WO2020203699A1 - 温度制御装置、方法およびプログラム、並びに観察システム - Google Patents

温度制御装置、方法およびプログラム、並びに観察システム Download PDF

Info

Publication number
WO2020203699A1
WO2020203699A1 PCT/JP2020/013844 JP2020013844W WO2020203699A1 WO 2020203699 A1 WO2020203699 A1 WO 2020203699A1 JP 2020013844 W JP2020013844 W JP 2020013844W WO 2020203699 A1 WO2020203699 A1 WO 2020203699A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature control
unit
container
heating
observation
Prior art date
Application number
PCT/JP2020/013844
Other languages
English (en)
French (fr)
Inventor
兼太 松原
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2020203699A1 publication Critical patent/WO2020203699A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/36Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
    • C12M1/38Temperature-responsive control
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/30Base structure with heating device

Definitions

  • the present disclosure relates to a temperature control device, a method and a program for preventing fogging of the container when observing the container containing the observation target, and an observation system.
  • pluripotent stem cells such as ES (Embryonic Stem) cells and iPS (Induced Pluripotent Stem) cells and cells induced to differentiate are imaged with an observation device such as a microscope, and cell differentiation is captured by capturing the characteristics of the images.
  • an observation device such as a microscope
  • Pluripotent stem cells such as ES cells and iPS cells have the ability to differentiate into cells of various tissues, and are attracting attention as being applicable in regenerative medicine, drug development, elucidation of diseases, and the like. ing.
  • a culture container with a lid or a flask-type closed culture container is used in order to prevent foreign substances such as dust and germs from entering the culture container.
  • the culture solution in the culture vessel is cultured in a state controlled to a temperature of about the body temperature of the human body such as 38 ° C., but is exposed to the environmental temperature (that is, room temperature) at the time of observation. In many cases, the ambient temperature is lower than the cell culture temperature. Therefore, during observation, fogging or dew condensation (hereinafter, typified by fogging) is likely to occur inside the lid or the like of the culture vessel. When the container becomes cloudy in this way, the observation of cells is hindered.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to enable efficient removal of fogging in the culture vessel.
  • the observation control device includes a heating unit that heats a container containing an observation target, and a heating unit.
  • An information acquisition unit that acquires at least one of the information on the type of container and the amount of liquid in the container as setting information. It is provided with a heating method setting unit that sets a heating method by the heating unit based on the setting information.
  • the information acquisition unit may further acquire at least one information of the type of liquid, the set temperature for the liquid, the heating time, and the environmental temperature as setting information.
  • the heating unit heats at least one of the relationship between the target temperature of the heating unit, the distance between the heating unit and the container, and the temperature with respect to the elapsed time in the heating unit. It may be set as a method.
  • the temperature control device is further provided with a storage unit for storing a plurality of heating methods according to various predetermined setting conditions.
  • the heating method setting unit may set the heating method by selecting a heating method according to the acquired setting conditions from a plurality of heating methods.
  • the heating method setting unit may set the heating method by correcting the selected heating method according to the acquired setting conditions.
  • the heating unit may have a glass heater.
  • the heating unit may have a hot air heater that blows warm air from above the container toward the container.
  • the observation system includes an observation device for observing an observation object housed in a container and an observation device.
  • a temperature control device according to the present disclosure is provided.
  • the observation device includes an imaging optical system for forming an image of an observation target in a container and an imaging optical system. It has an imaging unit that captures an image of an observation target imaged by an imaging optical system and generates an observation image.
  • the temperature control device further includes a prohibition unit that prohibits imaging of the observation target by the imaging unit when the temperature of the heating unit is not at a predetermined temperature.
  • the temperature control method In the temperature control method according to the present disclosure, information on at least one of the type of container in which the observation target is housed and the amount of liquid in the container is acquired as setting information. Set the heating method of the container based on the setting information.
  • Other temperature control devices include a memory for storing instructions for causing a computer to execute, and a processor configured to execute the stored instructions.
  • Information on at least one of the type of container in which the observation target is housed and the amount of liquid in the container is acquired as setting information.
  • the process of setting the heating method of the container is executed based on the setting information.
  • fogging of the container can be efficiently removed.
  • FIG. 1 shows the schematic structure of the microscope apparatus in the microscope observation system using one Embodiment of the temperature control apparatus of this disclosure.
  • Flowchart showing processing performed in this embodiment Flowchart showing temperature control processing Diagram for explaining the correction of the reference temperature control curve
  • FIG. 1 is a diagram showing a schematic configuration of a microscope device 10 in the microscope observation system of the present embodiment.
  • the microscope device 10 acquires a phase-difference image of the cultured cells to be observed, and corresponds to the observation device according to the present disclosure. Specifically, as shown in FIG. 1, the microscope device 10 includes a white light source 11 that emits white light, a condenser lens 12, a slit plate 13, an imaging optical system 14, an imaging optical system driving unit 15, and an imaging element. 16. A glass heater 18, which will be described later, is arranged below the slit plate 13.
  • the slit plate 13 is provided with a ring-shaped slit that transmits white light to a light-shielding plate that blocks white light emitted from the white light source 11, and is ring-shaped as the white light passes through the slit. Illumination light L is formed.
  • the imaging optical system 14 includes a phase difference lens and an imaging lens including an objective lens and a phase plate.
  • the imaging optical system 14 is moved in the optical axis direction by the imaging optical system driving unit 15 shown in FIG.
  • the optical axis direction and the Z direction (vertical direction) of the imaging optical system 14 are the same directions.
  • Autofocus control is performed by moving the imaging optical system 14 in the Z direction, and the contrast of the phase difference image captured by the image sensor 16 is adjusted.
  • the imaging optical system driving unit 15 is provided with an actuator such as a piezoelectric element, and is driven based on a control signal output from an imaging control unit 31 described later.
  • the imaging optical system driving unit 15 is configured to pass the phase difference image that has passed through the imaging optical system 14 as it is. Further, the configuration of the imaging optical system driving unit 15 is not limited to the piezoelectric element, as long as the imaging optical system 14 can be moved in the Z direction, and other known configurations can be used.
  • the image sensor 16 captures a phase difference image imaged by the imaging optical system 14.
  • a CCD (Charge-Coupled Device) image sensor, a CMOS (Complementary Metal-Oxide Semiconductor) image sensor, or the like is used.
  • an image sensor 16 provided with an RGB (Red Green Blue) color filter may be used, or a monochrome image sensor may be used.
  • the glass heater 18 has a structure in which a glass substrate, a transparent conductive film, a transparent resin layer, and the like are laminated.
  • the transparent conductive film is formed in a pattern over the entire area of the glass substrate, and generates heat when an electric current is applied.
  • the area of the glass heater 18 is large enough to cover the area of the upper surface of the largest size culture vessel (for example, a flask) that can be used in the microscope device 10. Further, the glass heater 18 moves in the Z direction (vertical direction) in FIG. 1 by a drive unit (not shown).
  • the glass heater 18 corresponds to the heating unit of the temperature control device of the present disclosure.
  • a stage 51 is provided between the slit plate 13 and the imaging optical system 14.
  • a culture vessel 50 containing cells to be observed is installed on the stage 51.
  • the culture vessel 50 is aligned with a predetermined position on the stage 51 and installed on the stage 51.
  • the culture container 50 a petri dish, a dish, a well plate, a flask, or the like can be used.
  • the cells contained in the culture vessel 50 include pluripotent stem cells such as iPS cells and ES cells, nerves, skin, myocardial and liver cells induced to differentiate from stem cells, and skin and retina extracted from the human body. There are cells of myocardium, blood cells, nerves and organs.
  • the stage 51 is moved in the X and Y directions orthogonal to each other by the horizontal drive unit 17 (see FIG. 2) described later.
  • the X and Y directions are orthogonal to the Z direction and are orthogonal to each other in the horizontal plane.
  • the X direction is the main scanning direction and the Y direction is the sub scanning direction.
  • a rectangular opening 51a shown by a broken line in FIG. 1 is formed in the center of the stage 51.
  • the culture vessel 50 is installed on the member forming the opening 51a, and the phase difference image of the cells in the culture vessel 50 is configured to pass through the opening 51a.
  • FIG. 2 is a block diagram showing the configuration of the observation control device of the present embodiment.
  • the observation control device 20 includes the temperature control device 60 of the present embodiment.
  • a block diagram of a part of the configuration controlled by each part of the observation control device 20 is shown.
  • the observation control device 20 controls the entire microscope device 10, and is realized by installing an observation control program including a temperature control program according to the present embodiment on a computer.
  • the observation control device 20 includes a CPU (Central Processing Unit) 21, a memory 22, and a storage 23 as a standard workstation configuration. Further, the observation control device 20 is connected to a display unit 24 such as a liquid crystal display and an input unit 25 such as a keyboard and a mouse.
  • a display unit 24 such as a liquid crystal display
  • an input unit 25 such as a keyboard and a mouse.
  • the storage 23 is composed of a hard disk drive or the like, and stores various information including information necessary for processing performed by the observation control device 20 and the temperature control device 60 included in the observation control device 20 according to the present embodiment.
  • the memory 22 stores an observation control program including a temperature control program according to the present embodiment.
  • the observation control program defines an imaging control process and a display control process as processes to be executed by the CPU 21.
  • the temperature control program defines an information acquisition process and a heating method setting process as processes to be executed by the CPU 21.
  • the computer functions as an observation control device 20 including an imaging control unit 31 and a display control unit 32. It also functions as a temperature control device 60 including an information acquisition unit 61 and a heating method setting unit 62.
  • the glass heater 18 described above constitutes a part of the temperature control device 60 according to the present embodiment.
  • the display unit 24 displays a composite retardation image or the like generated from the retardation image, and includes, for example, a liquid crystal display or the like. Further, the display unit 24 may be configured by a touch panel and may also be used as the input unit 25.
  • the input unit 25 is provided with a mouse, a keyboard, and the like, and accepts various setting inputs by the user.
  • the input unit 25 of the present embodiment receives inputs such as setting conditions described later, such as the type of the culture container 50 and the amount of the culture solution.
  • the imaging control unit 31 moves the imaging optical system 14 in the optical axis direction by driving the imaging optical system driving unit 15 in the Z direction, and performs autofocus control. Further, the image pickup control unit 31 drives and controls the horizontal drive unit 17, thereby moving the stage 51 in the X direction and the Y direction.
  • the horizontal drive unit 17 is composed of an actuator having a piezoelectric element or the like.
  • the method described in JP-A-2018-054817 is used.
  • two sensors for detecting the position of the culture vessel 50 in the Z direction (vertical direction) are arranged across the imaging optical system, and in the moving direction of the stage 51.
  • This is a method of performing autofocus control by controlling the imaging optical system drive unit 15, which will be described later, based on the position information detected by the sensor while switching the sensor to be used accordingly.
  • the image pickup control unit 31 controls to acquire a phase difference image by the image pickup device 16 at the observation position by the imaging optical system 14 in the movement of the stage 51. As a result, a phase difference image is acquired at each observation position.
  • the display control unit 32 generates one composite phase difference image by combining the phase difference images of each observation position captured by the microscope device 10, and displays the composite phase difference image on the display unit 24.
  • the information acquisition unit 61 of the temperature control device 60 acquires at least one of the information of the type of the culture container 50 and the amount of the culture solution in the culture container 50 input from the input unit 25 by the user as setting information. Further, in the present embodiment, the information acquisition unit 61 further acquires at least one information of the type of the culture solution used in the culture container 50, the set temperature for the culture solution, and the heating time as the setting information. May be good.
  • the heating method setting unit 62 of the temperature control device 60 sets the heating method of the glass heater 18 based on the setting information acquired by the information acquisition unit 61. Specifically, at least one of the relationship between the target temperature of the glass heater 18, the distance between the glass heater 18 and the culture vessel 50, and the temperature with respect to the elapsed time in the glass heater 18 is set as the heating method.
  • the setting of the heating method will be described in detail.
  • the cells to be observed are cultured in a state of being contained in the culture vessel 50, but the culture is performed in an environment controlled to about 38 ° C., which is the body temperature of the human body.
  • the culture vessel 50 is placed on the stage 51 of the microscope device 10, and at that time, the culture vessel 50 is exposed to an ambient temperature of room temperature. Since the ambient temperature is often lower than the cell culture temperature, when observing the culture vessel 50, the inside of the culture vessel 50 tends to become cloudy during observation.
  • the temperature control device 60 heats the culture vessel 50 by using the glass heater 18 in order to prevent fogging of the culture vessel 50. Specifically, the upper surface of the culture vessel 50, that is, the surface of the culture vessel 50 facing the white light source 11 is heated.
  • the culture vessel 50 many types such as well plates, flasks, petri dishes and dishes are used.
  • well plate well plates having different numbers of wells such as 6 wells, 12 wells, 24 wells, 48 wells and 96 wells are used.
  • the amount of the culture solution used differs depending on the type of the culture container 50. For example, a flask uses more culture medium than a well plate.
  • culture solutions used such as gel-like, liquid, and different physical properties.
  • the heating method of the glass heater 18 may be set so as to have the temperature control curve C1 as shown in FIG.
  • the temperature control curve shown in FIG. 3 is the relationship between the temperature and the elapsed time in the glass heater 18. Further, in the temperature control curve, the temperature becomes a constant value T0 with the passage of time, and the temperature at which the constant value T0 becomes the set temperature T0 of the glass heater 18.
  • the set temperature T0 is set according to the distance between the glass heater 18 and the culture vessel 50. For example, when it is desired to set the temperature of the culture container 50 to 38 degrees, the set temperature of the glass heater 18 is set so that the temperature on the surface of the culture container 50 becomes 38 degrees according to the distance between the glass heater 18 and the culture container 50. T0 is set.
  • the constant value T0 is a set temperature when the glass heater 18 and the culture vessel 50 are at a predetermined distance. Therefore, once the temperature control curve to be set in the heating method is determined, the distance between the glass heater 18 and the culture vessel 50 is set to a distance determined with respect to the temperature control curve. Specifically, by moving at least one of the glass heater 18 and the culture vessel 50 in the Z direction, the distance between the glass heater 18 and the culture vessel 50 is set to a distance determined with respect to the temperature control curve.
  • the heating method of the glass heater 18 may be set so as to have the temperature control curve C2 as shown in FIG.
  • the heating method differs depending on the type and amount of the culture solution used and the material of the well plate. For example, when a well plate made of a material having a relatively low boiling point, a small amount of culture solution per well, and a high thermal conductivity is used, it is compared with the temperature control curve C2 shown in FIG. , As shown in FIG. 5, the heating method of the glass heater 18 may be set according to the temperature control curve C3 in which the initial temperature rise is gentle.
  • the thickness when placed on the stage 51 is larger than that of a well plate, a petri dish, or the like.
  • the well plate and the petri dish can reduce the distance between the culture vessel 50 and the glass heater 18, but since the flask has an inlet 53 for oblique information, FIG. 7 As shown in the above, the distance between the culture vessel 50 and the glass heater 18 cannot be reduced as much as the well plate and the petri dish.
  • the flask has a larger amount of culture solution than the well plate and petri dish. Therefore, when the culture vessel 50 is a flask, as shown in FIG. 8, the temperature control curve C4 has a higher temperature immediately after the start of heating and a longer heating time at a higher temperature than in the case of the well plate.
  • the heating method of the glass heater 18 may be set.
  • a plurality of reference temperature control curves according to the types of various culture vessels, the amount of the culture solution, the type of the culture solution, the set temperature, the heating time, and the environmental temperature (hereinafter referred to as reference temperature control curves). ) Is stored in the storage 23.
  • the heating method setting unit 62 refers to the setting information acquired by the information acquisition unit 61, and acquires a reference temperature control curve corresponding to the setting information closest to the acquired setting information. Then, the heating method setting unit 62 derives the corrected temperature control curve by correcting the acquired reference temperature control curve according to the setting conditions, and sets the heating method. The derivation of the temperature control curve will be described later.
  • FIG. 9 is a flowchart showing a process performed by the temperature control device 60.
  • the information acquisition unit 61 acquires the setting information input by the user from the input unit 25 (step ST1).
  • the heating method setting unit 62 sets the heating method of the glass heater 18 based on the setting information (heating method setting process; step ST2).
  • FIG. 10 is a flowchart showing a heating method setting process.
  • the heating method setting unit 62 selects the reference temperature control curve to be used from the plurality of reference temperature control curves stored in the storage 23 based on the setting information (step ST11). For example, when the information on the type of the culture vessel 50 is a 6-well well plate manufactured by Company B, the amount of the culture solution is 2.5 ml, and the culture solution manufactured by Company W is acquired as the type of the culture solution, it is acquired. A 6-well well plate manufactured by Company C, a volume of culture solution of 2.0 ml, and a reference temperature control curve set for the culture solution manufactured by Company W are selected as the type of culture solution, which is close to the set setting information. Suppose.
  • priority may be given to the types of setting conditions. For example, priorities may be given in the order of the type of the culture vessel 50, the amount of the culture solution, and the type of the culture solution. In this case, the reference temperature control curve corresponding to the setting conditions closer to the type of the culture vessel 50 is preferentially selected.
  • the heating method setting unit 62 corrects the reference temperature control curve and derives the corrected temperature control curve based on the difference between the acquired setting condition and the setting condition for the reference temperature control curve (step ST12).
  • FIG. 11 is a diagram for explaining the correction of the reference temperature control curve.
  • the amount of the culture solution corresponding to the reference temperature control curve is 2 ml and the amount of the culture solution under the acquired set conditions is 2.5 ml, it is necessary to increase the initial heating temperature.
  • the well plate manufactured by B company and the well plate manufactured by C company have lower thermal conductivity than those manufactured by B company, it is necessary to increase the initial heating temperature in consideration of this as well.
  • the type of culture solution is the same as that manufactured by Company W.
  • the heating method setting unit 62 corrects the reference temperature control curve C10 shown by the broken line in FIG. 11 so as to increase the initial heating temperature, and derives the corrected temperature control curve C11. Then, the heating method setting unit 62 sets the heating method of the glass heater 18 according to the derived corrected temperature control curve C11 (step ST13), and ends the heating method setting process.
  • the selected reference temperature control curve selected in step ST11 is followed without correction.
  • the heating method may be set.
  • the glass heater 18 heats the culture vessel 50 according to the set heating method (step ST3). Then, after heating, the imaging control unit 31 images the phase difference image (step ST4), and the display control unit 32 generates and displays the composite retardation image (step ST5), and ends the process.
  • the glass heater is obtained based on the setting information. 18 heating methods are set. Therefore, by heating the culture vessel 50 according to the set heating method, fogging of the culture vessel 50 can be removed according to at least one information of the type of the culture vessel 50 and the amount of the culture solution. .. Therefore, according to the present embodiment, the fogging of the culture vessel 50 can be efficiently removed.
  • the culture vessel 50 is heated by the glass heater 18, but the present invention is not limited to this.
  • a warm air heater 19 may be used instead of the glass heater 18.
  • the hot air heater 19 blows warm air from above the culture container 50 placed on the stage 51 toward the culture container 50.
  • the reason why the warm air is blown from above the culture vessel 50 is to prevent dust, dust and the like from being diffused upward.
  • a warm air heater 19 may be provided in addition to the glass heater 18.
  • the temperature control device 60 of the present embodiment may further include a prohibition unit 63 that prohibits imaging of observation when the glass heater 18 is not at a predetermined temperature.
  • the prohibition unit 63 measures the time from the start of heating by the glass heater 18, and the glass heater until the time corresponding to the time until the temperature on the temperature control curve reaches the set temperature T0 elapses. It may be considered that the temperature of 18 is not at the predetermined set temperature T0, and imaging may be prohibited.
  • a temperature sensor for measuring the temperature of the glass heater 18 may be provided, and the temperature of the glass heater 18 measured by the temperature sensor may be input to the prohibition unit 63.
  • the prohibition unit 63 prohibits imaging when the temperature measured by the temperature sensor is not within the set value T0 in the temperature control curve.
  • the instruction from the imaging control unit 31 may not be output to the microscope device 10. .. Further, when the input unit 25 has an image pickup button, the image pickup button may not be pressed mechanically or electrically. Further, when the input unit 25 is a touch panel, the image pickup button may not be displayed.
  • the observation position in the culture vessel 50 is scanned by moving the stage 51, but the present invention is not limited to this, and an imaging system including an imaging optical system 14 and an imaging element 16 is used. You may move it. Further, both the stage 51 and the imaging system may be moved.
  • the present disclosure is not limited to a phase-contrast microscope, but is applied to other microscopes such as a differential interference microscope and a brightfield microscope. May be good.
  • the phase difference image formed by the imaging optical system 14 is imaged by the image pickup element 16, but the image is formed by the imaging optical system 14 without providing the image pickup element 16.
  • An observation optical system or the like may be provided so that the user can directly observe the phase difference image of the observation target.
  • a processing unit that executes various processes such as an image pickup control unit 31, a display control unit 32, an information acquisition unit 61, and a heating method setting unit 62.
  • the various processors include a CPU, which is a general-purpose processor that executes software (program) and functions as various processing units, and a circuit after manufacturing an FPGA (Field Programmable Gate Array) or the like.
  • Dedicated electricity which is a processor with a circuit configuration specially designed to execute specific processing such as programmable logic device (PLD), ASIC (Application Specific Integrated Circuit), which is a processor whose configuration can be changed. Circuits and the like are included.
  • One processing unit may be composed of one of these various processors, or a combination of two or more processors of the same type or different types (for example, a combination of a plurality of FPGAs or a combination of a CPU and an FPGA). ) May be configured. Further, a plurality of processing units may be configured by one processor.
  • one processor is configured by combining one or more CPUs and software. There is a form in which this processor functions as a plurality of processing units.
  • SoC System On Chip
  • the various processing units are configured by using one or more of the various processors as a hardware structure.
  • circuitry in which circuit elements such as semiconductor elements are combined can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • General Physics & Mathematics (AREA)
  • Microscoopes, Condenser (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

温度制御装置60の情報取得部61が、容器の種類および容器内における液体の量の少なくとも一方の情報を設定情報として取得する。加温方法設定部62が、設定情報に基づいて、ガラスヒータ18による加温方法を設定する。

Description

温度制御装置、方法およびプログラム、並びに観察システム
 本開示は、観察対象が収容された容器を観察するに際して、容器の曇りを防止するための温度制御装置、方法およびプログラム、並びに観察システムに関するものである。
 従来、ES(Embryonic Stem)細胞およびiPS(Induced Pluripotent Stem)細胞等の多能性幹細胞および分化誘導された細胞等を顕微鏡等の観察装置で撮像し、その画像の特徴を捉えることで細胞の分化状態等を判定する方法が提案されている。ES細胞およびiPS細胞等の多能性幹細胞は、種々の組織の細胞に分化する能力を備えたものであり、再生医療、薬の開発、および病気の解明等において応用が可能なものとして注目されている。
 上述したように細胞を観察装置で撮像する際、高倍率な広視野画像を取得するため、例えばウェルプレート等の培養容器等の容器の範囲内を結像光学系によって走査し、観察位置毎の画像を撮像した後、その観察位置毎の画像を結合する、いわゆるタイリング撮影を行うことが提案されている。
 一方、細胞を観察する際には、培養容器にゴミおよび雑菌等の異物が混入するのを防止するために、蓋付きの培養容器またはフラスコタイプの密閉式の培養容器が使用される。また、培養容器中の培養液は、例えば38℃等の人体の体温程度の温度に制御された状態で培養されるが、観察時は環境温度(すなわち室温)に晒される。多くの場合、環境温度は細胞の培養温度よりも低い。このため、観察時には培養容器の蓋等の内側に、曇りまたは結露(以下、曇りで代表させる)が生じやすい。このように容器に曇りが生じると、細胞の観察に支障が生じる。
 このため、培養容器の蓋等の曇りを防止するための各種手法が提案されている。例えば、特開2006-39171号公報には、透明ガラスからなるガラスヒータを培養容器の上方に配置し、ガラスヒータの温度と試料室内の温度とが等しくなるように、ガラスヒータの温度および試料室内の温度のフィードバック制御を行う手法が提案されている。また、実開昭60-156996号公報には、培養容器が載置された顕微鏡の載物台の発熱部の温度を検出し、検出した温度と設定温度とを比較することによって発熱部の温度をフィードバック制御する手法が提案されている。
 しかしながら、培養容器には、ウェルプレート、フラスコ、シャーレおよびディッシュ等、多くの種類のものが用いられる。また、ウェルプレートについても、6ウェル、12ウェル、24ウェル、48ウェルおよび96ウェル等、ウェルの数が異なるものが用いられる。また、培養容器の種類に応じて使用される培養液の量も異なる。例えば、ウェルプレートよりもフラスコの方が使用される培養液の量が多い。このため、特開2006-39171号公報および実開昭60-156996号公報に記載された手法のように、温度のフィードバック制御を行うのみでは、培養容器の曇りを効率よく除去することができない。
 本開示は上記事情に鑑みなされたものであり、培養容器の曇りを効率よく除去できるようにすることを目的とする。
 本開示による観察制御装置は、観察対象が収容された容器を加温する加温部と、
 容器の種類および容器内における液体の量の少なくとも一方の情報を設定情報として取得する情報取得部と、
 設定情報に基づいて、加温部による加温方法を設定する加温方法設定部とを備える。
 なお、本開示による温度制御装置においては、情報取得部は、さらに液体の種類、液体に対する設定温度、加温時間および環境温度の少なくとも1つの情報を設定情報として取得するものであってもよい。
 また、本開示による温度制御装置においては、加温部は、加温部の目標温度、加温部と容器との距離、および加温部における経過時間に対する温度の関係の少なくとも1つを加温方法として設定するものであってもよい。
 また、本開示による温度制御装置においては、予め定められた各種設定条件に応じた、複数の加温方法を記憶する記憶部をさらに備え、
 加温方法設定部は、複数の加温方法から、取得した設定条件に応じた加温方法を選択することにより加温方法を設定するものであってもよい。
 また、本開示による温度制御装置においては、加温方法設定部は、選択した加温方法を取得した設定条件に応じて補正することにより加温方法を設定するものであってもよい。
 また、本開示による温度制御装置においては、加温部は、ガラスヒータを有するものであってもよい。
 また、本開示による温度制御装置においては、加温部は、容器の上方から容器に向けて温風を吹き出す温風ヒータを有するものであってもよい。
 本開示による観察システムは、容器に収容された観察対象を観察する観察装置と、
 本開示による温度制御装置とを備える。
 なお、本開示による観察システムにおいては、観察装置は、容器内の観察対象の像を結像させる結像光学系と、
 結像光学系により結像された観察対象の画像を撮像して観察画像を生成する撮像部とを有する。
 また、本開示による観察システムにおいては、温度制御装置は、加温部の温度が予め定められた温度にない場合、撮像部による観察対象の撮像を禁止する禁止部をさらに備える。
 本開示による温度制御方法は、観察対象が収容された容器の種類および容器内における液体の量の少なくとも一方の情報を設定情報として取得し、
 設定情報に基づいて、容器の加温方法を設定する。
 なお、本開示による温度制御方法をコンピュータに実行させるためのプログラムとして提供してもよい。
 本開示による他の温度制御装置は、コンピュータに実行させるための命令を記憶するメモリ、および
 記憶された命令を実行するよう構成されたプロセッサを備え、プロセッサは、
 観察対象が収容された容器の種類および容器内における液体の量の少なくとも一方の情報を設定情報として取得し、
 設定情報に基づいて、容器の加温方法を設定する処理を実行する。
 本開示によれば、容器の曇りを効率よく除去することができる。
本開示の温度制御装置の一実施形態を用いた顕微鏡観察システムにおける顕微鏡装置の概略構成を示す図 本実施形態の温度制御装置を内包する観察制御装置の構成を示すブロック図 温度制御カーブの例を示す図 温度制御カーブの例を示す図 温度制御カーブの例を示す図 培養容器とガラスヒータとの距離の関係を説明するための図 培養容器とガラスヒータとの距離の関係を説明するための図 温度制御カーブの例を示す図 本実施形態において行われる処理を示すフローチャート 温度制御処理を示すフローチャート 基準温度制御カーブの補正を説明するための図 本実施形態の他の温度制御装置を内包する観察制御装置の構成を示すブロック図 本実施形態のさらに他の温度制御装置を内包する観察制御装置の構成を示すブロック図
 以下、本開示の温度制御装置および方法の一実施形態を用いた顕微鏡観察システムについて、図面を参照して詳細に説明する。図1は、本実施形態の顕微鏡観察システムにおける顕微鏡装置10の概略構成を示す図である。
 顕微鏡装置10は、観察対象である培養された細胞の位相差画像を取得するものであり、本開示による観察装置に対応する。具体的には、顕微鏡装置10は、図1に示すように、白色光を出射する白色光源11、コンデンサレンズ12、スリット板13、結像光学系14、結像光学系駆動部15および撮像素子16を備える。また、スリット板13の下方には、後述するガラスヒータ18が配置されている。
 スリット板13は、白色光源11から出射された白色光を遮光する遮光板に対して白色光を透過するリング形状のスリットが設けられたものであり、白色光がスリットを通過することによってリング状の照明光Lが形成される。
 結像光学系14は、対物レンズおよび位相板を備えた位相差レンズおよび結像レンズを備える。結像光学系14は、図1に示す結像光学系駆動部15によってその光軸方向に移動する。なお、本実施形態においては、結像光学系14の光軸方向とZ方向(鉛直方向)とは同じ方向である。結像光学系14のZ方向への移動によってオートフォーカス制御が行われ、撮像素子16によって撮像される位相差画像のコントラストが調整される。
 結像光学系駆動部15は、例えば圧電素子のようなアクチュエータを備え、後述する撮像制御部31から出力された制御信号に基づいて駆動する。なお、結像光学系駆動部15は、結像光学系14を通過した位相差画像をそのまま通過させる構成となっている。また、結像光学系駆動部15の構成は圧電素子に限らず、結像光学系14をZ方向に移動可能なものであればよく、その他の公知の構成を用いることができる。
 撮像素子16は、結像光学系14によって結像された位相差画像を撮像する。撮像素子16としては、CCD(Charge-Coupled Device)イメージセンサまたはCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサ等が用いられる。撮像素子16としては、RGB(Red Green Blue)のカラーフィルタが設けられた撮像素子16を用いてもよいし、モノクロの撮像素子を用いてもよい。
 ガラスヒータ18は、上記特開2006-39171号公報に記載されたように、ガラス基板、透明導電膜および透明樹脂層等が積層された構造を有する。透明導電膜はガラス基板の全域に亘ってパターン状に形成されており、電流を流すことにより発熱する。なお、ガラスヒータ18の面積は、顕微鏡装置10において使用可能な最も大きいサイズの培養容器(例えばフラスコ)の上面の面積をカバーすることができる程度の大きさを有する。また、ガラスヒータ18は不図示の駆動部により図1におけるZ方向(上下方向)に移動する。なお、ガラスヒータ18が、本開示の温度制御装置の加温部に対応する。
 スリット板13と結像光学系14との間には、ステージ51が設けられている。ステージ51上には、観察対象である細胞が収容された培養容器50が設置される。なお、培養容器50は、ステージ51における予め定められた位置に位置合わせされて、ステージ51上に設置される。
 培養容器50としては、シャーレ、ディッシュ、ウェルプレートおよびフラスコ等を用いることができる。また、培養容器50に収容される細胞としては、iPS細胞およびES細胞といった多能性幹細胞、幹細胞から分化誘導された神経、皮膚、心筋および肝臓の細胞、並びに人体から取り出された皮膚、網膜、心筋、血球、神経および臓器の細胞等がある。
 ステージ51は、後述する水平方向駆動部17(図2参照)によって互いに直交するX方向およびY方向に移動する。X方向およびY方向は、Z方向に直交する方向であり、水平面内において互いに直交する方向である。本実施形態においては、X方向を主走査方向とし、Y方向を副走査方向とする。ステージ51の中央には、図1に破線で示す矩形の開口51aが形成されている。開口51aを形成する部材の上に培養容器50が設置され、培養容器50内の細胞の位相差画像が開口51aを通過するように構成されている。
 次に、顕微鏡装置10を制御する観察制御装置20の構成について説明する。図2は、本実施形態の観察制御装置の構成を示すブロック図である。観察制御装置20は、本実施形態の温度制御装置60を内包する。なお、顕微鏡装置10については、観察制御装置20の各部により制御される一部の構成のブロック図を示している。
 観察制御装置20は、顕微鏡装置10全体を制御するものであり、本実施形態による温度制御プログラムを内包する観察制御プログラムをコンピュータにインストールすることにより実現される。図2に示すように、観察制御装置20は、標準的なワークステーションの構成として、CPU(Central Processing Unit)21、メモリ22およびストレージ23を備えている。また、観察制御装置20には、液晶ディスプレイ等の表示部24、並びにキーボードおよびマウス等の入力部25が接続されている。
 ストレージ23は、ハードディスクドライブ等からなり、本実施形態による観察制御装置20および観察制御装置20に内包される温度制御装置60が行う処理に必要な情報を含む各種情報が記憶されている。
 また、メモリ22には、本実施形態による温度制御プログラムを内包する観察制御プログラムが記憶されている。観察制御プログラムは、CPU21に実行させる処理として、撮像制御処理および表示制御処理を規定する。また、温度制御プログラムは、CPU21に実行させる処理として、情報取得処理および加温方法設定処理を規定する。
 そして、CPU21がプログラムに従いこれらの処理を実行することで、コンピュータは、撮像制御部31および表示制御部32を備えた観察制御装置20として機能する。また、情報取得部61および加温方法設定部62を備えた温度制御装置60としても機能する。上述したガラスヒータ18は、本実施形態による温度制御装置60の一部を構成する。
 表示部24は、位相差画像から生成された合成位相差画像等を表示するものであり、例えば液晶ディスプレイ等を備える。また、表示部24をタッチパネルによって構成し、入力部25と兼用してもよい。
 入力部25は、マウスおよびキーボード等を備えたものであり、ユーザによる種々の設定入力を受け付ける。本実施形態の入力部25は、例えば培養容器50の種類および培養液の量等の、後述する設定条件等の入力を受け付ける。
 撮像制御部31は、結像光学系駆動部15をZ方向に駆動させることにより、結像光学系14を光軸方向に移動させ、オートフォーカス制御を行う。また、撮像制御部31は水平方向駆動部17を駆動制御し、これによりステージ51をX方向およびY方向に移動させる。水平方向駆動部17は、圧電素子等を有するアクチュエータから構成される。
 なお、オートフォーカス制御は、例えば特開2018-054817号公報に記載された手法を用いる。特開2018-054817号公報に記載された手法は、例えば結像光学系を挟んで培養容器50のZ方向(鉛直方向)の位置を検出する2つのセンサを配置し、ステージ51の移動方向に応じて使用するセンサを切り替えつつ、センサが検出した位置情報に基づいて、後述する結像光学系駆動部15を制御し、オートフォーカス制御を行う手法である。
 また、撮像制御部31は、ステージ51の移動における結像光学系14による観察位置において、撮像素子16により位相差画像を取得する制御を行う。これにより、各観察位置において、位相差画像が取得される。
 表示制御部32は、顕微鏡装置10によって撮像された各観察位置の位相差画像を結合することによって、1枚の合成位相差画像を生成し、合成位相差画像を表示部24に表示させる。
 温度制御装置60の情報取得部61は、ユーザにより入力部25から入力された培養容器50の種類および培養容器50内における培養液の量の少なくとも一方の情報を設定情報として取得する。また、本実施形態においては、情報取得部61は、さらに培養容器50において使用する培養液の種類、培養液に対する設定温度および加温時間の少なくとも1つの情報を設定情報として取得するものであってもよい。
 温度制御装置60の加温方法設定部62は、情報取得部61が取得した設定情報に基づいて、ガラスヒータ18の加温方法を設定する。具体的には、ガラスヒータ18の目標温度、ガラスヒータ18と培養容器50との距離、およびガラスヒータ18における経過時間に対する温度の関係の少なくとも1つを加温方法として設定する。以下、加温方法の設定について詳細に説明する。
 観察対象である細胞は、培養容器50に収容された状態で培養されるが、培養は人体の体温である38℃程度に制御された環境で行われる。一方、細胞の観察時においては、培養容器50は顕微鏡装置10のステージ51に載置されるが、その際、培養容器50は室温である環境温度に晒される。環境温度は細胞の培養温度よりも低いことが多いため、培養容器50を観察する際には、観察時には培養容器50の内側に曇りが生じやすい。本実施形態による温度制御装置60は、培養容器50の曇りを防止するために、ガラスヒータ18を用いて培養容器50を加熱する。具体的には培養容器50の上面、すなわち培養容器50の白色光源11を向いている側の面を加熱する。
 ここで、培養容器50としては、ウェルプレート、フラスコ、シャーレおよびディッシュ等、多くの種類が用いられる。また、ウェルプレートについても、6ウェル、12ウェル、24ウェル、48ウェルおよび96ウェル等、ウェルの数が異なるウェルプレートが用いられる。また、培養容器50の種類に応じて使用される培養液の量も異なる。例えば、ウェルプレートよりもフラスコの方が使用される培養液の量が多い。また、使用される培養液も、ゲル状であったり、液状であったり、物性が異なったり、様々な種類のものがある。
 このため、使用される培養容器50の種類等に応じた、適切な加熱方法が存在する。例えば、培養容器50が96ウェルのウェルプレートの場合、ウェルのサイズが小さいため、使用される培養液の量は少ない。このため、緩やかに加温を行ったとしても培養容器50の曇りを除去することができる。したがって、培養容器50が96ウェルのウェルプレートの場合、図3に示すような温度制御カーブC1となるように、ガラスヒータ18の加温方法を設定すればよい。
 なお、図3に示す温度制御カーブが、ガラスヒータ18における経過時間に対する温度の関係となる。また、温度制御カーブにおいては、時間の経過により温度が一定値T0となるが、この一定値T0となる温度がガラスヒータ18の設定温度T0となる。ここで、設定温度T0はガラスヒータ18と培養容器50との距離に応じて設定される。例えば、培養容器50の温度を38度に設定したい場合、ガラスヒータ18と培養容器50との距離に応じて、培養容器50の表面における温度が38度となるように、ガラスヒータ18の設定温度T0が設定される。
 また、一定値T0は、ガラスヒータ18と培養容器50とが予め定められた距離にある場合の設定温度である。このため、加温方法に設定する温度制御カーブが決定されれば、ガラスヒータ18と培養容器50との距離は、その温度制御カーブに対して定められた距離に設定されることとなる。具体的には、ガラスヒータ18および培養容器50の少なくとも一方をZ方向に移動させることにより、ガラスヒータ18と培養容器50との距離を温度制御カーブに対して定められた距離に設定する。
 一方、培養容器50が6ウェルのウェルプレートの場合、ウェルのサイズが大きいため、使用される培養液の量は96ウェルよりも多い。このため、96ウェルのウェルプレートの場合よりも、加熱開始直後の温度を高くするように制御を行うことが好ましい。したがって、培養容器50が6ウェルのウェルプレートの場合、図4に示すような温度制御カーブC2となるように、ガラスヒータ18の加温方法を設定すればよい。
 また、培養容器50が6ウェルのウェルプレートの場合であっても、使用する培養液の種類および量、並びにウェルプレートの材質によっても、加温方法が異なるものとなる。例えば、培養液の沸点が比較的低く、1つのウェル当たりの培養液の量が少なく、高い熱伝導率の材質からなるウェルプレートを使用した場合、図4に示す温度制御カーブC2と比較して、図5に示すように初期の温度の立ち上がりを緩やかにした温度制御カーブC3にしたがって、ガラスヒータ18の加温方法を設定すればよい。
 また、培養容器50がフラスコの場合、ウェルプレートおよびシャーレ等と比較して、ステージ51上に載置した際の厚さが大きい。ここで、ウェルプレートおよびシャーレは図6に示すように、培養容器50とガラスヒータ18との距離を小さくすることができるが、フラスコは、斜め情報に向けて入れ口53を有するため、図7に示すように、ウェルプレートおよびシャーレ程には、培養容器50とガラスヒータ18との距離を小さくすることができない。また、フラスコはウェルプレートおよびシャーレ等と比較して培養液の量が多い。したがって、培養容器50がフラスコの場合、図8に示すように、ウェルプレートの場合よりも、加熱開始直後の温度が高く、かつ高い温度での加熱時間が長い温度制御カーブC4となるように、ガラスヒータ18の加温方法を設定すればよい。
 本実施形態においては、各種培養容器の種類、培養液の量、培養液の種類、設定温度、加熱時間および環境温度に応じた複数の基準となる温度制御カーブ(以下、基準温度制御カーブとする)が、ストレージ23に記憶されている。加温方法設定部62は、情報取得部61が取得した設定情報を参照し、取得した設定情報に最も近い設定情報に対応する基準温度制御カーブを取得する。そして、加温方法設定部62は、取得した基準温度制御カーブを、設定条件に応じて補正することにより補正済み温度制御カーブを導出して、加温方法を設定する。温度制御カーブの導出については後述する。
 次いで、本実施形態において行われる処理について説明する。なお、本実施形態においては、位相差画像を取得する処理は、例えば上述した特開2018-054817号公報に記載された手法と同一であるため、詳細な説明は省略し、以下、本実施形態による温度制御装置60が行う処理についてのみ説明する。図9は温度制御装置60が行う処理を示すフローチャートである。まず、情報取得部61が、ユーザが入力部25から入力した設定情報を取得する(ステップST1)。そして、加温方法設定部62が、設定情報に基づいて、ガラスヒータ18の加温方法を設定する(加温方法設定処理;ステップST2)。
 図10は加温方法設定処理を示すフローチャートである。加温方法設定部62は、設定情報に基づいて、ストレージ23に記憶された複数の基準温度制御カーブから、使用する基準温度制御カーブを選択する(ステップST11)。例えば、培養容器50の種類の情報としてB社製の6ウェルのウェルプレート、培養液の量として2.5ml、培養液の種類としてW社製の培養液が設定情報として取得された場合、取得された設定情報に近い、C社製の6ウェルのウェルプレート、培養液の量が2.0ml、培養液の種類としてW社製の培養液に対して設定された基準温度制御カーブが選択されたとする。
 なお、基準温度制御カーブの選択に際しては、設定条件の種類に優先順位を付与してもよい。例えば、培養容器50の種類、培養液の量および培養液の種類の順に、優先順位を付与してもよい。この場合、培養容器50の種類により近い設定条件に対応する基準温度制御カーブが優先的に選択されることとなる。
 次いで、加温方法設定部62は、取得した設定条件と基準温度制御カーブについての設定条件との相違に基づいて、基準温度制御カーブを補正して補正温度制御カーブを導出する(ステップST12)。図11は基準温度制御カーブの補正を説明するための図である。上述したように、基準温度制御カーブに対応する培養液の量が2mlであり、取得した設定条件の培養液の量が2.5mlであるため、初期の加熱温度を大きくする必要がある。また、B社製のウェルプレートとC社製のウェルプレートとで、B社製の方が熱伝導率が低いのであれば、これも考慮して初期の加熱温度を大きくする必要がある。また、培養液の種類はW社製で同一である。このため、加温方法設定部62は、図11に破線で示す基準温度制御カーブC10を、初期の加熱温度を大きくするように補正して補正済み温度制御カーブC11を導出する。そして、加温方法設定部62は、導出した補正済み温度制御カーブC11にしたがって、ガラスヒータ18の加温方法を設定し(ステップST13)、加温方法設定処理を終了する。
 なお、ステップST11において選択された基準温度制御カーブに対応する設定条件が、ステップST1において取得した設定条件と同一かまたは実質的に等しい場合、補正を行うことなく、選択された基準温度制御カーブに従って、加温方法を設定すればよい。
 図9に戻り、加温方法が設定されると、設定された加温方法に従って、ガラスヒータ18が培養容器50を加温する(ステップST3)。そして、加温後に、撮像制御部31が位相差画像を撮像し(ステップST4)、表示制御部32が合成位相差画像を生成し、かつ表示し(ステップST5)、処理を終了する。
 このように、本実施形態においては、細胞が収容された培養容器50の種類および培養容器50内における培養液の量の少なくとも一方の情報を設定情報として取得し、設定情報に基づいて、ガラスヒータ18の加温方法を設定するようにした。このため、設定された加温方法に従って培養容器50を加温することにより、培養容器50の種類および培養液の量の少なくとも一方の情報に応じて、培養容器50の曇りを除去することができる。したがって、本実施形態によれば、培養容器50の曇りを効率よく除去することができる。
 なお、上記実施形態においては、ガラスヒータ18により培養容器50を加温しているが、これに限定されるものではない。図12に示すようにガラスヒータ18に代えて、温風ヒータ19を用いてもよい。温風ヒータ19は、ステージ51に載置された培養容器50の上方から培養容器50に向けて温風を吹き出す。ここで、培養容器50の上方から温風を吹き出すのは、ゴミおよび埃等が上方に拡散されることを防止するためである。なお、ガラスヒータ18に加えて温風ヒータ19を設けるようにしてもよい。
 また、上記実施形態においては、ガラスヒータ18が設定温度T0となる前には、培養容器50の曇りを除去できていない場合がある。このような場合、撮像により取得された位相差画像は、曇りにより細胞を観察するに適したものではないものとなる。このため、図13に示すように、本実施形態の温度制御装置60に、ガラスヒータ18が予め定められた温度にない場合、観察の撮像を禁止する禁止部63をさらに備えるものとしてもよい。なお、禁止部63は、ガラスヒータ18による加温を開始してからの時間を計測し、温度制御カーブにおける温度が設定温度T0となるまでの時間に対応する時間が経過するまでは、ガラスヒータ18の温度が予め定められた設定温度T0にないものと見なして、撮像を禁止するものとすればよい。また、ガラスヒータ18の温度を計測する温度センサを設け、温度センサが計測したガラスヒータ18の温度を禁止部63に入力するようにしてもよい。この場合、禁止部63は、温度センサにより計測された温度が、温度制御カーブにおける設定値T0にない場合に、撮像を禁止する。
 ここで、撮像を禁止するためは、具体的には、操作者が入力部25から撮像開始の指示を行っても、撮像制御部31からの指示が顕微鏡装置10に出力されないようにすればよい。また、入力部25が、撮像ボタンを有するものである場合には、撮像ボタンを機械的または電気的に押せないようにしてもよい。また、入力部25がタッチパネルである場合には、撮像ボタンを表示させないようにしてもよい。
 また、上記実施形態においては、ステージ51を移動させることによって、培養容器50内の観察位置を走査するようにしたが、これに限らず、結像光学系14および撮像素子16からなる撮像系を移動させるようにしてもよい。また、ステージ51と撮像系との両方を移動させるようにしてもよい。
 また、上記実施形態は、本開示を位相差顕微鏡に適用したものであるが、本開示は、位相差顕微鏡に限らず、微分干渉顕微鏡および明視野顕微鏡等のその他の顕微鏡に適用するようにしてもよい。
 また、上記実施形態においては、結像光学系14によって結像された位相差画像を撮像素子16によって撮像するようにしたが、撮像素子16を設けることなく、結像光学系14によって結像された観察対象の位相差像をユーザが直接観察できるように観察光学系等を設けるようにしてもよい。
 また、上記実施形態において、例えば、撮像制御部31、表示制御部32、情報取得部61および加温方法設定部62といった各種の処理を実行する処理部(Processing Unit)のハードウェア的な構造としては、次に示す各種のプロセッサ(Processor)を用いることができる。上記各種のプロセッサには、上述したように、ソフトウェア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPUに加えて、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device :PLD)、ASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。
 1つの処理部は、これらの各種のプロセッサのうちの1つで構成されてもよいし、同種または異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせまたはCPUとFPGAとの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。
 複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアントおよびサーバ等のコンピュータに代表されるように、1つ以上のCPUとソフトウェアとの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)等に代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサの1つ以上を用いて構成される。
 さらに、これらの各種のプロセッサのハードウェア的な構造としては、より具体的には、半導体素子等の回路素子を組み合わせた電気回路(Circuitry)を用いることができる。
   10  顕微鏡装置
   11  白色光源
   12  コンデンサレンズ
   13  スリット板
   14  結像光学系
   15  結像光学系駆動部
   16  撮像素子
   17  水平方向駆動部
   18  ガラスヒータ
   19  温風ヒータ
   20  観察制御装置
   21  CPU
   22  メモリ
   23  ストレージ
   31  撮像制御部
   32  表示制御部
   50  培養容器
   51  ステージ
   51a 開口
   60  温度制御装置
   61  情報取得部
   62  加温方法設定部
   63  禁止部
   C1~C4  温度制御カーブ
   C10  基準温度制御カーブ
   C11  補正済み温度制御カーブ

Claims (12)

  1.  観察対象が収容された容器を加温する加温部と、
     前記容器の種類および前記容器内における液体の量の少なくとも一方の情報を設定情報として取得する情報取得部と、
     前記設定情報に基づいて、前記加温部による加温方法を設定する加温方法設定部とを備えた温度制御装置。
  2.  前記情報取得部は、さらに前記液体の種類、前記液体に対する設定温度、加温時間および環境温度の少なくとも1つの情報を前記設定情報として取得する請求項1に記載の温度制御装置。
  3.  前記加温部は、前記加温部の目標温度、前記加温部と前記容器との距離、および前記加温部における経過時間に対する温度の関係の少なくとも1つを前記加温方法として設定する請求項1または2に記載の温度制御装置。
  4.  予め定められた各種設定条件に応じた、複数の加温方法を記憶する記憶部をさらに備え、
     前記加温方法設定部は、前記複数の加温方法から、前記取得した設定条件に応じた加温方法を選択することにより前記加温方法を設定する請求項1から3のいずれか1項に記載の温度制御装置。
  5.  前記加温方法設定部は、前記選択した加温方法を前記取得した設定条件に応じて補正することにより前記加温方法を設定する請求項4に記載の温度制御装置。
  6.  前記加温部は、ガラスヒータを有する請求項1から5のいずれか1項に記載の温度制御装置。
  7.  前記加温部は、前記容器の上方から前記容器に向けて温風を吹き出す温風ヒータを有する請求項1から6のいずれか1項に記載の温度制御装置。
  8.  前記容器に収容された前記観察対象を観察する観察装置と、
     請求項1から7のいずれか1項に記載の温度制御装置とを備えた観察システム。
  9.  前記観察装置は、前記容器内の前記観察対象の像を結像させる結像光学系と、
     前記結像光学系により結像された前記観察対象の画像を撮像して観察画像を生成する撮像部とを有する請求項8に記載の観察システム。
  10.  前記温度制御装置は、前記加温部の温度が予め定められた温度にない場合、前記撮像部による前記観察対象の撮像を禁止する禁止部をさらに備える請求項9に記載の観察システム。
  11.  観察対象が収容された容器の種類および前記容器内における液体の量の少なくとも一方の情報を設定情報として取得し、
     前記設定情報に基づいて、前記容器の加温方法を設定する温度制御方法。
  12.  観察対象が収容された容器の種類および前記容器内における液体の量の少なくとも一方の情報を設定情報として取得する手順と、
     前記設定情報に基づいて、前記容器の加温方法を設定する手順とをコンピュータに実行させる温度制御プログラム。
PCT/JP2020/013844 2019-04-02 2020-03-26 温度制御装置、方法およびプログラム、並びに観察システム WO2020203699A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019070658 2019-04-02
JP2019-070658 2019-04-02

Publications (1)

Publication Number Publication Date
WO2020203699A1 true WO2020203699A1 (ja) 2020-10-08

Family

ID=72668507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013844 WO2020203699A1 (ja) 2019-04-02 2020-03-26 温度制御装置、方法およびプログラム、並びに観察システム

Country Status (1)

Country Link
WO (1) WO2020203699A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006039171A (ja) * 2004-07-27 2006-02-09 Nikon Corp 環境制御装置および環境制御型分析装置
JP2010158185A (ja) * 2009-01-07 2010-07-22 Nikon Corp 培養観察装置
JP2014095786A (ja) * 2012-11-08 2014-05-22 Tokai Hit:Kk 顕微鏡観察用培養装置および容器用アタッチメント
WO2018154924A1 (ja) * 2017-02-27 2018-08-30 富士フイルム株式会社 顕微鏡装置および観察方法並びに顕微鏡装置制御プログラム
JP2019016859A (ja) * 2017-07-04 2019-01-31 オリンパス株式会社 観察装置および観察方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006039171A (ja) * 2004-07-27 2006-02-09 Nikon Corp 環境制御装置および環境制御型分析装置
JP2010158185A (ja) * 2009-01-07 2010-07-22 Nikon Corp 培養観察装置
JP2014095786A (ja) * 2012-11-08 2014-05-22 Tokai Hit:Kk 顕微鏡観察用培養装置および容器用アタッチメント
WO2018154924A1 (ja) * 2017-02-27 2018-08-30 富士フイルム株式会社 顕微鏡装置および観察方法並びに顕微鏡装置制御プログラム
JP2019016859A (ja) * 2017-07-04 2019-01-31 オリンパス株式会社 観察装置および観察方法

Similar Documents

Publication Publication Date Title
US11243386B2 (en) Microscope apparatus, observation method, and microscope apparatus-control program
US10761295B2 (en) Image focusing device, image focusing method and computer readable medium with image focusing control program
US11163145B2 (en) Observation device, observation method, and observation device control program
WO2020203699A1 (ja) 温度制御装置、方法およびプログラム、並びに観察システム
US10551607B2 (en) Imaging apparatus and method and imaging control program
WO2018061429A1 (ja) 撮影画像評価装置および方法並びにプログラム
JP2020170098A (ja) 温度制御装置、方法およびプログラム
WO2018061635A1 (ja) 観察装置および方法並びに観察装置制御プログラム
JP6698421B2 (ja) 観察装置および方法並びに観察装置制御プログラム
JP6848086B2 (ja) 観察装置および方法並びに観察装置制御プログラム
US11061214B2 (en) Cell observation apparatus and method
JP6982198B2 (ja) 観察装置および方法並びに観察装置制御プログラム
WO2019116807A1 (ja) 観察装置、観察方法および観察プログラム
JPWO2019088030A1 (ja) 撮影制御装置、撮影制御装置の作動方法、及び撮影制御プログラム
JPWO2019069823A1 (ja) 撮像装置、撮像装置の作動方法及び撮像制御プログラム
JPWO2019065050A1 (ja) 観察装置、観察方法および観察プログラム
WO2019065144A1 (ja) 観察装置、観察方法および観察プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20785415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20785415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP