WO2016157401A1 - 半導体装置の製造方法、基板処理装置および記録媒体 - Google Patents

半導体装置の製造方法、基板処理装置および記録媒体 Download PDF

Info

Publication number
WO2016157401A1
WO2016157401A1 PCT/JP2015/060096 JP2015060096W WO2016157401A1 WO 2016157401 A1 WO2016157401 A1 WO 2016157401A1 JP 2015060096 W JP2015060096 W JP 2015060096W WO 2016157401 A1 WO2016157401 A1 WO 2016157401A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
metal
processing chamber
pressure
gas supply
Prior art date
Application number
PCT/JP2015/060096
Other languages
English (en)
French (fr)
Inventor
平松宏朗
佐藤武敏
佐々木隆史
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to PCT/JP2015/060096 priority Critical patent/WO2016157401A1/ja
Publication of WO2016157401A1 publication Critical patent/WO2016157401A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present invention relates to a semiconductor device manufacturing method, a substrate processing apparatus, and a recording medium.
  • Patent Document 1 a technique of supplying a processing gas from a side portion of a substrate and forming a thin film on the substrate has been adopted.
  • the processing gas may not easily reach the center of the substrate with an increased surface area. Insufficient processing gas at the center of the substrate may cause factors such as deterioration of film thickness uniformity and step coverage in the substrate surface.
  • the main object of the present invention is to provide a technique capable of forming a thin film with good film thickness uniformity and step coverage within the substrate surface.
  • FIG. 2 is a cross-sectional view taken along line AA of the processing furnace shown in FIG. 1 that is preferably used in the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA of the processing furnace shown in FIG. 1 that is preferably used in the first embodiment of the present invention.
  • FIG. 1 is a block diagram which shows the structure of the controller which the substrate processing apparatus shown in FIG. 1 has. It is a figure shown about the timing chart of the board
  • FIG. 5 Is a schematic view showing a valve opening and closing sequence of the first titanium tetrachloride (TiCl 4) in the embodiment the gas supply step of the present invention
  • FIG. 5 (c) shows the valve open / close state in the third step
  • FIG. 5 (d) shows the valve open / close state.
  • the valve open / closed state in the process 4 is shown. It is a top sectional view of the processing furnace used suitably in other embodiments of the present invention.
  • FIG. 8 is a cross-sectional view taken along line AA of the processing furnace shown in FIG. 7 that is preferably used in another embodiment of the present invention.
  • a vertical batch device that performs batch processing by vertically stacking a plurality of substrates may be used.
  • a technique is used in which a processing gas is supplied in a horizontal direction with respect to the surface of the substrate from a nozzle disposed on a side of the substrate and flows into the space between the substrates.
  • the pitch between the substrates may become narrow, and the inflow rate of the processing gas between the substrates may decrease.
  • an inner wall is provided on the side of the substrate, and the distance between the inner wall and the end portion (edge) of the substrate is reduced to reduce the conductance, thereby reducing the processing gas between the substrates. It is possible to improve the inflow rate.
  • the amount of processing gas consumed at the edge of the substrate increases and the in-plane film thickness uniformity is affected by the effects of by-products in the gas supply downstream region. Problems such as deterioration and deterioration of step coverage may occur.
  • the inventors have conducted intensive research and provided a processing gas supply line for supplying a processing gas and a gas reservoir (tank) in the processing gas supply line, and the processing previously stored in a tank provided in the processing gas supply line. It has been found that the supply amount of the processing gas into the processing chamber can be increased by instantaneously supplying the gas into the processing chamber, and the supply amount of the processing gas between the substrates can be increased. It was. That is, the partial pressure of the processing gas supplied into the processing chamber can be increased in a short time, and the film formation rate can be increased.
  • an inert gas is used.
  • a gas reservoir (tank) is provided in the inert gas supply line to be supplied, and when the processing gas is supplied into the processing chamber, or after a predetermined time has elapsed, the inert gas stored in the tank provided in the inert gas supply line in advance.
  • the processing gas (and inert gas) is released from the tank, so that the gas can be supplied for a short time at the initial stage of supply of each gas. Can cause pressure fluctuations (changes) and increase the flow rate of each gas, so that a large amount of each gas can be supplied into the processing chamber in a shorter time. It has been found that each gas flow rate can be supplied between the substrates.
  • the processing gas and the inert gas are desirably supplied from a nozzle having a gas supply hole that is provided on the side of the substrate and opens to the center of the substrate. This is because the influence on the substrate having an increased surface area increases with the integration of the distance from the substrate edge on the gas supply side to the gas supply downstream region, so that the central portion of the substrate is considered to be most susceptible.
  • processing gases particularly, processing gases that are difficult to be saturated and adsorbed on the substrate reach the opposite side of the gas supply hole across the substrate without reacting with the substrate surface. It has been found that by supplying an inert gas from the side opposite to the supply hole, the processing gas can be pushed back to the substrate surface and the reaction on the substrate can be promoted (counter N 2 ). Details will be described below.
  • the substrate processing apparatus 101 is configured as an example of an apparatus used in a substrate processing process that is a process of manufacturing a semiconductor device (device).
  • the processing furnace 202 has a heater 207 as a heating means (heating mechanism).
  • the heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate.
  • a reaction tube 203 constituting a reaction vessel (processing vessel) concentrically with the heater 207 is disposed.
  • the reaction tube 203 is made of a heat-resistant material (for example, quartz (SiO 2 ) or silicon carbide (SiC)), and has a cylindrical shape with the upper end closed and the lower end opened.
  • the processing chamber 201 is configured to be able to accommodate wafers 200 as substrates in a state where they are aligned in multiple stages in a vertical posture in a horizontal posture by a boat 217 described later.
  • nozzles 400a and 400b are provided so as to penetrate the side wall of the manifold 209.
  • Gas supply pipes 410a and 410b as gas supply lines are connected to the nozzles 400a and 400b, respectively.
  • the reaction tube 203 is provided with two nozzles 400a and 400b and two gas supply pipes 410a and 410b. Gas).
  • the processing furnace 202 of the present embodiment is not limited to the above-described form.
  • a metal manifold that supports the reaction tube 203 may be provided below the reaction tube 203, and each nozzle may be provided so as to penetrate the side wall of the manifold.
  • an exhaust pipe 231 described later may be further provided in the manifold. Even in this case, the exhaust pipe 231 may be provided below the reaction pipe 203 instead of the manifold.
  • the furnace port of the processing furnace 202 may be made of metal, and a nozzle or the like may be attached to the metal furnace port.
  • the nozzles 400 a and 400 b are configured as L-shaped long nozzles, and the horizontal portion thereof is provided so as to penetrate the side wall of the manifold 209.
  • the vertical portions of the nozzles 400 a and 400 b are in an annular space formed between the inner wall of the reaction tube 203 and the wafer 200, and upward (upward in the loading direction of the wafer 200) along the inner wall of the reaction tube 203. It is provided to rise (that is, to rise from one end side to the other end side of the wafer arrangement region). That is, the nozzles 400a and 400b are provided on the side of the wafer arrangement area where the wafers 200 are arranged, in a region that horizontally surrounds the wafer arrangement area, along the wafer arrangement area.
  • Gas supply holes 401a and 401b for supplying (spouting) gas are provided on the side surfaces of the nozzles 400a and 400b.
  • the gas supply holes 401 a and 401 b are opened to face the center of the reaction tube 203.
  • a plurality of the gas supply holes 401a and 401b are provided from the lower part to the upper part of the reaction tube 203, have the same opening area, and are provided at the same opening pitch.
  • the gas supply holes 401a and 401b are not limited to the above-described form.
  • the opening area may be gradually increased from the lower part to the upper part of the reaction tube 203. Thereby, the flow rate of the gas supplied from the gas supply holes 401a and 401b can be made uniform.
  • the gas supply method in the present embodiment is arranged in an annular vertically long space defined by the inner wall of the reaction tube 203 and the ends of the plurality of wafers 200, that is, in a cylindrical space.
  • the gas is conveyed via the nozzles 400a and 400b.
  • the gas is first ejected into the reaction tube 203 in the vicinity of the wafer 200 from the gas supply holes 401 a and 401 b opened in the nozzles 400 a and 400 b, respectively.
  • the main flow of the gas in the reaction tube 203 is changed to the surface of the wafer 200. Parallel to the horizontal direction, that is, the horizontal direction.
  • a gas flowing on the surface of each wafer 200 that is, a gas remaining after the reaction (residual gas) flows toward an exhaust port, that is, an exhaust pipe 231 to be described later.
  • the direction is appropriately specified depending on the position of the exhaust port, and is not limited to the vertical direction.
  • a gas supply pipe 410a for supplying an inert gas as a carrier gas or a purge gas has a mass flow controller (MFC) 412a as a flow rate control device, a valve 413a as an on-off valve, and a filling tank as a gas reservoir in order from the upstream side. 414a, a valve 415a as an on-off valve, and a valve 418a as an on-off valve are provided.
  • the filling tank 414a includes a heater (not shown) that raises the temperature of the filling tank 414a to a predetermined temperature.
  • the filling tank 414a includes a pressure sensor (not shown) that measures the pressure in the filling tank 414a.
  • a gas supply pipe 410a between the valve 415a and the valve 418a is connected to a downstream end of a gas supply pipe 410c as a source gas supply line.
  • the gas supply pipe 410c is provided with an MFC 412c, a valve 413c as an on-off valve, a vaporizer 414c, a valve 416a, a filling tank 417a as a gas reservoir, and a valve 415c as an on-off valve in order from the upstream side.
  • the gas supply pipe 410b for supplying an inert gas as a carrier gas or a purge gas is provided with an MFC 412b and a valve 413b as an on-off valve in order from the upstream side.
  • the downstream end of the gas supply pipe 410d is connected to the gas supply pipe 410b on the downstream side of the valve 413b.
  • the gas supply pipe 410d is provided with an MFC 412d, a valve 413d as an on-off valve, a filling tank 419a as a gas reservoir, and a valve 413f as an on-off valve.
  • nitrogen (N 2 ) gas as an inert gas is supplied into the processing chamber 201 through the MFC 412a, the valve 413a, the filling tank 414a, the valves 415a and 418a, and the nozzle 400a.
  • the inert gas supplied from the gas supply pipe 410a acts as a purge gas, a dilution gas, or a carrier gas in a substrate processing step described later.
  • nitrogen (N 2 ) gas is supplied as an inert gas into the processing chamber 201 through the MFC 412b, the valve 413a, and the nozzle 400b.
  • the inert gas supplied from the gas supply pipe 410b acts as a purge gas, a dilution gas, or a carrier gas in a substrate processing step described later.
  • a metal-containing gas containing a metal element as a raw material gas (raw material) that is a processing gas passes through the MFC 412c, the valve 413c, the vaporizer 414c, the valve 416a, the filling tank 417a, the valve 415c, and the nozzle 400a. Is supplied into the processing chamber 201.
  • the metal-containing gas include inorganic metal raw materials (inorganic raw materials, inorganic metal compounds, inorganic titanium (Ti) raw materials) containing Ti, which is a metal element, and halogen-based metal raw materials (halogen-based raw materials, halogens).
  • Ti is classified as a transition metal element.
  • the halogen-based raw material is a raw material containing a halogen group.
  • the halogen group includes chloro group, fluoro group, bromo group, iodo group and the like. That is, the halogen group includes halogen elements such as chlorine (Cl), fluorine (F), bromine (Br), iodine (I) and the like.
  • a liquid source or a solid source is not used as a source gas but a source in a gaseous state is used under normal temperature and pressure, a vaporizing or sublimating system such as a vaporizer is not necessary.
  • raw material when used, it means “a liquid raw material in a liquid state”, “a raw material gas in a gaseous state”, or both. is there.
  • an N-containing gas as a reaction gas containing nitrogen (N) as a processing gas and reacting with Ti is supplied to the MFC 412d, the valve 413d, the filling tank 419a, the valve 413f, and the nozzle 400b. Is supplied into the processing chamber 201.
  • a metal element-free N-containing gas such as ammonia (NH 3 ) gas can be used.
  • a processing gas supply system is mainly configured by the gas supply pipes 410c and 410d, the MFCs 412c and 412d, the valves 413c, 413d, 413f, 416a and 415c, the vaporizer 414c, and the filling tanks 417a and 419a.
  • the nozzles 400a and 400b may be included in the processing gas supply system.
  • the processing gas supply system can be simply referred to as a gas supply system.
  • the source gas When flowing the metal-containing gas as the source gas as described above from the gas supply pipe 410c, the source gas is mainly supplied by the gas supply pipe 410c, MFC 412c, valve 413c, vaporizer 414c, valve 416a, filling tank 417a, and valve 415c.
  • a metal-containing gas supply system as a system is configured.
  • the nozzle 400a may be included in the source gas supply system.
  • the source gas supply system can also be referred to as a source supply system.
  • the source gas supply system When flowing the inorganic source gas from the gas supply pipe 410c, the source gas supply system may be referred to as an inorganic source gas supply system.
  • the inorganic source gas supply system can also be referred to as an inorganic source supply system.
  • the inorganic source gas supply system can also be referred to as a halogen-based source gas supply system.
  • the halogen-based source gas supply system can also be referred to as a halogen-based source supply system.
  • a titanium-containing gas is allowed to flow as a halogen-based source gas from the gas supply pipe 410c
  • the halogen-based source gas supply system may be referred to as a titanium-containing gas supply system.
  • TiCl 4 gas from the gas supply pipe 410c it may also be referred to as a titanium-containing gas supply system and the TiCl 4 gas supply system.
  • the TiCl 4 gas supply system can also be referred to as a TiCl 4 supply system.
  • a reaction gas supply system is mainly configured by the gas supply pipe 410d, the MFC 412d, the valve 413d, the filling tank 419a, and the valve 413f.
  • the nozzle 400b may be included in the reaction gas supply system.
  • the reaction gas supply system can also be referred to as an N-containing gas supply system.
  • the N-containing gas supply system When flowing the NH 3 gas as the N-containing gas from the gas supply pipe 410b, it may be referred to as a NH 3 gas supply system the N-containing gas supply system.
  • the NH 3 gas supply system can also be referred to as an NH 3 supply system.
  • an inert gas supply system is mainly configured by the gas supply pipes 410a and 410b, the MFCs 412a and 412b, and the valves 413a, 413b, 415a, and 418a. Since the inert gas also acts as a carrier gas, the inert gas supply system can also be referred to as a carrier gas supply system. Since this inert gas also acts as a purge gas, the inert gas supply system can also be referred to as a purge gas supply system.
  • the reaction tube 203 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201.
  • the exhaust pipe 231 is connected to a pressure sensor 245 as a pressure detector (pressure detection unit) that detects the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 243 as a pressure regulator (pressure adjustment unit).
  • a vacuum pump 246 as a vacuum exhaust device is connected.
  • the APC valve 244 can perform evacuation and evacuation stop in the processing chamber 201 by opening and closing the valve while the vacuum pump 246 is activated, and further, with the vacuum pump 246 activated,
  • the valve is configured such that the pressure in the processing chamber 201 can be adjusted by adjusting the valve opening based on the pressure information detected by the pressure sensor 245.
  • An exhaust system is mainly configured by the exhaust pipe 231, the APC valve 243 and the pressure sensor 245.
  • the vacuum pump 246 may be included in the exhaust system.
  • a seal cap 219 is provided as a furnace opening lid capable of airtightly closing the lower end opening of the reaction tube 203.
  • the seal cap 219 is configured to contact the lower end of the reaction tube 203 from the lower side in the vertical direction.
  • the seal cap 219 is made of a metal such as SUS and is formed in a disk shape.
  • an O-ring 220 is provided as a seal member that comes into contact with the lower end of the reaction tube 203.
  • a rotation mechanism 267 for rotating a boat 217 described later is installed on the opposite side of the seal cap 219 from the processing chamber 201. A rotation shaft 255 of the rotation mechanism 267 passes through the seal cap 219 and is connected to the boat 217.
  • the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
  • the seal cap 219 is configured to be lifted and lowered in the vertical direction by a boat elevator 115 as a lifting mechanism vertically installed outside the reaction tube 203.
  • the boat elevator 115 is configured so that the boat 217 can be carried in and out of the processing chamber 201 by moving the seal cap 219 up and down. That is, the boat elevator 115 is configured as a transfer device (transfer mechanism) that transfers the boat 217, that is, the wafers 200 into and out of the processing chamber 201.
  • the boat 217 as a substrate support is configured to support a plurality of, for example, 25 to 200, wafers 200 in a multi-stage manner by aligning them vertically in a horizontal posture and with their centers aligned. It is configured to arrange at intervals.
  • the boat 217 is made of a heat-resistant material such as quartz or SiC.
  • heat insulating plates 218 made of a heat-resistant material such as quartz or SiC are supported in multiple stages in a horizontal posture. With this configuration, heat from the heater 207 is not easily transmitted to the seal cap 219 side.
  • this embodiment is not limited to the above-mentioned form.
  • a heat insulating cylinder configured as a cylindrical member made of a heat resistant material such as quartz or SiC may be provided.
  • a temperature sensor 263 as a temperature detector is installed in the reaction tube 203, and the temperature in the processing chamber 201 is adjusted by adjusting the energization amount to the heater 207 based on the temperature information detected by the temperature sensor 263. It is configured to have a desired temperature distribution.
  • the temperature sensor 263 is configured in an L shape like the nozzles 400 a and 400 b and is provided along the inner wall of the reaction tube 203.
  • the controller 121 which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via an internal bus.
  • an input / output device 122 configured as a touch panel or the like is connected to the controller 121.
  • the storage device 121c includes, for example, a flash memory, an HDD (Hard Disk Drive), and the like.
  • a control program that controls the operation of the substrate processing apparatus, a process recipe that describes the procedure and conditions of the substrate processing described later, and the like are stored in a readable manner.
  • the process recipe is a combination of instructions so that the controller 121 can execute each procedure in the substrate processing process described later and obtain a predetermined result, and functions as a program.
  • the process recipe, the control program, and the like are collectively referred to as simply a program.
  • program When the term “program” is used in this specification, it may include only a process recipe alone, only a control program alone, or both.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
  • the I / O port 121d includes the above-described MFCs 412a to d, valves 413a to f, 415a, 416a, 418a, and 415c, a vaporizer 414c, an APC valve 243, a pressure sensor 245, a vacuum pump 246, a heater 207, a temperature sensor 263, a rotation It is connected to the mechanism 267, the boat elevator 115 and the like.
  • the CPU 121a is configured to read and execute a control program from the storage device 121c, and to read a process recipe from the storage device 121c in response to an operation command input from the input / output device 122 or the like. According to the read process recipe, the CPU 121a adjusts the flow rates of various gases of the MFCs 412a to 4d, opens and closes the valves 413a to f, 415a, 416a, 418a and 415c, vaporizes the carburetor 414c, opens and closes the APC valve 243, and Pressure adjustment operation based on the pressure sensor 245 by the APC valve 243, temperature adjustment operation of the heater 207 based on the temperature sensor 263, start and stop of the vacuum pump 246, rotation and rotation speed adjustment operation of the boat 217 by the rotation mechanism 267, boat elevator 115 Is configured to control the lifting and lowering operation of the boat 217.
  • the controller 121 is stored in an external storage device 123 (for example, a magnetic tape, a magnetic disk such as a flexible disk or a hard disk, an optical disk such as a CD or a DVD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory or a memory card).
  • the above-mentioned program can be configured by installing it in a computer.
  • the storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium.
  • recording medium When the term “recording medium” is used in this specification, it may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both.
  • the program may be provided to the computer using a communication means such as the Internet or a dedicated line without using the external storage device 123.
  • processing or process, cycle, step, etc. is performed a predetermined number of times
  • this processing or the like is performed once or a plurality of times. That is, it means that the process is performed once or more.
  • FIG. 4 shows an example in which each process (cycle) is repeated n cycles. The value of n is appropriately selected according to the film thickness required for the finally formed TiN film. That is, the number of times each of the above-described processes is performed is determined according to the target film thickness.
  • wafer when the term “wafer” is used, it means “wafer itself” or “a laminate (aggregate) of a wafer and a predetermined layer or film formed on the surface thereof”. "(That is, a wafer including a predetermined layer or film formed on the surface).
  • wafer surface when the term “wafer surface” is used in this specification, it means “the surface of the wafer itself (exposed surface)” or “the surface of a predetermined layer or film formed on the wafer”. That is, it may mean “the outermost surface of the wafer as a laminated body”.
  • the phrase “supplying a predetermined gas to the wafer” means “supplying a predetermined gas directly to the surface (exposed surface) of the wafer itself”. , It may mean that “a predetermined gas is supplied to a layer, a film, or the like formed on the wafer, that is, to the outermost surface of the wafer as a laminated body”. Further, in this specification, when “describe a predetermined layer (or film) on the wafer” is described, “determine a predetermined layer (or film) directly on the surface (exposed surface) of the wafer itself”. This means that a predetermined layer (or film) is formed on a layer or film formed on the wafer, that is, on the outermost surface of the wafer as a laminate. There is a case.
  • substrate in this specification is the same as the term “wafer”. In that case, in the above description, “wafer” is replaced with “substrate”. Good.
  • metal film means a film made of a conductive substance containing a metal atom, which includes a conductive metal nitride film (metal nitride film), a conductive metal.
  • Oxide film metal oxide film
  • conductive metal oxynitride film metal oxynitride film
  • conductive metal composite film conductive metal alloy film
  • conductive metal silicide film metal silicide film
  • conductive A conductive metal carbide film metal carbide film
  • a conductive metal carbonitride film metal carbonitride film
  • the TiN film is a conductive metal nitride film.
  • the inside of the processing chamber 201 that is, the space where the wafer 200 exists is evacuated by the vacuum pump 246 so that a desired pressure (degree of vacuum) is obtained.
  • the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 243 is feedback-controlled based on the measured pressure information (pressure adjustment).
  • the vacuum pump 246 keeps operating at least until the processing on the wafer 200 is completed.
  • the processing chamber 201 is heated by the heater 207 so as to have a desired temperature.
  • the energization amount to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the processing chamber 201 has a desired temperature distribution (temperature adjustment).
  • the heating of the processing chamber 201 by the heater 207 is continuously performed at least until the processing on the wafer 200 is completed.
  • the rotation mechanism 267 starts the rotation of the boat 217 and the wafer 200.
  • the rotation of the boat 217 and the wafer 200 by the rotation mechanism 267 is continuously performed at least until the processing on the wafer 200 is completed.
  • the temperature inside the filling tank 414a and the inside of the filling tank 417a are raised to predetermined temperatures.
  • the pressure of gas can fully be raised, preventing liquefaction of the gas with which it fills in filling tank 414a and filling tank 418a.
  • the temperature and pressure in the filling tank 414a and the filling tank 417a need to be temperatures at which the gas to be filled does not liquefy (re-liquefy), that is, a pressure equal to or lower than the vapor pressure of the gas to be filled.
  • the vapor pressure of the TiCl 4 gas filled in the filling tank 417a is increased from 8 Torr (1066 Pa) to 65 Torr (8666 Pa). It is possible to increase the pressure in the filling tank 417a.
  • the temperature in the filling tank 417a is lower than the thermal decomposition temperature of the TiCl 4 gas filled in the filling tank 417a and is, for example, in the range of room temperature (for example, 20 ° C.) to 60 ° C. (predetermined ) Value, preferably a (predetermined) value within a range of 30 to 60 ° C., more preferably a (predetermined) value within a range of 40 to 60 ° C.
  • room temperature for example, 20 ° C.
  • 60 ° C. (predetermined ) Value preferably a (predetermined) value within a range of 30 to 60 ° C., more preferably a (predetermined) value within a range of 40 to 60 ° C.
  • the temperature in the filling tank 414a is also the thermal decomposition of the TiCl 4 gas.
  • the temperature is preferably lower than the temperature.
  • the temperature is the same as the temperature in the above-described filling tank 417a.
  • the critical significance of the lower limit value and the upper limit value has the same significance. Thereby, thermal decomposition of TiCl 4 gas by N 2 gas in the processing chamber 201 can be suppressed.
  • TiN film formation process (TiN film formation process) Subsequently, a step of forming a TiN film is performed.
  • the TiN film supply process includes TiCl 4 gas and N 2 gas filling process (first filling process), pressure adjusting process (first pressure adjusting process), TiCl 4 gas supplying process, residual gas removing process, NH, which will be described below.
  • filling TiCl 4 gas and filling N 2 gas“ simultaneously ” does not necessarily require the start and stop of filling to be performed at the same timing, and filling TiCl 4 gas and filling N 2 gas. It is sufficient if there is a timing when both are performed together. For example, one may be started first, or one may be stopped first. In other places in this specification, “simultaneous” has the same meaning.
  • the pressure in the filling tank 414a and the filling tank 417a needs to be a temperature at which the gas to be filled does not liquefy, that is, a pressure lower than the vapor pressure of the gas to be filled.
  • the volume of the filling tank 417a is set to a (predetermined) value within a range of 1/2000 to 5/2000 of the volume in the processing chamber 201, for example. If the volume is larger than 1/2000, the pressure in the filling tank 417a when the TiCl 4 gas required for supplying TiCl 4 gas once is reduced, and the TiCl 4 gas is discharged in a short time to be described later. There is the possibility that the effect of the pumping supply becomes weak, the pressure inside the filling tank 417a at the time of pooled TiCl 4 gas volume is required for the supply of 5/2000 smaller than one of the TiCl 4 gas There is a possibility that the TiCl 4 gas is thermally decomposed and reliquefied.
  • the TiCl 4 gas has a (predetermined) value within the range of 1 to 100 Torr (133 to 13332 Pa) of the pressure in the filling tank 417a, preferably within the range of 3 to 80 Torr (399 to 10666 Pa) (predetermined). It is filled until it becomes a (predetermined) value within a range of 8 to 65 Torr (1066 to 8666 Pa). If the pressure is lower than 1 Torr, the effect of pressure supply of TiCl 4 gas in a short time, which will be described later, may be weakened. If the pressure is higher than 100 Torr, the TiCl 4 gas may be thermally decomposed and reliquefied. There is sex.
  • the pressure in the filling tank 417a is determined depending on the temperature value in the filling tank 417a. For example, when the temperature in the filling tank 417a is 60 ° C., for example, 65 Torr, and the temperature in the filling tank 417a is 20 ° C. Is, for example, 8 Torr.
  • the supply flow rate of TiCl 4 gas controlled by the MFC 412c is, for example, a (predetermined) value within a range of 1 to 10,000 sccm, preferably a (predetermined) value within a range of 10 to 2000 sccm, and more preferably 100 A (predetermined) value within a range of ⁇ 500 sccm. If the flow rate is higher than 10,000 sccm, TiCl 4 gas may re-liquefy in the gas supply pipe 410c before reaching the filling tank 417a. If the flow rate is lower than 1 sccm, the filling tank 417a is filled with TiCl 4 gas. There is a possibility that the speed becomes slow and the throughput deteriorates.
  • the volume of the filling tank 414a is, for example, a (predetermined) value within a range of 10 to 10,000 cc, preferably a (predetermined) value within a range of 50 to 5000 cc, more preferably within a range of 100 to 1000 cc. (Predetermined) value. May become difficult to collect the N 2 gas volume is required to supply less the one of the N 2 gas from 10 cc, filling tank when the volume was pooled more and N 2 gas from 10000cc There is a possibility that the pressure in 414a is lowered and the effect of pushing out TiCl 4 gas described later is weakened.
  • the N 2 gas has a (predetermined) value, for example, in the range of 0.1 to 1000 Torr (13.3 to 133332 Pa), and preferably 0.5 to 500 Torr (66.7). It is filled up to a (predetermined) value within a range of ⁇ 66661 Pa), more preferably a (predetermined) value within a range of 1 to 300 Torr (133 to 39997 Pa). If the pressure is lower than 0.1 Torr, the effect of extruding TiCl 4 gas, which will be described later, may be weakened. If the pressure is higher than 1000 Torr, the time required for filling increases and the throughput may deteriorate.
  • a (predetermined) value for example, in the range of 0.1 to 1000 Torr (13.3 to 133332 Pa), and preferably 0.5 to 500 Torr (66.7). It is filled up to a (predetermined) value within a range of ⁇ 66661 Pa), more preferably a (predetermined) value within a range of 1 to 300 Torr (133 to 39997 Pa). If
  • the supply flow rate of N 2 gas controlled by the MFC 412a is, for example, a (predetermined) value within a range of 1 to 70000 sccm, preferably a (predetermined) value within a range of 500 to 20000 sccm, and more preferably 1000 A (predetermined) value within a range of ⁇ 10,000 sccm. If the flow rate is less than 1 sccm, the effect of extruding TiCl 4 gas, which will be described later, may be weakened. If the flow rate is more than 70000 sccm, the filling time may increase and the throughput may deteriorate. It should be noted that the sum of the supply flow rates of TiCl 4 gas and N 2 gas may be approximately the same as the supply flow rate of NH 3 gas described later.
  • the time for filling the filling tank 417a with the TiCl 4 gas and the time for filling the filling tank 414a with the N 2 gas are, for example, (predetermined) values within a range of 1 to 120 seconds, and preferably 1 to 60 seconds. It is a (predetermined) value within the range, more preferably a (predetermined) value within the range of 1 to 30 seconds. If the filling time is shorter than 1 second, it may be difficult to fill each gas up to the pressure in each filling tank described above, and if the filling time is longer than 120 seconds, the throughput may deteriorate.
  • the time for filling the filling tank 417a with the TiCl 4 gas and the time for filling the filling tank 414a with the N 2 gas may not be the same length of time. That is, since each filling time corresponds to the time required to fill each gas up to each pressure in each filling tank described above, either one may be short.
  • the APC valve 243 is adjusted appropriately so that the pressure (total pressure) in the processing chamber 201 is a (predetermined) value within a range of 0.01 to 0.5 Torr (1.33 to 66.7 Pa), for example.
  • it is a (predetermined) value within the range of 0.07 to 0.2 Torr (9.33 to 26.7 Pa), more preferably 0.08 to 0.15 Torr (10.7 to 20).
  • the pressure is reduced to 0 Pa). If the pressure is lower than 0.01 Torr, there is a possibility that the throughput will be deteriorated because it takes time to reduce the pressure. If the pressure is higher than 0.5 Torr, the effect of pumping and supplying TiCl 4 gas in a very short time will be weak. There is a possibility.
  • TiCl 4 gas supply step (T 3 ) The open / close state of each valve is as shown in FIG. That is, the valves 415c and 418a are opened with the valves 416a, 413a and 415a closed. As a result, the TiCl 4 gas filled in the filling tank 417a is pumped and supplied (flash introduction) into the processing chamber 201 in a very short time through the gas supply pipe 410a, the nozzle 400a and the gas supply hole 401a. . At this time, the pressure in the processing chamber 201 rapidly increases. Further, the valve 415a is opened immediately after the start of supplying the TiCl 4 gas or at the same time.
  • the TiCl 4 gas introduced into the processing chamber 201 is pushed to the center of each wafer 200 in the processing chamber 201 by the N 2 gas stored in the filling tank 414a (N 2 push). ).
  • N 2 push the N 2 gas stored in the filling tank 414a
  • the Ti 2 gas at a higher concentration in the central portion of the wafer 200 is obtained.
  • the mixed gas of TiCl 4 gas and N 2 gas flows between the wafers 200 held in the boat 217 in parallel with the main surface of the wafers 200, and then is discharged from the processing chamber 201 through the exhaust pipe 231. Is done.
  • valve 413b may be opened and the N 2 gas may be supplied into the processing chamber 201 through the gas supply pipe 410b and the nozzle 400b.
  • the valve 413b may be opened and the N 2 gas may be supplied into the processing chamber 201 through the gas supply pipe 410b and the nozzle 400b.
  • the time for supplying the TiCl 4 gas to the wafer 200 is, for example, in the range of 0.01 to 120 seconds (predetermined), preferably in the range of 1 to 30 seconds ( (Predetermined), and more preferably (predetermined) time within a range of 2 to 6 seconds. If the supply time is longer than 120 seconds, a large amount of Cl or the like may be taken into the Ti-containing layer, which will be described later. If the supply time is shorter than 0.01 seconds, the TiCl 4 gas filled in the filling tank 417a is discharged. There is a possibility that it will not be adequately supplied.
  • the temperature of the heater 207 is, for example, a (predetermined) value within the range of 200 to 600 ° C., preferably a (predetermined) value within the range of 200 to 550 ° C., more preferably. Is set to a (predetermined) value within the range of 200 to 400 ° C. If the temperature is lower than 200 ° C., the reactivity may be low and film formation may be difficult. If the temperature is higher than 600 ° C., the thermal decomposition of TiCl 4 gas is promoted, resulting in an increase in the deposition rate. In some cases, the controllability of the film thickness is deteriorated and the uniformity is deteriorated, or a large amount of impurities are taken in and the resistivity is increased.
  • the Ti-containing layer formed in the source gas supply step may be a Ti layer containing only Ti single atoms, but may also contain other atoms derived from each source.
  • a halogen-based element is used in the source gas supply step. Often contains some Cl. That is, the Ti-containing layer includes a TiCl 4 layer that is an adsorption layer of TiCl 4 .
  • the TiCl 4 layer includes a continuous adsorption layer of TiCl 4 molecules as well as a discontinuous adsorption layer.
  • the TiCl 4 layer includes an adsorption layer having a thickness of less than one molecular layer composed of TiCl 4 molecules. TiCl 4 molecules constituting the TiCl 4 layers, including those bonds between Ti and Cl is partially broken. In many cases, the TiCl 4 gas is saturated and adsorbed on the wafer 200 at the pressure in the processing chamber 201 and the temperature of the heater 207.
  • the rate at which the TiCl 4 gas is moved over the wafer 200 substantially as compared with the case of moving the TiCl 4 gas alone It becomes possible to raise. That is, according to the present embodiment, the moving speed of the TiCl 4 gas can be greatly increased by using the pressure of the pressurized N 2 gas. Then, by increasing the moving speed of the TiCl 4 gas, it is possible to increase the partial pressure of TiCl 4 gas in the processing chamber 201 in a shorter time, the formation of the adsorption layer of the TiCl 4 gas molecules to the wafer 200 on It can be performed in a shorter time.
  • valves 415a, 415c, and 418a when the valves 415a, 415c, and 418a are opened, the valves 413a and 416a are closed. Thus, it is possible to prevent the pressurized N 2 gas will be flowing and the gas supply pipe 410c, to the filling tank 417a.
  • valves 415c, 418a, and 415a are opened in this order. If the valves 415a and 418a are opened before the valve 415c is opened, the pressurized N 2 gas is introduced into the filling tank 417a, so that the pressure in the filling tank 417a temporarily becomes the vapor pressure of the TiCl 4 gas. This is because there is a possibility that TiCl 4 gas may be liquefied.
  • the gas remaining in the processing chamber 201 may not be completely removed, and the inside of the processing chamber 201 may not be completely purged. If the amount of gas remaining in the processing chamber 201 is very small, no adverse effect will occur in the subsequent steps.
  • the flow rate of the N 2 gas supplied into the processing chamber 201 does not need to be large. For example, by supplying an amount similar to the volume of the reaction tube 203 (processing chamber 201), there is an adverse effect in subsequent steps. Purge that does not occur can be performed. Thus, by not completely purging the inside of the processing chamber 201, the purge time can be shortened and the throughput can be improved. In addition, consumption of N 2 gas can be minimized.
  • the volume of the filling tank 419a is set to a (predetermined) value within a range of 1/2000 to 5/2000 of the volume in the processing chamber 201, for example. If the volume is larger than 1/2000, the pressure in the filling tank 419a when the NH 3 gas required for supplying NH 3 gas once is reduced, and the NH 3 gas is discharged in a short time to be described later. There is the possibility that the effect of the pumping supply becomes weak, the pressure inside the filling tank 417a at the time of pooled NH 3 gas volume is needed to supply the 5/2000 smaller than one of the NH 3 gas It can be expensive.
  • the NH 3 gas has a (predetermined) value within the range of 0.1 to 1000 Torr (13.3 to 133322 Pa), for example, and the pressure in the filling tank 419a is preferably 0. It is filled up to a (predetermined) value within a range of 0.5 to 500 Torr (66.7 to 66661 Pa), more preferably a (predetermined) value within a range of 1 to 300 Torr (133 to 39997 Pa). If the pressure is lower than 0.1 Torr, the effect of pumping and supplying NH 3 gas in a short time, which will be described later, may be weakened. If the pressure is higher than 1000 Torr, the time required for filling increases and the throughput may deteriorate. There is sex.
  • the supply flow rate of NH 3 gas controlled by the MFC 412d is, for example, a (predetermined) value within a range of 10 to 50000 sccm, preferably a (predetermined) value within a range of 300 to 20000 sccm, and more preferably 1000 A (predetermined) value within a range of ⁇ 10,000 sccm. If the flow rate is less than 10 sccm, the filling time may increase and the throughput may deteriorate, and if the flow rate is more than 50000 sccm, the pressure in the filling tank 419a may become too high.
  • the supply flow rate of N 2 gas controlled by the MFC 412b is, for example, a (predetermined) value within a range of 10 to 20000 sccm, preferably a (predetermined) value within a range of 400 to 15000 sccm, and more preferably 400 A (predetermined) value within a range of ⁇ 7500 sccm. If the flow rate is higher than 20000 sccm, the film formation rate may be too low, and if the flow rate is lower than 10 sccm, the NH 3 gas may not be sufficiently supplied to the wafer 200.
  • the time for filling the NH 3 gas into the filling tank 419a is, for example, a (predetermined) value within a range of 0.001 to 300 seconds, and preferably a (predetermined) value within a range of 0.1 to 60 seconds. More preferably, it is a (predetermined) value within the range of 1 to 25 seconds. If the filling time is shorter than 0.001 seconds, it may be difficult to fill each gas up to the pressure of each filling tank described above, and if the filling time is longer than 300 seconds, the throughput may deteriorate. is there. When the predetermined time has elapsed and the filling tank 419a is filled with gas and the pressure in the filling tank 419a reaches the predetermined pressure, the next step is performed.
  • it is a (predetermined) value within a range of 0.07 to 0.2 Torr (9.3 to 26.7 Pa), more preferably 0.08 to 0.15 Torr (10.7 to 20).
  • the pressure is reduced to 0 Pa).
  • the pressure is lower than 0.01 Torr, there is a possibility that the throughput will be deteriorated because it takes time to reduce the pressure.
  • the pressure is higher than 0.5 Torr, the effect of feeding and supplying NH 3 gas in a very short time will be weak. There is a possibility.
  • the processing chamber 201 if the N 2 gas as the carrier gas is supplied into the processing chamber 201 through the gas supply pipe 410b, the gas supply pipe 410b, and the nozzle 400b with the valve 413b opened, the processing chamber 201 The diffusion of NH 3 gas into the inside can be promoted, and the concentration of NH 3 gas supplied into the processing chamber 201 can be adjusted. As described above, the mixed gas of NH 3 gas and N 2 gas flows between the wafers 200 held in the boat 217 in parallel with the main surface of the wafers 200 and then is discharged from the processing chamber 201 through the exhaust pipe 231. Is done.
  • valve 413a may be opened and N 2 gas may be supplied into the processing chamber 201 through the gas supply pipe 410a and the nozzle 400a. This makes it possible to NH 3 gas is prevented from flowing back into the gas supply pipe 410a and a nozzle 400a.
  • the time for supplying the NH 3 gas to the wafer 200 is, for example, in the range of 0.001 to 300 seconds (predetermined), preferably in the range of 0.1 to 60 seconds. (Predetermined), more preferably (predetermined) time within the range of 1 to 25 seconds. If the supply time is less than 0.001 seconds, the NH 3 gas filled in the filling tank 419a may not be sufficiently supplied, and may not sufficiently react with the Ti-containing layer formed on the wafer 200. is there. A longer supply time is preferable because it can reduce the incorporation of impurities derived from the source gas into the TiN film. However, if the supply time is longer than 300 seconds, the throughput may deteriorate.
  • the temperature of the heater 207 is set to the same temperature as in the TiCl 4 supply process.
  • the gases flowing into the processing chamber 201 are only NH 3 gas and N 2 gas.
  • the NH 3 gas undergoes a substitution reaction with at least a part of the Ti-containing layer formed on the wafer 200 in the source gas supply process.
  • a TiN layer containing Ti and N is formed on the wafer 200 by the substitution reaction.
  • a cycle for performing each of the above steps is set as one cycle, and this cycle is performed a predetermined number of times (n times) to form a TiN film having a desired film thickness (for example, 0.1 to 10 nm) on the wafer 200.
  • the film forming process is terminated. Note that the thickness of the TiN film to be formed can be adjusted by adjusting the number of cycle repetitions.
  • the above cycle is preferably repeated multiple times.
  • the portion described as “supplying gas to the wafer 200” is “to the layer formed on the wafer 200, that is, This means that a predetermined gas is supplied to the outermost surface of the wafer 200 as a laminated body, and a portion that “forms a predetermined layer on the wafer 200” is “formed on the wafer 200. It means that a predetermined layer is formed on a certain layer, that is, on the outermost surface of the wafer 200 as a laminate. This also applies to the examples described later.
  • the valves 413 a and 413 b are opened, N 2 gas is supplied into the processing chamber 201, and exhausted from the exhaust pipe 231.
  • the N 2 gas acts as a purge gas, whereby the inside of the processing chamber 201 is purged with an inert gas, and the gas and by-products remaining in the processing chamber 201 are removed from the processing chamber 201 (purge). Thereafter, the atmosphere in the processing chamber 201 is replaced with an inert gas (inert gas replacement), and the pressure in the processing chamber 201 is returned to normal pressure (return to atmospheric pressure).
  • the TiCl 4 gas supply step (T 3 ), the NH 3 gas filling step (T 3 ), the residual gas removal step (T 4 ), and the second pressure adjustment step (T 4 ) are simultaneously performed. You can go. By performing these steps simultaneously, the time required for one cycle can be shortened, and the throughput can be improved.
  • TiCl 4 gas which is a raw material gas
  • the filling tank is filled with N 2 gas, which is an inert gas for extruding TiCl 4 gas.
  • N 2 gas is continuously filled in the filling tank during T 2 .
  • filling of the reaction tank with NH 3 as a reaction gas is started. Further, the pressure in the processing chamber is reduced to the above value.
  • TiCl 4 gas which is a raw material gas is supplied into the processing chamber by flash.
  • N 2 gas which is an inert gas for extruding TiCl 4 gas, is supplied to the processing chamber in a flash manner with a slight delay from the start of supply of TiCl 4 gas, which is the raw material gas.
  • NH 3 as a reaction gas is continuously filled in the filling tank.
  • an inert gas N 2 that is a carrier gas and a purge gas is supplied into the processing chamber.
  • the pressure in the processing chamber once depressurized rises.
  • the gas flow rate can be increased by a short-time pressure change during the gas supply. It becomes easy for gas to flow in between.
  • a tank provided in the inert gas supply line is provided with a gas reservoir (tank) in the inert gas supply line for supplying the inert gas, and at the same time when a processing gas is supplied into the processing chamber or after a predetermined time has elapsed.
  • the partial pressure of the processing gas in the processing chamber 201 can be increased in a shorter time.
  • D By reducing the pressure (total pressure) in the processing chamber immediately before supplying the processing gas or the like, when the processing gas or the like is supplied from the filling tank, the processing gas or the like can be supplied at a very early stage. Since pressure fluctuations (pressure changes) can occur over time and the flow rate of processing gas can be increased, a large amount of processing gas can be supplied into the processing chamber in a shorter time. A large amount of processing gas or the like can be supplied to the central portion of the substrate in a short time, and the in-plane uniformity of the film thickness can be improved.
  • a second embodiment of the present invention will be described with reference to FIG. Detailed description of the same parts as those of the first embodiment will be omitted, and parts different from those of the first embodiment will be described below.
  • the difference from the first embodiment is that an inert gas supply nozzle is provided on the side opposite to the nozzle that supplies the reaction gas to the substrate.
  • a nozzle 400c is arranged on the side (opposite side) facing each other with the nozzles 400a and 400b and the wafer 200 interposed therebetween.
  • the structure of the nozzle 400c is the same as that of the nozzles 400a and 400b.
  • a gas supply pipe (not shown) is connected to the nozzle 400c.
  • the gas supply pipe (not shown) is provided with an MFC and a valve, respectively, and N 2 gas as an inert gas is ejected from the gas supply hole 401c of the nozzle 400c.
  • the gas supply hole 401 c opens toward the center of the wafer 200. That is, it opens in the direction facing the gas supply hole 401b.
  • N 2 gas is supplied from the gas supply hole 400c (counter N 2 ) together with the supply of NH 3 gas from the gas supply hole 401b.
  • the counter N 2 pushes the NH 3 gas that reaches the opposite side across the gas supply hole 401b and the wafer 200 without reacting with the Ti-containing layer formed on the wafer 200 back to the center of the wafer 200, and It is possible to promote the reaction.
  • the processing gas that is difficult to be saturated and adsorbed on the substrate reaches the opposite side of the gas supply hole across the substrate without reacting with the substrate surface, and is pushed back to the center of the wafer 200 by the counter N 2.
  • the reaction can be promoted.
  • a third embodiment of the present invention will be described with reference to FIGS. Detailed description of the same parts as those of the first and second embodiments will be omitted, and parts different from those of the first and second embodiments will be described below.
  • the main point different from the first embodiment is that two nozzles for supplying an inert gas arranged so as to sandwich a nozzle for supplying a source gas into a processing chamber and a nozzle for supplying a reactive gas are provided.
  • the nozzles 400d and 400d ′ are arranged so as to sandwich the nozzles 400a and 400b from both sides.
  • the structure of the nozzles 400d and 400d ′ is the same as that of the nozzles 400a and 400b.
  • a gas supply pipe (not shown) is connected to each of the nozzles 400d and 400d ′, and an MFC and a valve are respectively provided in the gas supply pipe (not shown).
  • an inert gas is supplied together with N 2 gas pressure supply. N 2 gas is ejected from the gas supply holes 401d and 401d ′ of the nozzles 400d and 400d ′.
  • the gas supply holes 401 a and 401 b open in the center direction of the wafer 200, whereas the gas supply holes 401 d and 401 d ′ open in the edge (periphery) direction of the wafer 200. That is, the gas supply holes 401 d and 401 d ′ open in the annular space formed by the edge of the wafer 200 laminated with the inner wall of the processing chamber 201.
  • the 400d 'of N 2 gas (a) be the same timing as the pumping supply of the TiCl 4 gas, and timing different from the pumping supply of the N 2 gas, (b) TiCl 4 have the same timing as the pumping supply of gas, and nozzles 400d at the same time as pumping supply of the N 2 gas, to start the supply of N 2 gas from 400d ', different from the pumped supply of (c) TiCl 4 gas
  • the timing is different from the TiCl 4 gas pressure supply and N nozzle 400d at different times and pumped supply of 2 gas, among the case of starting the supply of N 2 gas from 400d ', the (a) ⁇ (d)
  • the flow rate of N 2 gas (flow rate per unit time) supplied from the nozzles 400d and 400d ′ is the flow rate of TiCl 4
  • the nozzle 400a Since the flow rate of N 2 gas supplied from the nozzles 400d and 400d ′ disposed on both sides of the nozzle 400a is larger than the flow rate of TiCl 4 gas and / or N 2 gas supplied from the nozzle 400a, the nozzle 400a The ejected TiCl 4 gas can be prevented from diffusing between the wafer 200 and the reaction tube 203, and the TiCl 4 gas can be supplied to the center of the wafer 200.
  • TiCl 4 be the same timing as the pumping supply of gas, and N 2 gas pressurized supply different timings in nozzle 400d of, when starting the supply of N 2 gas from 400d ', the nozzle at the start supplying 400d,
  • the flow rate of N 2 gas from 400d ′ is set equal to or higher than the flow rate of TiCl 4 gas, and the flow rate of N 2 gas from nozzles 400d and 400d ′ is changed to TiCl 4 at the timing when N 2 gas pressure supply is started.
  • the flow rate may be increased to a flow rate that is equal to or greater than the total flow rate of the gas flow rate and the N 2 gas flow rate supplied under pressure.
  • the TiCl 4 gas ejected from the nozzle 400 a can be prevented from diffusing between the wafer 200 and the reaction tube 203, and the TiCl 4 gas can be supplied to the center of the wafer 200.
  • the source gas diffused between the surface of the wafer 200 and between the wafer 200 and the reaction tube 203 is pushed out by the inert gas, and the wafer is
  • the source gas diffused between 200 and the reaction tube 203 can be pushed onto the wafer 200 (center of the surface) (assist N 2 ). For this reason, in the film formation process on the substrate having an increased surface area, it is possible to suppress a decrease in film thickness uniformity, deterioration in step coverage, and an increase in film formation time due to a gas deficiency at the center of the substrate.
  • Ti which is a metal element
  • the present invention is not limited to the above-described embodiment, and as elements other than Ti, tantalum (Ta), tungsten (W), cobalt (Co), yttrium (Y), ruthenium (Ru), aluminum (Al), hafnium (Hf) ), Zirconium (Zr), molybdenum (Mo), silicon (Si), and other nitride films, oxide films, carbonized films, boride films, or composite films thereof. It can be suitably applied.
  • a titanium (Ti) -containing gas as a source gas
  • a tantalum (Ta) -containing gas a tungsten (W) -containing gas, a cobalt (Co) -containing gas, and yttrium (Y) Containing gas
  • ruthenium (Ru) containing gas aluminum (Al) containing gas, hafnium (Hf) containing gas, zirconium (Zr) containing gas, molybdenum (Mo) containing gas, silicon (Si) containing gas, etc.
  • examples of the halogen-based source gas as the inorganic source gas include, in addition to TiCl 4 , titanium tetrafluoride (TiF 4 ), tantalum pentachloride (TaCl 5 ), and five Tantalum fluoride (TaF 5 ), tungsten hexachloride (WCl 6 ), tungsten hexafluoride (WF 6 ), cobalt dichloride (CoCl 2 ), cobalt dichloride (CoF 2 ), yttrium trichloride (YCl 3 ), three Yttrium fluoride (YF 3 ), ruthenium trichloride (RuCl 3 ), ruthenium trifluoride (RuF 3 ), aluminum trichloride (AlCl 3 ), aluminum trifluoride (AlF 3 ), hafnium tetrachloride (HfCl 4 ),
  • silicon tetrachloride or silicon tetrachloride SiCl 4, abbreviation: STC
  • dichlorosilane SiH 2 Cl 2, abbreviation: DCS
  • monochlorosilane SiH 3 Cl, abbreviation: MCS
  • hexachlorodisilane i.e. It is also possible to use disilicon hexachloride (Si 2 Cl 6 , abbreviation: HCDS) or the like.
  • a source gas other than the inorganic source gas for example, tetrakisdimethylaminotitanium (Ti [N (CH 3 ) 2 ] 4 , abbreviation: TDMAT), pentaethoxytantalum (Ta (OC 2 H 5 ) 5 , abbreviation: PET), trimethylaluminum ((CH 3 ) 3 Al, abbreviation: TMA), tetrakisethylmethylamino Hafnium (Hf [N (CH 3 ) CH 2 CH 3 ] 4 , abbreviation: TEMAH), tetrakisdimethylaminohafnium (Hf [N (CH 3 ) 2 ] 4 , TDMAH), tetrakisdiethylaminohafnium (Hf [N (C 2) H 5) 2] 4, abbreviation: TDMAH), tetrakisdiethylaminohafnium (Hf [N (C 2) H 5)
  • reaction gas examples include nitrogen (N 2 ), nitrous oxide (N 2 O), diazene (N 2 H 2 ) gas, hydrazine in addition to NH 3.
  • N 2 nitrogen
  • N 2 O nitrous oxide
  • N 2 H 2 diazene
  • hydrazine in addition to NH 3.
  • a gas containing an N—H bond such as (N 2 H 4 ) gas or N 3 H 8 gas can be used.
  • the gas containing an N—H bond includes an organic hydrazine-based gas such as monomethylhydrazine ((CH 3 ) HN 2 H 2 , abbreviation: MMH) gas, dimethylhydrazine ((CH 3) 2 N 2 H 2, abbreviation: DMH) gas, trimethyl hydrazine ((CH 3) 2 N 2 (CH 3) H, abbreviation: TMH) and methylhydrazine-based gas such as a gas, ethyl hydrazine ((C 2 H 5 ) Ethylhydrazine-based gas such as HN 2 H 2 , abbreviation: EH) gas can be used.
  • MMH monomethylhydrazine
  • DMH dimethylhydrazine
  • TMH trimethyl hydrazine
  • methylhydrazine-based gas such as a gas
  • ethyl hydrazine ((C 2 H 5 ) Ethylhydrazine-based gas such as H
  • the amine-based gas for example, (C 2 H 5 ) x NH 3-x , (CH 3 ) x NH 3-x , (C 3 H 7 ) x NH 3-x , [(CH 3 ) 2 CH] x NH 3-x , (C 4 H 9 ) x NH 3-x , [(CH 3 ) 2 CHCH 2 ] x NH 3-x (wherein x is an integer of 1 to 3)
  • the gases represented at least one gas can be used.
  • an organic hydrazine-based gas or an amine-based gas is used, the reactivity can be increased and C can be taken into the film, so that the work function of the film can be adjusted by controlling the C concentration.
  • Examples of the film containing the above-described element include, in addition to a TiN film, a TiC film, and a TiCN film, for example, a tantalum nitride film (TaN film), a tantalum carbide film (TaC film), a tantalum carbonitride film (TaCN film), and tungsten.
  • a TiN film tantalum nitride film
  • TaC film tantalum carbide film
  • TaCN film tantalum carbonitride film
  • tungsten tungsten.
  • N 2 gas is used as the inert gas.
  • the present invention is not limited to this, and a rare gas such as Ar gas, He gas, Ne gas, or Xe gas may be used. Good.
  • each modification, each application, and the like can be used in appropriate combination.
  • the processing conditions at this time can be set to the same processing conditions as in the above-described embodiment, for example.
  • the process recipes are the contents of the substrate processing (film type, composition ratio, film quality, film thickness, processing procedure, processing of the thin film to be formed) It is preferable to prepare individually (multiple preparations) according to the conditions. And when starting a substrate processing, it is preferable to select a suitable process recipe suitably from several process recipes according to the content of a substrate processing. Specifically, a plurality of process recipes individually prepared according to the contents of the substrate processing are stored in the substrate processing apparatus via an electric communication line or a recording medium (external storage device) on which the process recipe is recorded. It is preferable to store (install) the apparatus in advance.
  • the CPU included in the substrate processing apparatus may appropriately select an appropriate process recipe from a plurality of process recipes stored in the storage device according to the content of the substrate processing. preferable.
  • the CPU included in the substrate processing apparatus may appropriately select an appropriate process recipe from a plurality of process recipes stored in the storage device according to the content of the substrate processing. preferable.
  • thin films with various film types, composition ratios, film qualities, and film thicknesses can be formed for general use with good reproducibility using a single substrate processing apparatus.
  • the above-described process recipe is not limited to the case of creating a new process, and can be realized by changing the process recipe of an existing substrate processing apparatus, for example.
  • the process recipe according to the present invention is installed in an existing substrate processing apparatus via a telecommunication line or a recording medium recording the process recipe, or input / output of the existing substrate processing apparatus It is also possible to operate the apparatus and change the process recipe itself to the process recipe according to the present invention.
  • the substrate processing apparatus is a batch type vertical apparatus that processes a plurality of substrates at a time, and a nozzle for supplying a processing gas is erected in one reaction tube.
  • a processing furnace having a structure in which an exhaust port is provided in the lower part has been described
  • the present invention can also be applied to a case where a film is formed using a processing furnace having another structure.
  • there are two reaction tubes having a concentric cross section the outer reaction tube is called an outer tube and the inner reaction tube is called an inner tube), and a side wall of the outer tube is provided from a nozzle standing in the inner tube.
  • the present invention can also be applied to a case where a film is formed using a processing furnace having a structure in which a processing gas flows to an exhaust port that opens to a position (axisymmetric position) facing the nozzle with the substrate interposed therebetween.
  • the processing gas may be supplied from a gas supply port that opens in a side wall of the inner tube, instead of being supplied from a nozzle standing in the inner tube.
  • the exhaust port opened to the outer tube may be opened according to the height at which there are a plurality of substrates stacked and accommodated in the processing chamber.
  • the shape of the exhaust port may be a hole shape or a slit shape.
  • the present invention is not limited to this, and the present invention is not limited to this.
  • the present invention can also be suitably applied when a film is formed using a single-wafer type substrate processing apparatus that processes one or several substrates.
  • a thin film is formed using a substrate processing apparatus having a hot wall type processing furnace has been described.
  • the present invention is not limited to this, and a cold wall type processing furnace is provided.
  • the present invention can also be suitably applied when forming a thin film using a substrate processing apparatus. Even in these cases, the processing conditions can be the same processing conditions as in the above-described embodiment, for example.
  • Appendix 2 The method according to appendix 1, preferably, In the metal-containing gas supply step, the inert gas is supplied in a state where the metal-containing gas is supplied.
  • Appendix 3 The method according to appendix 1 or 2, preferably, The metal-containing gas filling step and the inert gas filling step are performed simultaneously (at the same timing).
  • Appendix 5 The method according to any one of appendices 1-4, In the reactive gas supply step, an inert gas is supplied from a position opposite to the reactive gas supply position across the substrate.
  • Appendix 6 The method according to any one of appendices 1 to 5, wherein An inert gas is supplied so as to be sandwiched from both sides along the flow of the metal-containing gas.
  • the first pressure and the second pressure are (predetermined) values within a range of 0.01 to 0.5 Torr (1.33 to 66.7 Pa), for example, and preferably 0.07 to 0. .2 Torr (9.3 to 26.7 Pa) (predetermined) value, more preferably 0.08 to 0.15 Torr (10.7 to 20.0 Pa) (predetermined) Value.
  • Appendix 9 The method according to any one of appendices 1 to 8, wherein In the metal-containing gas supply step and the reaction gas supply step, the pressure in the processing chamber is adjusted to a predetermined pressure.
  • a processing chamber for accommodating the substrate A metal-containing gas supply system having a metal-containing gas supply pipe connected to the processing chamber; A first gas reservoir provided in the metal-containing gas supply pipe and filled with the metal-containing gas; An inert gas supply system having an inert gas supply pipe connected to the metal-containing gas supply pipe; A second gas reservoir provided in the inert gas supply pipe and filled with the inert gas; A reaction gas supply system having a reaction gas supply pipe connected to the processing chamber; A third gas reservoir provided in the reaction gas supply pipe and filled with the reaction gas; An exhaust system for exhausting the processing chamber; Controlling the metal-containing gas supply system, the inert gas supply system, and the reaction gas supply system to fill the first gas reservoir with the metal-containing gas, and the second gas reservoir A process of filling the inert gas; a process of reducing the processing chamber containing the substrate to a first pressure; and filling the first gas reservoir into the processing chamber reduced to the first pressure.
  • a process of supplying the inert gas filled in the second gas reservoir to the process chamber while supplying the metal-containing gas, and a process of removing the metal-containing gas remaining in the process chamber A process for filling the third gas reservoir with the reactive gas, a process for reducing the pressure in the process chamber to a second pressure, and a process for reducing the pressure in the process chamber to the second pressure.
  • Supplying the reaction gas filled in the gas reservoir And management, and the processing is performed for a predetermined number of times processing and the removing the reaction gas remaining in the room, so as to form a metal-containing film on the substrate constituted control unit,
  • a substrate processing apparatus is provided.
  • [Appendix 11] According to another aspect of the invention, Filling a metal-containing gas into a first gas reservoir provided in a metal-containing gas supply pipe connected to the processing chamber; Filling a second gas reservoir provided in an inert gas supply pipe connected to the metal-containing gas supply pipe with an inert gas; A procedure for reducing the processing chamber containing the substrate to the first pressure; While supplying the metal-containing gas filled in the first gas reservoir into the processing chamber depressurized to the first pressure, the non-filled gas in the second gas reservoir is supplied into the processing chamber.
  • the present invention can be used for, for example, a semiconductor device manufacturing method, a substrate processing apparatus for processing a substrate such as a semiconductor wafer or a glass substrate, and the like.

Abstract

課題 基板面内の膜厚均一性およびステップカバレッジが良好である薄膜を形成すること 解決手段 金属含有ガス供給管に設けられた第1のガス溜め部に金属含有ガスを充填する金属含有ガス充填工程と、不活性ガス供給管に設けられた第2のガス溜め部に不活性ガスを充填する不活性ガス充填工程と、処理室内を第1の圧力に減圧する第1の減圧工程と、処理室内に第1のガス溜め部に充填された金属含有ガスを供給しつつ、第2のガス溜め部に充填された不活性ガスを供給する金属含有ガス供給工程と、金属含有ガスを除去する第1の除去工程と、反応ガス供給管に設けられた第3のガス溜め部に反応ガスを充填する反応ガス充填工程と、第2の圧力に減圧する第2の減圧工程と、処理室内に第3のガス溜め部に充填された反応ガスを供給する反応ガス供給工程と、反応ガスを除去する第2の除去工程と、を所定回数行い、基板上に金属含有膜を形成する。

Description

半導体装置の製造方法、基板処理装置および記録媒体
 本発明は、半導体装置の製造方法、基板処理装置および記録媒体に関する。
 近年、半導体装置(デバイス)を製造する際、基板の側部より処理ガスを供給し、基板上に薄膜を形成する技術が採用されている(特許文献1)。
特開2012-67328号公報
 しかし、基板の大口径化に伴い、表面積が増大した基板の中心部へ処理ガスが到達しにくくなる場合がある。基板の中心部における処理ガスの欠乏は、基板面内の膜厚均一性悪化、ステップカバレッジ悪化等の要因となる場合がある。
 本発明の主な目的は、基板面内の膜厚均一性およびステップカバレッジが良好である薄膜を形成することが可能な技術を提供することにある。
本発明の一態様によれば、
 処理室に接続された金属含有ガス供給管に設けられた第1のガス溜め部に金属含有ガスを充填する金属含有ガス充填工程と、
 前記金属含有ガス供給管に接続された不活性ガス供給管に設けられた第2のガス溜め部に不活性ガスを充填する不活性ガス充填工程と、
 基板を収容した処理室内を第1の圧力に減圧する第1の減圧工程と、
 前記第1の圧力に減圧された前記処理室内に前記第1のガス溜め部に充填された前記金属含有ガスを供給しつつ、前記処理室内に前記第2のガス溜め部に充填された前記不活性ガスを供給する金属含有ガス供給工程と、
 前記処理室内に残留する前記金属含有ガスを除去する第1の除去工程と、
 前記処理室に接続された反応ガス供給管に設けられた第3のガス溜め部に反応ガスを充填する反応ガス充填工程と、
 前記処理室内を第2の圧力に減圧する第2の減圧工程と、
 前記第2の圧力に減圧された前記処理室内に前記第3のガス溜め部に充填された前記反応ガスを供給する反応ガス供給工程と、
 前記処理室内に残留する前記反応ガスを除去する第2の除去工程と、
 を所定回数行い、前記基板上に金属含有膜を形成する技術が提供される。
 本発明によれば、基板面内の膜厚均一性およびステップカバレッジが良好である薄膜を形成することができる。
本発明の第1の実施形態にて好適に用いられる処理炉の一例とそれに付随する部材の概略構成図であって、特に処理炉部分を縦断面で示す図である。 本発明の第1の実施形態にて好適に用いられる図1に示す処理炉のA-A線断面図である。 図1に示す基板処理装置が有するコントローラの構成を示すブロック図である。 本発明の第1の実施形態における基板処理のタイミングチャートとその際の処理室内の圧力変動について示す図である。 本発明の第1の実施形態における四塩化チタニウム(TiCl)ガス供給工程におけるバルブ開閉シーケンスを示す概略図であり、図5(a)はTiClガス供給工程における第1の工程におけるバルブ開閉状態を示しており、図5(b)は第2の工程におけるバルブ開閉状態を示しており、図5(c)は第3の工程におけるバルブ開閉状態を示しており、図5(d)は第4の工程におけるバルブ開閉状態を示している。 本発明の他の実施形態にて好適に用いられる処理炉の上断面図である。 本発明の他の実施形態にて好適に用いられる処理炉の一例とそれに付随する部材の概略構成図であって、特に処理炉部分を縦断面で示す図である。 本発明の他の実施形態にて好適に用いられる図7に示す処理炉のA-A線断面図である。
 薄膜を形成するために用いられる装置として、複数の基板を垂直に積層してバッチ処理を行う縦型バッチ装置が用いられる場合がある。縦型バッチ装置では、基板の側部に配置したノズルから、基板の表面に対して水平方向へ処理ガスを供給し、基板間へ処理ガスを流入する技術を採用する場合がある。
 しかし、近年要求されるバッチ処理枚数の増加に伴い、基板間のピッチが狭くなる場合があり、基板間への処理ガスの流入率が低下してしまう場合がある。このとき、一つの改善策として、基板側部に内壁を設け、当該内壁と基板の端部(エッジ)との間の距離を狭くしてコンダクタンスを低下させることにより、基板間への処理ガスの流入率を向上させることが考えられる。しかし、さらに、近年の基板の大口径化に伴い、基板のエッジで消費される処理ガスの消費量が増加するとともにガス供給下流領域での副生成物の影響により、面内膜厚均一性の劣化、ステップカバレッジの悪化等の問題が発生する場合がある。
 当該問題を解決するためには、基板が収容された処理室内への処理ガス供給量を増加させることにより、基板間への処理ガスの供給量を増加させることが考えられる。しかし、液体原料を気化した処理ガスを用いる場合には気化器の性能等により気化量に限界があるため、処理ガスの供給量を増加させることは困難である場合がある。
 発明者らは、鋭意研究を行い、処理ガスを供給する処理ガス供給ラインおよび処理ガス供給ラインにガス溜め部(タンク)を設け、処理ガス供給ラインに設けられたタンクにあらかじめ溜めておいた処理ガスを瞬間的に処理室内へ供給することにより、処理室内への処理ガス供給量を増加させることができ、しいては基板間への処理ガスの供給量を増加させることが可能なことを見出した。すなわち、処理室内へ供給する処理ガスの分圧を短時間で上昇させ、薄膜の成膜速度を高めることが可能となる。さらに、処理ガスのうち、特に、基板上に飽和吸着しやすい処理ガス、蒸気圧が低い処理ガス(液体原料で原料気化量の増量が困難であるような処理ガス)については、不活性ガスを供給する不活性ガス供給ラインにガス溜め部(タンク)を設け、処理ガスを処理室内へ供給すると同時または所定の時間経過後に、不活性ガス供給ラインに設けられたタンクにあらかじめ溜めておいた不活性ガスを瞬間的に処理室へ供給することにより、処理室内へ処理ガスを押し込むことができ、さらに、処理室内への処理ガス供給量を増加させることができ、しいては基板間への処理ガスの供給量を増加させることが可能なことを見出した(Nプッシュ)。
 さらに、処理室内に処理ガスを供給する直前に処理室内の圧力(全圧)を下げた後、タンクから処理ガス(および不活性ガス)を放出することにより、各ガスの供給極初期時に短時間で圧力変動(変化)を起こすことができ、各ガスの流速を上げることができるため、より短時間で大流量の各ガスを処理室内へ供給することができ、しいてはより短時間で大流量の各ガスを基板間へ供給できることを見出した。なお、処理ガスおよび不活性ガスは、基板の側部に設けられ、基板の中心部へ開口するガス供給孔を有するノズルから供給することが望ましい。表面積が増大した基板への影響はガス供給側の基板エッジからガス供給下流領域への距離の積算で増加するので、基板の中央部が最も影響を受けやすいと考えられるためである。
 また、処理ガスのうち、特に、基板上に飽和吸着しにくい処理ガスについては、基板表面と反応しないまま、基板を挟んでガス供給孔と反対側まで到達してしまうため、基板を挟んでガス供給孔と反対側から不活性ガスを供給することにより、処理ガスを基板表面へ押し戻し、基板上における反応を促進することができることを見出した(カウンタN)。詳細は以下に説明する。
<本発明の第1の実施形態>
 以下に、本発明の好適な第1の実施形態について図1~3を用いて説明する。基板処理装置101は、半導体装置(デバイス)の製造工程の一工程である基板処理工程において使用される装置の一例として構成されている。
(1)処理炉の構成
(処理室)
 処理炉202は加熱手段(加熱機構)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。
 ヒータ207の内側には、ヒータ207と同心円状に反応容器(処理容器)を構成する反応管203が配設されている。反応管203は耐熱性材料(例えば石英(SiO)または炭化シリコン(SiC)等)からなり、上端が閉塞し下端が開口した円筒形状に形成されている。処理室201は、基板としてのウエハ200を後述するボート217によって水平姿勢で垂直方向に多段に整列した状態で収容可能に構成されている。
 処理室201内には、ノズル400a,400bがマニホールド209の側壁を貫通するように設けられている。ノズル400a,400bには、ガス供給ラインとしてのガス供給管410a,410bが、それぞれ接続されている。このように、反応管203には2本のノズル400a,400bと、2本のガス供給管410a,410bとが設けられており、処理室201内へ複数種類、ここでは2種類のガス(処理ガス)を供給することができるように構成されている。
  ただし、本実施形態の処理炉202は上述の形態に限定されない。例えば、反応管203の下方に、反応管203を支持する金属製のマニホールドを設け、各ノズルを、マニホー ルドの側壁を貫通するように設けてもよい。この場合、マニホールドに、後述する排気管231をさらに設けてもよい。この場合であっても、排気管231を、マニホールドではなく、反応管203の下部に設けてもよい。このように、処理炉202の炉口部を金属製とし、この金属製の炉口部にノズル等を取り付けてもよい。
 ノズル400a,400bは、L字型のロングノズルとして構成されており、その水平部はマニホールド209の側壁を貫通するように設けられている。ノズル400a,400bの垂直部は、反応管203の内壁とウエハ200との間に形成される円環状の空間に、反応管203の内壁に沿って上方(ウエハ200の積載方向上方)に向かって立ち上がるように(つまりウエハ配列領域の一端側から他端側に向かって立ち上がるように)設けられている。すなわち、ノズル400a,400bは、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うように設けられている。
 ノズル400a,400bの側面にはガスを供給する(噴出させる)ガス供給孔401a,401bが設けられている。ガス供給孔401a,401bは反応管203の中心を向くように開口している。このガス供給孔401a,401bは、反応管203の下部から上部にわたって複数設けられ、それぞれ同一の開口面積を有し、さらに同じ開口ピッチで設けられている。ただし、ガス供給孔401a,401bは上述の形態に限定されない。例えば、反応管203の下部から上部に向かって開口面積を徐々に大きくしてもよい。これにより、ガス供給孔401a,401bから供給されるガスの流量を均一化することが可能となる。
 このように、本実施形態におけるガス供給の方法は、反応管203の内壁と複数枚のウエハ200の端部とで定義される円環状の縦長の空間内、すなわち、円筒状の空間内に配置したノズル400a,400bを経由してガスを搬送している。そして、ノズル400a,400bにそれぞれ開口されたガス供給孔401a,401bからウエハ200の近傍で初めて反応管203内にガスを噴出させており、反応管203内におけるガスの主たる流れをウエハ200の表面と平行な方向、すなわち水平方向としている。このような構成とすることで、各ウエハ200に均一にガスを供給でき、各ウエハ200に形成される薄膜の膜厚を均一にできる効果がある。なお、各ウエハ200の表面上を流れたガス、すなわち、反応後に残留するガス(残ガス)は、排気口、すなわち、後述する排気管231の方向に向かって流れるが、この残ガスの流れの方向は、排気口の位置によって適宜特定され、垂直方向に限ったものではない。
キャリアガスあるいはパージガスとしての不活性ガスを供給するガス供給管410aには、上流側から順に、流量制御装置としてのマスフローコントローラ(MFC)412a、開閉弁であるバルブ413a、ガス溜め部としての充填タンク414a、開閉弁としてのバルブ415a、開閉弁としてのバルブ418aが設けられている。なお、充填タンク414aは、充填タンク414a内を所定温度に昇温させる図示しないヒータを備えている。また、充填タンク414aは、充填タンク414a内の圧力を測定する図示しない圧力センサをそれぞれ備えている。
(ガス供給系)
 バルブ415aとバルブ418aとの間のガス供給管410aには、原料ガス供給ラインとしてのガス供給管410cの下流端が接続されている。ガス供給管410cには、上流側から順に、MFC412c、開閉弁としてのバルブ413c、気化器414c、バルブ416a、ガス溜め部としての充填タンク417a、開閉弁としてのバルブ415cが設けられている。
 キャリアガスあるいはパージガスとしての不活性ガスを供給するガス供給管410bには、上流側から順に、MFC412bおよび開閉弁としてのバルブ413bが設けられている。
 バルブ413bより下流側のガス供給管410bには、ガス供給管410dの下流端が接続されている。ガス供給管410dには、上流側から順に、MFC412d、開閉弁としてのバルブ413d、ガス溜め部としての充填タンク419a、開閉弁としてのバルブ413fが設けられている。
 ガス供給管410aからは、不活性ガスとして、例えば窒素(N)ガスが、MFC412a、バルブ413a、充填タンク414a、バルブ415a,418a、ノズル400aを介して処理室201内に供給される。ガス供給管410aから供給する不活性ガスは、後述する基板処理工程において、パージガス、希釈ガス、あるいは、キャリアガスとして作用する。
 ガス供給管410bからは、不活性ガスとして、例えば窒素(N)ガスが、MFC412b、バルブ413a、ノズル400bを介して処理室201内に供給される。ガス供給管410bから供給する不活性ガスは、後述する基板処理工程において、パージガス、希釈ガス、あるいは、キャリアガスとして作用する。
 ガス供給管410cからは、処理ガスである原料ガス(原料)として、金属元素を含む金属含有ガスが、MFC412c、バルブ413c、気化器414c、バルブ416a、充填タンク417a、バルブ415c、ノズル400aを介して処理室201内に供給される。金属含有ガスとしては、例えば、金属元素であるTiを含む無機系金属原料(無機系原料、無機金属化合物、無機系チタン(Ti)原料)であって、ハロゲン系金属原料(ハロゲン系原料、ハロゲン化物、ハロゲン系チタン(Ti)原料とも称する)としての四塩化チタン(TiCl)が用いられる。なお、Tiは遷移金属元素に分類される。ハロゲン系原料とはハロゲン基を含む原料である。ハロゲン基には、クロロ基、フルオロ基、ブロモ基、ヨード基等が含まれる。すなわち、ハロゲン基には、塩素(Cl)、フッ素(F)、臭素(Br)、ヨウ素(I)等のハロゲン元素が含まれる。原料ガスとして液体原料や固体原料を用いず、常温常圧下で気体状態の原料を用いる場合は気化器等の気化もしくは昇華するシステムは不要である。
 本明細書において「原料」という言葉を用いた場合は、「液体状態である液体原料」を意味する場合、「気体状態である原料ガス」を意味する場合、または、その両方を意味する場合がある。
 ガス供給管410dからは、処理ガスである反応ガスとして、窒素(N)を含み、Tiと反応する反応ガスとしてのN含有ガスが、MFC412d、バルブ413d、充填タンク419a、バルブ413f、ノズル400bを介して処理室201内に供給される。N含有ガスとしては、金属元素非含有のN含有ガス、例えば、アンモニア(NH)ガスを用いることができる。
 主に、ガス供給管410c,410d,MFC412c,412d、バルブ413c,413d,413f,416a,415c、気化器414c,充填タンク417a,419aにより処理ガス供給系が構成される。ノズル400a,400bを処理ガス供給系に含めて考えてもよい。処理ガス供給系を、単にガス供給系と称することもできる。
 ガス供給管410cから上述のような原料ガスとしての金属含有ガスを流す場合、主に、ガス供給管410c,MFC412c、バルブ413c、気化器414c、バルブ416a、充填タンク417a、バルブ415cにより原料ガス供給系としての金属含有ガス供給系が構成される。ノズル400aを原料ガス供給系に含めて考えてもよい。原料ガス供給系を原料供給系と称することもできる。ガス供給管410cから無機系原料ガスを流す場合、原料ガス供給系を無機系原料ガス供給系と称することもできる。無機系原料ガス供給系を無機系原料供給系と称することもできる。ガス供給管410cからハロゲン系原料ガスを流す場合、無機系原料ガス供給系をハロゲン系原料ガス供給系と称することもできる。ハロゲン系原料ガス供給系をハロゲン系原料供給系と称することもできる。ガス供給管410cからハロゲン系原料ガスとしてチタン含有ガスを流す場合、ハロゲン系原料ガス供給系をチタン含有ガス供給系と称することもできる。ガス供給管410cからTiClガスを流す場合、チタン含有ガス供給系をTiClガス供給系と称することもできる。TiClガス供給系をTiCl供給系と称することもできる。
 ガス供給管410dから反応ガスを流す場合、主に、ガス供給管410d、MFC412d、バルブ413d、充填タンク419a、バルブ413fにより反応ガス供給系が構成される。ノズル400bを反応ガス供給系に含めて考えてもよい。ガス供給管410bからN含有ガスを流す場合、反応ガス供給系をN含有ガス供給系と称することもできる。ガス供給管410bからN含有ガスとしてNHガスを流す場合、N含有ガス供給系をNHガス供給系と称することもできる。NHガス供給系をNH供給系と称することもできる。
 また、主に、ガス供給管410a,410b,MFC412a,412b、バルブ413a,413b,415a,418aにより不活性ガス供給系が構成される。不活性ガスはキャリアガスとしても作用することから、不活性ガス供給系をキャリアガス供給系と称することもできる。この不活性ガスは、パージガスとしても作用することから不活性ガス供給系をパージガス供給系と称することもできる。
(排気系)
 反応管203には、処理室201内の雰囲気を排気する排気管231が設けられている。排気管231には、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および圧力調整器(圧力調整部)としてのAPC(Auto  Pressure  Controller)バルブ243を介して、真空排気装置としての真空ポンプ246が接続されている。APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、さらに、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201内の圧力を調整することができるように構成されているバルブである。主に、排気管231、APCバルブ243、圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。
 反応管203の下方には、反応管203の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、反応管203の下端に垂直方向下側から当接されるように構成されている。シールキャップ219は、例えばSUS等の金属からなり、円盤状に形成されている。シールキャップ219の上面には、反応管203の下端と当接するシール部材としてのOリング220が設けられている。シールキャップ219の処理室201と反対側には、後述するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201内外に搬入および搬出することが可能なように構成されている。すなわち、ボートエレベータ115は、ボート217すなわちウエハ200を、処理室201内外に搬送する搬送装置(搬送機構)として構成されている。
 基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料からなる。ボート217の下部には、例えば石英やSiC等の耐熱性材料からなる断熱板218が水平姿勢で多段に支持されている。この構成により、ヒータ207からの熱がシールキャップ219側に伝わりにくくなっている。ただし、本実施形態は上述の形態に限定されない。例えば、ボート217の下部に断熱板218を設けずに、石英やSiC等の耐熱性材料からなる筒状の部材として構成された断熱筒を設けてもよい。
 反応管203内には温度検出器としての温度センサ263が設置されており、温度センサ263により検出された温度情報に基づきヒータ207への通電量を調整することで、処理室201内の温度が所望の温度分布となるように構成されている。温度センサ263は、ノズル400a,400bと同様にL字型に構成されており、反応管203の内壁に沿って設けられている。
(コントローラ)
 図3に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central  Processing  Unit)121a,RAM(Random Access Memory)121b,記憶装置121c,I/Oポート121dを備えたコンピュータとして構成されている。RAM121b,記憶装置121c,I/Oポート121dは、内部バスを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard  Disk  Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件などが記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する基板処理工程における各手順をコントローラ121に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピや制御プログラム等を総称して、単にプログラムともいう。本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、その両方を含む場合がある。また、RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート121dは、上述のMFC412a~d、バルブ413a~f,415a,416a,418a,415c、気化器414c,APCバルブ243、圧力センサ245、真空ポンプ246、ヒータ207、温度センサ263、回転機構267、ボートエレベータ115等に接続されている。
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからプロセスレシピを読み出すように構成されている。CPU121aは、読み出したプロセスレシピに従って、MFC412a~dの各種ガスの流量調整動作、バルブ413a~f,415a,416a,418a,415cの開閉動作、気化器414cの気化動作、APCバルブ243の開閉動作およびAPCバルブ243による圧力センサ245に基づく圧力調整動作、温度センサ263に基づくヒータ207の温度調整動作、真空ポンプ246の起動および停止、回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作等を制御するように構成されている。
 コントローラ121は、外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、その両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)基板処理工程(成膜工程)
 続いて、半導体装置(デバイス)の製造工程の一工程である基板処理工程にとして、基板上に金属含有膜を形成する工程の一例について、主に図4,5を参照しながら説明する。金属含有膜を形成する工程は、上述した基板処理装置10の処理炉202を用いて実行される。以下の説明において、基板処理装置10を構成する各部の動作はコントローラ121により制御される。
 本明細書において、「処理(もしくは工程、サイクル、ステップ等と称する)を所定回数行う」とは、この処理等を1回もしくは複数回行うことを意味する。すなわち、処理を1回以上行うことを意味する。図4は、各処理(サイクル)をnサイクルずつ繰り返す例を示している。nの値は、最終的に形成されるTiN膜において必要とされる膜厚に応じて適宜選択される。すなわち、上述の各処理を行う回数は、目標とする膜厚に応じて決定される。
 なお、本明細書において「ウエハ」という言葉を用いた場合は、「ウエハそのもの」を意味する場合や、「ウエハとその表面に形成された所定の層や膜等との積層体(集合体)」を意味する場合(すなわち、表面に形成された所定の層や膜等を含めてウエハと称する場合)がある。また、本明細書において「ウエハの表面」という言葉を用いた場合は、「ウエハそのものの表面(露出面)」を意味する場合や、「ウエハ上に形成された所定の層や膜等の表面、すなわち、積層体としてのウエハの最表面」を意味する場合がある。
 従って、本明細書において「ウエハに対して所定のガスを供給する」と記載した場合は、「ウエハそのものの表面(露出面)に対して所定のガスを直接供給する」ことを意味する場合や、「ウエハ上に形成されている層や膜等に対して、すなわち、積層体としてのウエハの最表面に対して所定のガスを供給する」ことを意味する場合がある。また、本明細書において「ウエハ上に所定の層(又は膜)を形成する」と記載した場合は、「ウエハそのものの表面(露出面)上に所定の層(又は膜)を直接形成する」ことを意味する場合や、「ウエハ上に形成されている層や膜等の上、すなわち、積層体としてのウエハの最表面の上に所定の層(又は膜)を形成する」ことを意味する場合がある。
 なお、本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同様であり、その場合、上記説明において、「ウエハ」を「基板」に置き換えて考えればよい。
 また、本明細書において金属膜という用語は、金属原子を含む導電性の物質で構成される膜を意味し、これには、導電性の金属窒化膜(メタルナイトライド膜)、導電性の金属酸化膜(メタルオキサイド膜)、導電性の金属酸窒化膜(メタルオキシナイトライド膜)、導電性の金属複合膜、導電性の金属合金膜、導電性の金属シリサイド膜(メタルシリサイド膜)、導電性の金属炭化膜(メタルカーバイド膜)、導電性の金属炭窒化膜(メタルカーボナイトライド膜)等が含まれる。なお、TiN膜は導電性の金属窒化膜である。
(ウエハチャージおよびボートロード)
 複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、図1に示されているように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内に搬入(ボートロード)される。この状態で、シールキャップ219はOリング220を介して反応管203の下端開口を閉塞した状態となる。
(圧力調整および温度調整)
 処理室201内、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように真空ポンプ246によって真空排気される。この際、処理室201内の圧力は、圧力センサ245で測定され、この測定された圧力情報に基づき、APCバルブ243がフィードバック制御される(圧力調整)。真空ポンプ246は、少なくともウエハ200に対する処理が完了するまでの間は常時作動させた状態を維持する。また、処理室201内が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電量がフィードバック制御される(温度調整)。ヒータ207による処理室201内の加熱は、少なくともウエハ200に対する処理が完了するまでの間は継続して行われる。続いて、回転機構267によりボート217およびウエハ200の回転を開始する。回転機構267によるボート217およびウエハ200の回転は、少なくとも、ウエハ200に対する処理が完了するまでの間は継続して行われる。
 TiCl(原料ガス)、N(キャリアガス)ガス充填工程を開始する前に、充填タンク414a内および充填タンク417a内をそれぞれ所定の温度に昇温しておく。このようにすることで、後述する第1の工程を実施した際に、充填タンク414a内および充填タンク418a内に充填されるガスの液化を防ぎつつ、ガスの圧力を充分に高めることができる。充填タンク414a内および充填タンク417a内の温度および圧力は、それぞれ充填されるガスが液化(再液化)しない温度、すなわち充填されるガスの蒸気圧以下の圧力とする必要があるが、例えば、充填タンク418a内の温度を293K(20℃)から333K(60℃)に上昇させることで、充填タンク417a内に充填されるTiClガスの蒸気圧を8Torr(1066Pa)から65Torr(8666Pa)にまで高めることができ、充填タンク417a内の圧力をより高めることが可能となる。
 なお、充填タンク417a内の温度は、充填タンク417a内に充填されるTiClガスの熱分解温度よりも低い温度であって、例えば室温(例えば20℃)~60℃の範囲内の(所定の)値であって、好ましくは30~60℃の範囲内の(所定の)値であり、より好ましくは40~60℃の範囲内の(所定の)値とする。温度を室温より低くする場合は冷却機構が必要となってしまい装置構造が複雑になるとともに気化されたTiClガスが凝縮して再液化しまう可能性があり、温度が60℃より高い場合は充填タンク417a内でTiClガスが熱分解してしまう可能性がある。なお、本明細書では、数値の範囲として、例えば20~60℃と記載した場合は、20℃以上60℃以下を意味する。すなわち、数値の範囲内には20℃および60℃が含まれる。温度のみならず、圧力、流量、時間等、本明細書に記載される全ての数値について同様である。
 また、後述するように、充填タンク414a内に充填されるNガスは、充填タンク417a内に充填されるTiClガスと混合するため、充填タンク414a内の温度も、TiClガスの熱分解温度よりも低い温度とすることが好ましい。例えば、上述の充填タンク417a内の温度と同様の温度とする。下限値、上限値の臨界的意義についても同様の意義を有する。これにより、処理室201内におけるNガスによるTiClガスの熱分解を抑制することができる。
(TiN膜形成工程)
 続いて、TiN膜を形成する工程を実施する。TiN膜供給工程は以下に説明するTiClガスおよびNガス充填工程(第1の充填工程)、圧力調整工程(第1の圧力調整工程)、TiClガス供給工程、残留ガス除去工程、NHガス充填工程(第2の充填工程)、圧力調整工程(第2の圧力調整工程)、NHガス供給工程、残留ガス除去工程を含む。
[TiClガスおよびNガス充填工程(第1の充填工程、T)]
 各バルブの開閉状態を図5(a)に示すような状態とする。すなわち、バルブ416aを開くと共にバルブ415cを閉じ、ガス溜め部としての充填タンク417a内に気化器414cで生成したTiClガスを充填する。同時に、バルブ413aを開くと共にバルブ415aを閉じ、ガス溜め部としての充填タンク414a内にMFC412aに流量調整されたNガスを充填する。ここで、「TiClガスの充填と『同時』にNガスの充填を行う」とは必ずしも充填の開始と停止を同じタイミングで行う必要はなく、TiClガスの充填とNガスの充填を共に行っているタイミングがあればよい。例えば、一方を先に開始してもよいし、一方を先に停止しても良い。本明細書の他の箇所においても、「同時」とは同様の意味を有する。
 なお、充填タンク414a内および充填タンク417a内の圧力は、それぞれ充填されるガスが液化しない温度、すなわち充填されるガスの蒸気圧以下の圧力とする必要がある。
 充填タンク417aの容積は、例えば処理室201内の容積の1/2000~5/2000の範囲内の(所定の)値とする。容積が1/2000より大きいと一回のTiClガスの供給に必要とされるTiClガスを溜めた際の充填タンク417a内の圧力が低くなってしまい後述する短時間でのTiClガスの圧送供給の効果が弱くなってしまう可能性があり、容積が5/2000より小さいと一回のTiClガスの供給に必要とされるTiClガスを溜めた際の充填タンク417a内の圧力が高くなってしまい、TiClガスが熱分解して再液化してしまう可能性がある。
 TiClガスは、充填タンク417a内の圧力が、1~100Torr(133~13332Pa)の範囲内の(所定の)値であって、好ましくは3~80Torr(399~10666Pa)の範囲内の(所定の)値であり、より好ましくは8~65Torr(1066~8666Pa)の範囲内の(所定の)値となるまで充填する。圧力が1Torrより低いと後述する短時間でのTiClガスの圧送供給の効果が弱くなってしまう可能性があり、圧力が100Torrより高いとTiClガスが熱分解して再液化してしまう可能性がある。充填タンク417a内の圧力は充填タンク417a内の温度の値に依存して決まり、例えば充填タンク417a内の温度が60℃の場合は、例えば65Torrとし、充填タンク417a内の温度が20℃の場合は、例えば8Torrとする。
 MFC412cで制御するTiClガスの供給流量は、例えば1~10000sccmの範囲内の(所定の)値であって、好ましくは10~2000sccmの範囲内の(所定の)値であり、より好ましくは100~500sccmの範囲内の(所定の)値とする。流量が10000sccmより多いと充填タンク417a内に到達する前にガス供給管410c内でTiClガスが再液化してしまう場合があり、流量が1sccmより少ないとTiClガスの充填タンク417aへの充填速度が遅くなりスループットが悪化する可能性がある。
 充填タンク414aの容積は、例えば10~10000ccの範囲内の(所定の)値であって、好ましくは50~5000ccの範囲内の(所定の)値であり、より好ましくは100~1000ccの範囲内の(所定の)値とする。容積が10ccより少ないと一回のNガスの供給に必要とされるNガスを溜めることが困難となる可能性があり、容積が10000ccより多いとNガスを溜めた際の充填タンク414a内の圧力が低くなってしまい後述するTiClガスを押し出す効果が弱くなってしまう可能性がある。
 Nガスは、充填タンク414a内の圧力が、例えば0.1~1000Torr(13.3~133322Pa)の範囲内の(所定の)値であって、好ましくは0.5~500Torr(66.7~66661Pa)の範囲内の(所定の)値であり、より好ましくは1~300Torr(133~39997Pa)の範囲内の(所定の)値となるまで充填する。圧力が0.1Torrより低いと後述するTiClガスを押し出す効果が弱くなってしまう可能性があり、圧力が1000Torrより高いと充填に有する時間が増大しスループットが悪化する可能性がある。
 MFC412aで制御するNガスの供給流量は、例えば1~70000sccmの範囲内の(所定の)値であって、好ましくは500~20000sccmの範囲内の(所定の)値であり、より好ましくは1000~10000sccmの範囲内の(所定の)値とする。流量が1sccmより少ないと後述するTiClガスを押し出す効果が弱くなってしまう可能性があり、流量が70000sccmより多いと充填に有する時間が増大しスループットが悪化する可能性がある。なお、TiClガスとNガスの供給流量の総和は、後述するNHガスの供給流量と同程度とすると良い。
 TiClガスを充填タンク417aに充填する時間およびNガスを充填タンク414aに充填する時間は、例えば1~120秒の範囲内の(所定の)値であって、好ましくは1~60秒の範囲内の(所定の)値であり、より好ましくは1~30秒の範囲内の(所定の)値とする。充填時間が1秒より短いと、上述した各充填タンクの各圧力まで各ガスを充填することが困難となる可能性があり、充填時間が120秒より長いとスループットが悪化する可能性がある。TiClガスを充填タンク417aに充填する時間と、Nガスを充填タンク414aに充填する時間は、同じ長さの時間でなくてもよい。すなわち、各充填時間は、上述した各充填タンクの各圧力まで各ガスを充填するために要する時間に相当するため、いずれか一方が短くてもよい。
[圧力調整工程(第1の圧力調整工程、T)]
 所定時間が経過し、充填タンク414a内および充填タンク417a内にガスが充填され、充填タンク414a内および充填タンク417a内の圧力がそれぞれ所定の圧力に到達したら、各バルブの開閉状態を図5(b)に示すような状態とする。すなわち、バルブ415c,415aをそれぞれ閉じた状態で、バルブ416a,413aをそれぞれ閉じる。なお、バルブ413aと、バルブ416aとは、必ずしも同時に閉めるとは限らず、各充填タンクの圧力が所定の圧力に到達したタイミングでそれぞれ閉めるようにする。このときAPCバルブ243を適正に調整して、処理室201内の圧力(全圧)を、例えば0.01~0.5Torr(1.33~66.7Pa)の範囲内の(所定の)値であって、好ましくは0.07~0.2Torr(9.33~26.7Pa)の範囲内の(所定の)値であり、より好ましくは0.08~0.15Torr(10.7~20.0Pa)まで減圧しておく。圧力を0.01Torrより低くする場合は減圧に時間を有するためスループットが悪化する可能性があり、圧力が0.5Torrより高いと後述するTiClガスのごく短時間での圧送供給の効果が弱くなる可能性がある。処理室201内の圧力(全圧)を上述の値とすることにより、すなわち、処理室201内に充填タンク内のガスを供給する直前に処理室201内の圧力を減圧しておくことにより、後述するTiClガスのごく短時間での圧送供給の効果を高めることが可能となる。
[TiClガス供給工程(T)]
 各バルブの開閉状態を図5(c)に示すような状態とする。すなわち、バルブ416a,413a,415aを閉じた状態で、バルブ415c,418aをそれぞれ開く。その結果、充填タンク417a内に充填されたTiClガスが、ガス供給管410a、ノズル400aおよびガス供給孔401aを介して処理室201内に、ごく短時間で一気に圧送供給(フラッシュ導入)される。このとき処理室201内の圧力は急激に上昇する。さらに、TiClガスを供給開始した直後あるいは同時に、バルブ415aを開く。これにより、処理室201内に導入されたTiClガスが充填タンク414a内に溜められていたNガスにより、処理室201内の各ウエハ200の中央部まで押し込まれることとなる(Nプッシュ)。なお、Nガスは充填タンク417a内に充填されたTiClガスが実質的に全てノズル400aへ供給された状態のタイミングで供給を開始すると、よりTiClガスを高濃度でウエハ200の中央部まで押し込むことが可能となる。このように、TiClガスとNガスの混合ガスは、ボート217に保持されたウエハ200間をウエハ200の主面と平行に流れた後、排気管231を介して処理室201内から排出される。このとき、バルブ413bを開き、Nガスを、ガス供給管410bおよびノズル400bを介して処理室201内に供給してもよい。これにより、TiClガスがガス供給管410bおよびノズル400bへ逆流することを抑制することができる。
 TiClガスをウエハ200に対して供給する時間、すなわちガス供給時間(照射時間)は、例えば0.01~120秒の範囲内の(所定の)、好ましくは1~30秒の範囲内の(所定の)、より好ましくは2~6秒の範囲内の(所定の)時間とする。供給時間が120秒より長くなると、後述するTi含有層内にCl等が多く取り込まれてしまう可能性があり、供給時間が0.01秒より少なくなると充填タンク417aに充填されたTiClガスが十分に供給されない可能性がある。
 ヒータ207の温度は、ウエハ200の温度が、例えば200~600℃の範囲内の(所定の)値であって、好ましくは200~550℃の範囲内の(所定の)値であり、より好ましくは200~400℃の範囲内の(所定の)値となるよう設定する。温度が200℃より低いと反応性が低くなり膜形成が困難となる可能性があり、温度が600℃より高いとTiClガスの熱分解が促進されてしまうことにより、成膜レートが高くなりすぎて膜厚の制御性が悪化して均一性が悪化したり、不純物が多量に取り込まれて抵抗率が高くなってしまう場合がある。
 TiClガスがウエハ200間を流れることで、ウエハ200(表面の下地膜)上に、Ti含有層が形成される。原料ガス供給工程で形成されたTi含有層はTi単一原子のみを含むTi層となる場合もあるが、各原料由来のその他の原子を含む場合もあり、原料ガス供給工程ではハロゲン系元素であるClを含むことが多い。すなわち、Ti含有層はTiClの吸着層であるTiCl層を含む。TiCl層は、TiCl分子の連続的な吸着層の他、不連続な吸着層も含む。すなわち、TiCl層は、TiCl分子で構成される1分子層もしくは1分子層未満の厚さの吸着層を含む。TiCl層を構成するTiCl分子は、TiとClとの結合が一部切れたものも含む。上述の処理室201内の圧力およびヒータ207の温度では、TiClガスはウエハ200上に飽和吸着する場合が多い。
 本実施形態のように加圧されたNガスによりTiClガスを押し込むようにすると、TiClガスがウエハ200上を移動する速度を、TiClガスを単独で移動させる場合に比べて大幅に高めることが可能となる。すなわち、本実施形態によれば、加圧されたNガスの圧力を利用することで、TiClガスの移動速度を大幅に高めることが可能となる。そして、TiClガスの移動速度を高めることで、処理室201内のTiClガスの分圧をより短時間で増大させることができ、ウエハ200上へのTiClガス分子の吸着層の形成をより短時間で行うことができる。
 なお、図5(c)ではバルブ415a,415c,418aを開く際は、バルブ413a,416aを閉じた状態としている。これにより、加圧されたNガスがガス供給管410c内や、充填タンク417aへ流入してしまうことを抑制できる。
 また、図5(c)では、バルブ415c,418a,415aの順番で開くようにする。バルブ415cを開く前にバルブ415a,418aを開いてしまうと、加圧されたNガスが充填タンク417a内に導入されることで充填タンク417a内の圧力が一時的にTiClガスの蒸気圧を超えてしまい、TiClガスの液化を招いてしまう恐れがあるためである。
[残留ガス除去工程(T)]
 所定時間が経過して処理室201内へのTiClガスおよびNガスの圧送が完了したら、バルブ416a,415aを閉じた状態で、バルブ415aを閉じ、充填タンク417a内を減圧し、残留ガスを除去する。充填タンク417a内が処理室201内の圧力まで減圧されたら、バルブ415cを閉じ、各バルブの開閉状態を図5(d)に示すような状態とする。すなわち、バルブ416a,415cを閉じた状態で、413a,415aを開け、Nガスを、ガス供給管410d、ガス供給管410bおよびノズル400bを介して処理室201内に供給する。このとき、処理室201内へのTiClガスの供給を停止した状態で、APCバルブ243の開度を調節し、処理室201内に残留しているTiClガスを除去する。このとき、バルブ413bを開けたままとしておくことで、ガス供給管410bおよびノズル400bへの残留ガスの逆流を抑制できるとともに処理室201内からのTiClガスの排気効率を高めることができる。
 このとき、処理室201内に残留するガスを完全に排除しなくてもよく、処理室201内を完全にパージしなくてもよい。処理室201内に残留するガスが微量であれば、その後に行われるステップにおいて悪影響が生じることはない。処理室201内に供給するNガスの流量も大流量とする必要はなく、例えば、反応管203(処理室201)の容積と同程度の量を供給することで、その後のステップにおいて悪影響が生じない程度のパージを行うことができる。このように、処理室201内を完全にパージしないことで、パージ時間を短縮し、スループットを向上させることができる。また、Nガスの消費も必要最小限に抑えることが可能となる。
[NHガス充填工程(第2の充填工程、T)]
 バルブ413fを閉じた状態でバルブ413dを開き、MFC412dにより流量調整されたNHガスを、ガス溜め部としての充填タンク419a内に充填する。
 充填タンク419aの容積は、例えば処理室201内の容積の1/2000~5/2000の範囲内の(所定の)値とする。容積が1/2000より大きいと一回のNHガスの供給に必要とされるNHガスを溜めた際の充填タンク419a内の圧力が低くなってしまい後述する短時間でのNHガスの圧送供給の効果が弱くなってしまう可能性があり、容積が5/2000より小さいと一回のNHガスの供給に必要とされるNHガスを溜めた際の充填タンク417a内の圧力が高くなってしまう可能性がある。
 NHガスは、充填タンク419a内の圧力が、充填タンク419a内の圧力が、例えば0.1~1000Torr(13.3~133322Pa)の範囲内の(所定の)値であって、好ましくは0.5~500Torr(66.7~66661Pa)の範囲内の(所定の)値であり、より好ましくは1~300Torr(133~39997Pa)の範囲内の(所定の)値となるまで充填する。圧力が0.1Torrより低いと後述する短時間でのNHガスの圧送供給の効果が弱くなってしまう可能性があり、圧力が1000Torrより高いと充填に有する時間が増大しスループットが悪化する可能性がある。
 MFC412dで制御するNHガスの供給流量は、例えば10~50000sccmの範囲内の(所定の)値であって、好ましくは300~20000sccmの範囲内の(所定の)値であり、より好ましくは1000~10000sccmの範囲内の(所定の)値とする。流量が10sccmより少ないと充填に有する時間が増大しスループットが悪化する可能性があり、流量が50000sccmより多いと充填タンク419a内の圧力が高くなりすぎてしまう可能性がある。
 MFC412bで制御するNガスの供給流量は、例えば10~20000sccmの範囲内の(所定の)値であって、好ましくは400~15000sccmの範囲内の(所定の)値であり、より好ましくは400~7500sccmの範囲内の(所定の)値とする。流量が20000sccmより多いと成膜レートが低くなりすぎる可能性があり、流量が10sccmより少ないとNHガスが十分にウエハ200へ供給されない可能性がある。
 NHガスを充填タンク419aに充填する時間は、例えば0.001~300秒の範囲内の(所定の)値であって、好ましくは0.1~60秒の範囲内の(所定の)値であり、より好ましくは1~25秒の範囲内の(所定の)値とする。充填時間が0.001秒より短いと、上述した各充填タンクの各圧力まで各ガスを充填することが困難となる可能性があり、充填時間が300秒より長いとスループットが悪化する可能性がある。所定時間が経過し、充填タンク419a内にガスが充填され、充填タンク419a内の圧力が所定の圧力に到達したら、次の工程を実施する。
[圧力調整工程(第2の圧力調整工程、T)]
NHガスを処理室201内に圧送供給する前に、処理室201内の圧力(全圧)を数paまで減圧しておく。すなわち、バルブ413fを閉じた状態でバルブ413dを閉じ、充填タンク419a内のガスを処理室201内に供給する直前に処理室201内の圧力を減圧しておく。このときAPCバルブ243を適正に調整して、処理室201内の圧力(全圧)を、例えば0.01~0.5Torr(1.33~66.7Pa)の範囲内の(所定の)値であって、好ましくは0.07~0.2Torr(9.3~26.7Pa)の範囲内の(所定の)値であり、より好ましくは0.08~0.15Torr(10.7~20.0Pa)まで減圧しておく。圧力を0.01Torrより低くする場合は減圧に時間を有するためスループットが悪化する可能性があり、圧力が0.5Torrより高いと後述するNHガスのごく短時間での圧送供給の効果が弱くなる可能性がある。処理室201内の圧力(全圧)を上述の値とすることにより、すなわち、処理室201内に充填タンク内のガスを供給する直前に処理室201内の圧力を減圧しておくことにより、後述するNHガスのごく短時間での圧送供給の効果を高めることが可能となる。
[NHガス供給工程(T)]
 所定圧力まで処理室201内の圧力を減圧したら、バルブ413dを閉じた状態でバルブ413fを開くことにより、充填タンク419a内に充填されたNHガスがガス供給管410d、ノズル400bおよびガス供給孔401bを介して処理室201内にごく短時間で圧送供給(フラッシュ導入)される。このとき、バルブ413bを開いた状態で、キャリアガスとしてのNガスを、ガス供給管410b、ガス供給管410bおよびノズル400bを介して処理室201内に供給するようにすれば、処理室201内へのNHガスの拡散を促すことができ、また処理室201内へ供給されるNHガスの濃度を調整することが出来る。このように、NHガスとNガスの混合ガスは、ボート217に保持されたウエハ200間をウエハ200の主面と平行に流れた後、排気管231を介して処理室201内から排出される。このとき、バルブ413aを開き、Nガスを、ガス供給管410aおよびノズル400aを介して処理室201内に供給してもよい。これにより、NHガスがガス供給管410aおよびノズル400aへ逆流することを抑制することができる。
 NHガスをウエハ200に対して供給する時間、すなわちガス供給時間(照射時間)は、例えば0.001~300秒の範囲内の(所定の)、好ましくは0.1~60秒の範囲内の(所定の)、より好ましくは1~25秒の範囲内の(所定の)時間とする。供給時間が0.001秒より少なくなると充填タンク419aに充填されたNHガスが十分に供給されない可能性があり、また、ウエハ200上に形成されたTi含有層と十分に反応できない可能性がある。供給時間は長いほど原料ガスに由来する不純物のTiN膜中への取り込みを減らすことができるため好ましいが、300秒より長いとスループットが悪化する可能性がある。
 ヒータ207の温度は、TiCl供給工程と同様の温度に設定する。
 このとき処理室201内に流しているガスは、NHガスとNガスのみである。NHガスは、原料ガス供給工程でウエハ200上に形成されたTi含有層の少なくとも一部と置換反応する。置換反応により、ウエハ200上にTiとNとを含むTiN層が形成される。
[残留ガス除去工程(T)]
 TiN層を形成した後、バルブ413fを閉じて、NHガスの供給を停止する。そして、原料ガス供給工程後の残留ガス除去工程と同様の処理手順により、処理室201内、すなわちTiN層が形成されたウエハ200が存在する空間に残留する未反応のNHガス、反応副生成物、TiN層の形成に寄与した後のNHガス等を処理室201から排除する。このとき、処理室201内に残留するガスを完全に排除しなくてもよい点は、原料ガス供給工程後の残留ガス除去工程と同様である。
(所定回数実施)
 上述した各工程を行うサイクルを1サイクルとして、このサイクルを所定回数(n回)実施することで、ウエハ200上に所望の膜厚(例えば0.1~10nm)のTiN膜を形成し、TiN膜形成工程を終了する。なお、形成するTiN膜の膜厚は、サイクルの繰り返し回数を調整することで調整可能である。上述のサイクルは、複数回繰り返すのが好ましい。
 サイクルを複数回行う場合、少なくとも2サイクル目以降の各ステップにおいて、「ウエハ200に対してガスを供給する」と記載した部分は、「ウエハ200上に形成されている層に対して、すなわち、積層体としてのウエハ200の最表面に対して所定のガスを供給する」ことを意味し、「ウエハ200上に所定の層を形成する」と記載した部分は、「ウエハ200上に形成されている層の上、すなわち、積層体としてのウエハ200の最表面の上に所定の層を形成する」ことを意味している。この点は、後述する例においても同様である。
(パージおよび大気圧復帰)
 バルブ413a,413bを開き、Nガスを処理室201内へ供給し、排気管231から排気する。Nガスはパージガスとして作用し、これにより処理室201内が不活性ガスでパージされ、処理室201内に残留するガスや副生成物が処理室201内から除去される(パージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
(ボートアンロードおよびウエハディスチャージ)
 その後、ボートエレベータ115によりシールキャップ219が下降されて、反応管203の下端が開口される。そして、処理済ウエハ200がボート217に支持された状態で反応管203の下端から反応管203の外部に搬出(ボートアンロード)される。その後、処理済のウエハ200は、ボート217より取り出される(ウエハディスチャージ)。
 図4に示すように、TiClガス供給工程(T)とNHガス充填工程(T)、残留ガス除去工程(T)と第2の圧力調整工程(T)は、それぞれ同時に行っても良い。これらの工程を同時に行うことにより、1サイクルの所要時間を短縮することが可能となり、スループットを向上させることが可能となる。
 図4において、まずTの間に原料ガスであるTiClガスを充填タンクに充填する。同時にTiClガスを押し出すための不活性ガスであるNガスを充填タンクに充填する。続けて、Tの間さらにNガスを充填タンクに充填し続ける。同時に、反応ガスであるNHを充填タンクに充填を開始する。さらに処理室内の圧力を上述の値まで減圧する。
 次にTの開始と同時に原料ガスであるTiClガスを処理室内にフラッシュ供給する。この原料ガスであるTiClガスの供給開始よりわずかに遅れさせてTiClガスを押し出すための不活性ガスであるNガスを処理室内にフラッシュ供給する。このTの間も反応ガスであるNHを充填タンクに充填し続けている。さらにキャリアガスおよびパージガスである不活性ガスNを処理室内に供給する。この間に一度減圧された処理室内は圧力が上昇する。
 Tの開始と同時に処理室内の圧力を上述の値まで減圧する。続いて、Tの開始と同時に反応ガスであるNHを処理室内にフラッシュ供給し、同時にキャリアガスおよびパージガスである不活性ガスNを処理室内に供給する。このような処理を1サイクルとし、所定サイクル処理を行う。
 このように、原料ガスおよび反応ガスを処理室内にフラッシュ供給する直前に処理室内の圧力を下げることにより、ガス供給時の短時間の圧力変化によって、ガスの流速を上げることができ、結果、基板間へガスの流入がしやすくなる。
(4)本実施形態に係る効果
 本実施形態によれば、以下に示す1つまたは複数の効果が得られる。
(A)処理ガスを供給する処理ガス供給ラインおよび処理ガス供給ラインにガス溜め部(タンク)を設け、処理ガス供給ラインに設けられたタンクにあらかじめ溜めておいた(加圧された)処理ガスを瞬間的に処理室内へ供給することにより、処理室内への処理ガス供給量を増加させることができ、しいては基板間への処理ガスの供給量を増加させることが可能となる。
(B)不活性ガスを供給する不活性ガス供給ラインにガス溜め部(タンク)を設け、処理ガスを処理室内へ供給すると同時または所定の時間経過後に、不活性ガス供給ラインに設けられたタンクにあらかじめ溜めておいた(加圧された)不活性ガスを瞬間的に処理室へ供給することにより、蒸気圧の低い処理ガス(液体原料で原料気化量を増量させることが困難であるような処理ガス)であっても、処理室内へ押し込むことができ、処理ガスの移動速度を、処理ガスを単独で移動させる場合に比べて大幅に高めることが可能となるだけでなく、処理ガスを基板の中央部まで供給することができ、成膜する膜の基板面内均一性の向上等が可能となる。
(C)充填タンク内の圧力を処理ガスの蒸気圧以下の圧力に制限した場合であっても、加圧された不活性ガスを処理ガスの後に処理室201内に圧送供給することで、処理ガスの移動速度および、移動距離を大幅に高めることが可能となる。そして、処理ガスの移動速度を高めることで、処理室201内の処理ガスの分圧をより短時間で増大させることができる。
(D)処理ガス等を供給する直前に、処理室内の圧力(全圧)を減圧しておくことにより、充填タンクから処理ガス等を供給した際に、処理ガス等の供給の極初期時に短時間で圧力変動(圧力変化)を起こすことができ、処理ガス等の流速を上げることができるため、より短時間で大流量の処理ガス等を処理室内へ供給することができ、しいてはより短時間で大流量の処理ガス等を基板の中央部へ供給することができ、膜厚の面内均一性を向上させることが可能となる。
<本発明の第2の実施形態>
 本発明の第2の実施形態について、図6を参照しながら説明する。第1の実施形態と同様の部分については詳細な説明は省略し、第1の実施形態と異なる部分について以下に説明する。第1の実施形態と異なる点は、基板に対して反応ガスを供給するノズルと反対側に配置された不活性ガス供給用のノズルを備える点である。
 ノズル400a,400bとウエハ200を挟んで対抗する側(反対側)に、ノズル400cが配置される。ノズル400cの構造はノズル400a,400bと同様である。ノズル400cには図示しないガス供給管がそれぞれ接続され、図示しないガス供給管にはMFC、バルブがそれぞれ設けられ、不活性ガスとしてのNガスがノズル400cのガス供給孔401cから噴出される。ガス供給孔401cはウエハ200の中心へ向かって開口する。すなわちガス供給孔401bと向かい合う方向に開口する。上述のNHガス供給工程において、ガス供給孔401bからのNHガスの供給とともに、ガス供給孔400cからNガスを供給する(カウンタN)。カウンタNにより、ウエハ200上に形成されたTi含有層と反応せずにガス供給孔401bとウエハ200を挟んで反対側まで到達したNHガスをウエハ200の中心へ押し戻し、Ti含有層との反応を促進させることが可能となる。このように、基板上に飽和吸着しにくい処理ガスについては、基板表面と反応しないまま、基板を挟んでガス供給孔と反対側まで到達してしまうため、カウンタNによりウエハ200の中心へ押し戻すことにより、反応を促進させることが可能となる。
<本発明の第3の実施形態>
 本発明の第3の実施形態について、図7および図8を参照しながら説明する。、第1、2の実施形態と同様の部分については詳細な説明は省略し、第1、2の実施形態と異なる部分について以下に説明する。第1の実施形態と異なる主な点は、処理室内へ原料ガスを供給するノズルおよび反応ガスを供給するノズルを挟むように配置された不活性ガス供給用のノズルを2本備える点である。
 ノズル400a,400bを両側から挟むようにノズル400d,400d‘が配置される。ノズル400d,400d’の構造はノズル400a,400bと同様である。ノズル400d,400d‘には図示しないガス供給管がそれぞれ接続され、図示しないガス供給管にはMFC、バルブがそれぞれ設けられ、TiClガス供給工程において、Nガスの圧送供給とともに、不活性ガスとしてのNガスがノズル400d,400d’のガス供給孔401d,401d’から噴出される。ガス供給孔401a,401bがウエハ200の中心方向に開口するのに対して、ガス供給孔401d,401d’はウエハ200のエッジ(周縁)方向に開口する。すなわち、ガス供給孔401d,401d’は処理室201の内壁と積層されたウエハ200のエッジが形成する円環状の空間方向に開口する。
 このとき、(a)TiClガスの圧送供給と同じタイミングであって、かつNガスの圧送供給と異なるタイミングでノズル400d,400d’からNガスの供給を開始する場合、(b)TiClガスの圧送供給と同じタイミングであって、かつNガスの圧送供給と同じタイミングでノズル400d,400d’からNガスの供給を開始する場合、(c)TiClガスの圧送供給と異なるタイミングであって、かつNガスの圧送供給と同じタイミングでノズル400d,400d’からNガスの供給を開始する場合、(d)TiClガスの圧送供給と異なるタイミングであって、かつNガスの圧送供給と異なるタイミングでノズル400d,400d’からNガスの供給を開始する場合のうち、(a)~(d)のいずれの場合であっても、ノズル400d,400d’から供給するNガスの流量(単位時間当たりの流量)は、ノズル400aから供給されるTiClガスおよび/またはNガスの流量(単位時間当たりの流量)より多くすることが好ましい。ノズル400aから供給されるTiClガスおよび/またはNガスの流量より、ノズル400aを挟んで両側に配置されるノズル400d,400d’から供給するNガスの流量が多いことにより、ノズル400aから噴出したTiClガスがウエハ200と反応管203との間に拡散することを抑制でき、TiClガスをウエハ200の中心部へ供給することが可能となる。
 なお、TiClガスの圧送供給と同じタイミングであって、かつNガスの圧送供給と異なるタイミングでノズル400d,400d’からNガスの供給を開始する場合は、供給開始時におけるノズル400d,400d’からのNガスの流量をTiClガスの流量と同等以上の流量とし、Nガスの圧送供給が開始されたタイミングでノズル400d,400d’からのNガスの流量を、TiClガスの流量と圧送供給されるNガスの流量との総流量以上の流量へ増量させてもよい。これにより、ノズル400aから噴出したTiClガスがウエハ200と反応管203との間に拡散することを抑制でき、TiClガスをウエハ200の中心部へ供給することが可能となる。
 また、不活性ガスをウエハ200と反応管203の間方向に供給することにより、ウエハ200の表面およびウエハ200と反応管203との間に拡散した原料ガスが、不活性ガスにより押し出され、ウエハ200と反応管203との間に拡散した原料ガスをウエハ200の上(表面中心)へ押し込むことが可能となる(アシストN)。このため、表面積が増大した基板への成膜工程において、基板中央部でのガス欠乏に起因する膜厚均一性の低下、ステップカバレージ悪化および成膜時間の増加を抑制することが可能となる。
<他の実施形態>
 本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 上述の実施形態では、金属元素であるTiを用いる例について説明した。本発明は上述の態様に限定されず、Ti以外の元素として、タンタル(Ta)、タングステン(W)、コバルト(Co)、イットリウム(Y)、ルテニウム(Ru)、アルミニウム(Al)、ハフニウム(Hf)、ジルコニウム(Zr)、モリブデン(Mo)、シリコン(Si)等の元素を含む窒化膜、酸化膜、炭化膜、ホウ化膜のいずれかの膜、もしくはこれらの複合膜を形成する場合にも好適に適用可能である。
 上述の元素を含む膜を形成する場合、原料ガスとしてチタン(Ti)含有ガスの他にも、タンタル(Ta)含有ガス、タングステン(W)含有ガス、コバルト(Co)含有ガス、イットリウム(Y)含有ガス、ルテニウム(Ru)含有ガス、アルミニウム(Al)含有ガス、ハフニウム(Hf)含有ガス、ジルコニウム(Zr)含有ガス、モリブデン(Mo)含有ガス、シリコン(Si)含有ガス等を用いることが可能である。
 上述の元素を含む膜を形成する場合、無機系原料ガスとしてのハロゲン系原料ガスとしては、例えば、TiClの他に、四フッ化チタニウム(TiF)、五塩化タンタル(TaCl)、五フッ化タンタル(TaF)、六塩化タングステン(WCl)、六フッ化タングステン(WF)、二塩化コバルト(CoCl)、二塩化コバルト(CoF)、三塩化イットリウム(YCl)、三フッ化イットリウム(YF)、三塩化ルテニウム(RuCl)、三フッ化ルテニウム(RuF)、三塩化アルミニウム(AlCl)、三フッ化アルミニウム(AlF)、四塩化ハフニウム(HfCl)、四フッ化ハフニウム(HfF)、四塩化ジルコニウム(ZrCl)、四フッ化ジルコニウム(ZrF)、テトラクロロシランすなわちシリコンテトラクロライドもしくは四塩化ケイ素(SiCl、略称:STC)、ジクロロシラン(SiHCl、略称:DCS)、モノクロロシラン(SiHCl、略称:MCS)、ヘキサクロロジシランすなわち六塩化二ケイ素(SiCl、略称:HCDS)等を用いることも可能である。
 上述の元素を含む膜を形成する場合、原料ガスとしては無機系原料ガス以外も用いることが可能であり、例えば、有機系原料ガスとして、TDEATの他に、例えばテトラキスジメチルアミノチタン(Ti[N(CH、略称:TDMAT)、ペンタエトキシタンタル(Ta(OC、略称:PET)、トリメチルアルミニウム((CHAl、略称:TMA)、テトラキスエチルメチルアミノハフニウム(Hf[N(CH)CHCH、略称:TEMAH)、テトラキスジメチルアミノハフニウム(Hf[N(CH、TDMAH)、テトラキスジエチルアミノハフニウム(Hf[N(C)、略称:TDEAH)、テトラキスエチルメチルアミノジルコニウム(Zr[N(CH)CHCH、略称:TEMAZ)、テトラキスジメチルアミノジルコニウム(Zr[N(CH、TDMAZ)、テトラキスジエチルアミノジルコニウム(Zr[N(C)、略称:TDEAZ)、トリスジメチルアミノシクロペンタジエニルジルコニウム((C)Zr[N(CH))、テトラキス(ジメチルアミノ)シラン(Si[N(CH、略称:4DMAS)、トリス(ジメチルアミノ)シラン(Si[N(CHH、略称:3DMAS)、ビス(ジエチルアミノ)シラン(Si[N(C、略称:BDEAS)、ビス(ターシャリブチルアミノ)シラン(SiH[NH(C)]、略称:BTBAS)、ビス(ターシャリブチルイミノ)ビス(ターシャリブチルアミノ)タングステン((CNH)W(CN)、)、タングステンヘキサカルボニル(W(CO))、ビス(エチルシクロペンタジエニル)コバルト(C1418Co)、コバルトヘキサカルボニル(CoCO))、トリス(ブチルシクロペンタジエニル)イットリウム(Y(CCH(CHCH)、ビス(エチルシクロペンタジエニル)ルテニウム(C1418Ru)等を用いることが可能である。
 上述の元素を含む膜を形成する場合、反応ガスとしては、例えば、NHの他に、窒素(N)、亜酸化窒素(NO)や、ジアゼン(N)ガス、ヒドラジン(N)ガス、Nガス等のN-H結合を含むガスを用いることができる。また、N-H結合を含むガスとしては、上述のガスの他にも、有機ヒドラジン系ガス、例えば、モノメチルヒドラジン((CH)HN、略称:MMH)ガス、ジメチルヒドラジン((CH、略称:DMH)ガス、トリメチルヒドラジン((CH(CH)H、略称:TMH)ガス等のメチルヒドラジン系ガスや、エチルヒドラジン((C)HN、略称:EH)ガス等のエチルヒドラジン系ガスを用いることができる。また、トリエチルアミン((CN、略称:TEA)ガス、ジエチルアミン((CNH、略称:DEA)ガス、モノエチルアミン(CNH、略称:MEA)ガス等のエチルアミン系ガス、トリメチルアミン((CHN、略称:TMA)ガス、ジメチルアミン((CHNH、略称:DMA)ガス、モノメチルアミン(CHNH、略称:MMA)ガス等のメチルアミン系ガス、トリプロピルアミン((CN、略称:TPA)ガス、ジプロピルアミン((CNH、略称:DPA)ガス、モノプロピルアミン(CNH、略称:MPA)ガス等のプロピルアミン系ガス、トリイソプロピルアミン([(CHCH]N、略称:TIPA)ガス、ジイソプロピルアミン([(CHCH]NH、略称:DIPA)ガス、モノイソプロピルアミン((CHCHNH、略称:MIPA)ガス等のイソプロピルアミン系ガス、トリブチルアミン((CN、略称:TBA)ガス、ジブチルアミン((CNH、略称:DBA)ガス、モノブチルアミン(CNH、略称:MBA)ガス等のブチルアミン系ガス、または、トリイソブチルアミン([(CHCHCHN、略称:TIBA)ガス、ジイソブチルアミン([(CHCHCHNH、略称:DIBA)ガス、モノイソブチルアミン((CHCHCHNH、略称:MIBA)ガス等のイソブチルアミン系ガスを用いることができる。すなわち、アミン系ガスとしては、例えば、(CNH3-x、(CHNH3-x、(CNH3-x、[(CHCH]NH3-x、(CNH3-x、[(CHCHCHNH3-x(式中、xは1~3の整数)の組成式で表されるガスのうち、少なくとも1種類のガスを用いることが可能である。有機ヒドラジン系ガスやアミン系ガスを用いると、反応性を高めることができるとともに、Cを膜中に取り込むことができるためC濃度の制御により膜の仕事関数を調整することができる。
 上述の元素を含む膜としては、TiN膜、TiC膜、TiCN膜の他にも、例えば、タンタル窒化膜(TaN膜)、タンタル炭化膜(TaC膜)、タンタル炭窒化膜(TaCN膜)、タングステン窒化膜(WN膜)、タングステン炭化膜(WC膜)、タングステン炭窒化膜(WCN膜)、コバルト窒化膜(CoN膜)、コバルト炭化膜(CoC膜)、コバルト炭窒化膜(CoCN膜)、イットリウム窒化膜(YN膜)、イットリウム炭化膜(YC膜)、イットリウム炭窒化膜(YCN膜)、ルテニウム窒化膜(RuN膜)、ルテニウム炭化膜(RuC膜)、ルテニウム炭窒化膜(RuCN膜)、アルミニウム窒化膜(AlN膜)、アルミニウム炭化膜(AlC膜)、アルミニウム炭窒化膜(AlCN膜)、ハフニウム窒化膜(HfN膜)、ハフニウム炭化膜(HfC膜)、ハフニウム炭窒化膜(HfCN膜)、ジルコニウム窒化膜(ZrN膜)、ジルコニウム炭化膜(ZrC膜)、ジルコニウム炭窒化膜(ZrCN膜)、モリブデン窒化膜(MoN膜)、モリブデン炭化膜(MoC膜)、モリブデン炭窒化膜(MoCN膜)、シリコン窒化膜(SiN膜)、シリコン炭化膜(SiC膜)、シリコン炭窒化膜(SiCN膜)等の膜が挙げられる。
 また、上述の実施形態では、不活性ガスとして、Nガスを用いる例について説明しているが、これに限らず、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いてもよい。
 上述の実施形態や各変形例や各応用例等は、適宜組み合わせて用いることができる。また、このときの処理条件は、例えば上述の実施形態と同様の処理条件とすることができる。
 これらの各種薄膜の形成に用いられるプロセスレシピ(処理手順や処理条件等が記載されたプログラム)は、基板処理の内容(形成する薄膜の膜種、組成比、膜質、膜厚、処理手順、処理条件等)に応じて、それぞれ個別に用意する(複数用意する)ことが好ましい。そして、基板処理を開始する際、基板処理の内容に応じて、複数のプロセスレシピの中から、適正なプロセスレシピを適宜選択することが好ましい。具体的には、基板処理の内容に応じて個別に用意された複数のプロセスレシピを、電気通信回線や当該プロセスレシピを記録した記録媒体(外部記憶装置)を介して、基板処理装置が備える記憶装置内に予め格納(インストール)しておくことが好ましい。そして、基板処理を開始する際、基板処理装置が備えるCPUが、記憶装置内に格納された複数のプロセスレシピの中から、基板処理の内容に応じて、適正なプロセスレシピを適宜選択することが好ましい。このように構成することで、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の薄膜を汎用的に、かつ、再現性よく形成できるようになる。また、オペレータの操作負担(処理手順や処理条件等の入力負担等)を低減でき、操作ミスを回避しつつ、基板処理を迅速に開始できるようになる。
 上述のプロセスレシピは、新たに作成する場合に限らず、例えば、既存の基板処理装置のプロセスレシピを変更することでも実現できる。プロセスレシピを変更する場合は、本発明に係るプロセスレシピを電気通信回線や当該プロセスレシピを記録した記録媒体を介して既存の基板処理装置にインストールしたり、また、既存の基板処理装置の入出力装置を操作し、そのプロセスレシピ自体を本発明に係るプロセスレシピに変更したりすることも可能である。
 上述の実施の形態では、一度に複数枚の基板を処理するバッチ式の縦型装置である基板処理装置であって、1つの反応管内に処理ガスを供給するノズルが立設され、反応管の下部に排気口が設けられた構造を有する処理炉を用いて成膜する例について説明したが、他の構造を有する処理炉を用いて成膜する場合にも本発明を適用可能である。例えば、同心円状の断面を有する2つの反応管(外側の反応管をアウタチューブ、内側の反応管をインナチューブと称する)を有し、インナチューブ内に立設されたノズルから、アウタチューブの側壁であって基板を挟んでノズルと対向する位置(線対称の位置)に開口する排気口へ処理ガスが流れる構造を有する処理炉を用いて成膜する場合にも本発明を適用可能である。また、処理ガスはインナチューブ内に立設されたノズルから供給されるのではなく、インナチューブの側壁に開口するガス供給口から供給されるようにしてもよい。このとき、アウタチューブに開口する排気口は、処理室内に積層して収容された複数枚の基板が存在する高さに応じて開口していてもよい。また、排気口の形状は穴形状であってもよいし、スリット形状であってもよい。
 上述の実施の形態では、一度に複数枚の基板を処理するバッチ式の縦型装置である基板処理装置を用いて成膜する例について説明したが、本発明はこれに限定されず、一度に1枚または数枚の基板を処理する枚葉式の基板処理装置を用いて成膜する場合にも、好適に適用できる。また、上述の実施形態では、ホットウォール型の処理炉を有する基板処理装置を用いて薄膜を成膜する例について説明したが、本発明はこれに限定されず、コールドウォール型の処理炉を有する基板処理装置を用いて薄膜を成膜する場合にも、好適に適用できる。これらの場合においても、処理条件は、例えば上述の実施形態と同様な処理条件とすることができる。
 以下、本発明の望ましい形態について付記する。
〔付記1〕
 本発明の一態様によれば、
 処理室に接続された金属含有ガス供給管に設けられた第1のガス溜め部に金属含有ガスを充填する金属含有ガス充填工程と、
 前記金属含有ガス供給管に接続された不活性ガス供給管に設けられた第2のガス溜め部に不活性ガスを充填する不活性ガス充填工程と、
 基板を収容した処理室内を第1の圧力に減圧する第1の減圧工程と、
 前記第1の圧力に減圧された前記処理室内に前記第1のガス溜め部に充填された前記金属含有ガスを供給しつつ、前記処理室内に前記第2のガス溜め部に充填された前記不活性ガスを供給する金属含有ガス供給工程と、
 前記処理室内に残留する前記金属含有ガスを除去する第1の除去工程と、
 前記処理室に接続された反応ガス供給管に設けられた第3のガス溜め部に反応ガスを充填する反応ガス充填工程と、
 前記処理室内を第2の圧力に減圧する第2の減圧工程と、
 前記第2の圧力に減圧された前記処理室内に前記第3のガス溜め部に充填された前記反応ガスを供給する反応ガス供給工程と、
 前記処理室内に残留する前記反応ガスを除去する第2の除去工程と、
 を所定回数行い、前記基板上に金属含有膜を形成する半導体装置の製造方法、または基板処理方法が提供される。
〔付記2〕
 付記1に記載の方法であって、好ましくは、
 前記金属含有ガス供給工程では、前記金属含有ガスを供給した状態で前記不活性ガスを供給する。
〔付記3〕
 付記1もしくは2に記載の方法であって、好ましくは、
 前記金属含有ガス充填工程、前記不活性ガス充填工程は同時に(同じタイミングで)行う。
〔付記4〕
 付記1~3のいずれかに記載の方法であって、
 前記反応ガス充填工程は、前記金属含有ガス充填工程、前記不活性ガス充填工程、前記第1の減圧工程、前記金属含有ガス供給工程、前記第2の減圧工程のうち少なくともひとつの工程と同時に(同じタイミングで)行う。
〔付記5〕
 付記1~4のいずれかに記載の方法であって、
 前記反応ガス供給工程では、前記基板を挟んで前記反応ガスの供給位置と対向する位置から、不活性ガスを供給する。
〔付記6〕
 付記1~5のいずれかに記載の方法であって、
 前記金属含有ガスの流れに沿って両側から挟むように、不活性ガスを供給する。
〔付記7〕
 付記1~6のいずれかに記載の方法であって、
 前記第1の圧力および前記第2の圧力は、例えば0.01~0.5Torr(1.33~66.7Pa)の範囲内の(所定の)値であって、好ましくは0.07~0.2Torr(9.3~26.7Pa)の範囲内の(所定の)値であり、より好ましくは0.08~0.15Torr(10.7~20.0Pa)の範囲内の(所定の)値である。
〔付記8〕
 付記1~7のいずれかに記載の方法であって、
 前記金属含有ガス供給工程で前記処理室内に供給する前記金属含有ガスおよび前記不活性ガスの総流量と、前記反応ガス供給工程で前記処理室内に供給する前記反応ガスの流量は実質的に同量とする。
〔付記9〕
 付記1~8のいずれかに記載の方法であって、
 前記金属含有ガス供給工程および前記反応ガス供給工程では、前記処理室内の圧力を所定圧力に調圧する。
〔付記10〕
 本発明の他の態様によれば、
 基板を収容する処理室と、
 前記処理室に接続された金属含有ガス供給管を有する金属含有ガス供給系と、
 前記金属含有ガス供給管に設けられ、前記金属含有ガスを充填する第1のガス溜め部と、
 前記金属含有ガス供給管に接続された不活性ガス供給管を有する不活性ガス供給系と、
 前記不活性ガス供給管に設けられた、前記不活性ガスを充填する第2のガス溜め部と、
 前記処理室に接続された反応ガス供給管を有する反応ガス供給系と、
 前記反応ガス供給管に設けられ、前記反応ガスを充填する第3のガス溜め部と、
 前記処理室内を排気する排気系と、
 前記金属含有ガス供給系、前記不活性ガス供給系、前記反応ガス供給系を制御して、前記第1のガス溜め部に前記金属含有ガスを充填する処理と、前記第2のガス溜め部に前記不活性ガスを充填する処理と、基板を収容した前記処理室内を第1の圧力に減圧する処理と、前記第1の圧力に減圧された前記処理室内に前記第1のガス溜め部に充填された前記金属含有ガスを供給しつつ、前記処理室内に前記第2のガス溜め部に充填された前記不活性ガスを供給する処理と、前記処理室内に残留する前記金属含有ガスを除去する処理と、前記第3のガス溜め部に前記反応ガスを充填する処理と、前記処理室内を第2の圧力に減圧する処理と、前記第2の圧力に減圧された前記処理室内に前記第3のガス溜め部に充填された前記反応ガスを供給する処理と、前記処理室内に残留する前記反応ガスを除去する処理と、を所定回数行い、前記基板上に金属含有膜を形成するよう構成される制御部と、
 を有する基板処理装置が提供される。
〔付記11〕
 本発明の他の態様によれば、
 処理室に接続された金属含有ガス供給管に設けられた第1のガス溜め部に金属含有ガスを充填する手順と、
 前記金属含有ガス供給管に接続された不活性ガス供給管に設けられた第2のガス溜め部に不活性ガスを充填する手順と、
 基板を収容した処理室内を第1の圧力に減圧する手順と、
 前記第1の圧力に減圧された前記処理室内に前記第1のガス溜め部に充填された前記金属含有ガスを供給しつつ、前記処理室内に前記第2のガス溜め部に充填された前記不活性ガスを供給する手順と、
 前記処理室内に残留する前記金属含有ガスを除去する手順と、
 前記処理室に接続された反応ガス供給管に設けられた第3のガス溜め部に反応ガスを充填する手順と、
 前記処理室内を第2の圧力に減圧する手順と、
 前記第2の圧力に減圧された前記処理室内に前記第3のガス溜め部に充填された前記反応ガスを供給する手順と、
 前記処理室内に残留する前記反応ガスを除去する手順と、
 を所定回数行い、前記基板上に金属含有膜を形成する手順をコンピュータに実行させるプログラム、および該プログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。
 以上のように、本発明は、例えば、半導体デバイスの製造方法、半導体ウエハやガラス基板等の基板を処理する基板処理装置等に利用することができる。
  10・・・基板処理装置
  200・・・ウエハ
  201・・・処理室
  202・・・処理炉

Claims (9)

  1.  処理室に接続された金属含有ガス供給管に設けられた第1のガス溜め部に金属含有ガスを充填する金属含有ガス充填工程と、
     前記金属含有ガス供給管に接続された不活性ガス供給管に設けられた第2のガス溜め部に不活性ガスを充填する不活性ガス充填工程と、
     基板を収容した処理室内を第1の圧力に減圧する第1の減圧工程と、
     前記第1の圧力に減圧された前記処理室内に前記第1のガス溜め部に充填された前記金属含有ガスを供給しつつ、前記処理室内に前記第2のガス溜め部に充填された前記不活性ガスを供給する金属含有ガス供給工程と、
     前記処理室内に残留する前記金属含有ガスを除去する第1の除去工程と、
     前記処理室に接続された反応ガス供給管に設けられた第3のガス溜め部に反応ガスを充填する反応ガス充填工程と、
     前記処理室内を第2の圧力に減圧する第2の減圧工程と、
     前記第2の圧力に減圧された前記処理室内に前記第3のガス溜め部に充填された前記反応ガスを供給する反応ガス供給工程と、
     前記処理室内に残留する前記反応ガスを除去する第2の除去工程と、
     を所定回数行い、前記基板上に金属含有膜を形成する半導体装置の製造方法。
  2.  前記金属含有ガス供給工程では、前記金属含有ガスを供給した状態で前記不活性ガスを供給する請求項1に記載の半導体装置の製造方法。
  3.  前記金属含有ガス充填工程、前記不活性ガス充填工程は同時に行う請求項1に記載の半導体装置の製造方法。
  4.  前記反応ガス充填工程は、前記金属含有ガス充填工程、前記不活性ガス充填工程、前記第1の減圧工程、前記金属含有ガス供給工程、前記第2の減圧工程のうち少なくともひとつの工程と同時に行う請求項1に記載の半導体装置の製造方法。
  5.  前記反応ガス供給工程では、前記基板を挟んで前記反応ガスの供給位置と対向する位置から、不活性ガスを供給する請求項1に記載の半導体装置の製造方法。
  6.  前記金属含有ガスの流れに沿って両側から挟むように、不活性ガスを供給する請求項1に記載の半導体装置の製造方法。
  7.  前記第1の圧力および前記第2の圧力は、1.33以上66.7Pa以下の範囲内の値である請求項1に記載の半導体装置の製造方法。
  8.   基板を収容する処理室と、
     前記処理室に接続された金属含有ガス供給管を有する金属含有ガス供給系と、
     前記金属含有ガス供給管に設けられ、前記金属含有ガスを充填する第1のガス溜め部と、
     前記金属含有ガス供給管に接続された不活性ガス供給管を有する不活性ガス供給系と、
     前記不活性ガス供給管に設けられた、前記不活性ガスを充填する第2のガス溜め部と、
     前記処理室に接続された反応ガス供給管を有する反応ガス供給系と、
     前記反応ガス供給管に設けられ、前記反応ガスを充填する第3のガス溜め部と、
     前記処理室内を排気する排気系と、
     前記金属含有ガス供給系、前記不活性ガス供給系、前記反応ガス供給系を制御して、前記第1のガス溜め部に前記金属含有ガスを充填する処理と、前記第2のガス溜め部に前記不活性ガスを充填する処理と、基板を収容した前記処理室内を第1の圧力に減圧する処理と、前記第1の圧力に減圧された前記処理室内に前記第1のガス溜め部に充填された前記金属含有ガスを供給しつつ、前記処理室内に前記第2のガス溜め部に充填された前記不活性ガスを供給する処理と、前記処理室内に残留する前記金属含有ガスを除去する処理と、前記第3のガス溜め部に前記反応ガスを充填する処理と、前記処理室内を第2の圧力に減圧する処理と、前記第2の圧力に減圧された前記処理室内に前記第3のガス溜め部に充填された前記反応ガスを供給する処理と、前記処理室内に残留する前記反応ガスを除去する処理と、を所定回数行い、前記基板上に金属含有膜を形成するよう構成される制御部と、
     を有する基板処理装置。
  9.  処理室に接続された金属含有ガス供給管に設けられた第1のガス溜め部に金属含有ガスを充填する手順と、
     前記金属含有ガス供給管に接続された不活性ガス供給管に設けられた第2のガス溜め部に不活性ガスを充填する手順と、
     基板を収容した処理室内を第1の圧力に減圧する手順と、
     前記第1の圧力に減圧された前記処理室内に前記第1のガス溜め部に充填された前記金属含有ガスを供給しつつ、前記処理室内に前記第2のガス溜め部に充填された前記不活性ガスを供給する手順と、
     前記処理室内に残留する前記金属含有ガスを除去する手順と、
     前記処理室に接続された反応ガス供給管に設けられた第3のガス溜め部に反応ガスを充填する手順と、
     前記処理室内を第2の圧力に減圧する手順と、
     前記第2の圧力に減圧された前記処理室内に前記第3のガス溜め部に充填された前記反応ガスを供給する手順と、
     前記処理室内に残留する前記反応ガスを除去する手順と、
     を所定回数行い、前記基板上に金属含有膜を形成する手順をコンピュータに実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体。
     
PCT/JP2015/060096 2015-03-31 2015-03-31 半導体装置の製造方法、基板処理装置および記録媒体 WO2016157401A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060096 WO2016157401A1 (ja) 2015-03-31 2015-03-31 半導体装置の製造方法、基板処理装置および記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060096 WO2016157401A1 (ja) 2015-03-31 2015-03-31 半導体装置の製造方法、基板処理装置および記録媒体

Publications (1)

Publication Number Publication Date
WO2016157401A1 true WO2016157401A1 (ja) 2016-10-06

Family

ID=57004009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060096 WO2016157401A1 (ja) 2015-03-31 2015-03-31 半導体装置の製造方法、基板処理装置および記録媒体

Country Status (1)

Country Link
WO (1) WO2016157401A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018154823A1 (ja) * 2017-02-23 2018-08-30 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法およびプログラム
JP2020188237A (ja) * 2019-05-17 2020-11-19 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
US11015248B2 (en) 2018-05-25 2021-05-25 Kokusai Electric Corporation Substrate processing apparatus and method of manufacturing semiconductor device
KR20220012942A (ko) 2019-07-26 2022-02-04 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치, 프로그램 및 기판 처리 방법
KR20220110802A (ko) 2020-03-19 2022-08-09 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치, 반도체 장치의 제조 방법 및 기록매체
WO2024062577A1 (ja) * 2022-09-21 2024-03-28 株式会社Kokusai Electric 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287524A (ja) * 1988-09-26 1990-03-28 Oki Electric Ind Co Ltd 半導体装置及びその製造方法
JP2012067328A (ja) * 2010-09-21 2012-04-05 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び基板処理装置
JP2014007378A (ja) * 2012-06-02 2014-01-16 Tokyo Electron Ltd 成膜方法及び成膜装置
JP2014208883A (ja) * 2013-03-28 2014-11-06 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287524A (ja) * 1988-09-26 1990-03-28 Oki Electric Ind Co Ltd 半導体装置及びその製造方法
JP2012067328A (ja) * 2010-09-21 2012-04-05 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び基板処理装置
JP2014007378A (ja) * 2012-06-02 2014-01-16 Tokyo Electron Ltd 成膜方法及び成膜装置
JP2014208883A (ja) * 2013-03-28 2014-11-06 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6998106B2 (ja) 2017-02-23 2022-01-18 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法、プログラムおよび反応管
KR102453245B1 (ko) 2017-02-23 2022-10-07 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치, 반도체 장치의 제조 방법, 컴퓨터 프로그램 및 처리 용기
WO2018154823A1 (ja) * 2017-02-23 2018-08-30 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法およびプログラム
US11859280B2 (en) 2017-02-23 2024-01-02 Kokusai Electric Corporation Substrate processing apparatus and method of manufacturing semiconductor device
CN110121763B (zh) * 2017-02-23 2023-12-26 株式会社国际电气 基板处理装置、半导体装置的制造方法及存储介质
JP2020188280A (ja) * 2017-02-23 2020-11-19 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法、プログラムおよび反応管
KR20180116224A (ko) * 2017-02-23 2018-10-24 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램
KR20210005317A (ko) * 2017-02-23 2021-01-13 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치, 반도체 장치의 제조 방법, 컴퓨터 프로그램 및 처리 용기
KR102203745B1 (ko) * 2017-02-23 2021-01-18 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치, 반도체 장치의 제조 방법, 컴퓨터 프로그램 및 반응관
US11453942B2 (en) 2017-02-23 2022-09-27 Kokusai Electric Corporation Substrate processing apparatus and method of manufacturing semiconductor device
CN110121763A (zh) * 2017-02-23 2019-08-13 株式会社国际电气 基板处理装置、半导体装置的制造方法及程序
JP2020182001A (ja) * 2017-02-23 2020-11-05 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法、プログラムおよび処理容器
JPWO2018154823A1 (ja) * 2017-02-23 2019-11-07 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法およびプログラム
JP7088990B2 (ja) 2017-02-23 2022-06-21 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法およびプログラム
US11015248B2 (en) 2018-05-25 2021-05-25 Kokusai Electric Corporation Substrate processing apparatus and method of manufacturing semiconductor device
US11555246B2 (en) 2018-05-25 2023-01-17 Kokusai Electric Corporation Substrate processing apparatus and method of manufacturing semiconductor device
JP2020188237A (ja) * 2019-05-17 2020-11-19 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
JP7016833B2 (ja) 2019-05-17 2022-02-07 株式会社Kokusai Electric 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
KR20220012942A (ko) 2019-07-26 2022-02-04 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치, 프로그램 및 기판 처리 방법
KR20220110802A (ko) 2020-03-19 2022-08-09 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치, 반도체 장치의 제조 방법 및 기록매체
WO2024062577A1 (ja) * 2022-09-21 2024-03-28 株式会社Kokusai Electric 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム

Similar Documents

Publication Publication Date Title
US9708708B2 (en) Method of manufacturing semiconductor device
US10297440B2 (en) Method of manufacturing semiconductor device
US9583338B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP6347544B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
US9558937B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and non-transitory computer-readable recording medium
JP6035166B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP5951443B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
WO2016157401A1 (ja) 半導体装置の製造方法、基板処理装置および記録媒体
JP2013225660A (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP5855691B2 (ja) 半導体装置の製造方法、基板処理装置、プログラム及び記録媒体
US11004676B2 (en) Method for manufacturing semiconductor device, non-transitory computer-readable recording medium, and substrate processing apparatus
JP6416031B2 (ja) 半導体デバイスの製造方法、基板処理装置およびプログラム
US9666439B2 (en) Method of manufacturing a semiconductor device and recording medium
KR102042890B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
JP2019026939A (ja) 半導体装置の製造方法、記録媒体および基板処理装置
WO2016098183A1 (ja) 半導体装置の製造方法、基板処理装置および記録媒体
JP2016034043A (ja) 半導体装置の製造方法、基板処理装置、プログラムおよび記録媒体
JP6030746B2 (ja) 半導体装置の製造方法、基板処理装置、プログラムおよび記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP