WO2018158854A1 - フェライト系ステンレス鋼板、ホットコイルおよび自動車排気系フランジ部材 - Google Patents

フェライト系ステンレス鋼板、ホットコイルおよび自動車排気系フランジ部材 Download PDF

Info

Publication number
WO2018158854A1
WO2018158854A1 PCT/JP2017/007966 JP2017007966W WO2018158854A1 WO 2018158854 A1 WO2018158854 A1 WO 2018158854A1 JP 2017007966 W JP2017007966 W JP 2017007966W WO 2018158854 A1 WO2018158854 A1 WO 2018158854A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
stainless steel
steel sheet
ferritic stainless
toughness
Prior art date
Application number
PCT/JP2017/007966
Other languages
English (en)
French (fr)
Inventor
慎一 寺岡
眞市 田村
彰洋 西村
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to PCT/JP2017/007966 priority Critical patent/WO2018158854A1/ja
Priority to JP2017536602A priority patent/JP6278160B1/ja
Priority to PL17898998T priority patent/PL3591084T3/pl
Priority to EP17898998.4A priority patent/EP3591084B1/en
Priority to KR1020197028504A priority patent/KR102371041B1/ko
Priority to US16/489,674 priority patent/US11111570B2/en
Priority to ES17898998T priority patent/ES2879999T3/es
Priority to CN201780087637.0A priority patent/CN110366601B/zh
Priority to MX2019010211A priority patent/MX2019010211A/es
Publication of WO2018158854A1 publication Critical patent/WO2018158854A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1805Fixing exhaust manifolds, exhaust pipes or pipe sections to each other, to engine or to vehicle body
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a ferritic stainless steel plate, a hot coil, and an automobile exhaust system flange member.
  • the exhaust gas path of automobiles is composed of various parts such as exhaust manifold, EGR (Exhaust Gas Recirculation), muffler, catalyst, DPF (Diesel Particulate Filter), urea SCR (Selective Catalytic Reduction), flexible tube, center pipe and front pipe. .
  • EGR Exhaust Gas Recirculation
  • muffler muffler
  • catalyst catalyst
  • DPF Diesel Particulate Filter
  • urea SCR Selective Catalytic Reduction
  • flexible tube center pipe and front pipe.
  • a thick flange of 5 mm or more is often used.
  • Flange is manufactured by processes such as punching and press forming, and conventional steel plates have been used as raw materials.
  • rusting is noticeable on the flange of ordinary steel, which is inferior in corrosion resistance compared with other exhaust system parts made of stainless steel, and the appearance may be impaired.
  • the use of stainless steel sheets is being actively promoted by converting ordinary steel sheets as flange materials.
  • ferritic stainless steel contains Cr and it is difficult to refine the metal structure by phase transformation, it has lower toughness than ordinary steel.
  • high Cr, Al, and Si stainless steels have a problem of low toughness, and measures are taken such as heating the coil and passing it through, or reducing the thickness of the hot-rolled steel sheet.
  • Patent Document 1 high purity with excellent toughness that does not cause troubles such as cracks that tend to occur during cold development, cold rolling and various handling of hot rolled coils.
  • Patent Document 1 high purity with excellent toughness that does not cause troubles such as cracks that tend to occur during cold development, cold rolling and various handling of hot rolled coils.
  • a manufacturing method is characterized in that immediately after hot rolling, rapid cooling is performed at a cooling rate of 10 ° C./sec or more, and winding is performed at a temperature of 450 ° C. or less.
  • the impact fracture surface transition temperature is ⁇ 20 ° C. or lower, and in the examples, whether or not the coil can be deployed at a plate thickness of 3 mm is shown. It has been shown that this technique can avoid a manufacturing method in which the toughness value of the hot-rolled steel strip is varied, such as when the hot-rolled steel strip is cooled in a water tank.
  • Patent Document 2 the low temperature toughness of a hot rolled steel sheet containing 0.20% to 0.80% Nb and exceeding 13.5% to 15.5% is excellent.
  • a method for producing a hot rolled steel strip having a thickness of 4.5 mm or more and 9.0 mm or less, which is a ferritic stainless steel it is cooled immediately after hot rolling at 800 ° C. or more, and a plate after hot rolling.
  • the manufacturing method is characterized by winding at a temperature at which the thickness t and the winding temperature T during hot rolling satisfy the relationship of t ⁇ T ⁇ 3600.
  • Patent Document 3 has toughness and ductility sufficient to stably prevent the problem of material cracking in a line through which a hot-rolled coil is unfolded and passed, and the thickness of the sheet is small.
  • a 5 to 12 mm Ti-containing ferritic stainless steel hot rolled coil and hot rolled annealed coil are disclosed.
  • the coiling temperature is set to 570 ° C. or higher, and after 5 minutes or more have elapsed from the end of winding and the surface temperature of the outermost coil is 550 ° C. or higher, the coil is immersed in water.
  • a production method is shown which holds for 15 minutes or more.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2012-140688
  • Patent Document 4 has toughness and ductility sufficient to stably prevent the problem of material cracking in a line through which a hot-rolled coil is unfolded and passed through.
  • a stainless steel slab is finished at a rolling temperature of 890 ° C. or higher, water-cooled before winding and wound at a winding temperature of 400 ° C. or lower to form a coil, and within 30 minutes from the end of winding.
  • a production method is described in which it is immersed in water and held in the water for 15 minutes or longer.
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2000-169943
  • C 0.001 to 0.1%
  • N 0.001 to 0.05%
  • Cr 10 to 25%
  • S 0 0.01% or less
  • P 0.04% or less
  • Mn 0.01-2%
  • Si 0.01-2%
  • O 0.01% or less
  • Sn 0.05% -2%
  • ferritic stainless steel is disclosed in which the balance is Fe and inevitable impurities. This ferritic stainless steel is said not to deteriorate in aging even when used at a high temperature for a long time.
  • Patent Document 1 it was difficult to improve the toughness of a thick ferritic stainless steel sheet having a thickness exceeding 5 mm.
  • Patent Document 2 can improve the toughness of the Nb-added steel, but has not been effective in improving the toughness of the Ti-added steel.
  • the improvement in toughness by coil water cooling has a problem in that the fluctuation of the cooling rate in the coil is large and the toughness varies.
  • Patent Document 4 is directed to Nb-containing ferritic stainless steel, and in order to adjust the hardness and Charpy impact value, the hot rolling finish temperature is set to 890 ° C. or higher and wound at 400 ° C. or lower, and the coil is submerged in water. Since the immersion is performed, as described in the cited document 1, there is a problem that the fluctuation of the cooling rate in the coil is large and the toughness varies.
  • Patent Document 5 The technique of Patent Document 5 is to perform hot rolling at a heating temperature of 1000 ° C. or higher and 1300 ° C. or lower during hot rolling, so the crystal grain size of a ferritic stainless steel plate having a plate thickness exceeding 5 mm cannot be reduced. It is difficult to improve toughness.
  • the purpose of the present invention is to solve the problems of the known techniques and to efficiently produce a ferritic stainless steel sheet having excellent toughness.
  • the present inventors have conducted detailed studies on the low temperature toughness of ferritic stainless steel sheets from the viewpoints of components, hot-rolling conditions in the manufacturing process, and metallographical aspects, to achieve structural changes and toughness in the manufacturing process. Clarified the effect of.
  • Titanium-added ferritic stainless steel is difficult to control the metal structure because no phase transformation occurs in the manufacturing process. That is, the slab subjected to hot rolling has a plate thickness of 150 to 250 mm, and its metal structure is a solidified structure, that is, a coarse columnar crystal.
  • This columnar crystal has a width of several hundred ⁇ m to several tens of mm and a length of several mm to several cm.
  • hot rolling it is usually heated to 1100 ° C to 1300 ° C in a heating furnace, and when it is rolled to a rough bar with a plate thickness of 20 to 40 mm by reverse rolling with a roughing mill, most of its structure is recrystallized.
  • the crystal grain size is refined to several hundred ⁇ m.
  • finishing hot rolling is generally rolled in one direction by a tandem method, but finishing hot rolling is also performed by a reverse method in the Steckel mill. In finish hot rolling, the structure after rough hot rolling only expands and recrystallization occurs very little.
  • the present inventor found out that the refinement of the coarse hot-rolled structure is extremely effective in improving the toughness of the hot-rolled steel sheet in examining the change in structure in each of the above steps and the effect on the material accompanying it. It is effective to process large strains at low temperatures to refine the structure.
  • recrystallization after hot rolling is also delayed, so in rough bar structures after rough hot rolling and immediately before finishing hot rolling. Unrecrystallized parts are likely to remain.
  • a thin plate manufactured by cold rolling annealing from a hot rolled coil manufactured by finishing and rolling a rough bar in which unrecrystallized portions remain is subjected to coarse roughening called ridging during processing. In the production of steel strip, low temperature heating and hot rolling in which an unrecrystallized portion remains in the rough hot rolled structure has been avoided.
  • the toughness of the hot-rolled steel sheet and the toughness of the hot-rolled annealed steel sheet even if unrecrystallized portions in the coarse bar remain, most of the structure of the coarse bar is refined. It turned out that toughness improves by making it.
  • the hot-rolling heating temperature is 940 to 990 ° C. and the rough hot-rolling process is performed at a low temperature as much as possible. However, if the heating temperature is lowered too much, recrystallization hardly occurs between the rough hot rolling step and the rough hot rolling until the finish hot rolling starts.
  • FIG. 1 The left side of FIG. 1 is an example of a steel material according to the present invention, and the right side is an enlarged view of the microstructure of a conventional steel material.
  • the steel material of the present invention is composed of a fine grain structure, and a Charpy impact test is performed.
  • the absorbed energy value is about 20 J / cm 2 or less for the conventional steel material, whereas the steel material of the present invention achieves 40 J / cm 2 or more.
  • the gist of the present invention for solving the above problems is as follows.
  • a ferritic stainless steel sheet having excellent toughness can be efficiently provided.
  • This ferritic stainless steel sheet is particularly suitable as an automobile exhaust system flange member.
  • Si 0.01 to 1.0% Si may be added as a deoxidizing element and also improves oxidation resistance. However, since Si is a solid solution strengthening element, it is better as it is smaller in terms of toughness. When the content is excessive, the toughness is significantly reduced, so the upper limit was made 1.0%. On the other hand, in order to ensure oxidation resistance, the lower limit was made 0.01%. However, since excessive reduction leads to an increase in refining costs, the lower limit may be set to 0.05%, 0.10% or 0.15% in consideration of the material and the initial rust resistance, and the upper limit is set to 0.00. It is good also as 9%, 0.8%, 0.7%, or 0.6%.
  • Mn 0.01 to 1.0%
  • Mn is a solid solution strengthening element, so the smaller the content, the better.
  • excessive content may cause a delay in recrystallization due to precipitation of the ⁇ phase during hot rolling, resulting in a decrease in toughness, so the upper limit was made 1.0%.
  • the lower limit was made 0.01%.
  • the lower limit may be 0.1%, 0.2%, 0.25%, or 0.3% in consideration of the material and manufacturing cost, and the upper limit is 0.7%, 0.6%, 0 It may be 5% or 0.4%.
  • P 0.04% or less
  • P is an element mixed as an unavoidable impurity from a raw material such as ferrochrome, and has a stronger solid solution strengthening capability than Mn and Si.
  • the lower limit of P does not need to be particularly defined and is 0%.
  • the lower limit may be 0.005%, 0.01% or 0.015%.
  • the upper limit may be 0.03%, 0.025%, or 0.02% in consideration of corrosion resistance and the like.
  • S 0.010% or less S is an element mixed as an inevitable impurity from the raw material, and deteriorates the corrosion resistance. Therefore, the smaller the content, the better. In addition, the excessive content tends to delay recrystallization in rough hot rolling due to the formation of precipitates such as MnS and Ti 4 C 2 S 2, so the upper limit was made 0.010%.
  • the lower limit of S does not need to be particularly defined and is 0%. However, S has an effect of combining with Mn and Ti to improve punchability in flange forming. In order to obtain this effect, the lower limit may be 0.0002%, 0.0005%, or 0.001%. Furthermore, the upper limit may be set to 0.008%, 0.006%, or 0.005% in consideration of crevice corrosion suppression or the like when the fuel component is used.
  • Cr 10.0-20.0% Cr is an element that improves the corrosion resistance and oxidation resistance, and considering the salt resistance required for the flange, it is necessary to contain 10.0% or more. On the other hand, excessive content becomes hard and deteriorates moldability and toughness. In addition, recrystallization at the time of rough hot rolling tends to be delayed by solute Cr, and in the case of more than 20.0%, an unrecrystallized structure remains immediately before finish hot rolling and lowers the toughness of the steel sheet. It was 20.0%.
  • the lower limit may be set to 11.0%, 12.0%, or 13.0% in consideration of the manufacturing cost and the plate breakage during manufacturing due to deterioration of toughness.
  • the upper limit may be 19.0%, 18.0%, or 17.0%.
  • Ni 0.01 to 1.0% Ni is contained in an amount of 0.01% or more in order to improve the initial rust resistance by suppressing crevice corrosion and promoting repassivation.
  • the upper limit was made 1.0%.
  • the lower limit may be 0.02%, 0.03% or 0.05%, and the upper limit is 0.5%, 0.3%, 0.2% or 0.1%. % May be used.
  • Ti 0.10 to 0.30% Ti is an element added to combine with C, N, S, and P to improve corrosion resistance, intergranular corrosion resistance, and toughness.
  • C and N are not sufficiently fixed, sensitization causes a Cr-deficient layer, resulting in a significant decrease in corrosion resistance, so 0.10% is the lower limit.
  • the lower limit may be set to 0.12%, 0.14%, or 0.16%.
  • the excessive content causes coarse TiN to precipitate in the molten steel in the steel making process and lowers the toughness of the steel sheet, so the upper limit was made 0.30%.
  • the upper limit may be set to 0.28%, 0.25%, or 0.22% in consideration of the manufacturing cost.
  • V 0.01 to 0.40% V suppresses crevice corrosion and contributes to improvement of toughness by addition of a small amount. Therefore, V is contained in an amount of 0.01% or more. However, excessive content causes hardening and deteriorates formability, and also causes toughness deterioration due to precipitation of coarse V (C, N), so the upper limit was made 0.4%.
  • the lower limit may be set to 0.02%, 0.03%, or 0.04% in consideration of improvement in toughness, raw material cost, initial rusting property, and the upper limit is 0.20%, 0.10%, or 0. 0.06% may be set.
  • Al 0.005 to 0.3%
  • Al is an element added as a deoxidizing element, and reduces the oxide in the steel to improve the toughness of the steel sheet. Since the effect is manifested from 0.005%, the lower limit was made 0.005%. In addition, excessive content causes reduction in toughness, deterioration in weldability and surface quality, and delays recrystallization during rough hot rolling, so the upper limit was made 0.3%. Furthermore, considering refining costs, the lower limit may be 0.01%, 0.02% or 0.03%, and the upper limit is 0.15%, 0.1%, 0.08% or 0.06. % May be used.
  • N 0.001 to 0.02%
  • N like C, deteriorates toughness and corrosion resistance, so the smaller the content, the better.
  • excessive inclusion causes a decrease in toughness due to the formation of coarse nitrides during solidification, and the toughness cannot be improved only by refining the crystal grain size, so the upper limit was made 0.02%.
  • the lower limit was made 0.001%.
  • the lower limit may be set to 0.003%, 0.005%, or 0.006% in consideration of manufacturing cost, workability, initial rusting property, and the upper limit is 0.015%, 0.010%, or 0. It may be 0.009%.
  • B 0 to 0.0030% B is an element that improves the secondary workability of the product by segregating at the grain boundaries, and may be contained in order to improve the punchability of the flange.
  • the upper limit was made 0.0030%.
  • the lower limit of B does not need to be particularly defined and is 0%. In order to improve toughness, the lower limit may be 0.0001% or 0.0002%.
  • the upper limit may be set to 0.0020%, 0.0010%, or 0.0005% in consideration of cost and ductility reduction.
  • Mo 0 to 2.0%
  • Mo is an element that improves corrosion resistance and high-temperature strength.
  • Mo has a crevice structure and may be contained in order to suppress crevice corrosion.
  • excessive content significantly increases oxidation resistance, generates flaws due to abnormal oxidation during hot rolling heating, delays recrystallization during rough hot rolling, causes coarsening of the coarse hot rolled structure, and reduces toughness.
  • the upper limit was made 2.0%.
  • the lower limit of Mo does not need to be set and is 0%. You may make it contain 0.01% or more for toughness improvement.
  • the lower limit may be 0.02% or 0.03%, and the upper limit may be 1.2%, 0.3%, or 0.1%.
  • Cu 0 to 0.3% Cu may be contained in order to promote crevice corrosion suppression and repassivation in addition to improving high temperature strength. An excessive content causes hardening due to precipitation of ⁇ -Cu and Cu-rich clusters, and deteriorates formability and toughness, so the upper limit was made 0.3%.
  • the lower limit of Cu does not need to be particularly defined and is 0%. In order to improve moldability and toughness, 0.01% or more may be included. In consideration of pickling properties during production, the lower limit may be 0.01% or 0.03%, and the upper limit may be 0.02%, 0.12%, or 0.10%.
  • Mg 0 to 0.0030%
  • Mg may be added as a deoxidizing element, and is an element that contributes to improving the formability by refining the slab structure.
  • Mg oxide becomes a precipitation site of carbonitrides such as Ti (C, N) and Nb (C, N), and has an effect of finely dispersing and depositing them. For this reason, you may contain Mg.
  • the upper limit was made 0.0030%.
  • the lower limit of Mg does not need to be specifically defined, and is 0%.
  • the lower limit may be 0.0003%, 0.0006%, or 0.01% as necessary.
  • the upper limit may be 0.0020% or 0.0010%.
  • Sn 0 to 0.1%
  • Sb 0 to 0.1%
  • Sn and Sb may be contained because they contribute to the improvement of corrosion resistance and high temperature strength. Excessive content may cause slab cracking during the production of the steel sheet, and also causes a decrease in the toughness of the steel sheet, so the upper limit is made 0.1%.
  • the lower limit of Sn or Sb does not need to be set in particular, and is 0%.
  • the lower limit may be 0.005% or 0.01% as necessary.
  • the upper limit may be 0.05% or 0.02% in consideration of refining costs, manufacturability, and the like.
  • Zr 0 to 0.1% Ta: 0 to 0.1% Nb: 0 to 0.1%
  • Hf 0 to 0.1%
  • Zr, Ta, Nb, and Hf may be contained because they combine with C and N to contribute to improvement of toughness.
  • excessive content increases the cost and significantly deteriorates the toughness of the steel sheet due to large-scale carbonitride precipitation, so the upper limit is made 0.1%.
  • the lower limit of these components does not need to be specifically defined, and is 0%.
  • the lower limit may be 0.005% or 0.01% as necessary.
  • the upper limit may be set to 0.08% or 0.03% in consideration of refining costs and manufacturability.
  • W 0 to 0.1% W, like Mo, contributes to the improvement of corrosion resistance and high temperature strength, so may be contained. An excessive content leads to toughness deterioration and cost increase during the production of the steel sheet, so the upper limit is made 0.1%.
  • the lower limit of W does not need to be particularly defined and is 0%. A lower limit is good also as 0.01% as needed. In consideration of refining costs, manufacturability, etc., the upper limit may be 0.05% or 0.02%.
  • Co 0 to 0.2% Co contributes to the improvement of the high-temperature strength and may be contained. Excessive inclusion causes a decrease in toughness due to solid solution strengthening and recrystallization inhibition during rough hot rolling, so the upper limit is made 0.2%.
  • the lower limit of Co does not need to be set and is 0%. In order to acquire said effect, a minimum is good also as 0.01%, 0.02%, or 0.04%. Furthermore, considering the refining cost and manufacturability, the upper limit may be 0.15% or 0.1%.
  • Ca 0 to 0.0030% Since Ca has a desulfurization effect, Ca may be contained. However, excessive content generates coarse CaS and degrades the corrosion resistance, so the upper limit was made 0.0030%.
  • the lower limit of Ca does not need to be set and is 0%. In consideration of refining costs, manufacturability, etc., the upper limit may be 0.0030% or 0.0020%.
  • REM 0 to 0.05% Since REM has an effect of improving toughness and oxidation resistance by refining various precipitates, it may be contained. However, excessive content not only significantly deteriorates castability but also lowers toughness by solid solution strengthening and recrystallization suppression during rough hot rolling, so the upper limit was made 0.05%.
  • the lower limit of REM does not need to be specifically defined, and is 0%. In order to obtain the above effect, the lower limit may be 0.001% or 0.002%. Furthermore, the upper limit may be set to 0.01% or 0.005% in consideration of refining costs and manufacturability.
  • REM rare earth element refers to a generic name of two elements of scandium (Sc) and yttrium (Y) and 15 elements (lanthanoid) from lanthanum (La) to lutetium (Lu) according to a general definition. It may be added alone or as a mixture.
  • Ga 0 to 0.1% Ga may be contained in a range of 0.1% or less in order to improve corrosion resistance and suppress hydrogen embrittlement.
  • the lower limit of Ga does not need to be set in particular, and is 0%. From the viewpoint of sulfide or hydride formation, the lower limit may be 0.0002%, if necessary. From the viewpoint of manufacturability and cost, and from the viewpoint of promoting rough hot rolling recrystallization, the upper limit may be 0.0020%.
  • Bi or the like may be contained in an amount of 0.001 to 0.1% as necessary. Note that it is preferable to reduce general harmful elements and impurity elements such as As and Pb as much as possible.
  • the structure whose major axis / minor axis is less than 5.0 in the cross section parallel to the rolling direction is 90% or more in area ratio.
  • the structure whose major axis / minor axis is less than 5.0 is 90% or more in terms of area ratio is a steel sheet in which the ferritic stainless steel sheet of the present invention has been annealed after hot rolling, and has relatively equiaxed grains. It means a metal structure.
  • the above structure preferably has an area ratio of 95% or more. The upper limit of the area ratio is 100%, but the upper limit may be 99% or 98%.
  • the grain boundary appears by nitric acid electrolytic etching, and 0.25 t (t: plate thickness) and 0.50 t (t: plate thickness).
  • the area of at least 1 mm 2 is observed with an optical microscope, and the area fraction of crystal grains having a major axis / minor axis ratio (major axis / minor axis) of less than 5.0 is measured.
  • tissue whose major axis / minor axis is less than 5.0 makes reference
  • the average minor axis of the ferritic stainless steel sheet of the present invention is 55 ⁇ m or less.
  • an average minor axis of 0.25 t to 0.75 t (t: plate thickness) is used as a reference.
  • grain boundaries appear by nitric acid electrolytic etching, and 0.25 t to 0.75 t (t: plate thickness) on a straight line parallel to the plate thickness direction.
  • JIS G0551 Annex C According to 2, the number of crystal grains captured by the straight line was measured, and the actual length of the straight line was divided by the number of crystal grains measured to obtain the “average minor axis”.
  • the average minor axis exceeds 55 ⁇ m, the Charpy impact value at 25 ° C. is small. However, when the average minor axis is 55 ⁇ m or less, the Charpy impact value at 25 ° C. is increased to 40 J / cm 2 or more, and the steel sheet toughness is improved. By setting the average minor axis to 50 ⁇ m or less, the toughness can be further enhanced.
  • the upper limit of the average minor axis may be 48 ⁇ m, 45 ⁇ m, or 43 ⁇ m.
  • the average particle size is preferably 20 ⁇ m or more.
  • the lower limit of the average minor axis may be 22 ⁇ m, 25 ⁇ m, or 30 ⁇ m.
  • the steel sheet of the present invention is manufactured by a steel making process and hot rolling.
  • Steelmaking process is not particularly limited.
  • a method in which steel having the above chemical composition is melted in a converter and subsequently subjected to secondary refining is suitable.
  • the molten steel is made into a slab according to a known casting method (continuous casting).
  • the slab is heated to a predetermined temperature and hot-rolled to a predetermined plate thickness by continuous rolling.
  • the hot rolling process is a particularly important process for obtaining the metal structure of the present invention.
  • the inventors of the present invention have confirmed that the metal structure of the present invention can be obtained when the following recommended conditions are satisfied by previous studies.
  • Heating temperature 940-990 ° C
  • the heating temperature which is 990 ° C. or lower.
  • the heating temperature is too low, hot rolling may occur.
  • (C) Coarse hot rolling end temperature 850 to 900 ° C
  • the rough hot rolling end temperature exceeds 900 ° C.
  • the rough hot rolled structure becomes coarse.
  • the temperature is lower than 850 ° C., recrystallization after rough hot rolling is delayed, the coarse hot rolled structure (structure immediately before the start of finishing hot rolling) becomes coarse, and the hot-rolled sheet toughness after finishing hot rolling decreases. Therefore, the rough hot rolling end temperature is set to 850 to 900 ° C.
  • the rough hot rolling end temperature is generally determined by the rough hot rolling start temperature. However, if the number of passes of rough hot rolling is increased or the rolling reduction rate of rough hot rolling is increased, it is possible to lower the rough hot rolling end temperature.
  • the upper limit of the rolling reduction of the rough rolling is not particularly required, but it hardly exceeds 95% in actual production, and the upper limit may be 95%.
  • the sheet bar (coarse bar)
  • a bar heater such as an induction method.
  • Ferritic stainless steel has no phase transformation, and it is necessary to refine the solidified structure of the slab by recrystallization after rough hot rolling, but in order to recrystallize using the distortion of rough hot rolling, It is effective to suppress the temperature drop after rough hot rolling with a bar heater.
  • the temperature is raised by 30 ° C. or more with a bar heater.
  • the temperature rise is preferably 55 ° C. or less.
  • Thermal insulation cover thermal insulation As with the bar heater, as a method of suppressing the temperature drop of the seat bar, a thermal insulation cover is provided on the upper and lower surfaces of the conveyance table between the rough hot rolling and the finishing hot rolling to perform thermal insulation. To refine the structure by recrystallization.
  • a sheet bar having a thickness of 28 to 38 mm is rolled to a required hot rolled sheet thickness, the rough hot rolled structure is expanded, and strain is accumulated.
  • the toughness of the hot rolled sheet can be improved by accumulating a large amount of strain.
  • the rolling start temperature is set to 890 ° C. or lower. For this reason, the finish hot rolling side temperature is set to 840 to 890 ° C.
  • (H) Finishing hot rolling finish temperature 690-740 ° C Similar to the finish hot rolling start temperature, strain accumulates when the temperature is lowered, and the toughness is improved, but hot rolling occurs when the temperature is lowered too much.
  • the main cause of hot rolling here is seizure of the hot rolled work roll and the hot rolled sheet. Therefore, the finishing hot rolling start temperature is set to 690 to 740 ° C.
  • the finish hot rolling end temperature is determined in conjunction with the finish hot rolling start temperature, but also varies depending on the rolling speed and the plate thickness.
  • the upper limit of the rolling reduction of finish rolling is not particularly defined, it hardly exceeds 95% in actual production, and the upper limit may be 95%.
  • Cooling rate 25 ° C./s or higher After the finish hot rolling, it is necessary to cool the hot-rolled plate to the target coiling temperature. It is necessary to cool to the target winding temperature between the final hot rolling stand and the winder (coiler). At this time, cooling is performed at a cooling rate of 25 ° C./s or more.
  • the temperature of the water cooling is set to 510 ° C. or higher.
  • the water cooling end temperature is set to 560 ° C. or lower.
  • (M) Winding temperature 500-550 ° C
  • the coiling temperature is set to 550 ° C. or lower.
  • the coiling temperature is too low, it becomes difficult to measure and control the temperature.
  • (N) Annealing temperature 800 to 950 ° C. ⁇ 10 to 30 seconds
  • annealing is performed at a temperature range of 800 to 950 ° C. for 10 to 30 seconds.
  • recrystallization does not occur when the temperature is less than 800 ° C. or less than 10 seconds. If it exceeds 950 ° C. or more than 30 seconds, the recrystallized grains become coarse and the recrystallized grains grow rapidly, so that a fine structure cannot be obtained and the toughness is lowered.
  • the thickness of the hot-rolled steel sheet is 5 to 12 mm or less, which is frequently used as a flange. However, if the thickness is excessively increased, the toughness is extremely lowered, and therefore 5 to 10 mm is desirable.
  • annealing that satisfies the above conditions after pickling, temper rolling, or surface grinding after hot rolling.
  • each of Inventive Examples 1 to 20 had good surface quality, and the Charpy impact value at 25 ° C. was 40 J / cm 2 or more.
  • Comparative Examples 1 to 26 at least one of the chemical composition and the metal structure was outside the range defined in the present invention, and the toughness was lowered.
  • Comparative Examples 27 and 28 the temperature of the rough rolling was too low, so that the coarse grains were formed without recrystallization, hot rolling was generated, and the toughness was also lowered.
  • a ferritic stainless steel sheet having excellent toughness can be provided efficiently.
  • This ferritic stainless steel sheet is particularly suitable as an automobile exhaust system flange member.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

板厚tが5.0~12.0mmであるフェライト系ステンレス鋼板であって、化学組成が、質量%で、C:0.001~0.010%、Si:0.01~1.0%、Mn:0.01~1.0%、P:0.04%以下、S:0.010%以下、Cr:10.0~20.0%、Ni:0.01~1.0%、Ti:0.10~0.30%、V:0.01~0.40%、Al:0.005~0.3%、N:0.001~0.02%、必要に応じて、B、Mo、Cu、Mg、Sn、Sb、Zr、Ta、Nb、Hf、W、Co、Ca、REMおよびGaの一種以上を含み、残部がFeおよび不可避的不純物であり、金属組織が、圧延方向に平行な断面において、長径/短径が5.0未満である組織が面積率で90%以上であり、平均短径が55μm以下である。このフェライト系ステンレス鋼板は、靭性に優れており、自動車排気系フランジ等に好適である。

Description

フェライト系ステンレス鋼板、ホットコイルおよび自動車排気系フランジ部材
 本発明は、フェライト系ステンレス鋼板、ホットコイルおよび自動車排気系フランジ部材に関する。
 自動車の排ガス経路は、エキゾーストマニホールド、EGR(Exhaust Gas Recirculation)、マフラー、触媒、DPF(Diesel particulate filter)、尿素SCR(Selective Catalytic Reduction)、フレキシブルチューブ、センターパイプおよびフロントパイプ等様々な部品から構成されている。これらの部品をつなげる際、フランジと呼ばれる締結部品を使用することが多い。自動車の排気系部品では、加工工数が少なく済むと同時に作業空間が狭く済むため、フランジ接合が積極的に採用されている。
 また、振動による騒音および剛性確保の観点から、5mm厚以上の厚手フランジが使用されることが多い。フランジは打ち抜き加工、プレス成形などの工程で製造され、従来普通鋼の鋼板が素材に利用されていた。しかしながら、ステンレス鋼製の他の排気系部品に比べて耐食性に劣る普通鋼のフランジは錆の発生が目立ち、美観を損なう場合があった。このため、フランジ素材として普通鋼板を転換して、ステンレス鋼板の採用が積極的に進められつつある。
 フェライト系ステンレス鋼はCrを含有するため、また相変態による金属組織の微細化が難しいため、普通鋼に比べて靭性が低い。特に高Cr、Al、Siのステンレス鋼はその低靭性が問題であり、コイルを加温して通板するか、熱延鋼板厚を薄くするなどの対策が行われている。
 フェライト系ステンレス鋼の熱延鋼板または熱延焼鈍鋼板を、板厚5mm以上の板厚で製造する場合、板厚の増加により靭性が更に低下する。コイルを巻戻す際、形状矯正、切断、熱延鋼板の焼鈍や酸洗などの工程を通板する際に、板破断が生じやすくなる。上記工程を通板するためには、コイルとコイルを溶接して繋ぐことが多くの場合必要である。しかし、板厚が増加すると溶接に要する時間が長くなるため、加温したコイルも温度が低下して、脆性的な破断を生じることがある。このため、フェライト系ステンレス鋼で板厚が5mmを超える鋼板が必要な場合は、従来厚板として製造されており、熱延コイルとして製造する場合よりもコストが高くなることが問題であった。
 フェライト系ステンレス鋼板の靭性に関する課題を解決するための工夫はこれまでにも複数紹介されている。
 例えば、特開昭60-228616号公報(特許文献1)では熱延コイルの冷間展開、冷間圧延及び各種ハンドリング時に発生しがちな割れ等のトラブルを生じることの無い靭性の優れた高純度フェライト系ステンレス鋼熱延鋼帯を得るために、熱間圧延した後、直ちに10℃/sec以上の冷却速度にて急冷を行い、450℃以下の温度で巻取ることを特徴とする製造方法が開示されており、衝撃破面遷移温度が-20℃以下になったこと、また、実施例に於いて板厚3mmにおけるコイル展開の可否が示されている。この技術によって、熱延鋼帯を水槽に入れて水冷するような、熱延鋼帯の靭性値にバラツキが多くなる製造方法を避けることが出来ると示されている。
 特開平8-199237号公報(特許文献2)では、Nbを0.20%~0.80%含み、Cr:13.5%を超え~15.5%含む熱延鋼板の低温靭性に優れたフェライト系ステンレス鋼であって、板厚が4.5mm以上、9.0mm以下の熱延鋼帯を製造する方法として、800℃以上で熱間圧延した後に直ちに冷却し、熱間圧延後の板厚tと熱間圧延時の巻き取り温度Tがt×T≦3600の関係を満足する温度で巻取ることを特徴とする製造方法が示されている。
 特開2012-140687号公報(特許文献3)には、熱延コイルを展開して通板するラインにおいて、材料割れの問題が安定して防止できるに足る靭性・延性を有し、板厚が5~12mmのTi含有フェライト系ステンレス鋼熱延コイル、熱延焼鈍コイルについて開示されている。その手段としては、巻取温度を570℃以上とし、巻取終了時から5分以上経過後で、かつコイル最外周の表面温度が550℃以上である時にコイルを水中に浸漬し、当該水中で15分以上保持する製造方法が示されている。
 一方、特開2012-140688号公報(特許文献4)では、熱延コイルを展開して通板するラインにおいて、材料割れの問題が安定して防止できるに足る靭性・延性を有し、板厚が5~10mmのNb含有フェライト系ステンレス鋼熱延コイル、熱延焼鈍コイルについて開示されている。また、その手段としては、ステンレス鋼スラブを仕上げ圧延温度890℃以上とし、巻取前に水冷して巻取温度400℃以下で巻取ってコイルとし、巻取終了時から30分以内にコイルを水中に浸漬し、当該水中で15分以上保持する製造方法が示されている。
 特開2000-169943号公報(特許文献5)では、質量%で、C:0.001~0.1%、N:0.001~0.05%、Cr:10~25%、S:0.01%以下、P:0.04%以下、Mn:0.01~2%、Si:0.01~2%、O:0.01%以下、Sn:0.05%~2%を含有し、残部がFe及び不可避的不純物からなるフェライト系ステンレス鋼が開示されている。このフェライト系ステンレス鋼は、高温で長時間使用される場合にも高温強度が時効劣下しないとされている。
特開昭60-228616号公報 特開平8-199237号公報 特開2012-140687号公報 特開2012-140688号公報 特開2000-169943号公報
 特許文献1の技術では板厚が5mmを超える厚手フェライト系ステンレス鋼板の靭性を改善することは難しかった。
 特許文献2の技術では、Nb添加鋼の靭性を向上することは出来るが、Ti添加鋼の靭性向上には効果が得られなかった。
 特許文献3の技術のように、コイル水冷による靭性改善は、コイル内の冷却速度の変動が大きく、靭性のバラツキを生じる問題があった。
 特許文献4の技術は、Nb含有フェライト系ステンレス鋼を対象としており、硬さおよびシャルピー衝撃値を調整するために、熱延仕上温度を890℃以上とし400℃以下で巻き取り、コイルを水中に浸漬するので、引用文献1にも述べられていたように、コイル内の冷却速度の変動が大きく、靭性のバラツキを生じる問題があった。
 特許文献5の技術は、熱間圧延に際し加熱温度を1000℃以上1300℃以下として熱間圧延を行うものであるため、板厚が5mmを超えるフェライト系ステンレス鋼板の結晶粒径を小さくできず、靭性を改善することは難しい。
 本発明の目的は、既知技術の問題点を解決し、靭性に優れたフェライト系ステンレス鋼板を効率的に製造することにある。
 上記課題を解決するために、本発明者らはフェライト系ステンレス鋼板の低温靭性に関して、成分および製造過程における熱延条件、金属組織的見地から詳細な研究を行い、製造工程における組織変化と靭性への影響を明らかにした。
 チタン添加のフェライト系ステンレス鋼は、その製造工程において相変態が起こらないため、金属組織の制御が難しい。すなわち、熱延に供するスラブは板厚が150~250mmで、その金属組織は凝固組織、即ち粗大な柱状晶である。この柱状晶は幅が数百μmから十数mm、長さが数mmから数cmである。熱延時に加熱炉で通常は1100℃~1300℃に加熱され、粗圧延機でリバース圧延により、板厚が20~40mmの粗バーまで圧延される際に、その大部分の組織が再結晶し、結晶粒径で数百μmまで微細化される。その後の仕上げ熱延工程で所望の板厚まで圧延される。仕上げ熱延は、一般的にはタンデム方式で一方向に圧延されるが、ステッケルミルでは仕上げ熱延もリバース方式で行われる。仕上げ熱延では粗熱延後の組織が展伸するだけで、再結晶は極僅かしか起こらない。
 本発明者は、上記各工程における組織変化とそれに伴う材質への影響を調べる中で、粗熱延組織の微細化が、熱延鋼板の靭性向上に極めて有効であることを見出した。組織の微細化には低温で大歪加工することが有効であるが、低温で熱延すると熱延後の再結晶も遅延するために、粗熱延後、仕上げ熱延直前の粗バー組織において未再結晶部が残存しやすくなる。未再結晶部が残存する粗バーを仕上げ圧延して製造した熱延コイルから冷延焼鈍して製造した薄板は、加工時にリジングと呼ばれる粗大な肌荒れが生じるため、従来からフェライト系ステンレス鋼熱延鋼帯の製造においては、粗熱延組織に未再結晶部が残存するような低温加熱熱延は避けられてきた。
 一方、自動車排気系部品のフランジ用鋼材には、従来普通鋼が用いられてきたが、近年、耐食性の高いフェライト系ステンレス鋼が用いられるようになってきている。上記のフランジにはある程度の厚さが必要なこと、また、それほど高い表面性状が求められないことから、フェライト系ステンレス鋼の厚板が主に用いられる。生産性を向上するためには、フェライト系ステンレス鋼のホットコイルを用いるのが好ましい。しかし、ホットコイルの巻き戻しや形状矯正、酸洗工程を通板する際の破断を避けるために、ホットコイルには、優れた靭性が求められる。特に、板厚が厚いほど靭性は低下する傾向にある。
 そこで、本発明者らが研究したところ、熱延鋼板の靭性や、熱延焼鈍鋼板の靭性に関しては、粗バーにおける未再結晶部が残存しても、粗バーの大部分の組織を細粒化することで靭性が向上することが分かった。粗熱延組織の微細化を成すためには、熱延加熱温度を940~990℃とし、粗熱延工程は極力低温で行うことが重要である。但し、加熱温度を下げすぎると粗熱延工程、粗熱延後から仕上げ熱延開始までの間に再結晶が起こりにくい。このため、粗熱延終了から仕上げ熱延開始までの間に鋼帯温度の低下を抑えることが特に重要である。なお、フランジ接合部品などは、冷間圧延を行わず、熱延鋼板を用いるので、リジングの問題はそもそも発生しない。
 このようにして、粗熱延組織を微細化し、仕上げ熱延によって微細な展伸粒組織とした熱延鋼板を焼鈍すると、平均短径が55μm以下の、熱延焼鈍鋼板としては極めて微細な結晶粒組織が得られ、熱延焼鈍鋼板のシャルピー衝撃値は、25℃で40J/cm2以上の値が得られる。このような熱延焼鈍鋼板は、その後のプレス成形においても脆性割れの発生が抑制される。また、この熱延鋼板を焼鈍して製造した熱延焼鈍鋼板では微細な再結晶組織が得られるため、熱延焼鈍鋼板の靭性も大きく向上する。
 図1の左側は、本発明に係る鋼材の一例、右側は従来鋼材のミクロ組織拡大図であるが、比較すると、本発明鋼材の方が微細な結晶粒組織で構成されており、シャルピー衝撃試験吸収エネルギー値も従来鋼材が約20J/cm2以下であるのに対し、本発明鋼材では40J/cm2以上を達成している。
 上記課題を解決する本発明の要旨は、以下のとおりである。
(1)板厚tが5.0~12.0mmであるフェライト系ステンレス鋼板であって、
 化学組成が、質量%で、
C:0.001~0.010%、
Si:0.01~1.0%、
Mn:0.01~1.0%、
P:0.04%以下、
S:0.010%以下、
Cr:10.0~20.0%、
Ni:0.01~1.0%、
Ti:0.10~0.30%、
V:0.01~0.40%、
Al:0.005~0.3%、
N:0.001~0.02%、
B:0~0.0030%、
Mo:0~2.0%、
Cu:0~0.3%、
Mg:0~0.0030%、
Sn:0~0.1%、
Sb:0~0.1%、
Zr:0~0.1%、
Ta:0~0.1%、
Nb:0~0.1%、
Hf:0~0.1%、
W:0~0.1%、
Co:0~0.2%、
Ca:0~0.0030%、
REM:0~0.05%、
Ga:0~0.1%、
残部がFeおよび不可避的不純物であり、
金属組織が、圧延方向に平行な断面において、長径/短径が5.0未満である組織が面積率で90%以上であり、平均短径が55μm以下である、
フェライト系ステンレス鋼板。
(2)上記(1)のフェライト系ステンレス鋼板を用いた、
ホットコイル。
(3)上記(1)のフェライト系ステンレス鋼板を用いた、
自動車排気系フランジ部材。
(4) 上記(2)のフェライト系ステンレスホットコイルを用いた、
自動車排気系フランジ部材。
  本発明によれば、靭性に優れたフェライト系ステンレス鋼板を、効率的に提供することができる。このフェライト系ステンレス鋼板は、特に自動車排気系フランジ部材として好適である。
本発明に係る鋼材と従来鋼材のミクロ組織を示す図である。 平均短径の25℃のシャルピー衝撃値に及ぼす影響を示す図である。
 1.化学組成
 C:0.001~0.010%
 Cは、固溶Cによる硬質化ならびに炭化物析出により靭性を劣化させるため、その含有量は少ないほど良い。また、過剰な含有は、炭化物生成に起因して靭性の低下が生じるため、上限を0.010%とした。但し、過度の低減は精錬コストの増加に繋がるため、下限を0.001%とした。更に、製造コスト、耐食性および鋼板靭性などを考慮して、下限は0.002%または0.003%としてもよく、上限は0.009%、0.008%または0.007%としてもよい。
 Si:0.01~1.0%
 Siは、脱酸元素として添加される場合がある他、耐酸化性の向上をもたらすが、固溶強化元素であるため、靭性の観点からは少ないほど良い。過剰な含有は、靭性の低下が顕著に生じるため、上限を1.0%とした。一方、耐酸化性確保のため、下限を0.01%とした。但し、過度の低減は精錬コストの増加に繋がるため、材質や耐初期錆び性などを考慮して、下限は0.05%、0.10%または0.15%としてもよく、上限は0.9%、0.8%、0.7%または0.6%としてもよい。
 Mn:0.01~1.0%
 Mnは、Si同様、固溶強化元素であるため、材質上その含有量は少ないほど良い。特に、過剰な含有は、熱間圧延時にγ相の析出による再結晶の遅延が生じて靭性が低下することがあるため、上限を1.0%とした。一方、過度の低減は精錬コストの増加に繋がる他、微量のMn添加はスケール剥離性を向上させるため、下限は0.01%とした。更に、材質や製造コストなどを考慮して、下限は0.1%、0.2%、0.25%または0.3%としてもよく、上限は0.7%、0.6%、0.5%または0.4%としてもよい。
 P:0.04%以下
 Pはフェロクロムなどの原料から不可避的不純物として混入する元素であり、MnやSi以上に固溶強化能が強い。材料を硬質化させるため、靭性の観点からその含有量は少ないほど良い。また、過剰な含有は、Pの粒界偏析に起因した脆化を生じさせるため、上限を0.04%とした。Pの下限は特に定める必要はなく、0%である。しかし、過度の低減は原料コストの増加に繋がるため、下限は0.005%、0.01%または0.015%としてもよい。更に、耐食性などを考慮して、上限は0.03%、0.025%または0.02%としてもよい。
 S:0.010%以下
 Sも原料から不可避的不純物として混入する元素であり、耐食性を劣化させるため、その含有量は少ないほど良い。また、過剰な含有は、MnS、Ti422等の析出物生成に起因して粗熱延における再結晶が遅延する傾向が見られるため上限を0.010%とした。Sの下限は特に定める必要はなく、0%である。しかし、SにはMnやTiと結合してフランジ成形における打ち抜き性を向上させる効果がある。この効果を得るために、下限は0.0002%、0.0005%または0.001%としてもよい。更に、燃料部品とした際の隙間腐食抑制等を考慮して、上限は0.008%、0.006%または0.005%としてもよい。
 Cr:10.0~20.0%
 Crは、耐食性や耐酸化性を向上させる元素であり、フランジに要求される耐塩害性を考慮すると、10.0%以上の含有が必要である。一方、過剰な含有は、硬質となり、成形性や靭性を劣化させる。また、固溶Crによって粗熱延時の再結晶が遅延する傾向があり、20.0%超の場合は仕上げ熱延直前において未再結晶組織が残存して鋼板の靭性を低下させるため、上限を20.0%とした。尚、製造コストや靭性劣化による製造時の板破断などを考慮して、下限は11.0%、12.0%または13.0%としてもよい。また、上限は19.0%、18.0%または17.0%としてもよい。
 Ni:0.01~1.0%
 Niは、隙間腐食の抑制や再不働態化を促進することにより耐初期錆び性を向上させるため、0.01%以上含有させる。但し、過剰な含有は、硬質化を招き、成形性を劣化させ、また、熱間圧延時にオーステナイト相の析出を促進し、粗熱延時の再結晶を遅延させ、さらに、応力腐食割れが生じ易くなるため、上限を1.0%とした。尚、原料コストなどを考慮して、下限は0.02%、0.03%または0.05%としてもよく、上限は0.5%、0.3%、0.2%または0.1%としてもよい。
 Ti:0.10~0.30%
 TiはC、N、S、Pと結合して耐食性、耐粒界腐食性、靭性を向上させるために添加する元素である。特にC、Nの固定が十分でないと鋭敏化により、Cr欠乏層を生じて耐食性の顕著な低下を生じるため、0.10%が下限となる。
 溶接部も含めて耐食性を十分に確保するために、下限は、0.12%、0.14%または0.16%としてもよい。一方、過剰な含有は、製鋼工程において、溶鋼中に粗大なTiNを析出させ、鋼板の靭性を低下させるため、上限を0.30%とした。製造コストなどを考慮して、上限は、0.28%、0.25%または0.22%としてもよい。
 V:0.01~0.40%
 Vは、隙間腐食を抑制させる他、微量添加によって靭性向上に寄与するため、0.01%以上含有させる。但し、過剰な含有は、硬質化を招き、成形性を劣化させる他、粗大なV(C、N)が析出することによって靭性劣化を生じるため、上限を0.4%とした。尚、靱性向上、原料コストや初期錆び性などを考慮して、下限は0.02%、0.03%または0.04%としてもよく、上限は0.20%、0.10%または0.06%としてもよい。
 Al:0.005~0.3%
 Alは、脱酸元素として添加される元素であり、鋼中の酸化物を低減して鋼板の靭性を向上させる。その作用は0.005%から発現するため、下限を0.005%とした。また、過剰な含有は、靭性の低下や、溶接性および表面品質の劣化をもたらす他、粗熱延時の再結晶を遅延させるため、上限を0.3%とした。更に、精錬コストなどを考慮して、下限は0.01%、0.02%または0.03%としてもよく、上限は0.15%、0.1%、0.08%または0.06%としてもよい。
 N:0.001~0.02%
 Nは、Cと同様に靭性と耐食性を劣化させるため、その含有量は少ないほど良い。また、過剰な含有は、凝固時の粗大窒化物生成に起因して靭性の低下を生じさせ、結晶粒径の微細化だけでは靭性の改善が図れなくなるため、上限を0.02%とした。但し、過度の低下は精錬コストの増加に繋がるため、下限を0.001%とした。更に、製造コストと加工性及び初期錆び性などを考慮して、下限は0.003%、0.005%または0.006%としてもよく、上限は0.015%、0.010%または0.009%としてもよい。
 フェライト系ステンレス鋼の靭性向上の観点からは低減することが望ましいが、耐食性や耐酸化性、プレス成形性、熱延疵の低減などの観点から、更に、B、Mo、Cu、Mg、Sn、Sb、Zr、Ta、Nb、W、Co、Ca、REM、Ga、Biを適量添加することも有効である。
 B:0~0.0030%
 Bは、粒界に偏析することで製品の2次加工性を向上させる元素であり、フランジの打ち抜き性を向上させるため、含有させてもよい。但し、過剰な含有は、ほう化物が析出して靭性を劣化させる他、粗熱延時の再結晶を遅延させるため、上限を0.0030%とした。Bの下限は、特に定める必要はなく、0%である。靱性向上などのため、下限は、0.0001%または0.0002%としてもよい。コストや延性低下などを考慮して、上限は0.0020%、0.0010%または0.0005%としてもよい。
 Mo:0~2.0%
 Moは、耐食性や高温強度を向上させる元素であり、特に隙間構造を有する場合には隙間腐食を抑制するため、含有させてもよい。また、過剰な含有は、著しく耐酸化性を上げ、熱延加熱時に異常酸化による疵を発生させたり、粗熱延時の再結晶を遅延させ、粗熱延組織の粗大化を生じて靭性低下の原因となるため、上限を2.0%とした。Moの下限は、特に定める必要はなく、0%である。靱性向上などのため、0.01%以上含有させてもよい。更に、製造コストなどを考慮して、下限は0.02%または0.03%としてもよく、上限は1.2%、0.3%または0.1%としてもよい。
 Cu:0~0.3%
 Cuは、高温強度向上の他、隙間腐食の抑制や再不働態化を促進させるため、含有させてもよい。過剰な含有は、ε-CuやCu-richクラスターの析出によって硬質化を招き、成形性と靭性を劣化させるため、上限を0.3%とした。Cuの下限は、特に定める必要はなく、0%である。成形性や靱性向上のために、0.01%以上含有させてもよい。製造時の酸洗性等を考慮して、下限は0.01%または0.03%としてもよく、上限は0.02%、0.12%または0.10%としてもよい。
 Mg:0~0.0030%
 Mgは、脱酸元素として添加させる場合がある他、スラブの組織を微細化させ、成形性向上に寄与する元素である。また、Mg酸化物はTi(C、N)やNb(C、N)等の炭窒化物の析出サイトになり、これらを微細分散析出させる効果がある。このため、Mgを含有させてもよい。但し、過剰な含有は、溶接性や耐食性の劣化につながるため、上限を0.0030%とした。Mgの下限は、特に定める必要はなく、0%である。下限は、必要に応じて、0.0003%、0.0006%または0.01%としてもよい。精錬コストなどを考慮して、上限は0.0020%または0.0010%としてもよい。
 Sn:0~0.1%
 Sb:0~0.1%
 SnやSbは、耐食性と高温強度の向上に寄与するため、含有させてもよい。過剰な含有は、鋼板製造時のスラブ割れが生じる場合がある他、鋼板の靭性においても低下要因となるため上限を0.1%とする。SnやSbの下限は、特に定める必要はなく、0%である。下限は、必要に応じて、0.005%または0.01%としてもよい。更に、精錬コストや製造性などを考慮して、上限は0.05%または0.02%としてもよい。
 Zr:0~0.1%
 Ta:0~0.1%
 Nb:0~0.1%
 Hf:0~0.1%
 Zr、Ta、NbおよびHfは、CやNと結合して靭性の向上に寄与するため、含有させてもよい。但し、過剰な含有は、コスト増になる他、大型の炭窒化物析出により、鋼板の靭性を著しく劣化させるため、上限を0.1%とする。これらの成分の下限は、特に定める必要はなく、0%である。下限は、必要に応じて、0.005%または0.01%としてもよい。更に、精錬コストや製造性などを考慮して、上限は0.08%または0.03%としてもよい。
 W:0~0.1%
 Wは、Moと同様に耐食性と高温強度の向上に寄与するため、含有させてもよい。過剰な含有は、鋼板製造時の靭性劣化ならびにコスト増につながるため、上限を0.1%とする。Wの下限は、特に定める必要はなく、0%である。下限は、必要に応じて、0.01%としてもよい。精錬コストや製造性などを考慮して、上限は0.05%または0.02%としてもよい。
 Co:0~0.2%
 Coは、高温強度の向上に寄与するため、含有させてもよい。過剰な含有は、固溶強化や粗熱延時の再結晶抑制による靭性低下を生じるため、上限を0.2%とする。Coの下限は、特に定める必要はなく、0%である。上記の効果を得るために、下限は、0.01%、0.02%または0.04%としてもよい。更に、精錬コストや製造性などを考慮して、上限は0.15%または0.1%としてもよい。
 Ca:0~0.0030%
 Caは、脱硫効果を有するので、含有させてもよい。しかしながら、過剰な含有は、粗大なCaSが生成して耐食性を劣化させるため、上限を0.0030%とした。Caの下限は、特に定める必要はなく、0%である。精錬コストや製造性などを考慮して、上限は0.0030%または0.0020%としてもよい。
 REM:0~0.05%
 REMは、種々の析出物の微細化による靭性向上や耐酸化性向上の効果を有するので、含有させてもよい。しかしながら、過剰な含有は、鋳造性を著しく悪くする他、固溶強化や粗熱延時の再結晶抑制により、靭性を低下させることから上限を0.05%とした。REMの下限は、特に定める必要はなく、0%である。上記の効果を得るために、下限は、0.001%または0.002%としてもよい。更に、精錬コストや製造性などを考慮して、上限は0.01%または0.005%としてもよい。REM(希土類元素)は、一般的な定義に従い、スカンジウム(Sc)、イットリウム(Y)の2元素と、ランタン(La)からルテチウム(Lu)までの15元素(ランタノイド)の総称を指す。単独で添加してもよいし、混合物であってもよい。
 Ga:0~0.1%
 Gaは、耐食性向上や水素脆化抑制のため、0.1%以下の範囲で含有させてもよい。Gaの下限は、特に定める必要はなく、0%である。硫化物や水素化物形成の観点から、必要に応じて、下限は0.0002%としてもよい。製造性やコストの観点、ならびに、粗熱延再結晶促進の観点などから、上限は、0.0020%としてもよい。
 その他の成分について本発明では特に規定するものではないが、本発明においては、Bi等を必要に応じて、0.001~0.1%含有させてもよい。なお、As、Pb等の一般的な有害な元素や不純物元素はできるだけ低減することが好ましい。
 2.金属組織
 本発明のフェライト系ステンレス鋼板の金属組織は、圧延方向に平行な断面において、長径/短径が5.0未満である組織が面積率で90%以上である。長径/短径が5.0未満である組織が面積率で90%以上であるというのは、本発明のフェライト系ステンレス鋼板が熱延後に焼鈍を行った鋼板であり、比較的等軸粒の金属組織であることを意味している。上記の組織は、面積率で95%以上が好ましい。面積率の上限は、100%であるが、その上限は、99%または98%としてもよい。ここで、金属組織の測定は、圧延方向および板厚方向に平行な断面において、硝酸電解エッチングによって粒界を現出させ、0.25t(t:板厚)および0.50t(t:板厚)のそれぞれの位置において、少なくとも1mmの領域を光学顕微鏡で観察して、結晶粒の長径および短径の比(長径/短径)が5.0未満の結晶粒の面積分率を測定する。そして、長径/短径が5.0未満である組織は、0.25t位置および0.50t位置の面積分率の平均値が90%以上であることを基準とする。
 本発明のフェライト系ステンレス鋼板の平均短径は、55μm以下である。ここで、平均短径0.25t~0.75t(t:板厚)の平均短径を基準とする。具体的には、圧延方向および板厚方向に平行な断面において、硝酸電解エッチングによって粒界を現出させ、板厚方向に平行な直線上を0.25t~0.75t(t:板厚)の範囲で観察し、JIS G0551附属書C.2に準じて、前記直線が補足した結晶粒の数を測定し、前記直線の実長さを計測した結晶粒の数で除して、「平均短径」を求めた。
 図2に示すように、平均短径が55μmを超える場合には、25℃のシャルピー衝撃値が小さい。しかし、この平均短径が55μm以下になると、25℃のシャルピー衝撃値が上昇し、40J/cm2以上となり、鋼板靭性が向上する。この平均短径は、50μm以下にすることにより更に靭性を高めることができる。平均短径の上限は、48μm、45μmまたは43μmとしてもよい。熱延焼鈍鋼板の組織微細化のためにも、低温大歪加工が必要になるが、低温熱延は熱延時に圧延ワークロールと鋼板との焼き付きが生じやすくなって、熱延焼鈍鋼板においても組織の微細化には限界があるため、平均粒径は20μm以上にすることが好ましい。平均短径の下限は、22μm、25μmまたは30μmとしてもよい。
 3.製造方法
 本発明の鋼板は、製鋼工程および熱間圧延により製造される。
 製鋼工程は、特に限定しない。例えば、前記の化学組成を有する鋼を、転炉溶製し、続いて2次精錬を行う方法が好適である。溶製した溶鋼は、公知の鋳造方法(連続鋳造)に従ってスラブとする。スラブは、所定の温度に加熱され、所定の板厚に連続圧延で熱間圧延される。
 熱延工程は、本発明の金属組織を得るためには特に重要な工程である。本発明者らは、これまでの研究により、下記の推奨条件を満足する場合に、本発明の金属組織を得ることができることを確認している。
 (a)加熱温度:940~990℃
 粗熱延組織を細かくするためには加熱温度の低温化が必要であり、990℃以下とする。しかし、加熱温度が低すぎると、熱延疵が発生するおそれがあるので、940℃以上とする。
 (b)粗熱延入側温度:900~950℃
 粗熱延の入側温度を950℃以下とすることにより、粗熱延組織の微細化が可能となる。加熱温度が高くても、粗熱延までの間にスラブを冷却することにより、粗熱延開始温度を下げることができる。但し、入側温度は、下げすぎると、熱延疵の原因になるので、900℃以上とする。
 (c)粗熱延終了温度:850~900℃
 粗熱延終了温度が900℃を超えると、粗熱延組織が粗大になる。一方、850℃を下回ると、粗熱延後の再結晶が遅延し、粗熱延組織(仕上げ熱延開始直前の組織)が粗大になり、仕上げ熱延後の熱延板靭性が低下する。このため、粗熱延終了温度は、850~900℃とする。なお、粗熱延終了温度は、粗熱延開始温度によって概ね決まるものである。ただし、粗熱延のパス回数を増やしたり、粗熱延の圧下率を大きくしたりすれば、粗熱延終了温度を低下させることが可能である。
  (d)粗圧延圧下率:80%以上
 粗圧延の圧下率は、80%以上とすることにより、粗熱延組織の微細化が可能となる。粗圧延の圧下率の上限は特に定める必要はないが、実製造において95%を超えることは殆どなく、95%を上限としてもよい。
 (e)バーヒーター:30℃以上昇温
 粗熱延がリバース圧延であり、仕上げ熱延がタンデム熱延機による一方向圧延である。このため、粗熱延機と仕上げ熱延機の間は、100m程度の間隔が設けられており、その間にシートバーの温度が大幅に低下する。この間の温度低下が大きすぎると、仕上げ熱延における荷重が大きくなり、また、品質が不安定になり、さらに、金属組織を所望の状態にすることができなくなる。また、未再結晶組織の比率が増えて、平均結晶粒径は大きくなる。このため、熱延コイルの仕上げ熱延開始温度をコイル長手方向において一様にする必要がある。よって、インダクション方式等のバーヒーターでシートバー(粗バー)を加熱することが重要である。フェライト系ステンレス鋼は、相変態が無く、スラブの凝固組織を粗熱延後の再結晶で微細化することが必要になるが、粗熱延の歪みを活用して再結晶させるためには、バーヒーターで粗熱延後の温度低下を抑えることが有効である。具体的にはバーヒーターによって30℃以上昇温する。一方、昇温しすぎると、粒成長により粗熱延組織が粗大化するので、昇温は55℃以下とするのが好ましい。
 (f)保熱カバー:保温
 バーヒーターと同様に、シートバーの温度低下を抑制する方法として、粗熱延と仕上げ熱延の間の搬送テーブル上下面に保熱カバーを設け、保温を行うことにより再結晶による組織微細化を図る。
 (g)仕上げ熱延入側温度:840~890℃
 仕上げ熱延工程では、板厚28~38mmのシートバーを必要な熱延板板厚まで圧延して、粗熱延組織を展伸させ、歪みを蓄積させる。この工程において、歪みを多く蓄積することにより熱延板の靭性を向上させることができる。歪みの蓄積(転位密度の増加)に圧延開始温度を890℃以下にするが、下げすぎると熱延疵が生じる。このため、仕上げ熱延入側温度は840~890℃とする。
 (h)仕上げ熱延終了温度:690~740℃
 仕上げ熱延開始温度と同様に、低温化すると歪が蓄積して、靭性が向上するが下げすぎると熱延疵が生じる。ここでいう熱延疵の原因は、熱延ワークロールと熱延板の焼付きが主原因である。このため、仕上げ熱延開始温度は690~740℃とする。なお、仕上げ熱延終了温度は、仕上げ熱延開始温度に連動して、決まるものであるが、圧延速度や板厚によっても変化する。
  (i)仕上げ圧延圧下率:60%以上
 仕上げ圧延の圧下率は、60%以上とすることにより、粗熱延組織の微細化が可能となる。仕上げ圧延の圧下率の上限は特に定めないが、実製造において95%を超えることは殆どなく、95%を上限としてもよい。
 (j)水冷開始時間:2秒以内
 フェライト系ステンレス鋼は、相変態が無いため、粗熱延後の組織は、粗熱延での再結晶粒が仕上げ熱延で展伸した展伸粒である。仕上げ熱延で蓄積した歪が回復または再結晶によって減少しないように、仕上げ熱延終了後は、速やかに冷却する。よって、仕上げ熱延終了から水冷開始までの時間は2秒以内とする。
 (k)冷却速度:25℃/s以上
 仕上げ熱延後、狙いの巻取温度まで、熱延板を冷却することが必要である。仕上げ熱延の最終スタンドから巻取機(コイラー)までの間で、狙いの巻き取り温度に冷やす必要がある。このとき、25℃/s以上の冷却速度で冷却する。
 (l)水冷終了温度:510~560℃
 巻取温度を制御するためには、放射温度計等により熱延板温度をオンライン測定することが必要であるが、板の温度が450℃近傍になると、板上部の水が蒸発せずにコイラーまで残存するようになり、板の温度測定が困難になるため、水冷終了温度は510℃以上とする。ただし、巻取温度を550℃以下にするため、水冷終了温度は560℃以下とする。
 (m)巻取温度:500~550℃
 巻取温度が高すぎると、仕上げ熱延で導入した歪が回復または再結晶によって減少することがあり、また、FeTiPなどの析出物が析出して靭性を低下することがある。このため、巻取温度は550℃以下にする。但し、巻取温度が低すぎると、温度の測定および制御が困難になるため、500℃以上にする。
  (n)焼鈍温度:800~950℃×10~30秒
 靭性に優れる熱延焼鈍板を得るためには結晶粒の微細化が必要である。このため、粗熱延および仕上げ熱延により微細な展伸粒の高歪み状態を得た後に、低温焼鈍により、微細な再結晶粒とし、かつ粒成長を抑制する必要がある。具体的には、800~950℃の温度範囲で、10~30秒の焼鈍を行う。ここで、800℃未満または10秒未満では再結晶が生じない。また、950℃超または30秒超では、再結晶粒が粗大になり、また再結晶粒の成長も早いため、微細な組織が得られず、靭性が低下する。
 尚、本発明で製造された熱延コイルは、コイルごと水槽中で冷却することは不要であり、製造工程が簡略化される。また、熱延鋼板の厚さはフランジとして多用される5~12mm以下とするが、過度に厚手化すると靭性が極端に低下するため、5~10mmが望ましい。
 熱間圧延後に酸洗、調質圧延、または表面研削を行ったのちに、上記の条件を満たす焼鈍を行うのがよい。
 表1に示す成分組成の鋼を溶製し、スラブに鋳造し、スラブを5~15mmに熱間圧延して熱間圧延コイルとし、焼鈍を行った。各種製造時条件を表2および表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 得られた熱延焼鈍鋼板の圧延方向に平行な断面において、金属組織を観察し、0.25t(t:板厚)位置および0.50t(t:板厚)位置における、長径/短径が5.0未満である組織の面積分率を測定し、その平均値を求めた。次に、得られた熱延焼鈍鋼板の板厚方向に平行な断面において、硝酸電解エッチングによって粒界を現出させ、板厚方向に平行な直線上を0.25t~0.75t(t:板厚)の範囲で観察し、前記直線に交差する粒界の数を測定し、「平均短径」を求めた。さらに、得られた熱延焼鈍鋼板からシャルピー衝撃試験片を採取し、25℃におけるシャルピー衝撃試験をおこなった。これらの結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、本発明例1~20では、いずれも良好な表面品質を有するとともに、25℃のシャルピー衝撃値が40J/cm以上であった。これに対して、比較例1~26は、少なくとも化学組成および金属組織のいずれかが本発明で規定される範囲を外れており、靭性が低下していた。また、比較例27および28は、粗圧延の温度が低すぎたため、再結晶せずに粗大粒となり、熱延疵が発生し、また靭性も低下した。
 本発明によれば、靭性に優れたフェライト系ステンレス鋼板を、効率的に提供することができる。このフェライト系ステンレス鋼板は、特に自動車排気系フランジ部材として好適である。

Claims (4)

  1.  板厚tが5.0~12.0mmであるフェライト系ステンレス鋼板であって、
     化学組成が、質量%で、
    C:0.001~0.010%、
    Si:0.01~1.0%、
    Mn:0.01~1.0%、
    P:0.04%以下、
    S:0.010%以下、
    Cr:10.0~20.0%、
    Ni:0.01~1.0%、
    Ti:0.10~0.30%、
    V:0.01~0.40%、
    Al:0.005~0.3%、
    N:0.001~0.02%、
    B:0~0.0030%、
    Mo:0~2.0%、
    Cu:0~0.3%、
    Mg:0~0.0030%、
    Sn:0~0.1%、
    Sb:0~0.1%、
    Zr:0~0.1%、
    Ta:0~0.1%、
    Nb:0~0.1%、
    Hf:0~0.1%、
    W:0~0.1%、
    Co:0~0.2%、
    Ca:0~0.0030%、
    REM:0~0.05%、
    Ga:0~0.1%、
    残部がFeおよび不可避的不純物であり、
    金属組織が、圧延方向に平行な断面において、長径/短径が5.0未満である組織が面積率で90%以上であり、平均短径が55μm以下である、
    フェライト系ステンレス鋼板。
  2.  請求項1に記載のフェライト系ステンレス鋼板を用いた、
    ホットコイル。
  3.  請求項1に記載のフェライト系ステンレス鋼板を用いた、
    自動車排気系フランジ部材。
  4.  請求項2に記載のフェライト系ステンレスホットコイルを用いた、
    自動車排気系フランジ部材。
PCT/JP2017/007966 2017-02-28 2017-02-28 フェライト系ステンレス鋼板、ホットコイルおよび自動車排気系フランジ部材 WO2018158854A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PCT/JP2017/007966 WO2018158854A1 (ja) 2017-02-28 2017-02-28 フェライト系ステンレス鋼板、ホットコイルおよび自動車排気系フランジ部材
JP2017536602A JP6278160B1 (ja) 2017-02-28 2017-02-28 フェライト系ステンレス鋼板、ホットコイルおよび自動車排気系フランジ部材
PL17898998T PL3591084T3 (pl) 2017-02-28 2017-02-28 Blacha cienka z nierdzewnej stali ferrytycznej, zwój otrzymywany na gorąco i element kołnierzowy do układu wydechowego pojazdu silnikowego
EP17898998.4A EP3591084B1 (en) 2017-02-28 2017-02-28 Ferritic stainless steel sheet, hot coil, and flange member for motor vehicle exhaust system
KR1020197028504A KR102371041B1 (ko) 2017-02-28 2017-02-28 페라이트계 스테인리스 강판, 핫 코일 및 자동차 배기계 플랜지 부재
US16/489,674 US11111570B2 (en) 2017-02-28 2017-02-28 Ferritic stainless steel sheet, hot coil, and automobile exhaust flange member
ES17898998T ES2879999T3 (es) 2017-02-28 2017-02-28 Chapa de acero inoxidable ferrítico, bobina caliente y elemento de brida para sistema de escape de vehículos de motor
CN201780087637.0A CN110366601B (zh) 2017-02-28 2017-02-28 铁素体系不锈钢板、热轧卷材和汽车排气系统法兰构件
MX2019010211A MX2019010211A (es) 2017-02-28 2017-02-28 Chapa de acero inoxidable ferritico, bobina caliente y miembro de brida de escape de automovil.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/007966 WO2018158854A1 (ja) 2017-02-28 2017-02-28 フェライト系ステンレス鋼板、ホットコイルおよび自動車排気系フランジ部材

Publications (1)

Publication Number Publication Date
WO2018158854A1 true WO2018158854A1 (ja) 2018-09-07

Family

ID=61195728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007966 WO2018158854A1 (ja) 2017-02-28 2017-02-28 フェライト系ステンレス鋼板、ホットコイルおよび自動車排気系フランジ部材

Country Status (9)

Country Link
US (1) US11111570B2 (ja)
EP (1) EP3591084B1 (ja)
JP (1) JP6278160B1 (ja)
KR (1) KR102371041B1 (ja)
CN (1) CN110366601B (ja)
ES (1) ES2879999T3 (ja)
MX (1) MX2019010211A (ja)
PL (1) PL3591084T3 (ja)
WO (1) WO2018158854A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121817A1 (ja) * 2018-12-11 2020-06-18 Jfeスチール株式会社 フェライト系ステンレス鋼板およびその製造方法
EP3839087A4 (en) * 2018-09-19 2021-08-11 Posco HOT-ROLLED AND NOT ANNEALED FERRITIC STAINLESS STEEL SHEET WITH EXCELLENT IMPACT RESISTANCE AND PROCESS FOR ITS MANUFACTURING

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6261648B2 (ja) * 2016-05-16 2018-01-17 日新製鋼株式会社 排気管フランジ部品用Ti含有フェライト系ステンレス鋼板および製造方法
WO2021100687A1 (ja) * 2019-11-19 2021-05-27 日鉄ステンレス株式会社 フェライト系ステンレス鋼板
CN111057821B (zh) * 2019-12-27 2021-06-29 首钢智新迁安电磁材料有限公司 一种无取向电工钢及其制备方法、应用
CN114959485A (zh) * 2022-06-07 2022-08-30 江阴市龙润法兰有限公司 压力容器法兰及其生产工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228616A (ja) 1984-04-25 1985-11-13 Sumitomo Metal Ind Ltd フエライト系ステンレス鋼熱延鋼帯の製造法
JPH08199237A (ja) 1995-01-25 1996-08-06 Nisshin Steel Co Ltd 低温靭性に優れたフェライト系ステンレス熱延鋼帯の製造方法
JP2000169943A (ja) 1998-12-04 2000-06-20 Nippon Steel Corp 高温強度に優れたフェライト系ステンレス鋼及びその製造方法
JP2012140687A (ja) 2011-01-05 2012-07-26 Nisshin Steel Co Ltd Ti含有フェライト系ステンレス鋼熱延コイルおよび製造法
JP2012140688A (ja) 2011-01-05 2012-07-26 Nisshin Steel Co Ltd Nb含有フェライト系ステンレス鋼熱延コイルおよび製造法
WO2015147211A1 (ja) * 2014-03-26 2015-10-01 新日鐵住金ステンレス株式会社 フェライト系ステンレス圧延鋼板とその製造方法およびフランジ部品
JP2015190025A (ja) * 2014-03-28 2015-11-02 新日鐵住金ステンレス株式会社 靭性に優れたフェライト系ステンレス熱延鋼板および鋼帯

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287021A (ja) * 1996-04-19 1997-11-04 Nippon Steel Corp 加工性に優れた高純フェライト系ステンレス熱延鋼帯の製造方法
JP4285843B2 (ja) * 1999-07-21 2009-06-24 新日鐵住金ステンレス株式会社 曲げ加工時の形状凍結性に優れたフェライト系ステンレス鋼とその製造方法
ITRM20010584A1 (it) * 2001-09-26 2003-03-26 Acciai Speciali Terni Spa Acciaio inossidabile ferritico e suo uso nella fabbricazione di manufatti per impieghi ad elevate temperature.
KR100733016B1 (ko) * 2002-06-17 2007-06-27 제이에프이 스틸 가부시키가이샤 Тi첨가 페라이트계 스테인레스 강판 및 그 제조방법
JP5196807B2 (ja) * 2007-02-26 2013-05-15 新日鐵住金ステンレス株式会社 加工肌荒れの小さい成形性に優れたフェライト系ステンレス鋼板およびその製造方法
JP4976906B2 (ja) * 2007-04-09 2012-07-18 株式会社神戸製鋼所 Haz靭性、母材靭性、伸び、及び強度−伸びバランスに優れた厚鋼板
JP2011214063A (ja) * 2010-03-31 2011-10-27 Jfe Steel Corp フェライト系ステンレス鋼板およびその製造方法
CN103510022A (zh) * 2012-06-26 2014-01-15 宝钢不锈钢有限公司 一种避免低Cr铁素体不锈钢热轧边裂控制方法
WO2016129580A1 (ja) * 2015-02-10 2016-08-18 新日鐵住金ステンレス株式会社 面シール性に優れた自動車フランジ用フェライト系ステンレス熱延鋼板および鋼帯ならびにそれらの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228616A (ja) 1984-04-25 1985-11-13 Sumitomo Metal Ind Ltd フエライト系ステンレス鋼熱延鋼帯の製造法
JPH08199237A (ja) 1995-01-25 1996-08-06 Nisshin Steel Co Ltd 低温靭性に優れたフェライト系ステンレス熱延鋼帯の製造方法
JP2000169943A (ja) 1998-12-04 2000-06-20 Nippon Steel Corp 高温強度に優れたフェライト系ステンレス鋼及びその製造方法
JP2012140687A (ja) 2011-01-05 2012-07-26 Nisshin Steel Co Ltd Ti含有フェライト系ステンレス鋼熱延コイルおよび製造法
JP2012140688A (ja) 2011-01-05 2012-07-26 Nisshin Steel Co Ltd Nb含有フェライト系ステンレス鋼熱延コイルおよび製造法
WO2015147211A1 (ja) * 2014-03-26 2015-10-01 新日鐵住金ステンレス株式会社 フェライト系ステンレス圧延鋼板とその製造方法およびフランジ部品
JP2015190025A (ja) * 2014-03-28 2015-11-02 新日鐵住金ステンレス株式会社 靭性に優れたフェライト系ステンレス熱延鋼板および鋼帯

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3591084A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3839087A4 (en) * 2018-09-19 2021-08-11 Posco HOT-ROLLED AND NOT ANNEALED FERRITIC STAINLESS STEEL SHEET WITH EXCELLENT IMPACT RESISTANCE AND PROCESS FOR ITS MANUFACTURING
WO2020121817A1 (ja) * 2018-12-11 2020-06-18 Jfeスチール株式会社 フェライト系ステンレス鋼板およびその製造方法
CN113166831A (zh) * 2018-12-11 2021-07-23 杰富意钢铁株式会社 铁素体系不锈钢板及其制造方法
CN113166831B (zh) * 2018-12-11 2022-11-01 杰富意钢铁株式会社 铁素体系不锈钢板及其制造方法

Also Published As

Publication number Publication date
JP6278160B1 (ja) 2018-02-14
JPWO2018158854A1 (ja) 2019-03-07
EP3591084B1 (en) 2021-06-23
PL3591084T3 (pl) 2021-11-15
KR102371041B1 (ko) 2022-03-07
CN110366601A (zh) 2019-10-22
ES2879999T3 (es) 2021-11-23
EP3591084A1 (en) 2020-01-08
KR20190124266A (ko) 2019-11-04
US20200115785A1 (en) 2020-04-16
CN110366601B (zh) 2021-10-22
EP3591084A4 (en) 2020-01-15
US11111570B2 (en) 2021-09-07
MX2019010211A (es) 2019-12-19

Similar Documents

Publication Publication Date Title
JP6278160B1 (ja) フェライト系ステンレス鋼板、ホットコイルおよび自動車排気系フランジ部材
JP6383503B2 (ja) Nb含有フェライト系ステンレス熱延鋼板及びその製造方法、並びにNb含有フェライト系ステンレス冷延鋼板及びその製造方法
JP5793459B2 (ja) 加工性に優れた耐熱フェライト系ステンレス冷延鋼板、冷延素材用フェライト系ステンレス熱延鋼板及びそれらの製造方法
TWI465587B (zh) 耐氧化性優異之肥粒鐵系不鏽鋼
JP6075349B2 (ja) フェライト系ステンレス鋼
JP5885884B2 (ja) フェライト系ステンレス熱延鋼板とその製造方法及び鋼帯
JP4837426B2 (ja) バーリング加工性に優れた高ヤング率薄鋼板及びその製造方法
JP2005015909A (ja) 高強度低比重鋼板およびその製造方法
JP5904306B2 (ja) フェライト系ステンレス熱延焼鈍鋼板、その製造方法およびフェライト系ステンレス冷延焼鈍鋼板
JP6278159B1 (ja) フェライト系ステンレス鋼板、ホットコイルおよび自動車排気系フランジ部材
JP7009278B2 (ja) 耐熱性に優れたフェライト系ステンレス鋼板および排気部品とその製造方法
KR20220073804A (ko) 페라이트계 스테인리스 강판 및 그 제조 방법 그리고 페라이트계 스테인리스 부재
JP6550325B2 (ja) フランジ用フェライト系ステンレス鋼熱延鋼板およびその製造方法
JP4171296B2 (ja) 深絞り性に優れた鋼板およびその製造方法と加工性に優れた鋼管の製造方法
WO2018116792A1 (ja) フェライト系ステンレス鋼
JPWO2019151124A1 (ja) フェライト系ステンレス鋼
JP5958412B2 (ja) 熱疲労特性に優れたフェライト系ステンレス鋼

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017536602

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197028504

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017898998

Country of ref document: EP

Effective date: 20190930