WO2018157478A1 - 一种芴并咔唑类衍生物及磷光有机电致发光器件 - Google Patents

一种芴并咔唑类衍生物及磷光有机电致发光器件 Download PDF

Info

Publication number
WO2018157478A1
WO2018157478A1 PCT/CN2017/084850 CN2017084850W WO2018157478A1 WO 2018157478 A1 WO2018157478 A1 WO 2018157478A1 CN 2017084850 W CN2017084850 W CN 2017084850W WO 2018157478 A1 WO2018157478 A1 WO 2018157478A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
layer
organic electroluminescent
phenyl
electroluminescent device
Prior art date
Application number
PCT/CN2017/084850
Other languages
English (en)
French (fr)
Inventor
潘彪
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US15/567,377 priority Critical patent/US20180294417A1/en
Publication of WO2018157478A1 publication Critical patent/WO2018157478A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/96Spiro-condensed ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/572Five-membered rings
    • C07F9/5728Five-membered rings condensed with carbocyclic rings or carbocyclic ring systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • the present invention relates to the field of display, and in particular to an indolocarbazole derivative and a phosphorescent organic electroluminescent device.
  • a good phosphorescent host material there are three critical factors: first, to have a sufficiently high triplet energy level (ET) to achieve efficient energy transfer; and second, in the device, carrier transport To balance, so as to improve the luminous efficiency of the device; finally, there must be a high enough glass transition temperature (Tg) to ensure the stability of the device at high current density and improve the lifetime of the organic light-emitting device.
  • ET triplet energy level
  • Tg glass transition temperature
  • carbazole derivatives such as 1,3-dicarbazol-9-ylbenzene (mCP) have been widely used due to their large enough triplet energy and good hole transporting ability.
  • Phosphorescent photoluminescent diodes PHOLEDs.
  • the carbazole derivatives used alone do not have a relatively high Tg, and therefore a combination design is required by a molecular design method in combination with a structure having a high Tg.
  • Spirobifluorene is one of the few structural units that have both high ET (>2.8 eV) and high Tg (>150 °C). Therefore, the use of spirobifluorene and carbazole in combination will be a very effective design method for phosphorescent host materials. However, the use of such molecules is still relatively small.
  • the object of the present invention is to provide a novel indolocarbazole derivative and the use of the novel indolocarbazole derivative Phosphorescent organic electroluminescent device.
  • carbazole and spirobifluorene are combined to reduce the loss of triplet energy with the indole carbazole as the core without changing the hole mobility and Tg.
  • different electron transport groups are bonded to the other end of the spirobifluorene, thereby obtaining a bipolar type with high triplet state, high electron mobility and high thermal stability.
  • a blue light phosphorescent host material is used for the preparation of highly efficient electrophosphorescent devices aims to solve the problem that conventional phosphorescent host materials cannot simultaneously achieve high triplet energy levels, carrier transport matching, and high glass transition temperatures.
  • the present invention first provides an indolocarbazole derivative represented by the following formula I:
  • R 3 represents diphenylphosphino, 3-pyridyl or cyano;
  • R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 Represents hydrogen groups, respectively.
  • R 1 , R 2 , R 3 and R 4 are electron transport groups; and R 5 , R 6 , R 7 , R 8 and R 9 are hole transporting groups.
  • the electron transporting group is selected from the group consisting of hydrogen, cyano, diphenylphosphino, p-triphenylphosphino, m-triphenylphosphino, o-triphenylphosphine Oxyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, aza-9-carbazolyl, p-phenylbenzimidazolyl, 4-N-benzimidazolyl, m-phenylbenzimidazole , ortho-phenylbenzimidazolyl, 3-N-benzimidazolyl, o-phenyl-1,3,4-oxadiazolyl, m-phenyl-1,3,4-oxadiazolyl, Phenyl-1,3,4-oxadiazolyl, o-phenyl-1,4,5-triazolyl, m-phenyl-1,4,5-triazolyl, p-phenyl-1,4, 5-
  • the hole transporting group is selected from the group consisting of hydrogen, phenyl, p-tolyl, 9-carbazolyl, tert-butyl-9-carbazolyl, aza-9-carbazole , diaza-9-oxazolyl, triphenylsilyl, p-triphenylamino, dimethyl-p-triphenylamine, di-tert-butylcarbazolyl, 1-naphthalene substituted p-triphenylamine, 2 -naphthyl substituted p-triphenylamine, 3,6-di-tert-butylcarbazole phenyl, disubstituted 3,6-di-tert-butylcarbazole phenyl, p-triphenylamino, dimethyl-p-triphenylamine, 1 -naphthyl substituted p-triphenylamine, 2-naphthalene substitute
  • R 1 , R 2 , R 3 and R 4 are the same or different substituent groups.
  • R 5 , R 6 , R 7 , R 8 and R 9 are the same or different substituent groups.
  • R 1 , R 2 , R 4 , R 5 , R 6 , R 7 R 8 , R 9 each represent a hydrogen group.
  • R 3 represents diphenylphosphino, 3-pyridyl or cyano.
  • an indolocarbazole derivative is provided, represented by the following formula i, ii or iii:
  • the present invention also provides a process for producing the above indolocarbazole derivatives.
  • the preparation method is a 3-pinacol borate-9-phenyloxazole and m-bromoiodobenzene as a starting material, and is coupled with a Suzuki reaction to obtain an intermediate 1; subsequently, the intermediate 1 is obtained.
  • 3-(2-bromophenyl)-9-phenyloxazole at -78 ° C, it is further reacted with 2-bromofluorenone to obtain 2-bromo-indolocarbazole; finally, reacted with Suzuki, Alternatively, the cyanation reaction or the reaction of n-butyllithium with diphenylphosphonium chloride and hydrogen peroxide to obtain the final product.
  • indolocarbazole derivative represented by the above formula i which is a 3-pinacol borate-9-phenyloxazole and an intermediate bromine Iodobenzene is the starting material and is coupled with Suzuki reaction to obtain Intermediate 1; subsequently, the intermediate 1 is reacted with 3-(2-bromophenyl)-9-phenyloxazole at -78 ° C. And reacting with 2-bromofluorenone to obtain 2-bromo-indolocarbazole; finally, reacting the 2-bromo-indolocarbazole with n-butyllithium, diphenylphosphonium chloride and hydrogen peroxide to obtain product.
  • the indolocarbazole derivative represented by the above formula i which is a 3-pinacol borate-9-phenyloxazole and an intermediate bromine Iodobenzene is the starting material and is coupled with Suzuki reaction to obtain Intermediate 1; subsequently, the intermediate 1 is reacted with 3-(2-bromophenyl)-9-pheny
  • indolocarbazole derivative represented by the above formula ii which is a 3-pinacol borate-9-phenyloxazole and an intermediate bromine Iodobenzene is the starting material and is coupled with Suzuki reaction to obtain Intermediate 1; subsequently, the intermediate 1 is reacted with 3-(2-bromophenyl)-9-phenyloxazole at -78 ° C.
  • indolocarbazole derivative represented by the above formula iii which is a 3-pinacol borate-9-phenyloxazole and an intermediate bromine Iodobenzene is the starting material and is coupled with Suzuki reaction to obtain Intermediate 1; subsequently, the intermediate 1 is reacted with 3-(2-bromophenyl)-9-phenyloxazole at -78 ° C. And reacting with 2-bromofluorenone to obtain 2-bromo-indolocarbazole; finally, the 2-bromo-indolocarbazole is cyanated with cuprous cyanide to obtain a product.
  • iii is a 3-pinacol borate-9-phenyloxazole and an intermediate bromine Iodobenzene is the starting material and is coupled with Suzuki reaction to obtain Intermediate 1; subsequently, the intermediate 1 is reacted with 3-(2-bromophenyl)-9-phenyloxazole at -78 ° C. And reacting with 2-bromofluorenone to obtain
  • the present invention also provides a phosphorescent organic electroluminescent device comprising the above-described indolocarbazole derivative as a host material.
  • the phosphorescent organic electroluminescent device provided by the present invention has at least one organic electroluminescent layer comprising an indolocarbazole derivative represented by the formula i, the formula ii or the formula iii.
  • the phosphorescent organic electroluminescent device comprises: a first electrode layer formed on a substrate; one or more layers of an organic electroluminescent layer formed on the first electrode layer
  • the organic electroluminescent layer has a thickness of 15 to 25 nm and is formed by doping FIrpic with the spiro-based derivative; and a second electrode layer is formed on the organic electroluminescent layer.
  • the doping ratio of the FIrpic is 5 to 10% by weight, particularly preferably 7% by weight.
  • the phosphorescent organic electroluminescent device further includes: an electron injection layer having a thickness of 0.5 to 1.5 nm formed between the second electrode layer and the organic electroluminescent layer; An electron transport layer having a thickness of 30 nm to 50 nm formed between the electron injecting layer and the organic electroluminescent layer; a hole injecting layer having a thickness of 5 to 15 nm formed on the first electrode layer and Between the organic electroluminescent layers; a hole transporting layer having a thickness of 60 to 80 nm formed between the hole injecting layer and the organic electroluminescent layer; and an exciton blocking layer having a thickness of 2 ⁇ 10 nm is formed between the hole transport layer and the organic electroluminescent layer.
  • the electron injecting layer has a thickness of 0.5 to 1.5 nm
  • the electron transporting layer has a thickness of 30 nm to 50 nm
  • the hole injecting layer has a thickness of 5 to 15 nm
  • the hole transporting layer The thickness is 60 to 80 nm
  • the exciton blocking layer has a thickness of 2 to 10 nm.
  • the first electrode layer is made of ITO
  • the hole injection layer is made of molybdenum trioxide
  • the hole transport layer is formed by NPB
  • the exciton is formed by mCP.
  • the barrier layer is composed of TmPyPB
  • the electron transport layer is formed of LiF
  • the second electrode layer is made of Al.
  • the indolocarbazole derivative of the present invention has a high triplet energy level and can realize efficient energy transfer of a triplet exciton from a host to a guest.
  • the indolocarbazole derivatives of the present invention have balanced carrier mobility, can effectively combine holes and electrons in the light-emitting region, and increase the luminous efficiency of the device.
  • the indolocarbazole derivatives of the present invention have a high glass transition temperature and thermal stability, and can improve the service life of the light-emitting device.
  • the OLED device using the indolocarbazole derivative as the light-emitting layer of the present invention has excellent performance, and the current efficiency, power efficiency and external quantum efficiency can reach the highest level among the performance of the current blue phosphorescent device.
  • the OLED device using the indolocarbazole derivative as the electron transport layer of the present invention has excellent stability in a large voltage range, and effectively reduces the interface between the electron transport layer and the light emitting layer.
  • Energy barrier, avoiding interface charge accumulation and exciton quenching, is conducive to the improvement of device life, and has broad application prospects in the field of full color display.
  • Figure 1 shows the ultraviolet absorption, fluorescence emission and low temperature phosphorescence spectra of an indolocarbazole derivative SPDPO according to an embodiment of the present invention.
  • Figure 1 shows that the maximum UV absorption peak of SPDPO is around 290 nm;
  • FIG. 2 is a schematic structural view of a phosphorescent organic electroluminescent device according to an embodiment of the present invention
  • FIG. 3 is an energy level diagram of a phosphorescent organic electroluminescent device according to an embodiment of the present invention.
  • FIG. 4 is a graph showing a luminance-current density-voltage characteristic of a phosphorescent organic electroluminescent device according to an embodiment of the present invention.
  • FIG. 5 is a graph showing current efficiency-luminance characteristics of a phosphorescent organic electroluminescent device according to an embodiment of the present invention.
  • Figure 6 is a graph showing the power efficiency-luminance characteristic of a phosphorescent organic electroluminescent device according to an embodiment of the present invention.
  • Figure 7 is a graph showing the electroluminescence spectrum of a phosphorescent organic electroluminescent device according to an embodiment of the present invention.
  • R 1 , R 2 , R 3 and R 4 are electron transport groups; and R 5 , R 6 , R 7 , R 8 and R 9 are hole transport groups.
  • the electron transport group includes, but is not limited to, a hydrogen group, a cyano group, a diphenylphosphino group, a p-triphenylphosphino group, a m-triphenylphosphino group, an o-triphenylphosphino group, and a 2- Pyridyl, 3-pyridyl, 4-pyridyl, aza-9-carbazolyl, p-phenylbenzimidazolyl, 4-N-benzimidazolyl, m-phenylbenzimidazolyl, o-phenyl Benzimidazolyl, 3-N-benzimidazolyl, o-phenyl-1,3,4-oxadiazolyl, m-phenyl-1,3,4-oxadiazolyl, p-phenyl-1, 3,4-oxadiazolyl, o-phenyl-1,4,5-triazolyl, m-phenyl-1,4,5-triazo
  • the hole transporting group includes, but is not limited to, a hydrogen group, a phenyl group, a p-tolyl group, a 9-carbazolyl group, a tert-butyl-9-carbazolyl group, an aza-9-carbazolyl group, a diaza group.
  • R 1 , R 2 , R 4 , R 5 , R 6 , R 7 R 8 , R 9 each represent a hydrogen group
  • R 3 represents a diphenylphosphino group, a 3-pyridyl group or a cyano group.
  • SPDPO indolocarbazole derivative
  • the preparation method is as follows:
  • an indolocarbazole derivative is provided, represented by formula ii, designated SPPy:
  • the preparation method is as follows:
  • an indolocarbazole derivative is provided, represented by the formula iii, designated as SPCN:
  • the preparation method is as follows:
  • the cuprous cyanide and the 2-bromo-indolocarbazole obtained in the step 2 were dissolved in DMF and reacted at 150 ° C for 24 hours. After the reaction solution was cooled to room temperature, it was directly filtered. Subsequently, the filter cake was washed with dichloromethane, and the obtained organic phase was washed three times with water, dried over anhydrous sodium sulfate, filtered, and evaporated. The crude product was purified by flash column chromatography to give a white solid powder as the final product SPCN.
  • Figure 1 shows that the maximum UV absorption peak of SPDPO is around 290 nm, the maximum fluorescence emission peak is at 380 nm, and the triplet energy level is 2.78 eV.
  • a phosphorescent organic electroluminescent device A comprising: a first electrode layer 20 formed on a substrate 10; and a hole injection layer 30 formed on the first An electrode layer 20 is formed on the hole injection layer 30; an exciton blocking layer 50 is formed on the hole transport layer 40; and an organic electroluminescent layer 60 is formed.
  • the organic electroluminescent layer 60 is formed of the indolocarbazole derivative SPDPO-doped FIrpic; an electron transporting layer 70 is formed on the organic electroluminescent layer 60.
  • An electron injection layer 80 is formed on the electron transport layer 70; and a second electrode layer 90 is formed on the electron injection layer 80.
  • the doping ratio of the FIrpic is 7 wt%.
  • the first electrode layer 20 is made of ITO
  • the hole injection layer 30 is made of molybdenum trioxide (MoO 3 )
  • the hole transport layer 40 is formed of NPB by mCP.
  • the exciton blocking layer 50 is formed
  • the electron transport layer 70 is made of TmPyPB
  • the electron injecting layer 80 is made of LiF
  • the second electrode layer 90 (cathode) is made of Al.
  • the hole injection layer 30 has a thickness of 10 nm
  • the hole transport layer 40 has a thickness of 70 nm
  • the exciton blocking layer 50 has a thickness of 5 nm
  • the organic electroluminescent layer 60 has a thickness of 20 nm
  • the electron transport layer 70 has a thickness of 40 nm
  • the electron injecting layer 80 has a thickness of 1 nm
  • the thickness of the second electrode layer 90 is 100 nm.
  • the device structure of the phosphorescent organic electroluminescent device A in the present embodiment is as follows: ITO/MoO 3 (10 nm) / NPB (70 nm) / mCP (5 nm) / SPDPO - FIrpic (20 nm) / TmPyPB (40 nm) / LiF (1 nm) / Al. See Figure 3 for the energy level diagram.
  • the phosphorescent organic electroluminescent device A is prepared by a known method. For example, without limitation, ITO glass is ultrasonically cleaned in a cleaning agent and deionized water for 30 minutes. Then, it was vacuum-dried for 2 hours (105 ° C), and the ITO glass was placed in a plasma reactor for 1 minute of CFx plasma treatment, and transferred to a vacuum chamber to prepare an organic film and a metal electrode. SPDPO was prepared as a host material by vacuum evaporation.
  • a phosphorescent organic electroluminescent device B having a structure similar to that of the phosphorescent organic electroluminescent device A described in Embodiment 6, the difference being that the phosphorescent organic electroluminescent device B
  • the organic electroluminescent layer is formed of an indolocarbazole derivative SPPy-doped FIrpic.
  • the device structure of the phosphorescent organic electroluminescent device B in the present embodiment is as follows: ITO/MoO 3 (10 nm) / NPB (70 nm) / mCP (5 nm) / SPPy - FIrpic (20 nm) / TmPyPB (40 nm) / LiF (1 nm) / Al.
  • the phosphorescent organic electroluminescent device B is prepared in a manner known per se.
  • ITO glass is ultrasonically cleaned in a cleaning agent and deionized water for 30 minutes. Then, it was vacuum-dried for 2 hours (105 ° C), and the ITO glass was placed in a plasma reactor for 1 minute of CFx plasma treatment, and transferred to a vacuum chamber to prepare an organic film and a metal electrode.
  • SPPy was prepared as a host material by vacuum evaporation.
  • a phosphorescent organic electroluminescent device C having a structure similar to that of the phosphorescent organic electroluminescent device A described in Embodiment 6, the difference being that the phosphorescent organic electroluminescent device C
  • the organic electroluminescent layer is formed by doping FIrpic with the indolocarbazole derivative SPCN.
  • the device structure of the phosphorescent organic electroluminescent device C in the present embodiment is as follows: ITO/MoO 3 (10 nm) / NPB (40 nm) / mCP (5 nm) / SPCN - FIrpic (20 nm) / TmPyPB (40 nm) / LiF (1 nm) / Al.
  • the phosphorescent organic electroluminescent device C is prepared in a manner known per se.
  • ITO glass is ultrasonically cleaned in a cleaning agent and deionized water for 30 minutes. Then vacuum drying for 2 hours (105 ° C), then ITO The glass was placed in a plasma reactor for 1 minute of CFx plasma treatment, and transferred to a vacuum chamber to prepare an organic film and a metal electrode.
  • SPCN was prepared as a host material by vacuum evaporation.
  • the applicant also performed performance verification on the phosphorescent organic electroluminescent device A obtained in Example 6, and obtained a luminance-current density-voltage characteristic diagram as shown in FIG. 4 and a current efficiency-luminance characteristic curve shown in FIG. Fig. 6, the power efficiency-luminance characteristic diagram shown in Fig. 6, and the electroluminescence spectrum shown in Fig. 7.
  • Figure 4 shows that the phosphorescent organic electroluminescent device A has a turn-on voltage of 2.7 V, which is close to the theoretical minimum turn-on voltage.
  • Fig. 5 shows that the maximum current efficiency of the phosphorescent organic electroluminescent device A can reach 20 cd/A or more.
  • Fig. 6 shows that the maximum current efficiency of the phosphorescent organic electroluminescent device A can reach 20 lm/W or more.
  • the electroluminescence spectrum of the phosphorescent organic electroluminescent device A has two emission peaks at 476 nm and 500 nm, which are characteristic emission peaks of the guest material FIrpic, which indicates that the triplet excitons are effective. Transfer.
  • the present invention has the following advantages:
  • the indolocarbazole derivative of the present invention has a high triplet energy level and can realize efficient energy transfer of a triplet exciton from a host to a guest.
  • the indolocarbazole derivatives of the present invention have balanced carrier mobility, can effectively combine holes and electrons in the light-emitting region, and increase the luminous efficiency of the device.
  • the indolocarbazole derivatives of the present invention have a high glass transition temperature and thermal stability, and can improve the service life of the light-emitting device.
  • the OLED device using the indolocarbazole derivative as the light-emitting layer of the present invention has excellent performance, and the current efficiency, power efficiency and external quantum efficiency can reach the highest level among the performance of the current blue phosphorescent device.
  • the OLED device using the indolocarbazole derivative as the electron transport layer of the present invention has excellent stability in a large voltage range, and effectively reduces the interface between the electron transport layer and the light emitting layer.
  • Energy barrier, avoiding interface charge accumulation and exciton quenching, is conducive to the improvement of device life, and has broad application prospects in the field of full color display.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Indole Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

一种芴并咔唑类衍生物及应用该芴并咔唑类衍生物的磷光有机电致发光器件,所述芴并咔唑类衍生物以通式I表示。以芴并咔唑为核心,将咔唑和螺二芴合并以减少三重态能量的损失,同时不改变其空穴迁移率和Tg。

Description

一种芴并咔唑类衍生物及磷光有机电致发光器件 技术领域
本发明涉及显示领域,特别涉及一种芴并咔唑类衍生物及磷光有机电致发光器件。
背景技术
1987年,邓青云教授和Vanslyke以透明导电膜作阳极,AlQ3作发光层,三芳胺作空穴传输层,Mg/Ag合金作阴极,采用超薄膜技术制成了双层有机电致发光器件(Appl.Phys.Lett.,1987,52,913)。1990年,Burroughes等人发现了以共轭高分子PPV为发光层的OLED(Nature.1990,347,539),从此在全世界范围内掀起了OLED研究的热潮。
由于自旋限制的影响,在日常生活中我们看到的多为荧光现象。最初的OLED技术研究主要集中在荧光器件方向。但是,根据自旋量子统计理论,荧光电致发光器件的最大内量子效率只有25%,而磷光电致发光器件,则可以达到100%。因此,在1999年Forrest和Thompson等(Appl.Phys.Let.,1999,75,4.)将绿光磷光材料Ir(ppy)3以6wt%的浓度掺杂在4,4’-N,N’-二咔唑-联苯(CBP)的主体材料中,获得了绿光OLED。该绿光OLED的最大外量子效率(EQE)达到8%,突破了电致荧光器件的理论极限。之后,人们对磷光发光材料产生了高度关注。从那之后,电致磷光材料和磷光器件一直是OLED研究的热点。
对于一个好的磷光主体材料来说,有三个至关重要的因素:首先是要有一个足够高的三重态能级(ET)来实现有效的能量转移;其次,在器件中,载流子传输要平衡,从而提高器件的发光效率;最后,要有足够高的玻璃化转变温度(Tg)来保证器件在高电流密度下的稳定性,提高有机发光器件的寿命。为了在同种分子中,同时实现这三种不同的要求,研究人员进行了很多有意义的尝试,并且开发出不同种类的磷光发光主体材料。
在众多磷光发光主体材料中,咔唑衍生物,诸如1,3-二咔唑-9-基苯(mCP),因其足够大的三重态能量和良好的空穴传输能力,已被广泛用于磷光电致发光二极管(PHOLEDs)。然而,单独使用的咔唑类衍生物往往不具备比较高的Tg,因此需要通过分子设计的方法搭配具有高Tg的结构进行组合设计。螺二芴是少数同时具有高的ET(>2.8eV)和高的Tg(>150℃)的结构单元。因此,将螺二芴和咔唑搭配进行使用将会成为一种非常有效的磷光主体材料设计方法。然而目前关于此类分子的使用仍然较少。
因此,我们需要一种新的芴并咔唑类衍生物,以解决目前存在的技术问题。
发明内容
本发明的目的在于提供一种新的芴并咔唑类衍生物以及应用该新的芴并咔唑类衍生 物的磷光有机电致发光器件。在本发明中,以芴并咔唑为核心,将咔唑和螺二芴合并以减少三重态能量的损失,同时不改变其空穴迁移率和Tg。另外,为了实现载流子传输的平衡,在螺二芴的另一端芴上键联不同的电子传输基团,从而得到了一类具有高三重态、高电子迁移率及高热稳定性的双极性蓝光磷光主体材料。将这类主体材料用于制备高效的电致磷光器件,旨在解决传统磷光主体材料不能同时实现三重态能级高、载流子传输匹配以及玻璃化温度高的问题。
为了达到上述目的,本发明首先提供一种芴并咔唑类衍生物,以以下通式I表示:
Figure PCTCN2017084850-appb-000001
在本发明一优选实施例中,R3代表二苯基磷氧基、3-吡啶基或氰基;R1,R2,R4,R5,R6,R7,R8及R9分别代表氢基。
在本发明一实施例中,R1,R2,R3及R4为电子传输基团;R5,R6,R7,R8及R9为空穴传输型基团。
在本发明一实施例中,所述电子传输基团选自由氢基、氰基、二苯基磷氧基、对三苯基磷氧基、间三苯基磷氧基、邻三苯基磷氧基、2-吡啶基、3-吡啶基、4-吡啶基、氮杂-9-咔唑基、对苯基苯并咪唑基、4-N-苯并咪唑基、间苯基苯并咪唑基、邻苯基苯并咪唑基、3-N-苯并咪唑基、邻苯基-1,3,4-恶二唑基、间苯基-1,3,4-恶二唑基、对苯基-1,3,4-恶二唑基、邻苯基-1,4,5-三唑基、间苯基-1,4,5-三唑基、对苯基-1,4,5-三唑基、邻三苯基磷氧基、2-二氧二苯并噻吩基、3-二氧二苯并噻吩基、4-二氧二苯并噻吩基、菲并咪唑基、N-菲并咪唑基和对苯基菲并咪唑基组成的群组。
在本发明一实施例中,所述空穴传输基团选自由氢基、苯基、对甲苯基、9-咔唑基、叔丁基-9-咔唑基、氮杂-9-咔唑基、二氮杂-9-咔唑基、三苯基硅基、对三苯胺基、二甲基对三苯胺基、二代叔丁基咔唑基、1-萘取代对三苯胺基、2-萘取代对三苯胺基、3,6-二叔丁基咔唑苯基、二代3,6-二叔丁基咔唑苯基、对三苯胺基、二甲基对三苯胺基、1-萘取代对三苯胺基、2-萘取代对三苯胺基、对咔唑苯基、氮苯基-3-基咔唑基、2-二苯并噻吩、3-二苯并噻吩和4-二苯并噻吩组成的群组。
在本发明一实施例中,R1,R2,R3及R4为相同或不同的取代基团。
在本发明一实施例中,R5,R6,R7,R8及R9为相同或不同的取代基团。
在本发明一优选实施例中,R1,R2,R4,R5,R6,R7R8,R9分别代表氢基。
在本发明一优选实施例中,R3代表二苯基磷氧基、3-吡啶基或氰基。
在本发明一优选实施例中,提供一种芴并咔唑类衍生物,以以下分子式i、ii或iii表示:
Figure PCTCN2017084850-appb-000002
本发明还提供上述芴并咔唑类衍生物的制备方法。所述制备方法是以3-频那醇硼酸酯-9-苯基咔唑和间溴碘苯为起始物,利用铃木反应进行偶联得到中间体1;随后,使所述中间体1与3-(2-溴苯基)-9-苯基咔唑在-78℃下反应后,再与2-溴芴酮反应,获得2-溴-芴并咔唑;最后,以铃木反应,或者氰基化反应,或者以正丁基锂与二苯基氯化磷及双氧水反应获得最终产物。
在本发明一优选实施例中,提供上述分子式i所示的芴并咔唑类衍生物的制备方法,所述方法是以3-频那醇硼酸酯-9-苯基咔唑和间溴碘苯为起始物,利用铃木反应进行偶联得到中间体1;随后,使所述中间体1与3-(2-溴苯基)-9-苯基咔唑在-78℃下反应后,再与2-溴芴酮反应,获得2-溴-芴并咔唑;最后,使所述2-溴-芴并咔唑与正丁基锂、二苯基氯化磷以及双氧水反应,获得产物。
在本发明一优选实施例中,提供上述分子式ii所示的芴并咔唑类衍生物的制备方法,所述方法是以3-频那醇硼酸酯-9-苯基咔唑和间溴碘苯为起始物,利用铃木反应进行偶联得到中间体1;随后,使所述中间体1与3-(2-溴苯基)-9-苯基咔唑在-78℃下反应后,再与2-溴芴酮反应,获得2-溴-芴并咔唑;最后,以所述2-溴-芴并咔唑、3-吡啶硼酸、四(三苯 基膦)钯\碳酸钾、甲苯和无水乙醇进行铃木反应,获得产物。
在本发明一优选实施例中,提供上述分子式iii所示的芴并咔唑类衍生物的制备方法,所述方法是以3-频那醇硼酸酯-9-苯基咔唑和间溴碘苯为起始物,利用铃木反应进行偶联得到中间体1;随后,使所述中间体1与3-(2-溴苯基)-9-苯基咔唑在-78℃下反应后,再与2-溴芴酮反应,获得2-溴-芴并咔唑;最后,使所述2-溴-芴并咔唑与氰化亚铜进行氰基化反应,获得产物。
本发明还提供一种磷光有机电致发光器件,以上述芴并咔唑类衍生物作为主体材料。尤其是,本发明提供的所述磷光有机电致发光器件具有至少一层包含以分子式i、分子式ii或分子式iii表示的芴并咔唑类衍生物的有机电致发光层。
在本发明一实施例中,所述磷光有机电致发光器件包括:一第一电极层,形成于一衬底上;一层或多层有机电致发光层,形成于所述第一电极层上;所述有机电致发光层厚度为15~25nm,由所述螺芴类衍生物掺杂FIrpic形成;以及,一第二电极层,形成于所述有机电致发光层上。
在本发明一优选实施例中,所述FIrpic的掺杂比例为5~10wt%,特别优选7wt%。
在本发明一实施例中,所述磷光有机电致发光器件还包括:一电子注入层,厚度为0.5~1.5nm,形成于所述第二电极层与所述有机电致发光层之间;一电子传输层,厚度为30nm~50nm,形成于所述电子注入层与所述有机电致发光层之间;一空穴注入层,厚度为5~15nm,形成于所述第一电极层与所述有机电致发光层之间;一空穴传输层,厚度为60~80nm,形成于所述空穴注入层与所述有机电致发光层之间;以及,一激子阻隔层,厚度为2~10nm,形成于所述空穴传输层与所述有机电致发光层之间。
在本发明一优选实施例中,所述电子注入层厚度为0.5~1.5nm,所述电子传输层厚度为30nm~50nm,所述空穴注入层厚度为5~15nm,所述空穴传输层厚度为60~80nm,以及,所述激子阻隔层厚度为2~10nm。
在本发明一实施例中,以ITO构成所述第一电极层(阳极),以三氧化钼构成所述空穴注入层,以NPB构成所述空穴传输层,以mCP构成所述激子阻隔层,以TmPyPB构成所述电子传输层,以LiF构成所述电子注入层,并且,以Al构成所述第二电极层(阴极)。
本发明具有以下优点:
(1)、本发明所述的芴并咔唑类衍生物具有较高的三重态能级,能够实现三重态激子由主体到客体有效的能量转移。
(2)、本发明所述的芴并咔唑类衍生物具有平衡的载流子迁移率,能够实现空穴和电子在发光区的有效复合,增大器件的发光效率
(3)本发明所述的芴并咔唑类衍生物具有较高的玻璃化转变温度和热稳定性,能够提高发光器件的使用寿命。
(4)本发明所述的以芴并咔唑类衍生物作为发光层的OLED器件性能优异,电流效率、功率效率和外量子效率均能达到目前蓝色磷光器件的性能中的最高水平。
(5)本发明所述的以芴并咔唑类衍生物作为电子传输层的OLED器件在较大的电压范围内具有很好的稳定性,有效减少了电子传输层和发光层之间的界面能垒,避免了界面电荷积累及激子淬灭,有利于器件寿命的提高,在全彩显示领域有广泛的应用前景。
附图说明
结合参考以下的附图和详细说明将更好地理解本发明的上述和其他的目的、特性和优势,其中:
图1所示的是根据本发明一实施例的芴并咔唑衍生物SPDPO的紫外吸收、荧光发射和低温磷光光谱。图1表明SPDPO的最大紫外吸收峰在290nm附近,;
图2所示的是根据本发明一实施例的磷光有机电致发光器件的结构示意图;
图3所示的是根据本发明一实施例的磷光有机电致发光器件的能量级图;
图4所示的是根据本发明一实施例的磷光有机电致发光器件的亮度-电流密度-电压特性曲线图;
图5所示的是根据本发明一实施例的磷光有机电致发光器件的电流效率-亮度特性曲线图;
图6所示的是根据本发明一实施例的磷光有机电致发光器件的功率效率-亮度特性曲线图;
图7所示的是根据本发明一实施例的磷光有机电致发光器件的电致发光光谱图。
具体实施方式
以下,结合参考附图,将具体描述本发明的具体实施例。在描述本发明的组件时,可以使用例如第一、第二、A、B、(a)、(b)等类似词的术语。这些术语仅是为了将一结构组件与其他结构组件区别出来,并且一相应结构组件的属性、次序、顺序等不应受限于该术语。应当指出,当在说明书中描述一个组件与另一个组件“连接”、“耦接”或“接合”时,虽然说明第一个组件可以直接地与第二个组件“连接”、“耦接”或“接合”,一第三 个组件也可能在第一个组件与第二组件之间“连接”“耦接”“接合”。
实施例1.螺芴类衍生物
在本实施例中,提供一种芴并咔唑类衍生物,以下通式I表示:
Figure PCTCN2017084850-appb-000003
通式I;其中,R1,R2,R3及R4为电子传输基团;R5,R6,R7,R8及R9为空穴传输基团。
所述电子传输基团包括但不限于:氢基、氰基、二苯基磷氧基、对三苯基磷氧基、间三苯基磷氧基、邻三苯基磷氧基、2-吡啶基、3-吡啶基、4-吡啶基、氮杂-9-咔唑基、对苯基苯并咪唑基、4-N-苯并咪唑基、间苯基苯并咪唑基、邻苯基苯并咪唑基、3-N-苯并咪唑基、邻苯基-1,3,4-恶二唑基、间苯基-1,3,4-恶二唑基、对苯基-1,3,4-恶二唑基、邻苯基-1,4,5-三唑基、间苯基-1,4,5-三唑基、对苯基-1,4,5-三唑基、邻三苯基磷氧基、2-二氧二苯并噻吩基、3-二氧二苯并噻吩基、4-二氧二苯并噻吩基、菲并咪唑基、N-菲并咪唑基、对苯基菲并咪唑基。
部分上述电子传输基团的具体结构及名称如下所列:
Figure PCTCN2017084850-appb-000004
Figure PCTCN2017084850-appb-000005
Figure PCTCN2017084850-appb-000006
所述空穴传输基团包括但不限于:氢基、苯基、对甲苯基、9-咔唑基、叔丁基-9-咔唑基、氮杂-9-咔唑基、二氮杂-9-咔唑基、三苯基硅基、对三苯胺基、二甲基对三苯胺基、二代叔丁基咔唑基、1-萘取代对三苯胺基、2-萘取代对三苯胺基、3,6-二叔丁基咔唑苯基、二代3,6-二叔丁基咔唑苯基、对三苯胺基、二甲基对三苯胺基、1-萘取代对三苯胺基、2-萘取代对三苯胺基、对咔唑苯基、氮苯基-3-基咔唑基、2-二苯并噻吩、3-二苯并噻吩、4-二苯并噻吩。
部分上述空穴传输基团的具体结构及名称如下所列:
Figure PCTCN2017084850-appb-000007
Figure PCTCN2017084850-appb-000008
Figure PCTCN2017084850-appb-000009
Figure PCTCN2017084850-appb-000010
可选地,R1,R2,R4,R5,R6,R7R8,R9分别代表氢基,同时R3代表二苯基磷氧基、3-吡啶基或氰基。
实施例2.芴并咔唑衍生物SPDPO
在本实施例中,提供一种芴并咔唑衍生物,以分子式i表示,记为SPDPO:
Figure PCTCN2017084850-appb-000011
制备方法具体如下:
步骤1.制备中间体3-(2-溴苯基)-9-苯基咔唑
将1.0g(2.5mmol)3-频哪醇硼酸酯-9-苯基咔唑、1.1g(3.0mmol)间溴碘苯、0.3g(0.3mmol)Pd(PPh3),5.0ml浓度为2.0mol/L的碳酸钾、50ml甲苯和25ml乙醇加入150ml的烧瓶中,在氮气环境下,100℃反应12小时。待反应液冷却至室温后,加入二氯甲烷萃取三次,获得的有机相用水洗涤三次后用无水硫酸钠干燥,过滤,蒸除有机溶剂后获得的粗产物。使所述醋产物通过快速色谱柱柱层析的方法提纯,得白色固体粉末0.83g,即为中间体3-(2-溴苯基)-9-苯基咔唑。
步骤2.制备中间体2-溴-芴并咔唑
将4.00g步骤1获得的3-(2-溴苯基)-9-苯基咔唑加入100ml干燥的四氢呋喃(THF),当反应液冷却至-78℃时,缓慢加入6ml浓度为2.4mol/L的正丁基锂,反应1小时。随后,向反应液中加入1.8g的2-溴芴酮,反应2小时,升至室温后反应一晚。反应液用二氯甲烷萃取,蒸馏除去溶剂后,得到粗产物。用乙酸溶解所述粗产物后加入4ml浓度为2.0mol.l的HCl,回流反应过夜,获得2.96g产物,即为2-溴-芴并咔唑。产率为83%。
步骤3.最终产物SPDPO
在-78℃下,在反应瓶中加入THF和步骤2获得的2-溴-芴并咔唑,随后缓慢滴入正丁基锂,保持在-78℃反应1小时。然后,向反应液中加入二苯基磷,升至室温后再反应4小时。最后,向反应液中加入双氧水,在室温下氧化4小时。通过柱层析得到最终产物SPDPO。1H NMR(DMSO-d6,400MHz):δ(ppm)8.24-8.22(t,J=8.0Hz,2H),8.19-8.15(t,J=8.0Hz,3H),7.86-7.82(t,J=8.0Hz,1H),7.77-7.69(m,J=8.0Hz,3H),7.49-7.45(t,J=8.0Hz,1H),7.35-7.21(m,J=8.0Hz,9H),7.10-7.08(d,J=8.0Hz,1H),6.92-6.90(d,J=8.0Hz,2H),6.64-6.62(t,J=8.0Hz,1H);13C NMR(100MHz,DMSO-d6):δ(ppm)180.97,168.69,142.17,140.70,136.08,135.99,132.05,132.14,131.70,131.17,130.47,129.51,129.41,129.18,128.72,126.35,125.78,124.50,123.35,120.78,120.42,119.89,110.00,109.72;MS(APCI)(m/z):[M+H+]。计算得到C38H24N4S,568.1;实测,569.5;计算得到C38H24N4S:C 80.26,H 4.25,N9.85,S 5.64;实测:C 80.26,H 4.25,N 9.85,S 5.64。
实施例3.芴并咔唑衍生物SPPy
在本实施例中,提供一种芴并咔唑衍生物,以分子式ii表示,记为SPPy:
Figure PCTCN2017084850-appb-000012
制备方法具体如下:
步骤1.制备中间体3-(2-溴苯基)-9-苯基咔唑
将1.0g(2.5mmol)3-频哪醇硼酸酯-9-苯基咔唑、1.1g(3.0mmol)间溴碘苯、0.3g(0.3mmol)Pd(PPh3),5.0ml浓度为2.0mol/L的碳酸钾、50ml甲苯和25ml乙醇加入150ml的烧瓶中,在氮气环境下,100℃反应12小时。待反应液冷却至室温后,加入二氯甲烷萃取三次,获得的有机相用水洗涤三次后用无水硫酸钠干燥,过滤,蒸除有机溶剂后获得的粗 产物。使所述醋产物通过快速色谱柱柱层析的方法提纯,得白色固体粉末0.83g,即为中间体3-(2-溴苯基)-9-苯基咔唑。
步骤2.制备中间体2-溴-芴并咔唑
将4.00g步骤1获得的3-(2-溴苯基)-9-苯基咔唑加入100ml干燥的四氢呋喃(THF),当反应液冷却至-78℃时,缓慢加入6ml浓度为2.4mol/L的正丁基锂,反应1小时。随后,向反应液中加入1.8g的2-溴芴酮,反应2小时,升至室温后反应一晚。反应液用二氯甲烷萃取,蒸馏除去溶剂后,得到粗产物。用乙酸溶解所述粗产物后加入4ml浓度为2.0mol.l的HCl,回流反应过夜,获得2.96g产物,即为2-溴-芴并咔唑。产率为83%。
步骤3.最终产物SPPy
在干燥烧瓶中依次加入步骤2获得的2-溴-芴并咔唑、3-吡啶硼酸、四(三苯基膦)钯\碳酸钾、甲苯和无水乙醇。通入氮气鼓泡20分钟后,在100℃的温度下反应12小时。待反应液冷却至室温后,加入二氯甲烷萃取三次,获得的有机相用水洗涤三次,加入无水硫酸钠干燥,过滤,蒸除有机溶剂后获得粗产物。所述粗产物通过快速色谱柱柱层析的方法提纯得白色固体粉末,即为最终产物SPPy。
实施例4.芴并咔唑衍生物SPCN
在本实施例中,提供一种芴并咔唑衍生物,以分子式iii表示,记为SPCN:
Figure PCTCN2017084850-appb-000013
制备方法具体如下:
步骤1.制备中间体3-(2-溴苯基)-9-苯基咔唑
将1.0g(2.5mmol)3-频哪醇硼酸酯-9-苯基咔唑、1.1g(3.0mmol)间溴碘苯、0.3g(0.3mmol)Pd(PPh3),5.0ml浓度为2.0mol/L的碳酸钾、50ml甲苯和25ml乙醇加入150ml的烧瓶中,在氮气环境下,100℃反应12小时。待反应液冷却至室温后,加入二氯甲烷萃取三次,获得的有机相用水洗涤三次后用无水硫酸钠干燥,过滤,蒸除有机溶剂后获得的粗产物。使所述醋产物通过快速色谱柱柱层析的方法提纯,得白色固体粉末0.83g,即为中间体3-(2-溴苯基)-9-苯基咔唑。
步骤2.制备中间体2-溴-芴并咔唑
将4.00g步骤1获得的3-(2-溴苯基)-9-苯基咔唑加入100ml干燥的四氢呋喃(THF),当反应液冷却至-78℃时,缓慢加入6ml浓度为2.4mol/L的正丁基锂,反应1小时。随后,向反应液中加入1.8g的2-溴芴酮,反应2小时,升至室温后反应一晚。反应液用二氯甲烷萃取,蒸馏除去溶剂后,得到粗产物。用乙酸溶解所述粗产物后加入4ml浓度为2.0mol.l的HCl,回流反应过夜,获得2.96g产物,即为2-溴-芴并咔唑。产率为83%。
步骤3.最终产物SPCN
将氰化亚铜和步骤2获得的2-溴-芴并咔唑溶解于DMF中,在150℃下反应24小时。待反应液冷却至室温后直接过滤。随后,用二氯甲烷冲洗滤饼,获得的有机相用水洗涤三次后用无水硫酸钠干燥,过滤,蒸除有机溶剂后获得粗产物。所述粗产物通过快速色谱柱柱层析的方法提纯得白色固体粉末,即为最终产物SPCN。
实施例5.芴并咔唑衍生物SPDPO的特性
申请人对实施例2的芴并咔唑衍生物SPDPO的特性进行研究,获得如图1所示的紫外吸收、荧光发射和低温磷光光谱。
图1表明:SPDPO的最大紫外吸收峰在290nm附近,最大荧光发射峰在380nm,三重态能级在2.78eV。
实施例6.磷光有机电致发光器件A
请参见图2,在本实施例中,提供一种磷光有机电致发光器件A,包括:一第一电极层20,形成于一衬底10上;一空穴注入层30,形成于所述第一电极层20上;一空穴传输层40,形成于所述空穴注入层30上;一激子阻隔层50,形成于所述空穴传输层40上;一有机电致发光层60,形成于所述激子阻隔层50上,所述有机电致发光层60由所述芴并咔唑衍生物SPDPO掺杂FIrpic形成;一电子传输层70,形成于所述有机电致发光层60上;一电子注入层80,形成于所述电子传输层70上;以及,一第二电极层90,形成于所述电子注入层80上。
在本实施例中,所述FIrpic的掺杂比例为7wt%。
在本实施例中,以ITO构成所述第一电极层20(阳极),以三氧化钼(MoO3)构成所述空穴注入层30,以NPB构成所述空穴传输层40,以mCP构成所述激子阻隔层50,以TmPyPB构成所述电子传输层70,以LiF构成所述电子注入层80,并且,以Al构成所述第二电极层90(阴极)。
在本实施例中,所述空穴注入层30的厚度为10nm,所述空穴传输层40的厚度为 70nm,所述激子阻隔层50的厚度为5nm,所述有机电致发光层60的厚度为20nm,所述电子传输层70的厚度为40nm,所述电子注入层80的厚度为1nm,并且所述第二电极层90的厚度为100nm。
因此,本实施例中的磷光有机电致发光器件A的器件结构如下:ITO/MoO3(10nm)/NPB(70nm)/mCP(5nm)/SPDPO-FIrpic(20nm)/TmPyPB(40nm)/LiF(1nm)/Al。能量级图请见图3。
所述磷光有机电致发光器件A以业已知晓的方法制备。例如但不限于,ITO玻璃相继在清洗剂和去离子水中以超声波清洗30分钟。然后真空干燥2小时(105℃),再将ITO玻璃放入等离子反应器中进行1分钟的CFx等离子处理,传送到真空室内制备有机膜和金属电极。通过真空蒸镀的方法将SPDPO作为主体材料制备成器件。
实施例7.磷光有机电致发光器件B
在本实施例中,提供一种磷光有机电致发光器件B,结构与实施例6中所述的磷光有机电致发光器件A相似,两者的区别在于:所述磷光有机电致发光器件B的所述有机电致发光层由芴并咔唑衍生物SPPy掺杂FIrpic形成。
因此,本实施例中的磷光有机电致发光器件B的器件结构如下:ITO/MoO3(10nm)/NPB(70nm)/mCP(5nm)/SPPy-FIrpic(20nm)/TmPyPB(40nm)/LiF(1nm)/Al。
所述磷光有机电致发光器件B以业已知晓的方法制备。例如但不限于,ITO玻璃相继在清洗剂和去离子水中以超声波清洗30分钟。然后真空干燥2小时(105℃),再将ITO玻璃放入等离子反应器中进行1分钟的CFx等离子处理,传送到真空室内制备有机膜和金属电极。通过真空蒸镀的方法将SPPy作为主体材料制备成器件。
实施例8.磷光有机电致发光器件C
在本实施例中,提供一种磷光有机电致发光器件C,结构与实施例6中所述的磷光有机电致发光器件A相似,两者的区别在于:所述磷光有机电致发光器件C的所述有机电致发光层由所述芴并咔唑衍生物SPCN掺杂FIrpic形成。
因此,本实施例中的磷光有机电致发光器件C的器件结构如下:ITO/MoO3(10nm)/NPB(40nm)/mCP(5nm)/SPCN-FIrpic(20nm)/TmPyPB(40nm)/LiF(1nm)/Al。
所述磷光有机电致发光器件C以业已知晓的方法制备。例如但不限于,ITO玻璃相继在清洗剂和去离子水中以超声波清洗30分钟。然后真空干燥2小时(105℃),再将ITO 玻璃放入等离子反应器中进行1分钟的CFx等离子处理,传送到真空室内制备有机膜和金属电极。通过真空蒸镀的方法将SPCN作为主体材料制备成器件。
实施例9.磷光有机电致发光器件的性能验证
申请人还对实施例6获得的磷光有机电致发光器件A进行了性能验证,获得了如图4所示的亮度-电流密度-电压特性曲线图、图5所示的电流效率-亮度特性曲线图、图6所示的功率效率-亮度特性曲线图和图7所示的电致发光光谱图。
图4表明:所述磷光有机电致发光器件A的开启电压在2.7V,接近于理论上的最低开启电压。
图5表明:所述磷光有机电致发光器件A的最大电流效率可以达到20cd/A以上。
图6表明:所述磷光有机电致发光器件A的最大电流效率可以达到20lm/W以上。
如图6所示的,所述磷光有机电致发光器件A的电致发光光谱在476nm和500nm处有两个发射峰,是客体材料FIrpic的特征发射峰,这表明三重态激子得到了有效的转移。
由此可见,本发明具有以下优点:
(1)、本发明所述的芴并咔唑类衍生物具有较高的三重态能级,能够实现三重态激子由主体到客体有效的能量转移。
(2)、本发明所述的芴并咔唑类衍生物具有平衡的载流子迁移率,能够实现空穴和电子在发光区的有效复合,增大器件的发光效率
(3)本发明所述的芴并咔唑类衍生物具有较高的玻璃化转变温度和热稳定性,能够提高发光器件的使用寿命。
(4)本发明所述的以芴并咔唑类衍生物作为发光层的OLED器件性能优异,电流效率、功率效率和外量子效率均能达到目前蓝色磷光器件的性能中的最高水平。
(5)本发明所述的以芴并咔唑类衍生物作为电子传输层的OLED器件在较大的电压范围内具有很好的稳定性,有效减少了电子传输层和发光层之间的界面能垒,避免了界面电荷积累及激子淬灭,有利于器件寿命的提高,在全彩显示领域有广泛的应用前景。
本发明已由上述相关实施例加以描述,然而上述实施例仅为实施本发明的范例。必需指出的是,已公开的实施例并未限制本发明的范围。相反地,包含于权利要求书的精神及范围的修改及均等设置均包括于本发明的范围内。

Claims (12)

  1. 一种芴并咔唑类衍生物,以以下通式I表示:
    Figure PCTCN2017084850-appb-100001
    通式I;其中,
    R3代表二苯基磷氧基、3-吡啶基或氰基;
    R1,R2,R4,R5,R6,R7,R8及R9分别代表氢基。
  2. 一种芴并咔唑类衍生物,以以下通式I表示:
    Figure PCTCN2017084850-appb-100002
    通式I;其中,
    R1,R2,R3及R4为电子传输基团;
    R5,R6,R7,R8及R9为空穴传输型基团。
  3. 如权利要求2所述的芴并咔唑类衍生物,其中,所述电子传输基团选自由氢基、氰基、二苯基磷氧基、对三苯基磷氧基、间三苯基磷氧基、邻三苯基磷氧基、2-吡啶基、3-吡啶基、4-吡啶基、氮杂-9-咔唑基、对苯基苯并咪唑基、4-N-苯并咪唑基、间苯基苯并咪唑基、邻苯基苯并咪唑基、3-N-苯并咪唑基、邻苯基-1,3,4-恶二唑基、间苯基-1,3,4-恶二唑基、对苯基-1,3,4-恶二唑基、邻苯基-1,4,5-三唑基、间苯基-1,4,5-三唑基、对苯基-1,4,5-三唑基、邻三苯基磷氧基、2-二氧二苯并噻吩基、3-二氧二苯并噻吩基、4-二氧二苯并噻吩基、菲并咪唑基、N-菲并咪唑基和对苯基菲并咪唑基组成的群组。
  4. 如权利要求3所述的芴并咔唑类衍生物,其中,所述空穴传输基团选自由氢基、苯基、对甲苯基、9-咔唑基、叔丁基-9-咔唑基、氮杂-9-咔唑基、二氮杂-9-咔唑基、三苯基硅基、对三苯胺基、二甲基对三苯胺基、二代叔丁基咔唑基、1-萘取代对三苯胺基、2-萘取代对三苯胺基、3,6-二叔丁基咔唑苯基、二代3,6-二叔丁基咔唑苯基、对三苯胺基、二甲基对三苯胺基、1-萘取代对三苯胺基、2-萘取代对三苯胺基、对咔唑苯基、氮苯基-3-基咔唑基、2-二苯并噻吩、3-二苯并噻吩和4-二苯并噻吩组成的群组。
  5. 如权利要求4所述的芴并咔唑类衍生物,其中,R1,R2,R3及R4为相同或不同的取代基团。
  6. 如权利要求4所述的芴并咔唑类衍生物,其中,R5,R6,R7,R8及R9为相同或不同的取代基团。
  7. 如权利要求4所述的芴并咔唑类衍生物,其中,R1,R2,R4,R5,R6,R7 R8,R9分别代表氢基。
  8. 如权利要求7所述的芴并咔唑类衍生物,其中,R3代表二苯基磷氧基、3-吡啶基或氰基。
  9. 一种磷光有机电致发光器件,其中,以权利要求1中所述的芴并咔唑类衍生物作为主体材料。
  10. 如权利要求9所述的磷光有机电致发光器件,其中,所述磷光有机电致发光器件包括:
    一第一电极层,形成于一衬底上;
    一层或多层有机电致发光层,形成于所述第一电极层上;所述有机电致发光层厚度为15~25nm,由所述芴并咔唑类衍生物掺杂FIrpic形成;以及,
    一第二电极层,形成于所述有机电致发光层上。
  11. 如权利要求10所述的磷光有机电致发光器件,其中,所述磷光有机电致发光器件还包括:
    一电子注入层,形成于所述第二电极层与所述有机电致发光层之间;
    一电子传输层,形成于所述电子注入层与所述有机电致发光层之间;
    一空穴注入层,形成于所述第一电极层与所述有机电致发光层之间;
    一空穴传输层,形成于所述空穴注入层与所述有机电致发光层之间;以及,
    一激子阻隔层,形成于所述空穴传输层与所述有机电致发光层之间。
  12. 如权利要求10所述的磷光有机电致发光器件,其中,所述电子注入层厚度为0.5~1.5nm,所述电子传输层厚度为30nm~50nm,所述空穴注入层厚度为5~15nm,所述空穴传输层厚度为60~80nm,以及,所述激子阻隔层厚度为2~10nm。
PCT/CN2017/084850 2017-01-03 2017-05-18 一种芴并咔唑类衍生物及磷光有机电致发光器件 WO2018157478A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/567,377 US20180294417A1 (en) 2017-01-03 2017-05-18 Fluorene-carbazole derivatives and phosphorescent organic electroluminescent devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710117746.4 2017-03-01
CN201710117746.4A CN106831861A (zh) 2017-03-01 2017-03-01 一种芴并咔唑类衍生物及磷光有机电致发光器件

Publications (1)

Publication Number Publication Date
WO2018157478A1 true WO2018157478A1 (zh) 2018-09-07

Family

ID=59138729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084850 WO2018157478A1 (zh) 2017-01-03 2017-05-18 一种芴并咔唑类衍生物及磷光有机电致发光器件

Country Status (3)

Country Link
US (1) US20180294417A1 (zh)
CN (1) CN106831861A (zh)
WO (1) WO2018157478A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200111977A1 (en) * 2018-10-08 2020-04-09 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same
CN110204574A (zh) * 2019-06-27 2019-09-06 武汉华星光电半导体显示技术有限公司 双极性主体材料及其制备方法、电致发光器件及其制备方法
CN114106003B (zh) * 2020-08-31 2023-05-16 上海和辉光电股份有限公司 一种化合物及其应用
CN112321646B (zh) * 2020-10-21 2023-09-22 武汉天马微电子有限公司 一种有机化合物、电致发光材料及其应用
CN113292575B (zh) * 2021-05-20 2022-07-12 武汉华星光电半导体显示技术有限公司 空穴传输材料及其制备方法、组合物及oled器件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103228647A (zh) * 2010-11-24 2013-07-31 默克专利有限公司 用于有机电致发光器件的材料
WO2013157886A1 (en) * 2012-04-19 2013-10-24 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
CN103718316A (zh) * 2011-07-29 2014-04-09 默克专利有限公司 用于电子器件的化合物
CN103842339A (zh) * 2011-09-21 2014-06-04 默克专利有限公司 用于有机电致发光器件的咔唑衍生物
KR101408515B1 (ko) * 2009-07-01 2014-06-17 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 전자 소자
CN103889952A (zh) * 2011-10-20 2014-06-25 默克专利有限公司 用于有机电致发光器件的材料
CN104271700A (zh) * 2012-04-03 2015-01-07 罗门哈斯电子材料韩国有限公司 新有机电致发光化合物和包含该化合物的有机电致发光器件
WO2015192941A1 (de) * 2014-06-18 2015-12-23 Merck Patent Gmbh Zusammensetzungen für elektronische vorrichtungen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090191427A1 (en) * 2008-01-30 2009-07-30 Liang-Sheng Liao Phosphorescent oled having double hole-blocking layers
KR20130084093A (ko) * 2012-01-16 2013-07-24 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
GB2525245A (en) * 2014-04-17 2015-10-21 Lomox Ltd Fluoroalkylfluorene derivatives

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101408515B1 (ko) * 2009-07-01 2014-06-17 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 전자 소자
CN103228647A (zh) * 2010-11-24 2013-07-31 默克专利有限公司 用于有机电致发光器件的材料
CN103718316A (zh) * 2011-07-29 2014-04-09 默克专利有限公司 用于电子器件的化合物
CN103842339A (zh) * 2011-09-21 2014-06-04 默克专利有限公司 用于有机电致发光器件的咔唑衍生物
CN103889952A (zh) * 2011-10-20 2014-06-25 默克专利有限公司 用于有机电致发光器件的材料
CN104271700A (zh) * 2012-04-03 2015-01-07 罗门哈斯电子材料韩国有限公司 新有机电致发光化合物和包含该化合物的有机电致发光器件
WO2013157886A1 (en) * 2012-04-19 2013-10-24 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2015192941A1 (de) * 2014-06-18 2015-12-23 Merck Patent Gmbh Zusammensetzungen für elektronische vorrichtungen

Also Published As

Publication number Publication date
CN106831861A (zh) 2017-06-13
US20180294417A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
JP5844384B2 (ja) 新規な化合物およびこれを用いた有機発光素子
KR101508424B1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
US8173272B2 (en) Diamine derivatives, preparation method thereof and organic electronic device using the same
TWI388647B (zh) 新穎化合物及使用其之有機發光裝置
KR101565200B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102250389B1 (ko) 유기발광소자
JP5638612B2 (ja) 新規な複素環誘導体およびこれを用いた有機発光素子
JP5432147B2 (ja) 有機金属錯体誘導体およびこれを用いた有機発光素子
JP5154569B2 (ja) 新規なフルオレン誘導体およびこれを用いた有機電子素子
KR101247626B1 (ko) 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2018157478A1 (zh) 一种芴并咔唑类衍生物及磷光有机电致发光器件
JP5253378B2 (ja) 新規なアントラセン誘導体、その製造方法、およびそれを用いた有機電子素子
KR101512544B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2023160187A1 (zh) 一种咔唑衍生物及其应用
WO2018157477A1 (zh) 一种螺芴类衍生物及有机电致发光器件
CN113402526B (zh) 一种有机化合物、电致发光材料及其应用
TW201725196A (zh) 化合物及含有該化合物的有機電子裝置
CN112457313A (zh) 一种萘酰亚胺并氮杂环发光材料及其应用
CN112079841A (zh) 一种有机化合物、电致发光材料及其应用
WO2018166096A1 (zh) 一种有机发光器件及其制备方法
KR20150082156A (ko) 신규한 화합물 및 이를 포함하는 유기 발광 소자
KR101586531B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR101856900B1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
CN110305112B (zh) 一种有机光电材料及其应用
WO2013128818A1 (ja) 置換基を有するピリジル基とトリフェニレン環構造を有する化合物および有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15567377

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899088

Country of ref document: EP

Kind code of ref document: A1