WO2018157477A1 - 一种螺芴类衍生物及有机电致发光器件 - Google Patents

一种螺芴类衍生物及有机电致发光器件 Download PDF

Info

Publication number
WO2018157477A1
WO2018157477A1 PCT/CN2017/084848 CN2017084848W WO2018157477A1 WO 2018157477 A1 WO2018157477 A1 WO 2018157477A1 CN 2017084848 W CN2017084848 W CN 2017084848W WO 2018157477 A1 WO2018157477 A1 WO 2018157477A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
layer
organic electroluminescent
phenyl
triphenylamine
Prior art date
Application number
PCT/CN2017/084848
Other languages
English (en)
French (fr)
Inventor
潘彪
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US15/567,378 priority Critical patent/US20180291263A1/en
Publication of WO2018157477A1 publication Critical patent/WO2018157477A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/18Benzimidazoles; Hydrogenated benzimidazoles with aryl radicals directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/20Two benzimidazolyl-2 radicals linked together directly or via a hydrocarbon or substituted hydrocarbon radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/53Organo-phosphine oxides; Organo-phosphine thioxides
    • C07F9/5325Aromatic phosphine oxides or thioxides (P-C aromatic linkage)
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers

Definitions

  • the present invention relates to the field of display, and in particular to a spiro-based derivative and an organic electroluminescent device.
  • a good phosphorescent host material there are three critical factors: first, to have a sufficiently high triplet energy level (ET) to achieve efficient energy transfer; and second, in the device, carrier transport To balance, so as to improve the luminous efficiency of the device; finally, there must be a high enough glass transition temperature (Tg) to ensure the stability of the device at high current density and improve the lifetime of the organic light-emitting device.
  • ET triplet energy level
  • Tg glass transition temperature
  • terpene derivatives are a very promising material because terpene materials generally have relatively good thermodynamic and chemical stability and have very high fluorescence quantum efficiencies.
  • the triplet state of terpene materials is generally low and cannot meet the requirements of blue phosphorescent host materials, thus restricting its application in phosphorescent devices.
  • Lee et al. proposed to improve the triplet energy level and Tg of a material by changing it into a snail and modifying it at its 2,7 position (Jang SE, Joo CW, Jeon SO, Yook KS, Lee JY).
  • the group is used to adjust the hole and electron transport properties of the molecule, thereby solving the problem that the conventional phosphorescent host material cannot simultaneously achieve high triplet energy level, carrier transport matching, and high glass transition temperature.
  • the structural rigidity of the snail itself it can maintain good thermodynamic performance, so it can meet the demand of phosphorescent host materials.
  • the present invention first provides a spiroquinone derivative represented by the following formula I:
  • the electron transporting group is selected from the group consisting of diphenylphosphino, m-phenylbenzimidazolyl and hydrogen; and the hole transporting group is selected from A group consisting of carbazolyl and hydrogen groups.
  • the electron transporting group is selected from the group consisting of hydrogen, cyano, diphenylphosphino, p-triphenylphosphino, m-triphenylphosphino, o-triphenylphosphine Oxyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, aza-9-carbazolyl, p-phenylbenzimidazolyl, 4-N-benzimidazolyl, m-phenylbenzimidazole , ortho-phenylbenzimidazolyl, 3-N-benzimidazolyl, o-phenyl-1,3,4-oxadiazolyl, m-phenyl-1,3,4-oxadiazolyl, Phenyl-1,3,4-oxadiazolyl, o-phenyl-1,4,5-triazolyl, m-phenyl-1,4,5-triazolyl, p-phenyl-1,4, 5-
  • the hole transporting group is selected from the group consisting of hydrogen, phenyl, p-tolyl, 9-carbazolyl, tert-butyl-9-carbazolyl, aza-9-carbazole , diaza-9-oxazolyl, triphenylsilyl, p-triphenylamino, dimethyl-p-triphenylamine, di-tert-butylcarbazolyl, 1-naphthalene substituted p-triphenylamine, 2 -naphthyl substituted p-triphenylamine, 3,6-di-tert-butylcarbazole phenyl, disubstituted 3,6-di-tert-butylcarbazole phenyl, p-triphenylamino, dimethyl-p-triphenylamine, 1 -naphthalene substituted p-triphenylamine, 2-naphthalene substituted
  • R 1 and R 2 represent the same or different substituent groups.
  • R 3 and R 4 represent the same or different substituent groups.
  • R 1 and R 2 each represent a diphenylphosphino group or a m-phenylbenzimidazolyl group
  • R 3 and R 4 each represent a hydrogen group
  • R 1 and R 2 each represent a hydrogen group
  • R 3 and R 4 each represent a carbazolyl group
  • a spiro-indene derivative is provided to be represented by the formula i, ii or iii:
  • the present invention also provides an organic electroluminescence device comprising the above-mentioned spiro derivatives as a host material.
  • the organic electroluminescent device provided by the present invention has at least one organic electroluminescent layer comprising a spiro-based derivative represented by the formula i, the formula ii or the formula iii.
  • the organic electroluminescent device comprises: a first electrode layer formed on a substrate; one or more layers of an organic electroluminescent layer formed on the first electrode layer
  • the organic electroluminescent layer has a thickness of 15 to 25 nm, which is formed by doping FIrpic with the spiro-based derivative; and a second electrode layer is formed on the organic electroluminescent layer.
  • the doping ratio of the FIrpic is 5 to 10% by weight, particularly preferably 7% by weight.
  • the organic electroluminescent device further includes: an electron injection layer formed between the second electrode layer and the organic electroluminescent layer; and an electron transport layer formed in the Between the electron injecting layer and the organic electroluminescent layer; a hole injecting layer formed between the first electrode layer and the organic electroluminescent layer; and a hole transporting layer formed in the hole Between the injection layer and the organic electroluminescent layer; and an exciton blocking layer formed between the hole transport layer and the organic electroluminescent layer.
  • the electron injecting layer has a thickness of 0.5 to 1.5 nm, and the electron transporting layer has a thickness.
  • the thickness of the hole injecting layer is 5 to 15 nm
  • the thickness of the hole transporting layer is 50 to 70 nm
  • the thickness of the exciton blocking layer is 2 to 10 nm.
  • the first electrode layer is made of ITO
  • the hole injection layer is made of molybdenum trioxide
  • the hole transport layer is formed by NPB
  • the exciton is formed by mCP.
  • the barrier layer is composed of TmPyPB
  • the electron transport layer is formed of LiF
  • the second electrode layer is made of Al.
  • the snail derivative provided by the present invention has a high triplet energy level and can realize efficient energy transfer of a triplet exciton from a host to a guest.
  • the spiro-quinone derivatives provided by the present invention have balanced carrier mobility, can effectively combine holes and electrons in the light-emitting region, and increase the luminous efficiency of the device.
  • the spiroquinone derivative provided by the present invention has a high glass transition temperature and thermal stability, and can improve the service life of the light-emitting device.
  • the OLED device using the snail-based derivative of the present invention as a light-emitting layer has excellent performance, and current efficiency, power efficiency, and external quantum efficiency can all reach a high level in the performance of the current blue phosphorescent device.
  • the OLED device using the snail derivative as the electron transport layer of the present invention has excellent stability over a large voltage range, and effectively reduces the interface energy barrier between the electron transport layer and the luminescent layer. It avoids interface charge accumulation and exciton quenching, which is beneficial to the improvement of device lifetime and has broad application prospects in the field of full color display.
  • Figure 1 shows the fluorescence emission spectrum of the spiro steroid derivative according to an embodiment of the present invention.
  • Figure 3 is a graph showing the glass transition temperature of the spiro steroid derivative according to an embodiment of the present invention.
  • Figure 4 is a view showing an ultraviolet absorption spectrum of the spiro steroid derivative according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural view of an organic electroluminescent device according to an embodiment of the invention.
  • FIG. 6 is an energy level diagram of an organic electroluminescent device according to an embodiment of the present invention.
  • FIG. 7 is a graph showing a luminance-current density-voltage characteristic of an organic electroluminescent device according to an embodiment of the present invention.
  • FIG. 8 is a graph showing current efficiency/power efficiency of an organic electroluminescent device according to an embodiment of the present invention.
  • Figure 9 is a graph showing the electroluminescence spectrum of an organic electroluminescent device according to an embodiment of the present invention.
  • first, second, A, B, (a), (b), and the like may be used. These terms are only used to distinguish one structural component from another structural component, and the attributes, order, order, etc. of a corresponding structural component are not limited to the term.
  • first, second, A, B, (a), (b), and the like may be used. These terms are only used to distinguish one structural component from another structural component, and the attributes, order, order, etc. of a corresponding structural component are not limited to the term.
  • first component can be “connected”, “coupled” directly to the second component.
  • a third component may also be “connected”, “coupled”, “joined” between the first component and the second component.
  • the electron transport group includes, but is not limited to, a hydrogen group, a cyano group, a diphenylphosphino group, a p-triphenylphosphino group, a m-triphenylphosphino group, an o-triphenylphosphino group, and a 2- Pyridyl, 3-pyridyl, 4-pyridyl, aza-9-carbazolyl, p-phenylbenzimidazolyl, 4-N-benzimidazolyl, m-phenylbenzimidazolyl, o-phenyl Benzimidazolyl, 3-N-benzimidazolyl, o-phenyl-1,3,4-oxadiazolyl, m-phenyl-1,3,4-oxadiazolyl, p-phenyl-1, 3,4-oxadiazolyl, o-phenyl-1,4,5-triazolyl, m-phenyl-1,4,5-triazo
  • the hole transporting group includes, but is not limited to, a hydrogen group, a phenyl group, a p-tolyl group, a 9-carbazolyl group, a tert-butyl-9-carbazolyl group, an aza-9-carbazolyl group, a diaza group.
  • R 1 and R 2 may be the same or different substituent groups, and R 3 and R 4 may be the same or different substituent groups.
  • R 1 and R 2 represent a diphenylphosphino group or a m-phenylbenzimidazolyl group, respectively, and R 3 and R 4 each represent a hydrogen group.
  • R 1 and R 2 represent a hydrogen group, respectively, and R 3 and R 4 each represent a carbazolyl group.
  • a spiroquinone derivative is provided, represented by the formula i, denoted as BSBDC:
  • the preparation method is as follows:
  • the Grignard reagent was introduced into a solution of 3,6-dibromofluorenone (9.9 g, 55 mmol) in tetrahydrofuran (100 ml) by a pressure difference under a nitrogen atmosphere. After the transfer of the Grignard reagent was completed, the reaction was heated to reflux overnight, and the heating was stopped the next day and naturally cooled to room temperature. It was recrystallized from n-hexane and filtered to give 17.
  • the crude product obtained above was dissolved in 50 ml of acetic acid, and 5% molar ratio of concentrated hydrochloric acid was added thereto, and heated to Reflux at 120 ° C overnight. After cooling to room temperature, it was extracted with an organic solvent. The organic layer obtained by the extraction was dried over magnesium sulfate, and dried, and then subjected to silica gel column chromatography using a petroleum ether/dichloromethane mixture of 3:1 by volume to obtain a final product of 15.6 g, which is 3,6-dibromo- 9,9'-spirobifluorene. The yield was 73%.
  • a spiroquinone derivative is provided, represented by formula ii, designated as BSBDP:
  • the preparation method is as follows:
  • the Grignard reagent was introduced into a solution of 3,6-dibromofluorenone (9.9 g, 55 mmol) in tetrahydrofuran (100 ml) by a pressure difference under a nitrogen atmosphere. After the transfer of the Grignard reagent was completed, the reaction was heated to reflux overnight, and the heating was stopped the next day and naturally cooled to room temperature. It was recrystallized from n-hexane and filtered to give 17.
  • the crude product obtained above was dissolved in 50 ml of acetic acid, and a 5% molar ratio of concentrated hydrochloric acid was added thereto, and the mixture was heated to reflux at 120 ° C overnight. After cooling to room temperature, it was extracted with an organic solvent. The organic layer obtained by the extraction was dried over magnesium sulfate, and dried, and then subjected to silica gel column chromatography using a petroleum ether/dichloromethane mixture of 3:1 by volume to obtain a final product of 15.6 g, which is 3,6-dibromo- 9,9'-spirobifluorene. The yield was 73%.
  • Step 4 Prepare the final product BSBDP
  • reaction solution was cooled to room temperature and then filtered with suction, and then, and then, Subsequently, the organic layer obtained by suction filtration was washed with water, dried over sodium sulfate, and dried and then passed through a column to obtain a final product, BSBDP, yield 55%.
  • a spiroquinone derivative is provided, represented by formula iii, designated as BSBDM:
  • the preparation method is as follows:
  • the Grignard reagent was introduced into a solution of 3,6-dibromofluorenone (9.9 g, 55 mmol) in tetrahydrofuran (100 ml) by a pressure difference under a nitrogen atmosphere. After the transfer of the Grignard reagent was completed, the reaction was heated to reflux overnight, and the heating was stopped the next day and naturally cooled to room temperature. It was recrystallized from n-hexane and filtered to give 17.
  • the crude product obtained above was dissolved in 50 ml of acetic acid, and a 5% molar ratio of concentrated hydrochloric acid was added thereto, and the mixture was heated to reflux at 120 ° C overnight. After cooling to room temperature, it was extracted with an organic solvent. The organic layer obtained by the extraction was dried over magnesium sulfate, and dried, and then subjected to silica gel column chromatography using a petroleum ether/dichloromethane mixture of 3:1 by volume to obtain a final product of 15.6 g, which is 3,6-dibromo- 9,9'-spirobifluorene. The yield was 73%.
  • Step 4 Prepare the final product BSBDM
  • Figure 1 shows that BSBDC, BSBDP and BSBDM all exhibit certain absorption peaks in the 250-400 nm band.
  • the absorption peak of BSBDC at 285 nm can be considered as the ⁇ - ⁇ * transition of carbazole; the two shoulders present at the same time can be attributed to the n- ⁇ * transition of carbazole.
  • the maximum absorption wavelength is 280 nm, which can be attributed to the ⁇ - ⁇ * charge transition with the phosphorus-oxygen double bond as the core in the diphenylphosphorus group.
  • the maximum absorption of BSBDM is at 272 nm, which can be attributed to the ⁇ - ⁇ * charge transition in the benzimidazole group.
  • Figure 2 shows that the order of the triplet energy levels is BSBDP (2.87 eV) > BSBDC (2.81 eV) > BSBDM (2.73 eV).
  • Figure 3 shows that the glass transition temperature of BSBDC reached 215 ° C and that of BSBDM was 173 ° C.
  • the E g of the three compounds can be calculated from Fig. 4 to be 3.48 eV (BSBDC), 3.78 eV (BSBDP), and 3.77 eV (BSBDM), respectively.
  • an organic electroluminescent device A comprising: a first electrode layer 20 formed on a substrate 10; a hole injection layer 30 formed on the first On the electrode layer 20; a hole transport layer 40 is formed on the hole injection layer 30; an exciton blocking layer 50 is formed on the hole transport layer 40; an organic electroluminescent layer 60 is formed on On the exciton blocking layer 50, the organic electroluminescent layer 60 is formed by doping FIrpic with the spiro derivative BSBDC; an electron transport layer 70 is formed on the organic electroluminescent layer 60; An electron injection layer 80 is formed on the electron transport layer 70; and a second electrode layer 90 is formed on the electron injection layer 80.
  • the doping ratio of the FIrpic is 7 wt%.
  • the first electrode layer 20 is made of ITO
  • the hole injection layer 30 is made of molybdenum trioxide (MoO 3 )
  • the hole transport layer 40 is formed of NPB by mCP.
  • the exciton blocking layer 50 is formed
  • the electron transport layer 70 is made of TmPyPB
  • the electron injecting layer 80 is made of LiF
  • the second electrode layer 90 (cathode) is made of Al.
  • the hole injection layer 30 has a thickness of 10 nm
  • the hole transport layer 40 has a thickness of 60 nm
  • the exciton blocking layer 50 has a thickness of 5 nm
  • the organic electroluminescent layer 60 has a thickness of 20 nm
  • the electron transport layer 70 has a thickness of 40 nm
  • the electron injecting layer 80 has a thickness of 1 nm
  • the thickness of the second electrode layer 90 is 100 nm.
  • the device structure of the organic electroluminescent device A in the present embodiment is as follows: ITO/MoO 3 (10 nm) / NPB (60 nm) / mCP (5 nm) / B SBDC: 7 wt % FIrpic (20 nm) / TmPyPB (40 nm) /LiF (1 nm) / Al (100 nm). See Figure 6 for the energy level diagram.
  • the organic electroluminescent device A is prepared in a manner known per se.
  • ITO glass is ultrasonically cleaned in a cleaning agent and deionized water for 30 minutes. Then, it was vacuum-dried for 2 hours (105 ° C), and the ITO glass was placed in a plasma reactor for 1 minute of CFx plasma treatment, and transferred to a vacuum chamber to prepare an organic film and a metal electrode.
  • BSBDC was prepared as a host material by vacuum evaporation.
  • an organic electroluminescent device B having a structure similar to that of the organic electroluminescent device A described in Embodiment 6, the difference being that: the organic electroluminescent device B is The organic electroluminescent layer is formed by doping FIrpic with the spiro-based derivative BSBDP.
  • the device structure of the organic electroluminescent device B in the present embodiment is as follows: ITO/MoO 3 (10 nm) / NPB (60 nm) / mCP (5 nm) / BSBDP: 7 wt % FIrpic (20 nm) / TmPyPB (40 nm) / LiF (1 nm) / Al (100 nm).
  • the organic electroluminescent device B is prepared in a manner known per se.
  • ITO glass is ultrasonically cleaned in a cleaning agent and deionized water for 30 minutes. Then, it was vacuum-dried for 2 hours (105 ° C), and the ITO glass was placed in a plasma reactor for 1 minute of CFx plasma treatment, and transferred to a vacuum chamber to prepare an organic film and a metal electrode.
  • a BSBDP was prepared as a host material by a vacuum evaporation method.
  • an organic electroluminescent device C having a structure similar to that of the organic electroluminescent device A described in Embodiment 6, the difference being that: the organic electroluminescent device C is The organic electroluminescent layer is formed by doping FIrpic with the spiro-based derivative BSBDM.
  • the device structure of the organic electroluminescent device C in the present embodiment is as follows: ITO/MoO 3 (10 nm) / NPB (60 nm) / mCP (5 nm) / B SBDM: 7 wt % FIrpic (20 nm) / TmPyPB (40 nm) /LiF (1 nm) / Al (100 nm).
  • the organic electroluminescent device C is prepared in a manner known per se.
  • ITO glass is successively Ultrasonic cleaning with detergent and deionized water for 30 minutes. Then, it was vacuum-dried for 2 hours (105 ° C), and the ITO glass was placed in a plasma reactor for 1 minute of CFx plasma treatment, and transferred to a vacuum chamber to prepare an organic film and a metal electrode.
  • BSBDM was prepared as a host material by vacuum evaporation.
  • the applicant also performed performance verification on the organic electroluminescent devices A to C obtained in Examples 6, 7, and 8, and obtained a luminance-current density-voltage characteristic graph as shown in FIG. 7, and a current shown in FIG. Efficiency/Power Efficiency - Luminance characteristic graph and electroluminescence spectrum shown in FIG.
  • Figure 7 shows that the turn-on voltages of the three devices are 3.2, 2.8, and 3.3V, respectively. It can be seen that the operating voltages of the three devices are all around 3V, which proves that the energy barrier of carrier injection is small.
  • Figure 9 shows that the electroluminescence spectra of the three compounds have only two emission peaks at 476 nm and 500 nm, which is the characteristic emission peak of the guest material FIrpic. It is explained that the host can completely transfer the triplet excitons to the guest and emit light on the guest, thereby indicating that the three compounds BSBDC, BSBDP and BSBDM of the present invention can be successfully used as the blue phosphorescent host material.
  • the present invention has the following advantages:
  • the snail derivative provided by the present invention has a high triplet energy level and can realize efficient energy transfer of a triplet exciton from a host to a guest.
  • the spiro-quinone derivatives provided by the present invention have balanced carrier mobility, can effectively combine holes and electrons in the light-emitting region, and increase the luminous efficiency of the device.
  • the spiroquinone derivative provided by the present invention has a high glass transition temperature and thermal stability, and can improve the service life of the light-emitting device.
  • the OLED device using the snail-based derivative of the present invention as a light-emitting layer has excellent performance, and current efficiency, power efficiency, and external quantum efficiency can all reach a high level in the performance of the current blue phosphorescent device.
  • the OLED device using the snail derivative as the electron transport layer of the present invention has excellent stability over a large voltage range, and effectively reduces the interface energy barrier between the electron transport layer and the luminescent layer. It avoids interface charge accumulation and exciton quenching, which is beneficial to the improvement of device lifetime and has broad application prospects in the field of full color display.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供一种螺芴类衍生物及以该螺芴类衍生物为主体材料的有机电致发光器件。所述螺芴类衍生物以通式I 表示, 通过在螺芴3,6 位上分别修饰具有电子和空穴传输性能的基团,来调节分子的空穴和电子传输性能,从而解决传统磷光主体材料不能同时实现三重态能级高、载流子传输匹配以及玻璃化温度高的问题。

Description

一种螺芴类衍生物及有机电致发光器件 技术领域
本发明涉及显示领域,特别涉及一种螺芴类衍生物及有机电致发光器件。
背景技术
1987年,邓青云教授和Vanslyke以透明导电膜作阳极,AlQ3作发光层,三芳胺作空穴传输层,Mg/Ag合金作阴极,采用超薄膜技术制成了双层有机电致发光器件(Appl.Phys.Lett.,1987,52,913)。1990年,Burroughes等人发现了以共轭高分子PPV为发光层的OLED(Nature.1990,347,539),从此在全世界范围内掀起了OLED研究的热潮。
由于自旋限制的影响,在日常生活中我们看到的多为荧光现象。最初的OLED技术研究主要集中在荧光器件方向。但是,根据自旋量子统计理论,荧光电致发光器件的最大内量子效率只有25%,而磷光电致发光器件,则可以达到100%。因此,在1999年Forrest 和Thompson等(Appl.Phys.Let.,1999,75,4.)将绿光磷光材料Ir(ppy)3以6wt%的浓度掺杂在4,4’-N,N’-二咔唑-联苯(CBP)的主体材料中,获得了绿光OLED。该绿光OLED的最大外量子效率(EQE)达到8%,突破了电致荧光器件的理论极限。之后,人们对磷光发光材料产生了高度关注。从那之后,电致磷光材料和磷光器件一直是OLED研究的热点。
对于一个好的磷光主体材料来说,有三个至关重要的因素:首先是要有一个足够高的三重态能级(ET)来实现有效的能量转移;其次,在器件中,载流子传输要平衡,从而提高器件的发光效率;最后,要有足够高的玻璃化转变温度(Tg)来保证器件在高电流密度下的稳定性,提高有机发光器件的寿命。为了在同种分子中,同时实现这三种不同的要求,研究人员进行了很多有意义的尝试,并且开发出不同种类的磷光发光主体材料。
在众多磷光发光主体材料中,芴类衍生物是一种非常有潜力的材料,这是因为芴类材料一般具有比较好的热力学和化学稳定性,并且具有非常高的荧光量子效率。然而,芴类材料的三重态一般较低,无法达到蓝色磷光主体材料的要求,因此制约了其在磷光发光器件中的应用。例如,Lee等就提出通过将芴变成螺芴并且在其2,7位进行修饰的方法,来提高材料的三重态能级和Tg(Jang SE,Joo CW,Jeon SO,Yook KS,Lee JY.The relationship between the substitution position of the diphenylphosphine oxide on the spirobifluorene and device performances of blue phosphorescent organic light-emitting diodes.Org Electron 2010;11:1059-65.)。这证明了螺芴确实可以提高材料的三重态能级和Tg,但是根据量子力学的计算,2,7位的修饰并不是最佳的修饰方法。
因此,我们需要一种新的螺芴类衍生物,以解决目前存在的技术问题。
发明内容
本发明的目的在于提供一种新的螺芴类衍生物以及应用该新的螺芴类衍生物的有机电致发光器件,通过在螺芴3,6位上分别修饰具有电子和空穴传输性能的基团,来调节分子的空穴和电子传输性能,从而解决传统磷光主体材料不能同时实现三重态能级高、载流子传输匹配以及玻璃化温度高的问题。同时,由于螺芴本身的结构刚性,可以保持很好的热力学性能,因此可以满足磷光主体材料的需求。
为了达到上述目的,本发明首先提供一种螺芴类衍生物,以以下通式I表示:
Figure PCTCN2017084848-appb-000001
通式I;其中,R1及R2为电子传输基团;R3及R4为空穴传输基团。
在本发明一优选实施例中,所述电子传输基团选自由二苯基磷氧基,间苯基苯并咪唑基及氢基组成的群组;并且,所述空穴传输基团选自由咔唑基及氢基组成的群组。
在本发明一实施例中,所述电子传输基团选自由氢基、氰基、二苯基磷氧基、对三苯基磷氧基、间三苯基磷氧基、邻三苯基磷氧基、2-吡啶基、3-吡啶基、4-吡啶基、氮杂-9-咔唑基、对苯基苯并咪唑基、4-N-苯并咪唑基、间苯基苯并咪唑基、邻苯基苯并咪唑基、3-N-苯并咪唑基、邻苯基-1,3,4-恶二唑基、间苯基-1,3,4-恶二唑基、对苯基-1,3,4-恶二唑基、邻苯基-1,4,5-三唑基、间苯基-1,4,5-三唑基、对苯基-1,4,5-三唑基、邻三苯基磷氧基、2-二氧二苯并噻吩基、3-二氧二苯并噻吩基、4-二氧二苯并噻吩基、菲并咪唑基、N-菲并咪唑基及对苯基菲并咪唑基组成的群组。
在本发明一实施例中,所述空穴传输基团选自由氢基、苯基、对甲苯基、9-咔唑基、叔丁基-9-咔唑基、氮杂-9-咔唑基、二氮杂-9-咔唑基、三苯基硅基、对三苯胺基、二甲基对三苯胺基、二代叔丁基咔唑基、1-萘取代对三苯胺基、2-萘取代对三苯胺基、3,6-二叔丁基咔唑苯基、二代3,6-二叔丁基咔唑苯基、对三苯胺基、二甲基对三苯胺基、1-萘取代对三苯胺基、2-萘取代对三苯胺基、对咔唑苯基、氮苯基-3-基咔唑基、2-二苯并噻吩、3-二苯并噻吩及4-二苯并噻吩组成的群组。
在本发明一实施例中,R1与R2代表相同或不同的取代基团。
在本发明一实施例中,R3与R4代表相同或不同的取代基团。
在本发明一优选实施例中,R1与R2分别代表二苯基磷氧基或者间苯基苯并咪唑基,R3与R4分别代表氢基。
在本发明一优选实施例中,R1与R2分别代表氢基,R3与R4分别代表咔唑基。
在本发明一优选实施例中,提供一种螺芴类衍生物,以以分子式i、ii或iii表示:
Figure PCTCN2017084848-appb-000002
本发明还提供一种有机电致发光器件,以上述螺芴类衍生物作为主体材料。尤其是,本发明提供的所述有机电致发光器件具有至少一层包含以分子式i、分子式ii或分子式iii表示的螺芴类衍生物的有机电致发光层。
在本发明一实施例中,所述有机电致发光器件包括:一第一电极层,形成于一衬底上;一层或多层有机电致发光层,形成于所述第一电极层上;所述有机电致发光层厚度为15~25nm,由所述螺芴类衍生物掺杂FIrpic形成;以及,一第二电极层,形成于所述有机电致发光层上。
在本发明一优选实施例中,所述FIrpic的掺杂比例为5~10wt%,特别优选7wt%。
在本发明一实施例中,所述有机电致发光器件还包括:一电子注入层,形成于所述第二电极层与所述有机电致发光层之间;一电子传输层,形成于所述电子注入层与所述有机电致发光层之间;一空穴注入层,形成于所述第一电极层与所述有机电致发光层之间;一空穴传输层,形成于所述空穴注入层与所述有机电致发光层之间;以及,一激子阻隔层,形成于所述空穴传输层与所述有机电致发光层之间。
在本发明一较佳实施例中,所述电子注入层厚度为0.5~1.5nm,所述电子传输层厚度 为30nm~50nm,所述空穴注入层厚度为5~15nm,所述空穴传输层厚度为50~70nm,以及,所述激子阻隔层厚度为2~10nm。
在本发明一实施例中,以ITO构成所述第一电极层(阳极),以三氧化钼构成所述空穴注入层,以NPB构成所述空穴传输层,以mCP构成所述激子阻隔层,以TmPyPB构成所述电子传输层,以LiF构成所述电子注入层,并且,以Al构成所述第二电极层(阴极)。
本发明具有以下优点:
(1)本发明提供的螺芴类衍生物具有较高的三重态能级,能够实现三重态激子由主体到客体有效的能量转移。
(2)本发明提供的螺芴类衍生物具有平衡的载流子迁移率,能够实现空穴和电子在发光区的有效复合,增大器件的发光效率。
(3)本发明提供的螺芴类衍生物具有较高的玻璃化转变温度和热稳定性,能够提高发光器件的使用寿命。
(4)以本发明所述的螺芴类衍生物作为发光层的OLED器件性能优异,电流效率、功率效率和外量子效率均能达到目前蓝色磷光器件的性能中的较高水平。
(5)以本发明所述的螺芴类衍生物作为电子传输层的OLED器件在较大的电压范围内具有很好的稳定性,有效减少了电子传输层和发光层之间的界面能垒,避免了界面电荷积累及激子淬灭,有利于器件寿命的提高,在全彩显示领域有广泛的应用前景。
附图说明
结合参考以下的附图和详细说明将更好地理解本发明的上述和其他的目的、特性和优势,其中:
图1所示的是根据本发明一实施例的所述螺芴类衍生物的荧光发射光谱。;
图2所示的是根据本发明一实施例的所述螺芴类衍生物的低温磷光光谱;
图3所示的是根据本发明一实施例的所述螺芴类衍生物的玻璃化转变温度;
图4所示的是根据本发明一实施例的所述螺芴类衍生物的紫外吸收光谱;
图5所示的是根据本发明一实施例的有机电致发光器件的结构示意图;
图6所示的是根据本发明一实施例的有机电致发光器件的能量级图;
图7所示的是根据本发明一实施例的有机电致发光器件的亮度-电流密度-电压特性曲线图;
图8所示的是根据本发明一实施例的有机电致发光器件的电流效率/功率效率-亮度特 性曲线图;
图9所示的是根据本发明一实施例的有机电致发光器件的电致发光光谱图。
具体实施方式
以下,结合参考附图,将具体描述本发明的具体实施例。在描述本发明的组件时,可以使用例如第一、第二、A、B、(a)、(b)等类似词的术语。这些术语仅是为了将一结构组件与其他结构组件区别出来,并且一相应结构组件的属性、次序、顺序等不应受限于该术语。应当指出,当在说明书中描述一个组件与另一个组件“连接”、“耦接”或“接合”时,虽然说明第一个组件可以直接地与第二个组件“连接”、“耦接”或“接合”,一第三个组件也可能在第一个组件与第二组件之间“连接”“耦接”“接合”。
实施例1.螺芴类衍生物
在本实施例中,提供一种螺芴类衍生物,以下通式I表示:
Figure PCTCN2017084848-appb-000003
通式I;其中,R1及R2为电子传输基团;R3及R4为空穴传输基团。
所述电子传输基团包括但不限于:氢基、氰基、二苯基磷氧基、对三苯基磷氧基、间三苯基磷氧基、邻三苯基磷氧基、2-吡啶基、3-吡啶基、4-吡啶基、氮杂-9-咔唑基、对苯基苯并咪唑基、4-N-苯并咪唑基、间苯基苯并咪唑基、邻苯基苯并咪唑基、3-N-苯并咪唑基、邻苯基-1,3,4-恶二唑基、间苯基-1,3,4-恶二唑基、对苯基-1,3,4-恶二唑基、邻苯基-1,4,5-三唑基、间苯基-1,4,5-三唑基、对苯基-1,4,5-三唑基、邻三苯基磷氧基、2-二氧二苯并噻吩基、3-二氧二苯并噻吩基、4-二氧二苯并噻吩基、菲并咪唑基、N-菲并咪唑基及对苯基菲并咪唑基。
部分上述电子传输基团的具体结构及名称如下所列:
Figure PCTCN2017084848-appb-000004
Figure PCTCN2017084848-appb-000006
所述空穴传输基团包括但不限于:氢基、苯基、对甲苯基、9-咔唑基、叔丁基-9-咔唑基、氮杂-9-咔唑基、二氮杂-9-咔唑基、三苯基硅基、对三苯胺基、二甲基对三苯胺基、 二代叔丁基咔唑基、1-萘取代对三苯胺基、2-萘取代对三苯胺基、3,6-二叔丁基咔唑苯基、二代3,6-二叔丁基咔唑苯基、对三苯胺基、二甲基对三苯胺基、1-萘取代对三苯胺基、2-萘取代对三苯胺基、对咔唑苯基、氮苯基-3-基咔唑基、2-二苯并噻吩、3-二苯并噻吩及4-二苯并噻吩。
部分上述空穴传输基团的具体结构及名称如下所列:
Figure PCTCN2017084848-appb-000007
Figure PCTCN2017084848-appb-000008
Figure PCTCN2017084848-appb-000009
R1与R2可以是相同或不同的取代基团,R3与R4可以是相同或不同的取代基团。
可选地,R1与R2分别代表二苯基磷氧基或者间苯基苯并咪唑基,而R3与R4分别代表氢基。可选地,R1与R2分别代表氢基,而R3与R4分别代表咔唑基。
实施例2.螺芴类衍生物BSBDC
在本实施例中,提供一种螺芴类衍生物,以分子式i表示,记为BSBDC:
Figure PCTCN2017084848-appb-000010
制备方法具体如下:
步骤1.制备中间体3,6-二溴菲醌
将100ml硝基苯、10.2g(49.0mmol)菲醌和1.0g(4.0mmol)过氧化二苯甲酰依次加入烧瓶中,搅拌的同时加入5.0ml(100mmol)液溴,快速升温至80℃,反应过夜。反应过程中酱反应容器连接至一倒置的三角漏斗和氢氧化钠水溶液,以进行尾气吸收同时防止倒吸。反应结束后,过滤得黄色固体,用无水乙醇洗涤,烘干,最后得到粗产物14.8g,即为中间体3,6-二溴菲醌。产率:85%。1H-NMR:(CDCl3,400MHz):δ(ppm)8.19(m,2H),8.14~8.12(d,J=8.0Hz,2H),7.74~7.72(d,J=8.0Hz,2H)。
步骤2.制备中间体3,6-二溴芴酮
将60.0g(1.0mol)氢氧化钾、400ml水和13.0g(35.0mmol)步骤1获得的3,6-二溴菲醌分别依次加入到1000ml的烧瓶中,在100℃下反应3小时,然后分次加入30.0g(200.0mmol)高锰酸钾,继续反应10小时。待反应结束后,冷却至室温。随后,加入固体硫代硫酸钠粉末调节pH至中性,有黑色固体析出后过滤。将滤饼用滤纸包住,放入索氏提取器中用二氯甲烷萃取3天,随后旋蒸干二氯甲烷,最后得到淡黄色固体4.8g,即为中间体3,6-二溴芴酮。产率为40%。1H-NMR:(CDCl3,400MHz):δ(ppm)7.74(s,2H),7.60~7.58(d,J=8.0Hz,2H),7.53~7.51(d,J=8.0Hz,2H)。
步骤3.制备3,6-二溴-9,9′-螺二芴
首先,将3.9ml(50mmol)2-溴联苯溶于50ml四氢呋喃中,逐滴加入到装有2.8g(117.0mmol)镁屑的500ml烧瓶中,然后加入几粒固体碘颗粒来诱导反应进行,获得格氏试剂。
随后,在氮气保护下,利用压力差将所述格氏试剂通过双头针压入加入到3,6-二溴芴酮(9.9g,55mmol)的四氢呋喃(100ml)溶液中。待所述格氏试剂转移完毕后,加热回流反应过夜,第二天停止加热并自然冷却至室温。用正己烷重结晶,过滤,得到黄色固体粗产物17.7g,产率为76%。
接着,将上述获得的粗产物溶于50ml乙酸中,并加入5%摩尔比的浓盐酸,加热到 120℃回流过夜。冷却至室温后,用有机溶剂萃取。萃取获得的有机层用硫酸镁干燥,旋干后用体积比为3∶1的石油醚/二氯甲烷混合溶液进行硅胶柱层析,得到最终产物15.6g,即为3,6-二溴-9,9′-螺二芴。产率为73%。1H-NMR:(CDCl3,400MHz):δ(ppm)7.97(s,2H),7.8(d,J=8.0Hz,2H),7.41(t,J=1.2Hz,2H),7.27(t,J=4.0Hz,2H),7.15(t,J=1.6Hz,2H),6.73(d,J=8.0Hz,2H),6.31(d,J=8.0Hz,2H).MS(APCI):calcd for C25H14Br2:474.19,found,475.4(M+1)+。
步骤4.制备最终产物BSBDC
在50ml的圆底烧瓶中,依次将800mg(1.68mmol)步骤3获得的3,6-二溴-9,9′-螺二芴、842mg(5.04mmol)咔唑、342mg(1.8mmol)碘化亚铜、89mg(3.4mmol)18-冠-6及1.25g(9.07mmol)K2CO3溶解于2ml的N,N-二甲基丙烯基脲(DMPU)中,在氮气保护下加热到180℃反应两天后,使反应液冷却至室温。将反应液中的无机相过滤掉,然后加入二氯甲烷进行萃取,利用水洗涤有机层后分液。获得的有机层用无水硫酸钠干燥,过滤并旋干,柱层析得最后的产物BSBDC,产率82%。1H-NMR:(CDCl3,400MHz):δ(ppm)8.14(d,J=7.6Hz,2H),8.01(d,J=1.6Hz,4H),7.93(d,J=7.6Hz,2H),7.52~7.41(m,12H),7.26(m,6H),6.98(dd,J=12.4Hz,4H).13C-NMR(100MHz,CDCl3):δ150.47,145.29,143.73,142.11,140.67,134.55,130.76,127.52,126.22,124.66,122.17,120.02,119.89,119.00,109.83,69.34.MS(APCI):calcd for C49H30N2,646.78;found,647.4(M+1)+.Anal.calcd for C49H30N2(%):C 90.99,H 4.68,N 4.33;found:C 90.57,H 4.38,N 5.05。
实施例3.螺芴类衍生物BSBDP
在本实施例中,提供一种螺芴类衍生物,以分子式ii表示,记为BSBDP:
Figure PCTCN2017084848-appb-000011
制备方法具体如下:
步骤1.制备中间体3,6-二溴菲醌
将100ml硝基苯、10.2g(49.0mmol)菲醌和1.0g(4.0mmol)过氧化二苯甲酰依次加入烧瓶中,搅拌的同时加入5.0ml(100mmol)液溴,快速升温至80℃,反应过夜。反应过 程中酱反应容器连接至一倒置的三角漏斗和氢氧化钠水溶液,以进行尾气吸收同时防止倒吸。反应结束后,过滤得黄色固体,用无水乙醇洗涤,烘干,最后得到粗产物14.8g,即为中间体3,6-二溴菲醌。产率:85%。1H-NMR:(CDCl3,400MHz):δ(ppm)8.19(m,2H),8.14~8.12(d,J=8.0Hz,2H),7.74~7.72(d,J=8.0Hz,2H)。
步骤2.制备中间体3,6-二溴芴酮
将60.0g(1.0mol)氢氧化钾、400ml水和13.0g(35.0mmol)步骤1获得的3,6-二溴菲醌分别依次加入到1000ml的烧瓶中,在100℃下反应3小时,然后分次加入30.0g(200.0mmol)高锰酸钾,继续反应10小时。待反应结束后,冷却至室温。随后,加入固体硫代硫酸钠粉末调节pH至中性,有黑色固体析出后过滤。将滤饼用滤纸包住,放入索氏提取器中用二氯甲烷萃取3天,随后旋蒸干二氯甲烷,最后得到淡黄色固体4.8g,即为中间体3,6-二溴芴酮。产率为40%。1H-NMR:(CDCl3,400MHz):δ(ppm)7.74(s,2H),7.60~7.58(d,J=8.0Hz,2H),7.53~7.51(d,J=8.0Hz,2H)。
步骤3.制备3,6-二溴-9,9′-螺二芴
首先,将3.9ml(50mmol)2-溴联苯溶于50ml四氢呋喃中,逐滴加入到装有2.8g(117.0mmol)镁屑的500ml烧瓶中,然后加入几粒固体碘颗粒来诱导反应进行,获得格氏试剂。
随后,在氮气保护下,利用压力差将所述格氏试剂通过双头针压入加入到3,6-二溴芴酮(9.9g,55mmol)的四氢呋喃(100ml)溶液中。待所述格氏试剂转移完毕后,加热回流反应过夜,第二天停止加热并自然冷却至室温。用正己烷重结晶,过滤,得到黄色固体粗产物17.7g,产率为76%。
接着,将上述获得的粗产物溶于50ml乙酸中,并加入5%摩尔比的浓盐酸,加热到120℃回流过夜。冷却至室温后,用有机溶剂萃取。萃取获得的有机层用硫酸镁干燥,旋干后用体积比为3∶1的石油醚/二氯甲烷混合溶液进行硅胶柱层析,得到最终产物15.6g,即为3,6-二溴-9,9′-螺二芴。产率为73%。1H-NMR:(CDCl3,400MHz):δ(ppm)7.97(s,2H),7.8(d,J=8.0Hz,2H),7.41(t,J=1.2Hz,2H),7.27(t,J=4.0Hz,2H),7.15(t,J=1.6Hz,2H),6.73(d,J=8.0Hz,2H),6.31(d,J=8.0Hz,2H).MS(APCI):calcd for C25H14Br2:474.19,found,475.4(M+1)+。
步骤4.制备最终产物BSBDP
在25ml的单口瓶中,依次加入0.07g(0.3mmol)六水合二氯化镍、0.4g(2.0mmol)二苯基磷氧,0.39g(6.0mmol)锌粉、0.09g(0.6mmol)2,2’-联二吡啶和0.48g(1.0mmol)步骤 3获得的3,6-二溴-9,9′-螺二芴,然后加入2ml的N,N’-二甲基乙酰胺(DMAc)作为溶剂。在氮气的保护下,将反应液加热到120℃并反应48小时。反应结束后,使反应液冷却到室温后抽滤,获得上层固体用二氯甲烷洗涤。随后,将抽滤获得的有机层用水洗涤,并用硫酸钠干燥,旋干后过柱子得最终产物BSBDP,产率55%。1H-NMR:(CDCl3,400MHz):δ(ppm)8.03~8.05(d,J=7.6Hz,2H),7.81(d,J=7.6Hz,2H),7.66(m,4H),7.35~7.56(m,18H),7.04~7.07(t,J=7.6Hz,4H),6.66(t,J=1.6Hz,2H),6.51(m,2H).13C-NMR(100MHz,CDCl3):δ153.18,147.08,142.01,141.34,141.21,133.02,132.78,132.53,132.37,132.27,132.18,132.01,131.75,129.02,128.90,128.78,128.50,128.23,124.34124.33,124.26,120.51,65.64.MS(APCI):calcd for C49H34O2P2,716.2;found,717.5(M+1)+。
实施例4.螺芴类衍生物BSBDP
在本实施例中,提供一种螺芴类衍生物,以分子式iii表示,记为BSBDM:
Figure PCTCN2017084848-appb-000012
制备方法具体如下:
步骤1.制备中间体3,6-二溴菲醌
将100ml硝基苯、10.2g(49.0mmol)菲醌和1.0g(4.0mmol)过氧化二苯甲酰依次加入烧瓶中,搅拌的同时加入5.0ml(100mmol)液溴,快速升温至80℃,反应过夜。反应过程中酱反应容器连接至一倒置的三角漏斗和氢氧化钠水溶液,以进行尾气吸收同时防止倒吸。反应结束后,过滤得黄色固体,用无水乙醇洗涤,烘干,最后得到粗产物14.8g,即为中间体3,6-二溴菲醌。产率:85%。1H-NMR:(CDCl3,400MHz):δ(ppm)8.19(m,2H),8.14~8.12(d,J=8.0Hz,2H),7.74~7.72(d,J=8.0Hz,2H)。
步骤2.制备中间体3,6-二溴芴酮
将60.0g(1.0mol)氢氧化钾、400ml水和13.0g(35.0mmol)步骤1获得的3,6-二溴菲醌分别依次加入到1000ml的烧瓶中,在100℃下反应3小时,然后分次加入30.0g(200.0mmol)高锰酸钾,继续反应10小时。待反应结束后,冷却至室温。随后,加入固体硫代硫酸钠粉末调节pH至中性,有黑色固体析出后过滤。将滤饼用滤纸包住,放入索氏提取 器中用二氯甲烷萃取3天,随后旋蒸干二氯甲烷,最后得到淡黄色固体4.8g,即为中间体3,6-二溴芴酮。产率为40%。1H-NMR:(CDCl3,400MHz):δ(ppm)7.74(s,2H),7.60~7.58(d,J=8.0Hz,2H),7.53~7.51(d,J=8.0Hz,2H)。
步骤3.制备3,6-二溴-9,9′-螺二芴
首先,将3.9ml(50mmol)2-溴联苯溶于50ml四氢呋喃中,逐滴加入到装有2.8g(117.0mmol)镁屑的500ml烧瓶中,然后加入几粒固体碘颗粒来诱导反应进行,获得格氏试剂。
随后,在氮气保护下,利用压力差将所述格氏试剂通过双头针压入加入到3,6-二溴芴酮(9.9g,55mmol)的四氢呋喃(100ml)溶液中。待所述格氏试剂转移完毕后,加热回流反应过夜,第二天停止加热并自然冷却至室温。用正己烷重结晶,过滤,得到黄色固体粗产物17.7g,产率为76%。
接着,将上述获得的粗产物溶于50ml乙酸中,并加入5%摩尔比的浓盐酸,加热到120℃回流过夜。冷却至室温后,用有机溶剂萃取。萃取获得的有机层用硫酸镁干燥,旋干后用体积比为3∶1的石油醚/二氯甲烷混合溶液进行硅胶柱层析,得到最终产物15.6g,即为3,6-二溴-9,9′-螺二芴。产率为73%。1H-NMR:(CDCl3,400MHz):δ(ppm)7.97(s,2H),7.8(d,J=8.0Hz,2H),7.41(t,J=1.2Hz,2H),7.27(t,J=4.0Hz,2H),7.15(t,J=1.6Hz,2H),6.73(d,J=8.0Hz,2H),6.31(d,J=8.0Hz,2H).MS(APCI):calcd for C25H14Br2:474.19,found,475.4(M+1)+。
步骤4.制备最终产物BSBDM
将1.28g(2.0mmol)步骤3获得的3,6-二溴-9,9′-螺二芴、0.11g(0.1mmol)Pd(PPh3)4、10.0ml摩尔浓度为2.0mol/L的碳酸钾、40ml甲苯和20ml乙醇依次加入250ml的烧瓶中,超声15分钟。氮气保护下,将反应液加热到100℃反应12小时。柱层析(乙酸乙酯∶石油醚=1∶5)提纯得白色固体粉末0.98g,即为最终产物BSBDM。产率为80%。1H-NMR:(CDCl3,400MHz):δ(ppm)7.93~7.91(d,J=8.0Hz,2H),7.88~7.85(m,6H),5.69~5.67(m,4H),7.58~7.53(m,6H),7.49~7.45(m,2H),7.41~7.34(m,8H),7.29~7.28(m,4H),7.16~7.12(m,2H),7.09~7.06(m,2H),6.78~6.73(m,4H)。13C-NMR:(CDCl3,100MHz):δ(ppm)152.22,148.50,148.47,143.01,142.14,141.77,141.15,140.20,137.23,137.20,130.39,130.07,128.95,128.68,128.47,128.44,128.17,127.94,127.88,127.61,127.11,124.28,124.10,123.48,123.11,120.09,119.92,118.76,110.51,65.49。MS(APCI):calcd for C63H40N4,852.3;found,853.3.(M+1)+。Anal.calcd for C63H40N4:C,88.71;H,4.73;N,6.57found:C,88.42;H,4.63; N,6.95。
实施例5.螺芴类衍生物BSBDC、BSBDP和BSBDM的特性
申请人对实施例2、3和4的螺芴类衍生物BSBDC、BSBDP和BSBDM的特性进行研究,获得如图1所示的荧光发射光谱、图2所示的低温磷光光谱、图3所示的玻璃化转变温度和图4所示的紫外吸收光谱。
图1表明:在250-400nm的波段内,BSBDC、BSBDP和BSBDM均表现出一定的吸收峰。BSBDC在285nm处的吸收峰可以认为是咔唑的π-π*跃迁引起的;同时存在的两个肩峰,可以归结于咔唑的n-π*跃迁。对于BSBDP,其最大吸收波长在280nm,这可以归结于二苯基磷氧基团中以磷氧双键为核心的π-π*电荷跃迁。同样地,BSBDM的最大吸收在272nm,这可以归结于苯并咪唑基团中的π-π*电荷跃迁。
图2表明:三重态能级的高低顺序为BSBDP(2.87eV)>BSBDC(2.81eV)>BSBDM(2.73eV)。
图3表明:BSBDC的玻璃化转变温度达到了215℃,BSBDM的为173℃。
并且,从图4可以计算得到三个化合物的Eg分别为3.48eV(BSBDC)、3.78eV(BSBDP)和3.77eV(BSBDM)。
实施例6.有机电致发光器件A
请参见图5,在本实施例中,提供一种有机电致发光器件A,包括:一第一电极层20,形成于一衬底10上;一空穴注入层30,形成于所述第一电极层20上;一空穴传输层40,形成于所述空穴注入层30上;一激子阻隔层50,形成于所述空穴传输层40上;一有机电致发光层60,形成于所述激子阻隔层50上,所述有机电致发光层60由所述螺芴类衍生物BSBDC掺杂FIrpic形成;一电子传输层70,形成于所述有机电致发光层60上;一电子注入层80,形成于所述电子传输层70上;以及,一第二电极层90,形成于所述电子注入层80上。
在本实施例中,所述FIrpic的掺杂比例为7wt%。
在本实施例中,以ITO构成所述第一电极层20(阳极),以三氧化钼(MoO3)构成所述空穴注入层30,以NPB构成所述空穴传输层40,以mCP构成所述激子阻隔层50,以TmPyPB构成所述电子传输层70,以LiF构成所述电子注入层80,并且,以Al构成所述第二电极层90(阴极)。
在本实施例中,所述空穴注入层30的厚度为10nm,所述空穴传输层40的厚度为 60nm,所述激子阻隔层50的厚度为5nm,所述有机电致发光层60的厚度为20nm,所述电子传输层70的厚度为40nm,所述电子注入层80的厚度为1nm,并且所述第二电极层90的厚度为100nm。
因此,本实施例中的有机电致发光器件A的器件结构如下:ITO/MoO3(10nm)/NPB(60nm)/mCP(5nm)/B SBDC:7wt%FIrpic(20nm)/TmPyPB(40nm)/LiF(1nm)/Al(100nm)。能量级图请见图6。
所述有机电致发光器件A以业已知晓的方法制备。例如但不限于,ITO玻璃相继在清洗剂和去离子水中以超声波清洗30分钟。然后真空干燥2小时(105℃),再将ITO玻璃放入等离子反应器中进行1分钟的CFx等离子处理,传送到真空室内制备有机膜和金属电极。通过真空蒸镀的方法将BSBDC作为主体材料制备成器件。
实施例7.有机电致发光器件B
在本实施例中,提供一种有机电致发光器件B,结构与实施例6中所述的有机电致发光器件A相似,两者的区别在于:所述有机电致发光器件B的所述有机电致发光层由所述螺芴类衍生物BSBDP掺杂FIrpic形成。
因此,本实施例中的有机电致发光器件B的器件结构如下:ITO/MoO3(10nm)/NPB(60nm)/mCP(5nm)/BSBDP:7wt%FIrpic(20nm)/TmPyPB(40nm)/LiF(1nm)/Al(100nm)。
所述有机电致发光器件B以业已知晓的方法制备。例如但不限于,ITO玻璃相继在清洗剂和去离子水中以超声波清洗30分钟。然后真空干燥2小时(105℃),再将ITO玻璃放入等离子反应器中进行1分钟的CFx等离子处理,传送到真空室内制备有机膜和金属电极。通过真空蒸镀的方法将BSBDP作为主体材料制备成器件。
实施例8.有机电致发光器件C
在本实施例中,提供一种有机电致发光器件C,结构与实施例6中所述的有机电致发光器件A相似,两者的区别在于:所述有机电致发光器件C的所述有机电致发光层由所述螺芴类衍生物BSBDM掺杂FIrpic形成。
因此,本实施例中的有机电致发光器件C的器件结构如下:ITO/MoO3(10nm)/NPB(60nm)/mCP(5nm)/B SBDM:7wt%FIrpic(20nm)/TmPyPB(40nm)/LiF(1nm)/Al(100nm)。
所述有机电致发光器件C以业已知晓的方法制备。例如但不限于,ITO玻璃相继在 清洗剂和去离子水中以超声波清洗30分钟。然后真空干燥2小时(105℃),再将ITO玻璃放入等离子反应器中进行1分钟的CFx等离子处理,传送到真空室内制备有机膜和金属电极。通过真空蒸镀的方法将BSBDM作为主体材料制备成器件。
实施例9.有机电致发光器件的性能验证
申请人还对实施例6、7和8获得的有机电致发光器件A~C进行了性能验证,获得了如图7所示的亮度-电流密度-电压特性曲线图、图8所示的电流效率/功率效率-亮度特性曲线图和图9所示的电致发光光谱图。
图7表明:三个器件的开启电压分别是3.2、2.8、3.3V。可见,三个器件的操作电压都在3V左右,这证明了载流子注入的能垒较小。
从图8中的数据可以看出,三个小分子磷光主体材料在蒸镀条件下都表现出了良好的发光效率,ηCE,max分别达到了34.1、34.2和28.1cd/A,ηPE,max分别达到了34.1、34.4和22.3lm/W,最大外部量子效率EQE分别达到16%、18.7%和13.9%。
以及,图9表明:三个化合物的电致发光光谱都只有在476nm和500nm处有两个发射峰,这是客体材料FIrpic的特征发射峰。说明主体能够将三重态激子完全转移给客体,并在客体上发光,进而说明本发明所述三个化合物BSBDC、BSBDP和BSBDM均可成功地用作蓝色磷光主体材料。
由此可见,本发明具有以下优点:
(1)本发明提供的螺芴类衍生物具有较高的三重态能级,能够实现三重态激子由主体到客体有效的能量转移。
(2)本发明提供的螺芴类衍生物具有平衡的载流子迁移率,能够实现空穴和电子在发光区的有效复合,增大器件的发光效率。
(3)本发明提供的螺芴类衍生物具有较高的玻璃化转变温度和热稳定性,能够提高发光器件的使用寿命。
(4)以本发明所述的螺芴类衍生物作为发光层的OLED器件性能优异,电流效率、功率效率和外量子效率均能达到目前蓝色磷光器件的性能中的较高水平。
(5)以本发明所述的螺芴类衍生物作为电子传输层的OLED器件在较大的电压范围内具有很好的稳定性,有效减少了电子传输层和发光层之间的界面能垒,避免了界面电荷积累及激子淬灭,有利于器件寿命的提高,在全彩显示领域有广泛的应用前景。
本发明已由上述相关实施例加以描述,然而上述实施例仅为实施本发明的范例。必需 指出的是,已公开的实施例并未限制本发明的范围。相反地,包含于权利要求书的精神及范围的修改及均等设置均包括于本发明的范围内。

Claims (13)

  1. 一种螺芴类衍生物,以以下通式I表示:
    Figure PCTCN2017084848-appb-100001
    其中,
    R1及R2为电子传输基团;R3及R4为空穴传输基团;
    所述电子传输基团选自由二苯基磷氧基,间苯基苯并咪唑基及氢基组成的群组;以及,
    所述空穴传输基团选自由咔唑基及氢基组成的群组。
  2. 如权利要求1所述的螺芴类衍生物,以以分子式i、ii或iii表示:
    Figure PCTCN2017084848-appb-100002
  3. 一种螺芴类衍生物,以以下通式I表示:
    Figure PCTCN2017084848-appb-100003
    其中,
    R1及R2为电子传输基团;R3及R4为空穴传输基团。
  4. 如权利要求3所述的螺芴类衍生物,其中,所述电子传输基团选自由氢基、氰基、二苯基磷氧基、对三苯基磷氧基、间三苯基磷氧基、邻三苯基磷氧基、2-吡啶基、3-吡啶基、4-吡啶基、氮杂-9-咔唑基、对苯基苯并咪唑基、4-N-苯并咪唑基、间苯基苯并咪唑基、邻 苯基苯并咪唑基、3-N-苯并咪唑基、邻苯基-1,3,4-恶二唑基、间苯基-1,3,4-恶二唑基、对苯基-1,3,4-恶二唑基、邻苯基-1,4,5-三唑基、间苯基-1,4,5-三唑基、对苯基-1,4,5-三唑基、邻三苯基磷氧基、2-二氧二苯并噻吩基、3-二氧二苯并噻吩基、4-二氧二苯并噻吩基、菲并咪唑基、N-菲并咪唑基及对苯基菲并咪唑基组成的群组。
  5. 如权利要求4所述的螺芴类衍生物,其中,所述空穴传输基团选自由氢基、苯基、对甲苯基、9-咔唑基、叔丁基-9-咔唑基、氮杂-9-咔唑基、二氮杂-9-咔唑基、三苯基硅基、对三苯胺基、二甲基对三苯胺基、二代叔丁基咔唑基、1-萘取代对三苯胺基、2-萘取代对三苯胺基、3,6-二叔丁基咔唑苯基、二代3,6-二叔丁基咔唑苯基、对三苯胺基、二甲基对三苯胺基、1-萘取代对三苯胺基、2-萘取代对三苯胺基、对咔唑苯基、氮苯基-3-基咔唑基、2-二苯并噻吩、3-二苯并噻吩及4-二苯并噻吩组成的群组。
  6. 如权利要求5所述的螺芴类衍生物,其中,R1与R2为相同或不同的取代基团。
  7. 如权利要求5所述的螺芴类衍生物,其中,R3与R4为相同或不同的取代基团。
  8. 如权利要求5所述的螺芴类衍生物,其中,R1与R2分别代表二苯基磷氧基或者间苯基苯并咪唑基,R3与R4分别代表氢基。
  9. 如权利要求5所述的螺芴类衍生物,其中,R1与R2分别代表氢基,R3与R4分别代表咔唑基。
  10. 一种有机电致发光器件,其中,以权利要求1所述的螺芴类衍生物作为主体材料。
  11. 如权利要求10所述的有机电致发光器件,其中,所述有机电致发光器件包括:
    一第一电极层,形成于一衬底上;
    一层或多层有机电致发光层,形成于所述第一电极层上;所述有机电致发光层厚度为15~25nm,由所述螺芴类衍生物掺杂FIrpic形成;以及,
    一第二电极层,形成于所述有机电致发光层上。
  12. 如权利要求11所述的有机电致发光器件,其中,所述有机电致发光器件还包括:
    一电子注入层,形成于所述第二电极层与所述有机电致发光层之间;
    一电子传输层,形成于所述电子注入层与所述有机电致发光层之间;
    一空穴注入层,形成于所述第一电极层与所述有机电致发光层之间;
    一空穴传输层,形成于所述空穴注入层与所述有机电致发光层之间;以及,
    一激子阻隔层,形成于所述空穴传输层与所述有机电致发光层之间。
  13. 如权利要求12所述的有机电致发光器件,其中,所述电子注入层厚度为0.5~1.5nm, 所述电子传输层厚度为30nm~50nm,所述空穴注入层厚度为5~15nm,所述空穴传输层厚度为50~70nm,以及,所述激子阻隔层厚度为2~10nm。
PCT/CN2017/084848 2017-03-01 2017-05-18 一种螺芴类衍生物及有机电致发光器件 WO2018157477A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/567,378 US20180291263A1 (en) 2017-03-01 2017-05-18 Spirofluorene derivatives and organic electroluminescent devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710117468.2 2017-03-01
CN201710117468.2A CN106905220B (zh) 2017-03-01 2017-03-01 一种螺芴类衍生物及有机电致发光器件

Publications (1)

Publication Number Publication Date
WO2018157477A1 true WO2018157477A1 (zh) 2018-09-07

Family

ID=59185954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084848 WO2018157477A1 (zh) 2017-03-01 2017-05-18 一种螺芴类衍生物及有机电致发光器件

Country Status (3)

Country Link
US (1) US20180291263A1 (zh)
CN (1) CN106905220B (zh)
WO (1) WO2018157477A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110311050A (zh) 2019-07-22 2019-10-08 深圳市华星光电半导体显示技术有限公司 一种有机发光二极管显示装置及其制备方法
CN111423330B (zh) * 2020-03-31 2023-03-07 吉林省元合电子材料有限公司 一种基于并螺芴的芳香胺衍生物及其应用
CN113292575B (zh) * 2021-05-20 2022-07-12 武汉华星光电半导体显示技术有限公司 空穴传输材料及其制备方法、组合物及oled器件
CN113372361B (zh) * 2021-06-30 2023-03-03 武汉天马微电子有限公司 一种有机化合物及其应用
CN113717171B (zh) * 2021-09-09 2023-04-07 武汉华星光电半导体显示技术有限公司 一种有机化合物及其制备方法、发光器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012048819A1 (en) * 2010-10-11 2012-04-19 Solvay (Societe Anonyme) Novel spirobifluorene compounds
WO2015071473A1 (en) * 2013-11-17 2015-05-21 Solvay Sa Multilayer structure with sbf matrix materials in adjacent layers
WO2017016632A1 (en) * 2015-07-29 2017-02-02 Merck Patent Gmbh Materials for organic electroluminescent devices

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2628362B1 (en) * 2010-10-11 2019-12-11 Sumitomo Chemical Co., Ltd. A spirobifluorene compound for light emitting devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012048819A1 (en) * 2010-10-11 2012-04-19 Solvay (Societe Anonyme) Novel spirobifluorene compounds
WO2015071473A1 (en) * 2013-11-17 2015-05-21 Solvay Sa Multilayer structure with sbf matrix materials in adjacent layers
WO2017016632A1 (en) * 2015-07-29 2017-02-02 Merck Patent Gmbh Materials for organic electroluminescent devices

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SÉBASTIEN THIERY, ET AL.: "Spirobifluorene-2,7-dicarbazole-4′-phosphine Oxide as Host for High-Performance Single-Layer Green Phosphorescent OLED Devices", ORGANIC LETTERS, vol. 17, no. 19, 15 September 2015 (2015-09-15), pages 4682 - 4685, XP055537915 *
THIERY, SEBASTIEN ET AL.: "4-Pyridyl-9, 9' -spirobifluorenes as Host Ma- terials for Green and Sky-Blue Phosphorescent OLEDs", THE JOURNAL OF PHYSICAL CHEMISTRY, 4 February 2015 (2015-02-04), pages 5790 - 5805, XP055537917 *
WANG, LEI ET AL.: "Construction of thermally stable 3, 6-disubstituted spiro-fluorene derivatives as host materials for blue phosphorescent organic light-emitting diodes", DYES AND PIGMENTS, vol. 114, 28 November 2014 (2014-11-28), pages 222 - 230, XP055537914 *

Also Published As

Publication number Publication date
CN106905220B (zh) 2019-11-15
US20180291263A1 (en) 2018-10-11
CN106905220A (zh) 2017-06-30

Similar Documents

Publication Publication Date Title
US8173272B2 (en) Diamine derivatives, preparation method thereof and organic electronic device using the same
KR101508424B1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
JP5844384B2 (ja) 新規な化合物およびこれを用いた有機発光素子
KR101565200B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR101117938B1 (ko) 신규한 헤테로고리 유도체 및 이를 이용한 유기 발광 소자
TWI629271B (zh) 具有螺環接結構的化合物、含有其的有機發光裝置、顯示裝置及照明裝置
JP4782132B2 (ja) 新しい有機発光素子材料およびこれを用いた有機発光素子(4)
JP5122482B2 (ja) 新規なアントラセン誘導体、その製造方法およびこれを用いた有機電気素子
JP5432147B2 (ja) 有機金属錯体誘導体およびこれを用いた有機発光素子
WO2018157477A1 (zh) 一种螺芴类衍生物及有机电致发光器件
US8173273B2 (en) Anthracene derivatives, method for preparation thereof, and organic electronic device using the same
TW201714886A (zh) 雜環化合物及含有其的有機發光元件
KR101512544B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
TW201038576A (en) Materials for organic electroluminescent devices
TW201730193A (zh) 具有螺環結構之化合物與包含其之有機發光裝置
KR20200003741A (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
TW200812936A (en) Anthracene derivatives, organic electronic devices using anthracene derivatives, and electronic apparatuses comprising organic electronic device
TW200904782A (en) New diamine derivatives and organic electronic device using the same
TW201725196A (zh) 化合物及含有該化合物的有機電子裝置
KR20130009614A (ko) 새로운 화합물 및 이를 이용한 유기 발광 소자
WO2017100967A1 (zh) 具有电子供体-受体结构的苯并[c]菲类的衍生物、其应用及电致发光器件
WO2018157478A1 (zh) 一种芴并咔唑类衍生物及磷光有机电致发光器件
TW201033191A (en) Novel compound for organic photoelectric device and organic photoelectric device including the same
TWI627175B (zh) 化合物及含有其的有機電子裝置
WO2018166096A1 (zh) 一种有机发光器件及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15567378

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17898571

Country of ref document: EP

Kind code of ref document: A1