WO2018159173A1 - ブレード、ブレードを備えたセーバソー、および、ブレードの製造方法 - Google Patents

ブレード、ブレードを備えたセーバソー、および、ブレードの製造方法 Download PDF

Info

Publication number
WO2018159173A1
WO2018159173A1 PCT/JP2018/002446 JP2018002446W WO2018159173A1 WO 2018159173 A1 WO2018159173 A1 WO 2018159173A1 JP 2018002446 W JP2018002446 W JP 2018002446W WO 2018159173 A1 WO2018159173 A1 WO 2018159173A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
diamond particles
substrate
longitudinal direction
nickel
Prior art date
Application number
PCT/JP2018/002446
Other languages
English (en)
French (fr)
Inventor
史一 平澤
晋 大島
Original Assignee
工機ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工機ホールディングス株式会社 filed Critical 工機ホールディングス株式会社
Priority to JP2019502512A priority Critical patent/JP6870730B2/ja
Publication of WO2018159173A1 publication Critical patent/WO2018159173A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D61/00Tools for sawing machines or sawing devices; Clamping devices for these tools
    • B23D61/12Straight saw blades; Strap saw blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27BSAWS FOR WOOD OR SIMILAR MATERIAL; COMPONENTS OR ACCESSORIES THEREFOR
    • B27B19/00Other reciprocating saws with power drive; Fret-saws
    • B27B19/02Saws with a power- driven blade chucked at both ends or at one end only, e.g. jig saws, scroll saws
    • B27B19/09Saws with a power- driven blade chucked at both ends or at one end only, e.g. jig saws, scroll saws portable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27BSAWS FOR WOOD OR SIMILAR MATERIAL; COMPONENTS OR ACCESSORIES THEREFOR
    • B27B33/00Sawing tools for saw mills, sawing machines, or sawing devices
    • B27B33/02Structural design of saw blades or saw teeth

Definitions

  • the present invention relates to a blade that can be attached to a saver saw, and a saver saw equipped with the blade.
  • the invention further relates to a method for manufacturing the blade.
  • a blade that can be attached to a saver saw is known (see Patent Document 1).
  • the blade portion of the blade has a curved shape.
  • a plurality of saw teeth are formed on the blade portion.
  • the blade reciprocates by the power from the saver saw.
  • the blade cuts the workpiece by reciprocation. Since the saw blade is curved, the portion of the saw blade that is farther from the saver saw is cut deeper into the workpiece. Thereby, it was possible to cut
  • the saver saw can use various types of blades depending on the application, and uses not only wood but also steel materials including castings, outer wall materials, concrete, and the like as materials to be cut.
  • steel material there is a cast iron pipe in which a mortar lining is formed. That is, in order to cut the cast iron pipe, it is necessary to cut both the mortar lining layer and the cast iron layer. Therefore, the conventional blade has a problem that it takes a long time to cut one predetermined workpiece such as a cast iron pipe.
  • the saw blade is consumed after only a few of them are cut, making subsequent cutting difficult. This is because the saw blade is consumed by the mortar lining. When the blade is worn out with such circumstances, the blade cannot be used for work. That is, the conventional blade has a problem that the life is shortened when a predetermined material to be cut such as a cast iron pipe is cut.
  • the present invention provides a blade that can be attached to a saver saw, capable of cutting a predetermined material in a short time while suppressing wear of the blade, a saver saw equipped with the blade, and a method for manufacturing the blade The purpose is to do.
  • the present invention comprises a substrate extending in a longitudinal direction and attachable to a saver saw, wherein the substrate includes a back portion extending in the longitudinal direction, and the back portion with respect to an opposing direction intersecting the longitudinal direction.
  • the blade portion includes a curved portion, and one end and the other end in the longitudinal direction, and the curved portion is provided between the one end and the other end,
  • the curved portion has a diamond layer which is curved so as to be closer to the back portion than a virtual straight line connecting the one end and the other end, and has a diamond layer formed by bonding a plurality of diamond particles to the curved portion. Offering blades.
  • the blade it is possible to increase the depth at which the portion of the curved portion away from the saver saw is cut into the material to be cut. Further, since the blade is formed by diamond particles having high hardness, the material to be cut can be effectively cut while suppressing the wear of the blade.
  • the substrate When the substrate is mounted on the saver saw, the substrate is reciprocated in the reciprocating direction by the saver saw, and the imaginary straight line preferably extends in a direction deviated by a predetermined acute angle from the reciprocating direction. .
  • the virtual straight line is deviated from the reciprocating direction, it is possible to ensure a long separation distance from the material to be cut at a position away from the saver saw in the curved portion by the reciprocating motion. This effectively cools the blade.
  • the blade portion has a length from the one end to the other end, and when the length is 100 mm or more and less than 200 mm, the maximum distance between the bending portion and the virtual straight line is 0.4 mm or more and 5 mm. When the length is 200 mm or more and less than 300 mm, the maximum distance is 1.5 mm or more and less than 9 mm, and when the length is 300 mm or more and less than 400 mm, the maximum distance is 3 mm or more. , Preferably less than 12 mm. According to such a blade, the curvature of the bending portion can be set appropriately.
  • the curved portion includes a side portion extending in the facing direction, a bottom portion orthogonal to the facing direction, and an inclined portion provided between the side portion and the bottom portion in a cross section in a plane perpendicular to the longitudinal direction.
  • the inclined portion is preferably connected to both the side portion and the bottom portion at an obtuse angle, and the plurality of diamond particles are preferably bonded to the side portion, the bottom portion, and the inclined portion.
  • the plurality of diamond particles adhered to the inclined portion are less likely to drop off than that at the bottom. For this reason, cutting performance can be maintained for a long time.
  • the area of the region where diamond particles contributing to cutting adhere is increased. As a result, the number of diamond particles contributing to cutting can be increased, and the diamond particles can be reliably bonded to these regions.
  • the length of the inclined portion is preferably a length equal to or greater than the particle diameter of the plurality of diamond particles. According to such a blade, diamond particles can be securely bonded to the inclined portion.
  • the substrate is provided with attachment portions that can be attached to the saver saw on each of the one end side and the other end side. According to such a blade, it is possible to perform a cutting operation by attaching each attachment portion to a saver saw. As a result, the life of the overall blade can be extended.
  • the plurality of diamond particles preferably have a particle size of 180 ⁇ m or more and less than 600 ⁇ m. According to such a blade, the material to be cut can be efficiently cut.
  • the plurality of diamond particles preferably have a particle size of 300 ⁇ m or more and less than 425 ⁇ m. According to such a blade, a material to be cut such as a cast iron pipe can be efficiently cut.
  • a sufficient space between the nickel layer surface and the diamond layer surface can be secured, and the diamond can be firmly held, so that the dropout can be reduced. It is possible to suppress clogging of the material to be cut.
  • the substrate further includes a coating layer applied to surfaces of the diamond layer, and the plurality of diamonds each have a particle size larger than the sum of the maximum thickness of the nickel layer and the thickness of the coating layer. Is preferred. According to such a blade, it is possible to secure a sufficient space between the coating layer surface and the diamond layer surface and to suppress clogging of the material to be cut into the space.
  • the present invention also provides the blade, the drive unit, a power conversion mechanism that converts the rotational force of the drive unit into a reciprocating drive force, and a mounting unit to which the blade is mounted, the blade being driven There is provided a saver saw having a mounting portion reciprocated by force.
  • the present invention is a substrate extending in a longitudinal direction, the substrate having a back portion extending in the longitudinal direction and a blade portion facing the back portion in an opposing direction different from the longitudinal direction, A bending portion and one end and the other end in the longitudinal direction, the bending portion is provided between the one end and the other end, and the bending portion connects the one end and the other end.
  • Prepare the substrate curved so as to be closer to the back than the imaginary straight line attach a nickel bond containing a nickel alloy to the blade, attach a plurality of diamond particles to the nickel bond, and heat the nickel bond.
  • a diamond layer is formed by adhering the substrate and the plurality of diamond particles.
  • the thickness of the adhesive layer formed of the nickel sheet can be adjusted appropriately.
  • the nickel bond is a thin plate-shaped nickel sheet, the nickel sheet is attached to the blade portion using an adhesive, the plurality of diamond particles are attached to the nickel sheet using an adhesive, and the nickel bond is attached. It is preferable to form a diamond layer by bonding the substrate and the plurality of diamond particles by heating and melting. According to such a manufacturing method, the thickness of the adhesive layer formed of the nickel sheet can be appropriately adjusted, and an adhesive layer having a uniform thickness can be formed.
  • the blade of the present invention it is possible to increase the depth at which a portion of the curved portion away from the saver saw is cut into the workpiece. Further, since the blade is formed by diamond particles having high hardness, the material to be cut can be effectively cut while suppressing the wear of the blade.
  • FIG. 3 is a partially enlarged cross-sectional view of the blade according to the embodiment of the present invention along the III-III plane shown in FIG.
  • FIG. 3 is a partially enlarged cross-sectional view of a blade according to an embodiment of the present invention along the III-III plane shown in FIG.
  • FIG. 3 is a partially enlarged cross-sectional view of the blade according to the embodiment of the present invention along the III-III plane shown in FIG. 2 and is a diagram for explaining the relationship between diamond particles and an adhesive layer.
  • the saver saw 1 is an electric reciprocating cutting tool for cutting wood, steel materials, outer wall materials, concrete, pipes, etc. (material to be cut). As shown in FIGS. 1 and 2, the saver saw 1 includes a housing 2, a motor 3, a gear portion 6, a blade mounting portion 7, a battery pack P, and a trigger 22 ⁇ / b> A.
  • FIG. 1 is a sectional side view showing the internal structure of the saver saw 1.
  • FIG. 1 In the following description, “up” shown in FIG. 1 is defined as an upward direction, “down” is defined as a downward direction, “front” is defined as a forward direction, and “rear” is defined as a backward direction. Further, when the saver saw 1 is viewed from the rear, “right” is defined as the right direction, and “left” is defined as the left direction.
  • the front-rear direction is an example of the “reciprocating direction” in the present invention.
  • the housing 2 accommodates a motor 3, a gear portion 6, and a blade mounting portion 7.
  • the motor 3 is a DC brushless motor that is driven by electric power supplied from the battery pack P.
  • the motor 3 includes a rotation shaft portion 31 that can extend and rotate in the front-rear direction and a pinion 32.
  • the rotating shaft portion 31 is rotatably supported by the housing 2.
  • the pinion 32 is provided at the front end portion of the rotating shaft portion 31.
  • the motor 3 rotates or stops according to the operation of the trigger 22A by the operator.
  • the gear portion 6 is a mechanism that is interposed between the motor 3 and the blade mounting portion 7 and converts the rotational motion of the rotary shaft portion 31 into reciprocating motion in the front-rear direction.
  • the gear unit 6 includes a bevel gear 61 and a plunger 63.
  • the gear unit 6 is an example of the “power conversion mechanism” in the present invention.
  • the bevel gear 61 meshes with the pinion 32 of the motor 3.
  • the bevel gear 61 has a vertical rotation axis orthogonal to the rotation axis of the rotation shaft portion 31 of the motor 3.
  • the bevel gear 61 has a pin 62.
  • the pin 62 has a substantially cylindrical shape extending in the vertical direction. A lower portion of the pin 62 is fixed at a position eccentric with respect to the rotation axis of the bevel gear 61. The upper part of the pin 62 protrudes upward from the upper surface of the bevel gear 61.
  • the plunger 63 has a substantially cylindrical shape extending in the front-rear direction, and is supported in the housing 2 so as to be able to reciprocate.
  • the plunger 63 is provided with a pin guide 64. Further, the plunger 63 moves integrally with the pin guide 64 in the front-rear direction.
  • the pin guide 64 is provided at the rear portion of the plunger 63, and a guide groove 64a extending in the left-right direction and recessed upward is formed in the lower portion of the pin guide 64.
  • the width of the guide groove 64a in the front-rear direction is configured to be slightly larger than the diameter of the pin 62, and the upper portion of the pin 62 is accommodated in the guide groove 64a via a needle bearing.
  • the pin 62 is restricted from moving in the front-rear direction relative to the pin guide 64 and is allowed to move in the left-right direction.
  • the blade mounting portion 7 is provided in front of the plunger 63 and configured to be able to mount the blade 5 at the front end.
  • the blade mounting portion 7 includes a pair of holders 171 and positioning protrusions 172 provided to face each other in the vertical direction.
  • Each holder 171 is a wall extending in the front-rear direction, and a mounting portion 80 (described later) of the blade 5 can be attached thereto.
  • the positioning protrusion 172 protrudes from the left side wall of the blade mounting portion 7 to the right side. When the blade 5 is attached to the holder 171, the protrusion 172 positions the blade 5, and the holder 171 restricts the vertical movement of the blade 5, thereby fixing the blade 5 to the holder 171.
  • the worker attaches the blade 5 to the blade attaching portion 7.
  • the motor 3 starts to be driven.
  • the rotating shaft part 31 and the pinion 32 rotate, and the bevel gear 61 that meshes with the pinion 32 rotates around the rotating shaft that extends in the vertical direction.
  • the pin 62 performs a revolving motion around the rotation axis of the bevel gear 61 on a surface perpendicular to the vertical direction.
  • the blade 5 has a blade portion 52 formed of diamond 91 (described later).
  • the relationship between the blade 5 and the front-rear and left-right directions is the same as that of FIG.
  • the blade 5 includes a substrate 15.
  • the substrate 15 has a main body portion 50 and an attachment portion 80.
  • the attachment portion 80 has an upper surface 81 and a lower surface 82 that are parallel to the front-rear direction, and a base end surface 84 that is parallel to the vertical direction. Further, a through hole 83 is formed in the attachment portion 80. That is, the upper surface 81 and the lower surface 82 are parallel to the front-rear direction, that is, parallel to the reciprocating direction of the blade 5 when the blade 5 is attached to the saver saw 1.
  • the attachment portion 80 is attached to the blade attachment portion 7, the blade 5 is disposed such that the upper surface 81 and the lower surface 82 are along the holder 171 of the saver saw 1. Thereby, the vertical movement of the blade 5 is restricted.
  • the positioning protrusion 172 is inserted into the through hole 83 formed in the attachment portion 80.
  • the blade 5 is fixed to the holder 171 by the holder 171 and the positioning protrusion 172.
  • the main body portion 50 extends in the longitudinal direction and includes a back portion 51 and a blade portion 52.
  • the longitudinal direction is inclined downward from the front-rear direction by an angle ⁇ 1 from the attachment portion 80 toward the main body portion 50. That is, the longitudinal direction coincides with the horizontal direction in FIG.
  • the angle ⁇ 1 is an acute angle, and is set, for example, in a range greater than 0 degree and less than or equal to 10 degrees. That is, the angle between the direction in which the attachment portion 80 extends and the longitudinal direction of the main body 50 slightly inclined from the direction is ⁇ 1.
  • the back part 51 and the blade part 52 are opposed to a direction orthogonal to the longitudinal direction (hereinafter referred to as an orthogonal direction).
  • the blade portion 52 has a proximal end 53, a distal end 54, and a curved portion 55.
  • the bending portion 55 is provided between the proximal end 53 and the distal end 54.
  • a virtual straight line IL1 connecting the base end 53 and the front end 54 is inclined at an angle ⁇ 1 from the front-rear direction.
  • the virtual straight line IL1 is inclined downward at an angle ⁇ 1 with respect to the front direction (the direction from the base end 53 toward the tip 54).
  • the virtual straight line IL1 is parallel to the longitudinal direction. Note that the virtual straight line IL1 may be parallel to the front-rear direction.
  • the curved portion 55 is curved so as to be closer to the back portion 51 than the virtual straight line IL1. That is, the surface of the curved portion 55 has a substantially arc shape that is recessed from the proximal end 53 and the distal end 54 toward the back portion 51.
  • the length L1 is a distance from the proximal end 53 to the distal end 54.
  • the distance d1 is the maximum distance in the orthogonal direction from the virtual straight line IL1 to the bending portion 55.
  • the distance d1 is a distance in the orthogonal direction to the position of the virtual straight line IL1 and the bending portion 55 closest to the back portion 51 (more specifically, the back portion 51 in the orthogonal direction).
  • the distance d1 is the distance between the midpoint in the longitudinal direction of the curved portion 55 and the midpoint between the base end 53 and the tip 54 on the virtual extension straight line IL1.
  • the curved portion 55 is formed so that the location where the distance between the curved portion 55 and the virtual straight line IL1 is the maximum is the midpoint in the longitudinal direction of the curved portion 55.
  • the curved portion 55 may be formed so that the distance between the curved portion 55 and the imaginary straight line IL1 is maximized at a location other than the midpoint in the longitudinal direction, such as the proximal end 53 side or the distal end 54 side. Good.
  • the distance d1 when the length L1 is 100 mm or more and less than 200 mm, the distance d1 is 0.4 mm or more and less than 5 mm. Or when length L1 is 200 mm or more and less than 300 mm, distance d1 is 1.5 mm or more and less than 9 mm. When the length L1 is 300 mm or more and less than 400 mm, the distance d1 is 3 mm or more and less than 12 mm.
  • FIG. 3 is a cross-sectional view of the main part of the main body 50 taken along a plane orthogonal to the longitudinal direction.
  • the blade part 52 has side parts 71 and 75 extending in the orthogonal direction, a bottom part 73 extending in the left-right direction, and inclined parts 72 and 74.
  • the side parts 71 and 75 are provided on the side surface of the main body part 50 below the center part in the vertical direction (more precisely, on the side opposite to the back part 51), and are provided in the range of 3 mm to 5 mm from the bottom part 73.
  • the inclined portion 72 is provided so as to connect the side portion 71 and the bottom portion 73, and is connected to the side portion 71 and the bottom portion 73 at an obtuse angle.
  • the inclined portion 74 is provided so as to connect the side portion 75 and the bottom portion 73, and is connected to the side portion 75 and the bottom portion 73 at an obtuse angle. Specifically, as shown in FIG. 4, the bottom 73 and the inclined portion 74 form an angle ⁇ 2. ⁇ 2 is set in the range of 20 degrees to 40 degrees, and preferably 30 degrees.
  • the directions along the inclined portions 72 and 74 are the inclination directions of the inclined portions 72 and 74, respectively. That is, the inclination direction of the inclined portion 74 is a direction inclined by ⁇ 2 from the bottom to the top from the left to the right.
  • the bottom portion 73 and the inclined portion 72 form an angle ⁇ 2.
  • the inclination direction of the inclined portion 72 is a direction inclined by ⁇ 2 from the bottom to the top from the right to the left.
  • a diamond layer 90 is formed on the surface of the blade portion 52.
  • the diamond layer 90 is bonded to the blade portion 52 by the adhesive layer 40 shown in FIG.
  • the diamond layer 90 has a plurality of diamond particles 91. Specifically, the plurality of diamond particles 91 are bonded to the side portions 71 and 75, the bottom portion 73, and the inclined portions 72 and 74 by the adhesive layer 40.
  • the adhesive layer 40 is omitted for convenience of explanation.
  • the particle diameter of the diamond particles 91 is 180 ⁇ m or more and less than 600 ⁇ m. Moreover, when using a cast iron pipe etc. as a to-be-cut material, it is preferable that the said particle size is 300 micrometers or more and less than 425 micrometers. In other words, the particle size of the diamond particles 91 is in accordance with the mesh standard 30/70 in the American National Standards Institute (ANSI), or in accordance with the mesh standard 40/50 when a cast iron pipe or the like is used as the material to be cut. It is.
  • ANSI American National Standards Institute
  • At least one diamond particle 91 is bonded to each of the side portions 71 and 75, the bottom portion 73, and the inclined portions 72 and 74.
  • the thickness of the substrate 15 is L2.
  • the distance in the left-right direction from the surface of the side portion 71 to the surface of the side portion 75 is L2.
  • the plate thickness L2 is set in the range of 1.3 mm to 2.0 mm.
  • the length of the bottom 75 in the left-right direction is L3.
  • the lengths of the side portions 73 and 74 in the inclination direction are both L4.
  • the lengths L3 and L4 are both equal to or larger than the particle diameter of the diamond particles 91.
  • the plate thickness L2 is 1.6 mm, and ⁇ 2 is 30 degrees
  • L3 is 0.5 mm (approximately 1/3 of the plate thickness L2).
  • 500 ⁇ m) and L4 is approximately 0.635 mm (635 ⁇ m).
  • vertical direction of the side parts 71 and 75 is set to 3.5 mm (3500 micrometers) which is L3 or more.
  • the diamond particles having a particle size of 300 ⁇ m or more and less than 425 ⁇ m have such a size that at least one diamond particle 91 can be bonded to each of the side portions 71 and 75, the bottom portion 73, and the inclined portions 72 and 74.
  • the bottom portion 73 and the inclined portions 72 and 74 are planes that intersect the orthogonal direction (the direction from the back portion 51 to the blade portion 52). More specifically, the normal vectors of the surfaces of the bottom portion 73 and the inclined portions 72 and 74 have components in the direction from the back portion 51 to the blade portion 52 (or downward direction) in the orthogonal direction.
  • the diamond particles 91 bonded to the bottom portion 73 and the inclined portions 72 and 74 are cut into the material to be cut. That is, these diamond particles directly contribute to the cutting of the material to be cut.
  • the plurality of diamond particles 91 bonded to the inclined portions 72 and 74 are less likely to fall off than that of the bottom portion 73.
  • the inclined portions 72 and 74 are inclined by ⁇ 2 with respect to the bottom portion 73 and the load applied to the diamond particles 91 is small.
  • the cutting performance of the inclined portions 72 and 74 by the diamond particles 91 can be maintained for a long time, the cutting performance of the blade 5 as a whole can also be maintained for a long time.
  • the inclined portions 72 and 74 are not provided and the side portions 71 and 74 and the bottom portion 73 are connected at an acute angle of 90 degrees or less, the diamond particles 91 on the acute corner portions have the adhesive layer 40 formed thereon. Since the area bonded to the blade portion 52 is reduced, the diamond particles 91 are likely to fall off the blade portion 15.
  • the inclined portions 72 and 74 are provided, the side portions 71 and 74 and the bottom portion 73 are connected only at an obtuse angle greater than 90 degrees, so that the diamond particles 91 that contribute to cutting adhere to each other. Thus, the diamond particles 91 can be made difficult to fall off. Furthermore, by providing the inclined portions 72 and 74, it is possible to increase the number of diamond particles 91 arranged in the left-right direction from the viewpoint from below, that is, it is possible to increase the number of diamond particles 91 contributing to cutting, Cutting efficiency can be increased.
  • Diamond particles 91 are bonded to the side portions 71 and 75. For this reason, the cutting width L5 of the blade 5 can be made wider than the plate thickness L2 of the substrate 15. Thereby, the frictional resistance between the side surface of the main body 50 and the cut surface during cutting can be reduced.
  • the entire surface of the blade 5 is covered with a coating layer 41 (FIG. 11). That is, in the blade portion 52, the coating layer 41 is formed on the surface of the diamond layer 90 and on the surface of the adhesive layer 40 where the diamond particles 91 are not bonded. However, for convenience of explanation, the paint layer 41 is omitted in drawings other than FIG. The coating layer 41 is for protecting the blade 5.
  • the adhesive layer 40 is formed by melting a nickel alloy and then cooling. As shown in FIG. 5, the maximum thickness of the adhesive layer 40 is 1/3 or more and less than 2/3 of the maximum particle diameter H of the diamond. In the present embodiment, the maximum particle diameter H Half of that. The maximum thickness of the adhesive layer 40 is more preferably 1/2 or more and less than 2/3 of the maximum particle diameter H of the diamond, and in this embodiment, it is half of the maximum particle diameter H. It is. The relationship between the thickness of the adhesive layer 40 and the diamond particles 91 is the same in any of the side portions 71 and 75, the bottom portion 73, and the inclined portions 72 and 74. Further, the maximum particle size H is larger than the sum of the thickness of the coating layer 41 and the thickness of the adhesive layer 40.
  • the coating layer 41 is sufficiently smaller than the thickness of the adhesive layer 40, for example, a thickness less than 1/10 of the maximum particle size. As described above, a sufficient space is secured between the surface of the diamond particles 91 and the surface of the adhesive layer 40. In other words, a sufficient space is secured between adjacent diamond particles 91. When the shavings of the material to be cut are clogged between the diamond particles 91, the cutting ability of the blade 5 is reduced. However, since sufficient space is secured between the diamond particles 91, clogging of the shavings can be suppressed, and reduction of the cutting ability of the blade 5 can be prevented.
  • FIG. 6 is a bottom view of the blade portion 52 (specifically, the adhesive layer 40 formed on the blade portion 52 and the diamond particles).
  • the positions of the plurality of diamond particles 91 are not uniform.
  • the density of the diamond particles 91 is set within a predetermined range. In the present embodiment, 200 to 360 diamond particles 91 per square centimeter are bonded to the blade 52 in diamond particles 91 having a particle size of 300 ⁇ m or more and less than 425 ⁇ m (ANSI mesh standard 40/50).
  • adjacent diamond particles 91 are arranged so as to overlap in the left-right direction. That is, when the diamond particles 91 are virtually projected on a plane orthogonal to the longitudinal direction, the adjacent diamond particles 91 are arranged so as to be adjacent to each other.
  • At least one diamond particle 91 exists at an arbitrary position in the left-right direction.
  • the diamond particles 91 always come into contact with the material to be cut at any position in the left-right direction in the range of the plate thickness of the blade 5. In other words, there is no position where the material to be cut is not cut as long as it is within the range of the plate thickness. As a result, the blade 5 can reliably cut and cut the position of the workpiece desired by the operator.
  • the saver saw 1 is omitted from FIG.
  • the material T to be cut is a cast iron pipe having a mortar lining formed therein.
  • the saver saw 1 reciprocates, the blade 5 moves back and forth with a stroke width S.
  • the blade 5 abuts on the material T to be cut at two locations, the front portion C1 and the rear portion C2.
  • the virtual straight line IL1 is inclined at an angle ⁇ 1 with respect to the front-rear direction.
  • the cut amount the depth at which the front portion C1 cuts into the workpiece T in one reciprocating motion (hereinafter referred to as the cut amount) is deeper than the cut amount of the rear portion C2. Therefore, the cutting depth can be deepened at the front portion C1 where a large moment acts, and the workpiece T can be cut effectively.
  • the blade 5 cuts deepest into the material T to be cut when it is located at the rearmost side by reciprocation, and then moves away from the material T as it moves to the front side, and is positioned at the foremost side (the foremost position). ) To be farthest from the material T to be cut.
  • the front portion C1 can take a longer distance from the workpiece T than the rear portion C2. Therefore, the front part C1 heated by the frictional heat at the time of cutting the workpiece T is cooled once.
  • the adhesive layer 40 reaches a high temperature, the holding force for holding the diamond particles 91 is reduced, and the diamond particles 91 may fall off. If the diamond particles 91 fall off, the cutting performance of the blade 5 is lowered.
  • the front part C1 cuts deeply into the material T to be cut, a large amount of frictional heat is generated. However, since the front part C1 also has a large amount of heat radiation when the blade 5 is in the foremost position, it is possible to prevent the holding force of the adhesive layer 40 from being lowered and to avoid wear of the blade 5.
  • FIG. 8 shows a case where a blade that does not have the curved portion 55 cuts the workpiece T.
  • the cutting amount is substantially equal between the front portion D1 and the rear portion D2. Therefore, a large moment at a position away from the saver saw 1 in the blade cannot be used effectively, and the workpiece T cannot be cut efficiently. Further, the distance of the front portion D1 from the workpiece T is substantially the same as that of the rear portion D2. Therefore, the cooling efficiency of the blade does not increase.
  • the cutting amount at the front portion C ⁇ b> 1 of the blade 5 is increased, so that the workpiece T can be effectively cut. Further, since the distance of the front portion C1 from the workpiece T can be secured long by the bending of the bending portion 55 and the reciprocating motion of the blade 5, efficient cooling is possible. Furthermore, a diamond layer 90 is formed on the surface of the blade portion 52, and the diamond layer 90 (a plurality of diamond particles 91) cuts the object to be cut. Since the diamond layer 90 has a very high hardness, the diamond layer 90 has a very low possibility of being worn by the work material. Further, as will be described in detail below, the diamond layer 90 is suitable for cutting a casting such as a cast iron pipe having a mortar lining formed therein. Therefore, castings such as cast iron pipes that are difficult to cut can be efficiently cut.
  • the distance d1 is 0.4 mm or more and less than 5 mm. Or when length L1 is 200 mm or more and less than 300 mm, distance d1 is 1.5 mm or more and less than 9 mm. When the length L1 is 300 mm or more and less than 400 mm, the distance d1 is 3 mm or more and less than 12 mm. If the curvature of the bending portion 55 is excessively small, the effect of bending cannot be obtained appropriately. On the other hand, when the curvature is excessively large, the distance at which the blade 5 is separated from the workpiece T is excessively large, and workability is deteriorated. In the present application, such a problem is avoided by appropriately setting the ratio between the length L1 and the distance d1.
  • FIG. 9 is a table showing the cutting time when the material to be cut T, which is actually a cast iron pipe, is cut
  • FIG. 10 is a graph summarizing the results.
  • the following four blades [1] to [4] 4 were used.
  • the diamond particles 91 have a particle size conforming to the mesh standard 40/50.
  • Blade 5 conforming to mesh standard 30/40 (particle diameter of 425 ⁇ m or more and less than 600 ⁇ m).
  • Blade 5 conforming to mesh standard 50/60 (particle diameter of 250 ⁇ m or more and less than 300 ⁇ m).
  • [1], [3], and [4] are the blades 5 of the present embodiment, and the particle diameters are different from each other within the range described in the present embodiment.
  • the maximum cutting time allowed for cutting one workpiece T was assumed to be 300 seconds.
  • the blades 5 of [3] and [4] showed a sufficient cutting ability for materials to be cut other than cast iron pipes such as outer wall materials.
  • the above results indicate the following. That is, the optimum particle size of the diamond particles 91 varies depending on the material to be cut, and the cutting ability for the material to be cut is greatly reduced by using diamond particles 91 having a slightly different particle size from the appropriate particle size. . In other words, the particle diameter of the diamond particles 91 used in the blade 5 of [1] was extremely suitable for cutting a cast iron pipe.
  • FIG. 11 is an explanatory diagram showing an outline of a method for manufacturing the blade 5.
  • a steel material to be a substrate is prepared.
  • a steel plate is formed by pressing or the like to form a substrate 15 having an outer shape as shown in FIG.
  • the through holes 83 are simultaneously formed by pressing or the like. That is, at this stage, in the substrate 15, the main body 50 has a curved shape corresponding to the curved portion 55. However, since the substrate 15 is cut out from the steel material at this stage, the inclined portions 72 and 74 in the cross section shown in FIG. 3 are not formed.
  • the substrate 15 has a bottom portion 73 and its extended portion, side portions 71 and 75, each extended portion, and a corner portion where the bottom portion and the side portion intersect at a right angle. Therefore, the corners are cut and chamfered using an end mill or the like. Thereby, the inclined portions 72 and 74 are formed.
  • a nickel sheet 96 is bonded to the substrate 15 via an adhesive on the bottom 73, the side portions 71 and 75, and the inclined portions 72 and 74 of the substrate 15.
  • the nickel sheet 96 is a member for forming the adhesive layer 40 later, and is an example of a nickel bond.
  • the nickel sheet 96 has a thin plate shape having a length equal to or longer than the length L1 in the longitudinal direction.
  • the jig 100 has an upper surface 101 including a convex shape that follows the curved shape of the curved portion 55. Specifically, the upper surface 101 increases in height from one end in a predetermined first direction toward the other end, reaches a maximum height at the center in the predetermined first direction, and extends from the center toward the other end. It has a substantially arc shape whose height decreases. Thereby, when the board
  • the curved portion 55 does not directly contact the upper surface 101. That is, first, the nickel sheet 96 is arranged on the upper surface 101 so that the longitudinal direction of the nickel sheet 96 coincides with the predetermined first direction. Thereafter, the blade 5 is placed on the jig 100 so that the longitudinal direction of the substrate 15 coincides with the predetermined first direction and the curved portion 55 contacts the nickel sheet 96. At this time, the bending portion 55 is disposed at the center of the nickel sheet 96 in the predetermined second direction.
  • the predetermined second direction is orthogonal to the predetermined first direction. From the above, as shown in FIG. 12, the substrate 15 is arranged on the jig 100 via the nickel sheet 96.
  • the nickel sheet 96 is bent so as to wrap the bottom portion 73, the side portions 71 and 75, and the inclined portions 72 and 74, and is bonded to the substrate 15 with an adhesive.
  • some materials other than the nickel sheet 96 are bonded or attached to the substrate 15. For convenience of description, those materials including these materials are simply referred to as the substrate 15.
  • the above substrate 15 is placed in a high temperature furnace. As a result, the nickel sheet 96 is melted, and the plurality of diamond particles 91 are bonded to the bottom portion 73, the side portions 71 and 75, and the inclined portions 72 and 74 (FIG. 1B). The molten nickel sheet 96 is then cooled to become the adhesive layer 40.
  • the paint layer 41 is formed by applying a paint to the entire surface of the substrate 15.
  • the blade 5 is completed (FIG. 11C).
  • the adhesive layer 40 is formed using the nickel sheet 96, a plurality of diamonds are appropriately formed in a predetermined range (the bottom 73, the side portions 71 and 75, and the inclined portions 72 and 74) of the substrate 15.
  • the particles 91 can be adhered.
  • the nickel sheet 96 as an adhesive for bonding the substrate 15 and the diamond particles 91 is solid. If it is assumed that a liquid adhesive is used instead of the nickel sheet 96, the thickness of the adhesive becomes extremely non-uniform due to dripping. In contrast, the solid nickel sheet 96 has a uniform pressure and does not become extremely non-uniform in thickness even if it is subsequently melted. Therefore, since there is no extreme difference in the thickness of the adhesive layer 40, the thickness of the adhesive layer 40 can be easily managed.
  • the operation of attaching the plate-like nickel sheet 96 to the curved portion 55 having a curved shape may be difficult.
  • the jig 100 according to the present embodiment has an upper surface 101 along the curved portion 55, and the curved portion 55 is disposed on the jig 100.
  • the substrate 15 can be accurately positioned with respect to the nickel sheet 96. If the board
  • the substrate 115 includes a first attachment portion 80, a second attachment portion 180, and a main body portion 150.
  • the substrate 115 has a first attachment portion 80 on one end side in the longitudinal direction (or front-rear direction) and a second attachment portion 180 on the other end side in the longitudinal direction (or front-rear direction).
  • the second attachment portion 180 is provided on the opposite side of the first attachment portion 80 with respect to the main body portion 150 in the longitudinal direction (or front-rear direction).
  • the configuration of the main body 150 is the same as that of the main body 50 except for the following points. That is, the main body 150 includes a blade 152.
  • the blade portion 152 has one end 153 and the other end 154.
  • a second mounting portion 180 is provided in the vicinity of the other end 154.
  • the virtual straight line IL2 connecting the ends 153 and 154 is the same as the virtual straight line IL1 in the front-rear direction (the direction in which the upper surface 81 and the lower surface 82 extend). That is, the virtual straight line IL2 is inclined at an angle ⁇ 1 with respect to the front-rear direction.
  • the second attachment portion 180 can be attached to the blade attachment portion 7.
  • the second mounting portion 180 includes an upper surface 181 and a lower surface 182 that are parallel to each other, a base end surface 184, and a through hole 183.
  • the direction (the second extending direction) in which the upper surface 181 and the lower surface 182 extend is inclined at an angle ⁇ 3 with respect to the virtual straight line IL2. More specifically, the imaginary straight line IL2 is inclined at an angle ⁇ 3 downward from the second extending direction from the other end 154 toward the one end 154.
  • the angle ⁇ 3 is an acute angle and is set, for example, in the range of 10 to 20 degrees. In this modification, the angle ⁇ 3 is equal to the angle ⁇ 1, but they may not be equal.
  • both the first attachment portion 80 and the second attachment portion 180 can be attached to the blade mounting portion 7.
  • the material to be cut is cut by friction between the plurality of diamond particles 91 and the material to be cut. Therefore, the blade portion 152 can cut the material to be cut in both the forward direction and the backward direction. Therefore, the material to be cut can be cut and cut regardless of which of the attachment portion 80 and the attachment portion 180 is attached to the blade attachment portion 7.
  • cutting may be performed using only a part of the blade portion 152. In this case, only the part is consumed.
  • the second attachment portion 180 is attached to the blade attachment portion 7 again. Cutting can be resumed using a portion of the blade 152 that is not consumed. That is, since each of the first attachment portion 80 and the second attachment portion 180 can be attached to the blade attachment portion 7 for cutting work, the overall life of the blade 105 can be extended.
  • a blade 205 shown in FIG. 14 is the same as the blade 5 of the embodiment except for the following points. That is, in the curved portion 255, the particle diameter of the diamond particles 91 adhered on the surface of the first portion 206 on the front end side from the central portion in the longitudinal direction and the second portion 207 on the rear end side from the central portion in the longitudinal direction. The diameters of the diamond particles are different from each other. That is, the particle diameter of the diamond particles 91 bonded to the surface of the first part 206 is smaller than that of the second part 207.
  • the particle size of the diamond particles 91 bonded to the surface of the first part 206 is in accordance with the American National Standards Institute (ANSI) mesh standard 40/50, and is bonded to the second part 207.
  • the particle size of the diamond particles 91 is in accordance with the American National Standards Institute (ANSI) mesh standard 30/40.
  • the particle diameter of the diamond particles 91 used for the first part 206 and the second part 207 may be changed in consideration of the type of material to be cut. For example, the particle diameter of the diamond particles 91 used for the second part 207 may be smaller than that of the first part 206.
  • the bending portion 255 may be divided into three or more regions in the longitudinal direction, and the particle size may be changed for each of the divided regions.
  • the distance between the rear portion C2 and the workpiece T is always short, so the heat dissipation efficiency of the rear portion C2 is not so good. Therefore, there is a possibility that the blade portion 52 in the rear portion C2 is consumed quickly.
  • the first part 206 is in contact with the front part C1
  • the second part 207 is in contact with the rear part C2.
  • the particle diameter of the diamond particles 91 bonded to the second part 207 is larger than that of the first part 206. Therefore, the friction between the diamond particles 91 bonded to the second part 207 and the material to be cut T is small, and the diamond particles 91 do not generate much heat.
  • the portion of the blade portion 52 that contacts the front portion C ⁇ b> 1 particularly contributes to cutting.
  • the part is included in the first part 206.
  • the particle diameter of the diamond particles 91 bonded to the first portion 206 is suitable for cutting the material T to be cut. Therefore, it is possible to extend the life of the blade 205 without reducing the cutting ability for the workpiece T.
  • FIG. 15 is an enlarged cross-sectional view of the blade 305 along a plane orthogonal to the longitudinal direction as in FIG.
  • the blade 305 includes a substrate 315.
  • the blade portion 325 of the substrate 315 has a continuous curved shape (U-shape) in the cross section of FIG.
  • a plurality of diamond particles 91 are bonded to the surface of the blade portion 325 via the adhesive layer 40.
  • the blade portion 352 has a continuous curved shape and does not have corner portions. Therefore, the plurality of diamond particles 91 can be reliably bonded to the surface of the substrate 315. Further, since the blade portion 352 has a curved shape, there is no corner portion. Therefore, it is possible to avoid a load from being concentrated on a specific portion of the blade portion 352 (or the diamond particle 91) during cutting. In addition, the number of diamond particles 91 that directly contribute to cutting can be increased by the curved shape of the blade portion 352.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Sawing (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

刃の消耗を抑制しつつ短時間で所定の被切断材を切断可能なブレードを提供する。長手方向に延び、セーバソーに装着可能な基板を備え、前記基板は、前記長手方向に延びる背部と、前記長手方向と交差する対向方向に関して前記背部と対向する刃部とを有し、前記刃部は、湾曲部と、前記長手方向に関する一端と他端と、を備え、前記湾曲部は、前記一端と前記他端との間に設けられ、前記湾曲部は、前記一端と前記他端とを結ぶ仮想直線より前記背部に近くなるように湾曲し、前記湾曲部に複数のダイヤモンド粒子が接着されて形成されるダイヤモンド層を有することを特徴とするブレードを提供する。

Description

ブレード、ブレードを備えたセーバソー、および、ブレードの製造方法
本発明はセーバソーに装着可能なブレード、及び、当該ブレードを備えたセーバソーに関する。本発明は更に当該ブレードの製造方法に関する。
従来、セーバソーに装着可能なブレードが知られている(特許文献1参照)。当該ブレードの刃部は、湾曲形状を有している。また、刃部には鋸歯が複数形成されている。当該ブレードがセーバソーに装着されると、セーバソーからの動力によってブレードが往復動する。往復動によってブレードが被切断材を切断する。鋸刃が湾曲しているため、鋸刃のうちセーバソーから離れた箇所ほど被切断材に深く切り込む。これにより効率的に被切断材を切断することが可能であった。
特開2001-179536号公報
ところで、セーバソーは、用途に応じて様々な種類のブレードを使用可能であり、木材のみならず、鋳物を含む鋼材、外壁材、コンクリートなどを被切断材としている。鋼材の例として、モルタルライニングが内部に形成された鋳鉄管がある。つまり鋳鉄管を切断するために、モルタルライニング層と、鋳鉄層との両方を切断する必要がある。そのため、従来のブレードでは、鋳鉄管などの所定の被切断材を1つ切断するのに長い時間がかかるという問題があった。
さらに、従来のブレードで鋳鉄管を切断するとわずか数本を切断した後に鋸歯が消耗してしまうため、その後の切断が困難になる。これは、モルタルライニングによって鋸刃が消耗するためである。このような経緯で刃が消耗すると、ブレードを作業に用いることはできない。即ち、従来のブレードでは、鋳鉄管などの所定の被切断材を切断すると、寿命が短くなるという問題があった。
そこで本発明は、セーバソーに装着可能なブレードであって、刃の消耗を抑制しつつ短時間で所定の被切断材を切断可能なブレード、当該ブレードを備えたセーバソー、当該ブレードの製造方法を提供することを目的とする。
上記目的を達成するために、本発明は、長手方向に延び、セーバソーに装着可能な基板を備え、前記基板は、前記長手方向に延びる背部と、前記長手方向と交差する対向方向に関して前記背部と対向する刃部とを有し、前記刃部は、湾曲部と、前記長手方向に関する一端と他端と、を備え、前記湾曲部は、前記一端と前記他端との間に設けられ、前記湾曲部は、前記一端と前記他端とを結ぶ仮想直線より前記背部に近くなるように湾曲し、前記湾曲部に複数のダイヤモンド粒子が接着されて形成されるダイヤモンド層を有することを特徴とするブレードを提供している。
かかるブレードによれば、湾曲部のうちセーバソーから離れた箇所が被切断材に切り込む深さを深くすることができる。また、硬度の高いダイヤモンド粒子によって刃が形成されるため、刃の消耗を抑制しながら、効果的に被切断材を切断することができる。
前記基板が前記セーバソーに装着されたときに、前記基板は前記セーバソーによって往復動方向に往復運動させられ、前記仮想直線は、前記往復動方向から所定の鋭角ずれた方向に延びていることが好ましい。このようなブレードによれば、仮想直線が往復動方向からずれているため、往復動によって、湾曲部のうちセーバソーから離れた位置の被切断材からの離間距離を長く確保することができる。これにより効果的にブレードを冷却することができる。
前記刃部は、前記一端から前記他端までの長さを有し、前記長さが100mm以上、200mm未満の場合に、前記湾曲部と前記仮想直線との最大距離は0.4mm以上、5mm未満であり、前記長さが200mm以上、300mm未満の場合に、前記最大距離は1.5mm以上、9mm未満であり、前記長さが300mm以上、400mm未満の場合に、前記最大距離は3mm以上、12mm未満であることが好ましい。このようなブレードによれば湾曲部の曲率を適切に設定することができる。
前記湾曲部は、前記長手方向に直交する平面における断面において、前記対向方向に延びる側部と、前記対向方向に直交する底部と、前記側部と前記底部との間に設けられた傾斜部とを備え、前記傾斜部は、前記側部と前記底部との両方に鈍角で接続され、前記複数のダイヤモンド粒子は、前記側部と、前記底部と、前記傾斜部とに接着されることが好ましい。
このようなブレードによれば、傾斜部に接着している複数のダイヤモンド粒子は、底部のそれより脱落しにくい。このため、切断性能を長く維持することができる。切断に寄与するダイヤモンド粒子が接着する領域の面積を増やしている。これにより、切断に寄与するダイヤモンド粒子の数を増やすことが可能であるとともに、確実にダイヤモンド粒子をこれらの領域に接着することが可能になる。
前記断面において、前記傾斜部の長さは、前記複数のダイヤモンド粒子の粒径以上の長さであることが好ましい。このようなブレードによれば、傾斜部に確実にダイヤモンド粒子を接着することができる。
前記基板は、前記一端側と前記他端側とのそれぞれに前記セーバソーに装着可能な取付部を設けていることが好ましい。このようなブレードによれば、それぞれの取付部をセーバソーに装着して、切断作業を行うことができる。そのため、総合的なブレードの寿命を長くすることができる。
前記複数のダイヤモンド粒子の粒径は180μm以上、600μm未満であることが好ましい。このようなブレードによれば、被切断材を効率よく切断することができる。
前記複数のダイヤモンド粒子の粒径は300μm以上、425μm未満であることが好ましい。このようなブレードによれば、鋳鉄管などの被切断材を効率よく切断することができる。
前記湾曲部と前記ダイヤモンド層とを接着するニッケル合金を含むニッケル層を更に備え、前記ニッケル層の最大厚さは、前記ダイヤモンド粒子の粒径の1/3以上、2/3未満であることが好ましい。このようなブレードによれば、ニッケル層表面とダイヤモンド層表面との間の空間を十分に確保し、かつ、ダイヤモンドを強固に保持することができるため、その脱落を軽減することができ、当該空間に被切断材の削りかすなどがつまることを抑制することができる。
前記基板と、前記ダイヤモンド層との表面に塗布された塗装層を更に備え、前記複数のダイヤモンドの粒径は、それぞれ、前記ニッケル層の最大厚さと、前記塗装層の厚さとの合計より大きいことが好ましい。このようなブレードによれば、塗装層表面とダイヤモンド層表面との間の空間を十分に確保し、当該空間に被切断材の削りかすなどがつまることを抑制することができる。
また本発明は、上記ブレードと、駆動部と、前記駆動部の回転力を往復運動の駆動力に変換する動力変換機構と、前記ブレードが装着される装着部であって、前記ブレードを前記駆動力によって往復運動させる装着部とを有することを特徴とするセーバソーを提供している。
かかるセーバソーによれば、湾曲部のうちセーバソーから離れた箇所が被切断材に切り込む深さを深くすることができる。また、ダイヤモンド粒子によって刃が形成されるため、刃の消耗を抑制しながら、効果的に被切断材を切断することができる。
さらに本発明は、長手方向に延びる基板であって、前記基板は、前記長手方向に延びる背部と、前記長手方向と異なる対向方向に関して前記背部と対向する刃部とを有し、前記刃部は、湾曲部と、前記長手方向に関する一端と他端と、を備え、前記湾曲部は、前記一端と前記他端との間に設けられ、前記湾曲部は、前記一端と前記他端とを結ぶ仮想直線より前記背部に近くなるように湾曲した前記基板を用意し、ニッケル合金を含むニッケルボンドを前記刃部に付着させ、複数のダイヤモンド粒子を前記ニッケルボンドに付着させ、前記ニッケルボンドを加熱して溶融することで、前記基板と前記複数のダイヤモンド粒子とを接着することでダイヤモンド層を形成することを特徴とするブレードの製造方法を提供している。
このような製造方法によれば、ニッケルボンドを用いることで、ダイヤモンド粒子と基板とを容易に接着することが可能になる。また、ニッケルシートによって形成される接着層の厚みを適切に調整することができる。
前記ニッケルボンドは薄板形状のニッケルシートであり、接着剤を用いて前記ニッケルシートを前記刃部に貼付し、接着剤を用いて前記複数のダイヤモンド粒子を前記ニッケルシートに貼付し、前記ニッケルボンドを加熱して溶融することで、前記基板と前記複数のダイヤモンド粒子とを接着することでダイヤモンド層を形成することが好ましい。このような製造方法によれば、ニッケルシートによって形成される接着層の厚みを適切に調整することができ、均一な厚みの接着層を形成することができる。
本発明のブレードによれば、湾曲部のうちセーバソーから離れた箇所が被切断材に切り込む深さを深くすることができる。また、硬度の高いダイヤモンド粒子によって刃が形成されるため、刃の消耗を抑制しながら、効果的に被切断材を切断することができる。
本発明の実施の形態に係るブレードが装着されたセーバソーの断面図である。 本発明の実施の形態に係るブレードの側面図である。 図2に示すIII-III平面に沿った本発明の実施の形態に係るブレードの一部拡大断面図である。 図2に示すIII-III平面に沿った本発明の実施の形態に係るブレードの一部拡大断面図であり、傾斜部を説明する図である。 図2に示すIII-III平面に沿った本発明の実施の形態に係るブレードの一部拡大断面図であり、ダイヤモンド粒子と接着層との関係を説明する図である。 本発明の実施の形態に係るブレードの底面図である。 本発明の実施の形態に係るブレードが被切断材を切断する様子を示す説明図である。 比較例のブレードが被切断材を切断する様子を示す説明図である。 本実施の形態に係るブレードと、比較例のブレードとの性能を比較する表である。 図9の表をまとめたグラフである。 本発明の実施の形態に係るブレードの製造方法を示す説明図であり(A)はダイヤモンド粒子、ニッケルシート、基板を配置する工程を示し、(B)はダイヤモンド粒子が基板に接着される工程を示し、(C)は基板表面に塗装層が形成される工程を示す。 本発明の実施の形態に係るブレードの製造に用いる治具を示す説明図である。 第1変形例のブレードの側面図である。 第2変形例のブレードの側面図である。 第3変形例のブレードの一部拡大断面図である。
以下、本発明の実施の形態にかかるセーバソー1、及びセーバソー1に装着可能なブレード5について図1乃至図12に基づき説明する。まず、セーバソー1の構成について、図1に基づき説明する。
セーバソー1は、木材、鋼材、外壁材、コンクリート、パイプ等(被切断材)を切断するための電動式の往復動切断工具である。図1及び図2に示されているように、セーバソー1は、ハウジング2と、モータ3と、ギア部6と、ブレード装着部7と、電池パックPと、トリガ22Aとを備えている。図1は、セーバソー1の内部構造を示す断面側面図である。
以降の説明においては、図1に示されている「上」を上方向、「下」を下方向、「前」を前方向、「後」を後方向と定義する。また、セーバソー1を後から見た場合の「右」を右方向、「左」を左方向と定義する。前後方向は、本発明における「往復動方向」の一例である。
ハウジング2は、モータ3と、ギア部6と、ブレード装着部7とを収容している。
モータ3は、電池パックPから供給される電力によって駆動するDCブラシレスモータである。モータ3は、前後方向に延び回転可能な回転軸部31と、ピニオン32とを有している。回転軸部31は、ハウジング2に回転可能に支承されている。ピニオン32は回転軸部31の前端部に設けられている。作業者によるトリガ22Aの操作に応じて、モータ3は回転、または、停止する。
ギア部6は、モータ3とブレード装着部7との間に介在し、回転軸部31の回転運動を前後方向の往復動に変換する機構である。ギア部6は、傘歯ギア61と、プランジャ63とを有する。ギア部6は、本発明における「動力変換機構」の一例である。
傘歯ギア61は、モータ3のピニオン32と噛合している。傘歯ギア61は、モータ3の回転軸部31の回転軸と直交する上下方向の回転軸を有する。傘歯ギア61は、ピン62を有する。
ピン62は、上下方向に延びる略円柱形状をなしている。ピン62の下部は、傘歯ギア61の回転軸に対して偏心した位置に固定されている。ピン62の上部は、傘歯ギア61の上面から上方に突出している。
プランジャ63は、前後方向に延びる略円柱形状をなしており、ハウジング2内において、往復動可能に支持されている。プランジャ63には、ピンガイド64が設けられている。また、プランジャ63は、前後方向において、ピンガイド64と一体に移動する。
ピンガイド64は、プランジャ63の後部に設けられ、ピンガイド64の下部には左右方向に延びるとともに上方に窪むガイド溝64aが形成されている。ガイド溝64aの前後方向の幅は、ピン62の直径よりも僅かに大きく構成され、ピン62の上部がニードルベアリングを介してガイド溝64aに収容されている。ピン62は、ピンガイド64に対して前後方向の移動が規制され、左右方向の移動が許容されている。
ブレード装着部7は、プランジャ63の前方に設けられ、前端にブレード5を装着可能に構成されている。
ブレード装着部7は、上下方向に対向して設けられた一対のホルダー171と、位置決め突起172とを備えている。各ホルダー171は、前後方向に延びる壁であり、ブレード5の取付部80(後述)を装着可能である。位置決め突起172は、ブレード装着部7の左側壁から右側に突出している。ブレード5がホルダー171に取付られたときに、突起172がブレード5を位置決めし、ホルダー171はブレード5の上下方向の移動を規制することにより、ブレード5がホルダー171に固定される。
切断作業を行う場合、作業者は、ブレード装着部7にブレード5を装着する。次に、トリガ22Aに対して引操作を行うと、モータ3が駆動を開始する。これにより、回転軸部31及びピニオン32が回転し、ピニオン32と噛合する傘歯ギア61が上下方向に延びる回転軸を中心として回転する。この傘歯ギア61の回転によって、ピン62が上下方向に垂直な面上において傘歯ギア61の回転軸を中心とした周回運動を行う。このピン62の周回運動における前後方向の成分のみがピンガイド64に伝達され、ピンガイド64、プランジャ63、ブレード装着部7、及び、ブレード装着部7に装着されたブレード5が前後方向に往復動し、往復動するブレード5によって被切断材が切断される。
図2、3に示されるように、ブレード5は、ダイヤモンド91により刃部52が形成されている(後述)。以下の説明において、セーバソー1にブレード5が取付けられていない状態においても、ブレード5と前後左右方向との関係は、図1のそれと同じである。
ブレード5は、基板15を備えている。基板15は、本体部50と取付部80とを有する。取付部80は、前後方向に平行な上面81と下面82と、上下方向に平行な基端面84とを有する。また、取付部80には貫通孔83が形成されている。つまり、上面81と下面82とは、前後方向に平行、即ち、セーバソー1にブレード5が取付られたときのブレード5の往復動方向に平行である。取付部80がブレード装着部7に装着されると、ブレード5は、上面81と、下面82とがセーバソー1のホルダー171に沿うように配置される。これにより、ブレード5の上下方向の移動が規制される。ブレード5がホルダー171に取付られる際に、位置決め突起172は取付部80に形成された貫通孔83に挿入される。このようにホルダー171、位置決め突起172により、ブレード5がホルダー171に対して固定される。
本体部50は、長手方向に延び、背部51と、刃部52とを備えている。ここで長手方向は、取付部80から本体部50に向けて、前後方向から角度θ1下向きに傾斜している。つまり、長手方向は図2の水平方向に一致する。角度θ1は、鋭角であり、例えば0度より大きくかつ10度以下の範囲に設定されている。即ち、取付部80が延びる方向と、その方向からわずかに傾いた本体部50の長手方向との角度がθ1である。
背部51と刃部52とは長手方向と直交する方向(以下、直交方向)に対向している。刃部52は、基端53と、先端54と、湾曲部55とを有している。湾曲部55は、基端53と、先端54との間に設けられている。基端53と、先端54とを結ぶ仮想直線IL1は、前後方向から角度θ1傾斜している。詳細には、仮想直線IL1は、前方向(基端53から先端54に向かう方向)に対して、下向きに角度θ1で傾斜している。そして、仮想直線IL1は、長手方向と平行である。尚、仮想直線IL1は、前後方向に平行であってもよい。
湾曲部55は、仮想直線IL1より背部51に近くなるように湾曲している。即ち、湾曲部55の表面は、基端53と先端54より背部51に向けて窪んだ略円弧形状をなす。
長さL1は、基端53から先端54までの距離である。また、距離d1は、仮想直線IL1から湾曲部55までの直交方向の距離のうち最大の距離である。言い換えれば、距離d1は、仮想直線IL1と、湾曲部55のうち最も背部51側(より、詳細には、直交方向に関して最も背部51側)にある位置までの直交方向の距離である。本実施の形態では、距離d1は、湾曲部55の長手方向における中点と、仮想延長直線IL1上の基端53と先端54との中点との距離である。尚、本実施の形態では、湾曲部55と仮想直線IL1との距離が最大となる箇所は湾曲部55の長手方向における中点となるように湾曲部55を形成しているが、被切断材の形状などを考慮し、より基端53側や先端54側等、長手方向における中点以外の箇所において湾曲部55と仮想直線IL1との距離が最大となるよう湾曲部55を形成してもよい。
例えば長さL1が、100mm以上、200mm未満の場合、距離d1は0.4mm以上、5mm未満である。あるいは、長さL1が200mm以上、300mm未満の場合、距離d1は1.5mm以上、9mm未満である。長さL1が300mm以上、400mm未満の場合、距離d1は3mm以上、12mm未満である。
図3は、長手方向に直交する平面に沿った本体部50の要部断面図である。刃部52は、直交方向に延びる側部71、75と、左右方向に延びる底部73と、傾斜部72、74とを有している。側部71、75は、本体部50の側面において、上下方向中央部より下側(より正確には背部51と反対側)に設けられ、底部73から3mm以上5mm以下の範囲に設けられている。傾斜部72は、側部71と底部73とを接続するように設けられ、側部71と底部73とのそれぞれに対して鈍角で接続されている。傾斜部74は、側部75と底部73とを接続するように設けられ、側部75と底部73とのそれぞれに対して鈍角で接続されている。詳細には、図4に示されるように、底部73と、傾斜部74とは角度θ2をなしている。θ2は、20度から40度の範囲に設定され、好ましくは30度である。図4において傾斜部72、74に沿う方向をそれぞれ傾斜部72、74の傾斜方向とする。即ち、傾斜部74の傾斜方向は、左から右に向けて下からから上にθ2傾いた方向である。同様に、底部73と傾斜部72とは角度θ2をなしている。傾斜部72の傾斜方向は、右から左に向けて下から上にθ2傾いた方向である。
刃部52の表面には、ダイヤモンド層90が形成されている。ダイヤモンド層90は図5に示す接着層40によって刃部52に接着されている。ダイヤモンド層90は、複数のダイヤモンド粒子91を有している。詳細には、複数のダイヤモンド粒子91は、側部71、75と、底部73と、傾斜部72、74とに接着層40によって接着されている。尚、図4では、説明の便宜のため接着層40を省略している。
ダイヤモンド粒子91の粒径は、180μm以上、600μm未満である。また鋳鉄管などを被切断材とする場合には、当該粒径は、300μm以上、425μm未満であることが好ましい。言い換えれば、ダイヤモンド粒子91の粒径は、米国国家規格協会(ANSI)におけるメッシュ規格30/70に則ったもの、鋳鉄管などを被切断材とする場合にはメッシュ規格40/50に則ったものである。
少なくとも1つダイヤモンド粒子91が、側部71、75と、底部73と、傾斜部72、74とのそれぞれに接着している。図4に示されるように、基板15の板厚はL2である。言い換えれば、側部71の表面から、側部75の表面までの左右方向の距離はL2である。本実施の形態では、板厚L2は、1.3mmから2.0mmの範囲に設定されている。また、底部75の左右方向の長さはL3である。側部73、74の傾斜方向の長さは共にL4である。長さL3、L4はともにダイヤモンド粒子91の粒径以上である。例えば、粒径が300μm以上、425μm未満のダイヤモンド粒子91を用い、板厚L2が1.6mm、θ2が30度のときに、L3は、板厚L2の略1/3である0.5mm(500μm)であり、L4が略0.635mm(635μm)である。また、側部71、75の直交方向の長さはL3以上である3.5mm(3500μm)に設定されている。従って、300μm以上、425μm未満の粒径のダイヤモンド粒子は、側部71、75と、底部73と、傾斜部72、74のそれぞれに少なくとも1つのダイヤモンド粒子91が接着可能な大きさである。
底部73と、傾斜部72、74とは、直交方向(背部51から刃部52への方向)と交差する平面である。より詳細には、底部73と、傾斜部72、74のそれぞれの表面の法線ベクトルは、直交方向のうち背部51から刃部52への方向(あるいは下方向)の成分を有している。被切断材を切断する際に底部73と傾斜部72、74とに接着されているダイヤモンド粒子91が被切断材に切り込んでいく。つまりこれらのダイヤモンド粒子が被切断材の切削切断に直接寄与している。被切断材を切断する際に、当該傾斜部72、74に接着している複数のダイヤモンド粒子91は、底部73のそれより脱落しにくい。これは傾斜部72、74が底部73に対してθ2傾いており、ダイヤモンド粒子91にかかる負荷が少ないためである。このように、特に傾斜部72、74のダイヤモンド粒子91による切断性能を長く維持できるため、ブレード5全体としての切断性能も長く維持することができる。また、仮に傾斜部72、74が設けられず、側部71、74と底部73とが角度90度以下の鋭角で接続される場合、鋭角の角部上のダイヤモンド粒子91では、接着層40を介して刃部52に接着する面積が小さくなるため、当該ダイヤモンド粒子91は刃部15から脱落しやすくなってしまう。傾斜部72、74が設けられることにより、側部71、74と底部73との間は角度90度より大きい鈍角のみで接続されることになるため、切断に寄与するダイヤモンド粒子91が接着する領域の面積が増加し、ダイヤモンド粒子91を脱落しにくく構成することができる。さらには、傾斜部72、74を設けることにより、下方からの視点で左右方向に並ぶダイヤモンド粒子91の数を増加可能、つまり切断に寄与するダイヤモンド粒子91の数を増やすことが可能であるため、切断効率を増加させることが可能となる。
側部71、75にはダイヤモンド粒子91が接着されている。このためブレード5の切り幅L5を、基板15の板厚L2より広くすることができる。これにより切削時の、本体部50の側面と切断面との摩擦抵抗を減らすことができる。
尚、ブレード5の表面全体は、塗装層41(図11)によって覆われている。つまり、刃部52において、ダイヤモンド層90の表面、および、接着層40のうちダイヤモンド粒子91が接着されていない部分の表面には塗装層41が形成されている。但し、説明の便宜のため図11以外の図面では塗装層41は省略している。塗装層41は、ブレード5を保護するためのものである。
接着層40はニッケル合金を溶融し、その後冷却することで形成される。図5に示されるように、接着層40の厚さは、その最大厚さが、ダイヤモンドの最大粒径Hの1/3以上、2/3未満であり、本実施の形態では最大粒径Hの半分である。なお、接着層40の厚さは、その最大厚さが、ダイヤモンドの最大粒径Hの1/2以上、2/3未満であることがより望ましく、本実施の形態では最大粒径Hの半分である。尚、上記の接着層40の厚さとダイヤモンド粒子91との関係は、側部71、75と、底部73と、傾斜部72、74のいずれにおいて同一である。また、最大粒径Hは、塗装層41の厚さと、接着層40の厚さとの合計よりも大きい。尚、塗装層41は、接着層40の厚さと比較しても十分小さく、例えば最大粒径の1/10未満の厚さである。以上によって、ダイヤモンド粒子91の表面と、接着層40の表面との間には十分な空間が確保されている。言い換えると隣り合うダイヤモンド粒子91の間には十分な空間が確保されている。被切断材の削りかすがダイヤモンド粒子91の間に詰まると、ブレード5の切断能力が低減する。しかしながら、ダイヤモンド粒子91の間に空間が十分確保されているので、削りかすが詰まることを抑制することができ、ブレード5の切削能力の低減を防ぐことができる。
図6は、刃部52(詳細には刃部52に形成された接着層40と、ダイヤモンド粒子と)の底面図である。複数のダイヤモンド粒子91の位置は不均一である。一方、ダイヤモンド粒子91の密度は所定の範囲内に設定されている。本実施の形態では、粒径が300μm以上、425μm未満(ANSIによるメッシュ規格40/50)のダイヤモンド粒子91において、1平方センチメートルあたり200~360個のダイヤモンド粒子91が刃部52に接着されている。
また、左右方向において、隣り合うダイヤモンド粒子91は重なるように配置されている。つまり、長手方向に直交する平面にダイヤモンド粒子91を仮想的に射影したときに、隣り合うダイヤモンド粒子91は隣り合うように配置されている。
さらに、左右方向の任意の位置に少なくとも1つのダイヤモンド粒子91が1つ存在する。以上により、ブレード5がセーバソー1によって往復動方向に往復動したときに、ブレード5の板厚の範囲における左右方向の任意の位置において必ずダイヤモンド粒子91が被切断材に当接する。言い換えれば、上記板厚の範囲内であれば、被切断材が切削されない位置が存在しない。これにより、ブレード5は、作業者が所望する被切断材の位置を確実に切削、切断することが可能になる。
図7を用いて、セーバソー1に装着されたブレード5が、被切断材Tを切削、切断する場合を説明する。尚、説明の便宜のため、セーバソー1は図7から省略している。ここで、被切断材Tは、内部にモルタルライニングが形成された鋳鉄管である。セーバソー1の往復動によって、ブレード5はストローク幅Sで前後に移動する。ブレード5は、前部C1と、後部C2の2箇所で被切断材Tに当接する。上記のように仮想直線IL1は、前後方向に対して角度θ1で傾斜している。また、湾曲部55は湾曲しているため、一回の往復動において前部C1が被切断材Tに切り込んでいく深さ(以下、切込み量)は、後部C2の切込み量より深い。そのため、大きなモーメントが作用する前部C1において切込み量を深くすることができ、効果的に被切断材Tを切削することができる。
また、ブレード5は、往復動によって最も後ろ側に位置したときに被切断材Tに最も深く切り込み、その後、前側に移動するに従って、被切断材Tから離れ、最も前側に位置(最前位置とする)したときに被切断材Tから最も離れる。ブレード5が最前位置に位置するとき、前部C1は、被切断材Tからの離間距離を後部C2より長くとることができる。そのため、被切断材Tを切削する際の摩擦熱で熱せられた前部C1は一旦冷却される。ブレード5において、接着層40は高温になるとダイヤモンド粒子91を保持する保持力が低下し、ダイヤモンド粒子91が脱落するおそれがある。ダイヤモンド粒子91が脱落すれば、ブレード5の切断性能が低下する。前部C1は被切断材Tに深く切り込むため、摩擦熱も大量に発生する。しかし、前部C1は、ブレード5が最前位置にあるときの放熱量も大きいため、接着層40の保持力が低下することを防止でき、ブレード5の消耗を避けることができる。
比較例として図8に湾曲部55を有さないブレードが被切断材Tを切削する場合を示す。この場合には、刃部は直線状であるため、前部D1と後部D2とで切込み量は略等しい。そのため、ブレードにおけるセーバソー1から離れた位置の大きなモーメントを効果的に利用することができず、効率よく被切断材Tを切削することができない。また、前部D1の被切断材Tからの離間距離は後部D2のそれとほぼ同じである。そのため、ブレードの冷却効率も上がらない。
上記のように本実施の形態では、湾曲部55を形成することにより、ブレード5の前部C1における切込み量が大きくなることで、効果的に被切断材Tを切断することができる。また、湾曲部55の湾曲とブレード5の往復動によって、前部C1の被切断材Tからの離間距離を長く確保することができるため効率的な冷却が可能になる。さらに、刃部52の表面はダイヤモンド層90が形成されており、当該ダイヤモンド層90(複数のダイヤモンド粒子91)が切断対象を切削する。ダイヤモンド層90の硬度は極めて高いため、当該ダイヤモンド層90は被削材による摩耗の可能性が極めて低い。また、以下で詳述するようにダイヤモンド層90は、モルタルライニングが内部に形成された鋳鉄管などの鋳物を切断するのに適している。そのため、切断が困難な鋳鉄管などの鋳物を効率よく切断することができる。
上述したように、長さL1が、100mm以上、200mm未満の場合、距離d1は0.4mm以上、5mm未満である。あるいは、長さL1が200mm以上、300mm未満の場合、距離d1は1.5mm以上、9mm未満である。長さL1が300mm以上、400mm未満の場合、距離d1は3mm以上、12mm未満である。湾曲部55の曲率が過度に小さいと湾曲による効果を適切に得ることができない。一方、当該曲率が過度に大きいとブレード5が被切断材Tに対して離間する距離が過度に大きくなり、作業性が低下する。本願では、長さL1と距離d1との比を適切に設定することでこのような問題を回避している。
図9は、実際に鋳鉄管である被切断材Tを切断したときの切断時間を示した表であり、図10はその結果をまとめたグラフである。用いたブレードは以下の4種類[1]~[4]4であった。[1]ブレード5においてダイヤモンド粒子91の粒径がメッシュ規格40/50に則ったもの。[2]図8の比較例のブレードであって、メッシュ規格40/50に則ったダイヤモンド粒子91を刃部に用いたもの。[3]ブレード5においてメッシュ規格30/40(粒径が425μm以上、600μm未満)に則ったもの。[4]ブレード5においてメッシュ規格50/60(粒径が250μm以上、300μ未満)に則ったもの。即ち、[1]、[3]、[4]は本実施の形態のブレード5であり、本実施の形態で説明した範囲内において粒径が互いに異なるものであった。尚、本切断試験において、被切断材Tを一本切断するのに許容される最大の切断時間を300秒と想定した。
図9、10に示されるように、[1]の場合には、10本の被切断材Tが、それぞれ300秒以内に切断された。また、[1]の場合には、8本目までの切断時間が150秒付近で安定していた。一方、[2]の場合には、6本の被切断材Tが、それぞれ300秒以内で切断された。ただし、3本目からは200秒以上の切断時間を要した。この結果は、[1]のブレード5が[2]と比較して極めてすぐれた切断能力を有し、高寿命であることを示している。[3]、[4]のブレード5は、一本目の鋳鉄管の切断の際にダイヤモンド粒子91が脱落し、作業を継続することができなかった。但し、[3]、[4]のブレード5においては外壁材など鋳鉄管以外の被切断材に対しては十分な切断能力を示していた。以上の結果は以下のことを示している。即ち、最適なダイヤモンド粒子91の粒径は、被切断材に応じて異なり、適切な粒径からわずかに異なる粒径のダイヤモンド粒子91を用いただけで当該被切断材に対する切断能力が大幅に低下する。言い換えれば、[1]のブレード5に用いられるダイヤモンド粒子91の粒径は鋳鉄管の切断に極めて適したものであった。
図11は、ブレード5の製造方法の概略を示した説明図である。まず、基板となる鋼材を用意する。次に、プレス加工などで鋼板を成形して、図2に示すような外形を有する基板15を形成する。この際に、貫通孔83もプレス加工などで同時に形成される。つまり、この段階において、基板15において、本体部50は、湾曲部55に対応する湾曲形状を有している。但し、この段階では基板15は鋼材から切り出したものであるため、図3に示される断面における傾斜部72、74が形成されていない。即ち、この段階では、基板15は、底部73とその延長部分と、側部71、75とそれぞれの延長部分と、底部と側部とが直角に交わる角部とを有している。そのため、エンドミル等を用いて角部を削り、面取りを行う。これにより傾斜部72、74が形成される。
次に、基板15の底部73、側部71、75、傾斜部72、74に接着剤を介して基板15にニッケルシート96を接着する。ここでニッケルシート96は後に接着層40を形成する部材でありニッケルボンドの一例である。ニッケルシート96は、その長手方向において長さL1以上の長さを有する薄板形状である。
具体的な接着方法を説明する。まず、図12に示されるような治具100を用意する。治具100は、湾曲部55の湾曲形状に沿う凸形状を含む上面101を有している。詳細には、上面101は、所定の第1方向の一端から、他端に向けて、その高さが上昇し、所定の第1方向の中心において最大高さとなり、中心から他端に向けて高さが低下する略円弧形状を有している。これにより、ブレード5が、その長手方向が所定の第1方向に一致するように、かつ、基板15が上面101に配置されたとき、湾曲部55は、上面101に沿うように接触する。但し、本製造方法では、湾曲部55は上面101とは直接接触しない。即ち、まず、ニッケルシート96の長手方向が当該所定の第1方向に一致するように、ニッケルシート96を上面101に配置する。その後に、基板15の長手方向が所定の第1方向に一致するように、かつ、湾曲部55がニッケルシート96に接触するように、ブレード5を治具100の上に配置する。この際、湾曲部55は、所定の第2方向におけるニッケルシート96の中心に配置される。ここで、所定の第2方向は所定の第1方向と直交している。以上より、図12に示されるように、基板15が、ニッケルシート96を介して治具100に配置される。
次に、ニッケルシート96を底部73、側部71、75、傾斜部72、74を包むように折り曲げて基板15に接着剤を介して接着させる。以下の説明では、ニッケルシート96以外にも基板15にいくつかの材料が接着または付着されるが、説明の便宜のためにそれらの材料を含めたものを単に基板15と呼ぶ。
次に、基板15の底部73、側部71、75、傾斜部72、74以外(つまりニッケルシート96が接着された範囲以外)にマスキングを施し、底部73、側部71、75、傾斜部72、74を覆うニッケルシート96上にペースト状の接着剤を塗布する。さらに、ペースト状の接着剤によって複数のダイヤモンド粒子91を底部73、側部71、75、傾斜部72、74を覆うニッケルシート96に付着させる。
以上の基板15を高温の炉に入れる。これによりニッケルシート96が溶融し、複数のダイヤモンド粒子91が底部73、側部71、75、傾斜部72、74に接着される(図1(B))。また、溶融したニッケルシート96は、その後、冷却し接着層40となる。
最後に、基板15の表面全体に塗料を塗布することにより塗装層41を形成する。これによりブレード5が完成する(図11(C))。
上記の製造方法では、ニッケルシート96を用いて接着層40を形成しているため、基板15の所定の範囲(底部73、側部71、75、傾斜部72、74)に適切に複数のダイヤモンド粒子91を接着することができる。また、基板15とダイヤモンド粒子91とを接着する接着剤としてのニッケルシート96は固体である。仮に、ニッケルシート96の代わりに液体の接着剤を用いることを想定すると、液だれによって、接着剤の厚みが極端に不均一になる。これに対して固体のニッケルシート96は、圧さが均一であり、その後、溶融されても厚さが極端に不均一になることはない。従って、接着層40の厚みに極端な差が生じることがないため、接着層40の厚さの管理を容易にできる。
湾曲形状を有する湾曲部55に、板状のニッケルシート96を貼り付ける作業は困難を伴うおそれがある。本実施の形態の治具100は、湾曲部55に沿う上面101を有しており、かかる治具100に湾曲部55が配置される。これにより、ニッケルシート96を湾曲部55に接着する際に、ニッケルシート96に対する基板15の位置決めを正確に行うことができる。治具100上に基板15を配置すれば、ニッケルシート96の貼り付け作業も容易になる。従って、簡単な作業で湾曲部55にニッケルシート96を貼り付けることができる。
本発明によるブレードは上述した実施の形態に限定されず、特許請求の範囲に記載した範囲で種々の変形や改良が可能である。但し、以下では上述の実施の形態と同じ部材については同じ参照番号を付し説明を省略する。
(第1変形例)図13に示すブレード105は、基板115を備えている。基板115は、第1取付部80と、第2取付部180と、本体部150とを有している。基板115は、長手方向(あるいは前後方向)の一端側に第1取付部80と、長手方向(あるいは前後方向)の他端側に第2取付部180とを有している。言い換えれば、第2取付部180は、長手方向(あるいは前後方向)において本体部150に関して第1取付部80の反対側に設けられている。本体部150の構成は本体部50の構成と以下の点を除いて同じである。即ち、本体部150は刃部152を備える。刃部152は一端153、他端154を備えている。他端154近傍に第2取付部180が設けられている。端153、154を結ぶ仮想直線IL2は、前後方向(上面81、下面82が延びる方向)との関係が、仮想直線IL1と同じである。即ち、仮想直線IL2は、前後方向に対して角度θ1で傾斜している。
第2取付部180は、ブレード装着部7に装着可能である。第2取付部180は、互いに平行な上面181と下面182と、基端面184と、貫通孔183とを備えている。取付部180がブレード装着部7に装着されると上面181と下面182とは、それぞれホルダー171に沿うように配置される。上面181と下面182とが延びる方向(第二延出方向とする)は、仮想直線IL2に対して角度θ3で傾斜している。より詳しくは、仮想直線IL2は、他端154から一端154に向けて、第二延出方向から下向きに角度θ3で傾斜している。角度θ3は、鋭角であり、例えば10~20度の範囲に設定されている。本変形例では角度θ3が角度θ1と等しいが、両者は等しくなくてもよい。
図13の変形例のブレード105によれば、第1取付部80と第2取付部180との両方がブレード装着部7と取付可能になる。複数のダイヤモンド粒子91と被切断材との摩擦により、被切断材は切削される。そのため、刃部152は前方向、および、後方向の両方向において被切断材を切削することができる。従って、取付部80と取付部180のいずれをブレード装着部7に装着しても被切断材を切削、切断することができる。
また、例えば、被切断材によっては、刃部152の一部のみを用いて切断を行うことがある。この場合には、当該一部のみが消耗する。本実施の形態では、第1取付部80をブレード装着部7に装着して、刃部152の一部が消耗した場合に、第2取付部180をブレード装着部7に装着しなおすことで、刃部152のうち消耗していない箇所を利用して切断を再開することができる。つまり、第1取付部80、第2取付部180のそれぞれをブレード装着部7に装着して切断作業を行えるため、ブレード105の総合的な寿命を伸ばすことが可能になる。
(第2変形例)図14に示すブレード205は、実施の形態のブレード5と以下の点を除いて同じである。即ち、湾曲部255において、長手方向中央部から先端側の第1部206の表面上に接着されているダイヤモンド粒子91の粒径と、長手方向中央部から後端側の第2部207に接着されているダイヤモンド粒子の粒径とは互いに異なっている。即ち、第1部206の表面に接着されているダイヤモンド粒子91の粒径は、第2部207のそれより小さい。本変形例では、第1部206の表面に接着されているダイヤモンド粒子91の粒径は米国国家規格協会(ANSI)のメッシュ規格40/50に則ったものであり、第2部207に接着されているダイヤモンド粒子91の粒径は米国国家規格協会(ANSI)のメッシュ規格30/40に則ったものである。尚、第1部206と、第2部207とに用いるダイヤモンド粒子91の粒径は、被切断材の種類を考慮して変更してもよい。例えば、第2部207に用いるダイヤモンド粒子91の粒径が、第1部206のそれより小さくてもよい。さらに、湾曲部255を長手方向に3つ以上の領域に分割し、分割された領域ごとに粒径を変更するようにしてもよい。
図7で説明したように、ブレード5が被切断材Tを切削する際には、後部C2と被切断材Tとの距離は常に短いため、後部C2の放熱効率はそれほどよくない。そのため後部C2における刃部52の消耗が早くなる可能性がある。本変形例では、前部C1に第1部206が接触し、後部C2に第2部207が接触する。第2部207に接着されるダイヤモンド粒子91の粒径は第1部206のそれより大きい。そのため、第2部207に接着されるダイヤモンド粒子91と、被切断材Tとの摩擦は小さく、当該ダイヤモンド粒子91はそれほど発熱しない。このため、熱によって第2部207のダイヤモンド粒子91が基板15から脱落することを低減できる。図7で説明したように、刃部52のうち前部C1に接触する箇所が特に切断に寄与する。本変形例では、当該箇所は、第1部206に含まれる。第1部206に接着されているダイヤモンド粒子91の粒径は、被切断材Tの切断に適したものである。そのため、被切断材Tに対する切断能力を低減することなく、ブレード205の寿命を延ばすことが可能である。
(第3変形例)図15は、図3と同様に長手方向に直交する平面に沿ったブレード305の拡大断面図である。ブレード305は、基板315を備えている。基板315の刃部325は、図15の断面において連続的な曲線形状(U字形状)を有している。当該刃部325の表面に複数のダイヤモンド粒子91が接着層40を介して接着されている。
図15のブレード305によると、刃部352は連続的な曲線形状を有しており、角部を有していない。そのため、基板315の表面に複数のダイヤモンド粒子91を確実に接着することができる。また、刃部352を曲線形状であるため、角部が存在しない。そのため、切断時に、刃部352(あるいはダイヤモンド粒子91)の特定の箇所に負荷が集中することを避けることができる。また、刃部352の曲線形状により切断に直接寄与するダイヤモンド粒子91の数を増やすことが可能になる。
1…セーバソー、3…モータ、5…ブレード、6…ギア部、7…ブレード装着部、15…基板、50…本体部、40…接着層、90…ダイヤモンド層、91…ダイヤモンド粒子、41…塗装層、51…背部、52…刃部、53…基端、54…先端、55…湾曲部、72,74…傾斜部、100…治具、IL1…仮想直線

Claims (13)

  1. 長手方向に延び、セーバソーに装着可能な基板を備え、
    前記基板は、前記長手方向に延びる背部と、前記長手方向と交差する対向方向に関して前記背部と対向する刃部とを有し、
    前記刃部は、湾曲部と、前記長手方向に関する一端と他端と、を備え、
    前記湾曲部は、前記一端と前記他端との間に設けられ、
    前記湾曲部は、前記一端と前記他端とを結ぶ仮想直線より前記背部に近くなるように湾曲し、
    前記湾曲部に複数のダイヤモンド粒子が接着されて形成されるダイヤモンド層を有することを特徴とするブレード。
  2. 前記基板が前記セーバソーに装着されたときに、前記基板は前記セーバソーによって往復動方向に往復運動させられ、
    前記仮想直線は、前記往復動方向から所定の鋭角ずれた方向に延びていることを特徴とする請求項1に記載のブレード。
  3. 前記刃部は、前記一端から前記他端までの長さを有し、
    前記長さが100mm以上、200mm未満の場合に、前記湾曲部と前記仮想直線との最大距離は0.4mm以上、5mm未満であり、
    前記長さが200mm以上、300mm未満の場合に、前記最大距離は1.5mm以上、9mm未満であり、
    前記長さが300mm以上、400mm未満の場合に、前記最大距離は3mm以上、12mm未満であることを特徴とする請求項1または2に記載のブレード。
  4. 前記湾曲部は、前記長手方向に直交する平面における断面において、前記対向方向に延びる側部と、前記対向方向に直交する底部と、前記側部と前記底部との間に設けられた傾斜部とを備え、
    前記傾斜部は、前記側部と前記底部との両方に鈍角で接続され、
    前記複数のダイヤモンド粒子は、前記側部と、前記底部と、前記傾斜部とに接着されることを特徴とする前記請求項1乃至は3の何れか一項に記載のブレード。
  5. 前記断面において、前記傾斜部の長さは、前記複数のダイヤモンド粒子の粒径以上の長さであることを特徴とする請求項4に記載のブレード。
  6. 前記基板は、前記一端側と前記他端側とのそれぞれに前記セーバソーに装着可能な取付部を設けていることを特徴とする請求項1乃至5の何れか一項に記載のブレード。
  7. 前記複数のダイヤモンド粒子の粒径は180μm以上、600μm未満であることを特徴とする請求項1乃至6の何れか一項に記載のブレード。
  8. 前記複数のダイヤモンド粒子の粒径は300μm以上、425μm未満であることを特徴とする請求項7に記載のブレード。
  9. 前記湾曲部と前記ダイヤモンド層とを接着するニッケル合金を含むニッケル層を更に備え、
    前記ニッケル層の最大厚さは、前記ダイヤモンド粒子の粒径の1/3以上、2/3未満であることを特徴とする請求項1乃至8の何れか一項に記載のブレード。
  10. 前記基板と、前記ダイヤモンド層との表面に塗布された塗装層を更に備え、
    前記複数のダイヤモンドの粒径は、それぞれ、前記ニッケル層の最大厚さと、前記塗装層の厚さとの合計より大きいことを特徴とする請求項9に記載のブレード。
  11. 請求項1乃至10の何れか一項に記載のブレードと、
    駆動部と、
    前記駆動部の回転力を往復運動の駆動力に変換する動力変換機構と、
    前記ブレードが装着される装着部であって、前記ブレードを前記駆動力によって往復運動させる装着部とを有することを特徴とするセーバソー。
  12. 長手方向に延びる基板であって、前記基板は、前記長手方向に延びる背部と、前記長手方向と異なる対向方向に関して前記背部と対向する刃部とを有し、前記刃部は、湾曲部と、前記長手方向に関する一端と他端と、を備え、前記湾曲部は、前記一端と前記他端との間に設けられ、前記湾曲部は、前記一端と前記他端とを結ぶ仮想直線より前記背部に近くなるように湾曲した前記基板を用意し、
    ニッケル合金を含むニッケルボンドを前記刃部に付着させ、
    複数のダイヤモンド粒子を前記ニッケルボンドに付着させ、
    前記ニッケルボンドを加熱して溶融することで、前記基板と前記複数のダイヤモンド粒子とを接着することでダイヤモンド層を形成することを特徴とするブレードの製造方法。
  13. 前記ニッケルボンドは薄板形状のニッケルシートであり、
    接着剤を用いて前記ニッケルシートを前記刃部に貼付し、
    接着剤を用いて前記複数のダイヤモンド粒子を前記ニッケルシートに貼付し、
    前記ニッケルボンドを加熱して溶融することで、前記基板と前記複数のダイヤモンド粒子とを接着することでダイヤモンド層を形成することを特徴とする請求項12に記載のブレードの製造方法。
PCT/JP2018/002446 2017-02-28 2018-01-26 ブレード、ブレードを備えたセーバソー、および、ブレードの製造方法 WO2018159173A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019502512A JP6870730B2 (ja) 2017-02-28 2018-01-26 ブレード、ブレードを備えたセーバソー、および、ブレードの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017036845 2017-02-28
JP2017-036845 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159173A1 true WO2018159173A1 (ja) 2018-09-07

Family

ID=63371198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002446 WO2018159173A1 (ja) 2017-02-28 2018-01-26 ブレード、ブレードを備えたセーバソー、および、ブレードの製造方法

Country Status (2)

Country Link
JP (1) JP6870730B2 (ja)
WO (1) WO2018159173A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168825U (ja) * 1984-10-11 1986-05-12
JPS62100823U (ja) * 1986-05-02 1987-06-26
WO1999032251A1 (en) * 1997-12-23 1999-07-01 Simonds Industries, Inc. Cutting tool tooth form
JP2000167774A (ja) * 1998-10-09 2000-06-20 Toho Titanium Co Ltd ダイヤモンドカッターの製造方法及びダイヤモンドカッター並びにダイヤモンドカッター製造治具
JP2001179536A (ja) * 1999-12-28 2001-07-03 Hitachi Koki Co Ltd 電動鋸用鋸刃
JP2001252873A (ja) * 2000-02-10 2001-09-18 Ehwa Diamond Ind Co Ltd 研磨ドレッシング用工具及びその製造方法
JP2016013581A (ja) * 2014-06-30 2016-01-28 日立工機株式会社 切断工具及び切断作業機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168825U (ja) * 1984-10-11 1986-05-12
JPS62100823U (ja) * 1986-05-02 1987-06-26
WO1999032251A1 (en) * 1997-12-23 1999-07-01 Simonds Industries, Inc. Cutting tool tooth form
JP2000167774A (ja) * 1998-10-09 2000-06-20 Toho Titanium Co Ltd ダイヤモンドカッターの製造方法及びダイヤモンドカッター並びにダイヤモンドカッター製造治具
JP2001179536A (ja) * 1999-12-28 2001-07-03 Hitachi Koki Co Ltd 電動鋸用鋸刃
JP2001252873A (ja) * 2000-02-10 2001-09-18 Ehwa Diamond Ind Co Ltd 研磨ドレッシング用工具及びその製造方法
JP2016013581A (ja) * 2014-06-30 2016-01-28 日立工機株式会社 切断工具及び切断作業機

Also Published As

Publication number Publication date
JPWO2018159173A1 (ja) 2019-06-27
JP6870730B2 (ja) 2021-05-12

Similar Documents

Publication Publication Date Title
KR100867020B1 (ko) 마찰교반 접합장치 및 마찰교반 접합 툴
US9527146B2 (en) Oscillating saw blades
US10220539B2 (en) Saw blade for an oscillatingly driven saw
US20130269499A1 (en) Separation tool, in particular saw blade, for a machine tool
JP2013521140A (ja) 正面フライスおよびその使用
WO2018159173A1 (ja) ブレード、ブレードを備えたセーバソー、および、ブレードの製造方法
CN1538890A (zh) 有凹口或槽口的超高压烧结切削工具及其制造方法和保持机构
JP4350926B2 (ja) 羽根状の固定された要素をもつシャンク工具
JP6605793B2 (ja) ジグソー等用ブレード
JP2007038330A (ja) 切削カートリッジおよび切削工具
TWM511388U (zh) 加工刀具
CN113000934A (zh) 一种切割铸件材料用钎焊金刚石锯片及其切割工艺
JP2004034141A (ja) 接合継手の製造方法、接合継手、摩擦撹拌接合法、接合装置及び平削り用バイト
CN201486843U (zh) 一种混凝土泵的耐磨部件和具有该耐磨部件的混凝土泵
JP2011240376A (ja) 電極研磨装置
JP2007229879A (ja) 研削用カップホイール
KR20170001126A (ko) 다이아몬드 공구
CN211516270U (zh) 一种新型锯片
CN107457439B (zh) 切削配件及其应用
KR200263263Y1 (ko) 목재절단용 둥근톱
CN217123577U (zh) 一种高强度耐磨的金刚石锯片
JP2013000810A (ja) 曲線切断用丸鋸
CN208484035U (zh) 一种细齿波纹陶瓷金刚石圆形锯片
US20210220931A1 (en) Non-toothed hard alloy tipped circular saw blade
JP2010052045A (ja) カップホイール用基板およびその製造方法並びにカップホール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760957

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502512

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18760957

Country of ref document: EP

Kind code of ref document: A1