WO2018155378A1 - 残留熱ひずみ測定方法、残留熱ひずみ測定装置、及びそのプログラム - Google Patents

残留熱ひずみ測定方法、残留熱ひずみ測定装置、及びそのプログラム Download PDF

Info

Publication number
WO2018155378A1
WO2018155378A1 PCT/JP2018/005734 JP2018005734W WO2018155378A1 WO 2018155378 A1 WO2018155378 A1 WO 2018155378A1 JP 2018005734 W JP2018005734 W JP 2018005734W WO 2018155378 A1 WO2018155378 A1 WO 2018155378A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
temperature
residual
residual thermal
thermal strain
Prior art date
Application number
PCT/JP2018/005734
Other languages
English (en)
French (fr)
Inventor
慶華 王
志遠 李
利章 榎本
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Priority to EP18758311.7A priority Critical patent/EP3587997A4/en
Priority to US16/487,349 priority patent/US11674793B2/en
Priority to KR1020197027602A priority patent/KR102521925B1/ko
Priority to CN201880011643.2A priority patent/CN110325817B/zh
Publication of WO2018155378A1 publication Critical patent/WO2018155378A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/165Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by means of a grating deformed by the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/254Projection of a pattern, viewing through a pattern, e.g. moiré
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0047Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring forces due to residual stresses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/16Investigating or analyzing materials by the use of thermal means by investigating thermal coefficient of expansion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws

Definitions

  • the present invention relates to a residual thermal strain measurement method, a residual thermal strain measurement device, and a program thereof.
  • moire methods include scanning microscope moire method (Microscope scanning moire method), moire interferometry, CCD or CMOS moire method (hereinafter simply referred to as “CCD moire method”), digital It is classified into four methods of overlap moire method (Digital / overlapped moire method).
  • the scanning microscope moire method includes an electronic scanning moire and a laser scanning moire. These moire methods use moire fringe centering technology.
  • phase shift method is introduced and phase distribution of moire fringes is obtained (temporal) phase shift moire method (Temporalorphase-shifting moire method) and (spatial) sampling moire method (Sampling moire method) )
  • the scanning microscope moire method has been reported to be applied to the measurement of residual stress and residual strain in composite materials, and the moire interferometry method has been applied to the measurement of residual stress and residual strain in electronic component packages and composite materials.
  • Patent Document 1 is a method for measuring a thermal expansion coefficient based on a strain of a sample caused by a temperature difference, and a secondary electron generation amount, a reflected electron amount, and a reflection when a particle beam or an energy beam is irradiated on a sample body.
  • moire fringes such as line moire fringes, CCD moire fringes, laser scanning moire fringes, etc.
  • Japanese Patent Laid-Open No. 2004-228688 generates moire fringes using a regular striped pattern, a cosine wave or rectangular wave pattern with a black-and-white ratio of 1: 1, analyzes the phase information of the moire fringes, and analyzes the moire fringes before and after deformation.
  • the conventional method of sampling moire method that can measure minute displacement distribution by calculating the phase difference distribution is not suitable for nano-micro materials and large structures, and has regularity with any repetition of 2 cycles or more.
  • it has a one-dimensional or two-dimensional repetition artificially created on the object surface or pre-existing on the object surface. It has been proposed to use phase information at a higher frequency or a plurality of frequency components of a moire fringe generated using an arbitrary regular pattern.
  • Non-Patent Document 1 relates to a method for measuring strain distribution and stress distribution of a structural material, by forming a fine model lattice on the surface of a sample to be measured by electron beam lithography, and mastering electron beam scanning by a scanning electron microscope. Used as a grid. Electron beam moire fringes are generated by scanning the model lattice with an electron beam, and the strain distribution and stress distribution are obtained by analyzing the moire fringes.
  • Non-Patent Document 2 relates to a method for mechanically releasing residual stress, and in particular, a recent optical residual stress detection method and a recent residual stress release method including a drilling method combined therewith. Introducing.
  • the scanning microscope moire method using the moire fringe centering technique only uses information on the center line of the moire fringes, and the measurement accuracy of deformation is low. Moreover, since it is necessary to manually correct the center line of the moire fringes during measurement, it is difficult to perform batch deformation automatic processing.
  • the (temporal) phase shift moire method can improve the measurement accuracy of deformation, but it requires a phase shift device, takes time to record multiple images, and is not suitable for dynamic analysis. is there.
  • the moire fringes become very dense and cannot be recorded when the deformation becomes large. For this reason, an area that cannot be analyzed is generated when the deformation becomes large. As an example, there is a corner of a mold in a flip chip mounting component. In such a region, the underfill is rapidly deformed and cannot be measured by the moire interferometry.
  • the present invention has been made in view of the above and other problems, and one object thereof is to measure a residual thermal strain distribution including an x-direction strain, a y-direction strain, a shear strain, and a main strain.
  • An object of the present invention is to provide a residual thermal strain measurement method, a residual thermal strain measurement device, and a program that can accurately measure a periodic pattern obtained in a single shot even when the sample is greatly deformed.
  • One aspect of the present invention for solving the above and other problems is a residual thermal strain distribution measuring method for measuring a residual thermal strain distribution as a residual thermal deformation generated when a thermal load is applied to a sample.
  • An image of a periodic pattern existing on the surface of the sample is recorded by the image recording means at a first temperature and a sample generation temperature that is a temperature when the sample is generated, and each of the recorded periodic patterns is recorded.
  • Another aspect of the present invention includes a deformation measuring device and a program for executing the above deformation measuring method.
  • the residual thermal strain distribution including the x-direction strain, the y-direction strain, the shear strain, and the main strain can be accurately obtained from the periodic pattern obtained in a single shot even when the sample to be measured is greatly deformed. Can be measured.
  • FIG. 1 is a diagram showing the principle of measuring residual strain using a periodic pattern (grating).
  • FIG. 2 is a diagram showing the geometric relationship of the two-dimensional lattice before and after deformation.
  • FIG. 3 is a diagram showing the principle of the sampling moire method for calculating the phase from the grating.
  • FIG. 4 is a diagram illustrating a flowchart of the residual strain measuring method according to the present invention.
  • FIG. 5 is a diagram illustrating a process for measuring one-dimensional residual strain from a one-dimensional lattice.
  • FIG. 6 is a diagram illustrating a configuration example of a residual strain measuring apparatus according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating an example of residual strain measurement processing performed by the measurement apparatus of FIG. FIG.
  • FIG. 8 is a diagram showing the measurement result of the two-dimensional residual strain by the method of the present invention in comparison with the theoretical value by the temperature state number.
  • FIG. 9 is a diagram showing the relative error and standard deviation of the measured two-dimensional residual strain compared with the theoretical value by the temperature state number.
  • FIG. 11 is a diagram showing the relationship between the absolute error, relative error, and standard deviation of the two-dimensional residual strain measured by the method of the
  • FIG. 12 is a diagram showing dimensions of a flip chip sample, a clamping jig used for nanoimprint lithography, and a thermal container under a scanning laser microscope.
  • FIG. 13 is a diagram showing the surface of the flip chip, its measurement target region, and a grating formed at a pitch of 3 ⁇ m.
  • FIG. 14 is a diagram showing a lattice on a sample at 25 ° C., 75 ° C., 125 ° C., and 150 ° C., and moire fringes in the x and y directions.
  • FIG. 15 is a diagram showing the phase of moire fringes in the x and y directions on the sample at 25 ° C., 75 ° C., 125 ° C., and 150 ° C.
  • FIG. 16 is a diagram showing the x-direction residual strain distribution, the y-direction residual strain distribution, and the residual shear strain distribution of the sample at 125 ° C., 75 ° C., and 25 ° C.
  • FIG. 17 is a diagram showing the maximum and minimum residual principal strain distributions of the sample at 125 ° C., 75 ° C., and 25 ° C.
  • FIG. 18 is a diagram showing the maximum / minimum residual principal stress distribution of the sample at 125 ° C., 75 ° C., and 25 ° C.
  • FIG. 16 is a diagram showing the x-direction residual strain distribution, the y-direction residual strain distribution, and the residual shear strain distribution of the sample at 125 ° C., 75 ° C., and 25 ° C.
  • FIG. 17 is a diagram showing the maximum and minimum residual principal strain distributions of the sample at 125 ° C., 75 ° C., and 25 ° C.
  • FIG. 18 is a diagram showing
  • This application proposes a residual thermal strain measurement moire method that can accurately measure in-plane residual thermal deformation by combining a sampling moire (spatial phase shift) method and its inverse problem analysis.
  • This moire method is related to fields such as packaging of electronic components, optical measurement, and experimental mechanics.
  • the residual thermal strain measurement moire method is useful for measuring the distribution of residual thermal strain and residual thermal stress of various materials and structures in various industrial fields. Its industrial fields range from aerospace, automobiles, electronic component packaging, biopharmaceuticals, and material manufacturing. Examples of applications include metals, polymers, ceramics, semiconductors, composite materials, porous material hybrid structures, and thin films. Widely applicable from nanoscale to metric scale. Typical applications in the industrial field are as follows.
  • a two-dimensional periodic pattern (hereinafter, the periodic pattern is abbreviated as “grating”) can be considered as a combination of two one-dimensional gratings, an X grating and a Y grating.
  • Tr the temperature Tr
  • the pitch of the lattice X in the x direction (horizontal right direction) is set to p x
  • y the pitch of the grating Y direction (vertically upward) and p y.
  • the luminance of the two-dimensional grating at room temperature can be represented by the formula (1).
  • a x and A y are the modulated amplitudes of the lattice X and the lattice Y, respectively, and B includes the luminance information of the background and higher order components.
  • the two-dimensional lattice can be separated into a lattice X and a lattice Y.
  • the luminances of the grid X and the grid Y can be expressed by equations (2) and (3), respectively.
  • B x is luminance information of the background and the high-order components of the lattice X
  • B y is the luminance information of the background and the high-order components of the lattice Y
  • phi x, phi y are each grating X and lattice Y Represents the phase.
  • FIG. 2 schematically shows how the lattices X and Y change at this time.
  • the pitch in the x direction of the lattice X ′ is p ′ x
  • the pitch in the y direction of the lattice Y ′ is p ′ y
  • the luminance at the temperature Tt of the two-dimensional lattice, the lattice X ′, and the lattice Y ′ is ) To (3).
  • the spatial phase shift moire fringes in the x direction can be generated from downsampling and luminance interpolation with the thinning-out number being Nx.
  • the generation process is schematically shown in FIG.
  • the brightness of the phase shift moire fringe of the Nx step at the temperature Tr can be expressed by Expression (4).
  • spatial phase shift moire fringes in the y direction can be generated from downsampling and luminance interpolation, with a thinning number Ny.
  • the luminance of the Ny step phase shift moire fringe at the temperature Tr can be expressed by the equation (5).
  • the phases ⁇ mx and ⁇ my of the moire fringes in the equations (4) and (5) can be calculated from the phase shift method using the discrete Fourier transform algorithm as in the equation (6).
  • the phase of moire fringes at temperature Tt can also be calculated.
  • the measurement principle regarding thermal displacement and thermal strain will be described. From Expressions (2) and (4), the phase difference of the moire fringes in the x direction is equal to the phase difference of the grating X and can be determined from Expression (7).
  • the phase difference of the moire fringes in the y direction is equal to the phase difference of the grating Y and can be determined from equation (8).
  • Equations (9) and (10) show the relationship between the phase difference of the moire fringes and the displacement of the sample. Therefore, the displacement in the x direction and y direction of the sample can be measured from the equation (11).
  • thermal displacement and thermal strain at an arbitrary temperature Tt with respect to room temperature Tr can be obtained.
  • the internal stress and strain of the sample are zero at the sample generation temperature Tf, the internal strain at other temperatures is referred to as residual thermal strain.
  • the thermal strain can be expressed as in Expression (13) from the relationship between the lattice pitches.
  • the vertical residual strain at the temperature Tt with respect to the temperature Tf can also be expressed by a change in pitch. Therefore, the residual strain in the x direction at the temperature Tt can be obtained from the thermal strain in the x direction at the temperatures Tt and Tf using Equation (14).
  • the residual thermal strain in the y direction at the temperature Tt can be obtained from the thermal strain in the y direction at the temperatures Tt and Tf using Equation (15). Further, the residual thermal strain at room temperature can be obtained from only two grid images from Equation (16).
  • Thermal shear strains at temperatures Tt and Tf with respect to room temperature Tr can be expressed by equations (17) and (18), respectively.
  • the residual shear strain at the temperature Tt with respect to the temperature Tf can also be obtained from the angle change. Accordingly, the residual shear strain at the temperature Tt can be obtained from the thermal shear strain at the temperatures Tt and Tf using the equation (19).
  • the x-direction residual thermal strain, the y-direction residual thermal strain, and the residual shear thermal strain at an arbitrary temperature can be obtained using equations (14), (15), and (19). It should be noted that the thermal strain at temperatures Tt and Tf, that is, ⁇ xx (Tt) , ⁇ yy (Tt) , ⁇ xy (Tt) , ⁇ xx (Tf) , ⁇ yy (Tf) , and ⁇ xy (Tf) It can be calculated from (12).
  • thermal principal strain and residual principal strain After measuring thermal strain and residual principal strain, thermal principal strain and residual principal strain can be obtained by analyzing the strain state.
  • the residual main thermal strain can be calculated by the following formula:
  • the residual principal stress can be calculated as follows according to Hooke's law.
  • E and ⁇ are Young's modulus and Poisson's ratio of the sample to be measured, respectively.
  • FIG. 4 shows an example of a flowchart of the two-dimensional phase analysis moire method relating to residual thermal deformation measurement.
  • a lattice is first formed on the sample at room temperature (S502).
  • image recording means such as a microscope or an image sensor (S503). This image recording is performed at different temperatures (including the sample generation temperature, which is room temperature and the temperature at which the residual strain during sample generation is zero).
  • the recorded grating image is down-sampled at intervals approximating the pitch of the sample grating.
  • the pitch may be an integral multiple or a fraction of an integer of the sample lattice.
  • luminance interpolation is performed on the recorded lattice image to generate moiré fringes (x direction, y direction) of the sample (S504).
  • the phase (x direction, y direction) of moire fringes at different temperatures is calculated by spatial phase shift using a Fourier transform algorithm (S505).
  • a residual strain distribution can be obtained based on phase analysis and inverse problem analysis (S507).
  • the two-dimensional phase analysis moire method is completed by the series of processes described above (S508). It is possible to further calculate the corresponding residual thermal stress distribution from the calculated residual thermal strain distribution by applying Hooke's law in the plane stress problem.
  • FIG. 5 illustrates in detail a procedure for obtaining a residual strain in the y direction from a one-dimensional lattice.
  • FIG. 5 schematically shows the processing procedure described with reference to FIG. 4.
  • Each process of calculation, (d) calculation of unwrapping phase, (e) calculation of phase difference, and (f) calculation of residual strain in the y direction of the sample at room temperature with respect to the sample formation temperature is schematically shown.
  • the residual strain in the x direction can be calculated by the same calculation procedure. If a two-dimensional dot or mesh lattice is used, a two-dimensional residual thermal strain can be measured.
  • FIG. 6 shows a configuration example of the residual thermal strain measuring apparatus 1.
  • the residual thermal strain measuring device 1 includes a lattice image recording device 10 and a computer 20, and when a heat load is applied to a sample fixed to a holder in a heat vessel 30 by a heater, It has a function of measuring the deformation degree of the sample.
  • the lattice image recording apparatus 10 includes a microscope, an image sensor, and the like, and has a function of temporarily recording an optically acquired lattice image as digital data in a memory and supplying the digital image to the computer 20.
  • the computer 20 is an information processing apparatus that includes an appropriate processor 21 such as an MPU or CPU, and a storage device 22 such as a ROM, RAM, or NVRAM, and includes an input device 23 such as a keyboard and an output device 24. ing.
  • the output device 24 is an appropriate type of monitor / display, but may be another output device such as a printer.
  • the computer 20 is provided with a communication module that can be connected to an external communication network, and can be configured to be able to communicate with other information processing apparatuses.
  • the storage device 22 of the computer 20 stores functional units such as a moire fringe generator 221, a phase processor 222, and a residual deformation calculator 223.
  • the moiré fringe generator 221, the phase processor 222, and the residual deformation calculator 223 can each be configured as a computer program, and can be configured to be appropriately read from the storage device 22 by the processor 21 and executed.
  • the trigger for executing the program can be given by an instruction from the input device 23.
  • a thermal load is applied to the various samples on which the lattice is created, which is to be measured, and deformed.
  • a thermal load is applied to the various samples on which the lattice is created, which is to be measured, and deformed.
  • the lattice image recording apparatus 10 records the degree of deformation of the sample as an image of a lattice formed on the sample and supplies the image to the computer 20.
  • the image data is taken into the computer 20 through an appropriate storage device such as a USB memory or an appropriate communication interface.
  • FIG. 7 shows a processing flow example of the residual strain measurement processing of this sample.
  • lattice image data is fetched from the lattice image recording device 10, and analysis parameters for analysis processing are input from the input device 23 (S902).
  • the analysis parameters are parameters necessary for the above-described two-dimensional phase analysis processing of the present invention, such as the lattice pitch p shown in FIG. 2, the Young's modulus as the material of the sample to be measured, the Poisson's ratio, and the like. .
  • the moire fringe generation unit 221 searches for lattice images of the same size from the same region of the sample surface to be measured (S903).
  • the moire fringe generation unit 221 generates a phase shift moire fringe after filtering the lattice image (S904).
  • the filtering process is a process of separating the lattice into the x direction and the y direction, and is omitted, for example, in the case of a one-dimensional moire fringe.
  • the phase processing unit 222 calculates the wrap phase of the generated moire fringes and obtains the phase difference from the unwrap or wrap phase at different temperatures of the sample (S905, S906).
  • the residual deformation calculation unit 223 calculates a residual thermal strain distribution using the acquired phase difference (S907), outputs it to the output device 24, and ends the processing (S908, S909).
  • a corresponding processing step is provided after the processing of S907.
  • Example 1 Verification of Simulation Regarding Two-dimensional Residual Strain Measurement of the Present Invention
  • the grid pitch in the x and y directions is 10 pixels each, and the size of the grid image is 370 ⁇ 570 pixels.
  • a part of the two-dimensional lattice at room temperature is shown in FIG.
  • the state deformed by applying x-direction strain, y-direction strain, and shear strain was defined as a state in which residual thermal strain was zero (sample generation temperature).
  • the strain of the lattice at room temperature relative to the lattice after deformation was defined as residual thermal strain.
  • Residual thermal strain was analyzed when the temperature conditions (simple proportional increase) under 11 different conditions were changed.
  • “residual thermal strain” is also simply referred to as “residual strain”.
  • FIG. 9 (a) plots the relative error of the residual strain measurement value with respect to the temperature state number.
  • FIG. 9B shows the standard deviation of the residual strain measurement value with respect to the temperature state number. The relative error was within 1.5% and the standard deviation was less than 0.0012. Thus, it can be seen that the two-dimensional residual strain measurement according to the present invention can achieve high accuracy.
  • Example 2 Simulation Verification Using a Grating with Random Noise Regarding Measurement of Two-dimensional Residual Strain of the Present Invention
  • the two-dimensional lattice at the temperature T1 has a lattice pitch of 10 pixels each in the x and y directions, and the size of the lattice image is 370 ⁇ 570 pixels. Random noise with an amplitude of 2% of the grid amplitude was added to the grid.
  • the lattice at temperature T1 was deformed into a lattice at temperature T2 by applying strain in the x direction, y direction, and shear strain.
  • the lattice at temperature T2 could be converted to a lattice at temperature T1 by applying residual strain and residual shear strain in the x and y directions.
  • FIG. 11 shows the absolute error, relative error, and standard deviation of the residual strain measurement value with respect to the theoretical strain value.
  • the absolute error was in the range of 0 to 0.00017
  • the relative error was in the range of -1.5% to 0.7%
  • the standard deviation was less than 0.0012.
  • the method of the present invention shows that the residual strain can be measured with high accuracy even when there is random noise in the lattice.
  • Example 3 Two-dimensional residual thermal strain measurement for flip chip underfill using micro strain concentration visualization of the present invention
  • FC flip chip
  • FIG. 12 shows the shape and dimensions of the sample to be measured in this example, and the heat vessel used for the measurement.
  • An orthogonal lattice with a lattice spacing of 3 ⁇ m was formed in the range of 1.8 ⁇ 15 mm 2 on the surface of the FC by UV nanoimprint lithography at 25 ° C.
  • the heating test was performed under a scanning laser microscope.
  • FIG. 13 shows the surface of the FC before and after the creation of the grating and the created grating with a grating spacing of 3 ⁇ m.
  • FIG. 14 shows a lattice image at each temperature and 8-pixel downsampling moire fringes in the x and y directions.
  • FIG. 15 shows the corresponding phase distribution of these x-direction and y-direction moire fringes.
  • the x- and y-direction strain distribution and shear strain distribution of the underfill can be obtained. Since the theoretical strain value of FC at 150 ° C. is 0, the residual strain of the underfill at other temperatures can be measured using the method of the present invention.
  • FIG. 16 shows the measurement results of the x direction, y direction residual strain distribution, and residual shear strain distribution at 125, 75, and 25 ° C.
  • the absolute value of the residual strain in the x direction was maximum at the right side of the mold, particularly at the corner of the mold.
  • the absolute values of the y-direction residual strain and residual shear strain were maximum at the bottom of the mold, particularly at the corner of the mold.
  • FIG. 17 shows the maximum and minimum residual principal stresses
  • FIG. 18 shows the maximum and minimum residual principal stresses.
  • the Young's modulus of the underfill was 35, 740, and 7850 MPa at 125, 75, and 25 ° C, respectively.
  • the Poisson's ratio was 0.45, 0.45, and 0.30, respectively.
  • the moire method of the present embodiment is suitable for dynamic deformation measurement, and can display the measurement result in real time.
  • the residual thermal strain distribution measuring method, apparatus, and program of the present invention can be applied to fields such as aerospace, automobiles, electronic component packaging, medicine, and material production.
  • the method of the present invention is useful for defect analysis, residual stress measurement, nanometer to meter level material strength improvement, optimal interface design, production quality control, structural health monitoring, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

試料に熱負荷を印加したときに生じる残留熱変形としての残留熱ひずみ分布を測定するための残留熱ひずみ分布測定方法であって、試料の表面に存在する周期的パターンの画像を、第1の温度と当該試料を生成したときの温度である試料生成温度とにおいて画像記録手段によって記録し、記録した各前記周期的パターンの画像に基づいてモアレ縞を生成し、前記第1の温度における前記試料に関する前記モアレ縞の位相を計算し、前記試料生成温度における前記試料に関する前記モアレ縞の位相を計算し、前記第1の温度に対する前記試料生成温度での前記モアレ縞の位相差を取得し、取得した前記位相差に基づいて前記試料生成温度に対する前記第1の温度における前記試料の残留熱ひずみを算出する。

Description

残留熱ひずみ測定方法、残留熱ひずみ測定装置、及びそのプログラム
 本発明は、残留熱ひずみ測定方法、残留熱ひずみ測定装置、及びそのプログラムに関する。
===参照による取り込み===
 本出願は、2017年2月23日に出願された日本特許出願第2017-32646号の優先権を主張し、その内容を参照することにより、本出願に取り込む。
 変形の測定は、材料及び構造における残留応力、機械的性質、不安定挙動、クラックの発生と伝播を評価するために欠かせない。現在、全視野、非接触、かつ非破壊の主な変形測定技法としては、モアレ法、デジタル画像相関法(DIC)、幾何学位相解析(GPA)、フーリエ変換法(FT)、電子スペックルパターン干渉法(ESPI)などがある。これらの技法の中で、DIC法はシンプルであるが、変形キャリアがスペックルであるためにノイズに弱い。GPA及びFTは複数の周波数が混在するような格子画像では精度よく解析できないため、複雑な変形測定には向かない。またESPIは振動の影響を受けやすい欠点がある。
 一般的に用いられているモアレ法は、走査型顕微鏡モアレ法(Microscope scanning moire method)、モアレ干渉法(Moire interferometry)、CCD又はCMOSモアレ法(以下単に「CCDモアレ法」と称する)、デジタル・オーバーラップモアレ法(Digital/overlapped moire method)の4つの方法に分類される。走査型顕微鏡モアレ法には電子走査モアレ(Electron scanning moire)とレーザー走査モアレ(Laser scanning moire)がある。これらのモアレ法は、モアレ縞センタリング技術を利用する。
 さらに解析精度を高めるために、位相シフト法を導入し、モアレ縞の位相分布が得られる(時間的)位相シフトモアレ法(Temporal phase-shifting moire method)と(空間的)サンプリングモアレ法(Sampling moire method)がある。
 また一般的にモアレ縞を生成するには、格子ピッチに近い間隔で走査またはダウンサンプリング処理する以外に、格子ピッチの整数倍または分数倍の間隔で走査またはダウンサンプリング処理する乗算型又は分数型モアレ法(multiplication or fractional moire method)がある。
 走査型顕微鏡モアレ法は、複合材料の残留応力・残留ひずみ測定への応用が報告され、またモアレ干渉法は、電子部品パッケージ及び複合材料の残留応力・残留ひずみ測定に適用されてきた。
 具体的には、以下に示す特許文献1,2、及び非特許文献1,2に関連する技術が提案されている。特許文献1は、温度差により生じる試料のひずみに基づく熱膨張係数測定方法であって、試料本体に対して粒子線やエネルギー線が照射された時の二次電子発生量や反射電子量や反射光が、前記試料本体とは異なるグリッドを前記試料表面に形成してある試料に対して粒子線やエネルギー線を照射し、二次電子発生量や反射電子量や反射光の違いにより観察できる電子線モアレ縞,CCDモアレ縞,レーザー走査モアレ縞等の各種モアレ縞を前記試料の加熱あるいは冷却中とその前に観察した両モアレ縞を相互に比較して、試料に生じたひずみを計測することを提案している。
 特許文献2は、規則性のある縞模様、白黒比が1:1の余弦波または矩形波模様を利用してモアレ縞を発生させ、そのモアレ縞の位相情報を解析して変形前後のモアレ縞の位相差分布を算出することで微小変位分布を計測できるサンプリングモアレ法の従前の手法は、ナノマイクロ材料や大型構造物には不向きであり、また、2周期以上の任意の繰り返しのある規則性模様に適用した場合、従来の解析方法では大きな誤差が発生するという問題点に鑑み、物体表面に人工的に作製された、または物体表面に予め存在している1次元または2次元の繰り返しを有する任意の規則性模様を利用して発生させたモアレ縞の高次周波数または複数の周波数成分における位相情報を利用することを提案している。
 また、非特許文献1は、構造材料のひずみ分布、応力分布の測定方法に関し、電子線リソグラフィーによって測定対象である試料表面に微細なモデル格子を形成し、走査型電子顕微鏡による電子線走査をマスター格子として用いている。モデル格子に対して電子線走査を行うことで電子線モアレ縞が生成されるので、このモアレ縞を解析することによりひずみ分布、応力分布を求めている。
 また、非特許文献2は、残留応力を機械的に解放するための方法に関し、特に最近の光学的残留応力検出手法と、それと組み合わされる、穴あけ法をはじめとする近年の残留応力解放の手法について紹介している。
特開2009-162562号公報 国際公開第2015/008404号
S. Kishimoto, Y. Xing, Y. Tanaka, and Y. Kagawa, Measurement of Strain and Stress Distributions in Structural Materials by Electron MoireMethod, Journal of Solid Mechanics and Materials Engineering, Vol. 2, No. 6, pp. 812-821 (2008) X. Huang, Z. Liu, and H. Xie, Recent Progress in Residual Stress Measurement Techniques, Acta Mechanica Solida Sinica, Vol. 26, No.6, pp. 570-583 (2013)
 上記した先行技術文献には、先に列挙した種々のモアレ法が採用されている。しかしながら、これらのモアレ法には、例えば以下のような問題があると考えられる。
 まず、上記のモアレ法では、残留ひずみの近似計算をしているのみであり、x方向またはy方向残留ひずみ、残留せん断ひずみ、及び残留主ひずみについて、同時に正確な分布を測定することはできない。
 モアレ縞センタリング技術を利用する走査型顕微鏡モアレ法は、モアレ縞の中心線の情報を用いるだけであり、変形の測定精度は低い。また、測定中、モアレ縞の中心線を手作業で修正する必要が有るため、変形測定を一括自動処理することは困難である。
 (時間的)位相シフトモアレ法は、変形の測定精度を向上させることができるが、位相シフト装置が必要であり、複数枚の画像を記録するために時間を要し、ダイナミックな解析には不向きである。
 モアレ干渉法では変形感度が非常に高いため、変形が大きくなるとモアレ縞が非常に密になり記録することができない。そのため、変形が大きくなると解析ができない領域が生じる。一例として、フリップチップ実装部品における金型隅部があり、そのような領域ではアンダーフィルが急激に変形し、モアレ干渉法では測定することができない。
 本発明は、上記の及び他の課題に鑑みてなされたもので、その一つの目的は、x方向ひずみ、y方向ひずみ、せん断ひずみ、及び主ひずみを含む残留熱ひずみ分布を、測定対象である試料が大きく変形した場合についても、単発で取得した周期的パターンから正確に測定することができる、残留熱ひずみ測定方法、残留熱ひずみ測定装置、及びプログラムを提供することにある。
 上記の、及び他の課題を解決するための本発明の一つの態様は、試料に熱負荷を印加したときに生じる残留熱変形としての残留熱ひずみ分布を測定するための残留熱ひずみ分布測定方法であって、試料の表面に存在する周期的パターンの画像を、第1の温度と当該試料を生成したときの温度である試料生成温度とにおいて画像記録手段によって記録し、記録した各前記周期的パターンの画像に基づいてモアレ縞を生成し、前記第1の温度における前記試料に関する前記モアレ縞の位相を計算し、前記試料生成温度における前記試料に関する前記モアレ縞の位相を計算し、前記第1の温度に対する前記試料生成温度での前記モアレ縞の位相差を取得し、取得した前記位相差に基づいて前記試料生成温度に対する前記第1の温度における前記試料の残留熱ひずみを算出するものである。また、本発明の他の態様には、前記の変形測定方法を実施するための変形測定装置とそのプログラムが含まれる。
 本発明によれば、x方向ひずみ、y方向ひずみ、せん断ひずみ、及び主ひずみを含む残留熱ひずみ分布を、測定対象である試料が大きく変形した場合についても、単発で取得した周期的パターンから正確に測定することができる。
図1は、周期的パターン(格子)を用いて残留ひずみを測定する原理を示す図である。 図2は、変形前後の2次元格子の幾何学的関係を示す図である。 図3は、格子から位相を計算するためのサンプリングモアレ法の原理を示す図である。 図4は、本願発明に係る残留ひずみ測定方法のフローチャートを例示する図である。 図5は、1次元格子から1次元残留ひずみを測定するプロセスを示す図である。 図6は、本発明の一実施形態による残留ひずみ測定装置の構成例を示す図である。 図7は、図6の測定装置による残留ひずみの測定処理のフローチャート例を示す図である。 図8は、本願発明の方法による2次元残留ひずみの測定結果を、温度状態番号によって理論値と比較して示す図である。 図9は、測定した2次元残留ひずみの相対誤差と標準偏差を、温度状態番号によって理論値と比較して示す図である。 図10は、格子にσ=2%のランダムノイズが存在する場合に、ひずみ、及び残留ひずみを適用して格子を変換する様子を示す図である。 図11は、σ=2%の場合に本願発明の方法により測定した2次元残留ひずみの絶対誤差、相対誤差、及び標準偏差と、理論残留ひずみとの関係を示す図である。 図12は、フリップチップの試料の寸法、ナノインプリントリソグラフィーに用いるクランプ治具、及び走査型レーザー顕微鏡下での熱容器を示す図である。 図13は、フリップチップの表面、その測定対象領域、及び3μmピッチで形成された格子を示す図である。 図14は、25℃、75℃、125℃、及び150℃における試料上の格子と、x方向及びy方向のモアレ縞を示す図である。 図15は、25℃、75℃、125℃、及び150℃における試料上のx方向及びy方向のモアレ縞の位相を示す図である。 図16は、125℃、75℃、25℃における試料のx方向残留ひずみ分布、y方向残留ひずみ分布、及び残留せん断ひずみ分布を示す図である。 図17は、125℃、75℃、25℃における試料の最大・最小残留主ひずみ分布を示す図である。 図18は、125℃、75℃、25℃における試料の最大・最小残留主応力分布を示す図である。
 本願では、サンプリングモアレ(空間位相シフト)法、及びその逆問題解析を組み合わせることによって、面内残留熱変形を正確に測定できる残留熱ひずみ測定モアレ法を提案する。このモアレ法は、電子部品のパッケージング、光学測定、実験力学といった分野に関係している。
 残留熱ひずみ測定モアレ法は、種々の産業分野における様々な材料、構造の残留熱ひずみ、及び残留熱応力の分布を測定する上で有用である。その産業分野は、航空宇宙、自動車、電子部品パッケージング、生物医薬、材料製造等の多岐にわたる。適用対象としては、金属、ポリマー、セラミック、半導体、複合材料、多孔質材料ハイブリッド構造、薄膜などが挙げられる。ナノスケールからメートルスケールまで幅広く応用できる。
 産業分野における典型的な応用例として次のようなものがある。
・残留熱応力集中、転位の発生、すべり形成の可視化
・クラック発生位置、クラック成長経路、及び層間剥離位置の予測
・座屈、不安定性、及び欠陥発生メカニズム解析のための内部残留熱応力の評価
・材料の強化に関する指針を与えるための、残留熱変形レベルの評価
・境界面の最適設計のための残留熱変形分布特性の評価
・生産品質管理のための残留ひずみ状態の監視
・インフラストラクチャ、マイクロエレメカシステムの構造的な健全性のモニタリング
==本発明の基本原理==
 まず、本発明の実施形態の前提となっている測定基本原理について必要な数式を用いて説明する。
位相の測定原理
 2次元周期的パターン(以下、前記の周期的パターンを「格子」と略称する。)は、2つの1次元格子、X格子とY格子との組み合わせと考えることができる。温度Trにおいて試料格子を作成する(以降は、温度Trを単に「室温」”と呼ぶが、室温でなくとも差し支えない)とき、x方向(水平右方向)の格子Xのピッチをpx、y方向(垂直上方向)の格子Yのピッチをpyとする。このとき、室温での2次元格子の輝度は、式(1)で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 なお、Ax、Ayは、それぞれ格子X、格子Yの変調された振幅であり、Bは背景及び高次成分の輝度情報を含む。
 ローパスフィルタ、又はフーリエ変換を用いると、前記2次元格子は、格子Xと格子Yとに分離することができる。格子X及び格子Yの輝度は、それぞれ式(2),(3)によって表すことができる。ここで、Bxは、格子Xの背景及び高次成分の輝度情報、Byは、格子Yの背景及び高次成分の輝度情報であり、φx、φyは、それぞれ格子X及び格子Yの位相を表す。
Figure JPOXMLDOC01-appb-M000002
 試料の温度が温度Ttに変化した場合、格子X及び格子Yは、格子X'、Y'に変化する。このときの格子X,Yの変化の様子を、図2に模式的に示している。格子X'のx方向のピッチをp'x、格子Y'のy方向のピッチをp'yとすると、2次元格子、格子X'、及び格子Y'の温度Ttにおける輝度は、式(1)~(3)と同様に表すことができる。
 格子Xと格子X'について、x方向の空間位相シフトモアレ縞を、間引き数をNxとして、ダウンサンプリング及び輝度補間から生成することができる。その生成過程を、図3に模式的に示している。温度TrにおけるNxステップの位相シフトモアレ縞の輝度は、式(4)で表すことができる。
Figure JPOXMLDOC01-appb-M000003
 なお、φmxは、x方向の格子Xから生成された、kx=0のときのモアレ縞の位相を示している。
 格子Yと格子Y'について、y方向の空間位相シフトモアレ縞を、間引き数をNyとして、ダウンサンプリング及び輝度補間から生成することができる。温度TrにおけるNyステップの位相シフトモアレ縞の輝度は、式(5)で表すことができる。
Figure JPOXMLDOC01-appb-M000004
 なお、φmyは、y方向の格子Yから生成された、ky=0のときのモアレ縞の位相を示している。
 式(4),(5)のモアレ縞の位相 φmx、 φmyは、離散フーリエ変換アルゴリズムを用いて、位相シフト法から式(6)のように計算することができる。
Figure JPOXMLDOC01-appb-M000005
同様に、温度Ttにおけるモアレ縞の位相も計算することができる。
 次に、熱変位及び熱ひずみに関する測定原理について説明する。
 式(2),(4)から、x方向のモアレ縞の位相差は、格子Xの位相差と等しく、式(7)から決定することができる。
Figure JPOXMLDOC01-appb-M000006
 式(3)及び(5)から、y方向のモアレ縞の位相差は、格子Yの位相差と等しく、式(8)から決定することができる。
Figure JPOXMLDOC01-appb-M000007
 いま、x方向、y方向の試料の変位をそれぞれux、uyとすると、温度変化に起因して生じる格子X及び格子Yの位相差は、式(9),(10)により決定することができる。
Figure JPOXMLDOC01-appb-M000008
式(9),(10)に、モアレ縞の位相差と試料の変位との間の関係を示している。
 
 したがって、試料のx方向、y方向の変位は、式(11)から測定することができる。
Figure JPOXMLDOC01-appb-M000009
 異なる方向のひずみは変位の偏微分であるから、x方向ひずみ、y方向ひずみ、及びせん断ひずみは、下記の式(12)で表すことができる。
Figure JPOXMLDOC01-appb-M000010
 式(11)及び(12)から、室温Trに対する任意の温度Ttでの熱変位及び熱ひずみを求めることができる。試料生成温度Tfにおいて、試料の内部応力及びひずみがゼロであるとした場合、それ以外の温度における内部ひずみを残留熱ひずみと呼ぶものとする。
 残留熱ひずみの測定原理
 x方向のひずみは、ピッチの変化、すなわちεx=(p'x-px)/pxから求めることができるので、室温Trに対する温度Tt、及びTfにおけるx方向の熱ひずみは、格子ピッチ間の関係から式(13)のように表すことができる。
Figure JPOXMLDOC01-appb-M000011
 式(13)に基づいて、温度Tfに対する温度Ttにおける垂直残留ひずみもまた、ピッチの変化によって表現することができる。したがって、温度Ttにおけるx方向の残留ひずみは、温度Tt及びTfでのx方向の熱ひずみから、式(14)を用いて求めることができる。
Figure JPOXMLDOC01-appb-M000012
 同様に、温度Ttにおけるy方向の残留熱ひずみは、温度Tt及びTfでのy方向の熱ひずみから、式(15)を用いて求めることができる。また室温における残留熱ひずみは、式(16)より2枚の格子画像のみで求めることができる。
Figure JPOXMLDOC01-appb-M000013
 せん断ひずみは試料の格子の交角が変化することを意味する。すなわち、α'が変形後の角度を表すとした場合、γxy=-(α'-α)となり、交角が元の直角から鋭角に変化した場合、
γxyは正である。室温Trに対する温度Tt、Tfにおける熱せん断ひずみは、それぞれ式(17),(18)で表すことができる。
Figure JPOXMLDOC01-appb-M000014
 式(17),式(18)に基づいて、温度Tfに対する温度Ttでの残留せん断ひずみもまた、角度変化から求めることができる。したがって、温度Ttでの残留せん断ひずみは、温度Tt、Tfでの熱せん断ひずみから、式(19)を用いて求めることができる。
Figure JPOXMLDOC01-appb-M000015
 以上から、任意の温度におけるx方向残留熱ひずみ、y方向残留熱ひずみ、及び残留せん断熱ひずみは、式(14),(15),(19)を用いて求めることができる。なお、温度Tt、Tfにおける熱ひずみ、すなわちεxx(Tt), εyy(Tt), γxy(Tt), εxx(Tf), εyy(Tf) 、及び γxy(Tf)は、式(12)から計算することができる。
残留主ひずみ、残留主応力の測定原理
 熱ひずみと残留熱ひずみを測定した後、熱主ひずみ及び残留主ひずみを、ひずみ状態を解析することによって求めることができる。平面応力問題について、残留主熱ひずみは、以下の数式により計算することができる。
Figure JPOXMLDOC01-appb-M000016
 また、平面応力問題について、残留主応力は、フックの法則により以下のように計算することができる。なお、E、νは、それぞれ測定対象の試料のヤング率、及びポワソン比である。
Figure JPOXMLDOC01-appb-M000017
残留熱変形測定の手順
 残留熱変形の測定に関する2次元位相解析モアレ法のフローチャートの一例を、図4に示している。2次元位相解析モアレ法を実行する際、処理の開始後(S501)、試料の表面上に周期的パターンが存在しない場合、まずその試料の上に室温において格子を作成する(S502)。次いで、作成した格子の画像を、顕微鏡、画像センサ等の画像記録手段によって記録する(S503)。この画像記録は、異なる温度(室温と試料生成時の残留ひずみ量が0の状態の温度である試料生成温度を含む)において実施される。
次いで、記録した格子の画像について、試料格子のピッチに近似する間隔でダウンサンプリング処理する。なお前記ピッチは試料格子の整数倍又は整数分の一であってもよい。さらに、記録した格子画像について、輝度の補間を行い、試料のモアレ縞(x方向、y方向)を生成する(S504)。その後、フーリエ変換アルゴリズムを用いた空間位相シフトによって、異なる温度でのモアレ縞の位相(x方向、y方向)を計算する(S505)。
 試料の変形前後のモアレ縞の位相差を求めた後(S506)、位相解析および逆問題解析(inverse problem)に基づいて、残留ひずみ分布を得ることができる(S507)。以上の一連の処理により2次元位相解析モアレ法は終了する(S508)。なお、算出した残留熱ひずみ分布から、平面応力問題においてフックの法則を適用して、対応する残留熱応力分布をさらに算出することも可能である。
 図5に、1次元格子からy方向の残留ひずみを求める手順を詳細に例示している。図5は、図4により説明した処理手順を模式的に示したものであり、(a)室温と試料生成温度において1次元格子の作成、(b)モアレ縞の生成、(c)ラップ位相の計算、(d)アンラップ位相の計算、(e)位相差の計算、(f)試料生成温度に対する室温における試料のy方向の残留ひずみの計算の各処理を模式的に示している。x方向の残留ひずみは、同様の計算手順によって算出することができる。また、2次元ドットまたはメッシュ状格子を用いれば、2次元の残留熱ひずみを測定することができる。
測定装置と測定プログラム
 次に、本発明の実施形態による残留熱ひずみ測定装置について説明する。図6に残留熱ひずみ測定装置1の構成例を示している。図6に示すように、残留熱ひずみ測定装置1は、格子画像記録装置10、及びコンピュータ20を備え、熱容器30内でホルダに固定された試料に加熱器により熱負荷をかけたときの、試料の変形度合いを測定する機能を有する。格子画像記録装置10は、顕微鏡、画像センサ等を含み、光学的に取得した格子画像をデジタルデータとしてメモリに一時的に記録し、コンピュータ20に供給する機能を有する。コンピュータ20は、MPU、CPU等の適宜のプロセッサ21と、ROM、RAM、NVRAM等の記憶デバイス22とを備えた情報処理装置であり、キーボード等の入力装置23と、出力装置24とを有している。図6の例では出力装置24は適宜の形式のモニタ・ディスプレイであるが、プリンタ等の他の出力デバイスでもよい。コンピュータ20には外部通信ネットワークと接続可能な通信モジュールを設け、他の情報処理装置と通信可能に構成することができる。
 コンピュータ20の記憶デバイス22には、モアレ縞発生部221、位相処理部222、残留変形計算部223の各機能部が格納されている。モアレ縞発生部221、位相処理部222、残留変形計算部223は、それぞれコンピュータプログラムとして構成し、プロセッサ21により記憶デバイス22から適宜読み出して実行されるように構成することができる。プログラム実行の契機は、入力装置23からの指示により与えることができる。
 熱容器30では、測定対象となる、格子が作成された各種試料に対して熱負荷を与えて変形させる。前記のように、熱容器30内に設置したホルダに試料を固定し、適宜の形式の加熱器により加熱することができる構成を採用することができる。
 格子画像記録装置10は、試料の変形度合いを、試料に形成された格子の画像として記録してコンピュータ20に供給する。画像データは、適宜のUSBメモリ等の記憶デバイスや、適宜の通信インタフェースを通じてコンピュータ20に取り込まれる。
 次に、図6の残留熱ひずみ測定装置1により実行される、試料の残留ひずみ測定処理について説明する。図7に、この試料の残留ひずみ測定処理の処理フロー例を示している。処理を開始後(S901)、まず格子画像記録装置10から格子画像データを取り込み、入力装置23から解析処理用の解析パラメータを入力する(S902)。解析パラメータとは、例えば、図2に示す格子ピッチp、測定対象である試料の材料としての物性であるヤング率、ポアソン比等、前記した本発明の2次元位相解析処理に必要なパラメータである。
 モアレ縞生成部221は、測定対象の試料表面の同一領域から、同一サイズの格子画像を検索する(S903)。次いでモアレ縞生成部221は、格子画像をフィルタリング処理した後、位相シフトモアレ縞を生成する(S904)。前記フィルタリング処理は、格子をx方向とy方向とに分離する処理であり、例えば1次元モアレ縞の場合は省略される。次いで位相処理部222は、生成したモアレ縞のラップ位相を計算して、試料の異なる温度でのアンラップ又はラップ位相から位相差を取得する(S905, S906)。次に、残留変形計算部223は、取得した位相差を用いて、残留熱ひずみ分布を計算し(S907)、出力装置24に出力して処理を終了する(S908, S909)。残留熱応力を算出する場合には、S907の処理のあとに対応する処理ステップを設ける。
実施例1 本発明の2次元残留ひずみ測定に関するシミュレーション検証
 本実施例では、本発明によるx方向、y方向残留熱ひずみ、及びせん断残留熱ひずみ測定の測定精度をシミュレーションにより検証した。x方向とy方向の格子ピッチは各10ピクセルであり、格子画像のサイズは370×570ピクセルとした。室温における2次元格子の一部を図8(a)に示している。x方向ひずみ、y方向ひずみ、及びせん断ひずみを加えて変形させた状態を、残留熱ひずみがゼロの状態(試料生成温度)とした。変形後の格子に対する、室温での格子のひずみを残留熱ひずみとした。異なる11条件の温度状態(単純比例増加)を変えた場合の残留熱ひずみを解析した。なお、以下煩雑さを避けるために、「残留熱ひずみ」を単に「残留ひずみ」とも言うこととする。
 式(14),(15)及び(19)を用いて、x方向、y方向の残留ひずみ分布、及び残留せん断ひずみ分布を測定した。2次元格子の交角に対する残留ひずみ測定値の平均値を、図8(b)に示す残留ひずみ理論値と比較した。この比較結果から、本発明の手法による残留ひずみの測定値は、理論値とよく一致することが確認された。
 図9(a)に、温度状態番号に対する残留ひずみ測定値の相対誤差をプロットして示している。図9(b)には、温度状態番号に対する残留ひずみ測定値の標準偏差を示している。相対誤差は1.5%以内であり、標準偏差は0.0012未満であった。これにより、本発明による2次元残留ひずみ測定は、高精度を実現できていることがわかる。
実施例2 本発明の2次元残留ひずみ測定に関する、ランダムノイズを有する格子によるシミュレーション検証
 本実施例では、ランダムノイズを含む格子から残留ひずみを求める場合について説明する。図10に示すように、温度T1での2次元格子は、x方向とy方向に格子ピッチが各10ピクセルであり、格子画像のサイズは370×570ピクセルとした。格子振幅の2%の振幅を有するランダムノイズを格子に加えた。
 温度T1の格子を、x方向、y方向ひずみ、及びせん断ひずみを印加することにより温度T2の格子に変形させた。温度T2の格子は、x方向、y方向の残留ひずみ、及び残留せん断ひずみを印加することにより、温度T1の格子に変換することが可能であった。
 本発明の手法を用いて、格子の残留ひずみを測定した。図11に、残留ひずみ測定値の絶対誤差、相対誤差、及び標準偏差をひずみ理論値に対して示している。図11に示すように、絶対誤差は0~0.00017の範囲、相対誤差は-1.5%~0.7%の範囲であり、標準偏差は0.0012未満であった。このように、本発明の手法は、格子にランダムノイズがある場合でも高精度で残留ひずみ測定を行えることを示している。
実施例3 本発明の微小ひずみ集中可視化を用いたフリップチップのアンダーフィルについての2次元残留熱ひずみ測定
 本実施例では、本発明の方法を用いたフリップチップ(FC)のアンダーフィルについての2次元ひずみ測定について説明する。図12に、本実施例における測定対象の試料の形状寸法と、測定に用いた熱容器を示している。このFCの表面の1.8×15mm2の範囲に、25℃においてUVナノインプリントリソグラフィーにより、格子間隔3μmの直交格子を作成した。加熱試験は、走査型レーザー顕微鏡の下で実施した。図13に、格子作成前後のFCの表面と、作成した格子間隔3μmの格子を示している。
 加熱試験の間、FCのアンダーフィル上の一つの金型コーナー(図15のグレイ着色されたポリゴン)付近の286×316μm2の範囲を測定対象領域として選定した。25,75,125,150℃において対象領域の格子画像を記録し、本発明の手法を用いて対応する残留熱ひずみ分布を測定した。上記の各温度における格子画像、及びx方向、y方向の8ピクセルダウンサンプリングモアレ縞を、図14に示す。これらのx方向、y方向モアレ縞の対応する位相分布を図15に示す。
 25℃における位相に対する位相差から、アンダーフィルのx方向、y方向ひずみ分布、及びせん断ひずみ分布を求めることができる。150℃におけるFCのひずみ理論値は0であるため、本発明の手法を用いて他の温度におけるアンダーフィルの残留ひずみを測定することができる。図16に、125,75,25℃におけるx方向、y方向残留ひずみ分布、及び残留せん断ひずみ分布の測定結果を示している。x方向の残留ひずみの絶対値は、金型の右側部分、特に金型のコーナー部分において最大であった。y方向残留ひずみ、残留せん断ひずみの絶対値は、金型の底部、特に金型のコーナー部分で最大であった。
 式(20),(21)を用いて、125,75,25℃における最大、最小残留主ひずみと、最大、最小残留主応力を求めた。図17に最大、最小残留主ひずみを、図18に最大、最小残留主応力を示している。なお、アンダーフィルのヤング率は、125,75,25℃において、それぞれ35,740,7850MPaとした。またポアソン比はそれぞれ、0.45,0.45,0.30とした。
 これらの結果から、最大残留主ひずみは、金型の底部において最も大きくなり、最小主ひずみの絶対値は金型のコーナー部で最大となることが示された。残留主応力は、残留主ひずみと同様の分布を示した。
 以上説明したように、本発明の一実施形態によれば、x方向残留ひずみ、y方向残留ひずみ、残留せん断ひずみ、残留主ひずみの分布を、一括して正確に測定することが可能である。また、残留熱ひずみ、及び残留熱応力の測定について、高精度の自動一括処理と高速の画像記憶が可能となる。また、本実施形態のモアレ法は、動的変形測定に好適であり、測定結果をリアルタイムに表示することができる。
 本発明の残留熱ひずみ分布測定方法、その装置、及びそのプログラムは、航空宇宙、自動車、電子部品パッケージング、医薬、材料製造等の分野に応用することができる。本発明の手法は、欠陥解析、残留応力測定、ナノメートルからメートルレベルの材料強度向上、インタフェースの最適設計、生産品質管理、構造的健全性モニタリング等に有用である。
1 熱変形測定装置
10 格子画像記録装置
20 コンピュータ
21 プロセッサ
22 メモリ
221 モアレ縞発生部
222 位相処理部
223 残留変形計算部
23 入力装置
24 出力装置
30 熱容器
 

Claims (7)

  1.  試料に熱負荷を印加したときに生じる残留熱変形としての残留熱ひずみ分布を測定するための残留熱ひずみ分布測定方法であって、
     試料の表面に存在する周期的パターンの画像を、第1の温度と当該試料を生成したときの温度である試料生成温度とにおいて画像記録手段によって記録し、
     記録した各前記周期的パターンの画像に基づいてモアレ縞を生成し、
     前記第1の温度における前記試料に関する前記モアレ縞の位相を計算し、
     前記試料生成温度における前記試料に関する前記モアレ縞の位相を計算し、
     前記第1の温度に対する前記試料生成温度での前記モアレ縞の位相差を取得し、
     取得した前記位相差に基づいて前記試料生成温度に対する前記第1の温度における前記試料の残留熱ひずみを算出する、
    残留熱ひずみ分布測定方法。
  2.  請求項1に記載の残留熱ひずみ分布測定方法であって、
     前記試料の表面に存在する前記周期的パターンの画像を、前記第1の温度及び前記試料生成温度と異なる第2の温度において前記画像記録手段によって記録し、
     記録した前記第2の温度における周期的パターンの画像に基づいてモアレ縞を生成し、
     前記第2の温度における前記試料に関する前記モアレ縞の位相を計算し、
     前記第1の温度に対する前記第2の温度での前記モアレ縞の位相差を取得し、前記第2の温度における前記試料の残留熱ひずみを算出する、
    残留熱ひずみ分布測定方法。
  3.  請求項1又は2に記載の残留熱ひずみ分布測定方法であって、
     前記第1の温度は室温である、残留熱ひずみ分布測定方法。
  4.  請求項1から3までのいずれかに記載の残留熱ひずみ分布測定方法であって、
     算出した前記残留熱ひずみ分布から、平面応力問題にフックの法則を適用して残留熱応力分布をさらに算出する、
    残留熱ひずみ分布測定方法。
  5.  請求項1から4までのいずれかに記載の残留熱ひずみ分布測定方法であって、
     前記試料の表面に前記周期的パターンが存在しない場合に、前記第1の温度においてその表面に周期的パターンを作成することを含む、
    残留熱ひずみ分布測定方法。
  6.  試料に熱負荷を印加するための負荷印加手段と、
     前記試料の表面に存在する周期的パターンの画像を、第1の温度と当該試料を生成したときの温度である試料生成温度とにおいて記録するための画像記録手段と、
     記録した各前記周期的パターンの画像に基づいてモアレ縞を生成し、
     前記第1の温度における前記試料に関する前記モアレ縞の位相を算出し、
     前記試料生成温度における前記試料に関する前記モアレ縞の位相を計算し、
     前記第1の温度に対する前記試料生成温度での前記モアレ縞の位相差を取得し、
     取得した前記位相差に基づいて前記試料生成温度に対する前記第1の温度における前記試料の残留熱ひずみを算出するように構成されている残留熱ひずみ測定手段と、
     前記算出結果を出力するための出力手段と、
    を備えている残留熱ひずみ測定装置。
  7.  プロセッサとメモリとを備えるコンピュータに、
     試料表面にある周期的パターンの第1の温度及び試料生成温度での画像データ、および解析パラメータの入力を受け付け、
     試料上の同一領域にある同一サイズの前記周期的パターンを検索し、
     各前記周期的パターンの画像に基づいてモアレ縞を生成し、
     前記第1の温度における前記試料に関する前記モアレ縞の位相を計算し、
     前記試料生成温度における前記試料に関する前記モアレ縞の位相を計算し、
     前記第1の温度に対する前記試料生成温度での前記モアレ縞の位相差を取得し、
     取得した前記位相差に基づいて前記試料生成温度に対する前記第1の温度における前記試料の残留熱ひずみを算出し、
     前記算出結果を出力する、
    処理を実行させるコンピュータプログラム。
     
PCT/JP2018/005734 2017-02-23 2018-02-19 残留熱ひずみ測定方法、残留熱ひずみ測定装置、及びそのプログラム WO2018155378A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18758311.7A EP3587997A4 (en) 2017-02-23 2018-02-19 RESIDUAL THERMAL STRAIN MEASUREMENT PROCESS, RESIDUAL THERMAL STRAIN MEASUREMENT DEVICE AND ASSOCIATED PROGRAM
US16/487,349 US11674793B2 (en) 2017-02-23 2018-02-19 Residual thermal strain measurement method, residual thermal strain measurement device, and program therefor
KR1020197027602A KR102521925B1 (ko) 2017-02-23 2018-02-19 잔류 열변형 측정 방법, 잔류 열변형 측정 장치, 및 그 프로그램
CN201880011643.2A CN110325817B (zh) 2017-02-23 2018-02-19 残余热应变测定方法、残余热应变测定装置及其程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017032646A JP6718160B2 (ja) 2017-02-23 2017-02-23 残留熱ひずみ測定方法、残留熱ひずみ測定装置、及びそのプログラム
JP2017-032646 2017-02-23

Publications (1)

Publication Number Publication Date
WO2018155378A1 true WO2018155378A1 (ja) 2018-08-30

Family

ID=63253729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005734 WO2018155378A1 (ja) 2017-02-23 2018-02-19 残留熱ひずみ測定方法、残留熱ひずみ測定装置、及びそのプログラム

Country Status (6)

Country Link
US (1) US11674793B2 (ja)
EP (1) EP3587997A4 (ja)
JP (1) JP6718160B2 (ja)
KR (1) KR102521925B1 (ja)
CN (1) CN110325817B (ja)
WO (1) WO2018155378A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6869209B2 (ja) 2018-07-20 2021-05-12 日本特殊陶業株式会社 配線基板
JP7076347B2 (ja) 2018-09-18 2022-05-27 日本特殊陶業株式会社 導波管
EP3919880B1 (en) * 2019-03-08 2023-08-30 Panasonic Intellectual Property Management Co., Ltd. Stress properties measurement method, stress properties measurement device, and stress properties measurement system
CN111721458B (zh) * 2020-06-24 2021-12-28 北京航空航天大学 一种基于图像识别的残余应力检测方法与装置
CN112082655B (zh) * 2020-08-12 2022-08-12 华北电力大学 一种基于横向剪切干涉信号测量体温的方法
CN114526851B (zh) * 2022-04-25 2022-07-15 中国飞机强度研究所 一种飞机用金属-复合材料混合结构的热应力的测量方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6731391B1 (en) * 1998-05-13 2004-05-04 The Research Foundation Of State University Of New York Shadow moire surface measurement using Talbot effect
JP2005010003A (ja) * 2003-06-18 2005-01-13 National Institute For Materials Science 複合材料における残留ひずみおよび残留応力の測定方法
JP2007298343A (ja) * 2006-04-28 2007-11-15 Tokyo Institute Of Technology 溶接変形および残留応力の評価方法
JP2009162562A (ja) 2007-12-28 2009-07-23 National Institute For Materials Science 熱膨張係数測定方法とその装置
JP2009264852A (ja) * 2008-04-23 2009-11-12 Wakayama Univ 格子画像の位相解析方法およびそれを用いた物体の変位測定方法ならびに物体の形状測定方法
WO2013136620A1 (ja) * 2012-03-14 2013-09-19 独立行政法人産業技術総合研究所 高次元輝度情報を用いた縞画像の位相分布解析方法、装置およびそのプログラム
WO2015008404A1 (ja) 2013-07-18 2015-01-22 独立行政法人産業技術総合研究所 規則性模様による変位分布のための測定方法、装置およびそのプログラム
JP2017032646A (ja) 2015-07-29 2017-02-09 キヤノン株式会社 撮像装置及びその制御方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2094482A5 (ja) * 1970-06-23 1972-02-04 Bazelaire Eric De
JPS544635B2 (ja) * 1973-06-15 1979-03-08
US6564166B1 (en) 1999-10-27 2003-05-13 Georgia Tech Research Corporation Projection moiré method and apparatus for dynamic measuring of thermal induced warpage
JP2009019941A (ja) * 2007-07-11 2009-01-29 Nikon Corp 形状測定方法
CN201163222Y (zh) * 2008-01-11 2008-12-10 中国科学院金属研究所 一种硬质薄膜残余应力测试仪
US8090271B2 (en) * 2008-05-01 2012-01-03 Nec Laboratories America, Inc. Differential delay receiver using cross-polarization interferometer for PolMux-DPSK system
JP5429864B2 (ja) 2009-07-24 2014-02-26 独立行政法人物質・材料研究機構 歪み計測用パターン
US8894279B2 (en) * 2010-08-06 2014-11-25 Sloan Victor Cryogenic transition detection
WO2018061321A1 (ja) * 2016-09-27 2018-04-05 国立研究開発法人産業技術総合研究所 周期模様を利用した三次元形状・変位・ひずみ測定装置、方法およびそのプログラム
JP6753592B2 (ja) * 2017-02-23 2020-09-09 国立研究開発法人産業技術総合研究所 変形測定方法、変形測定装置、及びそのプログラム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6731391B1 (en) * 1998-05-13 2004-05-04 The Research Foundation Of State University Of New York Shadow moire surface measurement using Talbot effect
JP2005010003A (ja) * 2003-06-18 2005-01-13 National Institute For Materials Science 複合材料における残留ひずみおよび残留応力の測定方法
JP2007298343A (ja) * 2006-04-28 2007-11-15 Tokyo Institute Of Technology 溶接変形および残留応力の評価方法
JP2009162562A (ja) 2007-12-28 2009-07-23 National Institute For Materials Science 熱膨張係数測定方法とその装置
JP2009264852A (ja) * 2008-04-23 2009-11-12 Wakayama Univ 格子画像の位相解析方法およびそれを用いた物体の変位測定方法ならびに物体の形状測定方法
WO2013136620A1 (ja) * 2012-03-14 2013-09-19 独立行政法人産業技術総合研究所 高次元輝度情報を用いた縞画像の位相分布解析方法、装置およびそのプログラム
WO2015008404A1 (ja) 2013-07-18 2015-01-22 独立行政法人産業技術総合研究所 規則性模様による変位分布のための測定方法、装置およびそのプログラム
JP2017032646A (ja) 2015-07-29 2017-02-09 キヤノン株式会社 撮像装置及びその制御方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
S. KISHIMOTOY. XINGY. TANAKAY. KAGAWA: "Measurement of Strain and Stress Distributions in Structural Materials by Electron Moire Method", JOURNAL OF SOLID MECHANICS AND MATERIALS ENGINEERING, vol. 2, no. 6, 2008, pages 812 - 821
See also references of EP3587997A4
X. HUANGZ. LIUH. XIE: "Recent Progress in Residual Stress Measurement Techniques", ACTA MECHANICA SOLIDA SINICA, vol. 26, no. 6, 2013, pages 570 - 583

Also Published As

Publication number Publication date
EP3587997A4 (en) 2020-12-30
JP2018136273A (ja) 2018-08-30
EP3587997A1 (en) 2020-01-01
US11674793B2 (en) 2023-06-13
KR102521925B1 (ko) 2023-04-17
US20200056880A1 (en) 2020-02-20
CN110325817B (zh) 2022-09-02
KR20190121342A (ko) 2019-10-25
JP6718160B2 (ja) 2020-07-08
CN110325817A (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
WO2018155378A1 (ja) 残留熱ひずみ測定方法、残留熱ひずみ測定装置、及びそのプログラム
JP6753592B2 (ja) 変形測定方法、変形測定装置、及びそのプログラム
US10655954B2 (en) Three-dimensional shape, displacement, and strain measurement device and method using periodic pattern, and program therefor
JP5818218B2 (ja) 高次元輝度情報を用いた縞画像の位相分布解析方法、装置およびそのプログラム
JP6983402B2 (ja) 汚れの影響を受けにくいひずみ分布測定方法とそのプログラム
JP6813162B2 (ja) モアレ法による高速変位・ひずみ分布測定方法及び測定装置
Badaloni et al. Impact of experimental uncertainties on the identification of mechanical material properties using DIC
Berke et al. High temperature vibratory response of Hastelloy-X: stereo-DIC measurements and image decomposition analysis
Dai et al. Vibration measurement based on electronic speckle pattern interferometry and radial basis function
Lee et al. Full-field optical measurement of curvatures in ultra-thin-film–substrate systems in the range of geometrically nonlinear deformations
Chen et al. Orthogonal sampling moiré method and its application in microscale deformation field measurement
Ri Accurate and fast out-of-plane displacement measurement of flat objects using single-camera based on the sampling moiré method
Li et al. Fabrication of heat-resistant grids and their application to deformation measurements using a sampling moiré method
CN110631487B (zh) 一种利用激光散斑自相关技术测量横向微位移的方法
Zastavnik et al. Comparison of shearography to scanning laser vibrometry as methods for local stiffness identification of beams
JP6223294B2 (ja) 赤外線応力測定システムにおける応力値の補正方法およびその方法を用いた赤外線応力測定システム
JP6533914B2 (ja) 計測方法、計測装置、計測プログラム及び計測プログラムを記録した、コンピュータ読み取り可能な記録媒体
Ma et al. Investigation on vibration response of aluminum foam beams using speckle interferometry
JP2016142726A (ja) 二次モアレ縞による顕微鏡走査ゆがみの影響を受けない変形測定方法
Zhang et al. Determination of the moiré spacing in sampling moiré method based on the generation mechanism of sampling moiré
Shambaugh et al. Multi-path Vibrometer-Based Strain Measurement Technique for Very High Cycle Fatigue (VHCF) Testing
Ma et al. Accurate determination of the elastic moduli of optimized cantilever beams by efficient time-averaged ESPI system
Hady et al. Speckle photography in measuring thermal expansion
Chen et al. In-plane motion measurement by using digital sampling moiré method
Ri et al. Two-dimensional sampling Moiré method for fast and accurate phase analysis of single fringe pattern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18758311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197027602

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018758311

Country of ref document: EP

Effective date: 20190923