WO2018154924A1 - 顕微鏡装置および観察方法並びに顕微鏡装置制御プログラム - Google Patents

顕微鏡装置および観察方法並びに顕微鏡装置制御プログラム Download PDF

Info

Publication number
WO2018154924A1
WO2018154924A1 PCT/JP2017/044456 JP2017044456W WO2018154924A1 WO 2018154924 A1 WO2018154924 A1 WO 2018154924A1 JP 2017044456 W JP2017044456 W JP 2017044456W WO 2018154924 A1 WO2018154924 A1 WO 2018154924A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
container
observation
scanning
optical system
Prior art date
Application number
PCT/JP2017/044456
Other languages
English (en)
French (fr)
Inventor
兼太 松原
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020197020871A priority Critical patent/KR102236184B1/ko
Priority to EP17897973.8A priority patent/EP3588162B1/en
Priority to JP2019501068A priority patent/JP6815477B2/ja
Publication of WO2018154924A1 publication Critical patent/WO2018154924A1/ja
Priority to US16/515,555 priority patent/US11243386B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0036Scanning details, e.g. scanning stages
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/006Optical details of the image generation focusing arrangements; selection of the plane to be imaged
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/244Devices for focusing using image analysis techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/245Devices for focusing using auxiliary sources, detectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/26Stages; Adjusting means therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals

Definitions

  • the present invention relates to a microscope apparatus that forms an image of an entire observation object by moving a stage on which a container in which the observation object is stored is moved with respect to an imaging optical system that forms an image of the observation object, and
  • the present invention relates to an observation method and a microscope apparatus control program.
  • pluripotent stem cells such as ES (Embryonic Stem) cells and iPS (Induced uri Pluripotent Stem) cells and differentiation induced cells are imaged with a microscope, etc., and the differentiation state of the cells is captured by capturing the characteristics of the images
  • ES Embryonic Stem
  • iPS Induced uri Pluripotent Stem
  • Pluripotent stem cells such as ES cells and iPS cells are attracting attention as having the ability to differentiate into cells of various tissues and applicable in regenerative medicine, drug development, and disease elucidation.
  • Patent Document 1 When performing such tiling photography, it has been proposed to acquire a high-quality image with less blur by performing autofocus control at each observation position in the culture vessel (Patent Document 1). (See Patent Document 4).
  • JP 2010-191298 A Japanese Patent Laid-Open No. 2006-3653 JP 2009-198525 A JP 2008-46327 A
  • the whole well plate is scanned by an imaging optical system, and tiling photography is performed while performing autofocus control for each observation position.
  • the thickness of the bottom varies from well to well due to manufacturing errors and the like.
  • the culture vessel may be placed with the bottom surface tilted with respect to the stage, resulting in an installation error, which may cause the bottom surface height of each well to vary greatly. is there.
  • the autofocus control in the microscope apparatus is performed by moving the objective lens using a piezoelectric element or the like, but there is a limit to the drive range of the objective lens.
  • an object of the present invention is to provide a microscope apparatus, an observation method, and a microscope apparatus control program that can perform autofocus control more efficiently and reduce the photographing time.
  • a microscope apparatus includes a stage on which a container in which an observation target is accommodated, an imaging optical system having an objective lens that forms an image of the observation target in the container, and a container on the stage.
  • a stage drive unit that moves the stage between an initial set position that accepts the installation of the sensor and a scanning measurement position at which each observation position in the container is scanned by the imaging optical system, and the stage and imaging optics at the scanning measurement position
  • a scanning control unit that scans each observation position in the container with the imaging optical system, an autofocus control unit that performs autofocus control for each observation position, and the stage from the initial set position
  • a focus information detection unit that detects the focus information of the container while moving to the scanning measurement position, and the autofocus control unit is When moving in the scanning measurement positions, based on the focus information, it performs autofocus control for each viewing position.
  • the focus information detection unit can detect the position of the bottom surface of the container as the focus information.
  • the focus information detection unit can detect at least three locations on the bottom surface of the container.
  • the microscope apparatus can include a container information acquisition unit that acquires type information of a container installed on the stage, and the stage driving unit is based on the type information of the container.
  • the stage moving path from the initial set position to the scanning measurement position can be changed.
  • a well plate having a plurality of wells can be used as a container.
  • the microscope apparatus can include at least two displacement sensors arranged in the scanning direction with the imaging optical system interposed therebetween, and the autofocus control unit includes the imaging optical system. Autofocus control can be performed based on the vertical position of the container at the one observation position previously detected by the displacement sensor and the focus information before reaching one observation position in the container. it can.
  • the displacement sensor can also be used as a focus information detection unit, and the stage driving unit performs displacement while the stage moves from the initial set position to the scanning measurement position.
  • the stage can be moved over the sensor.
  • the focus information detection unit may have a focus information detection displacement sensor different from the displacement sensor.
  • the stage movement path from the initial set position to the scanning measurement position can have a plurality of directions of movement paths.
  • a stage on which a container that accommodates an observation target is placed is moved from an initial set position that accepts placement of the container to a scan measurement position that is different from the initial set position.
  • the observation method of observing the observation object by scanning each observation position in the container by moving at least one of an imaging optical system having an objective lens for forming an image of the observation object in the container and the stage
  • the focus information of the container is detected, and when the stage moves to the scanning measurement position, autofocus control is performed for each observation position in the container based on the focus information. I do.
  • a microscope apparatus control program includes a procedure for moving a stage, on which a container in which an observation target is stored, is installed, from an initial set position for accepting installation of the container to a scanning measurement position,
  • a microscope apparatus control program for causing a computer to execute a procedure for scanning each observation position in a container by moving at least one of an imaging optical system having an objective lens for forming an image of an observation object in the inside and a stage
  • the focus information of the container is detected while the stage moves from the initial setting position to the scanning measurement position, and the focus is detected when the stage moves to the scanning measurement position.
  • autofocus control is performed for each observation position in the container, so even if there is a large variation in the thickness of the bottom of the culture container or there is an error in installing the culture container, autofocus control is performed. Since the pre-measurement is not performed during the photographing operation, the photographing time can be shortened.
  • the schematic block diagram which looked at one Embodiment of the microscope apparatus of this invention from upper direction The figure which shows the specific structure of one Embodiment of the microscope apparatus of this invention.
  • Perspective view showing schematic configuration of stage Schematic diagram showing the configuration of the imaging optical system The figure which shows the movement path
  • FIG. 1 is a view of a microscope apparatus 10 in the microscope observation system of the present embodiment as viewed from above.
  • the microscope apparatus 10 moves a stage 51 in which a culture container 50 (corresponding to the container of the present invention) in which an observation target is accommodated is moved in the X direction and the Y direction with respect to the imaging optical system 14.
  • a culture container 50 corresponding to the container of the present invention
  • Each observation position in the culture vessel 50 is scanned, and an image of each observation position is formed by the imaging optical system 14.
  • the X direction and the Y direction are respectively orthogonal to the optical axis direction of the imaging optical system 14. Further, the X direction and the Y direction are orthogonal to each other.
  • an initial set position P1 and a scanning measurement position P2 are set in advance, and the stage 51 is first arranged at the initial set position P1. After that, it moves to the scanning measurement position P2.
  • the initial set position P1 is a part that accepts installation of the culture vessel 50 on the stage 51. That is, the stage 51 is first arranged at the initial setting position P1, and the user installs the culture vessel 50 on the stage 51 arranged at the initial setting position P1. As shown in FIG. 1, the initial set position P1 is provided at a position different from the scanning measurement position P2. In the microscope apparatus 10 of this embodiment, since the heat glass G is installed at the scanning measurement position P2, the culture vessel 50 cannot be installed directly on the stage 51 arranged at the scanning measurement position P2.
  • the stage 51 is temporarily retracted to the initial set position P1 provided at a location different from the scanning measurement position P2, and the culture vessel 50 can be installed on the stage 51.
  • the heat glass G is provided above the stage 51 and is heated to a predetermined temperature. By using the heat glass G to warm the culture vessel 50 taken out from an incubator or the like, the culture vessel 50 can be prevented from becoming clouded due to condensation or the like.
  • the stage 51 moves in the X direction and the Y direction with respect to the imaging optical system 14, whereby each observation position in the culture vessel 50 is scanned by the imaging optical system 14. Is done.
  • FIG. 2 is a diagram showing a specific configuration of the microscope apparatus 10.
  • the microscope apparatus 10 of the present embodiment captures a phase difference image of cultured cells that are observation targets.
  • the microscope apparatus 10 includes a white light source 11 that emits white light, a condenser lens 12, a slit plate 13, an imaging optical system 14, and an imaging optical system driving unit. 15, a detection unit 18, and an image sensor 19.
  • the white light source 11, the condenser lens 12, the slit plate 13, and the image sensor 19 are arranged on the optical axis of the imaging optical system 14 extending in the Z direction in FIG.
  • the heat glass G mentioned above is abbreviate
  • FIG. 3 is a diagram illustrating an example of the stage 51.
  • a rectangular opening 51a is formed.
  • the culture vessel 50 is installed on the frame member forming the opening 51a, and the phase difference image of the cells in the culture vessel 50 is configured to pass through the opening 51a.
  • a well plate having a plurality of wells in which cells are accommodated is used as the culture vessel 50.
  • the cells contained in the culture vessel 50 include pluripotent stem cells such as iPS cells and ES cells, nerves, skin, myocardium and liver cells induced to differentiate from the stem cells, and skin, retina extracted from the human body, Examples include heart muscle, blood cells, nerve and organ cells.
  • the slit plate 13 is provided with a ring-shaped slit that transmits white light to the light blocking plate that blocks white light emitted from the white light source 11.
  • ring-shaped illumination light L is formed.
  • FIG. 4 is a diagram showing a detailed configuration of the imaging optical system 14.
  • the imaging optical system 14 includes a phase difference lens 14a and an imaging lens 14d.
  • the phase difference lens 14a includes an objective lens 14b and a phase plate 14c.
  • the phase plate 14 c is formed by forming a phase ring on a transparent plate that is transparent with respect to the wavelength of the illumination light L.
  • the slit size of the slit plate 13 described above is in a conjugate relationship with the phase ring of the phase plate 14c.
  • phase film that shifts the phase of incident light by 1 ⁇ 4 wavelength and a neutral density filter that attenuates incident light are formed in a ring shape.
  • the direct light incident on the phase ring passes through the phase ring, the phase is shifted by 1 ⁇ 4 wavelength, and the brightness is weakened.
  • most of the diffracted light diffracted by the observation object passes through the transparent plate of the phase plate 14c, and its phase and brightness do not change.
  • the phase difference lens 14a having the objective lens 14b is moved in the optical axis direction of the objective lens 14b by the imaging optical system driving unit 15 shown in FIG.
  • the objective lens 14b, the optical axis direction, and the Z direction are the same direction.
  • the autofocus control is performed by the movement of the phase difference lens 14a in the Z direction, and the contrast of the phase difference image captured by the image sensor 19 is adjusted.
  • the autofocus control is performed by moving the objective lens 14b in the optical axis direction.
  • the present invention is not limited to this, and the autofocus control is performed by moving the stage 51 in the Z direction. You may make it perform.
  • the magnification of the phase difference lens 14a may be changed.
  • the phase difference lens 14a or the imaging optical system 14 having different magnifications may be configured to be exchangeable.
  • the replacement of the phase difference lens 14a or the imaging optical system 14 may be performed automatically or manually by a user.
  • the imaging optical system drive unit 15 includes an actuator such as a piezoelectric element, and is driven based on a control signal output from an autofocus control unit 22 described later.
  • the imaging optical system drive unit 15 is configured to pass the phase difference image that has passed through the phase difference lens 14a as it is.
  • the configuration of the imaging optical system drive unit 15 is not limited to the piezoelectric element, and any other known configuration may be used as long as the phase difference lens 14a can be moved in the Z direction.
  • the imaging lens 14 d receives the phase difference image that has passed through the phase difference lens 14 a and the imaging optical system driving unit 15, and forms the incident phase difference image on the image sensor 19.
  • the image sensor 19 captures the phase difference image formed by the imaging lens 14d.
  • a CCD (Charge-Coupled Device) image sensor, a CMOS (Complementary Metal-Oxide Semiconductor) image sensor, or the like is used.
  • CMOS Complementary Metal-Oxide Semiconductor
  • an image sensor provided with RGB (Red Green Blue) color filters may be used, or a monochrome image sensor may be used.
  • the detection unit 18 detects the position in the Z direction (vertical direction) of the bottom surface of the culture vessel 50 installed on the stage 51. Specifically, the detection unit 18 includes a first displacement sensor 18a and a second displacement sensor 18b.
  • the first displacement sensor 18a and the second displacement sensor 18b are provided side by side in the X direction (scanning direction) with the imaging optical system 14 (objective lens 14b) interposed therebetween.
  • the first displacement sensor 18a and the second displacement sensor 18b in this embodiment are laser displacement meters, which irradiate the culture vessel 50 with laser light and detect the reflected light, thereby detecting Z on the bottom surface of the culture vessel 50. Detect the position of the direction.
  • the bottom surface of the culture vessel 50 is a boundary surface between the bottom portion of the culture vessel 50 and the cell to be observed, that is, the observation target installation surface.
  • Position information in the Z direction of the culture vessel 50 detected by the detection unit 18 is output to an autofocus control unit 22 described later, and the autofocus control unit 22 drives the imaging optical system based on the input position information.
  • the unit 15 is controlled to perform autofocus control.
  • the culture container 50 at the observation position is preceded. Is detected by the first displacement sensor 18a or the second displacement sensor 18b. Then, when the imaging optical system 14 reaches the observation position, the imaging optical system drive unit 15 is controlled based on the position information detected by the first displacement sensor 18a or the second displacement sensor 18b. And autofocus control.
  • the imaging optical system driving unit 15 when performing the autofocus control by controlling the imaging optical system driving unit 15 based on the position information in the Z direction of the culture vessel 50, the imaging optical system driving unit 15 including a piezoelectric element or the like.
  • the driving range is limited.
  • the plastic culture vessel 50 such as a well plate has a variation in the position of the bottom surface of each well due to manufacturing variations in the thickness of the bottom thereof, and within the driving range of the imaging optical system driving unit 15, Appropriate autofocus control may not be possible.
  • the culture vessel 50 is installed on the stage 51, the culture vessel 50 is installed with the bottom surface tilted with respect to the stage 51, resulting in an installation error, and the drive range of the imaging optical system drive unit 15. In some cases, appropriate autofocus control may not be possible.
  • the variation in the thickness of the bottom of the culture vessel 50 and the installation error of the culture vessel 50 as described above are measured in advance, and the imaging optical system drive unit 15 itself is determined based on the measurement result.
  • the initial setting of the autofocus control is performed by moving in the Z direction so that the autofocus control can be appropriately performed within the driving range of the imaging optical system driving unit 15.
  • the imaging optical system 14, the imaging optical system drive unit 15, and the detection unit 18 are installed and held in the holding unit 16. ing.
  • the holding unit 16 is provided with an initial adjustment mechanism 17, and the initial adjustment mechanism 17 moves the holding unit 16 in the Z direction.
  • the initial adjustment mechanism 17 includes a pulse motor, for example.
  • the initial setting of the autofocus control is performed by controlling the initial adjustment mechanism 17 based on the measurement result described above.
  • measurement such as variation in the thickness of the bottom of the culture vessel 50 is performed separately from the photographing operation (operation from the time when the culture vessel 50 is placed on the stage 51 until the end of the scanning measurement). If this is done, the measurement time will be longer.
  • the thickness variation of the bottom of the culture vessel 50 and the installation error of the culture vessel 50 are measured during the photographing operation. Specifically, while the stage 51 moves from the initial set position P1 to the scanning measurement position P2, the thickness variation of the bottom of the culture vessel 50 and the installation error of the culture vessel 50 are measured.
  • FIG. 5 shows a moving path of the stage 51 when the culture container 50 is a well plate having six wells. As shown in FIG. 5, the moving path of the stage 51 from the initial set position P1 to the scanning measurement position P2 has a moving path in a plurality of directions.
  • the stage 51 moves so as to pass above the first displacement sensor 18a and the second displacement sensor 18b while moving from the initial set position P1 to the scanning measurement position P2. Thereby, the bottom surface of the culture vessel 50 installed on the stage 51 is detected by the first displacement sensor 18a and the second displacement sensor 18b.
  • the detection unit 18 corresponds to the focus information detection unit of the present invention.
  • the focus information is position information in the Z direction on the bottom surface of the culture vessel 50.
  • the position information in the Z direction of the bottom surface of the well W1 of the culture vessel 50 is the second displacement.
  • the position information in the Z direction of the bottom surface of the well W3 is detected by the sensor 18b and detected by the first displacement sensor 18a.
  • the position information in the Z direction of the bottom surface of the well W4 of the culture container 50 is detected by the second displacement sensor 18b and the well W6.
  • the position information in the Z direction of the bottom surface of the first is detected by the first displacement sensor 18a.
  • the position information in the Z direction of the bottom surface of the well W5 of the culture container 50 is detected by the second displacement sensor 18b.
  • the position information in the Z direction of the bottom surface of the well W2 is not detected by either the first displacement sensor 18a or the second displacement sensor 18b.
  • the culture vessel 50 it is preferable to detect at least three locations in the Z-direction position information of the bottom surface of the culture vessel 50, and more preferably four or more locations. Further, when a well plate is used as the culture vessel 50 as in the present embodiment, it is preferable to detect position information in the Z direction of the bottom surfaces of at least three wells, and more preferably four or more wells.
  • Position information in the Z direction of the bottom surface of the culture vessel 50 detected by the first displacement sensor 18a and the second displacement sensor 18b while the stage 51 moves from the initial set position P1 to the scanning measurement position P2 is autofocus control. Is output to the unit 22.
  • the autofocus control unit 22 calculates the center value of autofocus control at each observation position in the culture vessel 50 based on the input position information in the Z direction of the bottom surface of the culture vessel 50.
  • the center value of autofocus control in the present embodiment is a value indicating the initial position in the Z direction of the objective lens 14b when performing autofocus control by moving the objective lens 14b in the optical axis direction.
  • the position information in the Z direction of the bottom surfaces of the five wells is detected. Therefore, the interpolation information and the like are performed using the position information in the five Z directions.
  • the center value of the autofocus control at each observation position is calculated. Note that the autofocus control unit 22 estimates the bottom surface of the entire culture vessel 50 using the five pieces of position information in the Z direction, and based on the estimated bottom surface of the entire culture vessel 50, the center value of each observation position May be calculated.
  • each observation position calculated as described above is set as an initial setting.
  • the initial adjustment mechanism 17 is controlled using the center value of the autofocus control, and thereby the holding unit 16 is moved in the Z direction. Specifically, the holding unit 16 is moved in the Z direction so that the position of the objective lens 14b in the Z direction becomes the position of the center value.
  • the imaging optical system driving unit 15 is controlled based on the position information detected by the first displacement sensor 18a or the second displacement sensor 18b before reaching the observation position, Perform autofocus control.
  • the autofocus control is performed for all the observation positions in the culture vessel 50.
  • the present invention is not limited to this.
  • the autofocus control may be performed for every two or more observation positions.
  • “Performing autofocus control for each observation position” in the present invention includes such a method of performing autofocus control for each of two or more observation positions.
  • FIG. 7 is a block diagram showing the configuration of the microscope observation system of the present embodiment.
  • the block diagram of the one part structure controlled by each part of the microscope control apparatus 20 is shown.
  • the microscope control device 20 controls the entire microscope device 10, and particularly includes an autofocus control unit 22, a scanning control unit 23, and a display control unit 24.
  • the microscope control device 20 is composed of a computer including a central processing unit, a semiconductor memory, a hard disk, and the like, and an embodiment of the observation device control program of the present invention is installed on the hard disk. Then, by executing this observation device control program by the central processing unit, the autofocus control unit 22, the scan control unit 23, and the display control unit 24 shown in FIG. 7 function.
  • the autofocus control unit 22 detects the Z of the culture vessel 50 detected by the first displacement sensor 18a and the second displacement sensor 18b while the stage 51 moves from the initial set position P1 to the scanning measurement position P2. Based on the positional information of the direction, the center value of the autofocus control at each observation position in the culture vessel 50 is calculated. Then, the autofocus control unit 22 controls the initial adjustment mechanism 17 and moves the holding unit 16 in the Z direction based on the calculated center value at the time of autofocus control of each observation position in the culture vessel 50. To make initial settings.
  • the autofocus control unit 22 precedes the first displacement sensor 18a or the second displacement sensor 18b after performing the above-described initial setting in the autofocus control of each observation position in the culture vessel 50.
  • the imaging optical system driving unit 15 is controlled.
  • the objective lens 14b of the imaging optical system 14 is moved in the optical axis direction by driving the imaging optical system driving unit 15, and final autofocus control is performed.
  • the scanning control unit 23 drives and controls the stage driving unit 21, thereby moving the stage 51 in the XY plane.
  • the stage drive unit 21 is composed of an actuator having a piezoelectric element or the like.
  • the scanning control unit 23 controls the stage driving unit 21 to move the stage 51 from the initial set position P1 to the scanning measurement position P2 as described above. At the scanning measurement position P2, the stage 51 is moved in the X direction and the Y direction. The observation position in the culture vessel 50 is scanned two-dimensionally, and a phase difference image at each observation position is captured.
  • FIG. 8 is a view showing the scanning position of the observation position in the culture vessel 50 by the scanning path M.
  • the imaging optical system 14 is scanned along the scanning path M from the scanning start position S to the scanning end position E by the movement of the stage 51 in the X direction and the Y direction. That is, the observation position in the culture vessel 50 is scanned two-dimensionally by repeatedly performing the reciprocation of the stage 51 in the X direction and the movement in the Y direction.
  • the display control unit 24 generates a single composite phase difference image by combining the phase difference images of the respective observation positions captured by the microscope apparatus 10, and the composite phase difference image. Is displayed on the display device 30.
  • the display device 30 displays the composite phase difference image generated by the display control unit 24 as described above, and includes a liquid crystal display, for example. Further, the display device 30 may be configured by a touch panel and may also be used as the input device 40.
  • the input device 40 includes a mouse and a keyboard, and accepts various setting inputs by the user.
  • the input device 40 according to the present embodiment receives setting inputs such as an instruction to change the magnification of the phase difference lens 14a and an instruction to change the moving speed of the stage.
  • the stage 51 is moved to the initial set position P1 and installed (S10). And the culture container 50 in which the cell which is an observation object was accommodated is installed on the stage 51 (S12).
  • the stage 51 moves from the initial set position P1 to the scanning measurement position P2 (S14). Specifically, the stage 51 moves along the movement path shown in FIG. 5 and moves to a position where the scanning start position S in the culture vessel 50 shown in FIG. 8 is located on the second displacement sensor 18b. To do.
  • the position of the bottom surface of the culture vessel 50 in the Z direction is set by the first displacement sensor 18a and the second displacement sensor 18b. It is detected (S16).
  • the position information in the Z direction of the bottom surface of the culture vessel 50 detected in S16 is acquired by the autofocus control unit 22, and the autofocus control unit 22 determines each observation position based on the input position information in the Z direction.
  • the center value of the autofocus control is calculated (S18).
  • scanning measurement is started by moving the stage 51 in the X direction at the scanning measurement position P2 (S20). Specifically, first, for the first observation position, the autofocus control unit 22 controls the initial adjustment mechanism 17 based on the center value calculated in S18, and moves the holding unit 16 in the Z direction to perform initial setting. (S22).
  • the autofocus control unit 22 is based on position information in the Z direction of the first observation position detected in advance by the first displacement sensor 18a or the second displacement sensor 18b. Then, the imaging optical system driving unit 15 is controlled to perform final autofocus control (S24). Then, a phase difference image at the first observation position is formed by the image forming optical system 14 and picked up by the image pickup device 19 (S26). The phase difference image at the first observation position imaged by the image sensor 19 is output to the display control unit 24.
  • the stage 51 further moves in the X direction and the Y direction, The processes from S22 to S26 are repeated.
  • the position detection in the Z direction of the bottom surface of the culture vessel 50 is performed in advance by the first displacement sensor 18a or the second displacement sensor 18b for each observation position.
  • a phase difference image is picked up. That is, the imaging of a phase difference image at a certain observation position and the detection of the position of the culture vessel 50 in the Z direction at the front side of the scanning direction with respect to the observation position are performed in parallel.
  • the stage 51 moves in the direction of the arrow in FIG. 10
  • the position of the bottom surface of the culture vessel 50 in the Z direction is detected by the second displacement sensor 18b
  • the stage 51 moves in the direction of the arrow in FIG.
  • the position of the bottom surface of the culture vessel 50 in the Z direction is detected by the first displacement sensor 18a.
  • the initial setting based on the center value of the autofocus control described above may be performed before the imaging optical system 14 reaches the observation position, or when the imaging optical system 14 reaches the observation position. You may make it perform in.
  • the display control unit 24 combines the phase difference images at the respective observation positions to generate a synthesized phase difference image (S30), and the generated synthesized phase difference image is displayed on the display device 30 (S32).
  • the stage 51 moves from the initial set position P1 to the scanning measurement position P2, the position of the bottom surface of the culture vessel 50 in the Z direction is detected, and the stage 51 is set to the scanning measurement position. Since the initial setting of the autofocus control is performed based on the detected position in the Z direction of the bottom surface of the culture vessel 50 when moved, there is a large variation in the thickness of the bottom of the culture vessel, Even if there is an installation error, the autofocus control can be performed more efficiently and pre-measurement is not performed during the photographing operation, so that the photographing time can be shortened.
  • the microscope control apparatus 20 may further include a container information acquisition unit 25 that acquires container type information. Then, based on the container type information acquired by the container information acquisition unit 25, the scanning control unit 23 may control the stage driving unit 21 to change the movement path of the stage 51.
  • the container type information may be set and input by the user using the input device 40, for example, or a storage medium storing the type information of the culture container 50 is provided for the culture container 50.
  • the information on the type of the culture vessel 50 may be read out from the storage medium.
  • the storage medium include a barcode and an IC (Integrated Circuit) chip.
  • FIG. 13 is a diagram showing a moving path of the stage 51 (culture container 50) when a 24-well well plate is used as the culture container 50.
  • the moving path of the stage 51 also includes moving paths in a plurality of directions.
  • the position of the bottom surface of the culture vessel 50 in the Z direction is set by the first displacement sensor 18a and the second displacement sensor 18b.
  • a displacement sensor 60 for initial setting is provided separately from the first displacement sensor 18a and the second displacement sensor 18b. You may do it.
  • the stage 51 moves from the initial set position P1 to the scanning measurement position P2
  • the stage 51 passes over the displacement sensor 60, and thereby the position of the bottom surface of the culture vessel 50 in the Z direction is detected by the displacement sensor 60. You may make it do.
  • the displacement sensor 60 corresponds to the focus information detection unit of the present invention.
  • the observation position in the culture vessel 50 is scanned by moving the stage 51.
  • the present invention is not limited to this, and the imaging optical system 14, the detection unit 18, the imaging element 19, and the like.
  • the imaging system consisting of may be moved. Further, both the stage 51 and the photographing system may be moved.
  • the present invention is applied to a phase contrast microscope.
  • the present invention is not limited to a phase contrast microscope, and may be applied to other microscopes such as a differential interference microscope and a bright field microscope.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Microscoopes, Condenser (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

培養容器を結像光学系によって走査し、各観察位置においてオートフォーカス制御を行う場合において、オートフォーカス制御をより効率的に行い、撮影時間の短縮を図ることができる顕微鏡装置および観察方法並びに顕微鏡装置制御プログラムを提供する。ステージ(51)が初期セット位置(P1)から走査計測位置(P2)まで移動する間に、培養容器(50)のフォーカス情報を第1の変位センサ(18a)および第2の変位センサ(18b)によって検出し、オートフォーカス制御部が、ステージ(51)が走査計測位置(P2)に移動した際、フォーカス情報に基づいて、観察位置毎のオートフォーカス制御を行う。

Description

顕微鏡装置および観察方法並びに顕微鏡装置制御プログラム
 本発明は、観察対象が収容された容器が設置されたステージを、観察対象の像を結像させる結像光学系に対して移動させることによって、観察対象全体の像を結像する顕微鏡装置および観察方法並びに顕微鏡装置制御プログラムに関する。
 従来、ES(Embryonic Stem)細胞およびiPS(Induced Pluripotent Stem)細胞などの多能性幹細胞や分化誘導された細胞などを顕微鏡などで撮像し、その画像の特徴を捉えることで細胞の分化状態などを判定する方法が提案されている。
 ES細胞およびiPS細胞などの多能性幹細胞は、種々の組織の細胞に分化する能力を備え、再生医療、薬の開発、および病気の解明などにおいて応用が可能なものとして注目されている。
 一方、上述したように細胞を顕微鏡で撮像する際、高倍率な広視野画像を取得するため、いわゆるタイリング撮影を行うことが提案されている。具体的には、たとえばウェルプレートなどの培養容器の範囲内を結像光学系によって走査し、観察位置毎の画像を撮像した後、その観察位置毎の画像を結合する。
 そして、このようなタイリング撮影を行う場合には、培養容器内の各観察位置においてオートフォーカス制御を行うことによって、ボケの少ない高画質な画像を取得することが提案されている(特許文献1~特許文献4を参照)。
特開2010-191298号公報 特開2006-3653号公報 特開2009-198525号公報 特開2008-46327号公報
 ここで、上述したようにタイリング撮影においてオートフォーカス制御を行う場合、撮影時間の短縮の観点から、オートフォーカス制御を高速かつ高精度に行うことが重要である。
 しかしながら、たとえば培養容器として複数のウェルを有するウェルプレートを使用し、そのウェルプレート全体を結像光学系によって走査し、各観察位置についてオートフォーカス制御を行いながらタイリング撮影をする場合、各ウェルの底部の厚さは、製造上の誤差などに起因してウェル毎に異なる。また、培養容器のステージ上への設置の仕方によっては、ステージに対して培養容器の底面が傾いた状態で設置されて設置誤差が生じ、これにより各ウェルの底面の高さが大きく異なる場合がある。
 一方で、顕微鏡装置におけるオートフォーカス制御は、圧電素子などを用いて対物レンズを移動させることによって行われるが、対物レンズの駆動範囲には限界がある。
 したがって、ウェルの底面(観察対象設置面)の位置を検出してオートフォーカス制御を行う場合、隣接するウェル間で底部の厚さが大きく異なる場合または上述した設置誤差が大きい場合には、各ウェルの底面の位置が大きく異なるため、対物レンズの駆動範囲に収まらずに適切なオートフォーカス制御ができなかったり、合焦するまでに長い時間を要したりする問題がある。
 この問題に対し、培養容器の底部の厚さのばらつきおよび培養容器の設置誤差をプレ計測し、その計測結果に基づいてオートフォーカス制御を行うことが考えられるが、このようなプレ計測を撮影動作(培養容器をステージ上に設置してから走査計測が終了するまでの動作)とは別に行うようにしたのでは、そのプレ計測の時間だけ撮影時間が長くなってしまう。
 本発明は、上記の問題に鑑み、オートフォーカス制御をより効率的に行い、撮影時間の短縮を図ることができる顕微鏡装置および観察方法並びに顕微鏡装置制御プログラムを提供することを目的とする。
 本発明の一態様による顕微鏡装置は、観察対象が収容される容器が設置されるステージと、容器内の観察対象の像を結像させる対物レンズを有する結像光学系と、ステージ上への容器の設置を受け付ける初期セット位置と、結像光学系によって容器内の各観察位置が走査される走査計測位置との間でステージを移動させるステージ駆動部と、走査計測位置において、ステージおよび結像光学系の少なくとも一方を移動させることによって、結像光学系で容器内の各観察位置を走査する走査制御部と、観察位置毎のオートフォーカス制御を行うオートフォーカス制御部と、ステージが初期セット位置から走査計測位置まで移動する間に、容器のフォーカス情報を検出するフォーカス情報検出部とを備え、オートフォーカス制御部が、ステージが走査計測位置に移動した際、フォーカス情報に基づいて、観察位置毎のオートフォーカス制御を行う。
 また、上記本発明の一態様による顕微鏡装置において、フォーカス情報検出部は、フォーカス情報として容器の底面の位置を検出することができる。
 また、上記本発明の一態様による顕微鏡装置において、フォーカス情報検出部は、容器の底面の少なくとも3か所を検出することができる。
 また、上記本発明の一態様による顕微鏡装置においては、ステージ上に設置される容器の種類情報を取得する容器情報取得部を備えることができ、ステージ駆動部は、容器の種類情報に基づいて、初期セット位置から走査計測位置までのステージの移動経路を変更することができる。
 また、上記本発明の一態様による顕微鏡装置においては、容器として、複数のウェルを有するウェルプレートを用いることができる。
 また、上記本発明の一態様による顕微鏡装置においては、結像光学系を挟んで走査の方向に並べて設けられた少なくとも2つの変位センサを備えることができ、オートフォーカス制御部は、結像光学系が容器内の一の観察位置に到達する前に、先行して変位センサによって検出された一の観察位置における容器の鉛直方向の位置と、フォーカス情報とに基づいて、オートフォーカス制御を行うことができる。
 また、上記本発明の一態様による顕微鏡装置において、上記変位センサは、フォーカス情報検出部として兼用することができ、ステージ駆動部は、ステージが初期セット位置から走査計測位置まで移動する間において、変位センサ上をステージが通過するように移動させることができる。
 また、上記本発明の一態様による顕微鏡装置において、フォーカス情報検出部は、上記変位センサとは異なるフォーカス情報検出用の変位センサを有することができる。
 また、上記本発明の一態様による顕微鏡装置において、初期セット位置から走査計測位置までのステージの移動経路は、複数方向の移動経路を有することができる。
 本発明の一態様による観察方法は、観察対象が収容される容器が設置されたステージを、容器の設置を受け付ける初期セット位置からその初期セット位置とは異なる走査計測位置まで移動させ、走査計測位置において、容器内の観察対象の像を結像させる対物レンズを有する結像光学系およびステージの少なくとも一方を移動させることによって、容器内の各観察位置を走査して観察対象を観察する観察方法において、ステージが初期セット位置から走査計測位置まで移動する間に、容器のフォーカス情報を検出し、ステージが走査計測位置に移動した際、フォーカス情報に基づいて、容器内の観察位置毎のオートフォーカス制御を行う。
 本発明の一態様による顕微鏡装置制御プログラムは、観察対象が収容される容器が設置されたステージを、容器の設置を受け付ける初期セット位置から走査計測位置まで移動させる手順と、走査計測位置において、容器内の観察対象の像を結像させる対物レンズを有する結像光学系およびステージの少なくとも一方を移動させることによって、容器内の各観察位置を走査させる手順とをコンピュータに実行させる顕微鏡装置制御ブログラムであって、ステージが初期セット位置から走査計測位置まで移動する間に、容器内のフォーカス情報を検出する手順と、ステージが走査計測位置に移動した際、フォーカス情報に基づいて、容器内の観察位置毎のオートフォーカス制御を行う手順をコンピュータに実行させる。
 本発明の顕微鏡装置および観察方法並びに顕微鏡制御プログラムによれば、ステージが初期セット位置から走査計測位置まで移動する間に、容器のフォーカス情報を検出し、ステージが走査計測位置に移動した際、フォーカス情報に基づいて、容器内の観察位置毎のオートフォーカス制御を行うようにしたので、培養容器の底部の厚さに大きなばらつきがあったり、培養容器の設置誤差があったとしても、オートフォーカス制御をより効率的に行うことができ、かつ撮影動作中にプレ計測などを行わないので、撮影時間の短縮を図ることができる。
本発明の顕微鏡装置の一実施形態を上方から見た概略構成図 本発明の顕微鏡装置の一実施形態の具体的な構成を示す図 ステージの概略構成を示す斜視図 結像光学系の構成を示す模式図 培養容器が6つのウェルを有するウェルプレートである場合のステージの移動経路を示す図 図5に示す移動経路に沿ってステージが移動した際における培養容器の底面の検出場所を示す図 本発明の顕微鏡装置の一実施形態を用いた顕微鏡観察システムの概略構成を示すブロック図 培養容器内における観察位置の走査位置を示す図 本発明の顕微鏡装置の一実施形態を用いた顕微鏡観察システムの作用を説明するためのフローチャート ステージが往路移動している場合において使用する変位センサを説明するための図 ステージが復路移動している場合において使用する変位センサを説明するための図 本発明の顕微鏡装置のその他の実施形態を用いた顕微鏡観察システムの概略構成を示すブロック図 培養容器が24ウェルのウェルプレートである場合のステージの移動経路を示す図 初期設定用の変位センサを設けた顕微鏡装置の一例を示す図
 以下、本発明の顕微鏡装置の一実施形態を用いた顕微鏡観察システムについて、図面を参照しながら詳細に説明する。図1は、本実施形態の顕微鏡観察システムにおける顕微鏡装置10を上方から見た図である。
 顕微鏡装置10は、観察対象が収容された培養容器50(本発明の容器に相当する)が設置されたステージ51を、結像光学系14に対してX方向およびY方向に移動させることによって、培養容器50内の各観察位置を走査し、各観察位置の像を結像光学系14によって結像する。ここで、X方向およびY方向は、それぞれ、結像光学系14の光軸方向に直交する。また、X方向およびY方向は、互いに直交する。
 そして、本実施形態の顕微鏡装置10においては、図1に示すように、初期セット位置P1と、走査計測位置P2とが予め設定されており、ステージ51は、まず、初期セット位置P1に配置された後、走査計測位置P2まで移動する。
 初期セット位置P1は、ステージ51上への培養容器50の設置を受け付ける部分である。すなわち、ステージ51は、まず初期セット位置P1に配置され、ユーザは、初期セット位置P1に配置されたステージ51上に培養容器50を設置する。初期セット位置P1は、図1に示すように、走査計測位置P2とは別の位置に設けられている。本実施形態の顕微鏡装置10においては、走査計測位置P2にヒートガラスGが設置されているため、走査計測位置P2に配置されたステージ51上に、培養容器50を直接設置することができない。
 そこで、走査計測位置P2とは異なる場所に設けられた初期セット位置P1までステージ51を一旦退避させ、ステージ51上に培養容器50を設置可能なように構成されている。なお、ヒートガラスGは、ステージ51の上方に設けられ、所定の温度に温められている。このヒートガラスGを用いてインキュベータなどから取り出された培養容器50を温めることによって、培養容器50が結露などによって曇るのを防止することができる。
 走査計測位置P2においては、上述したようにステージ51が、結像光学系14に対してX方向およびY方向に移動し、これにより培養容器50内の各観察位置が結像光学系14によって走査される。
 図2は、顕微鏡装置10の具体的な構成を示す図である。本実施形態の顕微鏡装置10は、観察対象である培養された細胞の位相差画像を撮像する。顕微鏡装置10は、具体的には、図1に示すように、白色光を出射する白色光源11と、コンデンサレンズ12と、スリット板13と、結像光学系14と、結像光学系駆動部15と、検出部18と、撮像素子19とを備えている。白色光源11、コンデンサレンズ12、スリット板13および撮像素子19は、図1のZ方向に延びる結像光学系14の光軸上に配置される。なお、図2においては、上述したヒートガラスGを図示省略している。
 図3は、ステージ51の一例を示す図である。ステージ51の中央には、矩形の開口51aが形成されている。この開口51aを形成する枠部材の上に培養容器50が設置され、培養容器50内の細胞の位相差像が開口51aを通過するように構成されている。
 本実施形態においては、培養容器50として、細胞が収容される複数のウェルを備えたウェルプレートを用いる。ただし、ウェルプレートに限らず、その他シャーレまたはディッシュなどを用いてもよい。また、培養容器50に収容される細胞としては、iPS細胞およびES細胞といった多能性幹細胞、幹細胞から分化誘導された神経、皮膚、心筋および肝臓の細胞、並びに人体から取り出された皮膚、網膜、心筋、血球、神経および臓器の細胞などがある。
 スリット板13には、白色光源11から出射された白色光を遮光する遮光板に対して白色光を透過するリング形状のスリットが設けられる。白色光がスリットを通過することによってリング状の照明光Lが形成される。
 図4は、結像光学系14の詳細な構成を示す図である。結像光学系14は、図4に示すように、位相差レンズ14aおよび結像レンズ14dを備えている。そして、位相差レンズ14aは、対物レンズ14bおよび位相板14cを備えている。位相板14cは、照明光Lの波長に対して透明な透明板に対して位相リングを形成したものである。なお、上述したスリット板13のスリットの大きさは、位相板14cの位相リングと共役な関係にある。
 位相リングは、入射された光の位相を1/4波長ずらす位相膜と、入射された光を減光する減光フィルタとがリング状に形成される。位相リングに入射された直接光は、位相リングを通過することによって位相が1/4波長ずれ、かつ、その明るさが弱められる。一方、観察対象によって回折された回折光は大部分が位相板14cの透明板を通過し、その位相および明るさは変化しない。
 対物レンズ14bを有する位相差レンズ14aは、図2に示す結像光学系駆動部15によって対物レンズ14bの光軸方向に移動する。なお、本実施形態においては、対物レンズ14bと光軸方向とZ方向(鉛直方向)とは同じ方向である。位相差レンズ14aのZ方向への移動によってオートフォーカス制御が行われ、撮像素子19によって撮像される位相差画像のコントラストが調整される。また、本実施形態においては、対物レンズ14bを光軸方向に移動させることによってオートフォーカス制御を行うようにしたが、これに限らず、ステージ51をZ方向に移動させることによって、オートフォーカス制御を行うようにしてもよい。
 また、位相差レンズ14aの倍率を変更可能な構成としてもよい。具体的には、異なる倍率を有する位相差レンズ14aまたは結像光学系14を交換可能に構成するようにしてもよい。位相差レンズ14aまたは結像光学系14の交換は、自動的に行うようにしてもよいし、ユーザが手動で行うようにしてもよい。
 結像光学系駆動部15は、たとえば圧電素子のようなアクチュエータを備え、後述するオートフォーカス制御部22から出力された制御信号に基づいて駆動する。なお、結像光学系駆動部15は、位相差レンズ14aを通過した位相差画像をそのまま通過させる構成となっている。また、結像光学系駆動部15の構成は圧電素子に限らず、位相差レンズ14aをZ方向に移動可能であればよく、その他の公知な構成を用いることができる。
 結像レンズ14dは、位相差レンズ14aおよび結像光学系駆動部15を通過した位相差画像が入射され、入射された位相差画像を撮像素子19に結像する。
 撮像素子19は、結像レンズ14dによって結像された位相差画像を撮像する。撮像素子19としては、CCD(Charge-Coupled Device)イメージセンサやCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサなどが用いられる。撮像素子としては、RGB(Red Green Blue)のカラーフィルタが設けられた撮像素子を用いてもよいし、モノクロの撮像素子を用いるようにしてもよい。
 検出部18は、ステージ51に設置された培養容器50の底面のZ方向(鉛直方向)の位置を検出する。検出部18は、具体的には、第1の変位センサ18aおよび第2の変位センサ18bを備える。
 第1の変位センサ18aおよび第2の変位センサ18bは、結像光学系14(対物レンズ14b)を挟んで、X方向(走査方向)に並べて設けられている。本実施形態における第1の変位センサ18aおよび第2の変位センサ18bはレーザ変位計であり、培養容器50にレーザ光を照射し、その反射光を検出することによって、培養容器50の底面のZ方向の位置を検出する。なお、培養容器50の底面とは、培養容器50の底部と観察対象である細胞との境界面であり、すなわち観察対象設置面である。
 検出部18によって検出された培養容器50のZ方向の位置情報は、後述するオートフォーカス制御部22に出力され、オートフォーカス制御部22は、入力された位置情報に基づいて、結像光学系駆動部15を制御し、オートフォーカス制御を行う。
 より具体的には、本実施形態の顕微鏡装置10においては、結像光学系14がステージ51上の培養容器50の所定の観察位置に到達する前に、先行してその観察位置における培養容器50のZ方向の位置情報を第1の変位センサ18aまたは第2の変位センサ18bによって検出する。そして、結像光学系14が、上記観察位置に到達した際に、第1の変位センサ18aまたは第2の変位センサ18bによって検出された位置情報に基づいて、結像光学系駆動部15を制御し、オートフォーカス制御を行う。
 ここで、上述したように培養容器50のZ方向に位置情報に基づいて、結像光学系駆動部15を制御してオートフォーカス制御を行う際、圧電素子などからなる結像光学系駆動部15の駆動範囲には限界がある。一方で、ウェルプレートなどのプラスチック製の培養容器50は、その底部の厚さの製造上のばらつきによって各ウェルの底面の位置にばらつきが生じ、結像光学系駆動部15の駆動範囲内では、適切なオートフォーカス制御をできない場合がある。また、培養容器50のステージ51上への設置の仕方によっては、ステージ51に対して培養容器50の底面が傾いた状態で設置されて設置誤差が生じ、結像光学系駆動部15の駆動範囲内では、適切なオートフォーカス制御をできない場合がある。
 そこで、本実施形態においては、上述したような培養容器50の底部の厚さのばらつきおよび培養容器50の設置誤差を予め計測し、その計測結果に基づいて、結像光学系駆動部15自体をZ方向に移動させることによってオートフォーカス制御の初期設定を行い、結像光学系駆動部15の駆動範囲内において適切にオートフォーカス制御可能なようにする。
 具体的には、本実施形態の顕微鏡装置10においては、図2に示すように、結像光学系14および結像光学系駆動部15並びに検出部18が、保持部16に設置されて保持されている。そして、保持部16には初期調整機構17が設けられており、初期調整機構17によって保持部16がZ方向に移動する。初期調整機構17は、たとえばパルスモータなどを備える。本実施形態においては、上述した計測結果に基づいて、初期調整機構17を制御することによってオートフォーカス制御の初期設定を行う。
 ただし、上述したように培養容器50の底部の厚さのばらつきなどの計測を、撮影動作(培養容器50をステージ51上に設置してから走査計測が終了するまでの動作)とは別に行うようにしたのでは、その計測時間だけ余計に長くなってしまう。
 そこで、本実施形態においては、培養容器50の底部の厚さのばらつきおよび培養容器50の設置誤差の計測を撮影動作の間に行う。具体的には、ステージ51が初期セット位置P1から走査計測位置P2まで移動する間に、培養容器50の底部の厚さのばらつきおよび培養容器50の設置誤差の計測を行う。図5は、培養容器50が、6つのウェルを有するウェルプレートである場合のステージ51の移動経路を示す。図5に示すように、初期セット位置P1から走査計測位置P2までのステージ51の移動経路は、複数方向の移動経路を有する。
 そして、ステージ51は、初期セット位置P1から走査計測位置P2まで移動する間に、第1の変位センサ18aと第2の変位センサ18bの上方を通過するように移動する。これによりステージ51上に設置された培養容器50の底面が、第1の変位センサ18aおよび第2の変位センサ18bによって検出される。なお、本実施形態においては、検出部18が、本発明のフォーカス情報検出部に相当する。本実施形態において、フォーカス情報とは、培養容器50の底面のZ方向の位置情報である。
 具体的には、図6に示すように、培養容器50が、図5に示すPP1の位置まで移動した場合には、培養容器50のウェルW1の底面のZ方向の位置情報が第2の変位センサ18bによって検出され、かつ、ウェルW3の底面のZ方向の位置情報が第1の変位センサ18aによって検出される。そして、培養容器50が、図5に示すPP2の位置まで移動した場合には、培養容器50のウェルW4の底面のZ方向の位置情報が第2の変位センサ18bによって検出され、かつ、ウェルW6の底面のZ方向の位置情報が第1の変位センサ18aによって検出される。次いで、培養容器50が、図5に示すPP3の位置まで移動した場合には、培養容器50のウェルW5の底面のZ方向の位置情報が第2の変位センサ18bによって検出される。本実施形態においては、ウェルW2の底面のZ方向の位置情報は、第1の変位センサ18aおよび第2の変位センサ18bのいずれにも検出されない。
 このように、培養容器50の底面のZ方向の位置情報の少なくとも3か所を検出することが好ましく、より好ましくは4か所以上である。また、本実施形態のように培養容器50としてウェルプレートを用いる場合には、少なくとも3つのウェルの底面のZ方向の位置情報を検出することが好ましく、より好ましくは4つ以上のウェルである。
 ステージ51が初期セット位置P1から走査計測位置P2まで移動する間に第1の変位センサ18aおよび第2の変位センサ18bによって検出された培養容器50の底面のZ方向の位置情報は、オートフォーカス制御部22に出力される。オートフォーカス制御部22は、入力された培養容器50の底面のZ方向の位置情報に基づいて、培養容器50内の各観察位置におけるオートフォーカス制御の中心値を算出する。なお、本実施形態におけるオートフォーカス制御の中心値とは、対物レンズ14bを光軸方向に移動させてオートフォーカス制御を行う際における対物レンズ14bのZ方向の初期位置を示す値である。
 本実施形態においては、上述したように5つのウェルの底面のZ方向の位置情報を検出するので、この5つのZ方向の位置情報を用いて、補間演算などを行うことによって、培養容器50内の各観察位置におけるオートフォーカス制御の中心値を算出する。なお、オートフォーカス制御部22が、5つのZ方向の位置情報を用いて、培養容器50全体の底面を推定し、その推定された培養容器50全体の底面に基づいて、各観察位置の中心値を算出するようにしてもよい。
 オートフォーカス制御部22は、培養容器50の各観察位置のオートフォーカス制御を行う場合、結像光学系14が各観察位置に到達した際、初期設定として、上述したように算出された各観察位置のオートフォーカス制御の中心値を用いて初期調整機構17を制御し、これにより保持部16をZ方向に移動させる。具体的には、対物レンズ14bのZ方向の位置が、上記中心値の位置となるように保持部16をZ方向に移動させる。
 次いで、上述したように観察位置に到達する前に先行して第1の変位センサ18aまたは第2の変位センサ18bによって検出された位置情報に基づいて、結像光学系駆動部15を制御し、オートフォーカス制御を行う。
 なお、本実施形態においては、培養容器50内の全ての観察位置についてオートフォーカス制御を行うが、必ずしもこれに限らず、たとえば2以上の観察位置毎にオートフォーカス制御を行うようにしてもよい。本発明における「観察位置毎にオートフォーカス制御を行う」とは、このような2以上の観察位置毎にオートフォーカス制御を行う方法も含む。
 次に、顕微鏡装置10を制御する顕微鏡制御装置20の構成について説明する。図7は、本実施形態の顕微鏡観察システムの構成を示すブロック図である。なお、顕微鏡装置10については、顕微鏡制御装置20の各部により制御される一部の構成のブロック図を示している。
 顕微鏡制御装置20は、顕微鏡装置10全体を制御し、特に、オートフォーカス制御部22、走査制御部23および表示制御部24を備える。
 顕微鏡制御装置20は、中央処理装置、半導体メモリおよびハードディスクなどを備えたコンピュータから構成され、ハードディスクに本発明の観察装置制御プログラムの一実施形態がインストールされている。そして、この観察装置制御プログラムが中央処理装置によって実行されることによって、図7に示すオートフォーカス制御部22、走査制御部23および表示制御部24が機能する。
 オートフォーカス制御部22は、上述したようにステージ51が初期セット位置P1から走査計測位置P2まで移動する間に第1の変位センサ18aおよび第2の変位センサ18bによって検出された培養容器50のZ方向の位置情報に基づいて、培養容器50内の各観察位置のオートフォーカス制御の中心値を算出する。そして、オートフォーカス制御部22は、培養容器50内の各観察位置のオートフォーカス制御の際、その算出した中心値に基づいて、初期調整機構17を制御して保持部16をZ方向に移動させて初期設定を行う。
 さらに、オートフォーカス制御部22は、培養容器50内の各観察位置のオートフォーカス制御の際、上述した初期設定を行った後に、第1の変位センサ18aまたは第2の変位センサ18bによって先行して検出された培養容器50の各観察位置のZ方向の位置情報に基づいて、結像光学系駆動部15を制御する。そして、結像光学系駆動部15の駆動によって結像光学系14の対物レンズ14bが光軸方向に移動し、最終的なオートフォーカス制御が行われる。
 走査制御部23は、ステージ駆動部21を駆動制御し、これによりステージ51をX-Y平面内において移動させる。ステージ駆動部21は、圧電素子などを有するアクチュエータから構成される。
 走査制御部23は、ステージ駆動部21を駆動制御することによって、上述したようにステージ51を初期セット位置P1から走査計測位置P2まで移動させ、走査計測位置P2において、ステージ51をX方向およびY方向に移動させ、培養容器50内における観察位置を2次元状に走査し、各観察位置の位相差画像を撮像する。図8は、培養容器50内における観察位置の走査位置を走査経路Mで示した図である。
 図8に示すように、ステージ51のX方向およびY方向の移動によって走査開始位置Sから走査終了位置Eまで走査経路Mに沿って結像光学系14が走査される。すなわち、ステージ51のX方向についての往復移動とY方向への移動を繰り返し行うことによって、培養容器50内の観察位置が2次元状に走査される。
 次に、図7に戻り、表示制御部24は、顕微鏡装置10によって撮像された各観察位置の位相差画像を結合することによって、1枚の合成位相差画像を生成し、その合成位相差画像を表示装置30に表示させる。
 表示装置30は、上述したように表示制御部24によって生成された合成位相差画像を表示し、たとえば液晶ディスプレイなどを備える。また、表示装置30をタッチパネルによって構成し、入力装置40と兼用するようにしてもよい。
 入力装置40は、マウスやキーボードなどを備え、ユーザによる種々の設定入力を受け付ける。本実施形態の入力装置40は、たとえば位相差レンズ14aの倍率の変更指示およびステージの移動速度の変更指示などの設定入力を受け付ける。
 次に、本実施形態の顕微鏡観察システムの作用について、図9に示すフローチャートを参照しながら説明する。
 まず、ステージ51が初期セット位置P1に移動して設置される(S10)。そして、観察対象である細胞が収容された培養容器50が、ステージ51上に設置される(S12)。
 初期セット位置P1において、ステージ51上の培養容器50が設置された後、ステージ51は、初期セット位置P1から走査計測位置P2まで移動する(S14)。具体的には、ステージ51は、図5に示した移動経路に沿って移動し、図8に示す培養容器50内の走査開始位置Sが、第2の変位センサ18b上に位置するところまで移動する。
 また、ステージ51が初期セット位置P1から走査計測位置P2まで移動する間に、上述したように第1の変位センサ18aおよび第2の変位センサ18bによって、培養容器50の底面のZ方向の位置が検出される(S16)。
 S16において検出された培養容器50の底面のZ方向の位置情報は、オートフォーカス制御部22によって取得され、オートフォーカス制御部22は、入力されたZ方向の位置情報に基づいて、各観察位置のオートフォーカス制御の中心値を算出する(S18)。
 次いで、走査計測位置P2において、ステージ51がX方向に移動することによって走査計測が開始される(S20)。具体的には、まず、最初の観察位置について、オートフォーカス制御部22が、S18で算出された中心値に基づいて初期調整機構17を制御し、保持部16をZ方向に移動させて初期設定を行う(S22)。
 そして、オートフォーカス制御部22は、上述した初期設定を行った後に、第1の変位センサ18aまたは第2の変位センサ18bによって先行して検出された最初の観察位置のZ方向の位置情報に基づいて、結像光学系駆動部15を制御し、最終的なオートフォーカス制御を行う(S24)。そして、結像光学系14によって最初の観察位置の位相差画像が結像され、撮像素子19によって撮像される(S26)。撮像素子19によって撮像された最初の観察位置の位相差画像は、表示制御部24に出力される。
 そして、全ての観察位置が走査されたか否かが判定され(S28)、全ての観察位置が走査されていない場合には(S28,NO)、ステージ51がさらにX方向およびY方向に移動し、S22~S26までの処理が繰り返して行われる。本実施形態においては、上述したように各観察位置について、第1の変位センサ18aまたは第2の変位センサ18bによって先行して培養容器50の底面のZ方向の位置検出が行われ、位置検出が行われた観察位置まで結像光学系14が移動した時点において、位相差画像の撮像が行われる。すなわち、ある観察位置の位相差画像の撮像と、その観察位置よりも走査方向について前側の位置における培養容器50のZ方向の位置検出とが並行して行われる。また、図10の矢印方向にステージ51が往路移動している場合には、第2の変位センサ18bによって培養容器50の底面のZ方向の位置が検出され、図11の矢印方向にステージ51が復路移動している場合には、第1の変位センサ18aによって培養容器50の底面のZ方向の位置が検出される。なお、上述したオートフォーカス制御の中心値に基づく初期設定については、結像光学系14が観察位置に到達する前に行うようにしてもよいし、結像光学系14が観察位置に到達した時点において行うようにしてもよい。
 そして、ステージ51がX方向およびY方向に移動することによって、結像光学系14によって全ての観察位置が走査された場合には(S28,YES)、走査計測を終了する。
 次いで、表示制御部24によって各観察位置の位相差画像が結合されて合成位相差画像を生成され(S30)、その生成された合成位相差画像が表示装置30に表示される(S32)。
 上記実施形態の顕微鏡観察システムによれば、ステージ51が初期セット位置P1から走査計測位置P2まで移動する間に、培養容器50の底面のZ方向の位置を検出し、ステージ51が走査計測位置に移動した際、その検出した培養容器50の底面のZ方向の位置に基づいてオートフォーカス制御の初期設定を行うようにしたので、培養容器の底部の厚さに大きなばらつきがあったり、培養容器の設置誤差があったとしても、オートフォーカス制御をより効率的に行うことができ、かつ撮影動作中にプレ計測などを行わないので、撮影時間の短縮を図ることができる。
 なお、上記実施形態においては、6ウェルのウェルプレートを用いるようにしたが、その他12ウェル、24ウェル、48ウェル、96ウェルなどのウェルプレートを用いるようにしてもよい。その場合、できるだけウェルプレートの全体に亘って配置された複数のウェルの底面を検出するため、初期セット位置P1から走査計測位置P2までのステージ51の移動経路をウェルプレートの種類(容器の種類)に応じて変更するようにしてもよい。具体的には、図12に示すように、顕微鏡制御装置20において、容器の種類情報を取得する容器情報取得部25をさらに設けるようにしてもよい。そして、容器情報取得部25によって取得された容器の種類の情報に基づいて、走査制御部23がステージ駆動部21を制御し、ステージ51の移動経路を変更するようにしてもよい。
 なお、容器の種類の情報については、たとえばユーザが入力装置40を用いて設定入力するようにしてもよいし、培養容器50に対して、培養容器50の種類の情報を記憶した記憶媒体を設け、その記憶媒体から培養容器50の種類の情報を読み出して取得するようにしてもよい。上記記憶媒体としては、バーコードおよびIC(Integrated Circuit)チップなどがある。
 図13は、培養容器50として24ウェルのウェルプレートを用いた場合におけるステージ51(培養容器50)の移動経路を示した図である。この場合のステージ51の移動経路も複数方向の移動経路からなる。24ウェルのウェルプレートを用いた場合、まず、初期セット位置P1から位置PP4まで培養容器50が到達した時点において、第1の変位センサ18aおよび第2の変位センサ18bによって2つのウェルの底面のZ方向の位置が検出される。その後、位置PP5、位置PP6および位置PP7までそれぞれ培養容器50が到達した時点において、第1の変位センサ18aおよび第2の変位センサ18bによって2つのウェルの底面のZ方向の位置が順次検出される。図13に示すような移動経路でステージ51を移動させることによって、ウェルプレートの全体に亘って配置された複数のウェルの底面を検出することができる。これにより、各観察位置のオートフォーカス制御の中心値を算出する際の補間の精度を向上させることができる。
 また、上記実施形態においては、初期セット位置P1から走査計測位置P2までステージ51が移動する際、第1の変位センサ18aおよび第2の変位センサ18bによって培養容器50の底面のZ方向の位置を検出するようにしたが、これに限らず、図14に示すように、第1の変位センサ18aおよび第2の変位センサ18bと別に、初期設定用(フォーカス情報検出用)の変位センサ60を設けるようにしてもよい。そして、初期セット位置P1から走査計測位置P2までステージ51が移動する際、ステージ51が変位センサ60上を通過するようにし、これにより変位センサ60によって培養容器50の底面のZ方向の位置を検出するようにしてもよい。この場合、変位センサ60が、本発明のフォーカス情報検出部に相当する。
 また、上記実施形態においては、ステージ51を移動させることによって、培養容器50内の観察位置を走査するようにしたが、これに限らず、結像光学系14、検出部18および撮像素子19などからなる撮影系を移動させるようにしてもよい。また、ステージ51と撮影系との両方を移動させるようにしてもよい。
 また、上記実施形態は、本発明を位相差顕微鏡に適用したが、本発明は、位相差顕微鏡に限らず、微分干渉顕微鏡および明視野顕微鏡などのその他の顕微鏡に適用するようにしてもよい。
10  顕微鏡装置
11  白色光源
12  コンデンサレンズ
13  スリット板
14  結像光学系
14a 位相差レンズ
14b 対物レンズ
14c 位相板
14d 結像レンズ
15  結像光学系駆動部
16  保持部
17  初期調整機構
18  検出部
18a 第1の変位センサ
18b 第2の変位センサ
19  撮像素子
20  顕微鏡制御装置
21  ステージ駆動部
22  オートフォーカス制御部
23  走査制御部
24  表示制御部
25  容器情報取得部
30  表示装置
40  入力装置
50  培養容器
51  ステージ
51a 開口
60  初期設定用の変位センサ
E   走査終了位置
G   ヒートガラス
L   照明光
M   走査経路
P1  初期セット位置
P2  走査計測位置
PP1~PP7 培養容器の位置
S   走査開始位置
W1~W6   ウェル

Claims (11)

  1.  観察対象が収容される容器が設置されるステージと、
     前記容器内の前記観察対象の像を結像させる対物レンズを有する結像光学系と、
     前記ステージ上への前記容器の設置を受け付ける初期セット位置と、前記結像光学系によって前記容器内の各観察位置が走査される走査計測位置との間で前記ステージを移動させるステージ駆動部と、
     前記走査計測位置において、前記ステージおよび前記結像光学系の少なくとも一方を移動させることによって、前記結像光学系で前記容器内の各観察位置を走査する走査制御部と、
     前記観察位置毎のオートフォーカス制御を行うオートフォーカス制御部と、
     前記ステージが前記初期セット位置から前記走査計測位置まで移動する間に、前記容器のフォーカス情報を検出するフォーカス情報検出部とを備え、
     前記オートフォーカス制御部が、前記ステージが前記走査計測位置に移動した際、前記フォーカス情報に基づいて、前記観察位置毎のオートフォーカス制御を行う顕微鏡装置。
  2.  前記フォーカス情報検出部が、前記フォーカス情報として前記容器の底面の位置を検出する請求項1記載の顕微鏡装置。
  3.  前記フォーカス情報検出部が、前記容器の底面の少なくとも3か所を検出する請求項2記載の顕微鏡装置。
  4.  前記ステージ上に設置される前記容器の種類情報を取得する容器情報取得部を備え、
     前記ステージ駆動部が、前記容器の種類情報に基づいて、前記初期セット位置から前記走査計測位置までの前記ステージの移動経路を変更する請求項1から3いずれか1項記載の顕微鏡装置。
  5.  前記容器が、複数のウェルを有するウェルプレートである請求項1から4いずれか1項記載の顕微鏡装置。
  6.  前記結像光学系を挟んで前記走査の方向に並べて設けられた少なくとも2つの変位センサを備え、
     前記オートフォーカス制御部が、前記結像光学系が前記容器内の一の観察位置に到達する前に、先行して前記変位センサによって検出された前記一の観察位置における前記容器の鉛直方向の位置と、前記フォーカス情報とに基づいて、前記オートフォーカス制御を行う請求項1から5いずれか1項記載の顕微鏡装置。
  7.  前記変位センサが、前記フォーカス情報検出部として兼用され、
     前記ステージ駆動部が、前記ステージが前記初期セット位置から前記走査計測位置まで移動する間において、前記変位センサ上を前記ステージが通過するように移動させる請求項6記載の顕微鏡装置。
  8.  前記フォーカス情報検出部が、前記変位センサとは異なるフォーカス情報検出用の変位センサを有する請求項6記載の顕微鏡装置。
  9.  前記初期セット位置から前記走査計測位置までの前記ステージの移動経路が、複数方向の移動経路を有する請求項1から8いずれか1項記載の顕微鏡装置。
  10.  観察対象が収容される容器が設置されたステージを、前記容器の設置を受け付ける初期セット位置から該初期セット位置とは異なる走査計測位置まで移動させ、前記走査計測位置において、前記容器内の前記観察対象の像を結像させる対物レンズを有する結像光学系および前記ステージの少なくとも一方を移動させることによって、前記容器内の各観察位置を走査して前記観察対象を観察する観察方法において、
     前記ステージが前記初期セット位置から前記走査計測位置まで移動する間に、前記容器のフォーカス情報を検出し、
     前記ステージが前記走査計測位置に移動した際、前記フォーカス情報に基づいて、前記容器内の観察位置毎のオートフォーカス制御を行う観察方法。
  11.  観察対象が収容される容器が設置されたステージを、前記容器の設置を受け付ける初期セット位置から走査計測位置まで移動させる手順と、前記走査計測位置において、前記容器内の前記観察対象の像を結像させる対物レンズを有する結像光学系および前記ステージの少なくとも一方を移動させることによって、前記容器内の各観察位置を走査させる手順とをコンピュータに実行させる顕微鏡装置制御ブログラムであって、
     前記ステージが前記初期セット位置から前記走査計測位置まで移動する間に、前記容器内のフォーカス情報を検出する手順と、
     前記ステージが前記走査計測位置に移動した際、前記フォーカス情報に基づいて、前記容器内の観察位置毎のオートフォーカス制御を行う手順を前記コンピュータに実行させる顕微鏡装置制御プログラム。
PCT/JP2017/044456 2017-02-27 2017-12-12 顕微鏡装置および観察方法並びに顕微鏡装置制御プログラム WO2018154924A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197020871A KR102236184B1 (ko) 2017-02-27 2017-12-12 현미경 장치 및 관찰 방법과, 현미경 장치 제어 프로그램
EP17897973.8A EP3588162B1 (en) 2017-02-27 2017-12-12 Microscopic device, observation method, and control program for microscopic device
JP2019501068A JP6815477B2 (ja) 2017-02-27 2017-12-12 顕微鏡装置および観察方法並びに顕微鏡装置制御プログラム
US16/515,555 US11243386B2 (en) 2017-02-27 2019-07-18 Microscope apparatus, observation method, and microscope apparatus-control program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-034680 2017-02-27
JP2017034680 2017-02-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/515,555 Continuation US11243386B2 (en) 2017-02-27 2019-07-18 Microscope apparatus, observation method, and microscope apparatus-control program

Publications (1)

Publication Number Publication Date
WO2018154924A1 true WO2018154924A1 (ja) 2018-08-30

Family

ID=63253177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044456 WO2018154924A1 (ja) 2017-02-27 2017-12-12 顕微鏡装置および観察方法並びに顕微鏡装置制御プログラム

Country Status (5)

Country Link
US (1) US11243386B2 (ja)
EP (1) EP3588162B1 (ja)
JP (1) JP6815477B2 (ja)
KR (1) KR102236184B1 (ja)
WO (1) WO2018154924A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203699A1 (ja) * 2019-04-02 2020-10-08 富士フイルム株式会社 温度制御装置、方法およびプログラム、並びに観察システム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003271A1 (ja) * 2017-06-26 2019-01-03 オリンパス株式会社 細胞観察システム
JP6928653B2 (ja) 2017-06-26 2021-09-01 オリンパス株式会社 細胞観察システム
WO2019159326A1 (ja) * 2018-02-16 2019-08-22 株式会社ニコン 算出装置、算出プログラム及び算出方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003653A (ja) 2004-06-17 2006-01-05 Olympus Corp 生体試料観察システム
JP2008046327A (ja) 2006-08-15 2008-02-28 Yokogawa Electric Corp 合焦補正方法
JP2009198525A (ja) 2008-02-19 2009-09-03 Yokogawa Electric Corp 創薬スクリーニング装置
JP2010191298A (ja) 2009-02-19 2010-09-02 Nikon Corp 顕微鏡
JP2011095685A (ja) * 2009-11-02 2011-05-12 Sony Corp 顕微鏡システム及び顕微鏡システムの制御方法
JP2017015978A (ja) * 2015-07-02 2017-01-19 キヤノン株式会社 画像取得装置および挟持部材

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197784A (ja) * 1997-01-10 1998-07-31 Sankyo Seiki Mfg Co Ltd オートフォーカス装置
US20030036855A1 (en) * 1998-03-16 2003-02-20 Praelux Incorporated, A Corporation Of New Jersey Method and apparatus for screening chemical compounds
KR20030051624A (ko) * 2000-11-22 2003-06-25 가부시키가이샤 니콘 노광장치, 노광방법 및 디바이스 제조방법
JP3990177B2 (ja) * 2002-03-29 2007-10-10 独立行政法人放射線医学総合研究所 顕微鏡装置
US6657216B1 (en) * 2002-06-17 2003-12-02 Nanometrics Incorporated Dual spot confocal displacement sensor
JP4923541B2 (ja) * 2005-11-30 2012-04-25 株式会社ニコン 顕微鏡
KR20080046327A (ko) 2006-11-22 2008-05-27 남상우 교통수단에 마련된 게임 좌석의 온라인 예약방법 및 그홍보방법
JP5712342B2 (ja) * 2008-11-27 2015-05-07 ナノフォトン株式会社 光学顕微鏡、及びスペクトル測定方法
JP6173154B2 (ja) * 2013-10-01 2017-08-02 オリンパス株式会社 顕微鏡システム
JP6554757B2 (ja) * 2014-02-12 2019-08-07 株式会社ニコン 位相差顕微鏡
JP6513507B2 (ja) 2015-06-30 2019-05-15 富士フイルム株式会社 位相差顕微鏡および撮像方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003653A (ja) 2004-06-17 2006-01-05 Olympus Corp 生体試料観察システム
JP2008046327A (ja) 2006-08-15 2008-02-28 Yokogawa Electric Corp 合焦補正方法
JP2009198525A (ja) 2008-02-19 2009-09-03 Yokogawa Electric Corp 創薬スクリーニング装置
JP2010191298A (ja) 2009-02-19 2010-09-02 Nikon Corp 顕微鏡
JP2011095685A (ja) * 2009-11-02 2011-05-12 Sony Corp 顕微鏡システム及び顕微鏡システムの制御方法
JP2017015978A (ja) * 2015-07-02 2017-01-19 キヤノン株式会社 画像取得装置および挟持部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3588162A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203699A1 (ja) * 2019-04-02 2020-10-08 富士フイルム株式会社 温度制御装置、方法およびプログラム、並びに観察システム

Also Published As

Publication number Publication date
EP3588162A4 (en) 2020-03-18
US11243386B2 (en) 2022-02-08
JP6815477B2 (ja) 2021-01-20
US20190339498A1 (en) 2019-11-07
KR20190090871A (ko) 2019-08-02
JPWO2018154924A1 (ja) 2019-12-12
EP3588162A1 (en) 2020-01-01
EP3588162B1 (en) 2022-12-21
KR102236184B1 (ko) 2021-04-02

Similar Documents

Publication Publication Date Title
WO2018154924A1 (ja) 顕微鏡装置および観察方法並びに顕微鏡装置制御プログラム
US10761295B2 (en) Image focusing device, image focusing method and computer readable medium with image focusing control program
JP6619315B2 (ja) 観察装置および方法並びに観察装置制御プログラム
JP6861842B2 (ja) 観察装置および方法並びに観察装置制御プログラム
WO2018061635A1 (ja) 観察装置および方法並びに観察装置制御プログラム
JP6698421B2 (ja) 観察装置および方法並びに観察装置制御プログラム
JP6848086B2 (ja) 観察装置および方法並びに観察装置制御プログラム
KR102066807B1 (ko) 세포 관찰 장치 및 방법
JP6707207B2 (ja) 観察装置、観察方法および観察プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897973

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197020871

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019501068

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017897973

Country of ref document: EP