JP2010191298A - 顕微鏡 - Google Patents

顕微鏡 Download PDF

Info

Publication number
JP2010191298A
JP2010191298A JP2009037158A JP2009037158A JP2010191298A JP 2010191298 A JP2010191298 A JP 2010191298A JP 2009037158 A JP2009037158 A JP 2009037158A JP 2009037158 A JP2009037158 A JP 2009037158A JP 2010191298 A JP2010191298 A JP 2010191298A
Authority
JP
Japan
Prior art keywords
observation
relative position
observation point
optical axis
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009037158A
Other languages
English (en)
Inventor
Takaaki Okamoto
高明 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009037158A priority Critical patent/JP2010191298A/ja
Publication of JP2010191298A publication Critical patent/JP2010191298A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

【課題】正確な合焦動作が素早くできる顕微鏡を提供すること。
【解決手段】対物レンズ4と、予め決められた複数の観察ポイントを有する被検体2を載置するステージ3と、オートフォーカス装置5と、駆動制御手段7,8と、第N番目の観察ポイントに、駆動制御手段7,8により対物レンズ4およびステージ3の相対位置が駆動制御された際に、オートフォーカス装置5からフォーカスエラー信号が出力された場合には、既に設定が終了している複数の観察ポイントのフォーカス信号に基づき第N番目の観察ポイントの光軸方向の相対位置を算出する処理手段10とを有し、処理手段10で算出された第N番目の観察ポイントの光軸方向の相対位置の信号に基づき駆動制御手段7,8が制御される顕微鏡。
【選択図】図1

Description

本発明は、予め決められた複数の観察ポイントを有する被検体、例えばウェルプレート、予め決められた複数の観察ポイントを有するプレパラートや培養容器などを観察する顕微鏡に関するものである。
例えば特許文献1の従来技術の生体試料観察システムは、例えば複数のウェルの形成されたウェルプレートに対して、各ウェルの試料を撮像する場合に、ウェルプレート底面の四隅のウェルと中央のウェルとの5つの合焦位置のデータに基づき、その他のウェルに対する撮像装置の焦点位置を算出し、各ウェルの試料を撮像するというものである。
すなわち、本従来技術では、ウェルプレートの5つの撮像面はオートフォーカス装置により求められた合焦位置であるが、その他のウェルに対する撮像装置の焦点位置は推定値となる。
特開2006−3653号公報
ウェルプレートの底面では、ある程度の平坦性が保証されているが、若干の波うち(揺らぎ)は存在する。また、ウェルにおいては各ウェルの底面の高さが均一ではない。
したがって、上記従来技術では、ウェルプレートの全てのウェルに対してオートフォーカス装置を作動させて合焦位置を求める動作が必要ないので、全てのウェルの撮像を、素早く行うことができる反面、ウェルの底面の平坦性の影響を受けて正確な合焦位置での撮像が保証できない問題がある。
本発明は、全ての被検体の観察ポイントについて、合焦動作を行うが、その合焦動作の基準位置が過去に求めた複数の合焦位置に基づき決められるので、被検体が傾いていたとしても、正確な合焦動作が素早くできる顕微鏡を提供することを目的とする。
上記課題を解決するために、本発明に係る顕微鏡は、対物レンズと、予め決められた複数の観察ポイントを有する被検体を載置するステージと、フォーカス用光源、および前記フォーカス用光源からの照射光を前記被検体に照射し、前記被検体からの前記照射光の反射光を受光する受光素子、および前記受光素子で得られた光電信号に基づきフォーカス信号を演算するフォーカス信号演算回路を有するオートフォーカス装置と、前記被検体上の前記複数の観察ポイント(検鏡部位)が順次、前記対物レンズの観察光路上に来るように前記対物レンズおよび前記ステージの相対位置を駆動制御し、かつ前記オートフォーカス装置により前記観察光路上の前記観察ポイントに合焦するように前記対物レンズおよび前記ステージの光軸方向の相対位置を駆動制御する駆動制御手段と、第N番目の前記観察ポイントに、前記駆動制御手段により前記対物レンズおよび前記ステージの相対位置が駆動制御された際に、前記オートフォーカス装置からフォーカスエラー信号が出力された場合には、既に設定が終了している前記複数の観察ポイントのフォーカス信号に基づき前記第N番目の観察ポイントの前記光軸方向の相対位置を算出する処理手段とを有し、前記処理手段で算出された前記第N番目の観察ポイントの前記光軸方向の相対位置の信号に基づき前記駆動制御手段が制御されることを特徴とする。
本発明によれば、正確な合焦動作が素早くできる顕微鏡を提供することができる。
第1実施形態に係る顕微鏡の構成を概略的に示す図である。 第1実施形態に係る顕微鏡の光学系の構成を示す図である。 第1実施形態に係る顕微鏡での観察に用いるマルチウェルプレートの一例を示す図である。 図3のマルチウェルプレートを用いた多点観察におけるZ位置の設定順序例を示す図である。 図3のマルチウェルプレートを用いた多点観察におけるZ位置の設定におけるプレートと対物レンズとの位置関係を示し、(a)はオートフォーカス可能な範囲を超えている状態、(b)はオートフォーカス可能な状態を表す図である。 図3のマルチウェルプレートを用いた多点観察におけるZ位置の設定手順を示すフローチャートである。 図3のマルチウェルプレートを用いた多点観察におけるZ位置の設定結果例を示す図である。 図3のマルチウェルプレートを用いた多点観察におけるZ位置の他の設定順序例を示す図である。
以下、本願の実施形態に係る顕微鏡について図面を参照して説明する。
(第1実施形態)
まず、本願の第1実施形態に係る顕微鏡の全体的な構成について説明する。なお、全体的な構成は、後述する第2、第3実施形態も同様である。
図1に示すように、第1実施形態の顕微鏡1は、予め決められた複数の観察ポイントを有する被検体(例えばウェルプレート、予め決められた複数の観察ポイントを有するプレパラートや培養容器など)2を載置するステージ3、ステージ3下方に配置された対物レンズ4及びオートフォーカス装置5、ステージ3上方に配置された透過照明装置6を備えている。対物レンズ4は、不図示の電動レボルバに保持された倍率の異なる複数の対物レンズのうちの1つであり、これらの対物レンズは適宜交換が可能である。
また、顕微鏡1は、ステージ3を対物レンズ4の光軸に垂直なXY方向に駆動するためのステージ駆動部7、対物レンズ4をその光軸方向であるZ方向に駆動するための対物レンズ駆動部8、後述するオフセットレンズを駆動するためのオフセットレンズ駆動部9を備え、それぞれが処理部10に接続されている。処理部10には入力部11が接続されている。なお、以下、顕微鏡1はステージ3がXY方向に移動し、対物レンズ4がZ方向に移動する構成として説明するが、ステージ3がXYZ方向に移動する構成、対物レンズ4がXYZ方向に移動する構成であってもよい。ステージ駆動部7や対物レンズ駆動部8が、オートフォーカスのための駆動制御手段を構成する。
また、処理部10は図示しないメモリ、演算部、制御部などから構成される。入力部11には、図示しないキーボード、対物レンズ切替えスイッチ、オートフォーカス制御開始スイッチ、合焦位置設定開始スイッチなどが設けられている。また符合12は、手動で対物レンズ4を上下方向(Z方向)に移動させるための上下動ハンドルを示す。
図2に示すように、第1実施形態に係る顕微鏡1の光学系は、予め決められた複数の観察ポイントを有する被検体2の下方に配置された観察光学系13とオートフォーカス装置5の光学系であるフォーカス用光学系からなり、フォーカス用光学系はフォーカス用照射光学系14とフォーカス用結像光学系15からなる。なお、第1実施形態の顕微鏡1での観察に用いる被検体2は、一例として図3に示すようにマルチウェルプレート2dとマルチウェルプレート2dに保持された水などの媒質に浸された生体試料として後に説明するが、図2では、生体試料2bをガラス板2a、2cで保持したものとして簡単に表している。
観察光学系13は、被検体2側から光軸に沿って順に、対物レンズ4、ダイクロイックミラー16、観察用結像レンズ17を有している。さらに、観察用結像レンズ17の後方には不図示の接眼レンズが配置されており、この接眼レンズによって観察者は被検体像を観察することができる。なお、観察用結像レンズ17の後方にCCDを配置して、被検体像をカメラで撮影することもできる。
フォーカス用照射光学系14は、フォーカス用光源18からの照射光(例えばLED光源からの赤外光)を対物レンズ4を通してステージ3上に載置された被検体2に照射するための光学系であって、フォーカス用光源18側から光軸に沿って順に、第1コレクタレンズ19、スリット板20、第2コレクタレンズ21、瞳制限マスク22、ハーフミラー23、オフセットレンズ24を有している。
オフセットレンズ24はダイクロイックミラー16側から順に、凸レンズ24aと凹レンズ24bからなり、凹レンズ24bは当該凹レンズ24bを光軸方向へ駆動するためのオフセットレンズ駆動部9に接続されている。オフセットレンズ24とオフセットレンズ駆動部9とが、フォーカス用光源18からの照射光の結像位置を光軸方向にオフセットさせるためのオフセット手段を構成している。
フォーカス用結像光学系15は、フォーカス用照射光学系14によって照射された被検体2からの反射光を対物レンズ4を通してCCDなどの受光素子25により受光するための光学系であって、ハーフミラー23の反射光路上に配置されたフォーカス用結像レンズ26を有している。
次に、以上のような構成の顕微鏡1によって、ガラス板2aと媒質の界面より奥の生体試料2bの検鏡部位にオートフォーカスにより合焦させる方法を説明する。
まず、フォーカス用光源18からの照射光の結像位置が対物レンズ4の焦点に合う状態にしておく(以下この状態におけるフォーカス用光源18からの照射光の結像位置をオフセットゼロ位置という)。観察者によって入力部11のオートフォーカス制御開始スイッチが操作されると、フォーカス用照射光学系14によってスリット板20を通過したフォーカス用光源18からの照射光が被検体2に照射され、例えば被検体2の界面からの反射光が受光素子25により受光され、電気信号に変換される。そして処理部10は、対物レンズ4の焦点(上記照射光の結像位置)と被検体2の界面との距離に応じて変化する反射光の光電信号に基づいて、対物レンズ駆動部8(駆動制御手段)を制御して界面に合焦させる。なお、上記オートフォーカス装置5は、フォーカス用光源18、フォーカス用光学系、受光素子25等と共に、受光素子25で得られた光電信号に基づきフォーカス信号を演算する図示しないフォーカス信号演算回路を有する。
そしてこの状態から、オフセット手段を用いて、上記照射光の結像位置をオフセットゼロ位置から例えば対物レンズ4側にずらす(オフセットさせる)と、このオフセット位置に界面が合うように制御が行われ、結果として界面より奥の生体試料2bの検鏡部位に焦点が合う。
次に、第1実施形態の顕微鏡1によるマルチウェルプレート2dを用いた多点観察におけるZ位置の設定について説明する。被検体2は、図3に示すように、24ウェルのマルチウェルプレート2dとマルチウェルプレート2dに保持された水などの媒質に浸された生体試料2bとする。
それぞれのウェルに保持された生体試料2bの検鏡部位(観察ポイント)にオートフォーカスにより合焦させたときのZ位置(対物レンズ4の光軸方向位置、フォーカス信号)を設定する際の手順を、図3から図7を参照して説明する。観察者が入力部11の合焦位置設定開始スイッチをONにすると、処理部10は、ステージ駆動部7を制御することでステージ3をXY方向に移動し、光軸上(対物レンズ4の観察光路上)に位置決めするウェルを順次切替えながら合焦位置設定を行っていく。ウェルの設定順序は特に限定されないが、一例として、ここでは図4に示すような開始地点(ウェルB3)と経路で設定を行うとする。
まず開始地点(ウェルB3)でオートフォーカスを行い、合焦位置を設定してから、処理部10は図6に示すフローを開始する。ステップS1では、光軸上に位置決めされたウェルの設定地点が最後の地点であるか否かを判断する。最後の地点であるなら設定を終了し、最後の地点でないならステップS2で次の地点に移動し、ステップS3でAF(オートフォーカス)をONにする。
ステップS4でオートフォーカスがエラーになるか否かを判断し、エラーがないならステップS5でピント位置になるまで待機し、ステップS6でZ位置をXY位置と共に登録する。そしてステップS1に戻る。ステップS4でオートフォーカスがエラーになった場合、ステップS7で上下動位置即ちZ位置(対物レンズ4の光軸方向位置)を計算し、対物レンズ4を移動させる。そしてステップS3に戻る。
ステップS7で、処理部10は、例えば第N番目のウェル(観察ポイント)においてオートフォーカスがエラーになったとき(図5(a)参照)、即ちオートフォーカス装置5からフォーカスエラー信号が出力された場合、既に設定が終了しているウェルのうち、第N番目のウェルに隣接するウェルにおけるZ位置と任意の1つ以上のウェルにおけるZ位置とを用いて、第N番目のウェルにおける予測されるZ位置を算出し、そのZ位置に対物レンズ4を移動させる(図5(b)参照)。そして再びオートフォーカスを行い、XYZ位置を登録する。
このように、処理部10がオートフォーカスのエラーにも自動的に対処するため、上記の各ステップの作業を繰り返すことにより最後の地点まで自動的に設定を行うことができる。図7は合焦位置の設定結果例の一部を示している。なお、上記の特徴は後述の第2、第3実施形態においても同様である。
オートフォーカスのエラー時にZ位置を予測するための具体的な計算方法について以下に説明する。
第1実施形態では、処理部10は、エラーとなった第N番目のウェルにおける予測されるZ位置を算出するとき、第N番目のウェルと上記の隣接するウェル、及び第N番目のウェルと上記の任意の1つ以上のウェルとの距離の逆数を重みとして、隣接するウェルにおけるZ位置と任意の1つ以上のウェルにおけるZ位置との加重平均を計算する。また、処理部10は、この加重平均を計算するとき、隣接するウェルと任意の1つ以上のウェルを最近隣法により選択する。
例えば、図4に示すようにウェルB3から設定を開始し、次の地点B4までの設定を終え、次の地点C4でオートフォーカスがエラーになったとする。この場合、C4に隣接する2つのウェルB3、B4のデータがあるため、これらから線形性を仮定してC4におけるZ位置を計算する。マルチウェルプレート2dはウェル間隔が均一であり、B4とC4、B3とB4の間隔は等しい。この間隔を1とすると、B3とC4の距離は√2となる。
C4からの距離の逆数を重みとし、B3におけるZ位置Z(B,3)とB4におけるZ位置Z(B,4)との加重平均を計算し、C4におけるZ位置Z(C,4)を予測する。C4に対するB3の重みは1/√2、C4に対するB4の重みは1であるから、
Z(C,4)={(1/√2)/[(1/√2)+1]}×Z(B,3)+{1/[(1/√2)+1]}×Z(B,4)
=[1×Z(B,3)+√2×Z(B,4)]/(√2+1)・・・(式1)
を得る。
また、C4におけるZ位置を登録後、さらに次の地点C3でオートフォーカスがエラーになったとする。この場合はB3、B4、C4のデータがあるため、Z(B,3)、Z(B,4)、Z(C,4)の加重平均を計算し、C3におけるZ位置Z(C,3)を予測する。C3に対するB3の重みは1、C3に対するB4の重みは1/√2、C3に対するC4の重みは1であるから、上述の2点から求める場合と同様に計算すると、
Z(C,3)=[√2×Z(B,3)+1×Z(B,4)+√2×Z(C,4)]/(2√2+1)・・・(式2)
を得る。他のウェルでエラーになった場合も同様に計算してZ位置を予測することができる。
以上のように、第1実施形態によれば、全ての被検体2の観察ポイントについて、合焦動作を行うが、その合焦動作の基準位置が過去に求めた複数の合焦位置に基づき決められるので、被検体が傾いていたとしても、正確な合焦動作が素早くできる顕微鏡1を提供することができる。
(第2実施形態)
次に、本願の第2実施形態に係る顕微鏡について説明する。
第2実施形態は、オートフォーカスのエラー時にZ位置を予測するための具体的な計算方法のみが第1実施形態と相違する。よってこの相違点のみを説明する。
第2実施形態では、設定3番目でエラーになった場合の予測方法は第1実施形態と同様であるが、4番目以降のウェルでエラーになった場合には、処理部10は、既に設定が終了しているウェルのうち、エラーになった第N番目のウェルに隣接する1つのウェルと任意の2つのウェルに関し、マルチウェルプレート2d上の位置及び上述のZ位置を座標とする3点を通る平面の式を求め、この平面上に第N番目のウェルに関するマルチウェルプレート2d上の位置及び上述のZ位置を座標とする1点があると仮定して、第N番目のウェルにおけるZ位置を予測する。
第1実施形態と同じく図4の設定順序例で説明する。C3でオートフォーカスがエラーになったとする。例えばマルチウェルプレート2d上でB4を原点としてB4→B3の方向にx軸、B4→C4の方向にy軸をとると、B3、B4、C4、C3の上記座標は、それぞれ(1,0,Z(B,3))、(0,0,Z(B,4))、(0,1,Z(C,4))、(1,1,Z(C,3))となる。これらを用いて、C3におけるZ位置Z(C,3)を予測する。
ここで、xyz空間で同一直線上にない3点A:(x1,y1,z1)、B:(x2,y2,z2)、C:(x3,y3,z3)を通る平面の式について説明する。平面の式は平面の法線ベクトルから求めることができる。下線を引いてベクトルを表すと、AB=(x2−x1,y2−y1,z2−z1)、AC=(x3−x1,y3−y1,z3−z1)であり、法線ベクトルの1つは外積AB×ACである。求める平面上の任意の点をP:(x,y,z)とすると、平面の式は内積(AB×AC)・AP=0で与えられ、
[(y2−y1)(z3−z1)−(y3−y1)(z2−z1)](x−x1)+[(z2−z1)(x3−x1)−(z3−z1)(x2−x1)](y−y1)+[(x2−x1)(y3−y1)−(x3−x1)(y2−y1)](z−z1)=0・・・(式3)
である。
よって、上記B3、B4、C4、そしてC3の座標を、(式3)におけるA、B、C、そしてPの座標に代入し、Z(C,3)について解けば、
Z(C,3)=Z(B,3)+Z(C,4)−Z(B,4)・・・(式4)
を得る。
以上の第2実施形態によっても第1実施形態と同様の効果を得ることができる。
(第3実施形態)
次に、本願の第3実施形態に係る顕微鏡について図8を参照して説明する。
第1、第2実施形態との相違点のみを説明すると、第3実施形態では、図8に示すように、マルチウェルプレート2dの右隅から枠をなめるように第1実施形態と同様の方法でZ位置を設定していき、A6からA5までを一通り設定した後、枠内部のB2からC5までのウェルにおけるZ位置は、第2実施形態のエラー時と同様の方法で、即ち面の式から計算する。なお、枠部分のウェルにおけるZ位置を設定する際にエラーになった場合は、エラーになったウェルと同列にある設定済みのウェルのうち、エラーになったウェルに隣接するウェルと他の任意の1つのウェルにおけるZ位置を用いて、直線の傾きを求めることにより、その直線上にあると仮定されるエラーになったウェルにおけるZ位置を予測することができる。
以上の第3実施形態によっても第1実施形態と同様の効果を得ることができる。
なお、上述の実施形態は例に過ぎず、上述の構成に限定されるものではなく、本発明の範囲内において適宜修正、変更が可能である。
1 顕微鏡
2 被検体
2b 生体試料
2d マルチウェルプレート
3 ステージ
4 対物レンズ
7 ステージ駆動部
8 対物レンズ駆動部
9 オフセットレンズ駆動部
10 処理部
14 フォーカス用照射光学系
15 フォーカス用結像光学系
18 フォーカス用光源
24 オフセットレンズ
25 受光素子

Claims (4)

  1. 対物レンズと、
    予め決められた複数の観察ポイントを有する被検体を載置するステージと、
    フォーカス用光源、および前記フォーカス用光源からの照射光を前記被検体に照射し、前記被検体からの前記照射光の反射光を受光する受光素子、および前記受光素子で得られた光電信号に基づきフォーカス信号を演算するフォーカス信号演算回路を有するオートフォーカス装置と、
    前記被検体上の前記複数の観察ポイント(検鏡部位)が順次、前記対物レンズの観察光路上に来るように前記対物レンズおよび前記ステージの相対位置を駆動制御し、かつ前記オートフォーカス装置により前記観察光路上の前記観察ポイントに合焦するように前記対物レンズおよび前記ステージの光軸方向の相対位置を駆動制御する駆動制御手段と、
    第N番目の前記観察ポイントに、前記駆動制御手段により前記対物レンズおよび前記ステージの相対位置が駆動制御された際に、前記オートフォーカス装置からフォーカスエラー信号が出力された場合には、既に設定が終了している前記複数の観察ポイントのフォーカス信号に基づき前記第N番目の観察ポイントの前記光軸方向の相対位置を算出する処理手段とを有し、
    前記処理手段で算出された前記第N番目の観察ポイントの前記光軸方向の相対位置の信号に基づき前記駆動制御手段が制御されることを特徴とする顕微鏡。
  2. 前記処理手段は、前記既に設定が終了している前記複数の観察ポイントのうち、前記第N番目の観察ポイントに隣接する観察ポイントにおける前記光軸方向の相対位置と、任意の1つ以上の観察ポイントにおける前記光軸方向の相対位置とに基づき、前記第N番目の観察ポイントにおける予測される前記光軸方向の相対位置を算出することを特徴とする請求項1に記載の顕微鏡。
  3. 前記処理手段は、前記第N番目の観察ポイントにおける予測される前記光軸方向の相対位置を算出するとき、前記第N番目の観察ポイントと前記隣接する観察ポイント、及び前記第N番目の観察ポイントと前記任意の1つ以上の観察ポイントとの距離の逆数を重みとして、前記隣接する観察ポイントにおける前記光軸方向の相対位置と前記任意の1つ以上の観察ポイントにおける前記光軸方向の相対位置との加重平均を計算することを特徴とする請求項2に記載の顕微鏡。
  4. 前記処理手段は、前記加重平均を計算するとき、前記隣接する観察ポイントと前記任意の1つ以上の観察ポイントを最近隣法により選択することを特徴とする請求項3に記載の顕微鏡。
JP2009037158A 2009-02-19 2009-02-19 顕微鏡 Withdrawn JP2010191298A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009037158A JP2010191298A (ja) 2009-02-19 2009-02-19 顕微鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009037158A JP2010191298A (ja) 2009-02-19 2009-02-19 顕微鏡

Publications (1)

Publication Number Publication Date
JP2010191298A true JP2010191298A (ja) 2010-09-02

Family

ID=42817384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009037158A Withdrawn JP2010191298A (ja) 2009-02-19 2009-02-19 顕微鏡

Country Status (1)

Country Link
JP (1) JP2010191298A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089411A (ja) * 2012-10-31 2014-05-15 Hamamatsu Photonics Kk 画像取得装置及び画像取得装置のフォーカス方法
US8908086B2 (en) 2011-04-21 2014-12-09 Olympus Imaging Corporation Driving apparatus for shake correction and imaging apparatus using the same
CN106324820A (zh) * 2016-09-27 2017-01-11 华中科技大学 一种双通道荧光光学显微成像中基于图像处理的自动对焦方法
JP2017207781A (ja) * 2012-07-09 2017-11-24 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh 顕微鏡
JP2018054968A (ja) * 2016-09-30 2018-04-05 富士フイルム株式会社 観察装置および方法並びに観察装置制御プログラム
WO2018154924A1 (ja) 2017-02-27 2018-08-30 富士フイルム株式会社 顕微鏡装置および観察方法並びに顕微鏡装置制御プログラム
EP3248039A4 (en) * 2015-01-22 2018-09-05 Idea Biomedical Ltd. Auto-focusing method and device
WO2023135702A1 (ja) * 2022-01-13 2023-07-20 株式会社日立ハイテク 観察方法及び観察装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8908086B2 (en) 2011-04-21 2014-12-09 Olympus Imaging Corporation Driving apparatus for shake correction and imaging apparatus using the same
JP2017207781A (ja) * 2012-07-09 2017-11-24 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh 顕微鏡
JP2014089411A (ja) * 2012-10-31 2014-05-15 Hamamatsu Photonics Kk 画像取得装置及び画像取得装置のフォーカス方法
EP3248039A4 (en) * 2015-01-22 2018-09-05 Idea Biomedical Ltd. Auto-focusing method and device
US10345566B2 (en) 2015-01-22 2019-07-09 Idea Bio-Medical Ltd. Method and device for scanning wells in a multi-well plate
US11092791B2 (en) 2015-01-22 2021-08-17 Idea Bio-Medical Ltd. Method and device for scanning wells in a multi-well plate
CN106324820A (zh) * 2016-09-27 2017-01-11 华中科技大学 一种双通道荧光光学显微成像中基于图像处理的自动对焦方法
CN106324820B (zh) * 2016-09-27 2018-10-16 华中科技大学 一种双通道荧光光学显微成像中基于图像处理的自动对焦方法
JP2018054968A (ja) * 2016-09-30 2018-04-05 富士フイルム株式会社 観察装置および方法並びに観察装置制御プログラム
KR20190037334A (ko) * 2016-09-30 2019-04-05 후지필름 가부시키가이샤 관찰 장치 및 방법과, 관찰 장치 제어 프로그램
KR102157450B1 (ko) 2016-09-30 2020-09-17 후지필름 가부시키가이샤 관찰 장치 및 방법과, 관찰 장치 제어 프로그램
WO2018154924A1 (ja) 2017-02-27 2018-08-30 富士フイルム株式会社 顕微鏡装置および観察方法並びに顕微鏡装置制御プログラム
KR20190090871A (ko) 2017-02-27 2019-08-02 후지필름 가부시키가이샤 현미경 장치 및 관찰 방법과, 현미경 장치 제어 프로그램
US11243386B2 (en) 2017-02-27 2022-02-08 Fujifilm Corporation Microscope apparatus, observation method, and microscope apparatus-control program
WO2023135702A1 (ja) * 2022-01-13 2023-07-20 株式会社日立ハイテク 観察方法及び観察装置

Similar Documents

Publication Publication Date Title
JP2010191298A (ja) 顕微鏡
JP6761312B2 (ja) 可変焦点距離レンズを含む撮像システムにおける色収差補正
JP6158197B2 (ja) 自動化された顕微鏡使用のための多関数型自動焦点システムおよび方法
US9830694B2 (en) Multi-level image focus using a tunable lens in a machine vision inspection system
JP4544904B2 (ja) 光学系
JP5638793B2 (ja) 顕微鏡装置
TW202045979A (zh) 自動顯微鏡聚焦系統、裝置及方法
JP2012073285A (ja) 撮像方法および顕微鏡装置
JP7109130B2 (ja) 顕微鏡
JP2006317544A (ja) 共焦点顕微鏡
JP6940696B2 (ja) 二次元および三次元の固定式z走査
JP6513507B2 (ja) 位相差顕微鏡および撮像方法
JP6675279B2 (ja) 撮影装置および方法並びに撮影制御プログラム
JP2019168520A (ja) 情報処理装置、情報処理方法、プログラム、及び画像測定装置
JP2017143759A (ja) 細胞観察装置および細胞観察方法
JP2007006852A (ja) 顕微鏡
JP2015152650A (ja) 位相差顕微鏡
JP2008292809A (ja) 顕微鏡
JPH09113810A (ja) 顕微鏡の自動焦点整合装置
WO2020012825A1 (ja) 画像生成装置、画像生成方法および画像生成プログラム
JP5909902B2 (ja) オートフォーカス装置、顕微鏡装置
JP2015152648A (ja) 位相差顕微鏡
JP5019279B2 (ja) 共焦点顕微鏡及び合焦カラー画像の生成方法
JP2013190680A (ja) 顕微鏡
JP6667411B2 (ja) 観察装置および方法並びに観察装置制御プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121016

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130125