WO2018154721A1 - Oledパネルの製造方法、oledパネル、oledパネルの製造装置 - Google Patents

Oledパネルの製造方法、oledパネル、oledパネルの製造装置 Download PDF

Info

Publication number
WO2018154721A1
WO2018154721A1 PCT/JP2017/007154 JP2017007154W WO2018154721A1 WO 2018154721 A1 WO2018154721 A1 WO 2018154721A1 JP 2017007154 W JP2017007154 W JP 2017007154W WO 2018154721 A1 WO2018154721 A1 WO 2018154721A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
region
sealing film
oled panel
layer
Prior art date
Application number
PCT/JP2017/007154
Other languages
English (en)
French (fr)
Inventor
哲憲 田中
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201780086899.5A priority Critical patent/CN110326363A/zh
Priority to PCT/JP2017/007154 priority patent/WO2018154721A1/ja
Priority to US15/761,444 priority patent/US10374160B2/en
Publication of WO2018154721A1 publication Critical patent/WO2018154721A1/ja
Priority to US16/441,055 priority patent/US10714689B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/851Division of substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an OLED panel.
  • Patent Document 1 describes a method of separating a support substrate and a laminate by irradiating a laser from the support substrate side after forming a laminate including an OLED layer on a translucent support substrate.
  • the manufacturing method of the OLED panel which concerns on 1 aspect of this invention is a laminated body provided with the resin layer, TFT layer, OLED layer, and the sealing layer containing an organic sealing film on the upper surface side of a translucent board
  • the resin layer in contact with the translucent substrate is irradiated with laser light to separate the translucent substrate and the laminate, and the OLED panel manufacturing method includes: A first region irradiated with an intense laser beam and a second region irradiated with a laser beam having a second intensity greater than the first intensity, the first region overlapping the organic sealing film; The second region does not overlap the organic sealing film.
  • FIG. 3 is a flowchart illustrating an example of a method for manufacturing the OLED panel according to Embodiment 1. It is sectional drawing (a) and a top view (b) which show the some laminated body formed in the glass substrate (mother glass). It is sectional drawing which shows the structural example of each laminated body of FIG. It is a schematic diagram which shows the irradiation of the laser concerning Embodiment 1, and peeling of a glass substrate. It is a top view which shows the intensity
  • FIG. 10 is a plan view showing a modified example of the second embodiment. It is a schematic diagram which shows irradiation of the laser concerning Embodiment 3, and peeling of a glass substrate. It is a top view which shows the intensity
  • FIG. It is sectional drawing (a) (b) and top view (c) which show the structure of the OLED panel obtained by this embodiment.
  • FIG. 1 is a flowchart showing an example of a method for manufacturing an OLED panel according to Embodiment 1
  • FIG. 2 is a cross-sectional view (a) and a plan view showing a plurality of laminates formed on a glass substrate that is a mother glass.
  • FIG. 3B is a cross-sectional view illustrating a configuration example of each stacked body.
  • the resin layer 12 is formed on the glass substrate 50 (translucent substrate) (step S1).
  • the moisture-proof layer 3 is formed (step S2).
  • the TFT layer 4 including the inorganic insulating films 16, 18, 20 and the organic interlayer film 21 is formed (step S3).
  • the inorganic insulating film 4F shown in FIG. 2 includes at least one of the inorganic insulating films 16, 18, and 20 shown in FIG.
  • the OLED layer 5 including the OLED element is formed (step S4).
  • the sealing layer 6 including the inorganic sealing films 26 and 28 and the organic sealing film 27 is formed to form a plurality of stacked bodies 7 (step S5).
  • the top film 9 is pasted on the plurality of laminated bodies 7 via the adhesive layer 8 (step S6).
  • the laser beam is irradiated onto the lower surface of the resin layer 12 through the glass substrate 50 (step S7).
  • the resin layer 12 absorbs the laser light irradiated to the lower surface of the glass substrate 50 and transmitted through the glass substrate 50, whereby the lower surface of the resin layer 12 (interface with the glass substrate 50) is altered by ablation, and the resin The bonding force between the layer 12 and the glass substrate 50 is reduced.
  • the resin layer 12 has a first region where the laser beam having the first intensity is irradiated and a second region where the laser beam having the second intensity greater than the first intensity is irradiated. The first region overlaps with the organic sealing film 27, and the second region does not overlap with the organic sealing film 27.
  • the glass substrate 50 is peeled from the laminate 7 (step S8).
  • a bottom film is attached to the laminate 7 (step S9).
  • the top film 9 is peeled from the plurality of laminates 7 (step S10).
  • the glass substrate 50 on which the plurality of laminated bodies 7 are formed is divided by a cut line C (see FIG. 3C) to obtain an individualized OLED panel (step S11). Each of these steps is performed by an OLED panel manufacturing apparatus.
  • the laminate 7 formed on the glass substrate 50 is formed on the resin layer 12, the moisture-proof layer 3 formed on the resin layer 12, and the moisture-proof layer 3.
  • the TFT layer 4, the OLED layer 5 formed on the upper side of the TFT layer 4, and the sealing layer 6 formed on the upper side of the OLED layer 5 are provided and have flexibility.
  • Examples of the material for forming the resin film 12 include polyimide, polyethylene, and polyamide.
  • the resin film 12 can be formed, for example, by dissolving these materials or their precursors in a solvent to form a liquid, and applying and baking on the glass substrate 50 by slit coating or spin coating.
  • the thickness of the resin film 12 is, for example, 2 ⁇ m to 50 ⁇ m.
  • the moisture-proof layer 3 is a layer that prevents moisture and impurities from reaching the TFT layer 4 and the OLED layer 5 when the OLED panel is used.
  • a silicon oxide film, a silicon nitride film, or A silicon oxynitride film or a stacked film thereof can be used.
  • the thickness of the moisture-proof layer 3 is, for example, 50 nm to 1500 nm.
  • the TFT layer 4 includes a semiconductor film 15, an inorganic insulating film 16 (gate insulating film) formed on the upper side of the semiconductor film 15, a gate electrode G formed on the upper side of the gate insulating film 16, and an upper side of the gate electrode G. Formed on the inorganic insulating films 18 and 20 (passivation film), the source electrode S, the drain electrode D and the terminal TM, and the source electrode S and the drain electrode D formed on the inorganic insulating film 20. And an organic interlayer film 21 to be formed.
  • the semiconductor film 15, the inorganic insulating film 16, the gate electrode G, the inorganic insulating films 18 and 20, the source electrode S, and the drain electrode D constitute a thin layer transistor (TFT).
  • terminal portion 4T of the TFT layer 4 a plurality of terminals TM for external connection are formed.
  • the terminal TM is electrically connected to, for example, the gate electrode G through a lead wiring.
  • the OLED element layer 5 and the sealing layer 6 are not formed on the terminal portion 4T, but the edge of the terminal TM is covered with the organic interlayer film 21.
  • the semiconductor film 15 is made of, for example, low temperature polysilicon (LPTS) or an oxide semiconductor.
  • the gate insulating film 16 can be constituted by, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, or a stacked film thereof formed by a CVD method.
  • the gate electrode G, source electrode S, drain electrode D, and terminal T are, for example, aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), chromium (Cr), titanium (Ti), copper It is composed of a single layer film or a laminated film of metal containing at least one of (Cu).
  • the TFT having the semiconductor film 15 as a channel is shown as a top gate structure, but a bottom gate structure may be used (for example, when the TFT channel is an oxide semiconductor).
  • the inorganic insulating films 18 and 20 can be composed of, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, or a laminated film thereof formed by a CVD method.
  • the organic interlayer film 21 can be made of a photosensitive organic material that can be applied, such as polyimide or acrylic.
  • the anode electrode 22 is composed of, for example, a laminate of ITO (Indium Tin Oxide) and an alloy containing Ag, and has light reflectivity.
  • the OLED layer 5 includes an anode electrode 22 formed on the upper side of the organic interlayer film 21, a partition wall 23c that defines subpixels in the display area DC, a bank 23b formed in the non-display area NA, and an upper side of the anode electrode 22.
  • the organic EL (organic electroluminescence) layer 24 is formed on the organic EL layer 24, and the cathode electrode 25 is formed on the organic EL layer 24.
  • the partition wall 23c and the bank 23b can be formed, for example, in the same process using a photosensitive organic material such as polyimide, epoxy, or acrylic.
  • the bank 23b of the non-display area NA is formed on the inorganic insulating film 20.
  • the bank 23 b defines the edge of the organic sealing film 27.
  • the organic EL layer 24 is formed in a region (subpixel region) surrounded by the partition wall 23c by an evaporation method or an inkjet method.
  • the organic EL layer 24 is configured, for example, by laminating a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer in order from the lower layer side.
  • the cathode electrode 25 can be made of a transparent metal such as ITO (Indium Tin Oxide) or IZO (Indium Zincum Oxide).
  • the sealing layer 6 includes a first inorganic sealing film 26 that covers the partition wall 23 c and the cathode electrode 25, an organic sealing film 27 that covers the first inorganic sealing film 26, and a second inorganic sealing film that covers the organic sealing film 27. And a stop film 28.
  • Each of the first inorganic sealing film 26 and the second inorganic sealing film 28 may be composed of, for example, a silicon oxide film, a silicon nitride film, a silicon oxynitride film, or a laminated film formed by CVD. it can.
  • the organic sealing film 27 is a light-transmitting organic insulating film that is thicker than the first inorganic sealing film 26 and the second inorganic sealing film 28, and is made of a photosensitive organic material that can be applied, such as polyimide or acrylic. can do.
  • an ink containing such an organic material is applied onto the first inorganic sealing film 26 by inkjet and then cured by UV irradiation.
  • the sealing layer 6 covers the OLED element layer 5 and prevents penetration of foreign matters such as water and oxygen into the OLED element layer 5.
  • the upper surface film 9 is affixed on the sealing layer 6 via the adhesive 8, and functions as a support material when the glass substrate 50 is peeled off.
  • the material include PET (polyethylene terephthalate), PEN (polyethylene naphthalate), COP (cycloolefin polymer), PI (polyimide), PC (polycarbonate), PE (polyethylene), and aramid.
  • the lower film is for manufacturing an OLED panel having excellent flexibility by being attached to the lower surface of the laminate 7 from which the glass substrate 50 has been peeled off.
  • the bottom film is made of a flexible resin material. Examples of such resin materials include PET (polyethylene terephthalate), PEN (polyethylene naphthalate), COP (cycloolefin polymer), PI (polyimide), PC (polycarbonate), PE (polyethylene), and aramid.
  • FIG. 4 is a schematic diagram showing laser irradiation and peeling of the glass substrate in steps S7 to S8 in FIG.
  • Wavelength of the irradiated laser beam, tree Aburamaku 12 absorbs, as long as it can alter the interface between the glass substrate 50. Therefore, when the above-described material is used as the resin film 12, the wavelength of the laser light is preferably 300 nm or more and 355 nm or less, and more preferably 308 nm, 343 nm, or 355 nm. Examples of laser light having such a wavelength include an excimer laser (308 nm), a YAG laser (343 nm, 355 nm), and the like.
  • the laminated body 7 separated from the glass substrate 50 may be wrinkled or curled due to the stress of each film of the laminated body 7 before separation.
  • This stress includes a compressive stress (unit: Pascal) that is a force corresponding to an external force in the direction of shrinking the film and a tensile stress (unit: Pascal) that is a force corresponding to an external force in the direction of pulling the film.
  • the stress is expressed as a negative value and the tensile stress is expressed as a positive value.
  • the film having compressive stress expands when the external force disappears (compressive stress is released), and the film having tensile stress contracts when the external force disappears (tensile stress is released).
  • the stress generated at the time of film formation depends on the material to be formed, the film formation conditions, the base on which the film is formed, and the like.
  • compressive stress is generated in the inorganic insulating film 4F of the TFT layer 4 and the first inorganic sealing film 26 and the second inorganic sealing film 28 of the sealing layer 6. That is, a large compressive stress ( ⁇ ) is generated at a location where the inorganic insulating film 4F overlaps the first inorganic sealing film 26 and the second inorganic sealing film 28.
  • tensile stress (+) is generated in the organic sealing film 27 that shrinks and cures by UV irradiation.
  • the inorganic film (inorganic insulating film F) is formed even if the glass substrate 50 is peeled off.
  • the compressive stress ( ⁇ ) of the first inorganic sealing film 26 and the second inorganic sealing film 28) and the tensile stress (+) of the sealing organic film 27 cancel each other, so that the seepage and curling are less likely to occur.
  • the organic sealing film 27 is not formed on the outer peripheral portion, the compressive stress of the inorganic film (particularly, the inorganic insulating film F, the first inorganic sealing film 26, and the second inorganic sealing film 28) cancels out.
  • FIG. 4 is a schematic diagram illustrating laser irradiation and peeling of the glass substrate according to the first embodiment
  • FIG. 5 is a plan view illustrating the intensity of laser light for each region according to the first embodiment.
  • the region X of the resin layer 12 (the region where the resin layer 12 and the organic sealing film 27 overlap) is irradiated with the laser beam having the intensity S1.
  • One region is set, and the region Y of the resin layer 12 (the region where the resin layer 12 and the organic sealing film 27 do not overlap) is set as the second region where the laser beam having the intensity S2 (> S1) is irradiated.
  • the intensities S1 and S2 of the laser light are, for example, joule amounts per unit area.
  • the stress does not change in the region X of the resin layer 12 after the laser light irradiation (0 ⁇ 0), and the laser having the intensity S2 is applied to the region Y of the resin layer 12. Since a large tensile stress (+) is generated by light, the compressive stress of the inorganic insulating film 4F, the first inorganic sealing film 26, and the second inorganic sealing film 28 released when the glass substrate 50 in FIG. ( ⁇ ) Is offset by the tensile stress (+) in the region Y of the resin layer 12, and wrinkles and curls that can occur in the laminate 7 can be reduced.
  • a laser ablation mark may be formed in at least a part of the region Y of the resin film 12.
  • the intensity of laser light from pulsed lasers such as excimer lasers and YAG lasers is determined by the output of the laser.
  • the output of the laser light By changing the output of the laser light to vary the energy density (mJ / cm 2) , the laser The intensity of light can be changed.
  • the adhesive strength between the glass substrate 50 and the resin layer 12 is set to a value that can reduce the glass substrate 50 in a later process, and the intensity S2 of the laser beam is determined by inorganic insulation.
  • the tensile stress corresponding to the compressive stress of the film 4F, the first inorganic sealing film 26, and the second inorganic sealing film 28 is set to a magnitude that can be applied to the resin layer 12.
  • the ratio of the laser beam intensity S2 to the laser beam intensity S1 is, for example, 1.2 to 2.2.
  • the intensity S1 of the laser light is 100 mJ / cm 2
  • the strength S2 of the laser beam 150 mJ / cm 2 or more, and 200 mJ / cm 2 or less.
  • FIG. 6 is a schematic diagram illustrating laser irradiation and peeling of the glass substrate according to the second embodiment
  • FIG. 7 is a plan view illustrating the intensity of laser light for each region according to the second embodiment.
  • the region X of the resin layer 12 (the resin layer 12, the organic sealing film 27, the inorganic insulating film 4F of the TFT layer 4, and the first inorganic sealing).
  • the region where the stop film 26 and the second inorganic sealing film 28 overlap is a first region that is irradiated with laser light having an intensity S1
  • the region Y of the resin layer 12 (the resin layer 12 and the organic sealing film 27 are Without overlapping, the resin layer 12, the inorganic insulating film 4F of the TFT layer 4, and the region where the first inorganic sealing film 26 and the second inorganic sealing film 28 overlap) are irradiated with laser light having an intensity S2.
  • the region Z of the resin layer 12 (the resin layer 12, the organic sealing film 27, the first inorganic sealing film 26, and the second inorganic sealing film 28 do not overlap, and the resin layer 12 and the TFT layer
  • the region where the fourth inorganic insulating film 4F overlaps is defined as a third region irradiated with the laser beam having the intensity S3.
  • the stress does not change in the region X of the resin layer 12 after the laser beam irradiation (0 ⁇ 0), and the region Y of the resin layer 12 has an intensity S2 laser.
  • a large tensile stress (+) is generated by the light, and a moderate tensile stress (+) is generated in the region Z of the resin layer 12 by the laser beam having the intensity S3, so that it is released when the glass substrate 50 in FIG.
  • the compressive stress ( ⁇ ) of the inorganic insulating film 4F, the first inorganic sealing film 26, and the second inorganic sealing film 28 is offset by the tensile stress (+) of the regions Y and Z of the resin layer 12, and the laminated body 7 can be reduced.
  • a laser ablation mark may be formed in at least a part of the region Y of the resin film 12 (described later).
  • the entire region Y of the resin layer 12 is set as the second region where the laser beam having the intensity S2 is irradiated.
  • the present invention is not limited to this.
  • the inner region Ya of the region Y can be irradiated with the laser beam having the intensity S1
  • the outer region Yb of the region Y can be irradiated with the laser beam having the intensity S2.
  • the central region Yc of the region Y is irradiated with the laser beam having the intensity S2
  • the other region (regions on both sides of the central region Yc) Yg is irradiated with the laser beam having the intensity S1. You can also.
  • FIG. 8 is a schematic diagram illustrating laser irradiation and peeling of the glass substrate according to the third embodiment
  • FIG. 9 is a plan view illustrating the intensity of laser light for each region according to the third embodiment.
  • the region X of the resin layer 12 (the organic sealing film 27, the inorganic insulating film 4F of the TFT layer 4, the first inorganic sealing film 26, and the first 2)
  • the region that overlaps with the inorganic sealing film 28 is a first region that is irradiated with laser light having an intensity S1
  • the region Y of the resin layer 12 (the inorganic insulating film of the TFT layer 4 that does not overlap with the organic sealing film 27) 4F and a region overlapping with the first inorganic sealing film 26 and the second inorganic sealing film 28 are set as a second region to be irradiated with the laser beam having the intensity S2, and the region Z (organic sealing film 27) of the resin layer 12 is used.
  • a region that does not overlap with the first inorganic sealing film 26 and the second inorganic sealing film 28 but overlaps with the inorganic insulating film 4F of the TFT layer 4 is a first region that is irradiated with laser light having an intensity S1.
  • the stress does not change in the region X of the resin layer 12 after the laser beam irradiation (0 ⁇ 0), and the region Y of the resin layer 12 has an intensity S2 laser. Since a large tensile stress (+) is generated by light and the stress does not change in the region Z of the resin layer 12 (0 ⁇ 0), the inorganic insulating film 4F and the second insulating film 4F opened when the glass substrate 50 is peeled off in FIG.
  • the compressive stress ( ⁇ ) of the first inorganic sealing film 26 and the second inorganic sealing film 28 is offset by the tensile stress (+) of the region Y of the resin layer 12, thereby reducing wrinkles and curls that can occur in the laminate 7. be able to.
  • a laser ablation mark may be formed in at least a part of the region Y of the resin film 12 (described later).
  • the entire region Y of the resin layer 12 is set as the second region where the laser beam having the intensity S2 is irradiated.
  • the present invention is not limited to this.
  • the inner region Ya of the region Y can be irradiated with the laser beam having the intensity S1
  • the outer region Yb of the region Y can be irradiated with the laser beam having the intensity S2.
  • the central region Yc of the region Y is irradiated with the laser beam having the intensity S2
  • the other region (regions on both sides of the central region Yc) Yg is irradiated with the laser beam having the intensity S1. You can also.
  • FIG. 11 is a cross-sectional view showing a configuration of the OLED panel obtained by the embodiment.
  • the OLED panel 2 includes the resin layer 12, the moisture-proof layer 3, the TFT layer 4 including the inorganic insulating films 16, 18, and 20, the OLED layer 5, the organic sealing film 27, the first inorganic sealing film 26, and the first 2 a sealing layer 6 including an inorganic sealing film 28, a lower film 10 is attached to the lower surface of the resin layer 12 via an adhesive layer 11, and a function is provided to the upper surface of the sealing layer 6 via an adhesive layer 29.
  • the adhesive film 30 is affixed and has flexibility.
  • the functional film 30 is attached after peeling of the top film (see S10 in FIG. 1), and may have at least one of a protective function, an optical compensation function, and a touch sensor function.
  • the region X of the resin layer 12 (the organic sealing film 27, the inorganic insulating films 16, 18, and 20 of the TFT layer 4 and the first inorganic sealing film).
  • the laser beam having the intensity S1 is irradiated onto the stop film 26 and the second inorganic sealing film 28, and the region Y of the resin layer 12 (the inorganic insulating film of the TFT layer 4 does not overlap with the organic sealing film 27).
  • 16, 18, 20 and the first inorganic sealing film 26 and the region overlapping with the second inorganic sealing film 28 are irradiated with the laser beam having the intensity S2, and the region Z of the resin layer 12 (the organic sealing film 27 and the first sealing layer 27).
  • the first inorganic sealing film 26 and the second inorganic sealing film 28 are not overlapped with each other, but the region of the TFT layer 4 that overlaps the inorganic insulating films 16, 18, and 20) is irradiated with laser light having an intensity S 3.
  • the region Y of the resin layer 12 is a recess that is a laser ablation mark. 12J is formed.
  • the recess 12J occurs in the region irradiated with the laser beam having the intensity S2. Therefore, when the laser beam having the intensity S2 is irradiated on the entire area Y, the recess 12J is formed on almost the entire area Y, and the laser beam having the intensity S2 is applied only to a part of the area Y (the central portion or the outer portion).
  • the concave portion 12J is formed only in a part of the region Y (the central portion or the outer portion) (see FIG. 8).
  • the TFT layer 4 includes a terminal portion 4T.
  • the terminal portion 4T does not overlap the organic sealing film 27, the first inorganic sealing film 26, and the second inorganic sealing film 28, and the inorganic insulating film of the TFT layer 4 It overlaps with 16,18,20. That is, the terminal portion 4T overlaps the region Z of the resin layer 12.
  • the edge of the terminal TM is covered with the organic interlayer film 21.
  • the organic interlayer film 21 Since the organic interlayer film 21 easily permeates water, the organic interlayer film 21 is temporarily stopped in a region overlapping with the first inorganic sealing film 26 and the second inorganic sealing film 28, and the end surface 21 p is temporarily stopped by the first inorganic sealing film 26 and the second inorganic sealing film 26. It is desirable to cover with the inorganic sealing film 28.
  • the formation method of the OLED panel of aspect 1 forms the laminated body provided with the sealing layer which has a resin layer, a TFT layer, an OLED layer, and an organic sealing film on the upper surface side of a translucent board
  • substrate A method of manufacturing an OLED panel in which a resin layer in contact with the light-transmitting substrate is irradiated with laser light to separate the light-transmitting substrate and the laminate, wherein the resin layer has a first intensity laser beam. A first region that is irradiated; and a second region that is irradiated with a laser beam having a second intensity greater than the first intensity. The first region overlaps the organic sealing film, and the second region is Does not overlap with the organic sealing film.
  • the sealing layer includes an inorganic sealing film
  • the TFT layer includes an inorganic insulating film
  • the first region overlaps the inorganic sealing film and the inorganic insulating film
  • the second region Overlaps the inorganic insulating film.
  • the organic sealing film has a tensile stress
  • the inorganic sealing film and the inorganic insulating film have a compressive stress
  • a tensile stress is generated in the second region of the resin layer by irradiating the second intensity laser beam.
  • the second region overlaps the inorganic sealing film.
  • the resin layer includes a third region irradiated with a laser beam having a third intensity, wherein the first intensity ⁇ the third intensity ⁇ the second intensity, and the third area is the organic seal. It does not overlap the stop film and the inorganic sealing film, and overlaps the inorganic insulating film.
  • the resin layer includes a third region irradiated with a laser beam having a third intensity, If the first strength and the third strength are equivalent (substantially equal), the third strength is less than the second strength, and the third region overlaps with the organic sealing film and the inorganic sealing film And overlaps with the inorganic insulating film.
  • the TFT layer includes a plurality of terminals overlapping the third region.
  • the TFT layer includes an organic interlayer film disposed closer to the OLED layer than the TFT, and the edge of each terminal is covered with the organic interlayer film.
  • the first region overlaps the organic interlayer film.
  • the organic interlayer film has a tensile stress.
  • the second intensity is 1.2 to 2.2 times the first intensity.
  • the first area corresponds to a display unit of one panel, and the second area surrounds the first area.
  • a film is affixed on the upper surface of the sealing layer after the laminate is formed.
  • a flexible base material is attached to the lower surface of the resin layer.
  • the organic sealing film is formed by curing the applied resin.
  • each of the inorganic sealing film and the inorganic insulating film is formed by a CVD method.
  • the resin layer is formed of polyimide.
  • the OLED panel according to aspect 19 includes a resin layer, a TFT layer having an inorganic insulating film, an OLED layer, and a sealing layer having an inorganic sealing film and an organic sealing film on the upper surface side of the flexible substrate.
  • the resin layer includes a first region that overlaps with the inorganic sealing film, the inorganic insulating film, and the organic sealing film, an overlap with the inorganic sealing film and the inorganic insulating film, and the organic layer There are two regions that do not overlap with the sealing film, and a recess is formed in at least a part of the second region.
  • the organic sealing film is formed of a photosensitive organic resin material.
  • the end of the organic sealing film is covered with the inorganic sealing film.
  • the resin layer has a third region that does not overlap the organic sealing film and the inorganic sealing film and overlaps the inorganic insulating film, and the TFT layer overlaps the third region. Includes multiple terminals.
  • the TFT layer includes an organic interlayer film disposed closer to the OLED layer than the TFT, and the edge of each terminal is covered with the organic interlayer film.
  • the first area corresponds to a display unit of one panel, and the second area surrounds the first area.
  • the recess is an ablation mark.
  • An apparatus for manufacturing an OLED panel which performs a step of separating the light transmissive substrate and the laminate by irradiating a resin layer in contact with the light transmissive substrate with a laser beam, wherein the resin layer has a first strength.
  • the present invention is not limited to the above-described embodiments, and embodiments obtained by appropriately combining technical means disclosed in different embodiments are also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

透光性基板の上面側に、樹脂層(12)と、TFT層(4)と、OLED層(5)と、有機封止膜(27)を有する封止層とを備える積層体を形成した後に、前記透光性基板に接する樹脂層にレーザ光を照射して前記透光性基板と前記積層体とを分離するOLEDパネルの製造方法であって、前記樹脂層は、第1強度P1のレーザ光が照射される第1領域(X)と、前記第1強度よりも大きな第2強度P2のレーザ光が照射される第2領域(Y)とを含み、前記第1領域は有機封止膜(27)と重なり、前記第2領域は前記有機封止膜(27)と重ならない。

Description

OLEDパネルの製造方法、OLEDパネル、OLEDパネルの製造装置
 本発明はOLEDパネルに関する。
 特許文献1には、透光性の支持基板上にOLED層を含む積層体を形成した後に、支持基板側からレーザを照射し、支持基板と積層体とを分離する方法が記載されている。
日本国公開特許公報「特開2015-195140号(2015年11月5日公開)」
 上記のように積層体を支持基板から分離すると、積層体に皺やカールが生じるという問題がある。
 本発明の一態様に係るOLEDパネルの製造方法は、透光性基板の上面側に、樹脂層と、TFT層と、OLED層と、有機封止膜を含む封止層とを備える積層体を形成した後に、前記透光性基板と接する前記樹脂層にレーザ光を照射して前記透光性基板と前記積層体とを分離するOLEDパネルの製造方法であって、前記樹脂層は、第1強度のレーザ光が照射される第1領域と、前記第1強度よりも大きな第2強度のレーザ光が照射される第2領域とを含み、前記第1領域は前記有機封止膜と重なり、前記第2領域は前記有機封止膜と重ならない。
 本発明の一態様によれば、透光性基板から分離した後の積層体に皺やカールが生じるおそれを低減することができる。
実施形態1に係るOLEDパネルの製造方法の一例を示すフローチャートである。 ガラス基板(マザーガラス)に形成された複数の積層体を示す断面図(a)および平面図(b)である。 図2の各積層体の構成例を示す断面図である。 実施形態1にかかるレーザの照射およびガラス基板の剥離を示す模式図である。 実施形態1にかかる領域ごとのレーザ光の強度を示す平面図である。 実施形態2にかかるレーザの照射およびガラス基板の剥離を示す模式図である。 実施形態2にかかる領域ごとのレーザ光の強度を示す平面図である。 実施形態2にの変形例を示す平面図である。 実施形態3にかかるレーザの照射およびガラス基板の剥離を示す模式図である。 実施形態3にかかる領域ごとのレーザ光の強度を示す平面図である。 本実施形態により得られるOLEDパネルの構成を示す断面図(a)(b)および平面図(c)である。
 図1は、実施形態1に係るOLEDパネルの製造方法の一例を示すフローチャートであり、図2は、マザーガラスであるガラス基板に形成された複数の積層体を示す断面図(a)および平面図(b)であり、図3は、各積層体の構成例を示す断面図である。
 図1~3に示すように、まず、ガラス基板50(透光性基板)上に樹脂層12を形成する(ステップS1)。次いで、防湿層3を形成する(ステップS2)。次いで、無機絶縁膜16・18・20および有機層間膜21を含むTFT層4を形成する(ステップS3)。図2に示す無機絶縁膜4Fは、図3(a)の無機絶縁膜16・18・20少なくとも1つを含むものとする。次いで、OLED素子を含むOLED層5を形成する(ステップS4)。次いで、無機封止膜26・28および有機封止膜27を含む封止層6を形成し、複数の積層体7とする(ステップS5)。次いで、複数の積層体7上に接着層8を介して上面フィルム9を貼り付ける(ステップS6)。
 次いで、ガラス基板50越しに樹脂層12の下面にレーザ光を照射する(ステップS7)。ここでは、ガラス基板50の下面に照射され、ガラス基板50を透過したレーザ光を樹脂層12が吸収することで、樹脂層12の下面(ガラス基板50との界面)がアブレーションによって変質し、樹脂層12およびガラス基板50間の結合力が低下する。後述のとおり、ステップS7については、樹脂層12に、第1強度のレーザ光が照射される第1領域と、第1強度よりも大きな第2強度のレーザ光が照射される第2領域とが含まれ、第1領域は有機封止膜27と重なり、第2領域は有機封止膜27と重ならない。
 次いで、ガラス基板50を積層体7から剥離する(ステップS8)。次いで、積層体7に下面フィルムを貼り付ける(ステップS9)。次いで、複数の積層体7から上面フィルム9を剥離する(ステップS10)。次いで、複数の積層体7が形成されたガラス基板50をカットラインC(図3(c)参照)で分断し、個片化されたOLEDパネルを得る(ステップS11)。なお、これら各ステップはOLEDパネルの製造装置が行う。
 図2・3に示すように、ガラス基板50上に形成される積層体7は、樹脂層12と、樹脂層12の上側に形成される防湿層3と、防湿層3の上側に形成されるTFT層4と、TFT層4の上側に形成されるOLED層5と、OLED層5の上側に形成される封止層6とを備え、可撓性を有している。
 樹脂膜12を形成する材料としては、例えば、ポリイミド、ポリエチレン、ポリアミド等が挙げられる。樹脂膜12は、例えば、これらの材料又はその前駆体を、溶剤に溶解させて液体状とし、スリットコート又はスピンコートによりガラス基板50上に塗布して焼成することで形成することができる。樹脂膜12の厚さは、例えば、2μm~50μmである。
 防湿層3は、OLEDパネルの使用時に、水分や不純物が、TFT層4やOLED層5に到達することを防ぐ層であり、例えば、CVDにより形成される、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。防湿層3の厚さは、例えば、50nm~1500nm以下である。
 TFT層4は、半導体膜15と、半導体膜15の上側に形成される無機絶縁膜16(ゲート絶縁膜)と、ゲート絶縁膜16の上側に形成されるゲート電極Gと、ゲート電極Gの上側に形成される無機絶縁膜18・20(パッシベーション膜)と、無機絶縁膜20の上側に形成される、ソース電極S、ドレイン電極Dおよび端子TMと、ソース電極Sおよびドレイン電極Dの上側に形成される有機層間膜21とを含む。半導体膜15、無機絶縁膜16、ゲート電極G、無機絶縁膜18・20、ソース電極Sおよびドレイン電極Dは、薄層トランジスタ(TFT)を構成する。
 TFT層4の端子部4Tには外部接続用の複数の端子TMが形成される。端子TMは、引き回し配線を介して例えばゲート電極Gと電気的に接続される。端子部4T上にはOLED素子層5および封止層6は形成されないが、端子TMのエッジは、有機層間膜21で覆われる。
 半導体膜15は、例えば低温ポリシリコン(LPTS)あるいは酸化物半導体で構成される。ゲート絶縁膜16は、例えば、CVD法によって形成された、酸化シリコン(SiOx)膜あるいは窒化シリコン(SiNx)膜またはこれらの積層膜によって構成することができる。ゲート電極G、ソース電極S、ドレイン電極D、および端子Tは、例えば、アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)の少なくとも1つを含む金属の単層膜あるいは積層膜によって構成される。なお、図2では、半導体膜15をチャネルとするTFTがトップゲート構造で示されているが、ボトムゲート構造でもよい(例えば、TFTのチャネルが酸化物半導体の場合)。
 無機絶縁膜18・20は、例えば、CVD法によって形成された、酸化シリコン(SiOx)膜あるいは窒化シリコン(SiNx)膜またはこれらの積層膜によって構成することができる。有機層間膜21は、ポリイミド、アクリル等の塗布可能な感光性有機材料によって構成することができる。アノード電極22は、例えばITO(Indium Tin Oxide)とAgを含む合金との積層によって構成され、光反射性を有する。
 OLED層5は、有機層間膜21の上側に形成されるアノード電極22と、表示領域DCのサブピクセルを規定する隔壁23cと、非表示領域NAに形成されるバンク23bと、アノード電極22の上側に形成される有機EL(有機エレクトロルミネッセンス)層24と、有機EL層24の上側に形成されるカソード電極25とを含む。
 隔壁23cおよびバンク23bは、ポリイミド、エポキシ、アクリル等の塗布可能な感光性有機材料を用いて、例えば同一工程で形成することができる。非表示領域NAのバンク23bは無機絶縁膜20上に形成される。バンク23bは有機封止膜27のエッジを規定する。
 有機EL層24は、蒸着法あるいはインクジェット法によって、隔壁23cによって囲まれた領域(サブピクセル領域)に形成される。有機EL層24は、例えば、下層側から順に、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層を積層することで構成される。カソード電極25は、ITO(Indium Tin Oxide)、IZO(Indium Zincum Oxide)等の透明金属で構成することができる。
 OLED素子層5では、アノード電極22およびカソード電極25間の駆動電流によって正孔と電子が有機EL層24内で再結合し、これによって生じたエキシトンが基底状態に落ちることによって、光が放出される。
 封止層6は、隔壁23cおよびカソード電極25を覆う第1無機封止膜26と、第1無機封止膜26を覆う有機封止膜27と、有機封止膜27を覆う第2無機封止膜28とを含む。
 第1無機封止膜26および第2無機封止膜28はそれぞれ、例えば、CVDにより形成される、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。有機封止膜27は、第1無機封止膜26および第2無機封止膜28よりも厚い、透光性の有機絶縁膜であり、ポリイミド、アクリル等の塗布可能な感光性有機材料によって構成することができる。例えば、このような有機材料を含むインクを第1無機封止膜26上にインクジェット塗布した後、UV照射により硬化させる。封止層6は、OLED素子層5を覆い、水、酸素等の異物のOLED素子層5への浸透を防いでいる。
 なお、上面フィルム9は、接着剤8を介して封止層6上に貼り付けられ、ガラス基板50を剥離した時の支持材として機能する。その材料として、例えば、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、COP(シクロオレフィンポリマー)、PI(ポリイミド)、PC(ポリカーボネート)、PE(ポリエチレン)、アラミド等が挙げられる。
 下面フィルムは、ガラス基板50を剥離した積層体7の下面に貼り付けることで、柔軟性に優れたOLEDパネルを製造するためのものである。下面フィルムは可撓性の樹脂材料により形成されている。このような樹脂材料として、例えば、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、COP(シクロオレフィンポリマー)、PI(ポリイミド)、PC(ポリカーボネート)、PE(ポリエチレン)、アラミド等が挙げられる。
 図4は、図1のステップS7~S8にかかるレーザの照射およびガラス基板の剥離を示す模式図である。
 照射するレーザ光の波長は、脂膜12が吸収し、ガラス基板50との界面を変質させるものであればよい。したがって、樹脂膜12として上述したような材料を使用する場合、レーザ光の波長は、300nm以上、355nm以下であることが好ましく、308nm、343nm又は355nmであることがより好ましい。このような波長のレーザ光として、例えば、エキシマレーザ(308nm)、YAGレーザ(343nm、355nm)等が挙げられる。
 ここで、ガラス基板50から分離された積層体7は、分離前の積層体7の各膜が有する応力に起因して皺やカールが生じることがある。
 この応力には、膜を縮める方向の外力に応じる力である圧縮応力(単位:パスカル)と、膜を引っ張る方向の外力に応じる力である引っ張り応力(単位:パスカル)とがあり、一般に、圧縮応力をマイナスの値、引っ張り応力をプラスの値で表す。
 圧縮応力を有する膜は、外力がなくなる(圧縮応力が開放される)と伸長し、引っ張り応力を有する膜は、外力がなくなる(引っ張り応力が開放される)と縮む。成膜時に生じる応力は、成膜する物質、成膜条件および成膜する下地等によって決まる。
 図4(a)の積層体7では特に、TFT層4の無機絶縁膜4F並びに封止層6の第1無機封止膜26および第2無機封止膜28に圧縮応力が生じる。すなわち、無機絶縁膜4Fと第1無機封止膜26および第2無機封止膜28とが重畳する箇所には大きな圧縮応力(-)が生じる。一方、UV照射によって収縮硬化する有機封止膜27には引っ張り応力(+)が生じる。積層体7の内側部分(OLED層5が形成されている表示部含む)については、有機封止膜27が形成されているため、ガラス基板50を剥離しても、無機膜(無機絶縁膜F、第1無機封止膜26および第2無機封止膜28)の圧縮応力(-)と、封止有機膜27の引っ張り応力(+)とが相殺され、透皺やカールは生じにくい。
しかしながら、外周部分には、有機封止膜27が形成されていないため、無機膜(特に、無機絶縁膜F、第1無機封止膜26および第2無機封止膜28)の圧縮応力が相殺されず、ガラス基板50の剥離によって無機膜の圧縮応力が開放されると当該外周部分が伸長し、皺やカールが生じてしまう。積層体7に皺やカールが生じると、その後のフレキシブルフィルムの貼り合わせや、運搬が困難になり、OLEDパネルの製造効率が低下するという問題がある。
 〔実施形態1〕
 図4は、実施形態1にかかるレーザの照射およびガラス基板の剥離を示す模式図であり、図5は、実施形態1にかかる領域ごとのレーザ光の強度を示す平面図である。
 実施形態1では、図4(a)・図5に示すように、樹脂層12の領域X(樹脂層12および有機封止膜27が重畳する領域)を、強度S1のレーザ光を照射する第1領域に設定し、樹脂層12の領域Y(樹脂層12および有機封止膜27が重ならない領域)を強度S2(>S1)のレーザ光を照射する第2領域に設定している。レーザ光の強度S1・S2は、例えば、単位面積当たりのジュール量とする。
 こうすれば、図4(b)に示すように、レーザ光の照射後に、樹脂層12の領域Xでは応力が変化せず(0→0)、樹脂層12の領域Yには強度S2のレーザ光によって大きな引っ張り応力(+)が生じるため、図4(c)のガラス基板50剥離時に開放された、無機絶縁膜4F並びに第1無機封止膜26および第2無機封止膜28の圧縮応力(-)が、樹脂層12の領域Yの引っ張り応力(+)によって相殺され、積層体7に生じうる皺やカールを低減することができる。なお、樹脂膜12の領域Yの少なくとも一部には、レーザーアブレーション痕が形成されうる。
 エキシマレーザおよびYAGレーザのようなパルスレーザーのレーザ光の強度は、その出力により決定されるものであるため、レーザ光の出力を変化させてエネルギー密度(mJ/cmを異ならせることにより、レーザ光の強度を変化させることができる。
 レーザ光の強度S1については、ガラス基板50および樹脂層12間の接着力を、後工程においてガラス基板50を剥離することができる値まで低下させる大きさとし、レーザ光の強度S2については、無機絶縁膜4F並びに第1無機封止膜26および第2無機封止膜28の圧縮応力に対応する引っ張り応力を樹脂層12に与えられる大きさとする。
 レーザ光の強度S1に対するレーザ光の強度S2の比は、例えば1.2~2.2である。レーザ光の強度S1が100mJ/cmである場合に、レーザ光の強度S2を、150mJ/cm以上、200mJ/cm以下とする。
 〔実施形態2〕
 図6は、実施形態2にかかるレーザの照射およびガラス基板の剥離を示す模式図であり、図7は、実施形態2にかかる領域ごとのレーザ光の強度を示す平面図である。
 実施形態2では、図6(a)・図7に示すように、樹脂層12の領域X(樹脂層12と、有機封止膜27、TFT層4の無機絶縁膜4F、並びに第1無機封止膜26および第2無機封止膜28とが重畳する領域)を、強度S1のレーザ光を照射する第1領域とし、樹脂層12の領域Y(樹脂層12と有機封止膜27とが重畳せず、樹脂層12と、TFT層4の無機絶縁膜4F、並びに第1無機封止膜26および第2無機封止膜28とが重畳する領域)を、強度S2のレーザ光を照射する第2領域とし、樹脂層12の領域Z(樹脂層12と、有機封止膜27並びに第1無機封止膜26および第2無機封止膜28とが重畳せず、樹脂層12とTFT層4の無機絶縁膜4Fとが重畳する領域)を、強度S3のレーザ光を照射する第3領域とする。ただし、強度S1<強度S3<強度S2である。
 こうすれば、図6(b)に示すように、レーザ光の照射後に、樹脂層12の領域Xでは応力が変化せず(0→0)、樹脂層12の領域Yには強度S2のレーザ光によって大きな引っ張り応力(+)が生じ、樹脂層12の領域Zには強度S3のレーザ光によって中程度の引っ張り応力(+)が生じるため、図6(c)のガラス基板50剥離時に開放された、無機絶縁膜4F並びに第1無機封止膜26および第2無機封止膜28の圧縮応力(-)が、樹脂層12の領域Y・Zの引っ張り応力(+)によって相殺され、積層体7に生じうる皺やカールを低減することができる。なお、樹脂膜12の領域Yの少なくとも一部には、レーザーアブレーション痕が形成されうる(後述)。
 なお、図7では、樹脂層12の領域Yの全域を強度S2のレーザ光を照射する第2領域に設定しているがこれに限定されない。図8(a)のように、領域Yの内側領域Yaに強度S1のレーザ光を照射し、領域Yの外側領域Ybに強度S2のレーザ光を照射することもできる。また、図8(b)のように、領域Yの中央領域Ycに強度S2のレーザ光を照射し、他の領域(中央領域Ycの両側の領域)Ygに強度S1のレーザ光を照射することもできる。
 〔実施形態3〕
 図8は、実施形態3にかかるレーザの照射およびガラス基板の剥離を示す模式図であり、図9は、実施形態3にかかる領域ごとのレーザ光の強度を示す平面図である。
 実施形態3では、図8(a)・図9に示すように、樹脂層12の領域X(有機封止膜27、TFT層4の無機絶縁膜4F、並びに第1無機封止膜26および第2無機封止膜28と重畳する領域)を、強度S1のレーザ光を照射する第1領域とし、樹脂層12の領域Y(有機封止膜27と重畳せず、TFT層4の無機絶縁膜4F、並びに第1無機封止膜26および第2無機封止膜28と重畳する領域)を、強度S2のレーザ光を照射する第2領域とし、樹脂層12の領域Z(有機封止膜27並びに第1無機封止膜26および第2無機封止膜28と重畳せず、TFT層4の無機絶縁膜4Fと重畳する領域)を、強度S1のレーザ光を照射する第1領域とする。ただし、強度S1<強度S2である。
 こうすれば、図6(b)に示すように、レーザ光の照射後に、樹脂層12の領域Xでは応力が変化せず(0→0)、樹脂層12の領域Yには強度S2のレーザ光によって大きな引っ張り応力(+)が生じ、樹脂層12の領域Zでは応力が変化しない(0→0)ため、図8(c)のガラス基板50剥離時に開放された、無機絶縁膜4F並びに第1無機封止膜26および第2無機封止膜28の圧縮応力(-)が、樹脂層12の領域Yの引っ張り応力(+)によって相殺され、積層体7に生じうる皺やカールを低減することができる。なお、樹脂膜12の領域Yの少なくとも一部には、レーザーアブレーション痕が形成されうる(後述)。
 なお、図10では、樹脂層12の領域Yの全域を強度S2のレーザ光を照射する第2領域に設定しているがこれに限定されない。図8(a)のように、領域Yの内側領域Yaに強度S1のレーザ光を照射し、領域Yの外側領域Ybに強度S2のレーザ光を照射することもできる。また、図8(b)のように、領域Yの中央領域Ycに強度S2のレーザ光を照射し、他の領域(中央領域Ycの両側の領域)Ygに強度S1のレーザ光を照射することもできる。
 〔実施形態1~3について〕
 図11は、前記実施形態により得られるOLEDパネルの構成を示す断面図である。OLEDパネル2は、樹脂層12と、防湿層3と、無機絶縁膜16・18・20を含むTFT層4と、OLED層5と、有機封止膜27並びに第1無機封止膜26および第2無機封止膜28を含む封止層6とを備え、樹脂層12のの下面に接着層11を介して下面フィルム10が張り付けられ、封止層6の上面に接着層29を介して機能性フィルム30が張り付けられた構成であり、可撓性を有している。機能性フィルム30は、上面フィルムの剥離(図1のS10参照)の後に貼り付けられるものであり、保護機能、光学補償機能、タッチセンサ機能の少なくとも1つを有していてもよい。
 例えば実施形態2・3によれば、図11(a)のように、樹脂層12の領域X(有機封止膜27、TFT層4の無機絶縁膜16・18・20、並びに第1無機封止膜26および第2無機封止膜28と重畳する領域)に強度S1のレーザ光が照射され、樹脂層12の領域Y(有機封止膜27と重畳せず、TFT層4の無機絶縁膜16・18・20並びに第1無機封止膜26および第2無機封止膜28と重畳する領域)に強度S2のレーザ光が照射され、樹脂層12の領域Z(有機封止膜27並びに第1無機封止膜26および第2無機封止膜28と重畳せず、TFT層4の無機絶縁膜16・18・20と重畳する領域)に強度S3のレーザ光が照射される。
 そして、強度S1<強度S3<強度S2であるため、図11(a)(c)のように、樹脂層12の領域Y(特に接着層11との界面)には、レーザーアブレーション痕である凹部12Jが形成される。凹部12Jは強度S2のレーザ光が照射された領域に生じる。よって、領域Yの全域に強度S2のレーザ光が照射された場合には領域Yのほぼ全域に凹部12Jが形成され、領域Yの一部(中央部や外側部)にのみ強度S2のレーザ光が照射された場合には領域Yの一部(中央部や外側部)にだけ凹部12Jが形成されることになる(図8参照)。
 TFT層4には端子部4Tが含まれ、端子部4Tは、有機封止膜27並びに第1無機封止膜26および第2無機封止膜28と重畳せず、TFT層4の無機絶縁膜16・18・20と重畳する。すなわち、端子部4Tは樹脂層12の領域Zと重畳する。端子TMのエッジは、有機層間膜21で覆われる。
 有機層間膜21については、水を浸透させ易いため、第1無機封止膜26および第2無機封止膜28と重なる領域で一旦止め、その端面21pを第1無機封止膜26および第2無機封止膜28で覆うことが望ましい。
 〔まとめ〕
 態様1のOLEDパネルの製造方法は、透光性基板の上面側に、樹脂層と、TFT層と、OLED層と、有機封止膜を有する封止層とを備える積層体を形成した後に、前記透光性基板に接する樹脂層にレーザ光を照射して前記透光性基板と前記積層体とを分離するOLEDパネルの製造方法であって、前記樹脂層は、第1強度のレーザ光が照射される第1領域と、前記第1強度よりも大きな第2強度のレーザ光が照射される第2領域とを含み、前記第1領域は前記有機封止膜と重なり、前記第2領域は前記有機封止膜と重ならない。
 態様2では、前記封止層は無機封止膜を含み、前記TFT層は無機絶縁膜を含み、前記第1領域が前記無機封止膜および前記無機絶縁膜と重なり、前記第2領域が前記無機絶縁膜と重なる。
 態様3では、前記積層体を形成したときに、前記有機封止膜は引っ張り応力を有し、前記無機封止膜および前記無機絶縁膜は圧縮応力を有する。
 態様4では、前記第2強度のレーザ光を照射することで前記樹脂層の第2領域に引っ張り応力を生じさせる。
 態様5では、前記第2領域が前記無機封止膜と重なる。
 態様6では、前記樹脂層は、第3強度のレーザ光が照射される第3領域を含み、前記第1強度≦前記第3強度<前記第2強度であり、前記第3領域は前記有機封止膜および前記無機封止膜と重ならず、かつ前記無機絶縁膜と重なる。
 態様7では、前記樹脂層は、第3強度のレーザ光が照射される第3領域を含み、
 前記第1強度および前記第3強度が同等(実質的に等しい)かつ、前記第3強度<前記第2強度であり、前記第3領域は前記有機封止膜および前記無機封止膜と重ならず、かつ前記無機絶縁膜と重なる。
 態様8では、前記TFT層は、前記第3領域と重なる複数の端子を含む。
 態様9では、前記TFT層は、TFTよりもOLED層側に配された有機層間膜を含み、前記各端子のエッジが前記有機層間膜で覆われている。
 態様10では、前記第1領域は前記有機層間膜と重なる。
 態様11では、前記積層体を形成したときに、前記有機層間膜は引っ張り応力を有する。
 態様12では、前記第2強度を、前記第1強度の1.2~2.2倍とする。
 態様13では、前記第1領域は1つのパネルの表示部に対応し、前記第2領域が前記第1領域を取り囲む。
 態様14では、前記積層体の形成後にフィルムを前記封止層の上面に貼り付ける。
 態様15では、前記透光性基板と前記積層体との分離後に、可撓性基材を前記樹脂層の下面に貼り付ける。
 態様16では、塗布した樹脂を硬化させることで前記有機封止膜を形成する。
 態様17では、前記無機封止膜および前記無機絶縁膜それぞれをCVD法で形成する。
 態様18では、前記樹脂層がポリイミドで形成されている。
 態様19のOLEDパネルは、可撓性基材の上面側に、樹脂層と、無機絶縁膜を有するTFT層と、OLED層と、無機封止膜および有機封止膜を有する封止層とを含む積層体を備え、前記樹脂層は、前記無機封止膜および前記無機絶縁膜並びに前記有機封止膜と重なる第1領域と、前記無機封止膜および前記無機絶縁膜と重なり、かつ前記有機封止膜と重ならない2領域とを有し、前記第2領域の少なくとも一部に凹部が形成されている。
 態様20では、前記有機封止膜が感光性有機樹脂材料で形成されている。
 態様21では、前記有機封止膜の端部が前記無機封止膜で覆われている。
 態様22では、前記樹脂層は、前記有機封止膜および前記無機封止膜と重ならず、かつ前記無機絶縁膜と重なる第3領域を有し、前記TFT層は、前記第3領域と重なる複数の端子を含む。
 態様23では、前記TFT層は、TFTよりもOLED層側に配された有機層間膜を含み、前記各端子のエッジが前記有機層間膜で覆われている。
 態様24では、前記第1領域は1つのパネルの表示部に対応し、前記第2領域が前記第1領域を取り囲む。
 態様25では、前記凹部はアブレーション痕である。
 態様26のOLEDパネルの製造装置は、透光性基板の上面側に、樹脂層と、TFT層と、OLED層と、有機封止膜を有する封止層とを備える積層体を形成した後に、前記透光性基板に接する樹脂層にレーザ光を照射して前記透光性基板と前記積層体とを分離する工程を行うOLEDパネルの製造装置であって、前記樹脂層には、第1強度のレーザ光が照射される第1領域と、前記第1強度よりも大きな第2強度のレーザ光が照射される第2領域とが含まれ、前記第1領域は前記有機封止膜と重なり、前記第2領域は前記有機封止膜と重ならない。
 本発明は上述した実施形態に限定されるものではなく、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 2  OLEDパネル
 4  TFT層
 5  OLED層
 6  封止層
 7  積層体
 10  下面フィルム
 12  樹脂膜
 12J 凹部(レーザーアブレーション痕)
 16 無機絶縁膜
 18 無機絶縁膜
 20 無機絶縁膜
 21 有機層間膜
 26 第1無機封止膜
 27 有機封止膜
 28 第2無機封止膜
 50  ガラス基板
 4T 端子部
 TM 端子

Claims (26)

  1.  透光性基板の上面側に、樹脂層と、TFT層と、OLED層と、有機封止膜を有する封止層とを備える積層体を形成した後に、前記透光性基板に接する樹脂層にレーザ光を照射して前記透光性基板と前記積層体とを分離するOLEDパネルの製造方法であって、
     前記樹脂層は、第1強度のレーザ光が照射される第1領域と、前記第1強度よりも大きな第2強度のレーザ光が照射される第2領域とを含み、
     前記第1領域は前記有機封止膜と重なり、前記第2領域は前記有機封止膜と重ならないOLEDパネルの製造方法。
  2.  前記封止層は無機封止膜を含み、前記TFT層は無機絶縁膜を含み、
     前記第1領域が前記無機封止膜および前記無機絶縁膜と重なり、前記第2領域が前記無機絶縁膜と重なる請求項1に記載のOLEDパネルの製造方法。
  3.  前記積層体を形成したときに、前記有機封止膜は引っ張り応力を有し、前記無機封止膜および前記無機絶縁膜は圧縮応力を有する請求項2に記載のOLEDパネルの製造方法。
  4.  前記第2強度のレーザ光を照射することで前記樹脂層の第2領域に引っ張り応力を生じさせる請求項1~3のいずれか1項に記載のOLEDパネルの製造方法。
  5.  前記第2領域が前記無機封止膜と重なる請求項2に記載のOLEDパネルの製造方法。
  6.  前記樹脂層は、第3強度のレーザ光が照射される第3領域を含み、
     前記第1強度≦前記第3強度<前記第2強度であり、
     前記第3領域は前記有機封止膜および前記無機封止膜と重ならず、かつ前記無機絶縁膜と重なる請求項5に記載のOLEDパネルの製造方法。
  7.  前記樹脂層は、第3強度のレーザ光が照射される第3領域を含み、
     前記第1強度および前記第3強度が同等かつ、前記第3強度<前記第2強度であり、
     前記第3領域は前記有機封止膜および前記無機封止膜と重ならず、かつ前記無機絶縁膜と重なる請求項5に記載のOLEDパネルの製造方法。
  8.  前記TFT層は、前記第3領域と重なる複数の端子を含む請求項6に記載のOLEDパネルの製造方法。
  9.  前記TFT層は、TFTよりもOLED層側に配された有機層間膜を含み、前記各端子のエッジが前記有機層間膜で覆われている請求項8に記載のOLEDパネルの製造方法。
  10.  前記第1領域は前記有機層間膜と重なる請求項9に記載のOLEDパネルの製造方法。
  11.  前記積層体を形成したときに、前記有機層間膜は引っ張り応力を有する請求項9に記載のOLEDパネルの製造方法。
  12.  前記第2強度を、前記第1強度の1.2~2.2倍とする請求項1~11のいずれか1項に記載のOLEDパネルの製造方法。
  13.  前記第1領域は1つのパネルの表示部に対応し、前記第2領域が前記第1領域を取り囲む請求項1~12のいずれか1項に記載のOLEDパネルの製造方法。
  14.  前記積層体の形成後にフィルムを前記封止層の上面に貼り付ける請求項1~13のいずれか1項に記載のOLEDパネルの製造方法。
  15.  前記透光性基板と前記積層体との分離後に、可撓性基材を前記樹脂層の下面に貼り付ける請求項1~14のいずれか1項に記載のOLEDパネルの製造方法。
  16.  塗布した樹脂を硬化させることで前記有機封止膜を形成する請求項3に記載のOLEDパネルの製造方法。
  17.  前記無機封止膜および前記無機絶縁膜それぞれをCVD法で形成する請求項3に記載のOLEDパネルの製造方法。
  18.  前記樹脂層がポリイミドで形成されている請求項1~17のいずれか1項に記載のOLEDパネルの製造方法。
  19.  可撓性基材の上面側に、樹脂層と、無機絶縁膜を有するTFT層と、OLED層と、無機封止膜および有機封止膜を有する封止層とを含む積層体を備え、
     前記樹脂層は、前記無機封止膜および前記無機絶縁膜並びに前記有機封止膜と重なる第1領域と、前記無機封止膜および前記無機絶縁膜と重なり、かつ前記有機封止膜と重ならない2領域とを有し、
     前記第2領域の少なくとも一部に凹部が形成されているOLEDパネル。
  20.  前記有機封止膜が感光性有機樹脂材料で形成されている請求項19記載のOLEDパネ。
  21.  前記有機封止膜の端部が前記無機封止膜で覆われている請求項19または20記載のOLEDパネル。
  22.  前記樹脂層は、前記有機封止膜および前記無機封止膜と重ならず、かつ前記無機絶縁膜と重なる第3領域を有し、
     前記TFT層は、前記第3領域と重なる複数の端子を含む請求項19~21のいずれか1項に記載のOLEDパネル。
  23.  前記TFT層は、TFTよりもOLED層側に配された有機層間膜を含み、前記各端子のエッジが前記有機層間膜で覆われている請求項22に記載のOLEDパネル。
  24.  前記第1領域は1つのパネルの表示部に対応し、前記第2領域が前記第1領域を取り囲む請求項19~23のいずれか1項に記載のOLEDパネル。
  25.  前記凹部はアブレーション痕である請求項19~24のいずれか1項に記載のOLEDパネル。
  26.  透光性基板の上面側に、樹脂層と、TFT層と、OLED層と、有機封止膜を有する封止層とを備える積層体を形成した後に、前記透光性基板に接する樹脂層にレーザ光を照射して前記透光性基板と前記積層体とを分離する工程を行うOLEDパネルの製造装置であって、
     前記樹脂層には、第1強度のレーザ光が照射される第1領域と、前記第1強度よりも大きな第2強度のレーザ光が照射される第2領域とが含まれ、
     前記第1領域は前記有機封止膜と重なり、前記第2領域は前記有機封止膜と重ならないOLEDパネルの製造装置。
PCT/JP2017/007154 2017-02-24 2017-02-24 Oledパネルの製造方法、oledパネル、oledパネルの製造装置 WO2018154721A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780086899.5A CN110326363A (zh) 2017-02-24 2017-02-24 Oled面板的制造方法、oled面板、oled面板的制造装置
PCT/JP2017/007154 WO2018154721A1 (ja) 2017-02-24 2017-02-24 Oledパネルの製造方法、oledパネル、oledパネルの製造装置
US15/761,444 US10374160B2 (en) 2017-02-24 2017-02-24 Production method for OLED panel, and production apparatus for OLED panel
US16/441,055 US10714689B2 (en) 2017-02-24 2019-06-14 Flexible OLED panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/007154 WO2018154721A1 (ja) 2017-02-24 2017-02-24 Oledパネルの製造方法、oledパネル、oledパネルの製造装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/761,444 A-371-Of-International US10374160B2 (en) 2017-02-24 2017-02-24 Production method for OLED panel, and production apparatus for OLED panel
US16/441,055 Continuation US10714689B2 (en) 2017-02-24 2019-06-14 Flexible OLED panel

Publications (1)

Publication Number Publication Date
WO2018154721A1 true WO2018154721A1 (ja) 2018-08-30

Family

ID=63252543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007154 WO2018154721A1 (ja) 2017-02-24 2017-02-24 Oledパネルの製造方法、oledパネル、oledパネルの製造装置

Country Status (3)

Country Link
US (2) US10374160B2 (ja)
CN (1) CN110326363A (ja)
WO (1) WO2018154721A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109638157A (zh) * 2018-12-14 2019-04-16 合肥鑫晟光电科技有限公司 显示面板母版、柔性显示面板及制备方法和显示装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101974086B1 (ko) * 2016-09-30 2019-05-02 삼성디스플레이 주식회사 표시모듈
KR20180100013A (ko) * 2017-02-28 2018-09-06 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 제조 방법
US10862075B2 (en) * 2017-03-30 2020-12-08 Sharp Kabushiki Kaisha Manufacturing method for EL device
US10505155B1 (en) * 2017-10-26 2019-12-10 Sakai Display Products Corporation Method and apparatus for producing flexible OLED device
WO2019082359A1 (ja) * 2017-10-26 2019-05-02 堺ディスプレイプロダクト株式会社 フレキシブルoledデバイスの製造方法および製造装置
JP6333502B1 (ja) * 2017-11-17 2018-05-30 堺ディスプレイプロダクト株式会社 フレキシブルoledデバイスの製造方法および製造装置
CN208848933U (zh) * 2018-08-29 2019-05-10 昆山国显光电有限公司 显示面板以及显示装置
JP7427969B2 (ja) * 2020-01-22 2024-02-06 セイコーエプソン株式会社 電気光学装置および電子機器
CN111681985B (zh) * 2020-06-23 2023-06-23 广东聚华印刷显示技术有限公司 显示面板剥离方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086359A (ja) * 2001-07-03 2003-03-20 Semiconductor Energy Lab Co Ltd 発光装置及び電子機器
WO2013046545A1 (ja) * 2011-09-26 2013-04-04 パナソニック株式会社 発光装置の製造方法および発光装置
JP2014500582A (ja) * 2010-10-25 2014-01-09 ネダーランゼ・オルガニサティ・フォーア・トゥーゲパスト−ナトゥールヴェテンシャッペリーク・オンデルゾエク・ティーエヌオー 有機光電子デバイス、及び、その製造方法
US20140339517A1 (en) * 2013-05-16 2014-11-20 Samsung Display Co., Ltd. Organic light-emitting diode display, an electronic device including the same, and method of manufacturing said organic light-emitting diode display
US20160093827A1 (en) * 2014-09-29 2016-03-31 Lg Display Co., Ltd. Organic light-emitting display device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI264604B (en) * 2001-02-19 2006-10-21 Seiko Epson Corp Active-matrix liquid crystal display and electronic device therefor
TW546857B (en) 2001-07-03 2003-08-11 Semiconductor Energy Lab Light-emitting device, method of manufacturing a light-emitting device, and electronic equipment
CN108393577A (zh) * 2013-12-02 2018-08-14 株式会社半导体能源研究所 显示装置及其制造方法
JP2015195140A (ja) 2014-03-31 2015-11-05 株式会社東芝 フレキシブル有機el表示装置の製造方法
CN105449113B (zh) * 2014-08-14 2018-02-23 固安翌光科技有限公司 一种屏体封装盖、屏体及屏体封装与切割方法
CN105932175B (zh) * 2016-06-28 2019-04-23 京东方科技集团股份有限公司 待封装基板、封装方法、封装结构及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086359A (ja) * 2001-07-03 2003-03-20 Semiconductor Energy Lab Co Ltd 発光装置及び電子機器
JP2014500582A (ja) * 2010-10-25 2014-01-09 ネダーランゼ・オルガニサティ・フォーア・トゥーゲパスト−ナトゥールヴェテンシャッペリーク・オンデルゾエク・ティーエヌオー 有機光電子デバイス、及び、その製造方法
WO2013046545A1 (ja) * 2011-09-26 2013-04-04 パナソニック株式会社 発光装置の製造方法および発光装置
US20140339517A1 (en) * 2013-05-16 2014-11-20 Samsung Display Co., Ltd. Organic light-emitting diode display, an electronic device including the same, and method of manufacturing said organic light-emitting diode display
US20160093827A1 (en) * 2014-09-29 2016-03-31 Lg Display Co., Ltd. Organic light-emitting display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109638157A (zh) * 2018-12-14 2019-04-16 合肥鑫晟光电科技有限公司 显示面板母版、柔性显示面板及制备方法和显示装置
CN109638157B (zh) * 2018-12-14 2023-05-12 合肥鑫晟光电科技有限公司 显示面板母版、柔性显示面板及制备方法和显示装置

Also Published As

Publication number Publication date
US20190296237A1 (en) 2019-09-26
US20190058121A1 (en) 2019-02-21
US10714689B2 (en) 2020-07-14
CN110326363A (zh) 2019-10-11
US10374160B2 (en) 2019-08-06

Similar Documents

Publication Publication Date Title
WO2018154721A1 (ja) Oledパネルの製造方法、oledパネル、oledパネルの製造装置
US10754387B2 (en) Flexible display device
JP2020187998A (ja) 表示装置及びその製造方法
JP6810791B2 (ja) 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置、成膜装置
WO2019030858A1 (ja) 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置
US20190312228A1 (en) Manufacturing method of electro-optical device and electro-optical device
US11800755B2 (en) Display device
CN110214470B (zh) Oled面板
CN111108541B (zh) 可弯曲性显示装置以及可弯曲性显示装置的制造方法
WO2018138823A1 (ja) Oledパネル、oledパネルの製造方法、oledパネルの製造装置
KR102336684B1 (ko) 플렉서블 디스플레이 장치의 제조 방법
WO2018163337A1 (ja) 可撓性表示パネル、可撓性表示装置及び可撓性表示パネルの製造方法
WO2019150503A1 (ja) 表示装置
WO2018179133A1 (ja) 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置、成膜装置、コントローラ
WO2018179132A1 (ja) 表示デバイスの製造方法、表示デバイス、表示デバイスの製造装置、成膜装置
WO2019064591A1 (ja) 表示デバイス、表示デバイスの製造方法
WO2019186845A1 (ja) 表示装置及び表示装置の製造方法
WO2018179216A1 (ja) Elデバイスの製造方法
WO2018179215A1 (ja) 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置、実装装置、コントローラ
WO2018179266A1 (ja) Elデバイスの製造方法及びelデバイスの製造装置
WO2019069352A1 (ja) 表示デバイスの製造方法、表示デバイスの製造装置
WO2018138812A1 (ja) Oledパネルの製造方法、oledパネルの製造装置
WO2019167174A1 (ja) 表示装置
WO2019030819A1 (ja) Elデバイスの製造方法
WO2019038884A1 (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP