacent to and corresponding to the upper radial electromagnet 104.
  • the upper radial sensor 107 is configured to detect a radial displacement of the rotating body 103 and send it to the control device 200.
  • excitation of the upper radial electromagnet 104 is controlled through a compensation circuit having a PID adjustment function based on the displacement signal detected by the upper radial sensor 107, and the upper radial position of the rotor shaft 113 is determined. adjust.
  • the rotor shaft 113 is formed of a high permeability material (such as iron) and is attracted by the magnetic force of the upper radial electromagnet 104. Such adjustment is performed independently in the X-axis direction and the Y-axis direction.
  • the lower radial electromagnet 105 and the lower radial sensor 108 are arranged in the same manner as the upper radial electromagnet 104 and the upper radial sensor 107, and the lower radial position of the rotor shaft 113 is set to the upper radial position. It is adjusted in the same way.
  • axial electromagnets 106A and 106B are arranged with a disk-shaped metal disk 111 provided at the lower part of the rotor shaft 113 sandwiched up and down.
  • the metal disk 111 is made of a high permeability material such as iron.
  • An axial sensor 109 is provided to detect the axial displacement of the rotor shaft 113, and the axial displacement signal is sent to the control device 200.
  • the excitation of the axial electromagnets 106A and 106B is controlled via a compensation circuit having a PID adjustment function of the control device 200 based on the axial displacement signal.
  • the axial electromagnet 106A and the axial electromagnet 106B attract the metal disk 111 upward and downward by magnetic force.
  • control device 200 appropriately adjusts the magnetic force exerted on the metal disk 111 by the axial electromagnets 106A and 106B, and causes the rotor shaft 113 to magnetically float in the axial direction and hold the space in a non-contact manner. ing.
  • the motor 121 includes a plurality of magnetic poles arranged circumferentially so as to surround the rotor shaft 113. Each magnetic pole is controlled by the control device 200 so as to rotationally drive the rotor shaft 113 through electromagnetic force acting between the rotor shaft 113 and the magnetic pole.
  • a plurality of stationary blades 123a, 123b, 123c,... are arranged with a small gap from the rotor blades 102a, 102b, 102c,.
  • the rotor blades 102a, 102b, 102c,... are each inclined at a predetermined angle from a plane perpendicular to the axis of the rotor shaft 113 in order to transfer exhaust gas molecules downward by collision.
  • the fixed blades 123 are also formed to be inclined at a predetermined angle from a plane perpendicular to the axis of the rotor shaft 113, and are arranged alternately with the stages of the rotary blades 102 toward the inside of the outer cylinder 127. ing. And one end of the fixed wing
  • the fixed blade spacer 125 is a ring-shaped member, and is made of, for example, a metal such as aluminum, iron, stainless steel, copper, or an alloy containing these metals as a component.
  • the outer cylinder 127 is fixed to the outer periphery of the fixed blade spacer 125 with a slight gap.
  • a base portion 129 is disposed at the bottom of the outer cylinder 127, and a threaded spacer 131 is disposed between the lower portion of the fixed blade spacer 125 and the base portion 129.
  • An exhaust port 133 is formed below the threaded spacer 131 in the base portion 129 and communicates with the outside.
  • the threaded spacer 131 is a cylindrical member made of metal such as aluminum, copper, stainless steel, iron, or an alloy containing these metals as a component, and a plurality of spiral thread grooves 131a are formed on the inner peripheral surface thereof. It is marked.
  • the direction of the spiral of the thread groove 131 a is a direction in which molecules of the exhaust gas move toward the exhaust port 133 when the molecules of the exhaust gas move in the rotation direction of the rotating body 103.
  • a rotating blade 102d is suspended from the lowermost part of the rotating body 103 following the rotating blades 102a, 102b, 102c.
  • the outer peripheral surface of the rotary blade 102d is cylindrical and projects toward the inner peripheral surface of the threaded spacer 131, and is close to the inner peripheral surface of the threaded spacer 131 with a predetermined gap. Yes.
  • the base portion 129 is a disk-like member that constitutes the base portion of the turbo molecular pump 10, and is generally made of a metal such as iron, aluminum, or stainless steel.
  • the base part 129 physically holds the turbo molecular pump 10 and also has a function of a heat conduction path, a metal having rigidity such as iron, aluminum and copper and high thermal conductivity is used. Is desirable.
  • Exhaust gas sucked from the intake port 101 passes between the rotary blade 102 and the fixed blade 123 and is transferred to the base portion 129. At this time, the temperature of the rotor blades 102 increases due to frictional heat generated when the exhaust gas contacts or collides with the rotor blades 102, conduction or radiation of heat generated by the motor 121, etc. It is transmitted to the fixed wing 123 side by conduction with gas molecules of the exhaust gas.
  • the fixed blade spacers 125 are joined to each other at the outer peripheral portion, and heat received by the fixed blade 123 from the rotor blade 102, frictional heat generated when exhaust gas contacts or collides with the fixed blade 123, and the like are used for the outer cylinder 127 and the screw. This is transmitted to the attached spacer 131.
  • the exhaust gas transferred to the threaded spacer 131 is sent to the exhaust port 133 while being guided by the screw groove 131a.
  • FIG. 2 An internal block diagram of the control device 200 is shown in FIG.
  • a drive current amplifier 5 including an FET as a switching element for causing a current to flow to each of the electromagnets 104, 105, 106 of the magnetic bearing on the power substrate 21 constituted by one substrate.
  • a drive current amplifier 7 including an FET as a switching element for causing a current to flow to the three-phase motor 121.
  • the drive current amplifier 5 corresponds to a magnetic bearing drive current amplifier
  • the drive current amplifier 7 corresponds to a motor drive current amplifier.
  • the power substrate 21 includes current amplification and driving electronic elements (power elements) that require a current of 200 mA or more. A current of about 10 amperes flows through the power element when the motor 121 is accelerated.
  • control board 23 composed of one board, a magnetic bearing levitation composed of a digital circuit (including a CPU and a DSP (Digital Signal Processor)) and a weak electric element including a sensor circuit is provided.
  • a weak electric element including a digital circuit (including a CPU and a DSP) and a sensor circuit necessary for the control 6 and the rotational speed control 8 for the motor 121 is mounted.
  • a user interface 9 and an I / O port 11 made of weak electric elements are also mounted, and signals are exchanged with the user 4.
  • the user interface 9 monitors the states of the magnetic bearings 104, 105, 106 and the motor 121 and performs notification control for the user 4.
  • the control board 23 is a collection of control electronic elements (weak current elements) in which a weak current of less than 200 mA flows.
  • the power board 21 is fixed to the casing 12 of the control device 200 via a heat dissipation sheet 24. Thereby, the heat generated in the power board 21 is transmitted to the outside through the casing 12 and is naturally cooled. That is, the housing 12 plays a role as a heat sink.
  • the conventional board arrangement of FIGS. 4 and 5 requires two sheets of the AMB board 1, the motor board 2, and the interface board 3.
  • two boards of the power board 21 and the control board 23 are used. Just do it.
  • the number of substrates to be accommodated is smaller than in the prior art, and the control device 200 can be designed to be small.
  • the number of connectors is reduced, and the size can be reduced accordingly.
  • the power board 21 needs to be dissipated, and only one heat dissipating sheet 24 is sufficient.
  • the two substrates of the AMB substrate 1 and the motor substrate 2 including the power element are likely to break down due to heat, and it is necessary to prepare these two types of substrates for replacement.
  • the power element is included only in the power board 21, only the power board 21 has heat and thus has a short life and easily breaks down. Therefore, only one type of substrate of the power substrate 21 is prepared for replacement. Since only one type of substrate needs to be mass-produced, repair costs can be reduced.
  • control board 23 Since the control board 23 generates a small amount of heat and is not affected by heat, the life of the board is long and there is almost no failure. Natural air cooling is sufficient. Further, conventionally, since it has been necessary to arrange the two boards of the AMB board 1 and the motor board 2 in the control device in consideration of heat radiation, the layout is difficult. Since there is only one place to install, heat radiation can be concentrated, layout is simple, and workability is improved.
  • the control board 23 is supported by a rod (not shown) erected from the housing 12. For this reason, it is possible to perform the work of attaching the board and the connector while the operator confirms with the eye with the case lid 14 opened.
  • the assembly is one way. Therefore, the installation work is easy and the length of the cable can be minimized.
  • the height of the circuit is, for example, within the range of the height of the element 25 mounted on the power board 21 as shown in FIG. A part or all of the height of the element 26 mounted on the control board 23 can be included. That is, the layout can be designed so that components between the boards do not interfere. Therefore, the height of the control device 200 can be kept low. As a result, the height of the conventional control device 200 can be reduced to less than half, in addition to the fact that the size can be reduced by reducing the number of the substrates described above.
  • the two substrates of the AMB substrate 1 and the motor substrate 2 were mounted with elements that require electric power, so the width of the copper foil of the wiring pattern was wide.
  • the control board 23 of this embodiment since the amount of current flowing through the board is small, the width of the copper foil of the wiring pattern can be narrowed. For this reason, electronic devices that can be mounted can be mounted at high density.
  • the width of the copper foil of the wiring pattern was narrowed and the thickness of the copper foil was increased. That is, the thickness of the conventional copper foil is 18 ⁇ m and the width is wide. In this embodiment, the thickness of the copper foil is 35 ⁇ m and the width is narrow. In this way, power elements can be mounted at a higher density than before.
  • the user interface 9 and the I / O port 11 are described as being mounted on the control board 23, but the user interface 9 and the I / O port 11 may be different from the control board 23. Good. Even in this case, there is almost no heat generation from the user interface 9 and the I / O port 11, so that the heat dissipation sheet can be concentrated at only one place on the power board 21. For this reason, the control apparatus 200 can be designed smaller than before. In this case, the substrate can be supported by the rod in the same manner as the control substrate 23. For this reason, it is possible to perform the work of attaching the board and the connector while the operator confirms with the eye with the case lid 14 opened. The assembly is one way. Therefore, the installation work is easy and the length of the cable can be minimized.
  • control device, power board, control board, and vacuum pump according to the present invention can be applied to an all-blade type vacuum pump in addition to the composite type vacuum pump described above. Moreover, you may make it the structure which combines embodiment and each modification of this invention as needed.
  • the present invention can be variously modified without departing from the spirit of the present invention, and the present invention naturally extends to the modified ones.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

【課題】放熱構造が簡素で部品交換時のコストを低減出来、これまでよりも小型のポンプに構成できる一方で製造の容易な制御装置、該制御装置に搭載された基板、及び該制御装置が適用された真空ポンプを提供する。 【解決手段】 1枚のパワー基板21上には磁気軸受の電磁石104等に対し電流を流すためのFETを含む駆動電流増幅器5と三相のモータ121に対し電流を流すためのFETを含む駆動電流増幅器7とが搭載されている。一方、1枚の制御基板23上には、磁気軸受浮上制御のためのディジタル回路やセンサ回路を含む弱電素子からなる磁気軸受浮上制御6と、モータ121に対する回転速度制御8に必要なディジタル回路やセンサ回路を含む弱電素子が搭載されている。パワー素子の含まれているのがパワー基板21のみなのでこのパワー基板21のみが熱のため寿命が短く故障し易い。パワー基板21は筐体12に対し放熱シート24を介して固着されている。

Description

制御装置、該制御装置に搭載された基板、及び該制御装置が適用された真空ポンプ
 本発明は制御装置、該制御装置に搭載された基板、及び該制御装置が適用された真空ポンプに係わり、特に放熱構造が簡素で部品交換時のコストを低減出来、これまでよりも小型のポンプに構成できる一方で製造の容易な制御装置、該制御装置に搭載された基板、及び該制御装置が適用された真空ポンプに関する。
 近年のエレクトロニクスの発展に伴い、メモリや集積回路といった半導体の需要が急激に増大している。
 これらの半導体は、きわめて純度の高い半導体基板に不純物をドープして電気的性質を与えたり、エッチングにより半導体基板上に微細な回路を形成したりなどして製造される。
 そして、これらの作業は空気中の塵等による影響を避けるため高真空状態のチャンバ内で行われる必要がある。このチャンバの排気には、一般に真空ポンプが用いられているが、特に残留ガスが少なく、保守が容易等の点から真空ポンプの中の一つであるターボ分子ポンプが多用されている。
 また、半導体の製造工程では、さまざまなプロセスガスを半導体の基板に作用させる工程が数多くあり、ターボ分子ポンプはチャンバ内を真空にするのみならず、これらのプロセスガスをチャンバ内から排気するのにも使用される。
 さらに、ターボ分子ポンプは、電子顕微鏡等の設備において、粉塵等の存在による電子ビームの屈折等を防止するため、電子顕微鏡等のチャンバ内の環境を高度の真空状態にするのにも用いられている。
 このターボ分子ポンプは、ポンプ本体とそのポンプ本体を制御する制御装置とからなる。
 ポンプ本体と制御装置との間は、通常、ケーブルとコネクタプラグ機構とで接続される。また、このポンプ本体と制御装置間のケーブルの接続ミスやケーブルの長さ調整の煩雑さを回避するため、従来特許文献1のようにポンプ本体と制御装置を一体化した構造が知られている。
 この制御装置の内部ブロック図を図4に示す。
 図4に示すように従来は主に機能面の分離や設計のし易さから磁気軸受(Active Magnetic Bearing 以下、AMBと略す)の各電磁石に対する駆動電流増幅器5と磁気軸受浮上制御6は1枚のAMB基板1が担い、一方、モータに対する駆動電流増幅器7と回転速度制御8は1枚のモータ基板2が担っていた。そして、このAMB基板1とモータ基板2とはユーザインターフェイス9とI/Oポート11を含む1枚のインターフェイス基板3を介してユーザ4に対して信号を送信したりユーザからの指令信号を受けるようになっていた。
 ここに、AMB基板1には各電磁石に対する駆動電流増幅に必要なFET等を含む電力増幅素子と磁気軸受浮上制御のためのディジタル回路やセンサ回路を含む弱電素子とが同じ基板に搭載されていた。また、モータ基板2には三相のモータに対する駆動電流増幅に必要なFET等を含む電力増幅素子とモータの回転制御のためのディジタル回路やセンサ回路を含む弱電素子とが同じ基板に搭載されていた。
特開2007-32535号公報
 しかしながら、上記のように機能面から回路を分離した場合、AMB基板1とモータ基板2の両方に駆動電流増幅の素子が存在しているため、それぞれの基板における素子が発する発熱量が大きく、AMB基板1とモータ基板2の両方に対してそれぞれ放熱対策を施す必要があった。このため、AMB基板1とモータ基板2とには、図4及び図5の基板配置図に示すように双方共に筐体12に接する放熱シート13と筐体蓋14に接する放熱シート15を配置するスペースが必要であった。
 そして、筐体蓋14を閉じる際には、人が内部の状況を目視で確認できないため、素子同士が互いに衝突しないように図5に点線で示すように素子同士がそれぞれの基板のエリアを超えて高さ方向に突出しないように余裕をもって配置されていた。この点は、インターフェイス基板3も間に存在するためより一層の高さ方向の余裕が必要であった。従って、制御装置の筐体としては大きくならざるを得なかった。また、筐体蓋14を閉じる際には、人が内部の状況を目視で確認できないため、組み立て作業の際には基板間ケーブルに遊びが必要であった。
 また、このように、AMB基板1とモータ基板2とは双方共に熱を発生するため、AMB基板1とモータ基板2は共に故障し易かった。故障の際には基板単位に交換することが多いので、交換用にAMB基板1とモータ基板2の両方を一定数量常に在庫確保する必要があった。
 更に、AMB基板1とモータ基板2のそれぞれには、駆動電流増幅の素子とディジタル回路やセンサ回路の弱電回路とが1枚の基板上に混在しているが、駆動電流増幅の素子で発生したノイズが弱電回路側に乗らないように電力系の素子と弱電系の素子のエリアの棲み分けをする必要があり、その分基板が大きくなっていた。
 更に、AMB基板1とモータ基板2とにはFET等の増幅用の素子が搭載されているため、電流量に応じて配線パターン幅を広くする必要があった。また、この幅の広い銅箔のために各素子間の隙間が大きくなりAMB基板1とモータ基板2が大きくなっていた。
 本発明はこのような従来の課題に鑑みてなされたもので、放熱構造が簡素で部品交換時のコストを低減出来、これまでよりも小型のポンプに構成できる一方で製造の容易な制御装置、該制御装置に搭載された基板、及び該制御装置が適用された真空ポンプを提供することを目的とする。
 このため本発明(請求項1)は制御装置の発明であって、磁気軸受に電流を流す磁気軸受用駆動電流増幅器とモータに電流を流すモータ用駆動電流増幅器とを搭載したパワー基板と、前記磁気軸受による浮上制御と前記モータの回転速度制御を担う制御基板と、該制御基板と前記パワー基板とを収納する筐体とを備えて構成した。
 従来、磁気軸受とモータに対する駆動制御について機能面から基板を細かく分離していたのに比べて、電力の必要な基板と弱電で済む基板の2種類の基板としてまとめた。このため、従来よりも収納する基板の枚数が減り小型に設計できる。また、基板間を渡るコネクタの本数も少なくなり、その分でも小型に設計できる。
 放熱の必要なのはパワー基板だけであり、放熱シートは1枚で足りる。パワー基板のみが熱のため寿命が短く故障し易い。従って、交換のために用意しておく基板はこのパワー基板の1種類の基板だけで済む。1種類の基板だけを量産すればよいため、修理コストも低減できる。制御基板については発熱量は少なく熱に影響されることもないため、基板の寿命は長く故障はほとんどしない。自然空冷で十分である。
 また、従来は放熱を考慮した形で基板を制御装置内に配置する必要があったのでレイアウトが複雑であったが、本発明では放熱を集中できレイアウトが簡単で作業性もよくなった。基板の取り付け作業が容易でありケーブルの長さも必要最低限で済む。
 また、本発明(請求項2)は制御装置の発明であって、前記制御基板には、更に、前記磁気軸受と前記モータの状態を監視し通知制御するユーザーインターフェイスと、ユーザとの間で通信を行う伝送部を含むことを特徴とする。
 更に、本発明(請求項3)は制御装置の発明であって、前記パワー基板と前記筐体との間には放熱手段が介在されたことを特徴とする。
 放熱手段にはヒートシンクや放熱シートを含む。放熱手段を設置する箇所が1箇所だけなので放熱を集中できレイアウトが簡単で作業性もよくなった。
 更に、本発明(請求項4)は制御装置の発明であって、前記パワー基板に搭載された電子素子のうち最大高さの範囲内に前記制御基板に搭載された少なくとも1つの電子素子の高さの一部若しくは全てが含まれることを特徴とする。
 基板間の部品は干渉しないようにレイアウトを設計できる。従って、制御装置の高さを低く抑えることができる。その結果、請求項1の効果である基板の枚数を減らせたことで小型化できた点と併せて従来の制御装置の高さを低く抑えることが出来る。
 更に、本発明(請求項5)は制御装置の発明であって、前記制御基板が前記筐体の内部に位置決め手段を介して支持されたことを特徴とする。
 制御基板は、例えば筐体より立設されたロッド等の位置決め手段により支持される。このため、筐体蓋は開けた状態で作業員が目で確認しつつ基板やコネクタの取り付け作業ができる。組み立ては一方向である。従って、取り付け作業が容易でありケーブルの長さも必要最低限で済む。
 更に、本発明(請求項6)は制御装置の発明であって、前記パワー基板の配線パターンを形成する銅箔の厚みが35μm以上であることを特徴とする。
 パワー基板については、配線パターンの銅箔の幅を狭く、かつ銅箔の厚みを厚くすることで従来よりもパワー素子を高密度に搭載できる。
 更に、本発明(請求項7)は制御装置の発明であって、前記パワー基板に搭載された電子素子には200mA以上の電流が流され、一方、前記制御基板に搭載された電子素子には200mA未満の電流が流されることを特徴とする。
 更に、本発明(請求項8)はパワー基板の発明であって、請求項1~7のいずれか1項に記載の制御装置に搭載され、パワー素子を含むことを特徴とする。
 更に、本発明(請求項9)は制御基板の発明であって、請求項1~7のいずれか1項に記載の制御装置に搭載され、ディジタル回路及びセンサー回路のいずれか少なくとも一方を含む制御系の弱電素子を有することを特徴とする。
 更に、本発明(請求項10)は真空ポンプの発明であって、請求項1~7のいずれか1項に記載の制御装置を適用したことを特徴とする。
 以上説明したように本発明(請求項1)によれば、磁気軸受に電流を流す磁気軸受用駆動電流増幅器とモータに電流を流すモータ用駆動電流増幅器とを搭載したパワー基板と、磁気軸受による浮上制御とモータの回転速度制御を担う制御基板とに分離したので、従来よりも収納する基板の枚数が減り小型に設計できる。放熱の必要なのはパワー基板だけであり、放熱シートは1枚で足りる。パワー基板のみが熱のため寿命が短く故障し易い。従って、交換のために用意しておく基板はこのパワー基板の1種類の基板だけで済む。
 また、従来は放熱を考慮した形で基板を制御装置内に配置する必要があったのでレイアウトが複雑であったが、本発明では放熱を集中できレイアウトが簡単で作業性もよくなった。
本発明の実施形態の全体構成図 制御装置の内部ブロックを基板構成と共に示した図 制御装置の内部の基板の配置を示す図 制御装置の内部ブロックを基板構成と共に示した図(従来) 制御装置の内部の基板の配置を示す図(従来)
 以下、本発明の実施形態について説明する。本発明の実施形態の構成図を図1に示す。
図1において、ターボ分子ポンプ10は、ポンプ本体100と制御装置200とが一体化されている。但し、ポンプ本体100と制御装置200とは分離されていても本実施形態の適用は可能である。
 ポンプ本体100の円筒状の外筒127の上端には吸気口101が形成されている。外筒127の内方には、ガスを吸引排気するためのタービンブレードによる複数の回転翼102a、102b、102c・・・を周部に放射状かつ多段に形成した回転体103を備える。
 この回転体103の中心にはロータ軸113が取り付けられており、このロータ軸113は、例えば、いわゆる5軸制御の磁気軸受により空中に浮上支持かつ位置制御されている。
 上側径方向電磁石104は、4個の電磁石が、ロータ軸113の径方向の座標軸であって互いに直交するX軸とY軸とに対をなして配置されている。この上側径方向電磁石104に近接かつ対応されて4個の電磁石からなる上側径方向センサ107が備えられている。この上側径方向センサ107は回転体103の径方向変位を検出し、制御装置200に送るように構成されている。
 制御装置200においては、上側径方向センサ107が検出した変位信号に基づき、PID調節機能を有する補償回路を介して上側径方向電磁石104の励磁を制御し、ロータ軸113の上側の径方向位置を調整する。
 ロータ軸113は、高透磁率材(鉄など)などにより形成され、上側径方向電磁石104の磁力により吸引されるようになっている。かかる調整は、X軸方向とY軸方向とにそれぞれ独立して行われる。
 また、下側径方向電磁石105及び下側径方向センサ108が、上側径方向電磁石104及び上側径方向センサ107と同様に配置され、ロータ軸113の下側の径方向位置を上側の径方向位置と同様に調整している。
 更に、軸方向電磁石106A、106Bが、ロータ軸113の下部に備えた円板状の金属ディスク111を上下に挟んで配置されている。金属ディスク111は、鉄などの高透磁率材で構成されている。ロータ軸113の軸方向変位を検出するために軸方向センサ109が備えられ、その軸方向変位信号が制御装置200に送られるように構成されている。
 そして、軸方向電磁石106A、106Bは、この軸方向変位信号に基づき制御装置200のPID調節機能を有する補償回路を介して励磁制御されるようになっている。軸方向電磁石106Aと軸方向電磁石106Bは、磁力により金属ディスク111をそれぞれ上方と下方とに吸引する。
 このように、制御装置200は、この軸方向電磁石106A、106Bが金属ディスク111に及ぼす磁力を適当に調節し、ロータ軸113を軸方向に磁気浮上させ、空間に非接触で保持するようになっている。
 モータ121は、ロータ軸113を取り囲むように周状に配置された複数の磁極を備えている。各磁極は、ロータ軸113との間に作用する電磁力を介してロータ軸113を回転駆動するように、制御装置200によって制御されている。
 回転翼102a、102b、102c・・・とわずかの空隙を隔てて複数枚の固定翼123a、123b、123c・・・が配設されている。回転翼102a、102b、102c・・・は、それぞれ排気ガスの分子を衝突により下方向に移送するため、ロータ軸113の軸線に垂直な平面から所定の角度だけ傾斜して形成されている。
 また、固定翼123も、同様にロータ軸113の軸線に垂直な平面から所定の角度だけ傾斜して形成され、かつ外筒127の内方に向けて回転翼102の段と互い違いに配設されている。
 そして、固定翼123の一端は、複数の段積みされた固定翼スペーサ125a、125b、125c・・・の間に嵌挿された状態で支持されている。
 固定翼スペーサ125はリング状の部材であり、例えばアルミニウム、鉄、ステンレス、銅などの金属、又はこれらの金属を成分として含む合金などの金属によって構成されている。
 固定翼スペーサ125の外周には、わずかの空隙を隔てて外筒127が固定されている。外筒127の底部にはベース部129が配設され、固定翼スペーサ125の下部とベース部129の間にはネジ付きスペーサ131が配設されている。そして、ベース部129中のネジ付きスペーサ131の下部には排気口133が形成され、外部に連通されている。
 ネジ付きスペーサ131は、アルミニウム、銅、ステンレス、鉄、又はこれらの金属を成分とする合金などの金属によって構成された円筒状の部材であり、その内周面に螺旋状のネジ溝131aが複数条刻設されている。
 ネジ溝131aの螺旋の方向は、回転体103の回転方向に排気ガスの分子が移動したときに、この分子が排気口133の方へ移送される方向である。
 回転体103の回転翼102a、102b、102c・・・に続く最下部には回転翼102dが垂下されている。この回転翼102dの外周面は、円筒状で、かつネジ付きスペーサ131の内周面に向かって張り出されており、このネジ付きスペーサ131の内周面と所定の隙間を隔てて近接されている。
 ベース部129は、ターボ分子ポンプ10の基底部を構成する円盤状の部材であり、一般には鉄、アルミニウム、ステンレスなどの金属によって構成されている。
 ベース部129はターボ分子ポンプ10を物理的に保持すると共に、熱の伝導路の機能も兼ね備えているので、鉄、アルミニウムや銅などの剛性があり、熱伝導率も高い金属が使用されるのが望ましい。
 かかる構成において、回転翼102がモータ121により駆動されてロータ軸113と共に回転すると、回転翼102と固定翼123の作用により、吸気口101を通じてチャンバからの排気ガスが吸気される。
 吸気口101から吸気された排気ガスは、回転翼102と固定翼123の間を通り、ベース部129へ移送される。このとき、排気ガスが回転翼102に接触又は衝突する際に生ずる摩擦熱や、モータ121で発生した熱の伝導や輻射などにより、回転翼102の温度は上昇するが、この熱は、輻射又は排気ガスの気体分子等による伝導により固定翼123側に伝達される。
 固定翼スペーサ125は、外周部で互いに接合しており、固定翼123が回転翼102から受け取った熱や排気ガスが固定翼123に接触又は衝突する際に生ずる摩擦熱などを外筒127やネジ付きスペーサ131へと伝達する。
 ネジ付きスペーサ131に移送されてきた排気ガスは、ネジ溝131aに案内されつつ排気口133へと送られる。
 次に、制御装置200内の基板構成について説明する。
 制御装置200の内部ブロック図を基板構成と共に図2に示す。
 図2に示すように、1枚の基板で構成されるパワー基板21上には、磁気軸受の各電磁石104、105、106に対し電流を流すためのスイッチング素子としてのFETを含む駆動電流増幅器5と三相のモータ121に対し電流を流すためのスイッチング素子としてのFETを含む駆動電流増幅器7とが搭載されている。ここに、駆動電流増幅器5は磁気軸受用駆動電流増幅器に相当し、駆動電流増幅器7はモータ用駆動電流増幅器に相当する。
 即ち、パワー基板21には200mA以上の電流を必要とする電流増幅や駆動用の電子素子(パワー素子)がまとめられている。このパワー素子に対してはモータ121の加速時には10アンペア程度の電流が流される。
 一方、1枚の基板で構成される制御基板23上には、磁気軸受浮上制御のためのディジタル回路(CPUやDSP(Digital Signal Processor)を含む)やセンサ回路を含む弱電素子からなる磁気軸受浮上制御6と、モータ121に対する回転速度制御8に必要なディジタル回路(CPUやDSPを含む)やセンサ回路を含む弱電素子が搭載されている。そして、この制御基板23上には、弱電素子からなるユーザインターフェイス9とI/Oポート11も搭載されており、ユーザ4との間で信号の授受が行われるようになっている。
 ユーザインターフェイス9は磁気軸受104、105、106とモータ121の状態を監視しユーザ4に対して通知制御を行う。
 即ち、制御基板23には200mA未満の弱電電流の流れる制御系の電子素子(弱電素子)がまとめられている。
 また、制御装置200の内部の基板の配置を図3に示す。パワー基板21は制御装置200の筐体12に対し放熱シート24を介して固着されている。これにより、パワー基板21で発生をした熱は筐体12を伝って外部に放熱され自然空冷されている。即ち、筐体12が放熱板としての役割を担っている。
 かかる構成において、図4及び図5の従来の基板配置がAMB基板1とモータ基板2とインターフェイス基板3の3枚必要だったのに比べて本実施形態ではパワー基板21と制御基板23の2枚だけで済んでいる。このため、従来よりも収納する基板の枚数が減り制御装置200を小型に設計できる。また、コネクタの本数も少なくなり、その分も小型に設計できる。
 放熱の必要なのはパワー基板21だけであり、放熱シート24は1枚で足りる。従来は、パワー素子の含まれているAMB基板1とモータ基板2の2枚の基板が熱のため故障し易く交換のためにこれらの2種類の基板を用意する必要があった。これに対して本実施形態ではパワー素子の含まれているのがパワー基板21のみなのでこのパワー基板21のみが熱のため寿命が短く故障し易い。従って、交換のために用意しておく基板はこのパワー基板21の1種類の基板だけで済む。1種類の基板だけを量産すればよいため、修理コストも低減できる。
 制御基板23については発熱量は少なく熱に影響されることもないため、基板の寿命は長く故障はほとんどしない。自然空冷で十分である。
 また、従来は放熱を考慮した形でAMB基板1とモータ基板2の2枚の基板を制御装置内に配置する必要があったのでレイアウトが大変であったが、本実施形態では放熱シート24を設置する箇所が1箇所だけなので放熱を集中できレイアウトが簡単で作業性もよくなった。
 制御基板23は、筐体12より立設された図示しないロッドにより支持されている。このため、筐体蓋14は開けた状態で作業員が目で確認しつつ基板やコネクタの取り付け作業ができる。組み立ては一方向である。従って、取り付け作業が楽でケーブルの長さも必要最低限で済む。
 従って、従来のようにケーブルの長さに余裕を取ったがために、筐体の蓋を閉じる際に蓋と筐体の間にケーブルを挟み込んでしまい、なかなかケーブルを収納できないということは無くなる。
 また、このように作業員が目で確認しつつ取り付け作業ができるので、回路の高さは例えば、図3中に示すように、パワー基板21に搭載された素子25の高さの範囲内に制御基板23に搭載された素子26の高さの一部若しくは全てを含めることが出来る。即ち、基板間の部品は干渉しないようにレイアウトを設計できる。従って、制御装置200の高さを低く抑えることができる。その結果、前述の基板の枚数を減らせたことで小型化できた点と併せて従来の制御装置200の高さを半分以下に抑えることが出来ている。
 更に、従来は、AMB基板1とモータ基板2の2枚の基板は共に電力の必要な素子が搭載されていたがために配線パターンの銅箔の幅が広く構成されていた。これに対し本実施形態の制御基板23では基板を流れる電流量は小さいため配線パターンの銅箔の幅は狭くできる。このため、搭載できる電子素子は高密度に搭載できる。
 また、パワー基板21についても配線パターンの銅箔の幅を狭く、かつ銅箔の厚みを厚くした。即ち、従来の銅箔の厚みは18μmで幅が広かったのを本実施形態では銅箔の厚みが35μmで幅は狭く構成した。こうすることで従来よりもパワー素子を高密度に搭載できるようになった。
 なお、本実施形態ではユーザインターフェイス9とI/Oポート11は制御基板23に搭載するとして説明したが、このユーザインターフェイス9とI/Oポート11は制御基板23とは別の基板とされてもよい。この場合であってもユーザインターフェイス9とI/Oポート11からは発熱はほとんど無いので放熱シートはパワー基板21についての1箇所だけに集中できる。このため、従来よりも制御装置200を小型に設計できる。そして、この場合には基板は制御基板23と同様にロッドにより支持されることが可能である。このため、筐体蓋14は開けた状態で作業員が目で確認しつつ基板やコネクタの取り付け作業ができる。組み立ては一方向である。従って、取り付け作業が楽でケーブルの長さも必要最低限で済む。
 なお、本発明に係る制御装置、パワー基板、制御基板、真空ポンプは、上述した複合タイプの真空ポンプの他、全翼タイプの真空ポンプにも適用可能である。
 また、本発明の実施形態及び各変形例は、必要に応じて組み合わせる構成にしてもよい。また、本発明は、本発明の精神を逸脱しない限り種々の改変をなすことができ、そして、本発明が当該改変されたものにも及ぶことは当然である。
  1 AMB基板
  2 モータ基板
  3 インターフェイス基板
   4 ユーザ
   5、7 駆動電流増幅器
   6 磁気軸受浮上制御
   8 回転速度制御
  9 ユーザインターフェイス
 10 ターボ分子ポンプ
 11 I/Oポート
 12 筐体
 21 パワー基板
 23 制御基板
 24 放熱シート
100 ポンプ本体
104 上側径方向電磁石
105 下側径方向電磁石
106 軸方向電磁石
121 モータ
200 制御装置

Claims (10)

  1.  磁気軸受に電流を流す磁気軸受用駆動電流増幅器とモータに電流を流すモータ用駆動電流増幅器とを搭載したパワー基板と、
    前記磁気軸受による浮上制御と前記モータの回転速度制御を担う制御基板と、
    該制御基板と前記パワー基板とを収納する筐体とを備えたことを特徴とする制御装置。
  2.  前記制御基板には、更に、前記磁気軸受と前記モータの状態を監視し通知制御するユーザーインターフェイスと、
    ユーザとの間で通信を行う伝送部を含むことを特徴とする請求項1記載の制御装置。
  3.  前記パワー基板と前記筐体との間には放熱手段が介在されたことを特徴とする請求項1又は請求項2に記載の制御装置。
  4.  前記パワー基板に搭載された電子素子のうち最大高さの範囲内に前記制御基板に搭載された少なくとも1つの電子素子の高さの一部若しくは全てが含まれることを特徴とする請求項1~3のいずれか1項に記載の制御装置。
  5.  前記制御基板が前記筐体の内部に位置決め手段を介して支持されたことを特徴とする請求項1~4のいずれか1項に記載の制御装置。
  6.  前記パワー基板の配線パターンを形成する銅箔の厚みが35μm以上であることを特徴とする請求項1~5のいずれか1項に記載の制御装置。
  7.  前記パワー基板に搭載された電子素子には200mA以上の電流が流され、
    一方、前記制御基板に搭載された電子素子には200mA未満の電流が流されることを特徴とする請求項1~6のいずれか1項に記載の制御装置。
  8.  請求項1~7のいずれか1項に記載の制御装置に搭載され、パワー素子を含むことを特徴とするパワー基板。
  9.  請求項1~7のいずれか1項に記載の制御装置に搭載され、ディジタル回路及びセンサー回路のいずれか少なくとも一方を含む制御系の弱電素子を有することを特徴とする制御基板。
  10.  請求項1~7のいずれか1項に記載の制御装置を適用したことを特徴とする真空ポンプ。
PCT/JP2018/003629 2017-03-01 2018-02-02 制御装置、該制御装置に搭載された基板、及び該制御装置が適用された真空ポンプ WO2018159213A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880014023.4A CN110300854A (zh) 2017-03-01 2018-02-02 控制装置、搭载于该控制装置的基板以及应用了该控制装置的真空泵

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017038206A JP2018145803A (ja) 2017-03-01 2017-03-01 制御装置、該制御装置に搭載された基板、及び該制御装置が適用された真空ポンプ
JP2017-038206 2017-03-01

Publications (1)

Publication Number Publication Date
WO2018159213A1 true WO2018159213A1 (ja) 2018-09-07

Family

ID=63370761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003629 WO2018159213A1 (ja) 2017-03-01 2018-02-02 制御装置、該制御装置に搭載された基板、及び該制御装置が適用された真空ポンプ

Country Status (3)

Country Link
JP (1) JP2018145803A (ja)
CN (1) CN110300854A (ja)
WO (1) WO2018159213A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332526A (ja) * 2001-11-07 2003-11-21 Hitachi Ltd 電力変換装置
JP2010048169A (ja) * 2008-08-21 2010-03-04 Shimadzu Corp ターボ分子ポンプ
JP3195919U (ja) * 2014-11-28 2015-02-12 株式会社島津製作所 真空ポンプの制御装置、および真空ポンプ
JP2015172358A (ja) * 2014-03-12 2015-10-01 エドワーズ株式会社 真空ポンプの制御装置とこれを備えた真空ポンプ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5778166B2 (ja) * 2010-10-19 2015-09-16 エドワーズ株式会社 真空ポンプ
JP2012245915A (ja) * 2011-05-30 2012-12-13 Denso Corp 制御ユニット、および、これを用いた駆動装置
CN103047152B (zh) * 2011-10-17 2016-06-22 株式会社岛津制作所 真空泵
JP2013103535A (ja) * 2011-11-10 2013-05-30 Honda Elesys Co Ltd 電動パワーステアリング用電子制御ユニット
JP5414869B1 (ja) * 2012-10-03 2014-02-12 三菱電機株式会社 電動パワーステアリング装置
CN105526180A (zh) * 2016-01-29 2016-04-27 天津飞旋科技研发有限公司 磁悬浮复合分子泵

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332526A (ja) * 2001-11-07 2003-11-21 Hitachi Ltd 電力変換装置
JP2010048169A (ja) * 2008-08-21 2010-03-04 Shimadzu Corp ターボ分子ポンプ
JP2015172358A (ja) * 2014-03-12 2015-10-01 エドワーズ株式会社 真空ポンプの制御装置とこれを備えた真空ポンプ
JP3195919U (ja) * 2014-11-28 2015-02-12 株式会社島津製作所 真空ポンプの制御装置、および真空ポンプ

Also Published As

Publication number Publication date
CN110300854A (zh) 2019-10-01
JP2018145803A (ja) 2018-09-20

Similar Documents

Publication Publication Date Title
JP5778166B2 (ja) 真空ポンプ
KR101848529B1 (ko) 진공 펌프
JP2006344503A (ja) 端子構造及び真空ポンプ
JP2013100760A (ja) 一体型ターボ分子ポンプ
CN109790846B (zh) 真空泵及应用于该真空泵的防水构造、控制装置
JP2019078233A (ja) 真空ポンプ
JPWO2006068014A1 (ja) 端部間の接続構造及び該構造を適用した真空システム
KR20060096993A (ko) 로터축과 회전체와의 고정 구조 및 이 고정 구조를 갖는터보 분자 펌프
CN108506225B (zh) 电源一体型真空泵
JP2016145555A (ja) ターボ分子ポンプ装置
WO2018159213A1 (ja) 制御装置、該制御装置に搭載された基板、及び該制御装置が適用された真空ポンプ
JP5255752B2 (ja) ターボ分子ポンプ
JP2010048169A (ja) ターボ分子ポンプ
JP6912196B2 (ja) 真空ポンプ及び該真空ポンプに適用されるコネクタ、制御装置
JP7048214B2 (ja) 制御装置、該制御装置に搭載された基板、及び該制御装置が適用された真空ポンプ
JP7244328B2 (ja) 真空ポンプ及び該真空ポンプの制御装置
WO2022196559A1 (ja) 真空ポンプおよび排気システム
JP2005094852A (ja) モータ制御システム及び該モータ制御システムを搭載した真空ポンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18760320

Country of ref document: EP

Kind code of ref document: A1