WO2018151209A1 - 円すいころ軸受 - Google Patents

円すいころ軸受 Download PDF

Info

Publication number
WO2018151209A1
WO2018151209A1 PCT/JP2018/005247 JP2018005247W WO2018151209A1 WO 2018151209 A1 WO2018151209 A1 WO 2018151209A1 JP 2018005247 W JP2018005247 W JP 2018005247W WO 2018151209 A1 WO2018151209 A1 WO 2018151209A1
Authority
WO
WIPO (PCT)
Prior art keywords
tapered roller
curvature
radius
actual
inner ring
Prior art date
Application number
PCT/JP2018/005247
Other languages
English (en)
French (fr)
Inventor
知樹 松下
崇 川井
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US16/486,553 priority Critical patent/US10816034B2/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to EP18754722.9A priority patent/EP3584459A4/en
Priority to CN201880012614.8A priority patent/CN110325748B/zh
Publication of WO2018151209A1 publication Critical patent/WO2018151209A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/088Ball or roller bearings self-adjusting by means of crowning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • F16C33/36Rollers; Needles with bearing-surfaces other than cylindrical, e.g. tapered; with grooves in the bearing surfaces
    • F16C33/366Tapered rollers, i.e. rollers generally shaped as truncated cones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/467Details of individual pockets, e.g. shape or roller retaining means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/225Details of the ribs supporting the end of the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • F16C19/385Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings
    • F16C19/386Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/06Drive shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts

Definitions

  • the present invention relates to a tapered roller bearing.
  • tapered roller bearings are often used in areas subject to radial load, axial load, and moment load.
  • the tapered roller bearing is in contact with the large end surface of the tapered roller and the large collar surface of the inner ring, and can receive a certain axial load.
  • the contact between the large end face of the tapered roller and the large collar face of the inner ring is not a rolling contact but a sliding contact. Due to the sliding contact, if the lubrication environment is insufficient, heat may be generated and the temperature may rise rapidly.
  • Patent Document 1 as a technique for improving the oil film thickness at the contact portion between the large end surface of the tapered roller and the large collar surface of the inner ring (reducing heat generation), the radius of curvature of the large end surface of the tapered roller is R, and the cone of the tapered roller is used. It has been proposed that R / R BASE should be in the range of 0.75 to 0.87, where R BASE is the distance from the top of the corner to the large collar surface of the inner ring (contact portion with the tapered roller). .
  • Patent Document 2 discloses a method for forming a sufficient oil film by increasing the pulling action of lubricating oil into a contact region between the large end surface of the tapered roller and the large collar surface of the inner ring, and the roller large end surface when the tapered roller is skewed. There has been proposed a method for solving the edge per edge (the problem of wrinkles).
  • Patent Document 3 proposes that a logarithmic crowning shape is imparted to a tapered roller or the like as a method for optimizing the contact surface pressure that can be generated in the tapered roller bearing and extending the bearing life.
  • Patent Document 4 proposes a method in which the contact position between the rolling surface of the tapered roller and the raceway surface of the inner and outer rings is on the large diameter side.
  • JP 2000-170774 A Japanese Patent No. 4165947 Japanese Patent No. 5334665 JP-A-11-2011151
  • the technique for setting R / R BASE in Patent Document 1 in the range of 0.75 to 0.87 is a technique for improving (reducing heat generation) the oil film thickness at the contact portion between the large end face of the tapered roller and the large collar face of the inner ring. It is excellent. However, it is considered that the closer the R / R BASE ratio is to 1, the harder the tapered rollers are skewed. Therefore, when R / R BASE is in the range of 0.75 to 0.87, the conventional specification (R / R BASE There is a problem that a tapered roller is more likely to skew than 0.90 to 0.97).
  • the parts where tapered roller bearings are used are used in environments where large radial loads and axial loads are applied and moment loads are applied. Also, bearing mounting errors (misalignment) also occur, and the edge surface pressure generated at the end in the generatrix direction of the contact area between the rolling surface of the tapered roller and the raceway surface of the inner and outer rings also increases. Required a single crown full crown or cut crown with a large drop amount, and the outer ring required a single crown full crown with a large drop amount. However, with such a large drop amount of crowning, the contact area between the rolling surface of the tapered roller and the raceway surface of the inner and outer rings (the major axis dimension of the contact ellipse) becomes shorter. Compared with the result of verification described later, it has been found that the variation in the contact position becomes larger and the tapered roller is likely to skew.
  • the present invention focuses on a series of technical problems of tapered roller bearings used in locations where a moment load acts in an environment where there is little lubricating oil or where mounting errors of the bearing occur. is there.
  • the present invention provides a tapered roller bearing that suppresses heat generation on the large end surface of the tapered roller and the large collar surface of the inner ring even in a severe lubricating environment, improves seizure resistance, and extends the life. With the goal.
  • the first present invention has an outer ring having a conical raceway surface on the inner periphery and a conical raceway surface on the outer periphery, and a large diameter of the raceway surface.
  • An inner ring provided with a large brim surface on the side and a small brim surface on the small diameter side, a plurality of tapered rollers arranged in a freely rolling manner between the both raceway surfaces, and a cage for accommodating the tapered rollers.
  • the set radius of curvature of the large end surface of the tapered roller is R
  • the apex of the conical angle of the tapered roller the basic radius of curvature to a large rib surface of the inner ring when the R bASE, and the ratio R / R bASE range from 0.75 to 0.87 and the basic radius of curvature R bASE and the set radius of curvature R from
  • R ACTUAL The ratio R ACTUAL / R between the actual curvature radius R ACTUAL and the set curvature radius R is 0.5 or more.
  • the second aspect of the present invention has an outer ring having a conical raceway surface on the inner periphery, a conical raceway surface on the outer periphery, a large brim surface on the large diameter side of this raceway surface, and a small brim on the small diameter side.
  • An inner ring provided with a surface, a plurality of tapered rollers arranged so as to be able to roll between the both raceway surfaces, and a cage for accommodating the tapered rollers, and the large end surface of the tapered roller is used when a bearing is used.
  • the set radius of curvature of the large end surface of the tapered roller is R, and the basic curvature from the apex of the cone angle of the tapered roller to the large collar surface of the inner ring.
  • the ratio R / R BASE of the set curvature radius R and the basic curvature radius R BASE is in the range of 0.75 to 0.87, and the actual curvature of the large end face of the tapered roller when radius was R aCTUAL, the set curvature as the actual curvature radius R aCTUAL
  • the ratio R ACTUAL / R between the diameter R is characterized in that a 0.8 or higher.
  • the oil film parameters can be increased and the lubrication conditions can be improved by making the large end surface of the tapered roller and the large brim surface of the inner ring a superfinished surface.
  • flank By forming the flank on the large collar surface of the inner ring, a sufficient oil film can be formed because the action of drawing the lubricating oil into the contact area between the large collar surface and the large end surface of the tapered roller is increased.
  • the inner ring raceway surface and the outer ring raceway surface are preferably straight or gentle arc full crowning shapes, and the tapered roller rolling surfaces are preferably logarithmic crowning shapes. Thereby, it is possible to suppress edge contact and skew between the tapered roller and the raceway surface.
  • At least one bearing component of the inner ring, the outer ring, and the tapered roller has a nitrogen-enriched layer, and the austenite crystal grain size number in the nitrogen-enriched layer is in a range exceeding 10.
  • the nitrogen-enriched layer is a layer having an increased nitrogen content formed on the surface layer of the race ring (outer ring or inner ring) or the tapered roller, and can be formed by a process such as carbonitriding, nitriding, or nitriding. .
  • the nitrogen content in the nitrogen-enriched layer is preferably in the range of 0.1% to 0.7%. If the nitrogen content is less than 0.1%, there will be no effect, and the rolling life especially under the foreign matter mixing conditions will be reduced.
  • the nitrogen content is more than 0.7%, voids called voids are formed, or the retained austenite increases so much that the hardness does not come out, resulting in a short life.
  • the nitrogen content is a value at the surface layer of 50 ⁇ m of the raceway surface after grinding, and can be measured by, for example, EPMA (wavelength dispersion type X-ray microanalyzer).
  • the austenite grain size is finer as the austenite crystal grain size number exceeds 10, so that the rolling fatigue life can be greatly improved.
  • the particle size number of the austenite particle size is 10 or less, the rolling fatigue life is not greatly improved. Usually 11 or more.
  • the austenite particle size is finer, it is usually difficult to obtain a particle size number exceeding # 13.
  • the austenite grains of the bearing component described above do not change either in the surface layer portion having the nitrogen-enriched layer or in the inside thereof. Therefore, the target position of the above crystal grain size number range is the surface layer portion and the inside.
  • the austenite crystal grain is a crystal grain based on the trace of the austenite crystal grain boundary immediately before quenching after the quenching treatment, for example.
  • the center of the contact position between the rolling surface of the tapered roller and the raceway surface of the inner ring and the center of the contact position between the rolling surface of the tapered roller and the raceway surface of the outer ring are 0% of the effective rolling surface width of the tapered roller. It is preferable that the taper roller is shifted from the center in the axial direction to the larger diameter side in a dimension range exceeding 20% and less than 20%. Thereby, the skew of a tapered roller and the rotational torque of a bearing can be reduced.
  • the tapered roller bearing of the present invention is suitable for automobile transmissions and differentials.
  • the present invention it is possible to realize a tapered roller bearing with improved seizure resistance and long life by suppressing heat generation on the large end surface of the tapered roller and the large collar surface of the inner ring even in a severe lubricating environment. .
  • an appropriate bearing specification can be selected according to use conditions.
  • FIG. 1 is a longitudinal sectional view showing a tapered roller bearing according to a first embodiment of the present invention. It is a longitudinal cross-sectional view explaining the design specification of the large end surface of the tapered roller of FIG. 1, and the large collar surface of an inner ring. It is a graph which shows the relationship between the curvature radius of the big end surface of the tapered roller of FIG. 1, and an oil film thickness. It is a figure explaining the detailed shape of the large end surface of the tapered roller of FIG. 1, and is a longitudinal sectional view of the tapered roller. It is the longitudinal cross-sectional view which expanded the A section of FIG. 4a. Fig. 4b is a schematic diagram of Fig. 4b.
  • FIG. 8a It is a schematic diagram which shows the shape of the raceway surface of the inner ring
  • FIG. 12b is a diagram illustrating an austenite grain boundary illustrating FIG. 12a.
  • FIG. 12b is a diagram illustrating an austenite grain boundary illustrating FIG. 12b.
  • 1 is a longitudinal sectional view showing the upper half from the center line of the tapered roller bearing of the present embodiment
  • FIG. 6 is a longitudinal sectional view showing a detailed shape of the tapered roller of FIG. 1,
  • FIG. It is a longitudinal cross-sectional view which shows the detailed shape of an inner ring
  • the tapered roller bearing 1 includes an inner ring 12, an outer ring 13, a tapered roller 14 incorporated between the inner ring 12 and the outer ring 13, and a cage 15 that holds the tapered roller 14.
  • the inner ring 12 has a conical inner ring side raceway surface 12a (hereinafter simply referred to as a raceway surface 12a) formed on the outer periphery, a small collar portion 12b is provided on the small diameter side, and a large collar portion 12c is provided on the large diameter side.
  • the outer ring 13 has a conical outer ring side raceway surface 13a (hereinafter simply referred to as a raceway surface 13a) formed on the inner periphery.
  • a plurality of tapered rollers 14 are incorporated between the raceway surface 12 a of the inner ring 12 and the raceway surface 13 a of the outer ring 13. Each tapered roller 14 is accommodated in a pocket 15a of the cage 15 and is held at equal intervals in the circumferential direction.
  • a grinding relief portion 12f is formed at a corner portion where the raceway surface 12a of the inner ring 12 and the large collar surface 12e of the large collar portion 12c intersect, and grinding is performed at a corner portion where the raceway surface 12a and the small collar surface 12d of the small collar portion 12b intersect.
  • An escape portion 12g is formed.
  • a conical rolling surface 16 is formed on the outer periphery of the tapered roller 14, a small end surface 14 a is formed on the small diameter side, and a large end surface 14 b is formed on the large diameter side.
  • the tapered end of the tapered roller 14 is the inner ring 12. It is received at the large brim surface 12e.
  • the large end surface 14 b is guided in contact with the large collar surface 12 e of the inner ring 12.
  • the large end surface 14b is a grinding surface.
  • the rolling surface 16 of the tapered roller 14 includes a straight portion 16 a at the central portion in the busbar direction and crowning portions 16 b and 16 c at both end portions.
  • the retainer 15 includes a plurality of column portions 15d that connect the small diameter side annular portion 15b, the large diameter side annular portion 15c, and the small diameter side annular portion 15b and the large diameter side annular portion 15c in the axial direction. It consists of.
  • the clearance S between the small end surface 14a and the small collar surface 12d of the tapered roller 14 shown in FIG. 1 is set to 0.3 mm or less, an effect of suppressing skew can be obtained and the tapered roller bearing 1 can be assembled. Familiar rotation is reduced and assembly is good.
  • FIG. 2 is a longitudinal sectional view for explaining the design specifications of the large end surface of the tapered roller and the large collar surface of the inner ring in FIG. 1
  • FIG. 3 is the relationship between the radius of curvature of the large end surface of the tapered roller in FIG. It is a graph which shows. 4 is a diagram for explaining the detailed shape of the large end surface of the tapered roller in FIG. 1, FIG.
  • FIG. 4a is a longitudinal sectional view of the tapered roller
  • FIG. 4b is an enlarged longitudinal sectional view of a portion A in FIG. 4c is a schematic diagram of FIG. 4b.
  • hatching is omitted to simplify the illustration.
  • the apex of each of the conical angles of the rolling surface 16 of the tapered roller 14, the raceway surface 12 a of the inner ring 12 and the raceway surface 13 a of the outer ring 13 is a point O on the central axis of the tapered roller bearing 1.
  • the ratio R / R BASE between the optimum radius of curvature R of the large end surface 14 b of the tapered roller 14 and the distance R BASE from the vertex O to the large collar surface 12 e of the inner ring 12 is the ratio of the large end surface 14 b of the tapered roller 14 to the inner ring 12.
  • it is set in the range of 0.75 to 0.87.
  • FIG. 3 shows the relationship of the ratio R / R BASE and the ratio of the oil film thickness generated between the large end surface 14 b of the tapered roller 14 and the large collar surface 12 e of the inner ring 12.
  • the oil film thickness formed between the large end surface 14b of the tapered roller 14 and the large collar surface 12e of the inner ring 12 is t, and the vertical axis represents the oil film thickness t 0 when the ratio R / R BASE is 0.76. It is indicated by a ratio t / t 0 to.
  • the oil film thickness t becomes maximum when the ratio R / R BASE is 0.76, and decreases rapidly when the ratio R / R BASE exceeds 0.9.
  • the radius of curvature R of the large end surface 14b of the tapered roller 14 shown in FIG. 3 is an R dimension when the large end surface 14b of the tapered roller 14 shown in FIG. More specifically, as shown in FIG. 4b, the points P1, P2, P3, P4 of the end of the large end surface 14b of the tapered roller 14 and the midpoint P5 of the points P1, P2 and the midpoint P6 of the points P3, P4 are assumed.
  • points P1 and P4 are connection points between the large end surface 14b and the end surface chamfer 14d
  • points P2 and P3 are connection points between the large end surface 14b and the escape portion 14c.
  • the set radius of curvature R in the claims has the above meaning.
  • R 152 on one side with respect to R 1564 of the entire large end surface 14b is not the same but can be made smaller (the other side). The same applies to one side R 364 ).
  • R 152 and R 364 on one side after processing of the large end surface 14b of the tapered roller 14 are referred to as actual curvature radii R ACTUAL .
  • the actual curvature radius R ACTUAL in the claims has the above meaning.
  • R 1564 of the entire large end surface 14b in FIG. 4c is an approximate circle passing through the four points P1, P5, P6, and P4 of the large end surface 14b shown in FIG. 4b.
  • a method for measuring R 152 , R 364 , and R 1564 will be described.
  • the measurement of R 152 , R 364 , and R 1564 was performed using, for example, model name: SV-3100 of “Surface tester manufactured by Mitutoyo Corporation”.
  • the measuring method is to use the above measuring device to obtain the shape of the large end surface 14b of the tapered roller 14 in the generatrix direction, plot the points P1, P2, P3, and P4, and then the midpoints P5 and P3 and P4 of P1 and P2.
  • the midpoint P6 was plotted.
  • R 152 on one side was calculated as the radius of an arc curve passing through points P1, P5, P2 (the same applies to R 364 on the other side).
  • R 1564 of the entire large end face 14b was calculated as an approximate arc curve radius using a value obtained by taking four points using a command “input multiple times”.
  • the shape of the large end face 14b in the generatrix direction was measured once in the diameter direction.
  • an index representing the level of severity of the lubrication state at the peak of the lubricating oil operating temperature between the large collar surface of the inner ring and the large end surface of the tapered roller was examined as follows. (1) The lubrication state between the large collar surface of the inner ring and the large end surface of the tapered roller is straight and constant because the large collar surface is a conical surface, so the radius of curvature of the large end surface of the tapered roller (actual radius of curvature) RACTUAL ) and the operating temperature of the lubricating oil. (2) Also, in transmission and differential applications, the lubricating oil to be used is basically determined, so that the viscosity of the lubricating oil is also determined.
  • an index representing the severity level of the lubrication state can be obtained by the following equation according to the lubrication state in which the viscosity of the lubricating oil is added to the “assumed peak temperature condition”. This index is referred to as “the brim lubrication coefficient” in the present specification.
  • “Flange portion lubricating Factor” 120 ° C. Viscosity ⁇ (oil film thickness h) 2/180 seconds, where the oil film thickness h is determined from the following equation Karna.
  • VG32 which is a lubricating oil often used in transmissions
  • a "brief part lubrication coefficient" was calculated.
  • the oil film thickness h is as shown in Table 2 for each value of the ratio between the actual curvature radius R ACTUAL and the set curvature radius R.
  • the VG32 has a low 120 ° C.
  • Table 4 shows the details of the test results (1) to (6) and comprehensive judgments (1) to (6) in Table 3.
  • the ratio R ACTUAL / R between the actual radius of curvature R ACTUAL and the set radius of curvature R is 0. It came to the conclusion that it is desirable to be 8 or more. Therefore, in the present embodiment, the ratio R ACTUAL / R between the actual curvature radius R ACTUAL and the set curvature radius R is 0.8 or more.
  • tapered roller bearing of the present embodiment is not limited to a transmission application, and can be applied to a differential or other “very severe lubrication” applications.
  • the large end surface 14b and the large collar surface 12e are desirably superfinished surfaces. It came to. Therefore, in this embodiment, the large end surface 14b and the large brim surface 12e are superfinished surfaces.
  • the large end surface 14b of the tapered roller 14 is 0.10 ⁇ mRa or less
  • the large collar surface 12e of the inner ring 12 is 0.063 ⁇ mRa or less.
  • the superfinished surface in the claims has the above surface roughness.
  • FIG. 5a is a view for explaining the contact state between the rolling surface of the tapered roller and the raceway surface of the inner and outer rings, and is a longitudinal sectional view when the top of the crowning of the raceway surface of the inner and outer rings is shifted, and FIG. It is a longitudinal cross-sectional view at the time of changing the angle of the track surface of a ring.
  • the crowning shape of the raceway surface is exaggerated for easy understanding of the contact state between the rolling surface of the tapered roller and the raceway surface of the inner and outer rings.
  • the skew angle of the tapered roller 14 is greatly influenced by the contact position between the rolling surface 16 of the tapered roller 14 and the raceway surfaces 12 a and 13 a of the inner ring 12 and the outer ring 13.
  • the crowning vertex positions are the inner ring 12, the outer ring 13, and the tapered roller 14 at the center in the axial direction of the raceway surfaces 12a and 13a and the rolling surface 16, respectively.
  • the angles of the raceway surfaces 12a and 13a also coincide at the cone center (vertex O in FIG. 1).
  • the contact position can be set to the large diameter side and the small diameter side.
  • FIG. 5a shows a method for shifting the crowning vertex
  • FIG. 5b shows a method for changing the angles of the raceways 12a 'and 13a' of the inner ring 12 'and the outer ring 13'.
  • the crowning vertex positions of the raceway surface 12a of the inner ring 12 and the raceway surface 13a of the outer ring 13 are offset by ⁇ to the large diameter side with respect to the axial center N of the tapered roller 14.
  • the center of the hit position is C.
  • the angles of the raceway surfaces 12a 'and 13a' of the inner ring 12 'and the outer ring 13' are inclined to the large diameter side (clockwise for the outer ring, counterclockwise for the inner ring).
  • the center C of the contact position is offset by ⁇ with respect to the axial center N of the tapered roller 14.
  • 5b shows the angles of the raceway surfaces 12a 'and 13a' when the axial center N of the tapered roller 14 is the center C of the contact position.
  • the skew angle ⁇ is smaller when the deviation ⁇ is 0% than when the shift amount ⁇ is 0%. Further, the rotational torque M increases as the deviation amount ⁇ increases, but the effect is greater on the small diameter side than on the large diameter side. Since the shift amount ⁇ is ⁇ 5% and the skew angle is 1.5 times larger, the influence on the heat generation cannot be ignored, and it was determined that it is not practical ( ⁇ ). Further, when the deviation amount ⁇ is 20 or more, the slip on the rolling surface 16 of the tapered roller 14 is increased, and the rotational torque M is increased to cause another problem such as peeling, so that it is determined that it is not practical ( ⁇ ). did.
  • the shift amount ⁇ is preferably more than 0% and less than 20%.
  • the amount of deviation ⁇ of the center C of the contact position between the rolling surface 16 of the tapered roller 14 and the raceway surfaces 12a, 12a ′, 13a, 13a ′ of the inner rings 12, 12 ′ and outer rings 13, 13 ′ is tapered.
  • the dimension range is more than 0% and less than 20% of the effective rolling surface width LW of the roller 14, and is shifted from the axial center N of the tapered roller 14 to the larger diameter side.
  • the raceways 12a, 12a ′, 13a, 13a ′ of the inner rings 12, 12 ′ and the outer rings 13, 13 ′ are exemplified by crowning shapes, but the present invention is not limited to this, and the raceway surfaces and outer rings of the inner race 12 are not limited thereto.
  • the 13 raceways may be straight. In this case, the contact width between the raceway surfaces of the inner ring 12 and the outer ring 13 and the rolling surface 16 of the tapered roller 14 becomes longer, but the center C of the contact position is determined corresponding to the contact width.
  • the center of the hit position in the present specification and claims is a concept including the above case.
  • the third characteristic configuration of the tapered roller bearing of the present embodiment is that logarithmic crowning is applied to the rolling surface of the tapered roller, and the raceway surfaces of the inner ring and the outer ring are made straight or a gentle single arc full crowning. That is.
  • FIGS. 6 is an enlarged front view of the tapered roller of FIG. 1
  • FIG. 7 is an enlarged view of a portion B of FIG. 6
  • FIG. 8 is an enlarged longitudinal sectional view of the inner ring of FIG. 1
  • FIG. 9 is a schematic diagram showing the shape of the raceway surface of the inner ring in FIG. 8 in the generatrix direction.
  • the rolling surface 16 of the tapered roller 14 is composed of a straight portion 16a at the central portion in the generatrix direction and logarithmic crowning portions (hereinafter also simply referred to as crowning portions) 16b and 16c at both ends.
  • the effective rolling surface width of the tapered roller 14 is LW
  • the width of the straight portion 16a is LW1.
  • the diameter on the large diameter side of the tapered roller 14 is the roller diameter Dw.
  • the logarithmic crowning applied to the tapered rollers 14 will be described.
  • the buses of the crowning units 16b and 16c are obtained based on a logarithmic curve of logarithmic crowning represented by the following equation.
  • the logarithmic crowning equation the one described in Japanese Patent No. 5037094 of the present applicant is cited.
  • Design parameters K 1 , K 2, and z m in the above logarithmic crowning equation are designed.
  • a mathematical optimization method for logarithmic crowning is described.
  • An optimal logarithmic crowning design can be achieved by appropriately selecting K 1 and z m in a functional expression representing logarithmic crowning after defining the design parameter K 2 .
  • Crowning is generally designed to reduce the maximum surface pressure or stress at the contact.
  • K 1 and z m are selected so as to minimize the maximum value of the equivalent stress of Mises.
  • K 1 and z m can be selected using an appropriate mathematical optimization method.
  • Various algorithms for mathematical optimization methods have been proposed.
  • One of the direct search methods is that optimization can be performed without using the derivative of the function. Useful when functions and variables cannot be directly represented by mathematical expressions.
  • K 1 and z m are obtained by using Rosenblock method which is one of direct search methods.
  • the shape of the crowning portions 16b and 16c of the tapered roller 14 in the present embodiment is a logarithmic curve crowning obtained by the above equation (2).
  • the present invention is not limited to the above mathematical formula, and a logarithmic curve may be obtained using another logarithmic crowning formula.
  • Crowning portions 16b and 16c of the tapered roller 14 shown in FIG. 6 are formed with crowning having a shape approximating the logarithmic curve of the logarithmic crowning obtained by the above formula. Details of the logarithmic crowning portion 16b formed on the large end surface 14b side of the tapered roller 14 will be described with reference to FIG. 7 is exaggerated more than the tapered roller 14 shown in FIG. 6 so that the drop amount of the crowning 16b portion can be easily understood.
  • the crowning portion 16b has a complex arc shape in which three arcs having large radii of curvature R1, R2, and R3 are smoothly connected to the straight portion 16a.
  • the drop amount of the crowning portion 16b is approximated to a logarithmic curve by defining a first gate drop amount Dr1, an intermediate second gate drop amount Dr2, and a maximum third gate drop amount Dr3. It becomes the crowning shape.
  • the drop amount Dr3 is Dr in FIG. Further, it corresponds to z m in the above-described Equation 1. Thereby, the edge surface pressure can be avoided and the surface pressure distribution in the axial direction can be made uniform.
  • the drop amount differs depending on the size and model number, but is about 50 ⁇ m at the maximum. Since the crowning portion 16c formed on the small end surface 14a is the same as the crowning portion 16b, description thereof is omitted.
  • the straight portion of the rolling surface of the tapered roller in the present specification is used in the meaning including a linear shape and a substantially linear shape having a crowning with a drop amount of about several ⁇ m.
  • FIGS. 8a is a longitudinal sectional view showing the detailed shape of the inner ring 12
  • FIG. 8b is an enlarged view of a portion D of FIG. 8a
  • FIG. 9 shows the shape of the raceway surface 12a of the inner ring 12 in FIG.
  • It is a schematic diagram. 8a and 8b, a partial outline on the large end face 14b side of the tapered roller 14 is indicated by a two-dot chain line.
  • the raceway surface 12a of the inner ring 12 is formed in a gentle single arc full crowning shape and is connected to the grinding relief portions 12f and 12g.
  • the radius of curvature Rc of the gradual single arc full crowning is extremely large, which causes a drop amount of about 5 ⁇ m at both ends of the raceway surface 12a.
  • the effective raceway surface width of the raceway surface 12a is LG.
  • a flank 12h that smoothly connects to the large brim surface 12e is formed outside the large brim surface 12e in the radial direction.
  • the wedge-shaped gap formed between the flank 12h and the large end surface 14b of the tapered roller 14 enhances the action of the lubricating oil and can form a sufficient oil film.
  • the shape of the raceway surface 12a of the inner ring 12 in the generatrix direction is exemplified by a gradual single arc full crowning shape, but is not limited thereto, and may be a straight shape.
  • the shape of the raceway surface 12a of the inner ring 12 in the generatrix direction has been described above, the shape of the raceway surface 13a of the outer ring 13 in the generatrix direction is the same, and the description thereof is omitted.
  • the rolling surface 16 of the tapered roller 14 has a logarithmic crowning shape (the center portion is a straight shape), and the raceway surface 12a of the inner ring 12 and the raceway surface 13a of the outer ring 13 have a straight shape or a gentle single arc full.
  • Tapered roller bearings for automobile transmissions inner diameter ⁇ 35 mm, outer diameter ⁇ 62 mm, width 18 mm
  • first speed inner diameter
  • fourth speed fourth speed
  • Table 6 shows the samples used for the verification.
  • the ratio of the contact ellipse to the roller effective rolling contact surface width LW is 100%, and the edge surface pressure is generated in the outer ring. Furthermore, since contact is made at the edge, contact driving is performed on the small end face side of the tapered roller, so that a large skew is induced, which is impractical ( ⁇ ).
  • the inner ring 12, the outer ring 13, and the tapered roller 14 of the tapered roller bearing 1 of the present embodiment are made of high carbon chrome bearing steel (for example, SUJ2 material), and at least one bearing component of the inner ring 12, the outer ring 13, and the tapered roller 14. Is subjected to heat treatment to form a nitrogen-enriched layer.
  • This heat treatment method will be described with reference to FIGS.
  • FIG. 10 is a heat treatment pattern showing a method of performing primary quenching and secondary quenching
  • FIG. 11 shows a method of cooling the material to below the A 1 transformation point temperature during quenching, and then reheating and finally quenching. It is the heat processing pattern shown.
  • the above heat treatment can improve the cracking strength and reduce the aging rate of dimensional change while carbonitriding the surface layer portion as compared with conventional carbonitriding and quenching, that is, carbonitriding after the carbonitriding treatment.
  • the tapered roller bearing 1 manufactured by the heat treatment pattern of FIG. 10 or FIG. 11 has a microstructure in which the grain size of austenite crystal grains is one-half or less of the conventional one. Therefore, it has a long life against rolling fatigue, can improve the cracking strength, and can reduce the aging rate of dimensional change. Since a heat treatment step for lowering the secondary quenching temperature is performed to refine the crystal grains, the amount of retained austenite is reduced in the surface layer and inside, and as a result, excellent crack strength and aging resistance can be obtained.
  • FIG. 12 is a diagram showing the microstructure of bearing components, particularly austenite grains.
  • FIG. 12A is a bearing component of the present embodiment
  • FIG. 12B is a bearing component according to a conventional heat treatment method. That is, FIG. 12a shows the austenite grain size of the race rings (inner and outer rings) to which the heat treatment pattern shown in FIG. 10 is applied.
  • FIG. 12 b shows the austenite grain size of the bearing steel by the conventional heat treatment method.
  • FIGS. 13a and 13b show the austenite grain size illustrating FIGS. 12a and 12b. From the structure showing these austenite crystal grain sizes, the conventional austenite grain size is No. 10 in the grain size number of JIS standard, and according to the heat treatment method according to FIG. 10 or FIG. Moreover, the average particle diameter of FIG. 12a was 5.6 micrometers as a result of measuring by the intercept method.
  • the tapered roller bearing 1 of the present embodiment has an austenite grain size of 11 or more in particle size number after forming a nitrogen-enriched layer on the bearing component in addition to the first to third characteristic configurations described above. By miniaturization, the rolling fatigue life is greatly improved, and excellent crack resistance and aging resistance can be obtained.
  • the inner ring 12, the outer ring 13, and the tapered roller 14 of the tapered roller bearing 1 of the present embodiment are made of high carbon chrome bearing steel (for example, SUJ2 material), and at least one bearing component of the inner ring 12, the outer ring 13, and the tapered roller 14.
  • the inner ring 12 and the outer ring 13 are not limited to this, and the inner ring 12 and the outer ring 13 are made of chromium steel (for example, SCR435) or chromium molybdenum steel (for example, SCM435).
  • Carburized steel may be used, and conventional carburizing and tempering may be applied as heat treatment.
  • the tapered roller bearing of the present embodiment is slightly less severe than the tapered roller bearing of the first embodiment, in which the severity level of the lubrication state in which the viscosity characteristics of the lubricating oil are added to the “assumed peak temperature condition”. The difference is that it is used at the level and the practical range of the ratio between the actual curvature radius R ACTUAL and the set curvature radius R of the large end face of the tapered roller is expanded. Since other configurations and technical contents are the same as those in the first embodiment, all contents including Table 1, Tables 5 to 7, Equations 1 to 2, and FIGS. 1 to 15 are applied mutatis mutandis. Only the point will be described.
  • SAE 75W-90 which is a gear oil often used for differentials, was used as a sample, and the “brief part lubrication coefficient” was calculated.
  • Table 8 shows the values.
  • the 120 W viscosity of 75W-90 is slightly higher than VG32, and the lubrication state in which the viscosity characteristic of the lubricating oil is added to the “assumed peak temperature condition” is a slightly relaxed condition compared to the case of the first embodiment. It becomes. This lubrication state is referred to as “severe lubrication state” in this specification.
  • a seizure resistance test using a rotation tester was performed.
  • the test conditions for the seizure resistance test are as follows. ⁇ Test conditions> -Load load: radial load 4000N, axial load 7000N ⁇ Rotation speed: 7000 min -1 ⁇ Lubricant: SAE 75W-90 Test bearing: Tapered roller bearing (inner diameter ⁇ 35mm, outer diameter ⁇ 74mm, width 18mm)
  • Table 10 shows the details of the test results (1) to (6) and comprehensive judgments (1) to (6) in Table 9.
  • the ratio R ACTUAL / R between the actual curvature radius R ACTUAL and the set curvature radius R is 0. 0 in the “severe lubrication state” in which 75W-90 which is a gear oil such as a differential is used. It came to the conclusion that it is desirable to be 5 or more. Therefore, in the present embodiment, the ratio R ACTUAL / R between the actual curvature radius R ACTUAL and the set curvature radius R is 0.5 or more. In this way, by introducing the “collar part lubrication coefficient” as an index representing the severity level of the lubrication state, the practical range of the ratio between the actual curvature radius R ACTUAL and the set curvature radius R can be expanded. it can. Thereby, an appropriate bearing specification can be selected according to use conditions.
  • tapered roller bearing of the present embodiment is not limited to a differential application, and can be applied to a transmission and other “severe lubrication” applications.
  • FIG. 14 is a longitudinal sectional view of an essential part of the automobile transmission
  • FIG. 15 is a longitudinal sectional view of the automobile differential.
  • a transmission 30 shown in FIG. 14 is an example of a synchronous mesh transmission.
  • the input shaft 32 through a bearing 1 1 tapered rollers in the transmission case 31 is rotatably supported on the input shaft 32 coaxially, the spindle 33 is disposed.
  • the input shaft 32 and the main shaft 33, the tapered roller bearing 1 2 pilot portions, and is rotatably supported. Although illustration is omitted, other portions of the main shaft 33 are also supported by tapered roller bearings.
  • Input shaft 32 and the main shaft 33 and countershaft 34 disposed in parallel at predetermined intervals is supported by tapered roller bearing 1 3 and the other tapered roller bearings (not shown).
  • An input shaft gear 35 is integrally provided on the input shaft 32, and always meshes with the countershaft gear 36 of the countershaft 34.
  • Mainshaft gear to the main shaft 33 via a tapered roller bearing 1 4 idler portion being (hereinafter, simply referred to as gear) 43 is rotatably mounted.
  • the main shaft gear 43 is always meshed with the gear 37 of the sub shaft 34.
  • Tapered roller bearing according to an embodiment of the present invention refers to the other tapered roller bearing is omitted bearing 1 1 to 1 4 and illustrated tapered rollers above.
  • the synchro mechanism 39 moves in the axial direction (left-right direction in FIG. 14) by the operation of a selector (not shown) to perform a speed change operation.
  • FIG. 15 is a longitudinal sectional view of a general automobile differential.
  • a drive pinion shaft 101 is accommodated on the input side of the differential case 100 and is rotatably supported by a pair of tapered roller bearings 1 5 and 1 6 .
  • a propeller shaft 102 is connected to one end of the drive pinion shaft 101, and a drive pinion gear (reduction small gear) 104 that meshes with a link gear (reduction large gear) 103 is integrally provided at the other end.
  • the link gear 103 is connected to a differential gear case 105, and the differential gear case 105 is rotatably supported with respect to the differential case 100 by a pair of tapered roller bearings 1 7 and 18 .
  • a pair of pinion gears 106 and a pair of side gears 107 that mesh with the pinion gears 106 are disposed inside the differential gear case 105.
  • the pinion gear 106 is attached to the pinion shaft 108, and the side gear 107 is attached to the differential gear case 105.
  • the left and right drive shafts (not shown) are connected to the inner diameter portion of the side gear 107 (such as serration connection).
  • Tapered roller bearings according to embodiments of the present invention are the tapered roller bearings 15 to 18 described above.
  • the drive torque of the propeller shaft 102 is transmitted through a path of drive pinion gear 104 ⁇ link gear 103 ⁇ differential gear case 105 ⁇ pinion gear 106 ⁇ side gear 107 ⁇ drive shaft.
  • the tapered roller bearing according to the embodiment of the present invention suppresses heat generation on the large end surface of the tapered roller and the large collar surface of the inner ring, improves seizure resistance, and achieves a long life, so that it is used for automobile transmissions and differentials. It is suitable as.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

内周に円錐状の軌道面13aを有する外輪13と、外周に円錐状の軌道面12aを有し、この軌道面12aの大径側に大つば面12e、小径側に小つば面12dが設けられた内輪12と、両軌道面12a、13a間に転動自在に配列された複数の円すいころ14と、この円すいころ14を収容する保持器15と、を備え、軸受使用時に円すいころ14の大端面14bが内輪12の大つば面12eに接触して案内される円すいころ軸受1において、円すいころ14の大端面14bの設定曲率半径をR、円すいころ14の円錐角の頂点Oから内輪12の大つば面12cまでの基本曲率半径をRBASEとしたとき、設定曲率半径Rと基本曲率半径RBASEとの比率R/RBASEを0.75~0.87の範囲とすると共に、円すいころ14の大端面14bの実曲率半径をRACTUALとしたとき、この実曲率半径RACTU ALと設定曲率半径Rとの比率RACTUAL/Rを0.5以上としたことを特徴とする。

Description

円すいころ軸受
 本発明は、円すいころ軸受に関する。
 自動車用途や産業機械用途では、ラジアル荷重、アキシャル荷重およびモーメント荷重を受ける部位に円すいころ軸受が多く使用される。円すいころ軸受は、使用時、円すいころの大端面と内輪の大つば面で接触し、一定のアキシャル荷重を受けることができる。しかし、円すいころの大端面と内輪の大つば面の上記の接触は転がり接触ではなく、すべり接触となる。すべり接触であるために、潤滑環境が不十分であると発熱し、急昇温する恐れがある。
 耐焼付き性を向上させるためには、円すいころの大端面と内輪の大つば面との接触部における摩擦によるトルクロスと発熱を低減する必要があり、次のような技術が提案されている(特許文献1、2)。
 特許文献1には、円すいころの大端面と内輪の大つば面の接触部における油膜厚さを向上(発熱低減)させる手法として、円すいころの大端面の曲率半径をRとし、円すいころの円錐角の頂点から内輪の大つば面(円すいころとの接触部)までの距離をRBASEとしたときに、R/RBASEを0.75~0.87の範囲にすることが提案されている。
 特許文献2には、円すいころの大端面と内輪の大つば面との間の接触領域への潤滑油の引き込み作用を高めて十分な油膜を形成させる手法および円すいころのスキュー時のころ大端面へのエッジ当り(疵の問題)を解決する手法が提案されている。
 また、特許文献3には、円すいころ軸受に発生し得る接触面圧を適正化し、軸受寿命の延長を図れる手法として、円すいころ等に対数クラウニング形状を付与することが提案されている。さらに、特許文献4には、円すいころの転動面と内外輪の軌道面との当り位置を大径側にする手法が提案されている。
特開2000-170774号公報 特許第4165947号公報 特許第5334665号公報 特開平11-201151号公報
 特許文献1のR/RBASEを0.75~0.87の範囲にする技術は、円すいころの大端面と内輪の大つば面の接触部における油膜厚さを向上(発熱低減)する手法として優れたものである。しかし、R/RBASEの比率が1に近いほど、円すいころがスキューしにくいことが考えられるので、R/RBASEを0.75~0.87の範囲では、従来の仕様(R/RBASEが0.90~0.97)よりも円すいころがスキューしやすくなるという課題がある。また、特許文献1では、円すいころの大端面の加工後の実曲率半径の許容範囲が規定されていないので、R/RBASEを0.75~0.87の範囲内に設定しても、上記の実曲率半径が小さくなると、想定よりも大きなスキューを誘発するという課題が判明した。
 円すいころ軸受が使用される部位は、大きなラジアル荷重、アキシャル荷重を受けると同時にモーメント荷重が作用するような環境で使用される。また、軸受の取付け誤差(ミスアライメント)も生じることにより、円すいころの転動面と内外輪の軌道面との接触領域の母線方向の端部で発生するエッジ面圧も大きくなるため、内輪には大きなドロップ量の単一円弧のフルクラウニングやカットクラウニング、外輪には大きなドロップ量の単一円弧のフルクラウニングが必要となっていた。ところが、このような大きなドロップ量のクラウニングを付けると、円すいころの転動面と内外輪の軌道面との接触領域(接触楕円の長軸寸法)が短くなることから、接触領域が長い場合に比べて、当り位置のばらつきが大きくなり、円すいころがスキューしやすいという問題が後述する検証の結果から判明した。
 スキューが発生すると、円すいころの大端面と内輪の大つば面との間で発生する接線力が増大し、摩擦トルクの増加、発熱をもたらす。さらに、スキューが増すと円すいころの大端面の接触状態がエッジ当りとなることで金属接触し、発熱につながることも懸念される。
 以上説明したように、潤滑油が少ない環境下でモーメント荷重が作用したり、軸受の取付け誤差が生じるような部位等で使用される円すいころ軸受の一連の技術課題に着目したのが本発明である。
 本発明は、上記の問題に鑑み、厳しい潤滑環境下でも円すいころの大端面と内輪の大つば面における発熱を抑え耐焼付き性を向上させ、長寿命化を図った円すいころ軸受を提供することを目的とする。
 本発明者は、上記の目的を達成するために種々検討、検証した結果、円すいころ軸受の内部仕様のうち有機的に結合する以下の新たな着想によって、本発明に至った。
(1)円すいころの大端面の最適な曲率半径と加工後の実曲率半径との比率
(2)円すいころのスキューを抑制する内外輪の軌道面の形状
(3)円すいころの転動面への対数クラウニングの適用
 前述の目的を達成するための技術的手段として、第1の本発明は、内周に円錐状の軌道面を有する外輪と、外周に円錐状の軌道面を有し、この軌道面の大径側に大つば面、小径側に小つば面が設けられた内輪と、前記両軌道面間に転動自在に配列された複数の円すいころと、前記円すいころを収容する保持器と、を備え、軸受使用時に前記円すいころの大端面が前記内輪の大つば面に接触して案内される円すいころ軸受において、前記円すいころの大端面の設定曲率半径をR、前記円すいころの円錐角の頂点から前記内輪の大つば面までの基本曲率半径をRBASEとしたとき、前記設定曲率半径Rと前記基本曲率半径RBASEとの比率R/RBASEを0.75~0.87の範囲とすると共に、前記円すいころの大端面の実曲率半径をRACTUALとしたとき、この実曲率半径RACTUALと前記設定曲率半径Rとの比率RACTUAL/Rを0.5以上としたことを特徴とする。
 また、第2の本発明は、内周に円錐状の軌道面を有する外輪と、外周に円錐状の軌道面を有し、この軌道面の大径側に大つば面、小径側に小つば面が設けられた内輪と、前記両軌道面間に転動自在に配列された複数の円すいころと、前記円すいころを収容する保持器と、を備え、軸受使用時に前記円すいころの大端面が前記内輪の大つば面に接触して案内される円すいころ軸受において、前記円すいころの大端面の設定曲率半径をR、前記円すいころの円錐角の頂点から前記内輪の大つば面までの基本曲率半径をRBASEとしたとき、前記設定曲率半径Rと前記基本曲率半径RBASEとの比率R/RBASEを0.75~0.87の範囲とすると共に、前記円すいころの大端面の実曲率半径をRACTUALとしたとき、この実曲率半径RACTUALと前記設定曲率半径Rとの比率RACTUAL/Rを0.8以上としたことを特徴とする。
 上記の構成により、厳しい潤滑環境下でも円すいころの大端面と内輪の大つば面における発熱を抑えることで耐焼付き性を向上させ、長寿命化を図った円すいころ軸受を実現することができる。特に、潤滑状態の厳しさのレベルを表す指標として「つば部潤滑係数」を導入することにより、実曲率半径RACTUALと設定曲率半径Rとの比の実用可能な範囲を拡大することができる。これにより、使用条件に応じて、適正な軸受仕様を選定することができる。
 上記の円すいころの大端面および内輪の大つば面を超仕上げ加工面とすることにより、油膜パラメータを高め潤滑条件を向上させることができる。
 上記の内輪の大つば面に逃げ面を形成することにより、大つば面と円すいころの大端面との接触領域への潤滑油の引き込み作用が高まり十分な油膜を形成することができる。
 上記の内輪の軌道面および外輪の軌道面は、ストレート形状又は緩やかな円弧のフルクラウニング形状とし、円すいころの転動面は、対数クラウニング形状であることが好ましい。これにより、円すいころと軌道面のエッジ当りやスキューを抑制することができる。
 上記の内輪、外輪および円すいころの少なくとも一つの軸受構成部品が、窒素富化層を有し、かつ、前記窒素富化層におけるオーステナイト結晶粒の粒度番号が10番を超える範囲にあることが好ましい。窒素富化層は、軌道輪(外輪もしくは内輪)又は円すいころの表層に形成された窒素含有量を増加した層であって、例えば浸炭窒化、窒化、浸窒などの処理によって形成させることができる。窒素富化層における窒素含有量は、好ましくは0.1%~0.7%の範囲である。窒素含有量が0.1%より少ないと効果がなく、特に異物混入条件での転動寿命が低下する。窒素含有量が0.7%より多いと、ボイドと呼ばれる空孔ができたり、残留オーステナイトが多くなりすぎて硬度が出なくなったりして短寿命になる。軌道輪に形成された窒素富化層については、窒素含有量は、研削後の軌道面の表層50μmにおける値であって、例えばEPMA(波長分散型X線マイクロアナライザ)で測定することができる。
 また、オーステナイト結晶粒の粒度番号が10番を超えるほどオーステナイト粒径が微細であることにより、転動疲労寿命を大幅に改良することができる。オーステナイト粒径の粒度番号が10番以下では、転動疲労寿命は大きく改善されないので、10番を超える範囲とする。通常、11番以上とする。オーステナイト粒径は細かいほど望ましいが、通常、13番を超える粒度番号を得ることは難しい。なお、上記の軸受構成部品のオーステナイト粒は、窒素富化層を有する表層部でも、それより内側の内部でも変化しない。したがって、上記の結晶粒度番号の範囲の対象となる位置は、表層部および内部とする。オーステナイト結晶粒は、たとえば焼入れ処理を行なった後も焼入れ直前のオーステナイト結晶粒界の痕跡が残っており、その痕跡に基づいた結晶粒をいう。
 上記の円すいころの転動面と内輪の軌道面との当り位置の中心および円すいころの転動面と外輪の軌道面との当り位置の中心は、円すいころの有効転動面幅の0%を超え20%未満の寸法範囲で、円すいころの軸方向中央から大径側にずれていることが好ましい。これにより、円すいころのスキューと軸受の回転トルクを低減することができる。
 本発明の円すいころ軸受は、自動車のトランスミッション用、デファレンシャル用として好適である。
 本発明によれば、厳しい潤滑環境下でも円すいころの大端面と内輪の大つば面における発熱を抑えることで耐焼付き性を向上させ、長寿命化を図った円すいころ軸受を実現することができる。特に、潤滑状態の厳しさのレベルを表す指標として「つば部潤滑係数」を導入することにより、実曲率半径RACTUALと設定曲率半径Rとの比の実用可能な範囲を拡大することができる。これにより、使用条件に応じて、適正な軸受仕様を選定することができる。
本発明の第1の実施形態に係る円すいころ軸受を示す縦断面図である。 図1の円すいころの大端面と内輪の大つば面の設計仕様を説明する縦断面図である。 図1の円すいころの大端面の曲率半径と油膜厚さの関係を示すグラフである。 図1の円すいころの大端面の詳細形状を説明する図で、円すいころの縦断面図である。 図4aのA部を拡大した縦断面図である。 図4bの模式図である。 図1の円すいころの転動面と内外輪の軌道面との当り状態を説明する図で、内外輪の軌道面のクラウニングの頂点をずらせた場合の縦断面図である。 図1の円すいころの転動面と内外輪の軌道面との当り状態を説明する図で、内外輪の軌道面の角度を変えた場合の縦断面図である。 図1の円すいころの詳細形状を示す縦断面図である。 図6のB部を拡大した図である。 図1の内輪の詳細形状を示す縦断面図である。 図8aのD部を拡大した図である。 図8aの内輪の軌道面の母線方向の形状を示す模式図である。 図1の円すいころ軸受の熱処理方法を説明する図である。 図10の熱処理方法の変形例を説明する図である。 図10又は図11の熱処理を施した軸受構成部品のミクロ組織、特にオーステナイト粒を示す図である。 従来の熱処理を施した軸受構成部品のミクロ組織、オーステナイト粒を示す図である。 図12aを図解したオーステナイト粒界を示す図である。 図12bを図解したオーステナイト粒界を示す図である。 図1の円すいころ軸受が適用された自動車用トランスミッションを示す縦断面図である。 図1の円すいころ軸受が適用された自動車用デファレンシャルを示す縦断面図である。
 本発明の第1の実施形態に係る円すいころ軸受を図1~図15に基づいて説明する。まず、本実施形態の円すいころ軸受の概要を図1、図6、図8に基づいて説明する。図1は、本実施形態の円すいころ軸受の中心線から上側半分を示す縦断面図で、図6は、図1の円すいころの詳細形状を示す縦断面図で、図8は、図1の内輪の詳細形状を示す縦断面図である。
 図1に示すように、円すいころ軸受1は、内輪12、外輪13、内輪12と外輪13との間に組込まれた円すいころ14、円すいころ14を保持する保持器15からなる。内輪12は外周に円錐状の内輪側軌道面12a(以下、単に軌道面12aと呼ぶ。)が形成され、小径側に小つば部12bが設けられ、大径側に大つば部12cが設けられている。外輪13は内周に円錐状の外輪側軌道面13a(以下、単に軌道面13aと呼ぶ。)が形成されている。内輪12の軌道面12aと外輪13の軌道面13aとの間に複数の円すいころ14が組み込まれている。各円すいころ14は、保持器15のポケット15aに収容され、円周方向等間隔に保持されている。
 内輪12の軌道面12aと大つば部12cの大つば面12eとが交わる隅部に研削逃げ部12fが形成され、軌道面12aと小つば部12bの小つば面12dとが交わる隅部に研削逃げ部12gが形成されている。このように、内輪12の軌道面12aには研削逃げ部12f、12gが設けられているので、軌道面12aの有効軌道面幅LG(図8a参照)は円すいころ14の転動面16の有効転動面幅LW(図6参照)より短い。
 円すいころ14の外周には、円錐状の転動面16が形成され、小径側に小端面14a、大径側に大端面14bが形成され、円すいころ14は、その大端面14bが内輪12の大つば面12eで受けられる。円すいころ軸受1の使用時、大端面14bは内輪12の大つば面12eに接触して案内される。ここで、大端面14bは、研削加工面である。円すいころ14の転動面16は、図6に示すように、母線方向の中央部分のストレート部16aと両端部のクラウニング部16b、16cとからなる。図6に示すクラウニング部16b、16cのドロップ量は誇張して表示している。クラウニング部16b、16cの詳細は後述する。図1に示すように、保持器15は、小径側環状部15bと、大径側環状部15cと、小径側環状部15bと大径側環状部15cとを軸方向に繋ぐ複数の柱部15dとからなる。
 図1に示す円すいころ14の小端面14aと小つば面12dとのすきまSは0.3mm以下に設定されているので、スキューの抑制効果が得られると共に、円すいころ軸受1の組込時の馴染み回転を減らし組付け性も良好である。
 本実施形態の円すいころ軸受1の概要は以上のとおりである。次に、本実施形態の円すいころ軸受1の特徴的な構成を説明する。まず、第1の特徴的な構成である円すいころの大端面の最適な曲率半径と加工後の実曲率半径との比率について図2~図4に基づいて説明する。図2は、図1の円すいころの大端面と内輪の大つば面の設計仕様を説明する縦断面図で、図3は、図1の円すいころの大端面の曲率半径と油膜厚さの関係を示すグラフである。図4は、図1の円すいころの大端面の詳細形状を説明する図で、図4aは円すいころの縦断面図で、図4bは、図4aのA部を拡大した縦断面図で、図4cは、図4bの模式図である。図4b、図4cでは、図示を簡素化するためにハッチングを省略している。
 図2に示すように、円すいころ14の転動面16と、内輪12の軌道面12aおよび外輪13の軌道面13aの各円錐角の頂点は、円すいころ軸受1の中心軸上の一点Oで一致する。円すいころ14の大端面14bの最適な曲率半径Rと、頂点Oから内輪12の大つば面12eまでの距離RBASEとの比R/RBASEは、円すいころ14の大端面14bと内輪12の大つば面12eの接触部における油膜厚さを向上させるために、0.75~0.87の範囲に設定されている。
 図3に、比R/RBASEの関係と円すいころ14の大端面14bと内輪12の大つば面12eとの間に発生する油膜厚さの比を示す。円すいころ14の大端面14bと内輪12の大つば面12eとの間に形成される油膜厚さをtとし、縦軸は、比R/RBASEが0.76のときの油膜厚さt0に対する比t/t0で示す。図示のように、油膜厚さtは、比R/RBASEが0.76のとき最大となり、比R/RBASEが0.9を越えると急激に減少する。
 油膜厚さの最適値という面では、特許文献1の記載のとおり、比R/RBASEが0.75~0.87の範囲であるので、次に、円すいころ14のスキュー角と比R/RBASEとの関係について検討した。この検討における比R/RBASEは、円すいころ14の大端面14bが、設定した理想的な球面(加工誤差を含まない)での接触状態であることを条件とする。比R/RBASEと円すいころ14のスキュー角との関係を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、比R/RBASEが小さくなる程、スキュー角は大きくなることが判明した。一方、図3に示す円すいころ14の大端面14bの曲率半径Rは、図4aに示す円すいころ14の大端面14bが設定した理想的な球面でできていたときのR寸法である。詳述すると、図4bに示すように、円すいころ14の大端面14bの端部の点P1、P2、P3、P4および点P1、P2の中点P5、点P3、P4の中点P6とすると、点P1、P5、P2を通る曲率半径R152、点P3、P6、P4を通る曲率半径R364および点P1、P5、P6、P4を通る曲率半径R1564は、R=R152=R364=R1564が成り立つ理想的な単一円弧曲線である。上記において、点P1、P4は、大端面14bと端面チャンファ14dとの接続点であり、点P2、P3は、大端面14bと逃げ部14cとの接続点である。ここで、R=R152=R364=R1564が成り立つ理想的な単一円弧曲線を設定曲率半径Rという。請求の範囲における設定曲率半径Rは上記の意味である。
 ところが、実際には、図4cに示すように、研削加工時に大端面14bの両端がだれることで、大端面14b全体のR1564に対する片側のR152は同一ではなく小さくできてしまう(他方の片側R364も同様である)。ここで、円すいころ14の大端面14bの加工後の片側のR152、R364を実曲率半径RACTUALという。請求の範囲における実曲率半径RACTUALは上記の意味である。
 設定曲率半径Rおよび実曲率半径RACTUALは次のようにして求める。図4cにおける大端面14b全体のR1564は、図4bに示す大端面14bの点P1、P5、P6、P4の4点を通る近似円である。R152、R364、R1564の測定方法について説明する。R152、R364、R1564の測定は、「株式会社ミツトヨ製表面粗さ測定機 サーフテスト」の例えば、機種名:SV-3100を用いて測定した。測定方法は、上記測定器を用いて円すいころ14の大端面14bの母線方向の形状を出し、点P1、P2、P3、P4をプロットした後、P1、P2の中点P5およびP3、P4の中点P6をプロットした。片側のR152は点P1、P5、P2を通る円弧曲線半径として算出した(他方の片側R364も同様である)。大端面14b全体のR1564は、「複数回入力」というコマンドを用いて4点を取った値で近似円弧曲線半径を算出した。大端面14bの母線方向の形状は、直径方向に1回の測定とした。
 次に、設定曲率半径Rと実曲率半径RACTUALの差による影響を説明する。円すいころ14の大端面14bと内輪12の大つば面12eとの接触は、片側のR152、R364の部分としか接触しないので、実際の大端面14bと大つば面12eの接触は、設定曲率半径R(R1564)よりも小さい実曲率半径RACTUAL(R152、R364)となる。このため、大端面14bと大つば面12eとの接触面圧が上昇すると同時に、円すいころ14のスキュー角も増加する。上記の問題が実際の研削加工を検証して判明した。
 油膜が十分でない環境でスキュー角が増加し、接触面圧も上昇すると、円すいころ14の大端面14bの大つば面12cとの接触が不安定になり、油膜パラメータが低下する。油膜パラメータが1を切ると金属接触が始まる境界潤滑となり、焼付き発生の懸念が高まることが考えられる。ここで、油膜パラメータとは、弾性流体潤滑理論により求まる油膜厚さhと、円すいころ14の大端面14bと内輪12の大つば面12eの二乗平均粗さの合成粗さσとの比で定義されるΛ(=h/σ)である。
 上述した研削加工に伴う、設定曲率半径Rと実曲率半径RACTUALの差による影響についての検討結果より、実曲率半径RACTUALと設定曲率半径Rとの比に着目し、大端面と大つば面との接触面圧、油膜厚さ、スキュー角、油膜パラメータとの関係を検証した。さらに、実曲率半径RACTUALと設定曲率半径Rとの比の実用可能な範囲の検証には、すべり接触となる内輪の大つば面と円すいころの大端面との間の潤滑油使用温度のピーク時における潤滑状態の厳しさのレベルが影響することが判明した。
 このため、内輪の大つば面と円すいころの大端面との間の潤滑油使用温度のピーク時における潤滑状態の厳しさのレベルを表す指標を次のように検討した。
(1)内輪の大つば面と円すいころの大端面との間の潤滑状態は、大つば面は円錐面のため直線状で一定であるので、円すいころの大端面の曲率半径(実曲率半径RACTUAL)と潤滑油の使用温度により決まることに着目した。
(2)また、トランスミッションやデファレンシャルの用途では、使用される潤滑油は基本的に決まっているため、その潤滑油の粘度も決まってくることに着目した。
(3)そして、潤滑油使用温度のピーク時の最大条件として、120℃で3分(180秒)間継続する極めて厳しい温度条件を想定した。この温度条件は、ピーク時の最大条件であり、おおよそ3分を経過すれば、定常状態に戻るという意味を有し、この温度条件を本明細書において「想定ピーク温度条件」という。この「想定ピーク温度条件」に潤滑油の粘度特性を加味した潤滑状態において急昇温を生じない実曲率半径RACTUALと設定曲率半径Rとの比を設定するための閾値が求められることを見出した。
 以上の知見に基づいて、「想定ピーク温度条件」に潤滑油の粘度を加味した潤滑状態により、潤滑状態の厳しさのレベルを表す指標が次式で求められることを考案した。この指標を本明細書において「つば部潤滑係数」という。
「つば部潤滑係数」=120℃粘度×(油膜厚さh)2/180秒
ここで、油膜厚さhは、Karnaの以下の式から求められる。
Figure JPOXMLDOC01-appb-M000002
 トランスミッションによく使用される潤滑油であるタービン油ISO粘度グレード VG32を試料とし、「つば部潤滑係数」を算出した。VG32の120℃粘度は7.7cSt(=7.7mm2/s)で、油膜厚さhは式(1)より求めた。実曲率半径RACTUALと設定曲率半径Rとの比の各値に対して、油膜厚さhは表2のとおりである。
Figure JPOXMLDOC01-appb-T000003
 VG32の120℃粘度は低く、「想定ピーク温度条件」に潤滑油の粘度を加味した潤滑状態は極めて厳しい条件となる。この潤滑状態を本明細書において「極めて厳しい潤滑状態」という。
 併せて、回転試験機を用いた耐焼付き試験を実施した。耐焼付き試験の試験条件は以下のとおりである。
<試験条件>
・負荷荷重:ラジアル荷重4000N、アキシャル荷重7000N
・回転数:7000min-1
・潤滑油:タービン油ISO粘度グレード VG32
・供試軸受:円すいころ軸受(内径φ35mm、外径φ74mm、幅18mm)
 実曲率半径RACTUALと設定曲率半径Rとの比の各値に対して、大端面と大つば面との接触面圧、油膜厚さ、スキュー角、油膜パラメータ、「つば部潤滑係数」の結果を表3に示す。表3は接触面圧、油膜厚さ、スキュー角、油膜パラメータのそれぞれを比で表しているが、基準となる分母は、実曲率半径RACTUALが設定曲率半径Rと同一寸法に加工できた場合の値とし、各符号に0を付加している。
Figure JPOXMLDOC01-appb-T000004
 表3中の試験結果(1)~(6)、総合判定(1)~(6)の詳細を表4に示す。
Figure JPOXMLDOC01-appb-T000005
 表3、表4の結果より、トランスミッションオイルである低粘度のVG32が使用される「極めて厳しい潤滑状態」では、実曲率半径RACTUALと設定曲率半径Rとの比RACTUAL/Rは、0.8以上であることが望ましいという結論に至った。したがって、本実施形態は、実曲率半径RACTUALと設定曲率半径Rとの比RACTUAL/Rを0.8以上としている。
 ただし、本実施形態の円すいころ軸受は、トランスミッション用途に限定されるものではなく、デファレンシャルやその他の「極めて厳しい潤滑状態」の用途に適用することができる。
 表3、表4の結果から次のことが判明した。算出した「つば部潤滑係数」と耐焼付き試験の結果を照合すると、「つば部潤滑係数」が8×10-9を超えるように実曲率半径RACTUALと設定曲率半径Rとの比RACTUAL/Rを設定すると実用可能であることが確認できた。これにより、実用可能な実曲率半径RACTUALと設定曲率半径Rとの比RACTUAL/Rを設定するための閾値として「つば部潤滑係数」=8×10-9を用いることができる。
 また、油膜パラメータは、円すいころ14の大端面14bと内輪12の大つば面12eの合成粗さに依存するため、大端面14bと大つば面12eは超仕上げ加工面であることが望ましいという結論に至った。したがって、本実施形態では、大端面14bと大つば面12eは超仕上げ加工面としている。表面粗さは、円すいころ14の大端面14bが0.10μmRa以下で、内輪12の大つば面12eが0.063μmRa以下である。請求の範囲における超仕上げ加工面は上記の表面粗さを有する。
 本実施形態の円すいころ軸受の第2の特徴的な構成である円すいころのスキューを抑制する内外輪の軌道面の形状について図5a、図5bに基づいて説明する。図5aは、円すいころの転動面と内外輪の軌道面との当り状態を説明する図で、内外輪の軌道面のクラウニングの頂点をずらせた場合の縦断面図で、図5bは、内外輪の軌道面の角度を変えた場合の縦断面図である。図5a、図5bでは、円すいころの転動面と内外輪の軌道面との当り状態が理解しやすいように、軌道面のクラウニング形状を誇張して図示している。
 円すいころ14のスキュー角は、円すいころ14の転動面16と、内輪12、外輪13の軌道面12a、13aとの当り位置によって大きな影響を受ける。設計呼び寸法通りの場合、クラウニングの頂点の位置は、内輪12、外輪13、円すいころ14で、それぞれ、軌道面12a、13a、転動面16の軸方向中央となり、また、内輪12、外輪13の軌道面12a、13aの角度もコーンセンタ(図1の頂点O)で一致するようになる。円すいころ14の転動面16と内輪12、外輪13の軌道面12a、13aとの当り位置の中心Cをαだけオフセットさせることで、当り位置を大径側、小径側とすることができるが、その手法としては次の2つの方法がある。
 図5aは、クラウニングの頂点をずらす方法であり、図5bは、内輪12’、外輪13’の軌道面12a’、13a’の角度を変える方法である。例えば、図5aの場合は、円すいころ14の軸方向中央Nに対して、内輪12の軌道面12aと外輪13の軌道面13aのそれぞれのクラウニングの頂点位置を大径側にαだけオフセットさせて当り位置の中心をCとしたものである。
 図5bで大径側当たりにする場合は、内輪12’、外輪13’の軌道面12a’、13a’の角度を大径側に傾け(外輪の場合は時計回り方向、内輪の場合は反時計回り方向)、円すいころ14の軸方向中央Nに対して、当り位置の中心Cをαだけオフセットさせている。図5bの二点鎖線は、円すいころ14の軸方向中央Nを当り位置の中心Cとしたときの軌道面12a’、13a’の角度を示す。ただし、円すいころ14の軸方向中央Nから当り位置の中心Cがずれると、円すいころ14の転動面16と内輪12、12’、外輪13、13’の軌道面12a、12a’、13a、13a’との間ですべりが生じるようになる。ずれ量αが大きくなる程大きくすべり、軸受の回転トルクの増大をもたらす。
 円すいころ14のスキューを抑制するために、円すいころ14の転動面16と内輪12、12’、外輪13、13’の軌道面12a、12a’、13a、13a’との当り位置の中心Cのずれ量α、スキュー角度、軸受トルクとの関係を解析し実用可能な範囲を検証した。その結果を表5に示す。表5において、ずれ量αは、円すいころ14の転動面16の有効転動面幅LW(図6参照)に対する割合で示し、記号の正負は、正が大径側当りで、負は小径側当りである。スキュー角度φ0およびトルクM0は、ずれ量αが0%のときの値である。
Figure JPOXMLDOC01-appb-T000006
 表5に示すように、スキュー角φは、ずれ量αが0%のときよりも大径側当りとした方が小さいことが分かる。また、回転トルクMは、ずれ量αが大きくなる程増大するが、大径側当りよりも小径側当りの方がその影響が大きい。ずれ量αが-5%でスキュー角は1.5倍と大きくなることから、発熱への影響が無視できなくなり、実用不可(×)と判定した。また、ずれ量αが20以上になると、円すいころ14の転動面16におけるすべりが大きくなることで回転トルクMが増大し、別のピーリング等の不具合を引き起こすため、実用不可(×)と判定した。
 以上の結果より、スキュー角φと回転トルクMを小さくするためには、ずれ量αは0%を超え20%未満であることが望ましい。本実施形態では、円すいころ14の転動面16と内輪12、12’、外輪13、13’の軌道面12a、12a’、13a、13a’との当り位置の中心Cのずれ量αを円すいころ14の有効転動面幅LWの0%を超え20%未満の寸法範囲とし、円すいころ14の軸方向中央Nから大径側にずらせている。
 本実施形態では、内輪12、12’、外輪13、13’の軌道面12a、12a’、13a、13a’がクラウニング形状のものを例示したが、これに限られず、内輪12の軌道面および外輪13の軌道面はストレート形状のものであってもよい。この場合は、内輪12、外輪13の軌道面と円すいころ14の転動面16との当り幅は長くなるが、この当り幅に対応して当り位置の中心Cが決まる。本明細書および請求の範囲における当り位置の中心は、上記の場合を含む概念のものである。
 本実施形態の円すいころ軸受の第3の特徴的な構成は、円すいころの転動面に対数クラウニングを施し、内輪および外輪の軌道面をストレート形状又は緩やかな単一円弧のフルクラウニング形状としたことである。
 円すいころ、内輪および外輪の詳細な形状を図6~図9に基づいて説明する。図6は、図1の円すいころを拡大した正面図で、図7は、図6のB部を拡大した図で、図8は、図1の内輪を拡大した縦断面図で、図9は、図8の内輪の軌道面の母線方向の形状を示す模式図である。
 図6に示すように、円すいころ14の転動面16は、母線方向の中央部分のストレート部16aと両端部の対数クラウニング部(以下、単にクラウニング部ともいう)16b、16cとからなる。円すいころ14の有効転動面幅はLWで、ストレート部16aの幅はLW1である。円すいころ14の大径側の直径がころ径Dwである。
 ここで、円すいころ14に施された対数クラウニングに関して説明する。クラウニング部16b、16cの母線は、一例として、次式で表される対数クラウニングの対数曲線に基づいて求められる。この対数クラウニング式は、本出願人の特許第5037094号公報に記載されたものを引用した。
Figure JPOXMLDOC01-appb-M000007
 上記の対数クラウニング式中の設計パラメータK1、K2およびzmが設計の対象となる。対数クラウニングの数理的最適化手法について説明する。設計パラメータK2を定めた上で、対数クラウニングを表す関数式中のK1、zmを適切に選択することによって、最適な対数クラウニング設計することができる。クラウニングは一般的に接触部の面圧もしくは応力の最大値を低下させるように設計する。ここでは、転動疲労寿命は、Misesの降伏条件に従って発生すると考え、Misesの相当応力の最大値を最小にするようにK1、zmを選択する。K1、zmは適当な数理的最適化手法を用いて選択することが可能である。数理的最適化手法のアルゴリズムには種々のものが提案されているが、その一つである直接探索法は、関数の微係数を使用せずに最適化を実行することが可能であり、目的関数と変数が数式によって直接的に表現できない場合に有用である。ここでは、直接探索法の一つであるRosenbrock法を用いてK1、zmを求める。
 本実施形態における円すいころ14のクラウニング部16b、16cの形状は、上記の式(2)によって求められた対数曲線クラウニングとした。ただし、上記の数式に限られるものではなく、他の対数クラウニング式を用いて対数曲線を求めてもよい。
 図6に示す円すいころ14のクラウニング部16b、16cには上記の数式で求められた対数クラウニングの対数曲線に近似する形状のクラウニングが形成されている。円すいころ14の大端面14b側に形成された対数クラウニング部16bの詳細を図7に基づいて説明する。図7はクラウニング16b部のドロップ量を理解しやすいように図6に示す円すいころ14よりも更に誇張して表示している。クラウニング部16bは、ストレート部16aに大きな曲率半径R1、R2、R3をもつ3つの円弧が滑らかに接続され複合的な円弧形状で構成されている。そして、クラウニング部16bのドロップ量として、第1のゲートのドロップ量Dr1、中間の第2のゲートのドロップ量Dr2、最大の第3のゲートのドロップ量Dr3を規定することにより、対数曲線に近似したクラウニング形状となる。ドロップ量Dr3は図6おけるDrである。また、前述した数式1中のzmに相当する。これにより、エッジ面圧を回避し軸方向の面圧分布を均一化できる。ドロップ量は、サイズや型番によって異なるが、最大でも50μm程度である。小端面14aに形成されたクラウニング部16cは、クラウニング部16bと同様であるので、説明を省略する。本明細書における円すいころの転動面のストレート部は、直線状の他、ドロップ量が数μm程度のクラウニングのある概略直線状のものを含む意味で用いる。
 次に、内輪12の軌道面12aの母線方向の形状を図8および図9に基づいて説明する。図8aは内輪12の詳細形状を示す縦断面図で、図8bは、図8aのD部を拡大した図で、図9は、図8の内輪12の軌道面12aの母線方向の形状を示す模式図である。図8a、図8bでは、円すいころ14の大端面14b側の一部輪郭を2点鎖線で示す。
 図8a、図9に示すように、内輪12の軌道面12aは、緩やかな単一円弧のフルクラウニング形状に形成され、研削逃げ部12f、12gに繋がっている。緩やかな単一円弧のフルクラウニングの曲率半径Rcは、軌道面12aの両端で5μm程度のドロップ量が生じる極めて大きなものである。図8aに示すように、内輪12の軌道面12aには研削逃げ部12f、12gが設けられているので、軌道面12aの有効軌道面幅はLGとなる。
 図8bに示すように、大つば面12eの半径方向の外側には、大つば面12eに滑らかに接続する逃げ面12hが形成されている。逃げ面12hと円すいころ14の大端面14bとの間に形成される楔形隙間によって、潤滑油の引き込み作用を高め、十分な油膜を形成することができる。内輪12の軌道面12aの母線方向の形状は、緩やかな単一円弧のフルクラウニング形状を例示したが、これに限られず、ストレート形状としてもよい。
 以上では、内輪12の軌道面12aの母線方向の形状を説明したが、外輪13の軌道面13aの母線方向の形状も同様であるので、説明は省略する。
 ここで、円すいころ14の転動面16を対数クラウニング形状(中央部はストレート形状)とすると共に、内輪12の軌道面12aおよび外輪13の軌道面13aをストレート形状又は緩やかな単一円弧のフルクラウニング形状とした本実施形態に至った検証結果を次に説明する。
 自動車のトランスミッション用円すいころ軸受(内径φ35mm、外径φ62mm、幅18mm)で、ミスアライメントがある低速条件(1速)の場合と、ミスアライメントがない高速条件(4速)の場合における外輪13の軌道面13aの接触面圧と、円すいころ14の転動面16の有効転動面幅LW(図6参照)に対する接触楕円の比を検証した。検証に用いた試料を表6に示す。
Figure JPOXMLDOC01-appb-T000008
 検証結果を表7に示す。
Figure JPOXMLDOC01-appb-T000009
 ミスアライメントなしの高速条件では、荷重条件が比較的軽いため、表7に示すように、試料1、試料2のいずれもエッジ面圧(PEDGE)の発生はないが、試料2では、外輪のフルクラウニングのドロップ量が大きく、接触楕円(長軸半径)が短くなるので、接触領域が長い場合に比べて、当り位置の中心Cのばらつきが大きくなり、円すいころのスキューを誘発しやすくなり、実用不可(×)とした。
 一方、ミスアライメントありで低速条件では、高荷重であるため、試料2では、ころ有効転動面幅LWに対する接触楕円の比は100%となり、外輪にはエッジ面圧が発生する。さらに、エッジ当りとなることで、円すいころの小端面側で接触駆動されるようになることから、大きなスキューを誘発してしまい、実用不可(×)とした。
 以上より、スキューを抑制するためには、外輪に大きなドロップ量のフルクラウニングを施すことは好ましくないことが検証され、試料1の有意性が確認できたことにより、本実施形態に至った。
 本実施形態の円すいころ軸受1の内輪12、外輪13および円すいころ14は、高炭素クロム軸受鋼(例えば、SUJ2材)からなり、内輪12、外輪13、円すいころ14の少なくとも一つ軸受構成部品は窒素富化層を形成させるための熱処理を施している。この熱処理方法を図10、図11に基づいて説明する。図10は一次焼入れおよび二次焼入れを行なう方法を示す熱処理パターンであり、図11は焼入れ途中で材料をA1変態点温度未満に冷却し、その後、再加熱して最終的に焼入れする方法を示す熱処理パターンである。これらの図において、処理T1では鋼の素地に炭素や窒素を拡散させたまま炭素の溶け込みを十分に行なった後、A1変態点未満に冷却する。次に、図中の処理T2において、A1変態点温度以上かつ処理T1よりも低温に再加熱し、そこから油焼入れを施す。
 上記の熱処理により、従来の浸炭窒化焼入れすなわち浸炭窒化処理に引き続いてそのまま1回焼入れするよりも、表層部分を浸炭窒化しつつ、割れ強度を向上させ、経年寸法変化率を減少させることができる。
 図10又は図11の熱処理パターンによって製造された円すいころ軸受1は、オーステナイト結晶粒の粒径が従来の2分の1以下となるミクロ組織を有している。そのため、転動疲労に対して長寿命であり、割れ強度を向上させ、経年寸法変化率も減少させることができる。結晶粒の微細化のために二次焼入れ温度を下げる熱処理工程をとるため、残留オーステナイト量が表層および内部で減少する結果、すぐれた耐割れ強度や耐経年寸法変化を得ることができるのである。
 図12は、軸受構成部品のミクロ組織、とくにオーステナイト粒を示す図である。図12aは本実施形態の軸受構成部品であり、図12bは従来の熱処理方法による軸受構成部品である。すなわち、図10に示す熱処理パターンを適用した軌道輪(内輪、外輪)のオーステナイト結晶粒度を図12aに示す。また、比較のため、従来の熱処理方法による軸受鋼のオーステナイト結晶粒度を図12bに示す。また、図13aおよび図13bに、図12aおよび図12bを図解したオーステナイト結晶粒度を示す。これらオーステナイト結晶粒度を示す組織より、従来のオーステナイト粒径はJIS規格の粒度番号で10番であり、図10又は図11による熱処理方法によれば12番の細粒を得ることができる。また、図12aの平均粒径は、切片法で測定した結果、5.6μmであった。
 本実施形態の円すいころ軸受1は、前述した第1~第3の特徴的な構成に加えて、軸受構成部品に窒素富化層を形成した上で、オーステナイト粒径を粒度番号で11以上に微細化することにより、転動疲労寿命が大きく改善され、優れた耐割れ強度や耐経年寸法変化を得ることができる。
 本実施形態の円すいころ軸受1の内輪12、外輪13および円すいころ14は、高炭素クロム軸受鋼(例えば、SUJ2材)からなり、内輪12、外輪13、円すいころ14の少なくとも一つ軸受構成部品は窒素富化層を形成させるための熱処理を施したものを説明したが、これに限られず、内輪12および外輪13は、クロム鋼(例えば、SCR435)やクロムモリブデン鋼(例えば、SCM435)などの浸炭鋼とし、熱処理として従来からある浸炭焼入れ焼戻しを適用してもよい。
 次に、本発明の第2の実施形態に係る円すいころ軸受を説明する。本実施形態の円すいころ軸受は、第1の実施形態の円すいころ軸受に比べて、「想定ピーク温度条件」に潤滑油の粘度特性を加味した潤滑状態の厳しさのレベルが、若干緩和されたレベルで使用されることと、円すいころの大端面の実曲率半径RACTUALと設定曲率半径Rとの比の実用可能な範囲が拡大された点が異なる。その他の構成及び技術内容については、第1の実施形態と同じであるので、表1、表5~表7、数1~数2および図1~図15を含むすべて内容を準用し、相違する点のみ説明する。
 本実施形態では、デファレンシャルによく使用されるギヤオイルであるSAE 75W-90を試料とし、「つば部潤滑係数」を算出した。75W-90の120℃粘度は10.3cSt(=10.3mm2/s)で、式(1)より求めた油膜厚さhは、実曲率半径RACTUALと設定曲率半径Rとの比の各値に対して表8のとおりである。
Figure JPOXMLDOC01-appb-T000010
 75W-90の120℃粘度は、VG32に比べて若干高く、「想定ピーク温度条件」に潤滑油の粘度特性を加味した潤滑状態は、第1の実施形態の場合に比べて若干緩和された条件となる。この潤滑状態を本明細書において「厳しい潤滑状態」という。
 第1の実施形態と同様に、回転試験機を用いた耐焼付き試験を実施した。耐焼付き試験の試験条件は以下のとおりである。
<試験条件>
・負荷荷重:ラジアル荷重4000N、アキシャル荷重7000N
・回転数:7000min-1
・潤滑油:SAE 75W-90
・供試軸受:円すいころ軸受(内径φ35mm、外径φ74mm、幅18mm)
 実曲率半径RACTUALと設定曲率半径Rとの比の各値に対して、大端面と大つば面との接触面圧、油膜厚さ、スキュー角、油膜パラメータ、「つば部潤滑係数」の結果を表9に示す。第1の実施形態と同様に、表9は接触面圧、油膜厚さ、スキュー角、油膜パラメータのそれぞれを比で表しているが、基準となる分母は、実曲率半径RACTUALが設定曲率半径Rと同一寸法に加工できた場合の値とし、各符号に0を付加している。
Figure JPOXMLDOC01-appb-T000011
 表9中の試験結果(1)~(6)、総合判定(1)~(6)の詳細を表10に示す。
Figure JPOXMLDOC01-appb-T000012
 表9、表10の結果より、デファレンシャル等のギヤオイルである75W-90が使用される「厳しい潤滑状態」では、実曲率半径RACTUALと設定曲率半径Rとの比RACTUAL/Rは、0.5以上であることが望ましいという結論に至った。したがって、本実施形態は、実曲率半径RACTUALと設定曲率半径Rとの比RACTUAL/Rを0.5以上としている。このように、潤滑状態の厳しさのレベルを表す指標として「つば部潤滑係数」を導入することにより、実曲率半径RACTUALと設定曲率半径Rとの比の実用可能な範囲を拡大することができる。これにより、使用条件に応じて、適正な軸受仕様を選定することができる。
 ただし、本実施形態の円すいころ軸受は、デファレンシャル用途に限定されるものではなく、トランスミッションやその他の「厳しい潤滑状態」の用途に適用することができる。
 実用可能な実曲率半径RACTUALと設定曲率半径Rとの比を設定する際、閾値近辺のみを試験確認してもよい。これにより、設計工数を削減できる。なお、表9の「厳しい潤滑状態」では、実曲率半径RACTUALと設定曲率半径Rとの比が0.4の場合でも十分な「つば部潤滑係数」が得られたが、表9よりも若干粘度の低い潤滑油を使用するような「厳しい潤滑状態」において、実曲率半径RACTUALと設定曲率半径Rとの比が0.4の場合では、閾値8×10-9以上を満足しない可能性が考えられ、かつ、スキュー角も大きくなってしまうため、実曲率半径RACTUALと設定曲率半径Rとの比としては0.5以上が適正である。
 最後に、本発明の実施形態に係る円すいころ軸受の好適な用途として、自動車用トランスミッションおよび自動車用デファレンシャルの概要を図14および図15に基づいて説明する。図14は自動車用トランスミッションの要部の縦断面図で、図15は自動車用デファレンシャルの縦断面図である。
 図14に示すトランスミッション30は同期噛合式変速機の一例である。ミッションケース31に円すいころ軸受11を介して入力軸32が回転自在に支持され、入力軸32と同軸上に、主軸33が配置されている。入力軸32と主軸33は、パイロット部の円すいころ軸受12により、相対回転可能に支持されている。図示は省略するが、主軸33の他の部位も円すいころ軸受によって支持されている。入力軸32および主軸33と所定間隔で平行配置された副軸34は、円すいころ軸受13と他の円すいころ軸受(図示省略)によって支持されている。入力軸32には入力軸歯車35が一体に設けられ、副軸34の副軸歯車36に常時噛合っている。
 主軸33にはアイドラ部の円すいころ軸受14を介して主軸歯車(以下、単に歯車ともいう)43が回転自在に装着されている。主軸歯車43は、副軸34の歯車37に常時噛合っている。本発明の実施形態に係る円すいころ軸受は、上記の円すいころ軸受11~14および図示を省略した他の円すいころ軸受を指す。シンクロ機構39は、セレクタ(図示省略)の作動によって軸方向(図14の左右方向)移動し変速操作が行われる。
 次に、デファレンシャルを図15に基づいて説明する。図15は一般的な自動車のデファレンシャルの縦断面図である。デファレンシャルケース100の入力側にドライブピニオン軸101が収容され、一対の円すいころ軸受15、16により回転自在に支持される。ドライブピニオン軸101の一端部にはプロペラシャフト102が連結され、他端部にはリンクギヤ(減速大歯車)103とかみ合うドライブピニオンギヤ(減速小歯車)104が一体に設けられている。
 リンクギヤ103は差動歯車ケース105に連結され、差動歯車ケース105は一対の円すいころ軸受17、18によりデファレンシャルケース100に対して回転自在に支持される。差動歯車ケース105の内部に、一対のピニオンギヤ106と、これとかみ合う一対のサイドギヤ107とがそれぞれ配設される。ピニオンギヤ106はピニオン軸108に装着され、サイドギヤ107は差動歯車ケース105に装着されている。サイドギヤ107の内径部に左右のドライブシャフト(図示省略)が連結(セレーション連結等)される。本発明の実施形態に係る円すいころ軸受は、上記の円すいころ軸受15~18である。プロペラシャフト102の駆動トルクは、ドライブピニオンギヤ104→リンクギヤ103→差動歯車ケース105→ピニオンギヤ106→サイドギヤ107→ドライブシャフトという経路で伝達される。
 本発明の実施形態に係る円すいころ軸受は、円すいころの大端面と内輪の大つば面における発熱を抑え耐焼付き性を向上させ、長寿命化が実現されるので、自動車のトランスミッション用、デファレンシャル用として好適である。
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々の形態で実施し得ることは勿論のことであり、本発明の範囲は、請求の範囲によって示され、さらに請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。
1      円すいころ軸受
12     内輪
12a    軌道面
12b    小つば部
12c    大つば部
12d    小つば面
12e    大つば面
12f    研削逃げ部
12g    研削逃げ部
12h    逃げ面
13     外輪
13a    軌道面
14     円すいころ
14a    小端面
14b    大端面
15     保持器
16     転動面
16a    ストレート部
16b    対数クラウニング部
16c    対数クラウニング部
C      当り位置の中心
Dr     対数クラウニング端部ドロップ量
Dw     ころ径
LG     有効軌道面幅
LG1    クラウニング中央部幅
LG2    カットクラウニング部幅
LW     有効転動面幅
LW1    ストレート部幅
N      円すいころの軸方向中央
O      頂点
R      設定曲率半径
ACTUAL   実曲率半径
BASE    基本曲率半径
S      すきま
α      ずれ量

Claims (8)

  1.  内周に円錐状の軌道面を有する外輪と、
     外周に円錐状の軌道面を有し、この軌道面の大径側に大つば面、小径側に小つば面が設けられた内輪と、
     前記両軌道面間に転動自在に配列された複数の円すいころと、
     前記円すいころを収容する保持器と、を備え、
     軸受使用時に前記円すいころの大端面が前記内輪の大つば面に接触して案内される円すいころ軸受において、
     前記円すいころの大端面の設定曲率半径をR、前記円すいころの円錐角の頂点から前記内輪の大つば面までの基本曲率半径をRBASEとしたとき、前記設定曲率半径Rと前記基本曲率半径RBASEとの比率R/RBASEを0.75~0.87の範囲とすると共に、
     前記円すいころの大端面の実曲率半径をRACTUALとしたとき、この実曲率半径RACTUALと前記設定曲率半径Rとの比率RACTUAL/Rを0.5以上としたことを特徴とする円すいころ軸受。
  2.  内周に円錐状の軌道面を有する外輪と、
     外周に円錐状の軌道面を有し、この軌道面の大径側に大つば面、小径側に小つば面が設けられた内輪と、
     前記両軌道面間に転動自在に配列された複数の円すいころと、
     前記円すいころを収容する保持器と、を備え、
     軸受使用時に前記円すいころの大端面が前記内輪の大つば面に接触して案内される円すいころ軸受において、
     前記円すいころの大端面の設定曲率半径をR、前記円すいころの円錐角の頂点から前記内輪の大つば面までの基本曲率半径をRBASEとしたとき、前記設定曲率半径Rと前記基本曲率半径RBASEとの比率R/RBASEを0.75~0.87の範囲とすると共に、
     前記円すいころの大端面の実曲率半径をRACTUALとしたとき、この実曲率半径RACTUALと前記設定曲率半径Rとの比率RACTUAL/Rを0.8以上としたことを特徴とする円すいころ軸受。
  3.  前記円すいころの大端面および前記内輪の大つば面が、超仕上げ加工面であることを特徴とする請求項1又は請求項2に記載の円すいころ軸受。
  4.  前記内輪の大つば面に逃げ面が形成されていることを特徴とする請求項1~3のいずれか一項に記載の円すいころ軸受。
  5.  前記内輪の軌道面および前記外輪の軌道面は、ストレート形状又は緩やかな円弧のフルクラウニング形状とし、
     前記円すいころの転動面は、対数クラウニング形状であることを特徴とする請求項1~4のいずれか一項に記載の円すいころ軸受。
  6.  前記内輪、前記外輪および前記円すいころの少なくとも一つが、窒素富化層を有し、かつ、前記窒素富化層におけるオーステナイト結晶粒の粒度番号が10番を超える範囲にあることを特徴とする請求項1~5のいずれか一項に記載の円すいころ軸受。
  7.  前記円すいころの転動面と前記内輪の軌道面との当り位置の中心および前記円すいころの転動面と前記外輪の軌道面との当り位置の中心は、前記円すいころの有効転動面幅の0%を超え20%未満の寸法範囲で、前記円すいころの軸方向中央から大径側にずれていることを特徴とする請求項1~6のいずれか一項に記載の円すいころ軸受。
  8.  前記円すいころ軸受の用途が自動車のトランスミッション又はデファレンシャルであることを特徴とする請求項1~7のいずれか一項に記載の円すいころ軸受。
PCT/JP2018/005247 2017-02-20 2018-02-15 円すいころ軸受 WO2018151209A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/486,553 US10816034B2 (en) 2017-02-20 2018-02-12 Tapered roller bearing
EP18754722.9A EP3584459A4 (en) 2017-02-20 2018-02-15 TAPERED ROLLER BEARING
CN201880012614.8A CN110325748B (zh) 2017-02-20 2018-02-15 圆锥滚子轴承

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-028940 2017-02-20
JP2017028940 2017-02-20
JP2018-023218 2018-02-13
JP2018023218A JP7131922B2 (ja) 2017-02-20 2018-02-13 円すいころ軸受

Publications (1)

Publication Number Publication Date
WO2018151209A1 true WO2018151209A1 (ja) 2018-08-23

Family

ID=63169442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005247 WO2018151209A1 (ja) 2017-02-20 2018-02-15 円すいころ軸受

Country Status (5)

Country Link
US (1) US10816034B2 (ja)
EP (1) EP3584459A4 (ja)
JP (1) JP7131922B2 (ja)
CN (1) CN110325748B (ja)
WO (1) WO2018151209A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020040058A1 (ja) * 2018-08-22 2020-02-27 Ntn株式会社 円すいころ軸受
WO2021153793A1 (ja) * 2020-01-30 2021-08-05 日本精工株式会社 ころ軸受
US11293484B2 (en) * 2018-03-28 2022-04-05 Ntn Corporation Tapered roller bearing

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11221040B2 (en) 2017-09-28 2022-01-11 Ntn Corporation Tapered roller bearing
US11754121B2 (en) 2019-09-19 2023-09-12 Ntn Corporation Tapered roller bearing
DE112020004434T5 (de) 2019-09-19 2022-06-23 Ntn Corporation Kegelrollenlager
CN111188832A (zh) * 2020-03-12 2020-05-22 洛阳Lyc轴承有限公司 一种能效型圆锥滚子轴承

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037094B1 (ja) 1971-02-17 1975-11-29
JPS5334665B2 (ja) 1974-07-26 1978-09-21
JPH06241235A (ja) * 1993-02-17 1994-08-30 Koyo Seiko Co Ltd ころ軸受
JPH11201151A (ja) 1998-01-14 1999-07-27 Ntn Corp 円すいころ軸受
JP2000170774A (ja) 1998-12-01 2000-06-20 Ntn Corp 円錐ころ軸受および車両用歯車軸支持装置
JP2006112557A (ja) * 2004-10-15 2006-04-27 Ntn Corp 円すいころ軸受
JP2008030195A (ja) * 2007-10-09 2008-02-14 Seibu Jido Kiki Kk 研削装置
JP4165947B2 (ja) 1998-12-03 2008-10-15 Ntn株式会社 円錐ころ軸受および車両用歯車軸支持装置
JP2013174256A (ja) * 2012-02-23 2013-09-05 Nsk Ltd ころ軸受及びその製造方法
JP5334665B2 (ja) * 2009-04-24 2013-11-06 Ntn株式会社 円すいころ軸受およびその設計方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08232960A (ja) * 1995-02-28 1996-09-10 Ntn Corp 鉄道車輌用複列ころ軸受
JPH09177774A (ja) * 1995-12-27 1997-07-11 Ntn Corp 円すいころ軸受
US6086261A (en) 1998-01-14 2000-07-11 Ntn Corporation Tapered roller bearing
US6328477B1 (en) 1998-11-27 2001-12-11 Ntn Corporation Tapered roller bearings and gear shaft support devices
US6547443B2 (en) * 2000-10-17 2003-04-15 Ntn Corporation Tapered roller bearing
JP4029574B2 (ja) * 2001-01-26 2008-01-09 株式会社ジェイテクト 円錐ころ軸受
EP1647727A3 (en) * 2004-10-15 2009-06-17 Ntn Corporation Tapered roller bearing
JP2007040520A (ja) * 2005-07-01 2007-02-15 Nsk Ltd 円錐ころ軸受
JP2007051702A (ja) * 2005-08-18 2007-03-01 Jtekt Corp 円錐ころ軸受、及びこれを用いた車両用ピニオン軸支持装置
JP2008038927A (ja) * 2006-08-01 2008-02-21 Ntn Corp 円すいころ軸受
DE102011076329B4 (de) * 2011-05-24 2013-11-21 Aktiebolaget Skf Geometriekonzept für eine Wälzkörperrolle eines Rollenlagers
CN203477076U (zh) * 2013-09-27 2014-03-12 日本精工株式会社 圆锥滚子轴承
CN104632881B (zh) * 2014-12-09 2017-05-24 高唐县浩瑞汽车轴承有限公司 一种高精度双列圆锥滚子轴承
JP6492646B2 (ja) * 2014-12-26 2019-04-03 株式会社ジェイテクト 円すいころ軸受

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037094B1 (ja) 1971-02-17 1975-11-29
JPS5334665B2 (ja) 1974-07-26 1978-09-21
JPH06241235A (ja) * 1993-02-17 1994-08-30 Koyo Seiko Co Ltd ころ軸受
JPH11201151A (ja) 1998-01-14 1999-07-27 Ntn Corp 円すいころ軸受
JP2000170774A (ja) 1998-12-01 2000-06-20 Ntn Corp 円錐ころ軸受および車両用歯車軸支持装置
JP4165947B2 (ja) 1998-12-03 2008-10-15 Ntn株式会社 円錐ころ軸受および車両用歯車軸支持装置
JP2006112557A (ja) * 2004-10-15 2006-04-27 Ntn Corp 円すいころ軸受
JP2008030195A (ja) * 2007-10-09 2008-02-14 Seibu Jido Kiki Kk 研削装置
JP5334665B2 (ja) * 2009-04-24 2013-11-06 Ntn株式会社 円すいころ軸受およびその設計方法
JP2013174256A (ja) * 2012-02-23 2013-09-05 Nsk Ltd ころ軸受及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3584459A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11293484B2 (en) * 2018-03-28 2022-04-05 Ntn Corporation Tapered roller bearing
WO2020040058A1 (ja) * 2018-08-22 2020-02-27 Ntn株式会社 円すいころ軸受
US11542982B2 (en) 2018-08-22 2023-01-03 Ntn Corporation Tapered roller bearing
WO2021153793A1 (ja) * 2020-01-30 2021-08-05 日本精工株式会社 ころ軸受
JP7468550B2 (ja) 2020-01-30 2024-04-16 日本精工株式会社 ころ軸受
US12110925B2 (en) 2020-01-30 2024-10-08 Nsk Ltd. Roller bearing

Also Published As

Publication number Publication date
JP2018136027A (ja) 2018-08-30
EP3584459A4 (en) 2020-12-16
US20200056655A1 (en) 2020-02-20
EP3584459A1 (en) 2019-12-25
CN110325748B (zh) 2022-03-01
US10816034B2 (en) 2020-10-27
CN110325748A (zh) 2019-10-11
JP7131922B2 (ja) 2022-09-06

Similar Documents

Publication Publication Date Title
WO2018151209A1 (ja) 円すいころ軸受
US10890213B2 (en) Tapered roller bearing
JP6608982B2 (ja) 円錐ころ軸受
JP2018165552A (ja) 円錐ころ軸受
JP7272767B2 (ja) 円錐ころ軸受
EP3492759A1 (en) Tapered roller bearing for automobile
JP2018165550A (ja) 円錐ころ軸受
JP7029371B2 (ja) 円錐ころ軸受
WO2019065753A1 (ja) 円錐ころ軸受
JP7394939B2 (ja) 円すいころ軸受
JP7032272B2 (ja) 円錐ころ軸受
US10830279B2 (en) Tapered roller bearing
JP7273210B2 (ja) 円錐ころ軸受
JP2018165564A (ja) 円錐ころ軸受
JP2019066037A (ja) 円錐ころ軸受
JP2019066041A (ja) 円錐ころ軸受
JP2018165566A (ja) 円錐ころ軸受
JP2018165551A (ja) 円錐ころ軸受
JP2003184870A (ja) ころ軸受

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018754722

Country of ref document: EP