WO2018154650A1 - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
WO2018154650A1
WO2018154650A1 PCT/JP2017/006563 JP2017006563W WO2018154650A1 WO 2018154650 A1 WO2018154650 A1 WO 2018154650A1 JP 2017006563 W JP2017006563 W JP 2017006563W WO 2018154650 A1 WO2018154650 A1 WO 2018154650A1
Authority
WO
WIPO (PCT)
Prior art keywords
collecting pipe
header collecting
heat exchanger
heat transfer
refrigerant
Prior art date
Application number
PCT/JP2017/006563
Other languages
English (en)
French (fr)
Inventor
繁佳 松井
教将 上村
発明 孫
洋次 尾中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/006563 priority Critical patent/WO2018154650A1/ja
Priority to JP2017544791A priority patent/JP6230769B1/ja
Publication of WO2018154650A1 publication Critical patent/WO2018154650A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the present invention relates to a flat tube heat exchanger used in an air conditioner such as a packaged air conditioner or a building multi air conditioner.
  • the flat heat transfer tube used in the heat exchanger has a smaller diameter than the circular heat transfer tube, and the number of refrigerant branches increases.
  • a header collecting pipe whose shape is devised is connected to the inlet of the evaporator.
  • the entire inner peripheral surface of the peripheral wall portion of the header collecting pipe is formed by an insertion surface that is curved toward the flat tube side and the flat tube is inserted, and a facing surface that faces the insertion surface
  • This heat exchanger has a maximum length between the line segment X and the opposing surface in the cross section perpendicular to the axis of the header collecting pipe, based on the line segment X connecting the two connection points between the insertion surface and the opposing surface. Is shorter than the maximum length between the line segment X and the insertion surface.
  • the flow path cross-sectional area of the refrigerant formed between the open end of the flat tube and the facing surface is reduced, and the flow rate of the refrigerant is increased, thereby increasing the flow rate of the refrigerant flowing through the header collecting pipe. Even when the flow rate is relatively small, a sufficient refrigerant flow rate can be secured. Thereby, in the header collecting pipe, the liquid refrigerant can be sent up against its own weight, so that the drift of the refrigerant in each flat pipe arranged vertically is suppressed.
  • the cross-sectional shape perpendicular to the axis of the second header collecting pipe connected to the gas line of the refrigerant circuit is a circular shape.
  • the cross-sectional area of the heat transfer pipe occupying the pipe in the portion where the heat transfer pipe is inserted is large in the cross section of the pipe inside the header collecting pipe There is. Therefore, in the header collecting pipe, in the pipe line of the part where the heat transfer pipe is inserted and the pipe line of the part where the heat transfer pipe is not inserted, the width of the expansion and reduction of the cross-sectional area of the flow path through which the refrigerant flows, The refrigerant contracts and expands, and the pressure loss of the refrigerant flowing in the header collecting pipe increases.
  • the present invention has been made in order to solve the above-described problems. Even when a heat transfer tube having the same outer diameter as that of the heat transfer tube used in the cylindrical shape is used, the heat transfer tube is inserted.
  • the present invention provides a heat exchanger in which the width of the cross-sectional area of the flow path through which the refrigerant flows is small and small in the header collecting pipe and the header collecting pipe in the portion where the heat transfer tube is not inserted. .
  • the heat exchanger according to the present invention is arranged in parallel so as to be opposed to each other so that the side surface portions face each other, and a plurality of heat transfer tubes through which the refrigerant flows and a plurality of heat transfer tubes are inserted into the tubes, and communicate with the heat transfer tubes.
  • a header collecting pipe, and the header collecting pipe includes a flat insertion-side plane portion into which ends of the plurality of heat transfer tubes are inserted, an arcuate curved portion facing the insertion-side plane portion, and an insertion-side plane. And connecting the curved portion and the two flat connecting surface portions facing each other.
  • the header collecting pipe includes a flat insertion-side plane portion into which ends of the plurality of heat transfer tubes are inserted, an arc-shaped curved portion facing the insertion-side plane portion, and an insertion side.
  • the flat plate portion and the curved portion are connected to each other and have two flat plate-like connection surface portions facing each other. Therefore, the heat exchanger can make the area of the heat transfer tube inserted in the header collecting pipe smaller than the area of the heat transfer tube inserted in the circular header collecting pipe.
  • the heat exchanger has a cross-sectional area of the flow path through which the refrigerant flows in the header collecting pipe, compared to a heat exchanger having a circular header collecting pipe.
  • the expansion and contraction can be suppressed, and the contraction and expansion of the flow, which is the main factor of refrigerant pressure loss, can be suppressed.
  • FIG. 1 It is the perspective view which expanded a part of heat exchanger concerning Embodiment 1 of the present invention. It is a top view of the heat exchanger of FIG. It is a figure which shows the 1st header collecting pipe of the heat exchanger which concerns on Embodiment 1 of this invention, and the front-end
  • FIG. 1 is an enlarged perspective view of a part of the heat exchanger according to Embodiment 1 of the present invention.
  • the heat exchanger 11 is arranged with an interval so that the side surface portions 12a face each other, and a plurality of heat transfer tubes 12 through which a refrigerant flows and a plurality of heat transfer tubes 12 are inserted into the tubes.
  • a first header collecting pipe 14 communicating with the heat pipe 12.
  • the heat exchanger 11 is arrange
  • the heat transfer tube 12 is, for example, a thin tube such as a flat tube in which a plurality of flow paths are formed.
  • FIG. 1 shows the case where the heat transfer tube 12 connected to the first header collecting tube 14 is a flat tube, it is not limited to this.
  • the heat transfer tube 12 may be a heat transfer tube in which the cross-sectional shape is an elliptical shape.
  • the wind generated by the fan flows between the side surfaces 12 a facing the heat transfer tube 12.
  • a plurality of fins 13 are joined to the heat transfer tube 12 in parallel.
  • the fin 13 is for improving the heat exchange efficiency of air and a refrigerant
  • plate fins and corrugated fins are used as the fins 13, but heat exchange with air is also performed on the surface of the heat transfer tube 12, and thus the heat exchanger 11 does not have to include the fins 13.
  • FIG. 2 is a plan view of the heat exchanger of FIG.
  • the heat transfer tube 12 inserted into the first header collecting tube 14 and the fins 13 joined to the heat transfer tube 12 constitute a first heat exchange part 11a.
  • the heat transfer tube 12 inserted into the second header collecting tube 16 and the fins 13 joined to the heat transfer tube 12 constitute a second heat exchange unit 11b.
  • the 1st heat exchange part 11a and the 2nd heat exchange part 11b are arranged side by side so that the pipe line of the heat exchanger tube 12 may become parallel.
  • the arrangement pitch Lp shown in FIG. 2 is a distance between the first heat exchange part 11a and the second heat exchange part 11b, and is a fin joined to the heat transfer pipe 12 inserted into the first header collecting pipe 14. 13 and the distance between the fin 13 joined to the heat transfer tube 12 inserted into the second header collecting tube 16.
  • the heat exchanger 11 includes a first header collecting pipe 14, a second header collecting pipe 14, a second header collecting pipe 16, and a second header collecting pipe 16.
  • the header collecting pipe 16 is arranged side by side.
  • the first header collecting pipe 14 is configured such that the pipe line extends in the vertical direction.
  • the first header collecting pipe 14 is provided at an outlet when the heat exchanger 11 acts as an evaporator, and is used as a gas header through which a gas refrigerant flows.
  • the second header collecting pipe 16 is configured such that the pipe line extends in the vertical direction.
  • the second header collecting pipe 16 is provided at the inlet when the heat exchanger 11 acts as an evaporator, and is used as a liquid header through which liquid refrigerant flows.
  • FIG. 1 shows a heat exchanger in which the pipe lines of the first header collecting pipe 14 and the second header collecting pipe 16 are configured in the vertical direction.
  • first header collecting pipe 14 and the second header A heat exchanger in which the pipe line of the collecting pipe 16 is configured in the horizontal direction may be used.
  • the first header collecting pipe 14 corresponds to the “header collecting pipe” of the present invention
  • the second header collecting pipe 16 corresponds to the “second header collecting pipe” of the present invention.
  • the heat transfer pipe 12, the fin 13, the first header collecting pipe 14, the refrigerant pipe 15 and the second header collecting pipe 16 are all made of aluminum and are joined by brazing.
  • FIG. 3 is a diagram showing the first header collecting pipe and the tip of the heat transfer pipe in the first header collecting pipe of the heat exchanger according to Embodiment 1 of the present invention.
  • the first header collecting pipe 14 includes a flat plate-like insertion side plane portion 21 into which ends of a plurality of heat transfer tubes are inserted, and an arcuate curved portion 22 facing the insertion side plane portion 21. And the insertion side plane part 21 and the curved part 22 are connected, and it has the two connection surface parts 23 which oppose.
  • the connecting portion 20a shown in FIG. 3 is a portion where the arc-shaped curved portion 22 and the flat connecting surface portion 23 are connected in the inner wall surface portion 20 of the first header collecting pipe 14.
  • the connecting portion 20a is located at both ends of the arcuate curved portion 22. Further, the first header collecting pipe 14 has a corner portion 24 in a connection region between the insertion-side flat surface portion 21 and the connection surface portion 23. In the insertion-side flat portion 21, the insertion-side flat portion 21 and the end portion 25 of the heat transfer tube 12 to be inserted are parallel to each other in a cross section perpendicular to the flow path direction of the first header collecting pipe 14.
  • the maximum distance L max between the insertion-side flat surface portion 21 and the bending portion 22 in the insertion direction of the heat transfer tube 12 in the inner wall surface portion 20 of the first header collecting tube 14 is opposite to each other. It is configured to have a length equal to or greater than the sum of the radius R of a circle whose diameter is the distance between the connection surface portions 23 and the distance L2 between the insertion-side flat surface portion and the end portion 25 of the inserted heat transfer tube. .
  • the distance L1 shown in FIG. 3 is the distance between the imaginary line La connecting the connecting portions 20a and the insertion side plane portion 21 in the pipe of the first header collecting pipe 14, and the first header collecting pipe 14 1 In the inner wall surface portion 20 of the header collecting pipe 14, the length of the connection surface portion 23 in the insertion direction of the heat transfer tube 12 is obtained.
  • a distance L2 shown in FIG. 3 is a distance between the insertion-side flat surface portion 21 and the end portion 25 of the inserted heat transfer tube 12, and the insertion direction of the heat transfer tube 12 inserted in the tube of the first header collecting tube 14 Is the insertion distance.
  • the heat transfer tube 12 is inserted into the insertion-side flat portion 21 of the first header collecting tube 14 so that the distance L2 is about 3 mm. .
  • the first header collecting pipe 14 and the heat transfer pipe 12 are configured such that the distance L1 is larger than the distance L2 or more. Since the insertion side plane portion 21 is joined by brazing with the heat transfer tube 12 inserted, the first header collecting tube 14 is made of clad steel. In addition, the insertion side plane portion 21 is subjected to, for example, burring.
  • the distance Lt shown in FIG. 3 is the distance between the side wall surface parts 12b of the heat transfer tubes 12 facing the connection surface part 23.
  • the first header collecting pipe 14 is formed such that the distance L0 between the outer walls of the connecting surface portions 23 facing each other is equal to or smaller than the arrangement pitch Lp shown in FIG. , The distance is greater than the distance Lt shown in FIG.
  • FIG. 4 is a schematic diagram showing a first header collecting pipe connected to the outlet of the evaporator when the heat exchanger according to Embodiment 1 of the present invention functions as an evaporator.
  • a plurality of heat transfer tubes 12 are inserted into the first header collecting tube 14 and arranged at intervals along the pipeline of the first header collecting tube 14.
  • the first header collecting pipe 14 has a non-insertion portion 31 in which the heat transfer tube 12 is not inserted and an insertion portion 32 in which the heat transfer tube 12 is inserted.
  • the non-insertion portion 31 constitutes a flow path cross-sectional area A1 perpendicular to the refrigerant flow direction shown in FIG.
  • the insertion portion 32 constitutes a channel cross-sectional area A2 in which a channel perpendicular to the refrigerant flow direction is reduced.
  • A2 / A1 is closer to 1
  • the increase in pressure loss due to the enlargement / reduction of the cross-sectional area of the channel through which the refrigerant flows is suppressed.
  • FIG. 5 is a circuit diagram of a refrigeration cycle to which the heat exchanger according to Embodiment 1 of the present invention is applied.
  • the heat exchanger 11 according to Embodiment 1 of the present invention is configured as an outdoor heat exchanger 47 of the air conditioner 40.
  • the air conditioner 40 includes a refrigerant circuit in which a compressor 41, a flow path switching device 42, an indoor heat exchanger 43, an expansion valve 45, and an outdoor heat exchanger 47 are connected by piping.
  • a compressor 41, a flow path switching device 42, an indoor heat exchanger 43, an expansion valve 45, and an outdoor heat exchanger 47 are connected by piping.
  • heat is exchanged between the refrigerant and the air flowing in the heat transfer tube 12 by the wind generated by the indoor fan 44 and the outdoor fan 46, respectively.
  • R32 refrigerant for example, R32 refrigerant, R290 refrigerant which is a low GWP refrigerant, a mixed refrigerant mainly composed of the R32 refrigerant, a mixed refrigerant mainly composed of the R290 refrigerant, and the like are used.
  • the refrigerant that has been compressed by the compressor 41 to become high-temperature and high-pressure gas flows into the indoor heat exchanger 43 via a flow path switching device 42 such as a four-way valve.
  • the refrigerant flowing into the indoor heat exchanger 43 is dissipated by the wind generated by the indoor fan 44, condenses, and liquefies.
  • the liquefied refrigerant is decompressed by the expansion valve 45, enters a low-temperature and low-pressure gas-liquid two-phase state, and flows into the outdoor heat exchanger 47.
  • the refrigerant that has flowed into the outdoor heat exchanger 47 evaporates by exchanging heat with the wind generated by the outdoor fan 46, becomes gas, and flows out through the first header collecting pipe 14 according to the present invention.
  • the refrigerant that has flowed out through the first header collecting pipe 14 is again sucked into the compressor 41 and circulates in the refrigeration cycle.
  • refrigeration oil necessary for driving the compressor 41 is also circulated in the refrigeration cycle. In the cooling operation, the refrigerant and the refrigerating machine oil flow backward.
  • the heat exchanger 11 may be used for the indoor heat exchanger 43 or the outdoor heat exchanger 47 and the indoor heat exchanger. 43 may be used for both heat exchangers.
  • the gas refrigerant flowing into the first header collecting pipe 14 alternately passes through the non-insertion portion 31 in which the heat transfer tube 12 is not inserted and the insertion portion 32 in which the heat transfer tube 12 is inserted and the flow path is reduced. As shown in FIG. 4, the gas refrigerant passing through the first header collecting pipe 14 flows out from the end 25 of the heat transfer pipe 12 inserted into the first header collecting pipe 14 when passing through the insertion portion 32. The gas refrigerant sequentially merges and flows out from the heat exchanger 11 to the refrigeration cycle via the refrigerant pipe 15.
  • the heat exchanger 11 When the air conditioner 40 is in a cooling operation, that is, when the heat exchanger 11 acts as a condenser, the refrigerant flows in the opposite direction to the flow in the case of the evaporator.
  • the gas refrigerant that has flowed in via the refrigerant pipe 15 is distributed to each heat transfer pipe 12 in the first header collecting pipe 14.
  • the refrigerant that has flowed into the heat exchanger 11 is condensed by exchanging heat with the wind generated by the outdoor fan 46 and flows out through the second header collecting pipe 16.
  • the heat exchanger according to Embodiment 1 of the present invention has been described with respect to the configuration in which air and refrigerant exchange heat, the heat exchanger is not limited to the configuration in which air and refrigerant exchange heat.
  • the heat exchanger may be configured so that a refrigerant is used.
  • the heat exchanger may be a heat exchanger in which water and the refrigerant exchange heat.
  • FIG. 6 is a cross-sectional view comparing the case where the heat transfer tube is inserted into the first header collecting pipe of the heat exchanger according to Embodiment 1 of the present invention and the case where the heat transfer tube is inserted into the circular header collecting pipe. It is.
  • the area S1 shown in FIG. 6 is an area occupied by the heat transfer pipe 12 in a cross section perpendicular to the refrigerant flow direction of the first header collecting pipe 14.
  • the area S2 shown in FIG. 6 is an area occupied by the heat transfer pipe 52 in a cross section perpendicular to the refrigerant flow direction of the circular header collecting pipe 54.
  • the heat transfer tube 12 is directly inserted into the first header collecting tube 14.
  • the refrigerant flowing through the first header collecting pipe 14 alternately passes through the non-insertion portion 31 where the heat transfer tube 12 is not inserted and the insertion portion 32 where the heat transfer tube 12 is inserted and the flow path is reduced.
  • the flow rate increases.
  • the flow path cross-sectional area of the non-insertion portion 31 in which the heat transfer tube 12 is not inserted and the flow path cross-sectional area of the insertion portion 32 in which the heat transfer tube 12 is inserted and the flow path in the refrigerant flow direction is reduced,
  • the cross-sectional area of the flow path through which the refrigerant flows increases and decreases. Therefore, the pressure loss inside the first header collecting pipe 14 increases. As shown in FIG.
  • the heat exchanger 11 has a flat plate-shaped insertion side plane portion 21 into which the heat transfer tube 12 is inserted into the inner peripheral surface of the first header collecting tube 14. And as shown in FIG. 3, the maximum distance Lmax between the insertion side plane part 21 in the insertion direction of the heat exchanger tube 12 and the bending part 22 makes the distance between the two connection surface parts 23 which oppose a diameter.
  • the length is equal to or greater than the sum of the radius R of the circle and the distance L2 between the insertion-side flat surface portion 21 and the end portion 25 of the inserted heat transfer tube 12. Therefore, in the heat exchanger 11, the area S1 of the heat transfer tube 12 inserted into the first header collecting pipe 14 is larger than the area S2 of the heat transfer tube 52 inserted into the circular header collecting pipe 54.
  • FIG. 7 shows the relationship between the insertion distance L2 of the heat transfer tubes and the distance D0 between the connecting surface portions 23 facing each other, and the refrigerant inside the header collecting tube, for the first header collecting tube and the circular header collecting tube. It is the figure which showed the relationship of pressure loss.
  • the vertical axis in FIG. 7 represents the refrigerant pressure loss ⁇ P resulting from the expansion and reduction of the cross-sectional area of the flow path through which the refrigerant flows, and the horizontal axis in FIG. 7 represents the distance D0 between the connection surface portions 23 facing each other.
  • ⁇ P refrigerant pressure loss
  • the distance D0 is set to a distance Lt ⁇
  • T is the thickness of the pipe of the connection surface portion 23.
  • the dotted line represented by “circular shape” indicates the relationship between the distance D0 (circular tube diameter) of the circular header collecting pipe 54 and the refrigerant pressure loss ⁇ P.
  • the distance D0 is a distance between the connection surface parts 23 which oppose, as shown in FIG.
  • the reference distance L1 is assumed to be 3 mm. Note that “3 mm” is set on the assumption that the distance L1 is a reference for explaining the contents of FIG. 7, and “3 mm” itself has no substantial meaning. As shown in FIG.
  • the first header collecting pipe 14 can obtain an effect of reducing the refrigerant pressure loss ⁇ P as compared with the conventional circular header collecting pipe 54. Since the first header collecting pipe 14 is connected to the outlet of the evaporator, the refrigerant suction pressure drop of the compressor 41 used in the refrigeration cycle of the air conditioner 40 can be suppressed, and the efficiency of the refrigeration cycle is improved. can get.
  • the cross-sectional area of the flow path of the first header collecting pipe 14 tends to increase. Further, in the case of a flat tube heat exchanger in which the number of refrigerant branches increases, the flow rate of the refrigerant flowing in the lowermost part of the first header collecting pipe 14 is also small, and it is necessary to prevent the refrigeration oil from staying in the lower part of the first header collecting pipe 14 There is.
  • the first header collecting pipe 14 includes a flat insertion-side planar portion 21 into which ends of a plurality of heat transfer tubes are inserted, an insertion-side planar portion 21, and the like. There are two arcuate curved portions 22, two insertion surface portions 23 that connect the insertion-side flat surface portion 21 and the curved portion 22 and face each other. Further, the first header collecting pipe 14 has a corner portion 24 in a connection region between the insertion-side flat surface portion 21 and the connection surface portion 23 in the inner wall surface portion 20. It is generally known that the critical flow velocity of the refrigerant gas necessary to ascend in the header is represented by the following equation (1).
  • v zero-penetration velocity [m / s]
  • C flooding multiplier
  • g gravity acceleration [m / s 2 ]
  • D represents representative diameter
  • ⁇ oil represents refrigeration oil.
  • the density represents ⁇ g and the refrigerant gas density.
  • the flooding multiplier c which is an experimental constant of the equation (1), becomes small. That is, when the refrigerant gas and the refrigerating machine oil flow in the first header collecting pipe 14 in an upward flow, the necessary limit speed (zero penetrating speed) of the refrigerant gas required to rise in the first header collecting pipe 14 is reached. v) can be lowered.
  • the corner 24 is formed to have a sharp end surface with a radius of curvature of 3 mm or less in order to hold the liquid film by surface tension.
  • FIG. 8 shows the distance L1 which is the length of the connection surface portion of the first header collecting pipe in the insertion direction of the heat transfer tube, and the critical gas velocity v of the oil rise required to rise inside the first header collecting pipe. It is the figure which showed the relationship.
  • the insertion distance L2 of the heat transfer tube 12 inside the first header collecting pipe 14 is fixed to, for example, 3 mm, and the distance L0 between the outer walls of the connecting surface portions 23 of the first header collecting pipe 14 facing each other is a distance Lt + 2t ⁇
  • the case where the distance L0 ⁇ the arrangement pitch Lp is shown.
  • the first header collecting pipe 14 is formed such that the length of the distance L1 is equal to or longer than the distance L2.
  • the distance L1 which is the length of the connection surface portion 23 of the first header collecting pipe 14 in the insertion direction of the heat transfer pipe 12 to be not less than the insertion distance L2 of the heat transfer pipe 12 inside the first header collecting pipe 14, the refrigerant gas The necessary limit flow velocity of the oil is reduced, and there is an effect that it is possible to suppress stagnation in the lower part of the gas header of the refrigeration oil.
  • the representative diameter D is increased, and the zero penetration speed v is increased in proportion to the representative diameter D as shown in the equation (1).
  • the relationship between the distance L1 and the zero penetration speed v is as shown by a solid line (D shape) in FIG. Become.
  • the first header collecting pipe 14 has a flat insertion-side planar part 21 into which ends of the plurality of heat transfer pipes 12 are inserted, and a circle facing the insertion-side planar part 21.
  • the arc-shaped curved portion 22, the insertion-side flat surface portion 21, and the curved portion 22 are connected to each other and have two flat plate-like connecting surface portions 23. Therefore, in the heat exchanger 11, the area S1 of the heat transfer tube 12 inserted into the first header collecting pipe 14 is larger than the area S2 of the heat transfer tube 52 inserted into the circular header collecting pipe 54. Can also be reduced.
  • the heat exchanger 11 when the heat exchanger 11 uses the same outer diameter heat transfer tube, the heat exchanger 11 has a flow in which the refrigerant flows in the first header collecting pipe 14 as compared with the heat exchanger having the circular header collecting pipe 54. Expansion and reduction of the cross-sectional area of the road can be suppressed. As a result, it is possible to suppress the contraction and expansion of the flow, which is the main cause of the pressure loss of the refrigerant. Moreover, since pressure loss can be reduced, the refrigerant
  • the heat exchanger 11 is a circle having a maximum distance Lmax between the insertion-side flat surface portion 21 and the curved portion 22 in the insertion direction of the heat transfer tube 12 having a diameter between two connecting surface portions 23.
  • the length is equal to or longer than the sum of the radius R and the distance L2 between the insertion-side flat portion 21 and the end portion 25 of the inserted heat transfer tube 12. Therefore, in the first header collecting pipe 14, the ratio of the area S ⁇ b> 1 of the heat transfer pipe 12 in the axial cross section can be relatively small, and the flow path through which the refrigerant flows in the first header collecting pipe 14. The expansion and reduction of the cross-sectional area can be further suppressed.
  • refrigeration oil circulates with the refrigerant in the refrigeration cycle used in the air conditioner.
  • the heat exchanger in which a thin tube such as a flat tube is used as the heat transfer tube has an increased number of refrigerant branches compared to a heat exchanger in which a conventional circular tube is used. . Therefore, the flow rate of the refrigerant flowing in the lowermost part of the header collecting pipe becomes smaller than the conventional one. For this reason, when a conventional round header having a large header diameter is used, the refrigerant flow rate may be reduced particularly in the lower part of the gas header, so that the refrigeration oil may stay and may not rise in the upper part of the gas header.
  • the heat exchanger 11 has a corner portion 24 in a connection region between the insertion side plane portion 21 and the connection surface portion 23 in the inner wall surface portion 20 of the first header collecting pipe 14. Further, the first header collecting pipe has a distance L1 which is the length of the connection surface portion 23 of the first header collecting pipe 14 in the insertion direction of the heat transfer pipe, and an insertion distance L2 of the heat transfer pipe 12 inside the first header collecting pipe 14. It is comprised so that it may become the above. Since the surface tension of the liquid easily acts and is held at the corner portion 24, the refrigerating machine oil that is a liquid is unlikely to fall due to gravity.
  • the flooding multiplier c becomes small.
  • the zero penetration speed v can be reduced. That is, when the refrigerant gas and the refrigerating machine oil flow in the first header collecting pipe 14 in an upward flow, the necessary limit speed (zero penetrating speed) of the refrigerant gas required to rise in the first header collecting pipe 14 is reached. v) can be lowered.
  • the axial direction of the gas header is the vertical direction and the refrigerant gas and the refrigerating machine oil flow in an upward flow in the gas header, the stagnation of the refrigerating machine oil below the gas header can be suppressed.
  • the distance L1 which is the length of the connection surface portion 23 in the insertion direction of the heat transfer tube 12 is equal to the distance L2 between the insertion side flat surface portion 21 and the end portion 25 of the inserted heat transfer tube 12. It is comprised so that it may be the same magnitude
  • the distance L1 is equal to the distance L2
  • the minimum value of the zero penetration speed v is taken as shown in FIG.
  • R32 refrigerant, R290 refrigerant which is a low GWP refrigerant, a mixed refrigerant mainly composed of the R32 refrigerant, and a mixed refrigerant mainly composed of the R290 refrigerant are used.
  • the first header collecting pipe 14 is particularly effective when it is difficult to secure the necessary refrigerant flow rate in the lower part of the header because the amount of refrigerant circulating through the refrigeration cycle is small.
  • the R32 refrigerant often used in the air conditioner 40, the R290 refrigerant which is a low GWP refrigerant, the mixed refrigerant mainly containing the R32 refrigerant, and the mixed refrigerant mainly containing the R290 refrigerant are HFO refrigerants (HFO-1234yf, HFO). Since the refrigerant refrigeration effect is large and the refrigerant circulation rate is small compared to ⁇ 1234ze), it is particularly effective to apply to the first header collecting pipe 14.
  • the heat exchanger 11 further includes a second header collecting pipe 16 that is arranged side by side with the first header collecting pipe 14, and the distance L0 between the outer walls of the opposing connection surface portions 23 is the same as that of the first header collecting pipe 14. It is formed in the magnitude
  • the heat exchanger 11 has an arcuate curved portion 22 facing the insertion side plane portion 21 into which the heat transfer tube 12 is inserted on the inner peripheral surface.
  • the first header collecting pipe 14 is made of clad steel. Therefore, the heat exchanger 11 excellent in wear resistance and chemical corrosion resistance can be configured.
  • FIG. FIG. 9 is an enlarged perspective view of a part of the heat exchanger according to Embodiment 2 of the present invention. Parts having the same configuration as the heat exchanger of FIGS. 1 to 8 are denoted by the same reference numerals and description thereof is omitted. The arrows in the figure indicate the flow direction of the refrigerant when the heat exchanger operates as an evaporator.
  • the heat exchanger according to Embodiment 2 of the present invention has a configuration in which the first header collecting pipe 14 of the heat exchanger according to Embodiment 1 of the present invention is divided in the axial direction. Items not particularly described in the heat exchanger according to the second embodiment of the present invention are the same as those of the heat exchanger according to the first embodiment of the present invention, and the same functions and configurations are described using the same reference numerals. I will do it.
  • the heat exchanger 11 according to the second embodiment of the present invention is arranged with a gap so that the side surface portions 12a face each other, and a plurality of heat transfer tubes 12 through which a refrigerant flows and a plurality of heat transfer tubes 12 are inserted.
  • the heat exchanger 11 is arrange
  • a plurality of fins 13 are joined to the heat transfer tube 12 in parallel.
  • the fin 13 is for improving the heat exchange efficiency of air and a refrigerant
  • plate fins and corrugated fins are used as the fins 13, but heat exchange with air is also performed on the surface of the heat transfer tube 12, and thus the heat exchanger 11 does not have to include the fins 13.
  • the heat exchanger 11 includes the first header collecting pipe 14, the second header collecting pipe 14, and the second header collecting pipe 16 so that the pipe line of the first header collecting pipe 16 is parallel to the second header collecting pipe 16.
  • the header collecting pipe 16 is arranged side by side.
  • the first header collecting pipe 14 is divided into a plurality of parts in the axial direction. In FIG. 9, the first header collecting pipe 14 is divided into two parts, a first header collecting pipe 14a and a first header collecting pipe 14b.
  • the number of divisions of the first header collecting pipe 14 is not limited to two, and may be divided into two or more.
  • a refrigerant pipe 15 is connected to each of the divided first header collecting pipes 14.
  • the gas refrigerant flowing into the first header collecting pipe 14 includes a non-insertion portion 31 in which the heat transfer tube 12 is not inserted, and an insertion portion 32 in which the heat transfer tube 12 is inserted and the flow path is reduced. Pass alternately.
  • the gas refrigerant passing through the first header collecting pipe 14 sequentially merges with the gas refrigerant flowing out from the end 25 of the heat transfer pipe 12 inserted into the first header collecting pipe 14 when passing through the insertion portion 32. It flows out from the heat exchanger 11 to the refrigeration cycle via the refrigerant pipe 15.
  • the air conditioner 40 is in a cooling operation, that is, when the heat exchanger 11 acts as a condenser, the refrigerant flows in the direction opposite to the flow in the case of the evaporator.
  • the first header collecting pipe 14 is divided into a plurality of parts in the axial direction.
  • a plurality of refrigerant pipes 15 serving as outlets are connected to each of the divided first header collecting pipes 14. Therefore, the heat exchanger 11 has an effect that the flow velocity immediately before flowing into the plurality of refrigerant pipes 15 is reduced, and the pressure loss can be suppressed.
  • the first header collecting pipe 14 is desirably divided symmetrically with respect to the center M of the pipe line in order to further reduce the flow velocity immediately before flowing into the refrigerant pipe 15.
  • FIG. 10 is an enlarged perspective view of a part of the heat exchanger according to Embodiment 3 of the present invention.
  • FIG. 11 is a schematic diagram showing a first header collecting pipe connected to the outlet of the evaporator when the heat exchanger according to Embodiment 3 of the present invention functions as an evaporator. The arrows in the figure indicate the flow direction of the refrigerant when the heat exchanger operates as an evaporator. Parts having the same configuration as the heat exchanger of FIGS. 1 to 9 are denoted by the same reference numerals and description thereof is omitted.
  • the heat exchanger according to Embodiment 3 of the present invention has a configuration in which a plurality of refrigerant pipes 15 are connected to the first header collecting pipe 14 in the heat exchanger according to Embodiment 1 of the present invention. Items not particularly described in the heat exchanger according to Embodiment 3 of the present invention are the same as those of the heat exchanger according to Embodiment 1 of the present invention, and the same functions and configurations are described using the same reference numerals. I will do it.
  • the heat exchanger 11 according to the third embodiment of the present invention is arranged with an interval so that the side surface portions 12a face each other, and a plurality of heat transfer tubes 12 through which refrigerant flows and a plurality of heat transfer tubes 12 are inserted.
  • the heat exchanger 11 is arrange
  • a plurality of fins 13 are joined to the heat transfer tube 12 in parallel.
  • the fin 13 is for improving the heat exchange efficiency of air and a refrigerant
  • plate fins and corrugated fins are used as the fins 13, but heat exchange with air is also performed on the surface of the heat transfer tube 12, and thus the heat exchanger 11 does not have to include the fins 13.
  • the heat exchanger 11 includes a first header collecting pipe 14, a second header collecting pipe 14, a second header collecting pipe 16, and a second header collecting pipe 16.
  • the header collecting pipe 16 is arranged side by side.
  • a plurality of refrigerant pipes 15 are connected to the first header collecting pipe 14, and a partition member 17 that divides the pipe is provided inside the first header collecting pipe 14.
  • the inside of the pipe line of the first header collecting pipe 14 is provided with a partition member 17 perpendicular to the axial direction, and the pipe line is divided into a plurality of parts.
  • the inside of the first header collecting pipe 14 is divided into a plurality of parts by the partition member 17 provided perpendicular to the axial direction.
  • a plurality of refrigerant pipes 15 serving as outlets are connected to each of the divided first header collecting pipes 14. Therefore, the heat exchanger 11 has an effect that the flow velocity immediately before flowing into the plurality of refrigerant pipes 15 is reduced, and the pressure loss can be suppressed.
  • the plurality of refrigerant pipes 15 be connected to positions symmetrical with respect to the axial center M of the first header collecting pipe 14.
  • the flow rate of the refrigerant flowing in the lowermost part of the first header collecting pipe 14 is also small, and the retention of refrigeration oil in the lower part of the first header collecting pipe 14 is a problem. It becomes.
  • the first header collecting pipe 14 is not divided, the refrigeration oil stays only in the lowermost part, and the oil return is improved as compared with the heat exchanger 11 according to Embodiment 2 of the present invention.
  • the heat exchanger 11 improves the pressure strength of the first header collecting pipe 14 by providing the partition member 17 in the pipe line.
  • the partition member 17 does not need to be installed. Even when there is no partition member 17, the flow of the refrigerant is the same as described above, and the same effect can be obtained.
  • the 1st header collecting pipe 14 is not divided

Abstract

熱交換器は、側面部が対向するように間隔をあけて並列に配置され、管内に冷媒が流れる複数の伝熱管と、複数の伝熱管が挿入され、当該伝熱管と連通するヘッダ集合管と、を備え、ヘッダ集合管は、複数の伝熱管の端部が挿入される平板状の挿入側平面部と、挿入側平面部と対向する円弧状の湾曲部と、挿入側平面部と湾曲部とを接続し、対向する平板状の二つの接続面部と、を有するものである。

Description

熱交換器
 本発明は、パッケージエアコン、ビル用マルチエアコンなどの空調調和機に用いられる扁平管熱交換器に関するものである。
 熱交換器に用いられる扁平管の伝熱管は、円管の伝熱管と比べて細径であり、冷媒の分岐数が増大する。熱交換器の性能を効率よく使用するためには、扁平管の管内を流れる気液二相冷媒を、各伝熱管に均等に分配する必要がある。そのため、蒸発器の入口には、形状に工夫が施されたヘッダ集合管が接続される。例えば、ヘッダ集合管の周壁部の内側全周面が、扁平管側に湾曲して扁平管が挿通される挿通面と、挿通面に対向する対向面とによって構成される熱交換器がある(特許文献1参照)。この熱交換器は、ヘッダ集合管の軸直角断面において、挿通面と対向面との間の2つの接続点を結ぶ線分Xを基準とすると、線分Xから対向面までの間の最大長さが線分Xから挿通面までの間の最大長さよりも短いことを特徴とする。
 特許文献1の熱交換器は、扁平管の開口端から対向面までの間に形成される冷媒の流路断面積が小さくなり、冷媒の流速が大きくすることにより、ヘッダ集合管を流れる冷媒の流量が比較的小さい場合でも、冷媒流速が十分に確保できる。これにより、ヘッダ集合管内では、液冷媒を自重に抗して上方まで送ることができるため、上下に配列される各扁平管における冷媒の偏流が抑制される。
 ところで、従来の伝熱管に扁平管を用いた熱交換器は、特許文献1に示されるように、液単相冷媒あるいは気液二相冷媒が流れ、蒸発器入口に接続される第1ヘッダ集合管と、蒸発器出口に接続され、冷媒回路のガスラインと接続される第2ヘッダ集合管と、第1ヘッダ集合管及び第2ヘッダ集合管の内周に突出するように挿入された扁平管とで構成される。そして、これらの熱交換器は、冷媒回路のガスラインと接続される第2ヘッダ集合管の軸直角断面形状が正円形状である。
特開2012-163310号公報
 ヘッダ集合管の軸直角断面形状が正円形状であると、ヘッダ集合管の内部の管路の断面において、伝熱管が挿入されている部分の管路に占める伝熱管の断面積が大きくなる場合がある。そのため、ヘッダ集合管は、伝熱管が挿入されている部分の管路と伝熱管が挿入されていない部分の管路において、冷媒が流れる流路の断面積の拡大、縮小の幅が大きくなり、冷媒の縮流、拡大が生じ、ヘッダ集合管の管路を流れる冷媒の圧力損失が増大する。
 本発明は、上記のような課題を解決するためになされたものであり、上記円筒形状に使用する伝熱管と同じ外径を有する伝熱管を用いても、伝熱管が挿入されている部分のヘッダ集合管の管路と伝熱管が挿入されていない部分のヘッダ集合管の管路とにおいて、冷媒が流れる流路の断面積の拡大、縮小の幅が小さい熱交換器を提供するものである。
 本発明に係る熱交換器は、側面部が対向するように間隔をあけて並列に配置され、管内に冷媒が流れる複数の伝熱管と、複数の伝熱管が挿入され、当該伝熱管と連通するヘッダ集合管と、を備え、ヘッダ集合管は、複数の伝熱管の端部が挿入される平板状の挿入側平面部と、挿入側平面部と対向する円弧状の湾曲部と、挿入側平面部と湾曲部とを接続し、対向する平板状の二つの接続面部と、を有するものである。
 本発明に係る熱交換器は、ヘッダ集合管は、複数の伝熱管の端部が挿入される平板状の挿入側平面部と、挿入側平面部と対向する円弧状の湾曲部と、挿入側平面部と湾曲部とを接続し、対向する平板状の二つの接続面部と、を有するものである。そのため、熱交換器は、ヘッダ集合管の内部に挿入されている伝熱管の面積を、円形状のヘッダ集合管の内部に挿入されている伝熱管の面積よりも小さくすることができる。その結果、熱交換器は、同じ外径の伝熱管を使用した場合、円形状のヘッダ集合管を有する熱交換器と比べて、ヘッダ集合管の内部では、冷媒が流れる流路の断面積の拡大、縮小を抑制することができ、冷媒の圧力損失の主要因となる流れの縮流、拡大を抑制することができる。
本発明の実施の形態1に係る熱交換器の一部分を拡大した斜視図である。 図1の熱交換器の平面図である。 本発明の実施の形態1に係る熱交換器の第1ヘッダ集合管と、第1ヘッダ集合管内における伝熱管の先端部とを示す図である。 本発明の実施の形態1に係る熱交換器が蒸発器として作用する場合において、蒸発機の出口に接続される第1ヘッダ集合管を示す概略図である。 本発明の実施の形態1に係る熱交換器を適用した冷凍サイクルの回路図である。 本発明の実施の形態1に係る熱交換器の第1ヘッダ集合管に伝熱管を挿入した場合と、円形のヘッダ集合管に伝熱管を挿入した場合との断面を比較した図である。 第1ヘッダ集合管と円形状のヘッダ集合管とについて、伝熱管の差込み距離L2と、対向する接続面部23同士の間の距離D0との関係と、ヘッダ集合管の内部の冷媒圧力損失の関係とを示した図である。 第1ヘッダ集合管の接続面部の伝熱管の挿入方向の長さである距離L1と、第1ヘッダ集合管の内部で上昇するのに必要となる油上昇の限界ガス速度vとの関係とを示した図である。 本発明の実施の形態2に係る熱交換器の一部を拡大した斜視図である。 本発明の実施の形態3に係る熱交換器の一部を拡大した斜視図である。 本発明の実施の形態3に係る熱交換器が蒸発器として作用する場合において、蒸発機の出口に接続される第1ヘッダ集合管を示す概略図である。
 以下、図面に基づいて本発明の実施の形態について説明する。なお、各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。さらに、明細書全文に示されている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
実施の形態1.
 <熱交換器の構成>
 図1は、本発明の実施の形態1に係る熱交換器の一部分を拡大した斜視図である。図1に示すように、熱交換器11は、側面部12aが対向するように間隔をあけて配置され、管内に冷媒が流れる複数の伝熱管12と、複数の伝熱管12が挿入され当該伝熱管12と連通する第1ヘッダ集合管14と、を備える。また、熱交換器11は、側面部12aが対向するように間隔をあけて配置され、管内に冷媒が流れる複数の伝熱管12と、複数の伝熱管12が挿入され当該伝熱管12と連通する第2ヘッダ集合管16と、を備える。
 伝熱管12は、例えば、複数の流路が形成された扁平管のような細径管である。なお、図1では、第1ヘッダ集合管14に接続される伝熱管12が扁平管である場合について示しているが、これに限定するものではない。例えば伝熱管12の断面形状が楕円形状に形成された伝熱管であってもよい。熱交換器11は、伝熱管12の対向する側面部12aの間をファンによって発生した風が流れる。伝熱管12には、複数のフィン13が並列して接合されている。フィン13は、空気と冷媒の熱交換効率を向上させるためのものである。フィン13は、例えばプレートフィンや、コルゲートフィンが用いられるが、伝熱管12の表面でも空気との熱交換は行われるため、熱交換器11は、フィン13を備えなくてもよい。
 図2は、図1の熱交換器の平面図である。第1ヘッダ集合管14に挿入される伝熱管12と伝熱管12に接合されたフィン13とは、第1熱交換部11aを構成する。第2ヘッダ集合管16に挿入される伝熱管12と伝熱管12に接合されたフィン13とは、第2熱交換部11bを構成する。第1熱交換部11aと、第2熱交換部11bとは、伝熱管12の管路が平行となるように、並べて配置される。図2に示す配列ピッチLpは、第1熱交換部11aと、第2熱交換部11bとの間の距離であり、第1ヘッダ集合管14に挿入された伝熱管12に接合しているフィン13と、第2ヘッダ集合管16に挿入された伝熱管12に接合しているフィン13との間の距離である。
 熱交換器11は、図1に示すように、第1ヘッダ集合管14の管路と、第2ヘッダ集合管16の管路とが平行するように、第1ヘッダ集合管14と、第2ヘッダ集合管16とが並べて配置される。第1ヘッダ集合管14は、管路が鉛直方向に延びるように構成される。第1ヘッダ集合管14は、熱交換器11が蒸発器として作用する場合の出口に設けられ、ガス冷媒が流れるガスヘッダとして用いられる。第2ヘッダ集合管16は、管路が鉛直方向に延びるように構成される。第2ヘッダ集合管16は、熱交換器11が蒸発器として作用する場合の入口に設けられ、液冷媒が流れる液ヘッダとして用いられる。第1ヘッダ集合管14及び第2ヘッダ集合管には、冷凍サイクルに接続される冷媒配管15が接合されている。なお、図1では、第1ヘッダ集合管14及び第2ヘッダ集合管16の管路が鉛直方向に構成された熱交換器を示しているが、例えば、第1ヘッダ集合管14及び第2ヘッダ集合管16の管路が水平方向に構成された熱交換器であってもよい。なお、第1ヘッダ集合管14が、本発明の「ヘッダ集合管」に相当し、第2ヘッダ集合管16が、本発明の「第2のヘッダ集合管」に相当する。
 熱交換器11は、伝熱管12、フィン13、第1ヘッダ集合管14、冷媒配管15、第2ヘッダ集合管16はいずれもアルミニウム製であって、ロウ付けによってそれぞれ接合されている。
 <ガスヘッダの構成>
 図3は、本発明の実施の形態1に係る熱交換器の第1ヘッダ集合管と、第1ヘッダ集合管内における伝熱管の先端部とを示す図である。図3に示すように、第1ヘッダ集合管14は、複数の伝熱管の端部が挿入される平板状の挿入側平面部21と、挿入側平面部21と対向する円弧状の湾曲部22と、挿入側平面部21と湾曲部22とを接続し、対向する二つの接続面部23と、を有する。図3に示す接続部20aは、第1ヘッダ集合管14の内壁面部20において、円弧状の湾曲部22と平板状の接続面部23とが接続する部分である。接続部20aは、円弧状の湾曲部22の両端部に位置する。また、第1ヘッダ集合管14は、挿入側平面部21と、接続面部23との接続領域に角部24を有している。挿入側平面部21は、第1ヘッダ集合管14の流路方向に垂直な断面において、挿入側平面部21と、挿入される伝熱管12の端部25とが平行である。
 第1ヘッダ集合管14は、第1ヘッダ集合管14の内壁面部20において、伝熱管12の挿入方向における挿入側平面部21と湾曲部22との間の最大距離Lmaxが、対向する二つの接続面部23間の距離を直径とする円の半径Rと、挿入側平面部と挿入された伝熱管の端部25との間の距離L2との和以上の長さとなるように構成されている。
 図3に示す距離L1は、第1ヘッダ集合管14の管内において、接続部20a同士を結ぶ仮想線Laと、挿入側平面部21との間の距離であり、第1ヘッダ集合管14第1ヘッダ集合管14の内壁面部20において、接続面部23の伝熱管12の挿入方向の長さとなる。図3に示す距離L2は、挿入側平面部21と挿入された伝熱管12の端部25との間の距離であり、第1ヘッダ集合管14の管内に挿入された伝熱管12の挿入方向の差し込み距離である。ロウ付け時にロウ材が伝熱管12の冷媒流路へ侵入することを防ぐため、距離L2が3mm程度となるように伝熱管12が第1ヘッダ集合管14の挿入側平面部21に挿入される。第1ヘッダ集合管14と、伝熱管12とは、距離L1が距離L2以上よりも大きくなるように構成されている。挿入側平面部21は、伝熱管12が挿入されてロウ付けにより接合されるため、第1ヘッダ集合管14はクラッド鋼で構成される。また、挿入側平面部21には例えばバーリング加工が施される。
 図3に示す、距離Ltは、接続面部23と対向する伝熱管12の側壁面部12b同士の間の距離である。第1ヘッダ集合管14は、第2ヘッダ集合管16との緩衝を避けるため、対向する接続面部23の外壁同士の距離L0が、図1に示す配列ピッチLp以下の大きさに形成され、かつ、図3に示す距離Lt以上の大きさに形成される。
 図4は、本発明の実施の形態1に係る熱交換器が蒸発器として作用する場合において、蒸発機の出口に接続される第1ヘッダ集合管を示す概略図である。図4に示すように、複数の伝熱管12が、第1ヘッダ集合管14に挿入され、第1ヘッダ集合管14の管路に沿って間隔をあけて配置されている。第1ヘッダ集合管14は、伝熱管12が挿入されていない非挿入部31と、伝熱管12が挿入された挿入部32とを有する。非挿入部31は、図4に示す、冷媒流れ方向に垂直な流路断面積A1を構成する。挿入部32は、冷媒流れ方向に垂直な流路が縮小された流路断面積A2を構成する。流路断面積A1と、流路断面積A2との関係は、A2/A1が1に近いほど、冷媒が流れる流路の断面積の拡大縮小による圧力損失の増加が抑制される。
 <空気調和機の構成>
 図5は、本発明の実施の形態1に係る熱交換器を適用した冷凍サイクルの回路図である。本発明の実施の形態1に係る熱交換器11は、空気調和機40の室外熱交換器47として構成されている。空気調和機40は、圧縮機41と、流路切替装置42と、室内熱交換器43と、膨張弁45と、室外熱交換器47と、が配管で接続された冷媒回路を有する。室内熱交換器43および室外熱交換器47は、それぞれ室内ファン44および室外ファン46によって発生する風によって伝熱管12の管内を流れる冷媒と空気が熱交換される。
 空気調和機40を流れる冷媒は、例えば、R32冷媒、低GWP冷媒であるR290冷媒、前記R32冷媒を主成分とする混合冷媒、R290冷媒を主成分とする混合冷媒等が用いられる。
 <冷凍サイクルの動作>
 次に、本実施の形態1に係る冷凍サイクルの動作について説明する。暖房運転の場合、圧縮機41により圧縮され、高温高圧ガスとなった冷媒は、例えば四方弁等の流路切替装置42を介して室内熱交換器43に流入する。室内熱交換器43に流入した冷媒は室内ファン44によって発生される風によって放熱して凝縮し、液化する。液化した冷媒は膨張弁45によって減圧され、低温低圧の気液ニ相状態となって室外熱交換器47に流入する。室外熱交換器47に流入した冷媒は室外ファン46によって発生される風と熱交換して蒸発し、ガスとなり、本発明に係る第1ヘッダ集合管14を介して流出する。第1ヘッダ集合管14を介して流出した冷媒は、再び圧縮機41に吸入され、冷凍サイクルを循環する。また、冷凍サイクル内には冷媒の他に、圧縮機41の駆動に必要な冷凍機油も循環する。冷房運転の場合は、冷媒および冷凍機油が逆流する。なお、ここでは本発明に係る熱交換器11が室外熱交換器47として用いられる場合について示したが、室内熱交換器43に用いられてもよく、あるいは室外熱交換器47と室内熱交換器43との両方の熱交換器に用いられてもよい。
 <熱交換器の動作>
 本発明の実施の形態1に係る熱交換器11の動作について説明する。空気調和機40が、暖房運転の場合、熱交換器11は蒸発器として作用する。冷凍サイクルにおいて、熱交換器11の入口から流入した気液二相冷媒は第2ヘッダ集合管16を介して伝熱管12に流入し、伝熱管12において室外ファン46によって発生した風と熱交換して蒸発する。伝熱管12内で蒸発した冷媒は、第1ヘッダ集合管14に流入して合流する。第1ヘッダ集合管14に流入したガス冷媒は、伝熱管12が挿入されていない非挿入部31と、伝熱管12が挿入され流路が縮小された挿入部32とを交互に通過する。第1ヘッダ集合管14内を通るガス冷媒は、図4に示すように、挿入部32を通過する際に、第1ヘッダ集合管14に挿入されている伝熱管12の端部25から流出するガス冷媒と順次合流し、冷媒配管15を介して熱交換器11から冷凍サイクルへ流出する。
 空気調和機40が、冷房運転の場合、すなわち熱交換器11が凝縮器として作用する場合は、前述の蒸発器の場合の流れと逆方向に冷媒が流れる。冷媒配管15を介して流入したガス冷媒は、第1ヘッダ集合管14内で各伝熱管12に分配される。熱交換器11に流入した冷媒は、室外ファン46によって発生した風と熱交換することにより凝縮し、第2ヘッダ集合管16を介して流出する。本発明の実施の形態1に係る熱交換器は、空気と冷媒が熱交換する構成について示したが、熱交換器は、空気と冷媒が熱交換する構成に限定されるものではない。熱交換器は、冷媒が使用される構成であればよく、例えば、水と冷媒が熱交換する熱交換器であってもよい。
 図6は、本発明の実施の形態1に係る熱交換器の第1ヘッダ集合管に伝熱管を挿入した場合と、円形のヘッダ集合管に伝熱管を挿入した場合との断面を比較した図である。図6に示す面積S1は、第1ヘッダ集合管14の冷媒流れ方向に垂直な断面における伝熱管12の占める面積である。図6に示す面積S2は、円形のヘッダ集合管54の冷媒流れ方向に垂直な断面における伝熱管52の占める面積である。熱交換器11は、伝熱管12が第1ヘッダ集合管14に直接挿入されている。前述のように、第1ヘッダ集合管14を流れる冷媒は、伝熱管12が挿入されていない非挿入部31と、伝熱管12が挿入され流路が縮小された挿入部32を交互に通過し、流速が増加していく。一般的に、伝熱管12が挿入されていない非挿入部31の流路断面積と、伝熱管12が挿入され冷媒流れ方向の流路が縮小された挿入部32の流路断面積とにより、冷媒が流れる流路の断面積の拡大、縮小が生じる。そのため、第1ヘッダ集合管14の内部の圧力損失が増大する。図6に示すように、熱交換器11は、第1ヘッダ集合管14の内周面に伝熱管12が挿入される平板形状の挿入側平面部21を有している。そして、図3に示すように、伝熱管12の挿入方向における挿入側平面部21と湾曲部22との間の最大距離Lmaxが、対向する二つの接続面部23の間の距離を直径とする円の半径Rと、挿入側平面部21と挿入された伝熱管12の端部25との間の距離L2との和以上の長さとなるように構成されている。そのため、熱交換器11は、第1ヘッダ集合管14の内部に挿入されている伝熱管12の面積S1を、円形状のヘッダ集合管54の内部に挿入されている伝熱管52の面積S2よりも小さくすることができる。その結果、熱交換器11は、円形状のヘッダ集合管54を有する熱交換器と比べて、第1ヘッダ集合管14の内部では、冷媒が流れる流路の断面積の拡大、縮小が抑制され、冷媒の圧力損失の増大を抑制することができる。
 図7は、第1ヘッダ集合管と円形状のヘッダ集合管とについて、伝熱管の差込み距離L2と、対向する接続面部23同士の間の距離D0との関係と、ヘッダ集合管の内部の冷媒圧力損失の関係とを示した図である。図7の縦軸は、冷媒が流れる流路の断面積の拡大、縮小に起因する冷媒圧力損失ΔPを表し、図7の横軸は、対向する接続面部23同士の間の距離D0を表す。図7は、伝熱管12が第1ヘッダ集合管14に直挿し可能であり、かつ並列して配置される第2ヘッダ集合管16との干渉を避けるため、距離D0の距離を、距離Lt<距離D0<配列ピッチLp-2tとする場合について示している。なお、「t」は接続面部23の管の肉厚である。図7において、「円形状」であらわされる点線は、円形状のヘッダ集合管54の距離D0(円管の直径)と、冷媒圧力損失ΔPとの関係について示す。図7において、「D形状(L1=3mm=L2)」であらわされる点線は、距離L1が3mmの場合の第1ヘッダ集合管14の距離D0と、冷媒圧力損失ΔPとの関係について示す。図7において、「D形状(L1=5mm)」であらわされる点線は、距離L1が5mmの場合の第1ヘッダ集合管14の距離D0と、冷媒圧力損失ΔPとの関係について示す。
 第1ヘッダ集合管14と円形状のヘッダ集合管54とについて、第1ヘッダ集合管14の内部における伝熱管12の差込み距離L2と、対向する接続面部23同士の間の距離D0との関係と、ヘッダ集合管の内部の冷媒の圧力損失との関係について図3、図6及び図7を用いて説明する。なお、距離D0は、図3に示すように、対向する接続面部23同士の間の距離である。図7では、基準となる距離L1を3mmと仮定する。なお、この「3mm」は、図7の内容を説明するために基準となる距離L1の距離を仮定として設定したものであり、「3mm」自体に実質的な意味を有するものではない。図7に示すように、接続面部23における伝熱管の挿入方向の距離L1を拡大し、3mm<距離L1とし、伝熱管の差込み距離L2を距離L2<L1とすると(L1=5mmの点線)、基準とした距離L1=3mmの点線と比較して、冷媒圧力損失ΔPが抑制される。また、第1ヘッダ集合管14は、従来の円形状のヘッダ集合管54と比較して冷媒圧力損失ΔPの低減効果を得ることができる。第1ヘッダ集合管14は、蒸発器の出口に接続されているため、空気調和機40の冷凍サイクルに用いられる圧縮機41の冷媒吸入圧力低下を抑制でき、冷凍サイクルの効率が向上する効果が得られる。
 伝熱管12が直接挿入される第1ヘッダ集合管14の内部の流路は、伝熱管12の幅より大きくなるため、第1ヘッダ集合管14の流路の断面積が大きくなる傾向にある。また、冷媒の分岐数が増大する扁平管熱交換器の場合は、第1ヘッダ集合管14の最下部に流れる冷媒流量も小さく、第1ヘッダ集合管14の下部における冷凍機油の滞留を防ぐ必要がある。本発明の実施の形態1に係る熱交換器11は、第1ヘッダ集合管14は、複数の伝熱管の端部が挿入される平板状の挿入側平面部21と、挿入側平面部21と対向する円弧状の湾曲部22と、挿入側平面部21と湾曲部22とを接続し、対向する二つの接続面部23と、を有する。また、第1ヘッダ集合管14は、内壁面部20において、挿入側平面部21と、接続面部23との接続領域に角部24を有している。ヘッダ内を上昇するのに必要な冷媒ガスの限界流速は、以下の式(1)で表されることが一般的に知られている。式(1)において、vはゼロペネ速度[m/s]を表し、Cはフラッディング乗数を表し、gは重力加速度[m/s]を表し、Dは代表直径を表し、ρoilは冷凍機油密度を表し、ρは冷媒ガス密度を表す。
Figure JPOXMLDOC01-appb-M000001
 第1ヘッダ集合管14の内部の角部24では液の表面張力が作用しやすく保持されやすいため、液体である冷凍機油が重力によって落下しにくい。そのため、式(1)の実験定数であるフラッディング乗数cが小さくなる。すなわち、冷媒ガスと冷凍機油とが第1ヘッダ集合管14の内部を上昇流で流れる場合において、第1ヘッダ集合管14の内部で上昇するのに必要となる冷媒ガスの必要限界速度(ゼロペネ速度v)を下げることができる。角部24は、表面張力により液膜を保持させるため、曲率半径が3mm以下の鋭端面となるように形成されている。
 図8は、第1ヘッダ集合管の接続面部の伝熱管の挿入方向の長さである距離L1と、第1ヘッダ集合管の内部で上昇するのに必要となる油上昇の限界ガス速度vとの関係とを示した図である。図8では、第1ヘッダ集合管14の内部における伝熱管12の差込み距離L2を例えば3mmに固定し、第1ヘッダ集合管14の対向する接続面部23の外壁同士の距離L0が、距離Lt+2t<距離L0<配列ピッチLpである場合について示している。第1ヘッダ集合管14の接続面部23の伝熱管12の挿入方向の長さである距離L1が、第1ヘッダ集合管14の内部における伝熱管12の差込み距離L2以下となる場合には、伝熱管12の非挿入部31の流路断面積と、伝熱管12の挿入部32の流路断面積とによる冷媒流路の断面積の拡大、縮小することにより、挿入部32側に位置する角部24が流れの死水域となり、冷凍機油のガスヘッダ下部の滞留を抑制できる効果が小さくなる。そのため第1ヘッダ集合管14は、距離L1の長さが、距離L2以上の長さとなるように形成される。第1ヘッダ集合管14の接続面部23の伝熱管12の挿入方向の長さである距離L1を、第1ヘッダ集合管14の内部における伝熱管12の差込み距離L2以上とすることにより、冷媒ガスの必要限界流速が低下し、冷凍機油のガスヘッダ下部の滞留を抑制できる効果がある。
 距離L1を大きくすると代表直径Dが大きくなり、式(1)に示すようにゼロペネ速度vは代表直径Dに比例して大きくなる。一方、前述のように距離L1が距離L2以上の範囲では、角部24の液膜の表面張力の効果が作用しやすくなるため、フラッディング乗数cが小さくなる。そのため、式(1)に示すように、フラッディング乗数cが小さくなると、ゼロペネ速度vを低減することができるため、距離L1とゼロペネ速度vとの関係は図8の実線(D形状)のようになる。距離L1とゼロペネ速度vとの関係を示す実線(D形状)は、距離L1=距離L2でゼロペネ速度vの極小値をとる。
 以上のように、熱交換器11は、第1ヘッダ集合管14が、複数の伝熱管12の端部が挿入される平板状の挿入側平面部21と、挿入側平面部21と対向する円弧状の湾曲部22と、挿入側平面部21と湾曲部22とを接続し、対向する平板状の二つの接続面部23と、を有するものである。そのため、熱交換器11は、第1ヘッダ集合管14の内部に挿入されている伝熱管12の面積S1を、円形状のヘッダ集合管54の内部に挿入されている伝熱管52の面積S2よりも小さくすることができる。その結果、熱交換器11は、同じ外径の伝熱管を使用した場合、円形状のヘッダ集合管54を有する熱交換器と比べて、第1ヘッダ集合管14の内部では、冷媒が流れる流路の断面積の拡大、縮小を抑制することができる。その結果、冷媒の圧力損失の主要因となる流れの縮流、拡大を抑制することができる。また、圧力損失を低減できるため、空調機の冷凍サイクルに用いられる圧縮機の冷媒吸入圧力低下を抑制でき、冷凍サイクルの効率が向上する効果が得られる。
 また、熱交換器11は、伝熱管12の挿入方向における挿入側平面部21と湾曲部22との間の最大距離Lmaxが、対向する二つの接続面部23の間の距離を直径とする円の半径Rと、挿入側平面部21と挿入された伝熱管12の端部25との間の距離L2との和以上の長さとなるように構成されている。そのため、第1ヘッダ集合管14は、軸方向の断面において、伝熱管12の面積S1が占める割合が相対的に小さくすることができ、第1ヘッダ集合管14の内部では、冷媒が流れる流路の断面積の拡大、縮小を更に抑制することができる。その結果、冷媒の圧力損失の主要因となる流れの縮流、拡大を抑制することができる。すなわち圧力損失を低減できるため、空調機の冷凍サイクルに用いられる圧縮機の冷媒吸入圧力低下を抑制でき、冷凍サイクルの効率が向上する効果が得られる。
 また、空調調和機に用いられる冷凍サイクルには、冷媒とともに冷凍機油が循環している。扁平管内の圧力損失を低減するため、伝熱管に例えば扁平管のような細径管が用いられる熱交換器は、従来の円管が用いられる熱交換器と比べて冷媒の分岐数が増大する。したがって、ヘッダ集合管の最下部に流れる冷媒流量が従来よりも小さくなる。そのため、ヘッダ径が大きくなる従来の正円形状のヘッダを用いた場合に、特にガスヘッダ下部において冷媒の流速が低下することで冷凍機油が滞留し、ガスヘッダの上部に上昇しない場合がある。熱交換器11は、第1ヘッダ集合管14の内壁面部20において、挿入側平面部21と、接続面部23との接続領域に角部24を有している。また、第1ヘッダ集合管は、第1ヘッダ集合管14の接続面部23の伝熱管の挿入方向の長さである距離L1を、第1ヘッダ集合管14の内部における伝熱管12の差込み距離L2以上となるように構成されている。角部24では液の表面張力が作用しやすく保持されやすいため、液体である冷凍機油が重力によって落下しにくい。そして、距離L1が距離L2以上の範囲では、角部24の液膜の表面張力の効果が作用しやすくなるため、フラッディング乗数cが小さくなる。式(1)に示すように、フラッディング乗数cが小さくなると、ゼロペネ速度vを低減することができる。すなわち、冷媒ガスと冷凍機油とが第1ヘッダ集合管14の内部を上昇流で流れる場合において、第1ヘッダ集合管14の内部で上昇するのに必要となる冷媒ガスの必要限界速度(ゼロペネ速度v)を下げることができる。その結果、ガスヘッダの軸方向が鉛直方向であって、冷媒ガスと冷凍機油がガスヘッダ内を上昇流で流れる場合において、冷凍機油のガスヘッダ下部の滞留を抑制することができる。
 また、熱交換器11は、接続面部23の伝熱管12の挿入方向の長さである距離L1が、挿入側平面部21と挿入された伝熱管12の端部25との間の距離L2と同じ大きさであるように構成されている。距離L1と距離L2とが等しいと、図8に示すようにゼロペネ速度vの極小値をとる。その結果、ガスヘッダの軸方向が鉛直方向であって、冷媒ガスと冷凍機油がガスヘッダ内を上昇流で流れる場合において、冷凍機油のガスヘッダ下部の滞留を抑制することができる。
 また、熱交換器11を流れる冷媒は、R32冷媒、低GWP冷媒であるR290冷媒、前記R32冷媒を主成分とする混合冷媒、R290冷媒を主成分とする混合冷媒が用いられる。第1ヘッダ集合管14は、冷凍サイクルを循環する冷媒循環量が小さくなるため、ヘッダ下部の必要冷媒流速が確保しにくい場合に特に効果が高い。空気調和機40に多く用いられるR32冷媒、低GWP冷媒であるR290冷媒、前記R32冷媒を主成分とする混合冷媒、R290冷媒を主成分とする混合冷媒は、HFO系冷媒(HFO-1234yf、HFO-1234ze)と比べて冷媒の冷凍効果が大きく冷媒循環量が小さいため、特に第1ヘッダ集合管14に適用することは有効である。
 また、熱交換器11は、第1ヘッダ集合管14と並べて配置される第2ヘッダ集合管16を更に有し、対向する接続面部23の外壁同士の距離L0が、第1ヘッダ集合管14と第2ヘッダ集合管16との間の距離である配列ピッチLp以下の大きさに形成され、かつ、接続面部23と対向する伝熱管の側壁面部12b同士の間の距離Lt以上の大きさに形成されている。そのため、第1ヘッダ集合管14は、第2ヘッダ集合管16との緩衝を避けることができる。
 また、熱交換器11は、内周面に伝熱管12が挿入される挿入側平面部21と対向する円弧状の湾曲部22を有する。これにより、第1ヘッダ集合管14の耐圧強度を向上させ、薄肉化することができるため、第1ヘッダ集合管14を小型化することができる。
 また、熱交換器11は、第1ヘッダ集合管14がクラッド鋼で構成されている。そのため、耐摩耗性、耐化学腐食性に優れた熱交換器11を構成することができる。
実施の形態2.
 図9は、本発明の実施の形態2に係る熱交換器の一部を拡大した斜視図である。図1~図8の熱交換器と同一の構成を有する部位には同一の符号を付してその説明を省略する。図中の矢印は、前記熱交換器が蒸発器として動作する場合の冷媒の流れ方向を示すものである。本発明の実施の形態2に係る熱交換器では、本発明の実施の形態1に係る熱交換器の第1ヘッダ集合管14が軸方向で分割された構成である。本発明の実施の形態2に係る熱交換器で特に記述しない項目については、本発明の実施の形態1に係る熱交換器と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 <熱交換器の構成>
 次に、本発明の実施の形態2に係る熱交換器11の構成について説明する。本発明の実施の形態2に係る熱交換器11は、側面部12aが対向するように間隔をあけて配置され、管内に冷媒が流れる複数の伝熱管12と、複数の伝熱管12が挿入され当該伝熱管12と連通する第1ヘッダ集合管14と、を備える。また、熱交換器11は、側面部12aが対向するように間隔をあけて配置され、管内に冷媒が流れる複数の伝熱管12と、複数の伝熱管12が挿入され当該伝熱管12と連通する第2ヘッダ集合管16と、を備える。
 伝熱管12には、複数のフィン13が並列して接合されている。フィン13は、空気と冷媒の熱交換効率を向上させるためのものである。フィン13は、例えばプレートフィンや、コルゲートフィンが用いられるが、伝熱管12の表面でも空気との熱交換は行われるため、熱交換器11は、フィン13を備えなくてもよい。
 熱交換器11は、図9に示すように、第1ヘッダ集合管14の管路と、第2ヘッダ集合管16の管路とが平行するように、第1ヘッダ集合管14と、第2ヘッダ集合管16とが並べて配置される。第1ヘッダ集合管14は軸方向に複数分割される。図9では、第1ヘッダ集合管14は、第1ヘッダ集合管14aと、第1ヘッダ集合管14bとの2つに分割されている。しかし、第1ヘッダ集合管14の分割数は2つに限定されるものではなく、2以上の複数に分割されていてもよい。分割された第1ヘッダ集合管14のそれぞれに冷媒配管15が接続されている。
 <熱交換器の動作>
 本発明の実施の形態2に係る熱交換器11の動作について説明する。暖房運転の場合、熱交換器11は蒸発器として作用し、第1ヘッダ集合管14は蒸発器の出口に接続される。冷凍サイクルから熱交換器11に流入した気液二相冷媒は第2ヘッダ集合管16を介して伝熱管12に流入し、室外ファン46によって発生した風と熱交換して蒸発する。伝熱管12内で蒸発した冷媒は分割された第1ヘッダ集合管14に流入して合流する。第1ヘッダ集合管14に流入したガス冷媒は、図4に示したように伝熱管12が挿入されていない非挿入部31と、伝熱管12が挿入され流路が縮小された挿入部32とを交互に通過する。第1ヘッダ集合管14内を通るガス冷媒は、挿入部32を通過する際に、第1ヘッダ集合管14に挿入されている伝熱管12の端部25から流出するガス冷媒と順次合流し、冷媒配管15を介して熱交換器11から冷凍サイクルへ流出する。空気調和機40が、冷房運転の場合、すなわち熱交換器11が凝縮器として作用する場合は、前述の蒸発器の場合の流れと逆方向に冷媒が流れる。
 以上のように、熱交換器11は、第1ヘッダ集合管14が、軸方向に複数に分割されている。分割された第1ヘッダ集合管14のそれぞれには出口である冷媒配管15が複数接続されている。そのため、熱交換器11は、複数の冷媒配管15に流入する直前の流速が低減し、圧力損失を抑制できる効果がある。冷媒配管15に流入する直前の流速がより低減するため、第1ヘッダ集合管14は管路の中央Mに対して対称に分割されていることが望ましい。
実施の形態3.
 図10は、本発明の実施の形態3に係る熱交換器の一部を拡大した斜視図である。図11は、本発明の実施の形態3に係る熱交換器が蒸発器として作用する場合において、蒸発機の出口に接続される第1ヘッダ集合管を示す概略図である。図中の矢印は、前記熱交換器が蒸発器として動作する場合の冷媒の流れ方向を示す。図1~図9の熱交換器と同一の構成を有する部位には同一の符号を付してその説明を省略する。本発明の実施の形態3に係る熱交換器は、本発明の実施の形態1に係る熱交換器おいて、第1ヘッダ集合管14に複数の冷媒配管15が接続された構成である。本発明の実施の形態3に係る熱交換器で特に記述しない項目については、本発明の実施の形態1に係る熱交換器と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 <熱交換器の構成>
 次に、本発明の実施の形態3に係る熱交換器11の構成について説明する。本発明の実施の形態3に係る熱交換器11は、側面部12aが対向するように間隔をあけて配置され、管内に冷媒が流れる複数の伝熱管12と、複数の伝熱管12が挿入され当該伝熱管12と連通する第1ヘッダ集合管14と、を備える。また、熱交換器11は、側面部12aが対向するように間隔をあけて配置され、管内に冷媒が流れる複数の伝熱管12と、複数の伝熱管12が挿入され当該伝熱管12と連通する第2ヘッダ集合管16と、を備える。
 伝熱管12には、複数のフィン13が並列して接合されている。フィン13は、空気と冷媒の熱交換効率を向上させるためのものである。フィン13は、例えばプレートフィンや、コルゲートフィンが用いられるが、伝熱管12の表面でも空気との熱交換は行われるため、熱交換器11は、フィン13を備えなくてもよい。
 熱交換器11は、図10に示すように、第1ヘッダ集合管14の管路と、第2ヘッダ集合管16の管路とが平行するように、第1ヘッダ集合管14と、第2ヘッダ集合管16とが並べて配置される。図11に示すように、第1ヘッダ集合管14に複数の冷媒配管15が接続され、第1ヘッダ集合管14の内部に管路を分割する仕切り部材17が設けられている。第1ヘッダ集合管14の管路の内部は、軸方向と垂直に仕切り部材17が設けられており、管路は内部で複数に分割されている。
 以上のように、熱交換器11は、第1ヘッダ集合管14の内部が、軸方向と垂直に設けられた仕切り部材17により複数に分割されている。分割された第1ヘッダ集合管14のそれぞれには出口である冷媒配管15が複数接続されている。そのため、熱交換器11は、複数の冷媒配管15に流入する直前の流速が低減し、圧力損失を抑制できる効果がある。冷媒配管15に流入する直前の流速がより低減するため、複数の冷媒配管15は第1ヘッダ集合管14の軸方向の中央Mに対して対称な位置に接続されていることが望ましい。
 また、冷媒の分岐数が増大する扁平管熱交換器の場合には、第1ヘッダ集合管14の最下部に流れる冷媒流量も小さく、第1ヘッダ集合管14の下部における冷凍機油の滞留が課題となる。しかし、第1ヘッダ集合管14は、分割されないため、冷凍機油の滞留は最下部のみであり、本発明の実施の形態2に係る熱交換器11と比べて返油性が向上する。
 また、熱交換器11は、仕切り部材17を管路内に設けることにより、第1ヘッダ集合管14の耐圧強度が向上する。なお、仕切り部材17は、設置しなくてもよい。仕切り部材17がない場合でも冷媒の流れは上記と同じであり、同様の効果が得られる。また、熱交換器11は、本発明の実施の形態2に係る熱交換器11と比較して第1ヘッダ集合管14が分割されていないため、本発明の実施の形態2に係る熱交換器11と比べて安価に製造することができる。
 11 熱交換器、11a 第1熱交換部、11b 第2熱交換部、12 伝熱管、12a 側面部、12b 側壁面部、13 フィン、14 第1ヘッダ集合管、14a 第1ヘッダ集合管、14b 第1ヘッダ集合管、15 冷媒配管、16 第2ヘッダ集合管、17 仕切り部材、20 内壁面部、20a 接続部、21 挿入側平面部、22 湾曲部、23 接続面部、24 角部、25 端部、31 非挿入部、32 挿入部、40 空気調和機、41 圧縮機、42 流路切替装置、43 室内熱交換器、44 室内ファン、45 膨張弁、46 室外ファン、47 室外熱交換器、52 伝熱管、54 ヘッダ集合管。

Claims (13)

  1.  側面部が対向するように間隔をあけて並列に配置され、管内に冷媒が流れる複数の伝熱管と、
     前記複数の伝熱管が挿入され、当該伝熱管と連通するヘッダ集合管と、
    を備え、
     前記ヘッダ集合管は、
     前記複数の伝熱管の端部が挿入される平板状の挿入側平面部と、
     前記挿入側平面部と対向する円弧状の湾曲部と、
     前記挿入側平面部と前記湾曲部とを接続し、対向する平板状の二つの接続面部と、
    を有する熱交換器。
  2.  前記ヘッダ集合管は、内壁面部において、
     前記複数の伝熱管の挿入方向における前記挿入側平面部と前記湾曲部との間の最大距離Lmaxが、対向する二つの前記接続面部間の距離を直径とする円の半径Rと、前記挿入側平面部と挿入された前記伝熱管の端部との間の距離L2との和以上の長さとなるように構成された請求項1に記載の熱交換器。
  3.  前記ヘッダ集合管は、
     前記ヘッダ集合管の前記内壁面部において、前記挿入側平面部と、前記接続面部との接続領域に角部を有しており、
     前記接続面部の前記伝熱管の挿入方向の長さである距離L1が、前記距離L2以上の大きさを有する請求項2に記載の熱交換器。
  4.  前記接続面部の前記伝熱管の挿入方向の長さである距離L1が、前記距離L2と同じ大きさである請求項2に記載の熱交換器。
  5.  前記複数の伝熱管は、扁平管である請求項1~4のいずれか1項に記載の熱交換器。
  6.  前記複数の伝熱管に並列して接合されている複数のフィンと、
     前記ヘッダ集合管と並べて配置される第2のヘッダ集合管と、
    を更に有し、
     対向する前記接続面部の外壁同士の距離L0が、
     前記ヘッダ集合管に挿入された前記伝熱管に接合しているフィンと、前記第2のヘッダ集合管に挿入された前記伝熱管に接合しているフィンとの間の距離である配列ピッチLp以下の大きさに形成され、かつ、前記接続面部と対向する前記伝熱管の側壁面部同士の間の距離Lt以上の大きさに形成されている請求項1~5のいずれか1項に記載の熱交換器。
  7.  前記ヘッダ集合管が、軸方向に分割されている請求項1~6のいずれか1項に記載の熱交換器。
  8.  前記ヘッダ集合管は、軸方向の中央に対して対称に分割されている請求項7に記載の熱交換器。
  9.  前記ヘッダ集合管に複数の冷媒配管が接続され、前記ヘッダ集合管の内部に管路を分割する仕切り部材が設けられている請求項1~6のいずれか1項に記載の熱交換器。
  10.  前記複数の冷媒配管は、前記ヘッダ集合管の軸方向の中央に対して対称な位置に配置されている請求項9に記載の熱交換器。
  11.  前記ヘッダ集合管は、クラッド鋼で構成されている請求項1~10のいずれか1項に記載の熱交換器。
  12.  R32冷媒、または、R32冷媒を主成分とする混合冷媒を用いる請求項1~11のいずれか1項に記載の熱交換器。
  13.  R290冷媒、または、R290冷媒を主成分とする混合冷媒を用いる請求項1~12のいずれか1項に記載の熱交換器。
PCT/JP2017/006563 2017-02-22 2017-02-22 熱交換器 WO2018154650A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/006563 WO2018154650A1 (ja) 2017-02-22 2017-02-22 熱交換器
JP2017544791A JP6230769B1 (ja) 2017-02-22 2017-02-22 熱交換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/006563 WO2018154650A1 (ja) 2017-02-22 2017-02-22 熱交換器

Publications (1)

Publication Number Publication Date
WO2018154650A1 true WO2018154650A1 (ja) 2018-08-30

Family

ID=60321096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006563 WO2018154650A1 (ja) 2017-02-22 2017-02-22 熱交換器

Country Status (2)

Country Link
JP (1) JP6230769B1 (ja)
WO (1) WO2018154650A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020063962A1 (zh) * 2018-09-30 2020-04-02 浙江三花智能控制股份有限公司 换热器
WO2020063972A1 (zh) * 2018-09-30 2020-04-02 浙江三花智能控制股份有限公司 换热器
JPWO2021079422A1 (ja) * 2019-10-23 2021-04-29
WO2021117240A1 (ja) * 2019-12-13 2021-06-17 三菱電機株式会社 冷蔵庫

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341795A (ja) * 1986-08-06 1988-02-23 Kobe Steel Ltd 多管円筒式熱交換器
JPH0371281U (ja) * 1989-11-13 1991-07-18
JPH09264689A (ja) * 1996-03-27 1997-10-07 Showa Alum Corp 熱交換器
JP2005351498A (ja) * 2004-06-08 2005-12-22 Denso Corp 熱交換器
JP2007155268A (ja) * 2005-12-07 2007-06-21 Denso Corp 熱交換器および冷媒蒸発器
JP2007192502A (ja) * 2006-01-20 2007-08-02 Denso Corp 熱交換器
US7275394B2 (en) * 2005-04-22 2007-10-02 Visteon Global Technologies, Inc. Heat exchanger having a distributer plate
JP2008506089A (ja) * 2004-07-12 2008-02-28 ベール ゲーエムベーハー ウント コー カーゲー 熱交換器、特に給気冷却器
US20080223562A1 (en) * 2005-09-12 2008-09-18 Viorel Braic Heat Exchanger, in Particular Charge-Air Cooler or Exhaust Gas Cooler for an Internal Combustion Engine of a Motor Vehicle
JP2010038447A (ja) * 2008-08-05 2010-02-18 Showa Denko Kk 熱交換器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4786234B2 (ja) * 2004-07-05 2011-10-05 昭和電工株式会社 熱交換器
JP2013002652A (ja) * 2011-06-13 2013-01-07 Showa Denko Kk 熱交換器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341795A (ja) * 1986-08-06 1988-02-23 Kobe Steel Ltd 多管円筒式熱交換器
JPH0371281U (ja) * 1989-11-13 1991-07-18
JPH09264689A (ja) * 1996-03-27 1997-10-07 Showa Alum Corp 熱交換器
JP2005351498A (ja) * 2004-06-08 2005-12-22 Denso Corp 熱交換器
JP2008506089A (ja) * 2004-07-12 2008-02-28 ベール ゲーエムベーハー ウント コー カーゲー 熱交換器、特に給気冷却器
US7275394B2 (en) * 2005-04-22 2007-10-02 Visteon Global Technologies, Inc. Heat exchanger having a distributer plate
US20080223562A1 (en) * 2005-09-12 2008-09-18 Viorel Braic Heat Exchanger, in Particular Charge-Air Cooler or Exhaust Gas Cooler for an Internal Combustion Engine of a Motor Vehicle
JP2007155268A (ja) * 2005-12-07 2007-06-21 Denso Corp 熱交換器および冷媒蒸発器
JP2007192502A (ja) * 2006-01-20 2007-08-02 Denso Corp 熱交換器
JP2010038447A (ja) * 2008-08-05 2010-02-18 Showa Denko Kk 熱交換器

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020063962A1 (zh) * 2018-09-30 2020-04-02 浙江三花智能控制股份有限公司 换热器
WO2020063972A1 (zh) * 2018-09-30 2020-04-02 浙江三花智能控制股份有限公司 换热器
US11913735B2 (en) 2018-09-30 2024-02-27 Hangzhou Sanhua Research Institute Co., Ltd. Heat exchanger
JPWO2021079422A1 (ja) * 2019-10-23 2021-04-29
WO2021079422A1 (ja) * 2019-10-23 2021-04-29 三菱電機株式会社 熱交換器及び冷凍サイクル装置
JP7158601B2 (ja) 2019-10-23 2022-10-21 三菱電機株式会社 熱交換器及び冷凍サイクル装置
WO2021117240A1 (ja) * 2019-12-13 2021-06-17 三菱電機株式会社 冷蔵庫
JPWO2021117240A1 (ja) * 2019-12-13 2021-06-17
CN114761746A (zh) * 2019-12-13 2022-07-15 三菱电机株式会社 冰箱
JP7412446B2 (ja) 2019-12-13 2024-01-12 三菱電機株式会社 冷蔵庫

Also Published As

Publication number Publication date
JPWO2018154650A1 (ja) 2019-02-28
JP6230769B1 (ja) 2017-11-15

Similar Documents

Publication Publication Date Title
US9651317B2 (en) Heat exchanger and air conditioner
JP6230769B1 (ja) 熱交換器
EP3021064B1 (en) Heat pump device
JP2008241057A (ja) フィンチューブ熱交換器、およびそれを用いた熱交換器ユニット並びに空気調和機
EP2995886A1 (en) Heat exchanger and refrigeration cycle device
JP6890509B2 (ja) 空気調和機
WO2015133626A1 (ja) 熱交換器及び空気調和機
EP3051244B1 (en) Heat exchanger and air conditioner using same
JP5975971B2 (ja) 熱交換器及び冷凍サイクル装置
JP6214670B2 (ja) 熱交換器及びその熱交換器を用いた冷凍サイクル装置
JP6425829B2 (ja) 熱交換器及び冷凍サイクル装置
JP2012052676A (ja) 熱交換器及びそれを用いた空気調和機
JP2011112315A (ja) フィンチューブ型熱交換器及びこれを用いた空気調和機
JP6169199B2 (ja) 熱交換器及び冷凍サイクル装置
JP5591285B2 (ja) 熱交換器および空気調和機
JP6104357B2 (ja) 熱交換装置およびこれを備えた冷凍サイクル装置
JP2020112274A (ja) 熱交換器
JPWO2017208419A1 (ja) フィンチューブ型熱交換器、および、このフィンチューブ型熱交換器を備えたヒートポンプ装置
WO2021234961A1 (ja) 熱交換器、空気調和装置の室外機及び空気調和装置
JP2014137172A (ja) 熱交換器及び冷凍装置
JP6415597B2 (ja) 冷凍サイクル装置
CN109073334B (zh) 换热器以及空调机
WO2015132968A1 (ja) 冷凍サイクル装置
JP4983878B2 (ja) 熱交換器及びこの熱交換器を備えた冷蔵庫、空気調和機
JP2020165578A (ja) 熱交換器分流器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017544791

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897828

Country of ref document: EP

Kind code of ref document: A1