WO2018154823A1 - 基板処理装置、半導体装置の製造方法およびプログラム - Google Patents

基板処理装置、半導体装置の製造方法およびプログラム Download PDF

Info

Publication number
WO2018154823A1
WO2018154823A1 PCT/JP2017/034051 JP2017034051W WO2018154823A1 WO 2018154823 A1 WO2018154823 A1 WO 2018154823A1 JP 2017034051 W JP2017034051 W JP 2017034051W WO 2018154823 A1 WO2018154823 A1 WO 2018154823A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
gas
processing
inert gas
gas nozzle
Prior art date
Application number
PCT/JP2017/034051
Other languages
English (en)
French (fr)
Inventor
英俊 三村
隆史 佐々木
吉田 秀成
優作 岡嶋
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to JP2019501021A priority Critical patent/JP6773880B2/ja
Priority to KR1020187011351A priority patent/KR102203745B1/ko
Priority to CN201780080537.5A priority patent/CN110121763B/zh
Priority to CN202311851424.4A priority patent/CN117810127A/zh
Priority to KR1020217000185A priority patent/KR102453245B1/ko
Publication of WO2018154823A1 publication Critical patent/WO2018154823A1/ja
Priority to US16/518,479 priority patent/US11453942B2/en
Priority to US17/892,423 priority patent/US11859280B2/en
Priority to US18/514,494 priority patent/US20240084448A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD

Definitions

  • the present invention relates to a substrate processing apparatus, a semiconductor device manufacturing method, and a program.
  • a processing gas is supplied to a substrate (wafer) in a processing chamber to form a film on the substrate.
  • the wafer in the processing chamber is a pattern wafer
  • the in-plane film thickness uniformity of the film formed on the wafer may be deteriorated because the supply amount of the processing gas is insufficient near the center of the wafer.
  • the in-plane film thickness uniformity on the wafer may be improved by reducing the exhaust pressure and adjusting the diffusion speed of the processing gas and the film formation speed (see, for example, Patent Documents 1 and 2). ).
  • JP 2010-226092 A International Publication No. 2016/157401 International Publication No. 2016/110956
  • An object of the present invention is to provide a technique capable of improving in-plane film thickness uniformity of a film formed on a wafer.
  • a processing chamber for processing the substrate A processing gas nozzle for supplying a processing gas into the processing chamber; An inert gas nozzle that supplies only the inert gas into the processing chamber so that the inert gas concentration at the center of the substrate is lower than the inert gas concentration at the edge of the substrate; An exhaust pipe for exhausting the atmosphere in the processing chamber; A technique is provided.
  • the present invention it is possible to provide a technique capable of improving the in-plane film thickness uniformity of a film formed on a wafer.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. 1 of a part of the processing furnace of the substrate processing apparatus according to the embodiment.
  • It is a schematic block diagram of the controller of the substrate processing apparatus which concerns on embodiment, and is a figure which shows the control system of a controller with a block diagram. It is a figure which shows the film-forming sequence which concerns on embodiment. It is a figure explaining the modification 1 of embodiment. It is a figure explaining the modification 2 of embodiment. It is a figure explaining the modification 3 of embodiment.
  • FIG. It is a figure which shows (theta) dependence of the process gas partial pressure on the wafer in the modification 1.
  • FIG. It is a figure which shows the exhaust gas pressure dependence of the process gas partial pressure at the time of arrange
  • the in-plane film thickness of the film formed on the wafer is suppressed by suppressing the dilution of the process gas by the inert gas and concentrating the flow of the process gas to be spread to the edge of the wafer near the center of the wafer. Improve uniformity.
  • the processing furnace 202 has a heater 207 as heating means (heating mechanism).
  • the heater 207 has a cylindrical shape and is vertically installed by being supported by a holding plate.
  • the heater 207 also functions as an activation mechanism (excitation unit) that activates (excites) gas with heat.
  • a reaction tube 203 is disposed inside the heater 207 concentrically with the heater 207.
  • the reaction tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and has a cylindrical shape with the upper end closed and the lower end opened.
  • a manifold 209 is disposed below the reaction tube 203 concentrically with the reaction tube 203.
  • the manifold 209 is made of a metal such as a nickel alloy, for example, and is formed in a short cylindrical shape having upper and lower ends opened. The upper end portion of the manifold 209 is engaged with the lower end portion of the reaction tube 203 and supports the reaction tube 203.
  • An O-ring 220a as a seal member is provided between the manifold 209 and the reaction tube 203.
  • the reaction tube 203 is installed vertically like the heater 207.
  • the reaction vessel 203 and the manifold 209 mainly constitute a processing vessel (reaction vessel).
  • a processing chamber 201 is formed in the hollow cylindrical portion of the processing container.
  • the processing chamber 201 is configured to accommodate a wafer 200 as a substrate.
  • a nozzle 249 c that supplies only gas is provided so as to penetrate the side wall of the manifold 209.
  • Gas supply pipes 232a to 232c are connected to the nozzles 249a to 249c, respectively.
  • the gas supply pipes 232a to 232c are provided with mass flow controllers (MFC) 241a to 241c, which are flow rate controllers (flow rate control units), and valves 243a to 243c, which are on-off valves, in order from the upstream side of the gas flow.
  • MFC mass flow controllers
  • valves 243a to 243c which are on-off valves, in order from the upstream side of the gas flow.
  • Gas supply pipes 232e and 232d for supplying an inert gas are connected to the downstream sides of the valves 243a and 243b of the gas supply pipes 232a and 232b, respectively.
  • the gas supply pipes 232e and 232d are respectively provided with MFCs 241e and 241d and valves 243e and 243d in order from the upstream side of the gas flow.
  • the nozzles 249a to 249c are respectively provided in an annular space between the inner wall of the reaction tube 203 and the wafer 200 along the arrangement direction of the wafers 200 from below to above the reaction tube 203. Is provided. That is, the nozzles 249a to 249c are provided along the wafer arrangement area in the area horizontally surrounding the wafer arrangement area on the side of the wafer arrangement area where the wafers 200 are arranged.
  • the first gas nozzle 249a and the second gas nozzle 249b are arranged so as to face an exhaust port 233, which will be described later, with the center of the wafer 200 carried into the processing chamber 201 interposed therebetween.
  • the first gas nozzle and the second gas nozzle are arranged adjacent to each other.
  • the nozzle 249 c that is an inert gas nozzle is installed at a position separated from the nozzles 249 a and 249 b that are processing gas nozzles by a predetermined distance in the circumferential direction of the wafer 200.
  • the predetermined distance in this case is, for example, a distance that is not adjacent to at least the nozzles 249a and 249b.
  • the predetermined distance is an adjacent distance (when the nozzle 249c is adjacent to the nozzle 249a and the nozzle 249b), the processing gas and the inert gas are mixed to decrease the processing gas concentration, or the inner surface of the reaction tube 203 and the wafer 200 If the processing gas diffuses into the space between the two, the average processing gas concentration on the entire wafer surface may be reduced. More preferably, the predetermined distance is a distance where the inert gas nozzle is separated from the process gas nozzle by one nozzle or more.
  • the predetermined distance is a first straight line connecting the center of the processing gas nozzle (in the present embodiment, for example, an intermediate point between the center of the nozzle 249a and the center of the nozzle 249b) and the center of the exhaust pipe 231 (exhaust port 233).
  • the angle formed by 300 and the second straight line 301 connecting the inert gas nozzle and the center of the substrate 20 is ⁇ , it is the arc distance when the angle ⁇ is 90 ° or more and 180 ° or less.
  • the predetermined distance is an arc distance when the angle ⁇ is not less than 100 ° and not more than 140 °.
  • Gas supply holes 250a to 250c for supplying gas are provided on the side surfaces of the nozzles 249a to 249c, respectively. Each of the gas supply holes 250 a to 250 c can supply a gas toward the center of the wafer 200.
  • a plurality of gas supply holes 250 a to 250 c are preferably provided so as to open from the lower part to the upper part of the reaction tube 203 toward the center of each wafer 200.
  • a halosilane-based gas containing Si and a halogen element as predetermined elements (main elements) enters the processing chamber 201 through the MFC 241a, the valve 243a, and the nozzle 249a.
  • the source gas includes a gas obtained by vaporizing a liquid source at normal temperature and pressure.
  • a halosilane is a silane having a halogen group.
  • the halogen group includes chloro group, fluoro group, bromo group, iodo group and the like.
  • the halogen group includes halogen elements such as chlorine (Cl), fluorine (F), bromine (Br), iodine (I) and the like.
  • halogen elements such as chlorine (Cl), fluorine (F), bromine (Br), iodine (I) and the like.
  • the halosilane-based gas for example, a chlorosilane-based gas containing Si and Cl, such as hexachlorodisilane (Si 2 Cl 6 , abbreviation: HCDS), can be used.
  • the chlorosilane-based gas acts as a Si source.
  • a reactant (reactant) which is a processing gas and has a chemical structure (molecular structure) different from that of the above-described raw material for example, a hydrogen nitride-based gas which is a nitriding gas is an MFC 241b, a valve 243b, a nozzle It is supplied into the processing chamber 201 through 249b.
  • the hydrogen nitride-based gas acts as an N source.
  • ammonia (NH 3 ) gas can be used as the hydrogen nitride-based gas.
  • nitrogen (N 2 ) gas as an inert gas passes through the MFCs 241c to 241e, valves 243c to 243e, gas supply pipes 232c to 232a, and nozzles 249c to 249a, respectively. Supplied into 201.
  • the N 2 gas acts as a purge gas and a carrier gas, and further acts as a film thickness distribution control gas for controlling the in-plane film thickness distribution of the film formed on the wafer 200.
  • a processing gas supply system is mainly configured by the gas supply pipes 232a and 232b, the MFCs 241a and 241b, and the valves 243a and 243b. Further, an inert gas supply system is mainly configured by the gas supply pipes 232c to 232e, the MFCs 241c to 241e, and the valves 243c to 243e.
  • the reaction tube 203 is provided with an exhaust port 233 for exhausting the atmosphere in the processing chamber 201.
  • the exhaust port 233 is provided at a position facing (facing) the nozzles 249a and 249b (gas supply holes 250a and 250b) with the wafer 200 interposed therebetween.
  • An exhaust pipe 231 is connected to the exhaust port 233.
  • the exhaust pipe 231 is provided with a pressure sensor 245 as a pressure detector for detecting the pressure in the processing chamber 201, and via a APC (Auto Pressure Controller) valve 244 as a pressure regulator, a vacuum pump (vacuum exhaust device). ) 246.
  • APC Auto Pressure Controller
  • the APC valve 244 can perform vacuum evacuation and vacuum evacuation stop in the processing chamber 201 by opening and closing the valve with the vacuum pump 246 activated, and further, with the vacuum pump 246 activated, By adjusting the opening degree based on the pressure information detected by the pressure sensor 245, the pressure in the processing chamber 201 can be adjusted.
  • An exhaust system is mainly configured by the exhaust pipe 231, the APC valve 244, and the pressure sensor 245.
  • a vacuum pump 246 can also be included in the exhaust system.
  • a seal cap 219 is provided as a furnace opening lid capable of airtightly closing the lower end opening of the manifold 209.
  • the seal cap 219 is made of, for example, a metal and has a disk shape.
  • an O-ring 220b is provided as a seal member that comes into contact with the lower end of the manifold 209.
  • a rotation mechanism 267 for rotating a boat 217 described later is installed below the seal cap 219.
  • a rotation shaft 255 of the rotation mechanism 267 passes through the seal cap 219 and is connected to the boat 217. The rotation mechanism 267 rotates the wafer 200 by rotating the boat 217.
  • the seal cap 219 is configured to be lifted in the vertical direction by a boat elevator 115 as a lifting mechanism installed outside the reaction tube 203.
  • the boat elevator 115 is configured as a transfer device (transfer mechanism) that carries the wafer 200 in and out of the processing chamber 201 by moving the seal cap 219 up and down.
  • a shutter as a furnace port lid that hermetically closes the lower end opening of the manifold 209 while the seal cap 219 is lowered and the boat 217 is completely carried out of the processing chamber 201 below or to the side of the manifold 209. 221 is provided.
  • the shutter 221 is formed in a disk shape like the seal cap 219, and an O-ring 220 c that contacts the lower end of the manifold 209 is provided on the upper surface thereof.
  • the opening / closing operation (elevating operation, rotating operation, etc.) of the shutter 221 is controlled by the shutter opening / closing mechanism 222.
  • the boat 217 as a substrate support is configured to support a plurality of, for example, 25 to 200, wafers 200 in a multi-stage manner by aligning them vertically in a horizontal posture and with their centers aligned. It is configured to arrange at intervals.
  • the boat 217 is made of a heat-resistant material such as quartz or SiC. Under the boat 217, heat insulating plates 218 made of a heat-resistant material such as quartz or SiC are supported in multiple stages.
  • a temperature sensor 263 is installed as a temperature detector. By adjusting the power supply to the heater 207 based on the temperature information detected by the temperature sensor 263, the temperature in the processing chamber 201 becomes a desired temperature distribution.
  • the temperature sensor 263 is provided along the inner wall of the reaction tube 203.
  • the controller 121 which is a control unit (control means), is configured as a computer having a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via the internal bus 121e.
  • an input / output device 122 configured as a touch panel or the like is connected to the controller 121.
  • the storage device 121c includes, for example, a flash memory, a HDD (Hard Disk Drive), and the like.
  • a control program that controls the operation of the substrate processing apparatus, a process recipe that describes the procedure and conditions of the substrate processing described later, and the like are stored in a readable manner.
  • the process recipe is a combination of processes so that a predetermined result can be obtained by causing the controller 121 to execute each procedure in substrate processing to be described later, and functions as a program.
  • process recipes, control programs, and the like are collectively referred to simply as programs.
  • the process recipe is also simply called a recipe.
  • program When the term “program” is used in this specification, it may include only a recipe, only a control program, or both.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
  • the I / O port 121d includes the above-described MFCs 241a to 241e, valves 243a to 243e, pressure sensor 245, APC valve 244, vacuum pump 246, temperature sensor 263, heater 207, rotation mechanism 267, boat elevator 115, shutter opening / closing mechanism 222, and the like. It is connected to the.
  • the CPU 121a is configured to read out and execute a control program from the storage device 121c and to read a recipe from the storage device 121c in response to an operation command input from the input / output device 122 or the like.
  • the CPU 121a adjusts the flow rate of various gases by the MFCs 241a to 241e, the opening / closing operation of the valves 243a to 243e, the opening / closing operation of the APC valve 244 and the pressure adjustment by the APC valve 244 based on the pressure sensor 245 so as to follow the contents of the read recipe.
  • the controller 121 installs the above-described program stored in an external storage device (for example, a magnetic disk such as a hard disk, an optical disk such as a CD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory) 123 in a computer.
  • an external storage device for example, a magnetic disk such as a hard disk, an optical disk such as a CD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory
  • the storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium.
  • recording medium When the term “recording medium” is used in this specification, it may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both of them.
  • the program may be provided to the computer using a communication means such as the Internet or a dedicated line without using the external storage device 123.
  • the film forming sequence shown in FIG. Forming an Si-containing layer as a first layer by supplying HCDS gas from the nozzle 249a to the wafer 200; Step B of forming a silicon nitride layer (SiN layer) as a second layer by supplying NH 3 gas from the nozzle 249b to the wafer 200; A film containing Si and N, that is, a SiN film, is formed on the wafer 200 by performing a cycle in which the steps are performed simultaneously n times (n is a predetermined number).
  • the film forming sequence shown in FIG. 4 may be shown as follows for convenience.
  • wafer When the term “wafer” is used in this specification, it may mean the wafer itself or a laminate of the wafer and a predetermined layer or film formed on the surface thereof.
  • wafer surface When the term “wafer surface” is used in this specification, it may mean the surface of the wafer itself, or may mean the surface of a predetermined layer or the like formed on the wafer.
  • substrate includes the meaning of “wafer”.
  • the inside of the processing chamber 201 is evacuated (reduced pressure) by the vacuum pump 246 so that the space in which the wafer 200 exists is at a desired pressure (degree of vacuum).
  • the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 244 is feedback-controlled based on the measured pressure information.
  • the wafer 200 in the processing chamber 201 is heated by the heater 207 so as to have a desired film formation temperature.
  • the power supply to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution.
  • the rotation of the wafer 200 by the rotation mechanism 267 is started.
  • the exhaust in the processing chamber 201 and the heating and rotation of the wafer 200 are all continuously performed at least until the processing on the wafer 200 is completed.
  • Step A In this step, HCDS gas is supplied to the wafer 200 in the processing chamber 201.
  • the valve 243a is opened and HCDS gas is allowed to flow into the gas supply pipe 232a.
  • the flow rate of the HCDS gas is adjusted by the MFC 241a, supplied into the processing chamber 201 through the nozzle 249a, and exhausted from the exhaust port 233. That is, HCDS gas is supplied to the wafer 200.
  • the valve 243e may be opened to allow N 2 gas to flow into the gas supply pipe 232e.
  • the flow rate of the N 2 gas is adjusted by the MFC 241e, and the N 2 gas is supplied into the processing chamber 201 through the nozzle 249a together with the HCDS gas, and can be exhausted from the exhaust port 233.
  • N 2 gas is supplied into the processing chamber 201 through the nozzle 249c in a state where the HCDS gas is supplied into the processing chamber 201 through the nozzle 249a. Details thereof will be described later.
  • the flow rate of the HCDS gas supplied from the nozzle 249a is, for example, in the range of 1 to 2000 sccm, preferably 10 to 1000 sccm.
  • the flow rate of the N 2 gas supplied from the nozzle 249c is set to a predetermined flow rate within a range of 25% to 400% of the flow rate of the HCDS gas, for example.
  • the supply time of the HCDS gas is, for example, a predetermined time within a range of 1 to 120 seconds, preferably 1 to 60 seconds.
  • the pressure in the processing chamber 201 is set to a predetermined pressure, for example, in the range of 1 to 2666 Pa, preferably 67 to 1333 Pa.
  • the temperature (film formation temperature) of the wafer 200 is set to a predetermined temperature in the range of 250 to 800 ° C., preferably 400 to 750 ° C., more preferably 550 to 700 ° C., for example.
  • the first layer is formed on the outermost surface of the wafer 200 as, for example, less than one atomic layer to several atomic layers (from less than one molecular layer).
  • a Si-containing layer containing Cl having a thickness of several molecular layers is formed.
  • the Si-containing layer containing Cl may be a Si layer containing Cl, an HCDS adsorption layer, or both of them.
  • Si is deposited on the wafer 200 to form a Si layer containing Cl.
  • the adsorption layer of HCDS is formed by the adsorption of HCDS on the wafer 200. From the viewpoint of the film formation rate, it is preferable to form a Si layer containing Cl rather than to form an adsorption layer of HCDS.
  • the Si-containing layer containing Cl is also simply referred to as a Si-containing layer for convenience.
  • the in-plane thickness distribution of the film is changed from the central concave distribution. It is possible to approach a flat distribution, and further to a central convex distribution.
  • N 2 gas is supplied from the nozzle 249 c into the processing chamber 201 so that the inert gas concentration at the center of the wafer 200 is higher than the average inert gas concentration at the end (outer periphery) of the wafer 200.
  • the controller 121 By controlling the amount by the controller 121, the amount of HCDS gas supplied to the center of the wafer 200 can be controlled. Thereby, it is considered that the in-plane thickness distribution of the first layer is controlled as described above.
  • step A while supplying the HCDS gas from the nozzle 249a, the valve 243 d, open the 243 c, gas supply pipe 232 d, 232b, flushed with N 2 gas into the 232c, nozzles 249 b, N 2 to from the processing chamber 201 249 c Supply gas.
  • the supply of N 2 gas from the nozzle 249b is preferably started simultaneously with or before Step A.
  • each flow rate (first flow rate) of the N 2 gas supplied from the nozzles 249a and 249b is set to be smaller than the flow rate of N 2 supplied from the nozzle 249c.
  • each flow rate of the N 2 gas supplied from the nozzles 249b and 249c is set to a flow rate such that the total flow rate thereof is smaller than the flow rate of the HCDS gas supplied from the nozzle 249a.
  • the valve 243a is closed and the supply of HCDS gas is stopped. Further, the MFCs 241d and 241c are controlled to reduce the flow rate of N 2 gas supplied from the nozzles 249b and 249c.
  • the APC valve 244 is kept open, the processing chamber 201 is evacuated by the vacuum pump 246, and the HCDS gas remaining in the processing chamber 201 or contributing to the formation of the first layer is removed from the processing chamber. Eliminate from within 201.
  • the N 2 gas supplied from the nozzles 249a to 249c acts as a purge gas, whereby the inside of the processing chamber 201 is purged (purge step).
  • Step B After step A is completed, NH 3 gas is supplied to the wafer 200 in the processing chamber 201, that is, the first layer formed on the wafer 200.
  • the opening / closing control of the valves 243b, 243c to 243e is performed in the same procedure as the opening / closing control of the valves 243a, 243c to 243e in step A.
  • the flow rate of the NH 3 gas is adjusted by the MFC 241b, supplied into the processing chamber 201 through the nozzle 249b, and exhausted from the exhaust port 233. At this time, NH 3 gas is supplied to the wafer 200.
  • the supply flow rate of NH 3 gas is set to a predetermined flow rate within a range of 1000 to 10000 sccm, for example.
  • the supply time of the NH 3 gas is, for example, a predetermined time within a range of 1 to 120 seconds, preferably 1 to 60 seconds.
  • N 2 gas is supplied from the nozzle 249c.
  • the supply flow rate of the N 2 gas to be supplied is set to a predetermined flow rate in the range of 1 to 4000 sccm, for example.
  • the pressure in the processing chamber 201 is, for example, a predetermined pressure in the range of 1 to 4000 Pa, preferably 1 to 3000 Pa.
  • Step A By setting the pressure higher than that in Step A, the second layer can be formed by chemically reacting with the first layer at a predetermined speed even when the thermally activated NH 3 gas is used instead of plasma. it can.
  • Other processing conditions are the same as those in step A.
  • Step B compared to Step A, the N 2 gas supply from the nozzle 249c is less important and may not be necessary.
  • the second layer containing Si and N, that is, a SiN layer is formed on the wafer 200.
  • impurities such as Cl contained in the first layer constitute a gaseous substance containing at least Cl in the course of the reforming reaction of the first layer with NH 3 gas. Ejected from within 201. That is, impurities such as Cl in the first layer are separated from the first layer by being extracted from or desorbed from the first layer. As a result, the second layer is a layer having less impurities such as Cl than the first layer.
  • valve 243b is closed and the supply of NH 3 gas is stopped. Then, NH 3 gas and reaction byproducts remaining in the processing chamber 201 and contribute to the formation of the second layer are treated in the processing chamber 201 by the same processing procedure and processing conditions as the purge step of Step A. To eliminate.
  • a SiN film having a predetermined composition and a predetermined film thickness can be formed on the wafer 200.
  • the above cycle is preferably repeated multiple times. That is, the thickness of the second layer formed when the above cycle is performed once is made smaller than the desired thickness, and the thickness of the SiN film formed by stacking the second layers is the desired thickness.
  • the above cycle is preferably repeated a plurality of times until the thickness is reached.
  • chlorosilane feed gas such as a gas.
  • a hydrogen nitride-based gas such as diazene (N 2 H 2 ) gas, hydrazine (N 2 H 4 ) gas, N 3 H 8 gas or the like can be used.
  • a rare gas such as Ar gas, He gas, Ne gas, or Xe gas can be used in addition to N 2 gas.
  • N 2 gas as a purge gas is supplied into the processing chamber 201 from each of the nozzles 249a to 249c and exhausted from the exhaust port 233.
  • the inside of the processing chamber 201 is purged, and the gas and reaction byproducts remaining in the processing chamber 201 are removed from the processing chamber 201 (after purge).
  • the atmosphere in the processing chamber 201 is replaced with an inert gas (inert gas replacement), and the pressure in the processing chamber 201 is returned to normal pressure (return to atmospheric pressure).
  • the seal cap 219 is lowered by the boat elevator 115 and the lower end of the manifold 209 is opened. Then, the processed wafer 200 is unloaded from the lower end of the manifold 209 to the outside of the reaction tube 203 while being supported by the boat 217 (boat unloading). After the boat unloading, the shutter 221 is moved, and the lower end opening of the manifold 209 is sealed by the shutter 221 via the O-ring 220c (shutter close). The processed wafer 200 is taken out of the reaction tube 203 and then taken out from the boat 217 (wafer discharge).
  • FIG. 5 shows an example in which a fourth gas nozzle as an inert gas nozzle for supplying only an inert gas is added.
  • a fourth gas nozzle 249 d for supplying an inert gas into the processing chamber 201 is installed.
  • the third gas nozzle 249c and the fourth gas nozzle 249d may be installed symmetrically with respect to the boundary line 300.
  • a reaction tube 203 as shown in FIG. 6 may be used.
  • the reaction tube 203 includes a first projecting portion 302 projecting outward to accommodate the processing gas nozzles (first gas nozzle 249a and second gas nozzle 249b) and a second projecting outward projecting the third gas nozzle 249c.
  • a protruding portion 303 is formed.
  • the 1st protrusion part 302 may be divided
  • an exhaust buffer 234 protruding outward is provided at a position facing the process gas nozzle, and a portion of the exhaust buffer 234 facing the substrate is greatly opened to form an exhaust port 233.
  • the reaction tube in which the space between the inner wall and the wafer is narrowed suppresses the flow of the processing gas that bypasses the periphery of the wafer, so it is easy to make the partial pressure of the processing gas on the wafer uniform. It was difficult to correct the lack of supply to the central part.
  • the inert gas supplied from the third gas nozzle 249c is also difficult to flow around the wafer, so that the action of blocking the processing gas in a fan shape is strengthened, and the convex tendency can be corrected. .
  • a plasma electrode is provided in parallel with a nozzle, and a highly active reactant can be provided.
  • the reactant include an amine-based gas such as triethylamine ((C 2 H 5 ) 3 N, abbreviation: TEA) gas, oxygen (O 2 ) gas, water vapor (H 2 O), and ozone (O 3 ) gas.
  • O-containing gas such as plasma-excited O 2 gas (O 2 * ), O 2 gas + hydrogen (H 2 ) gas, and C-containing gas such as propylene (C 3 H 6 ) gas
  • oxidant such as plasma-excited O 2 gas (O 2 * ), O 2 gas + hydrogen (H 2 ) gas, and C-containing gas such as propylene (C 3 H 6 ) gas
  • C-containing gas such as propylene (C 3 H 6 ) gas
  • a B-containing gas such as trichloroborane (BCl 3 ) gas may be used.
  • a reaction tube 203 as shown in FIG. 7 may be used.
  • the reaction tube 203 has an inner wall (also referred to as an inner tube or liner) 304 provided therein.
  • the inner wall 304 has an exhaust port 233 serving as a partial opening in a portion facing the first gas nozzle 249a and the second gas nozzle 249b, and is partially outside so as to avoid the first gas nozzle 249a and the second gas nozzle 249b.
  • the first inner wall protruding portion 305 protruding in the shape of the second inner wall and the second inner wall protruding portion 306 of the shape in which the installation portion partially protrudes outward are formed so that the third gas nozzle 249c does not interfere with the inner wall 304.
  • the first inner wall protrusion 305 may be divided into a plurality of parts so as to accommodate the first gas nozzle 249a and the second gas nozzle 249b, respectively.
  • the reaction tube having such a shape it is possible to improve exhaustability (gas replacement property) of the entire reaction tube 203 while obtaining the same effect as that of the second modification.
  • FIG. 8 shows a simulation result of the relationship between the total flow rate of the inert gas and the partial pressure of the reaction intermediate gas.
  • the vertical axis represents the partial pressure of SiCl 2 * (silylene), which is a typical reaction intermediate (precursor, radical) generated by the decomposition of HCDS, and it can be said that this represents the amount of decomposition of HCDS.
  • the simulation was performed considering the consumption of HCDS in the patterned wafer.
  • the graph shows the partial pressure of the intermediate as the ratio between the center and the end increases (ie, tends to be convex) as the total flow rate of N 2 gas from the two inert gas nozzles increases.
  • the convex tendency of the film thickness is not so much promoted.
  • the partial pressure is reduced over the entire wafer due to dilution of the raw material. This means that the use efficiency of the gas is poor and the film formation rate is also slow.
  • FIG. 9 shows a simulation result under the same conditions as in FIG. 8 except that the angle ⁇ is set to 120 °. Compared to FIG. 8, the reduction in the partial pressure of the intermediate with the increase in the flow rate of the inert gas is clearly improved.
  • gases that contribute to film formation are collectively referred to as reaction gases without distinguishing between reaction intermediates and process gases.
  • FIG. 10 shows the concentration distribution of the reaction gas under the conditions used in FIGS.
  • the total flow rate of N 2 gas is 2000 sccm for both.
  • the concentration of the reaction gas gradually decreases as it moves away from the nozzle, suggesting mixing and diffusion with N 2 gas. Yes.
  • the reaction gas should be distributed over the specified partial pressure at the center of the wafer. Is desirable.
  • the processing gas is an excited species (such as a radical)
  • it is generally reached at the center of the wafer without being mixed with another gas having a low energy (an inert gas having a large flow rate and a relatively low temperature).
  • the processing gas is generally large.
  • the inert gas nozzles of the present modification are installed in two symmetrically with a large angle ⁇ as shown in FIG. Two nozzles installed with an obtuse angle ⁇ are called side counter nozzles. By using the side counter nozzle, the in-plane film thickness distribution on the wafer can be more reliably converted into the central convex distribution.
  • FIG. 11 shows the ⁇ dependency of the reaction gas partial pressure on the wafer in the first modification.
  • a pattern wafer model is used, two inert gas nozzles (third gas nozzle and fourth gas nozzle) are arranged symmetrically, and 300 sccm of HCDS is supplied from the processing gas nozzle.
  • the upper graph corresponds to 100 sccm flow N 2 gas from an inert gas nozzle, and the lower graph corresponds to 2000 sccm flow.
  • the angle ⁇ increases, the partial pressure of the intermediate increases monotonously and the dependence on the N 2 gas flow rate increases.
  • the angle ⁇ has an upper limit because the inert gas nozzle cannot be provided at the same position as the exhaust port 233 (exhaust duct), and the upper limit is, for example, 140 °.
  • This reversal point actually depends on the N 2 gas flow rate and is in the range of approximately 95 ° ⁇ ⁇ 130 °. That is, when two inert gas nozzles are arranged at a position of ⁇ > 95 °, it is expected that the convex tendency can be corrected without suffering the disadvantages due to the dilution of the reaction gas.
  • FIG. 12 shows a graph of the exhaust gas pressure dependency of the reaction gas in Modification 2.
  • 480 sccm of processing gas is supplied from nozzle 232 b
  • 300 sccm of nozzle 232 a adjacent to nozzle 232 b is supplied.
  • the horizontal axis indicates the exhaust pressure in the exhaust pipe 231
  • the vertical axis indicates the partial pressure of the intermediate (SiCl 2 ) on the wafer.
  • the reactive gas partial pressure at the center of the wafer is always higher than the average of the entire circumference of the edge of the wafer, as shown by the rhombus marker line, and the ratio decreases as the exhaust pressure (back pressure) increases. To increase. This is thought to be because the gas jetted from the processing gas nozzle decelerates while crossing the substrate and is likely to stay in the center due to the transition from the molecular flow to the viscous flow.
  • the flow rate of the gas nozzle 249 at the obtuse angle position is set to be larger than the flow rate of the nozzle 232a at the acute angle position, and more preferably set twice or more. It was also confirmed that even when the exhaust pressure was increased, the balance between the diffusion rate and the film formation rate was not easily lost, and the partial pressure of the reaction gas at the center of the wafer was stably distributed. It should be noted here that the partial pressure of the reactive gas in this graph does not directly indicate the film thickness. For example, in a process in which reactant gases are alternately supplied, the convex tendency may become weaker (the central film thickness becomes thinner) as the exhaust pressure increases despite the partial pressure as shown in FIG.
  • N 2 gas is supplied from the processing gas nozzle to the center of the wafer from an inert gas nozzle installed at a predetermined distance in the circumferential direction of the wafer.
  • the in-plane film thickness distribution of the film formed on the wafer can be a central convex distribution. That is, it is possible to form a film having a flat distribution on the pattern wafer by appropriately adjusting the flow rate and angle of the N 2 gas.
  • the in-plane film thickness distribution of the film formed on the wafer depends on the surface area of the wafer due to a so-called loading effect. As the surface area of the wafer to be deposited increases, a larger amount of processing gas (reaction gas) is consumed at the peripheral edge of the wafer, and it becomes more difficult to reach the center. As a result, the in-plane film thickness distribution of the film formed on the wafer becomes a central concave distribution. According to the present embodiment, even when a pattern wafer having a large surface area is used as the wafer, the in-plane film thickness distribution of the film formed on the wafer is corrected to a convex tendency, and the central concave distribution is brought closer to the flat distribution. Thus, the film thickness distribution can be controlled with a high degree of freedom. In addition to the film thickness, the in-plane uniformity of the composition ratio and impurity concentration may be controlled.
  • the surface area of the wafer is determined by the pattern of the pattern wafer and the trench depth. That is, the optimum N 2 gas flow rate and angle ⁇ range are determined in relation to the pattern wafer pattern and trench depth. For example, the larger the surface area of the substrate (the deeper the trench), the larger the angle ⁇ is desirable, and the smaller the surface area of the substrate (the shallower the trench), the smaller the angle ⁇ may be.
  • the angle ⁇ can be increased up to 180 °.
  • the present invention has been specifically described above. However, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.
  • the example in which the film containing Si as the main element is formed on the substrate has been described.
  • the present invention is not limited to such a mode. That is, the present invention can be suitably applied to the case where a film containing a metal element such as germanium (Ge) or boron (B) as a main element in addition to Si is formed on a substrate.
  • a metal element such as germanium (Ge) or boron (B)
  • the present invention also provides titanium (Ti), zirconium (Zr), hafnium (Hf), niobium (Nb), tantalum (Ta), molybdenum (Mo), tungsten (W), yttrium (Y), and lanthanum (La).
  • Ti titanium
  • Zr zirconium
  • Hafnium Hf
  • Nb niobium
  • Ta tantalum
  • Mo molybdenum
  • W tungsten
  • Y yttrium
  • La lanthanum
  • the present invention can also be suitably applied to the case where a film containing a metal element such as strontium (Sr) or aluminum (Al) as a main element is formed on a substrate.
  • TiCl 4 titanium tetrachloride
  • Al (CH 3 ) 3 trimethylaluminum
  • TMA trimethylaluminum
  • TiN film titanium nitride film
  • TiON film titanium oxide film
  • TiAlCN film titanium aluminum carbonitride film
  • TiAlC film titanium aluminum carbide film
  • TiCN film titanium carbonitride film
  • TiO film titanium oxide film
  • the recipe used for the substrate processing is preferably prepared individually according to the processing content and stored in the storage device 121c via the telecommunication line or the external storage device 123. And when starting a process, it is preferable that CPU121a selects a suitable recipe suitably from the some recipe stored in the memory
  • the above-described recipe is not limited to a case of newly creating, but may be prepared by changing an existing recipe that has already been installed in the substrate processing apparatus, for example.
  • the changed recipe may be installed in the substrate processing apparatus via an electric communication line or a recording medium on which the recipe is recorded.
  • an existing recipe that has already been installed in the substrate processing apparatus may be directly changed by operating the input / output device 122 provided in the existing substrate processing apparatus.
  • processing procedure and processing conditions at this time can be the same as the processing procedure and processing conditions of the above-described embodiment, for example.
  • the SiN film or the like formed by the method of the above-described embodiment or modification can be widely used as an insulating film, a spacer film, a mask film, a charge storage film, a stress control film, and the like.
  • the present invention capable of forming a film having a flat in-plane film thickness distribution on a patterned wafer having a high-density pattern formed on the surface is very useful as a technique that meets this requirement.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

ウエハ上に形成された膜の面内膜厚均一性を向上させる技術を提供する。装置は、基板を処理する処理室と、処理室内に処理ガスを供給する処理ガスノズルと、基板の中心部の不活性ガス濃度が基板の端部の不活性ガス濃度よりも低くなるように処理室内に不活性ガスのみを供給する不活性ガスノズルと、処理室内の雰囲気を排気する排気管と、を有する。基板の中心部で測った、処理ガスノズルと不活性ガスノズルとの間の角は、望ましくは鈍角である。

Description

基板処理装置、半導体装置の製造方法およびプログラム
 本発明は、基板処理装置、半導体装置の製造方法およびプログラムに関する。
 半導体装置(デバイス)の製造工程の一工程として、処理室内の基板(ウエハ)に対して処理ガスを供給し、基板上に膜を形成する処理が行われる。処理室内のウエハがパターンウエハの場合、ウエハの中心付近において処理ガスの供給量が不足したために、ウエハ上に形成された膜の面内膜厚均一性が悪化することがある。これに対し、排気圧を小さくし、処理ガスの拡散速度と成膜速度との調整を図ることにより、ウエハ上の面内膜厚均一性を向上させることがある(例えば特許文献1及び2参照)。
特開2010-226092号公報 国際特開第2016/157401号公報 国際特開第2016/110956号公報
 上述の方法では、処理ガスの拡散速度と成膜速度との調整が困難な場合がある。本発明の目的は、ウエハ上に形成された膜の面内膜厚均一性を向上させることが可能な技術を提供することにある。
 基板を処理する処理室と、
 前記処理室内に処理ガスを供給する処理ガスノズルと、
 前記基板の中心部の不活性ガス濃度が前記基板の端部の不活性ガス濃度よりも低くなるように前記処理室内に不活性ガスのみを供給する不活性ガスノズルと、
 前記処理室内の雰囲気を排気する排気管と、
 を有する技術が提供される。
 本発明によれば、ウエハ上に形成された膜の面内膜厚均一性を向上させることが可能な技術を提供することが可能となる。
実施形態に係る基板処理装置の概略構成図であり、処理炉部分を縦断面図で示す図である。 実施形態に係る基板処理装置の処理炉の一部を図1のA-A線断面図で示す図である。 実施形態に係る基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。 実施形態に係る成膜シーケンスを示す図である。 実施形態の変形例1を説明する図である。 実施形態の変形例2を説明する図である。 実施形態の変形例3を説明する図である。 実施形態の変形例1におけるθ=40°とした場合のパターンウエハモデルの解析結果を示す図である。 変形例1におけるθ=120°とした場合のパターンウエハモデルの解析結果を示す図である。 変形例1におけるθ=40°、120°とした場合の処理ガスの分布を示す図である。 変形例1におけるウェハ上の処理ガス分圧のθ依存性を示す図である。 変形例2における不活性ガスノズルを1つ配置した場合の、処理ガス分圧の排気圧依存性を示す図である。
 実施形態は、不活性ガスによる処理ガスの希釈を抑制し、ウエハ端部に広がろうとする処理ガスの流れをウエハ中心付近に集中させることにより、ウエハ上に形成された膜の面内膜厚均一性を向上させる。後述する不活性ガスノズルの設置個数は複数あってもよく、また、必要な成膜速度を満たしていれば、不活性ガスノズルの設置角度θ(後述)は不活性ガスノズルから噴射する不活性ガスの流量に応じて任意に変えることができるものである。
 以下、一実施形態について図1~図3を参照しながら説明する。
(1)基板処理装置の構成
 図1に示すように、処理炉202は加熱手段(加熱機構)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板に支持されることにより垂直に据え付けられている。ヒータ207は、ガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。
 ヒータ207の内側には、ヒータ207と同心円状に反応管203が配設されている。
反応管203は、例えば石英(SiO2)または炭化シリコン(SiC)等の耐熱性材料からなり、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の下方には、反応管203と同心円状に、マニホールド209が配設されている。マニホールド209は、例えばニッケル合金等の金属からなり、上端および下端が開口した短い円筒形に形成されている。マニホールド209の上端部は、反応管203の下端部に係合しており、反応管203を支持する。マニホールド209と反応管203との間には、シール部材としてのOリング220aが設けられている。反応管203はヒータ207と同様に垂直に据え付けられている。主に、反応管203とマニホールド209とにより処理容器(反応容器)が構成される。処理容器の筒中空部には処理室201が形成される。処理室201は、基板としてのウエハ200を収容可能に構成される。
 処理室201内には、第1ガスノズルとして、成膜ガス(処理ガス)を供給するノズル249a、第2ガスノズルとして、成膜ガス(処理ガス)を供給するノズル249b,第3ガスノズルとして、不活性ガスのみを供給するノズル249cが、マニホールド209の側壁を貫通するように設けられている。ノズル249a~249cには、ガス供給管232a~232cが、それぞれ接続されている。
 ガス供給管232a~232cには、ガス流の上流側から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241a~241cおよび開閉弁であるバルブ243a~243cがそれぞれ設けられている。ガス供給管232a,232bのバルブ243a,243bよりも下流側には、不活性ガスを供給するガス供給管232e,232dがそれぞれ接続されている。ガス供給管232e,232dには、ガス流の上流側から順に、MFC241e,241dおよびバルブ243e,243dがそれぞれ設けられている。
 ノズル249a~249cは、図2に示すように、反応管203の内壁とウエハ200との間の円環状の空間に、反応管203の下方から上方に向かってウエハ200の配列方向に沿ってそれぞれ設けられている。すなわち、ノズル249a~249cは、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うようにそれぞれ設けられている。第1ガスノズル249aおよび第2ガスノズル249bは、処理室201内に搬入されるウエハ200の中心を挟んで、後述する排気口233と対向するように配置されている。また、第1ガスノズルと第2ガスノズルは隣接して配置されている。
 不活性ガスノズルであるノズル249cは、処理ガスノズルであるノズル249a、ノズル249bとはウエハ200の周方向において所定距離離れた位置に設置されている。この場合の所定距離とは、例えば、少なくともノズル249a、249bと隣接しない距離である。このような距離とすることにより、ウエハ200と反応管203の内面との間の空間への処理ガスの拡散を抑制することができ、ウエハ全面の処理ガス濃度を上げることができる。所定距離が隣接する距離の場合(ノズル249cがノズル249a、ノズル249bと隣接する場合)、処理ガスと不活性ガスが混合し処理ガス濃度が下がってしまったり、反応管203の内面とウエハ200との間の空間に処理ガスが拡散してしまったりすることにより、ウエハ全面での平均的な処理ガス濃度が低下しうる。より好ましくは、所定距離は、不活性ガスノズルが処理ガスノズルからノズル1本分以上離れている距離である。より好ましくは、所定距離は、処理ガスノズルの中心(本実施例では、例えば、ノズル249aの中心とノズル249bの中心の中間地点)と排気管231(排気口233)の中心とを結ぶ第1直線300と、不活性ガスノズルと基板20の中心とを結ぶ第2直線301とのなす角をθとするとき、角θが90°以上180°以下であるときの円弧の距離である。所定距離をこのような距離とすることにより、反応管203の内壁とウエハとの間の空間およびウエハの端部に不活性ガスの壁を形成することができ、ウエハ中心の処理ガス濃度を上げることができる。更に好ましくは、所定距離は、角θが100°以上140°以下であるときの円弧の距離である。所定距離をこのような距離とすることにより、ウエハ中心の処理ガス濃度を高くし、かつ、ウエハ全面の処理ガス濃度も高くすることができる。
 ノズル249a~249cの側面には、ガスを供給するガス供給孔250a~250cがそれぞれ設けられている。ガス供給孔250a~250cは、それぞれが、ウエハ200の中心方向に向けてガスを供給することが可能となっている。ガス供給孔250a~250cは、反応管203の下部から上部にわたってそれぞれのウエハ200の中心へ向いて開口するように、複数設けらることが好ましい。
 ガス供給管232aからは、原料(処理ガス)として、例えば、所定元素(主元素)としてのSiおよびハロゲン元素を含むハロシラン系ガスが、MFC241a、バルブ243a、ノズル249aを介して処理室201内へ供給される。原料ガスには、常温常圧下で液体の原料を気化して得られるガスも含まれる。ハロシランとは、ハロゲン基を有するシランのことである。ハロゲン基には、クロロ基、フルオロ基、ブロモ基、ヨード基等が含まれる。すなわち、ハロゲン基には、塩素(Cl)、フッ素(F)、臭素(Br)、ヨウ素(I)等のハロゲン元素が含まれる。ハロシラン系ガスとしては、例えば、ヘキサクロロジシラン(Si2Cl6、略称:HCDS)のような、SiおよびClを含むクロロシラン系ガスを用いることができる。クロロシラン系ガスは、Siソースとして作用する。
 ガス供給管232bからは、処理ガスであり、前述の原料とは化学構造(分子構造)が異なる反応体(リアクタント)として、例えば、窒化ガスである窒化水素系ガスが、MFC241b、バルブ243b、ノズル249bを介して処理室201内へ供給される。窒化水素系ガスは、Nソースとして作用する。窒化水素系ガスとしては、例えば、アンモニア(NH3)ガスを用いることができる。
 ガス供給管232c~232eからは、不活性ガスとして、例えば、窒素(N2)ガスが、それぞれMFC241c~241e、バルブ243c~243e、ガス供給管232c~232a、ノズル249c~249aを介して処理室201内へ供給される。N2ガスは、パージガス、キャリアガスとして作用し、さらに、ウエハ200上に形成される膜の面内膜厚分布を制御する膜厚分布制御ガスとして作用する。
 主に、ガス供給管232a,232b、MFC241a,241b、バルブ243a,243bにより、処理ガス供給系が構成される。また、主に、ガス供給管232c~232e、MFC241c~241e、バルブ243c~243eにより、不活性ガス供給系が構成される。
 反応管203には、処理室201内の雰囲気を排気する排気口233が設けられている。図2に示される水平断面視のように、排気口233は、ウエハ200を挟んでノズル249a,249b(ガス供給孔250a,250b)と対向(対面)する位置に設けられる。排気口233には排気管231が接続される。排気管231は、処理室201内の圧力を検出する圧力検出器としての圧力センサ245が備えられ、また圧力調整器としてのAPC(Auto Pressure Controller)バルブ244を介して、真空ポンプ(真空排気装置)246に接続される。APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて開度を調節することで、処理室201内の圧力を調整することができるように構成されている。主に、排気管231、APCバルブ244、圧力センサ245により、排気系が構成される。真空ポンプ246も排気系に含まれうる。
 マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、例えば金属製で円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219の下方には、後述するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させる。
 シールキャップ219は、反応管203の外部に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ウエハ200を処理室201内外に搬入および搬出(搬送)する搬送装置(搬送機構)として構成されている。また、マニホールド209の下方又は側方には、シールキャップ219を降下させボート217を完全に処理室201内から搬出している間、マニホールド209の下端開口を気密に閉塞する炉口蓋体としてのシャッタ221が設けられている。シャッタ221は、シールキャップ219同様に円盤状に形成され、その上面には、マニホールド209の下端と当接するOリング220cが設けられている。シャッタ221の開閉動作(昇降動作や回動動作等)は、シャッタ開閉機構222により制御される。
 基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料からなる。ボート217の下部には、例えば石英やSiC等の耐熱性材料からなる断熱板218が多段に支持されている。
 反応管203内には、温度検出器としての温度センサ263が設置されている。温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度が所望の温度分布となる。温度センサ263は、反応管203の内壁に沿って設けられている。
 図3に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する基板処理における各手順をコントローラ121に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。以下、プロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。また、プロセスレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それらの両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート121dは、上述のMFC241a~241e、バルブ243a~243e、圧力センサ245、APCバルブ244、真空ポンプ246、温度センサ263、ヒータ207、回転機構267、ボートエレベータ115、シャッタ開閉機構222等に接続されている。
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、MFC241a~241eによる各種ガスの流量調整動作、バルブ243a~243eの開閉動作、APCバルブ244の開閉動作および圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263に基づくヒータ207の温度調整動作、回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、シャッタ開閉機構222によるシャッタ221の開閉動作等を制御するように構成されている。
 コントローラ121は、外部記憶装置(例えば、ハードディスク等の磁気ディスク、CD等の光ディスク、MO等の光磁気ディスク、USBメモリ等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)成膜処理
 上述の基板処理装置を用い、半導体装置の製造工程の一工程として、基板としてのウエハ200上にシリコン窒化膜(SiN膜)を形成するシーケンス例について、図4を用いて説明する。以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。
 図4に示す成膜シーケンスは、
ウエハ200対してノズル249aよりHCDSガスを供給することで第1層としてのSi含有層を形成するステップAと、
ウエハ200に対してノズル249bよりNH3ガスを供給することで第2層としてのシリコン窒化層(SiN層)を形成するステップBと、
を非同時に行うサイクルをn回(nは所定数)行うことで、ウエハ200上に、SiおよびNを含む膜、すなわち、SiN膜を形成する。
 本明細書では、図4に示す成膜シーケンスを、便宜上、以下のように示すこともある。
 (HCDS→NH3)×n ⇒ SiN
 本明細書において「ウエハ」という言葉を用いた場合は、ウエハそのものを意味する場合や、ウエハとその表面に形成された所定の層や膜との積層体を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、ウエハそのものの表面を意味する場合や、ウエハ上に形成された所定の層等の表面を意味する場合がある。本明細書において「基板」は「ウエハ」の意味を含む。
(ウエハチャージおよびボートロード)
 複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、シャッタ開閉機構222によりシャッタ221が移動させられて、マニホールド209の下端開口が開放される(シャッタオープン)。その後、図1に示すように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内へ搬入(ボートロード)される。搬入の完了後、シールキャップ219は、Oリング220bを介してマニホールド209の下端をシールした状態となる。
(圧力調整および温度調整)
 処理室201内、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように、真空ポンプ246によって処理室201内が真空排気(減圧排気)される。この際、処理室201内の圧力は圧力センサ245で測定され、この測定された圧力情報に基づきAPCバルブ244がフィードバック制御される。また、処理室201内のウエハ200が所望の成膜温度となるように、ヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される。また、回転機構267によるウエハ200の回転を開始する。処理室201内の排気、ウエハ200の加熱および回転は、いずれも、少なくともウエハ200に対する処理が終了するまでの間は継続して行われる。
(成膜ステップ)
 その後、次のステップA,Bを順次実行する。
 [ステップA]
 このステップでは、処理室201内のウエハ200に対してHCDSガスを供給する。
 具体的には、バルブ243aを開き、ガス供給管232a内へHCDSガスを流す。HCDSガスは、MFC241aにより流量調整され、ノズル249aを介して処理室201内へ供給され、排気口233より排気される。つまり、ウエハ200に対してHCDSガスが供給される。このとき、バルブ243eを開き、ガス供給管232e内へN2ガスを流すようにしてもよい。N2ガスは、MFC241eにより流量調整され、HCDSガスと一緒にノズル249aを介して処理室201内へ供給され、排気口233より排気されるうる。なお、ステップAでは、ノズル249aを介して処理室201内へHCDSガスを供給した状態で、ノズル249cを介して処理室201内へN2ガスを供給する。その詳細については後述する。
 ステップAにおいて、ノズル249aから供給するHCDSガスの流量は、例えば1~2000sccm、好ましくは10~1000sccmの範囲内である。またノズル249cから供給するN2ガスの流量は、例えばHCDSガスの流量の25%~400%の範囲内の所定の流量とする。HCDSガスの供給時間は、例えば1~120秒、好ましくは1~60秒の範囲内の所定の時間とする。処理室201内の圧力は、例えば1~2666Pa、好ましくは67~1333Paの範囲内の所定の圧力とする。ウエハ200の温度(成膜温度)は、例えば250~800℃、好ましくは400~750℃、より好ましくは550~700℃の範囲内の所定の温度とする。
 上述の条件下でウエハ200に対してHCDSガス及びN2ガスを供給することにより、ウエハ200の最表面上に、第1層として、例えば1原子層未満から数原子層(1分子層未満から数分子層)程度の厚さのClを含むSi含有層が形成される。Clを含むSi含有層は、Clを含むSi層であってもよいし、HCDSの吸着層であってもよいし、それらの両方を含んでいてもよい。
 HCDSガスが自己分解(熱分解)する条件下では、ウエハ200上にSiが堆積することでClを含むSi層が形成される。HCDSガスが自己分解(熱分解)しない条件下では、ウエハ200上にHCDSが吸着することでHCDSの吸着層が形成される。HCDSの吸着層を形成するよりも、Clを含むSi層を形成する方が、成膜レートの観点では好ましい。以下、Clを含むSi含有層を、便宜上、単にSi含有層とも称する。
 本実施形態のように、ウエハ200に対してHCDSガスを供給する際、ノズル249cからウエハ200の中心方向へN2ガスを供給することにより、膜の面内厚さ分布を、中央凹分布からフラット分布へ近づけたり、さらには、中央凸分布へ近づけたりすることが可能である。換言すると、ウエハ200の中心部の不活性ガス濃度がウエハ200の端部(外周部)の平均的な不活性ガス濃度よりも高くなるように処理室201内にノズル249cからのN2ガス供給量をコントローラ121により制御することで、ウエハ200の中心部へのHCDSガスの供給量を制御することができる。これにより、第1層の面内厚さ分布が上述のように制御されると考えられる。
 ステップAでは、ノズル249aよりHCDSガスを供給した状態で、バルブ243d,243cを開き、ガス供給管232d,232b,232c内へN2ガスを流し、ノズル249b,249cより処理室201内へN2ガスを供給する。ノズル249bから少量のN2ガスの供給を維持することは、必須ではないが、ノズル249b内へのHCDSガスの侵入を抑制する観点で好ましい。その目的において、ノズル249bからのN2ガスの供給は、ステップAと同時、或いは、その前に開始するのが好ましい。
 ステップAにおいて、ノズル249a,249bより供給するN2ガスの各流量(第1流量)は、それぞれ、ノズル249cより供給するN2の流量よりも小さな流量とする。好ましくは、ノズル249b,249cより供給するN2ガスの各流量は、それらの合計流量が、ノズル249aより供給するHCDSガスの流量よりも小さな流量となるような流量とする。
 所望の厚さおよび面内厚さ分布を有する第1層が形成された後、バルブ243aを閉じ、HCDSガスの供給を停止する。また、MFC241d,241cを制御して、ノズル249b,249cより供給するN2ガスの流量を減少させる。このとき、APCバルブ244は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくは第1層の形成に寄与した後のHCDSガスを処理室201内から排除する。ノズル249a~249cから供給されるN2ガスはパージガスとして作用し、これにより、処理室201内がパージされる(パージステップ)。
 [ステップB]
 ステップAが終了した後、処理室201内のウエハ200、すなわち、ウエハ200上に形成された第1層に対してNH3ガスを供給する。
 このステップでは、バルブ243b,243c~243eの開閉制御を、ステップAにおけるバルブ243a,243c~243eの開閉制御と同様の手順で行う。NH3ガスは、MFC241bにより流量調整され、ノズル249bを介して処理室201内へ供給され、排気口233から排気される。このとき、ウエハ200に対してNH3ガスが供給される。
 NH3ガスの供給流量は、例えば1000~10000sccmの範囲内の所定の流量とする。NH3ガスの供給時間は、例えば1~120秒、好ましくは1~60秒の範囲内の所定の時間とする。この時同時にノズル249cよりN2ガスを供給する。供給するN2ガスの供給流量は、例えば1~4000sccmの範囲内の所定の流量とする。処理室201内の圧力は、例えば1~4000Pa、好ましくは1~3000Paの範囲内の所定の圧力とする。ステップAよりも高い圧力とすることで、プラズマではなく熱的に活性化されたNH3ガスを用いたとしても、所定の速度で第1層と化学反応させ、第2層を形成させることができる。他の処理条件は、ステップAと同様な処理条件とする。なおステップBでは、ステップAに比べ、ノズル249cからのN2ガス供給の重要性は低く、必要ではない場合もある。
 上述の条件下でウエハ200に対してNH3ガス及びN2ガスを供給すると、ウエハ200上に形成された第1層の少なくとも一部が窒化(改質)される。これにより、ウエハ200上に、SiおよびNを含む第2層、すなわち、SiN層が形成される。第2層を形成する際、第1層に含まれていたCl等の不純物は、NH3ガスによる第1層の改質反応の過程において、少なくともClを含むガス状物質を構成し、処理室201内から排出される。すなわち、第1層中のCl等の不純物は、第1の層中から引き抜かれたり、脱離したりすることで、第1層から分離する。これにより、第2層は、第1層に比べてCl等の不純物が少ない層となる。
 第2層が形成された後、バルブ243bを閉じ、NH3ガスの供給を停止する。そして、ステップAのパージステップと同様の処理手順、処理条件により、処理室201内に残留する未反応もしくは第2層の形成に寄与した後のNH3ガスや反応副生成物を処理室201内から排除する。
 [所定回数実施]
 ステップA,Bを非同時に、すなわち、同期させることなく行うサイクルを1回以上(n回)行うことにより、ウエハ200上に、所定組成および所定膜厚のSiN膜を形成することができる。上述のサイクルは、複数回繰り返すのが好ましい。すなわち、上述のサイクルを1回行う際に形成される第2層の厚さを所望の膜厚よりも薄くし、第2層を積層することで形成されるSiN膜の膜厚が所望の膜厚になるまで、上述のサイクルを複数回繰り返すのが好ましい。
 原料としては、HCDSガスの他、モノクロロシラン(SiH3Cl、略称:MCS)ガス、トリクロロシラン(SiHCl3、略称:TCS)ガス、テトラクロロシラン(SiCl、略称:STC)ガス、ジクロロシラン(SiH2Cl2、略称:DCS)ガス、オクタクロロトリシラン(Si3Cl、略称:OCTS)ガス等のクロロシラン原料ガスを用いることができる。
 反応体としては、NH3ガスの他、例えば、ジアゼン(N22)ガス、ヒドラジン(N2)ガス、N3ガス等の窒化水素系ガスを用いることができる。
 不活性ガスとしては、N2ガスの他、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いることができる。
(アフターパージ~大気圧復帰)
 ウエハ200上に所望組成、所望膜厚の膜が形成されたら、ノズル249a~249cのそれぞれからパージガスとしてのN2ガスを処理室201内へ供給し、排気口233から排気する。これにより、処理室201内がパージされ、処理室201内に残留するガスや反応副生成物が処理室201内から除去される(アフターパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
(ボートアンロード及びウエハディスチャージ)
 ボートエレベータ115によりシールキャップ219が下降され、マニホールド209の下端が開口される。そして、処理済のウエハ200が、ボート217に支持された状態でマニホールド209の下端から反応管203の外部に搬出(ボートアンロード)される。ボートアンロードの後は、シャッタ221が移動させられ、マニホールド209の下端開口がOリング220cを介してシャッタ221によりシールされる(シャッタクローズ)。処理済のウエハ200は、反応管203の外部に搬出された後、ボート217より取り出される(ウエハディスチャージ)。
(3)変形例
 本実施形態における不活性ガスノズルの位置や反応管形状は、以下の図5から図7に代表的に示される変形例のようにさまざまに変更することができる。
(変形例1)
 不活性ガスのみを供給する不活性ガスノズルとしての第4ガスノズルを追加した例を図5に示す。処理ガスノズル(第1ガスノズル249a,第2ガスノズル249b)の中心と基板200との中心を結ぶ線を境界線300として区画される領域のうち、第3ガスノズル249cが設置される領域の反対側の領域に、不活性ガスを処理室201内に供給する第4ガスノズル249dを設置する。第3ガスノズル249cと第4ガスノズル249dは、境界線300に対して対称に設置されうる。
(変形例2)
 他の変形例として、図6に示されるような反応管203を用いてもよい。この反応管203は、処理ガスノズル(第1ガスノズル249a、第2ガスノズル249b)を収納するように外側に突出した第1突出部302と、第3ガスノズル249cを収納するように外側に突出した第2突出部303とが形成されている。第1突出部302は、第1ガスノズル249a、第2ガスノズル249bをそれぞれ収納するように複数に分割されていてもよい。また、処理ガスノズルと向かいあう位置に、外側に突出した排気バッファ234が設けられ、排気バッファ234が基板に面する部分が大きく開口して排気口233を形成している。このように内壁とウエハとの間の空間を狭くした反応管は、ウエハの周囲を迂回するような処理ガスの流れが抑制されるので、ウエハ上の処理ガスの分圧を均一にしやすいが、中央部への供給不足の傾向を是正しにくかった。本変形例では、第3ガスノズル249cから供給される不活性ガスもまた、ウエハの周囲を流れにくいため、処理ガスを扇状に堰き止める作用が強まり、凸傾向へ矯正することができる。。
 なお、第1突出部302内には、ノズル内若しくは第1突出部302内のガスを励起するために、ノズルと平行してプラズマ電極が備えられ、活性の高い反応体を提供しうる。反応体として、例えば、トリエチルアミン((C23N、略称:TEA)ガスのようなアミン系ガスや、酸素(O2)ガス、水蒸気(H2O)、オゾン(O3)ガス、プラズマ励起されたO2ガス(O2 *)、O2ガス+水素(H2)ガスのようなO含有ガス(酸化剤)や、プロピレン(C36)ガスのようなC含有ガスや、トリクロロボラン(BCl3)ガスのようなB含有ガスを用いてもよい。
(変形例3)
 更に他の変形例として、図7に示されるような反応管203を用いてもよい。この反応管203は、その内部に内壁(内管、ライナーとも呼ばれる)304が設けられている。内壁304は、第1ガスノズル249a,第2ガスノズル249bに対向する部分に部分的な開口となる排気口233を有し、また、第1ガスノズル249a,第2ガスノズル249bを避けるように部分的に外側に突出した形状の第1の内壁突出部305と、第3ガスノズル249cが内壁304と干渉しないように、設置部分が部分的に外側に突出した形状の第2の内壁突出部306が形成されている。第1の内壁突出部305は、第1ガスノズル249a、第2ガスノズル249bをそれぞれ収納するように複数に分割されていてもよい。このような形状の反応管を用いることにより、変形例2と同様の効果を得つつ、反応管203全体の排気性(ガス置換性)を改善することができる。
(4)シミュレーション
 図8に、不活性ガスの総流量と反応中間体ガスの分圧の関係のシミュレーション結果が示される。ここでは、パターンウエハモデルを使用し、角θ=40°で不活性ガスノズルを対称に2本(第3ガスノズル及び第4ガスノズル)配置し、処理ガスノズルから400sccmのHCDSを供給した場合を想定している。縦軸は、HCDSの分解により生じる代表的な反応中間体(プリカーサ、ラジカル)であるSiCl2 *(シリレン)の分圧を示しており、これはHCDSの分解量を表しているとも言える。つまりシミュレーションは、パターンウエハにおけるHCDSの消費を考慮して行われた。グラフは中間体の分圧について、2本の不活性ガスノズルからのN2ガスの総流量が増すほど、中央と端部の比は大きく(つまり凸傾向)なったように示しているが、実際には膜厚の凸傾向はさほど促進されいない。また原料の希釈により分圧がウェハの全体で低下している。これはガスの使用効率が悪く、成膜速度も遅くなることを意味する。
 図9に、角θを120°とした以外は図8と同一の条件のシミュレーション結果が示される。図8と比べて、不活性ガスの流量の増加に伴う中間体の分圧の低下が、明らかに改善されている。なお以下では、反応中間体や処理ガスを区別することなく、成膜に寄与するガスを反応ガスと総称する。
 図10に、図8及び図9で用いた条件における、反応ガスの濃度分布がそれぞれ示される。なおN2ガスの総流量はどちらも2000sccmである。上側に示されるように、角θ=40°の不活性ガスノズルを用いると、反応ガスの濃度はノズルから遠ざかるにつれて緩やかに減少しており、これはN2ガスとの混合や拡散を示唆している。一方下側に示されるように、角θ=120°の不活性ガスノズルを用いると、1Pa程度の比較的高い分圧の原料が、ウェハの中心付近を含む扇状に分布しており、また濃度勾配が比較的急である。これは混合や拡散が抑圧されていることを示唆している。
 ウエハ表面の成膜分布がスリバチ状になる要因が、ガス不足だけでなく、ウエハ表面における阻害などが考えられる場合は、ウエハ中心部に反応ガスが、所定の分圧以上で分布していることが望ましい。例えば、処理ガスが励起種(ラジカル等)である場合、エネルギーの低い他のガス(大流量で比較的低温の不活性ガス)と混ざることなくウエハ中心部に到達していることが一般的に望ましい。そして成膜速度向上のため、全体的に処理ガスが多いほうが望ましい。以上のことを考慮すると、本変形例の不活性ガスノズルの配置は、図9のように角度θが大きく、かつ、線対称に2本設置していることが望ましい。このように鈍角のθで2本設置されたノズルを、サイドカウンターノズルと呼ぶことにする。サイドカウンターノズルを用いることで、より確実にウエハ上の面内膜厚分布を中央凸分布化させることができる。
 図11に、変形例1におけるウェハ上の反応ガス分圧のθ依存性が示される。ここでは、パターンウエハモデルを使用し、2本の不活性ガスノズル(第3ガスノズル及び第4ガスノズル)を対称に配置し、処理ガスノズルから300sccmのHCDSを供給した場合を想定している。上のグラフは、不活性ガスノズルからの100sccmの流量のN2ガスに対応し、下のグラフは2000sccmの流量に対応する。角θを増すほど、単調に中間体の分圧が上昇し、またN2ガス流量への依存性が強まる。なお角θは、排気口233(排気ダクト)と同じ位置に不活性ガスノズルを設けられないことに起因して上限があり、その上限は例えば140°である。中心部での反応ガスの分圧に注目すると、θ=110°付近で、上のグラフの分圧と下のグラフの分圧が逆転する。この逆転ポイントは実際にはN2ガス流量に依存し、凡そ95°<θ<130°の範囲である。つまり、θ>95°の位置に2本の不活性ガスノズルを配置すると、反応ガスの希釈による不利益を被ることなく、凸傾向に矯正できることが期待される。
 図12に、変形例2における反応ガスの排気圧依存性のグラフが示される。このシミュレーションでは、θ=120°の位置に配置した不活性ガスノズル249から700sccmのN2ガスを供給し、ノズル232bから480sccmの処理ガスを供給し、更にノズル232bに隣接するノズル232aから300sccmのN2ガスを供給するものとし、横軸は排気管231における排気圧、縦軸はウェハ上での中間体(SiCl2)の分圧を示す。ウエハ中心部での反応ガスの分圧は、ひし形のマーカーのラインで示されるように、ウエハの端部全周の平均よりも常に高く、その比は排気圧(背圧)が大きくなるほど、わずかに増加する。これは分子流から粘性流に遷移したことで、処理ガスノズルから噴射されたガスが、基板を横断する途中で減速し、中央に滞留しやすくなるためだと考えられる。
 不活性ガスの流量バランスを調整することで、不活性ガスノズルを1つのみ使用した場合でも、ウエハ端部よりウエハ中心部に反応ガスを多く分布させることができる。一例として、鈍角の位置のガスノズル249の流量は、鋭角の位置のノズル232aの流量より多く設定され、より好ましくは2倍以上に設定される。また、排気圧を上げた場合でも拡散速度と成膜速度のバランスが崩れにくく、ウエハ中心部の反応ガスの分圧が安定して高く分布していることも確認された。ここで留意すべきは、このグラフの反応ガスの分圧は、膜厚を直接示すものではないことである。例えば、反応ガスを交互供給するようなプロセスでは、図11のような分圧にもかかわらず、排気圧が上昇するほど凸傾向が弱まる(中央の膜厚が薄くなる)ことがある。
(5)本実施形態による効果
 本実施形態によれば、以下に示す1つ又は複数の効果が得られる。
(a)ウエハに対して処理ガスノズルから処理ガスを供給する際に、処理ガスノズルからウエハの周方向において所定距離離れて設置されている不活性ガスノズルからN2ガスをウエハの中心方向へ供給することで、ウエハ上に形成される膜の面内膜厚分布を、中央凸分布とすることできるる。つまりN2ガスの流量や角度を適切に調整することにより、パターンウエハ上に、フラット分布を有する膜を形成することが可能となる。
 ウエハ上に形成される膜の面内膜厚分布がウエハの表面積に依存するのは、いわゆるローディング効果によるものと考えられる。成膜対象のウエハの表面積が大きくなるほど、処理ガス(反応ガス)がウエハの周縁部で多量に消費され、中心部へ届きにくくなる。その結果、ウエハ上に形成される膜の面内膜厚分布が、中央凹分布となる。本実施形態によれば、ウエハとして表面積の大きなパターンウエハを用いる場合であっても、ウエハ上に形成される膜の面内膜厚分布を凸傾向に矯正し、中央凹分布からフラット分布へ近づける等、膜厚分布を高い自由度で制御することが可能となる。更に、膜厚の他、組成比や不純物濃度の面内均一性も制御できる可能性がある。
 ウエハの表面積は、パターンウエハのパターンやトレンチ深さによって決定される。すなわち、パターンウエハのパターンやトレンチ深さに関係して、最適なN2ガス流量や角θの範囲は決定される。例えば、基板の表面積が大きい(トレンチが深い)ほど、角θは大きい方が望ましく、基板の表面積が小さい(トレンチが浅い)ほど、角θは小さくても良い。排気口233を処理ガスノズルと正対する位置からずらすことで、角θは最大で180°まで大きくできる。
(b)処理ガスノズルと、不活性ガスノズルと、をウエハの周方向において所定距離離れて配置することで、第1層の面内厚さ分布の制御性、すなわち、ウエハ上に形成される膜の面内膜厚分布の制御性を高めることができる。
 以上、本発明の実施形態を具体的に説明した。但し、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。上述の実施形態では、基板上に主元素としてSiを含む膜を形成する例について説明したが、本発明はこのような態様に限定されない。すなわち、本発明は、Siの他、ゲルマニウム(Ge)、ボロン(B)等の半金属元素を主元素として含む膜を基板上に形成する場合にも、好適に適用することができる。また、本発明は、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、ニオブ(Nb)、タンタル(Ta)、モリブデン(Mo)、タングステン(W)、イットリウム(Y)、ランタン(La)、ストロンチウム(Sr)、アルミニウム(Al)等の金属元素を主元素として含む膜を基板上に形成する場合にも、好適に適用することができる。
 例えば、チタニウムテトラクロライド(TiCl)ガスやトリメチルアルミニウム(Al(CH33、略称:TMA)ガスを用い、基板上に、チタン窒化膜(TiN膜)、チタン酸窒化膜(TiON膜)、チタンアルミニウム炭窒化膜(TiAlCN膜)、チタンアルミニウム炭化膜(TiAlC膜)、チタン炭窒化膜(TiCN膜)、チタン酸化膜(TiO膜)等を形成する場合にも、本発明を好適に適用することができる。
 基板処理に用いられるレシピは、処理内容に応じて個別に用意し、電気通信回線や外部記憶装置123を介して記憶装置121c内に格納しておくことが好ましい。そして、処理を開始する際、CPU121aが、記憶装置121c内に格納された複数のレシピの中から、基板処理の内容に応じて、適正なレシピを適宜選択することが好ましい。これにより、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の膜を、再現性よく形成することができるようになる。また、オペレータの負担を低減でき、操作ミスを回避しつつ、
処理を迅速に開始できるようになる。
 上述のレシピは、新たに作成する場合に限らず、例えば、基板処理装置に既にインストールされていた既存のレシピを変更することで用意してもよい。レシピを変更する場合は、変更後のレシピを、電気通信回線や当該レシピを記録した記録媒体を介して、基板処理装置にインストールしてもよい。また、既存の基板処理装置が備える入出力装置122を操作し、基板処理装置に既にインストールされていた既存のレシピを直接変更するようにしてもよい。
 また、上述の実施形態や変形例等は、適宜組み合わせて用いることができる。このときの処理手順、処理条件は、例えば、上述の実施形態の処理手順、処理条件と同様とすることができる。
 上述の実施形態や変形例等の手法により形成されるSiN膜等は、絶縁膜、スペーサ膜、マスク膜、電荷蓄積膜、ストレス制御膜等として広く用いることが可能である。近年、半導体デバイスの微細化に伴い、ウエハ上に形成される膜に対して面内膜厚均一性の要求が厳しくなっている。高密度パターンが表面に形成されたパターンウエハ上へフラットな面内膜厚分布を有する膜を形成することが可能な本発明は、この要求に答える技術として非常に有益である。
200 ウエハ(基板)、221 シャッタ、222 シャッタ開閉機構、233 排気口、249a ノズル(第1ガスノズル)、249b ノズル(第2ガスノズル)、249c ノズル(第3ガスノズル)、249d ノズル(第4ガスノズル)、263 温度センサ

Claims (12)

  1.  基板を処理する処理室と、
     前記処理室内に処理ガスを供給する処理ガスノズルと、
     前記基板の中心部の不活性ガス濃度が前記基板の端部の不活性ガス濃度よりも低くなるように前記処理室内に不活性ガスのみを供給する不活性ガスノズルと、
     前記処理室内の雰囲気を排気する排気管と、
     を有する基板処理装置。
  2.  前記処理ガスノズルと前記不活性ガスノズルとは前記ウエハの周方向において所定距離離れて設置されている請求項1記載の基板処理装置。
  3.  前記処理ガスノズルと前記排気管とを結ぶ第1直線と前記不活性ガスノズルと前記基板の中心とを結ぶ第2直線とのなす角をθとすると、前記θが前記基板の表面積に応じて決定された値となるように、前記処理ガスノズルと前記不活性ガスノズルが設けられる請求項2記載の基板処理装置。
  4.  前記基板の表面積が大きいほど前記θは大きく、前記基板の表面積が小さいほど前記θは小さい請求項3記載の基板処理装置。
  5.  前記不活性ガスノズルは、前記基板の中心方向に前記不活性ガスを噴出するよう設置される請求項4記載の基板処理装置。
  6.  前記不活性ガスノズルは2本設置される請求項5記載の基板処理装置。
  7.  2本の前記不活性ガスノズルは、前記第1直線を境界線として区画されるそれぞれの領域に1本ずつ設置される請求項6記載の基板処理装置。
  8.  2本の前記不活性ガスノズルは、前記境界線に対して線対称に設置される請求項7記載の基板処理装置。
  9.  基板を処理する処理室内に前記基板を搬入する工程と、
     処理ガスノズルから処理ガスを前記処理室内に供給し、前記基板を処理する工程と、有し、
     前記基板を処理する工程では、前記基板の中心部の不活性ガス濃度が前記基板の端部の不活性ガス濃度よりも低くなるように不活性ガスノズルから前記処理室内に不活性ガスを供給する半導体装置の製造方法。
  10.  基板処理装置の処理室内に基板を搬入する手順と、
     処理ガスノズルから処理ガスを前記処理室内に供給し、前記基板を処理する手順と、
     前記基板を処理する手順において、前記基板の中心部の不活性ガス濃度が前記基板の端部の不活性ガス濃度よりも低くなるように不活性ガスノズルから前記処理室内に不活性ガスを供給する手順と、をコンピュータによって前記基板処理装置に実行させるプログラム。
  11.  内部に基板を処理する処理室を有する反応管と、
     前記処理室内に処理ガスを供給する第1ガスノズルと、
     前記基板の中心部の不活性ガス濃度が前記基板の端部の不活性ガス濃度よりも低くなるように前記処理室内に不活性ガスを供給する第2ガスノズルと、
     前記処理室内の雰囲気を排気する排気部と、を備え、
     前記反応管は、前記第1ガスノズルを収納するように外側に突出した第1突出部と、
     前記第2ガスノズルを収納するように外側に突出した第2突出部とが形成されている基板処理装置。
  12.  反応管と、
     その内側に基板を処理する処理室を有し、反応管の内部に設置される内壁と、
     前記処理室内に処理ガスを供給する第1ガスノズルと、
     前記基板の中心部の不活性ガス濃度が前記基板の端部の不活性ガス濃度よりも低くなるように前記処理室内に不活性ガスを供給する第2ガスノズルと、
     前記処理室内の雰囲気を排気する排気部と、を備え、
     前記内壁は、
     前記第1ガスノズルに対向する部分に部分的な開口が形成され、前記第1ガスノズルおよび前記第2ガスノズルが前記内壁と干渉しないように、前記第1ガスノズルおよび前記第2ガスノズルの設置部分が部分的に外側に突出した形状である基板処理装置。
PCT/JP2017/034051 2017-02-23 2017-09-21 基板処理装置、半導体装置の製造方法およびプログラム WO2018154823A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2019501021A JP6773880B2 (ja) 2017-02-23 2017-09-21 基板処理装置、半導体装置の製造方法、コンピュータプログラムおよび処理容器
KR1020187011351A KR102203745B1 (ko) 2017-02-23 2017-09-21 기판 처리 장치, 반도체 장치의 제조 방법, 컴퓨터 프로그램 및 반응관
CN201780080537.5A CN110121763B (zh) 2017-02-23 2017-09-21 基板处理装置、半导体装置的制造方法及存储介质
CN202311851424.4A CN117810127A (zh) 2017-02-23 2017-09-21 基板处理装置、半导体装置的制造方法、基板处理方法、容器及存储介质
KR1020217000185A KR102453245B1 (ko) 2017-02-23 2017-09-21 기판 처리 장치, 반도체 장치의 제조 방법, 컴퓨터 프로그램 및 처리 용기
US16/518,479 US11453942B2 (en) 2017-02-23 2019-07-22 Substrate processing apparatus and method of manufacturing semiconductor device
US17/892,423 US11859280B2 (en) 2017-02-23 2022-08-22 Substrate processing apparatus and method of manufacturing semiconductor device
US18/514,494 US20240084448A1 (en) 2017-02-23 2023-11-20 Substrate processing apparatus and method of manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-032065 2017-02-13
JP2017032065 2017-02-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/518,479 Continuation US11453942B2 (en) 2017-02-23 2019-07-22 Substrate processing apparatus and method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2018154823A1 true WO2018154823A1 (ja) 2018-08-30

Family

ID=63252790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034051 WO2018154823A1 (ja) 2017-02-23 2017-09-21 基板処理装置、半導体装置の製造方法およびプログラム

Country Status (6)

Country Link
US (3) US11453942B2 (ja)
JP (3) JP6773880B2 (ja)
KR (2) KR102203745B1 (ja)
CN (2) CN110121763B (ja)
TW (1) TWI667368B (ja)
WO (1) WO2018154823A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090161A1 (ja) * 2018-10-31 2020-05-07 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
JP2020188237A (ja) * 2019-05-17 2020-11-19 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
JPWO2021186677A1 (ja) * 2020-03-19 2021-09-23
US11170995B2 (en) 2018-09-20 2021-11-09 Kokusai Electric Corporation Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US20220081773A1 (en) * 2020-09-17 2022-03-17 Tokyo Electron Limited Processing apparatus and processing method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110121763B (zh) 2017-02-23 2023-12-26 株式会社国际电气 基板处理装置、半导体装置的制造方法及存储介质
KR20210043810A (ko) * 2019-10-14 2021-04-22 삼성전자주식회사 반도체 제조 장비
JP7361005B2 (ja) * 2020-09-18 2023-10-13 株式会社Kokusai Electric 基板処理装置、基板保持具、半導体装置の製造方法、及び、プログラム
CN114518724B (zh) * 2022-01-28 2023-04-28 弥费科技(上海)股份有限公司 一种适用于amhs系统的通讯装置及通讯方式
CN116479406B (zh) * 2023-06-20 2023-11-10 长鑫存储技术有限公司 化学气相沉积设备与方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335253A (ja) * 1997-06-05 1998-12-18 Nec Corp 熱処理装置及び薄膜の形成方法
JP2014236129A (ja) * 2013-06-03 2014-12-15 株式会社日立国際電気 基板処理装置、半導体装置の製造方法およびプログラム
WO2016157401A1 (ja) * 2015-03-31 2016-10-06 株式会社日立国際電気 半導体装置の製造方法、基板処理装置および記録媒体

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03255618A (ja) * 1990-03-05 1991-11-14 Fujitsu Ltd 縦型cvd装置
JPH08264521A (ja) * 1995-03-20 1996-10-11 Kokusai Electric Co Ltd 半導体製造用反応炉
US6291800B1 (en) * 1998-02-20 2001-09-18 Tokyo Electron Limited Heat treatment apparatus and substrate processing system
US6217937B1 (en) * 1998-07-15 2001-04-17 Cornell Research Foundation, Inc. High throughput OMVPE apparatus
KR100360401B1 (ko) * 2000-03-17 2002-11-13 삼성전자 주식회사 슬릿형 공정가스 인입부와 다공구조의 폐가스 배출부를포함하는 공정튜브 및 반도체 소자 제조장치
US6544869B1 (en) * 2000-06-23 2003-04-08 Matsushita Electric Industrial Co., Ltd. Method and apparatus for depositing semiconductor film and method for fabricating semiconductor device
US6896737B1 (en) * 2000-08-28 2005-05-24 Micron Technology, Inc. Gas delivery device for improved deposition of dielectric material
US6630201B2 (en) * 2001-04-05 2003-10-07 Angstron Systems, Inc. Adsorption process for atomic layer deposition
JP4873820B2 (ja) * 2002-04-01 2012-02-08 株式会社エフティーエル 半導体装置の製造装置
KR100829327B1 (ko) * 2002-04-05 2008-05-13 가부시키가이샤 히다치 고쿠사이 덴키 기판 처리 장치 및 반응 용기
JP4204840B2 (ja) * 2002-10-08 2009-01-07 株式会社日立国際電気 基板処埋装置
JP4411215B2 (ja) * 2002-11-11 2010-02-10 株式会社日立国際電気 基板処理装置及び半導体装置の製造方法
US7537662B2 (en) * 2003-04-29 2009-05-26 Asm International N.V. Method and apparatus for depositing thin films on a surface
US7235138B2 (en) * 2003-08-21 2007-06-26 Micron Technology, Inc. Microfeature workpiece processing apparatus and methods for batch deposition of materials on microfeature workpieces
JP4164092B2 (ja) * 2003-08-26 2008-10-08 株式会社日立国際電気 半導体装置の製造方法および基板処理装置
US7422635B2 (en) * 2003-08-28 2008-09-09 Micron Technology, Inc. Methods and apparatus for processing microfeature workpieces, e.g., for depositing materials on microfeature workpieces
US20070137794A1 (en) * 2003-09-24 2007-06-21 Aviza Technology, Inc. Thermal processing system with across-flow liner
KR100841866B1 (ko) * 2005-02-17 2008-06-27 가부시키가이샤 히다치 고쿠사이 덴키 반도체 디바이스의 제조 방법 및 기판 처리 장치
US8211235B2 (en) * 2005-03-04 2012-07-03 Picosun Oy Apparatuses and methods for deposition of material on surfaces
US7396415B2 (en) * 2005-06-02 2008-07-08 Asm America, Inc. Apparatus and methods for isolating chemical vapor reactions at a substrate surface
JP4426518B2 (ja) 2005-10-11 2010-03-03 東京エレクトロン株式会社 処理装置
KR100961594B1 (ko) * 2006-05-01 2010-06-04 가부시키가이샤 히다치 고쿠사이 덴키 기판 처리 장치
US9218944B2 (en) * 2006-10-30 2015-12-22 Applied Materials, Inc. Mask etch plasma reactor having an array of optical sensors viewing the workpiece backside and a tunable element controlled in response to the optical sensors
US8017029B2 (en) * 2006-10-30 2011-09-13 Applied Materials, Inc. Plasma mask etch method of controlling a reactor tunable element in accordance with the output of an array of optical sensors viewing the mask backside
US20100199914A1 (en) * 2007-10-10 2010-08-12 Michael Iza Chemical vapor deposition reactor chamber
JP5113705B2 (ja) * 2007-10-16 2013-01-09 東京エレクトロン株式会社 薄膜形成装置の洗浄方法、薄膜形成方法、薄膜形成装置及びプログラム
WO2009085992A2 (en) * 2007-12-20 2009-07-09 Applied Materials, Inc. Thermal reactor with improved gas flow distribution
KR101431197B1 (ko) * 2008-01-24 2014-09-17 삼성전자주식회사 원자층 증착설비 및 그의 원자층 증착방법
TWI415206B (zh) * 2008-01-31 2013-11-11 Hitachi Int Electric Inc A substrate processing apparatus, and a method of manufacturing the semiconductor device
US20090197424A1 (en) 2008-01-31 2009-08-06 Hitachi Kokusai Electric Inc. Substrate processing apparatus and method for manufacturing semiconductor device
JP2010027702A (ja) * 2008-07-16 2010-02-04 Hitachi Kokusai Electric Inc 基板処理装置及び薄膜生成方法
JP5383332B2 (ja) * 2008-08-06 2014-01-08 株式会社日立国際電気 基板処理装置、基板処理方法及び半導体装置の製造方法
JP2010073823A (ja) * 2008-09-17 2010-04-02 Tokyo Electron Ltd 成膜装置、成膜方法、及びコンピュータ可読記憶媒体
JP5665289B2 (ja) * 2008-10-29 2015-02-04 株式会社日立国際電気 半導体装置の製造方法、基板処理方法および基板処理装置
JP5658463B2 (ja) 2009-02-27 2015-01-28 株式会社日立国際電気 基板処理装置及び半導体装置の製造方法
JP5677988B2 (ja) * 2009-03-03 2015-02-25 ソイテック ガスインジェクタを備えたcvdシステム用のガスインジェクタ
JP5520552B2 (ja) * 2009-09-11 2014-06-11 株式会社日立国際電気 半導体装置の製造方法及び基板処理装置
JP2011066219A (ja) * 2009-09-17 2011-03-31 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び基板処理装置
JP5467007B2 (ja) * 2009-09-30 2014-04-09 株式会社日立国際電気 半導体装置の製造方法および基板処理装置
US9127360B2 (en) * 2009-10-05 2015-09-08 Applied Materials, Inc. Epitaxial chamber with cross flow
WO2011074604A1 (ja) * 2009-12-18 2011-06-23 株式会社日立国際電気 半導体装置の製造方法、基板処理装置及び半導体装置
US20110247556A1 (en) * 2010-03-31 2011-10-13 Soraa, Inc. Tapered Horizontal Growth Chamber
KR101397467B1 (ko) * 2010-08-05 2014-05-20 가부시키가이샤 히다치 고쿠사이 덴키 기판 처리 장치, 기판 처리 방법 및 반도체 장치의 제조 방법
JP5524785B2 (ja) 2010-09-21 2014-06-18 株式会社日立国際電気 半導体装置の製造方法及び基板処理装置
TWI562204B (en) * 2010-10-26 2016-12-11 Hitachi Int Electric Inc Substrate processing apparatus, semiconductor device manufacturing method and computer-readable recording medium
JP5805461B2 (ja) * 2010-10-29 2015-11-04 株式会社日立国際電気 基板処理装置および半導体装置の製造方法
JP5562434B2 (ja) * 2010-11-19 2014-07-30 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP5243519B2 (ja) * 2010-12-22 2013-07-24 東京エレクトロン株式会社 成膜装置
CN103430285B (zh) * 2011-03-22 2016-06-01 应用材料公司 用于化学气相沉积腔室的衬里组件
JP5959307B2 (ja) * 2011-06-22 2016-08-02 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
KR101879175B1 (ko) * 2011-10-20 2018-08-20 삼성전자주식회사 화학 기상 증착 장치
JP6080253B2 (ja) 2011-12-26 2017-02-15 株式会社日立国際電気 基板処理装置、半導体装置の製造方法およびプログラム
US9748125B2 (en) * 2012-01-31 2017-08-29 Applied Materials, Inc. Continuous substrate processing system
JP6105967B2 (ja) * 2012-03-21 2017-03-29 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP6047039B2 (ja) * 2012-04-20 2016-12-21 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP6055637B2 (ja) * 2012-09-20 2016-12-27 株式会社日立国際電気 クリーニング方法、半導体装置の製造方法、基板処理装置及びプログラム
JP2014067783A (ja) 2012-09-25 2014-04-17 Hitachi Kokusai Electric Inc 基板処理装置、半導体装置の製造方法及び基板処理方法
US20140137801A1 (en) * 2012-10-26 2014-05-22 Applied Materials, Inc. Epitaxial chamber with customizable flow injection
KR101740616B1 (ko) * 2012-11-26 2017-05-26 가부시키가이샤 히다치 고쿠사이 덴키 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체
JP6415808B2 (ja) * 2012-12-13 2018-10-31 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
KR20140081067A (ko) 2012-12-21 2014-07-01 삼성전자주식회사 웨이퍼 처리 장치 및 웨이퍼 처리 방법
CN104885192B (zh) * 2013-01-16 2018-03-27 应用材料公司 石英上拱形结构及下拱形结构
JP5864503B2 (ja) * 2013-09-30 2016-02-17 株式会社日立国際電気 半導体装置の製造方法、基板処理装置、プログラム及び記録媒体
US11414759B2 (en) * 2013-11-29 2022-08-16 Taiwan Semiconductor Manufacturing Co., Ltd Mechanisms for supplying process gas into wafer process apparatus
CA2937213A1 (en) 2014-01-28 2015-08-06 Resdevco Research And Development Co. Ltd. Composition comprising xylitol and cholecalciferol for topical treatment of skin and mucous membranes
JP6307318B2 (ja) * 2014-03-24 2018-04-04 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及びプログラム
KR20160026572A (ko) * 2014-09-01 2016-03-09 삼성전자주식회사 기판 처리 장치
JP6347705B2 (ja) * 2014-09-17 2018-06-27 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
JP6284285B2 (ja) 2015-01-07 2018-02-28 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
JP6406671B2 (ja) 2015-02-26 2018-10-17 Kddi株式会社 コンテンツキャッシュ方法および装置
JP6578243B2 (ja) * 2015-07-17 2019-09-18 株式会社Kokusai Electric ガス供給ノズル、基板処理装置、半導体装置の製造方法およびプログラム
CN107924826B (zh) * 2015-09-28 2021-08-20 株式会社国际电气 半导体装置的制造方法、基板处理装置以及记录介质
WO2017056243A1 (ja) * 2015-09-30 2017-04-06 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
US10260149B2 (en) * 2016-04-28 2019-04-16 Applied Materials, Inc. Side inject nozzle design for processing chamber
JP6760833B2 (ja) * 2016-12-20 2020-09-23 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
CN110121763B (zh) * 2017-02-23 2023-12-26 株式会社国际电气 基板处理装置、半导体装置的制造方法及存储介质
JP6815527B2 (ja) * 2017-09-22 2021-01-20 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及びプログラム
JP6820816B2 (ja) * 2017-09-26 2021-01-27 株式会社Kokusai Electric 基板処理装置、反応管、半導体装置の製造方法、及びプログラム
JP7026086B2 (ja) * 2019-09-25 2022-02-25 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及び基板処理装置の洗浄方法
WO2021186677A1 (ja) * 2020-03-19 2021-09-23 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及びプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335253A (ja) * 1997-06-05 1998-12-18 Nec Corp 熱処理装置及び薄膜の形成方法
JP2014236129A (ja) * 2013-06-03 2014-12-15 株式会社日立国際電気 基板処理装置、半導体装置の製造方法およびプログラム
WO2016157401A1 (ja) * 2015-03-31 2016-10-06 株式会社日立国際電気 半導体装置の製造方法、基板処理装置および記録媒体

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11170995B2 (en) 2018-09-20 2021-11-09 Kokusai Electric Corporation Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JPWO2020090161A1 (ja) * 2018-10-31 2021-09-02 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
CN112655078A (zh) * 2018-10-31 2021-04-13 株式会社国际电气 半导体器件的制造方法、衬底处理装置及程序
WO2020090161A1 (ja) * 2018-10-31 2020-05-07 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
JP7055219B2 (ja) 2018-10-31 2022-04-15 株式会社Kokusai Electric 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
CN112655078B (zh) * 2018-10-31 2024-04-09 株式会社国际电气 半导体器件的制造方法、衬底处理装置及记录介质
JP2020188237A (ja) * 2019-05-17 2020-11-19 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
JP7016833B2 (ja) 2019-05-17 2022-02-07 株式会社Kokusai Electric 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
JP7413584B2 (ja) 2020-03-19 2024-01-15 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及びプログラム
JPWO2021186677A1 (ja) * 2020-03-19 2021-09-23
WO2021186677A1 (ja) * 2020-03-19 2021-09-23 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及びプログラム
KR20220110802A (ko) 2020-03-19 2022-08-09 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치, 반도체 장치의 제조 방법 및 기록매체
JP7256926B2 (ja) 2020-03-19 2023-04-12 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及びプログラム
US20220081773A1 (en) * 2020-09-17 2022-03-17 Tokyo Electron Limited Processing apparatus and processing method
JP7446189B2 (ja) 2020-09-17 2024-03-08 東京エレクトロン株式会社 処理装置及び処理方法
US11859285B2 (en) * 2020-09-17 2024-01-02 Tokyo Electron Limited Processing apparatus and processing method

Also Published As

Publication number Publication date
JP6998106B2 (ja) 2022-01-18
US20220403510A1 (en) 2022-12-22
US20240084448A1 (en) 2024-03-14
KR102203745B1 (ko) 2021-01-18
KR102453245B1 (ko) 2022-10-07
KR20180116224A (ko) 2018-10-24
US11453942B2 (en) 2022-09-27
JP2020182001A (ja) 2020-11-05
CN110121763B (zh) 2023-12-26
CN117810127A (zh) 2024-04-02
CN110121763A (zh) 2019-08-13
JP7088990B2 (ja) 2022-06-21
TW201843339A (zh) 2018-12-16
JP6773880B2 (ja) 2020-10-21
JPWO2018154823A1 (ja) 2019-11-07
JP2020188280A (ja) 2020-11-19
TWI667368B (zh) 2019-08-01
US11859280B2 (en) 2024-01-02
US20190345605A1 (en) 2019-11-14
KR20210005317A (ko) 2021-01-13

Similar Documents

Publication Publication Date Title
JP6998106B2 (ja) 基板処理装置、半導体装置の製造方法、プログラムおよび反応管
JP7464638B2 (ja) 基板処理装置、プラズマ生成装置、反応管、プラズマ生成方法、基板処理方法、半導体装置の製造方法およびプログラム
US10388512B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US11591694B2 (en) Method of manufacturing semiconductor device, method of processing substrate, substrate processing apparatus, and recording medium
WO2018088003A1 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
US20240170276A1 (en) Processing method, method of manufacturing semiconductor device, processing apparatus, and recording medium
US11072859B2 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
WO2017056155A1 (ja) 半導体装置の製造方法、基板処理装置および記録媒体
US11387097B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP6857760B2 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP2020077890A (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP2023017814A (ja) 基板処理方法、半導体装置の製造方法、基板処理装置およびプログラム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187011351

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897767

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501021

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897767

Country of ref document: EP

Kind code of ref document: A1