WO2018151078A1 - 溶鋼流中のスラグ検出方法 - Google Patents

溶鋼流中のスラグ検出方法 Download PDF

Info

Publication number
WO2018151078A1
WO2018151078A1 PCT/JP2018/004831 JP2018004831W WO2018151078A1 WO 2018151078 A1 WO2018151078 A1 WO 2018151078A1 JP 2018004831 W JP2018004831 W JP 2018004831W WO 2018151078 A1 WO2018151078 A1 WO 2018151078A1
Authority
WO
WIPO (PCT)
Prior art keywords
peak point
molten steel
maximum peak
slag
histogram
Prior art date
Application number
PCT/JP2018/004831
Other languages
English (en)
French (fr)
Inventor
智行 楠
宮▲崎▼ 貴大
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US16/483,898 priority Critical patent/US20190390290A1/en
Priority to BR112019015441-8A priority patent/BR112019015441A2/pt
Priority to JP2018568522A priority patent/JP6795046B2/ja
Priority to KR1020197022268A priority patent/KR20190102240A/ko
Priority to CA3052696A priority patent/CA3052696A1/en
Priority to EP18754117.2A priority patent/EP3584328A1/en
Priority to CN201880010711.3A priority patent/CN110268073A/zh
Publication of WO2018151078A1 publication Critical patent/WO2018151078A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/205Metals in liquid state, e.g. molten metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/202Constituents thereof
    • G01N33/2028Metallic constituents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1765Method using an image detector and processing of image signal

Definitions

  • the present invention relates to a method for detecting slag in a molten steel flow.
  • This application claims priority based on Japanese Patent Application No. 2017-025440 for which it applied to Japan on February 14, 2017, and uses the content here.
  • the slag in the molten steel flowing out from the converter toward the ladle is detected and the slag outflow is quantified, and this slag outflow is controlled within the range required in the steelmaking operation of the converter. Is desired.
  • the emissivity of the slag is higher than the emissivity of the molten steel, when the molten steel flow is imaged, the portion where the slag exists is imaged brighter than the portion of the molten steel alone where there is no slag.
  • the density (gray level) of the pixel area corresponding to the slag in the captured image obtained by imaging the molten steel flow is larger than the density of the pixel area corresponding to the molten steel.
  • Patent Document 1 creates a density (brightness) histogram with the horizontal axis representing density (luminance) and the vertical axis representing the number of pixels for a captured image obtained by imaging a molten steel flow. Is disclosed. Specifically, in the above method of Patent Document 1, it is considered that the maximum peak point (maximum peak position) having the maximum number of pixels in the density histogram corresponds to molten steel, and the variation ⁇ in the horizontal axis direction of the maximum peak point is considered. A pixel having a density value (luminance value) N1 or higher is determined as molten steel, and a pixel having a density value (luminance value) N2 or higher obtained by adding a bias value B to the density value N1 is determined as slag.
  • this peak corresponds to the molten steel by utilizing the fact that the emissivity of the slag and the emissivity of the molten steel are different (the emissivity of the slag is higher than the emissivity of the molten steel). It is thought that it is possible to determine whether to correspond to slag. Also, when there are two peaks in the density histogram with a smooth curve, using the fact that the emissivity of the slag and the emissivity of the molten steel are different, for example, the peak on the low temperature side corresponds to the molten steel, and the high temperature It can be determined that the peak on the side corresponds to the slag.
  • the temperature of the molten steel flow varies by 100 ° C. or more depending on, for example, the steel type or the condition of the steel output operation. Therefore, when trying to make a determination using a fixed threshold value, there is a risk that the slag detection accuracy will be reduced when the temperature of the molten steel flow changes.
  • the present invention has been made in view of the above circumstances, and provides a method for detecting a slag in a molten steel flow that can accurately detect the slag in the molten steel flow even when the temperature of the molten steel flow changes. Objective.
  • the present inventors have conducted intensive studies. First, the present inventors have used a thermal image camera (thermography) having a main sensitivity in the infrared light region as an imaging means, and imaged various molten steel flows in the early stage, the middle stage, and the last stage of steelmaking. A large number of captured images were obtained. Then, for each of these captured images, a histogram was created with the temperature on the horizontal axis and the number of pixels on the vertical axis. For example, in the temperature range of 1000 to 2000 ° C. on the horizontal axis, the number of pixels on the vertical axis is the maximum value. It has been found that there may be a maximum peak point, and the maximum peak point may be located on the low temperature side, or the maximum peak point may be located on the high temperature side.
  • thermal image camera thermoography
  • the inventors find that when no slag is present in the molten steel flow or when only a very small amount is present, the maximum peak point in the histogram corresponds to the molten steel and is located on the low temperature side, and the molten steel It has been found that when a large amount of slag is present in the flow, the maximum peak point in the histogram corresponds to the slag and is located on the high temperature side.
  • a fixed threshold value for temperature is used to determine whether the maximum peak point is located on the low temperature side or the high temperature side of the fixed threshold value. By determining whether the maximum peak point corresponds to molten steel or slag, it is difficult to accurately detect slag.
  • the present inventors have a number of pixels that is less than the number of pixels of the maximum peak point and a predetermined pixel number threshold (e.g., It was noted that there may be a peak point (hereinafter referred to as “intermediate peak point”) having a maximum value equal to or greater than 50% of the number of pixels of the maximum peak point. In such a case, the present inventors, for example, even if the temperature of the molten steel flow changes according to the steel type or the condition of the steelmaking operation, if the maximum peak point corresponds to the molten steel, than the temperature of the maximum peak point.
  • the number of intermediate peak points having a high temperature is greater than the number of intermediate peak points having a temperature lower than that of the maximum peak point.
  • the inventors set a temperature lower than the temperature of the maximum peak point when the maximum peak point corresponds to slag. It has been found that the number of intermediate peak points is greater than the number of intermediate peak points having a temperature higher than that of the maximum peak point.
  • the temperature is taken as an example, but it has been found that the same can be said for the histogram with the horizontal axis representing the concentration before conversion into temperature.
  • the same can be said for the histogram created with the horizontal axis representing the density and the vertical axis representing the number of pixels in the captured image obtained by imaging the molten steel flow using a CCD camera having main sensitivity in the visible light range. I understood.
  • a method for detecting slag in a molten steel flow includes an imaging step of capturing a captured image by imaging a molten steel flow including molten steel and slag that flows out from a converter toward a ladle;
  • the horizontal axis represents the density parameter corresponding to the density of each pixel constituting the captured image
  • the vertical axis represents the number of pixels that is the total number of the pixels having the density parameter.
  • the configuration may be as follows: when the maximum peak point type determination step determines that the maximum peak point corresponds to the slag, the maximum peak point A first determination step of determining that a pixel having a density parameter less than a first threshold determined on the basis of the reference corresponds to the molten steel, and a pixel having a density parameter greater than or equal to the first threshold corresponds to the slag And in the maximum peak point type determining step, when it is determined that the maximum peak point corresponds to the molten steel, a pixel having a concentration parameter equal to or less than a second threshold value determined based on the maximum peak point is the molten steel.
  • the first threshold value may be configured as follows: the first threshold value is a first straight line that passes through the maximum peak point and has a positive slope in the histogram.
  • the second threshold value is represented by a second straight line passing through the maximum peak point and having a negative slope in the histogram; the absolute value of the slope of the second straight line is the second threshold value. It is larger than the absolute value of the slope of one straight line.
  • the first straight line may have the number of pixels less than the pixel number threshold and the maximum peak point may be configured as follows.
  • the density parameter is a straight line passing through the maximum peak point and the maximum peak point; the absolute value of the slope of the second line is The absolute value of the slope of the first straight line is 1.5 to 2.5 times.
  • each aspect of the present invention it is possible to accurately detect slag in the molten steel flow even when the temperature of the molten steel flow changes.
  • FIG. 3B It is a schematic diagram which shows schematic structure of the slag detection apparatus used for the slag detection method which concerns on one Embodiment of this invention. It is a flowchart which shows the schematic procedure of the said slag detection method. It is a figure which shows an example of the captured image acquired in imaging process ST1 shown in FIG. 3B is a diagram showing a histogram created based on the captured image of FIG. 3A in the histogram creation step ST2 shown in FIG. It is a figure for demonstrating the 1st threshold value determined in 1st determination process ST7 shown in FIG. It is an example of the captured image acquired in imaging process ST1 shown in FIG. 2, Comprising: It is a figure which shows an example different from FIG. 3A.
  • FIG. 3B It is a diagram showing schematic structure of the slag detection apparatus used for the slag detection method which concerns on one Embodiment of this invention. It is a flowchart which shows the schematic procedure of the said slag detection method. It is a
  • FIG. 5B is a diagram showing a histogram created based on the captured image of FIG. 5A in the histogram creation step ST2 shown in FIG. It is a figure for demonstrating the 2nd threshold value determined in 2nd determination process ST8 shown in FIG. It is a figure for demonstrating the slag detection method of patent document 1.
  • FIG. 7A shows the captured image used for preparation of the histogram of FIG. 7A. It is a figure which shows the result of having extracted the pixel area
  • slag detection method in a molten steel flow according to an embodiment of the present invention will be described with reference to the drawings.
  • the same reference numerals are given to components having substantially the same functional configuration, and a duplicate description thereof is omitted.
  • the structure of the slag detection apparatus 100 used for the slag detection method according to the present embodiment will be described.
  • FIG. 1 is a schematic diagram illustrating a schematic configuration of the slag detection device 100.
  • the converter 3 which accommodates the molten steel M and the slag S is shown with the cross section.
  • the slag detection device 100 is a molten steel flow F that flows out from the steel outlet 31 of the converter 3 tilted toward the ladle 4 when steel is discharged from the converter 3 to the ladle 4. Used to detect the slag S inside.
  • the slag detection device 100 includes an image pickup means 1 for picking up an image of a molten steel flow F flowing out from a steel outlet 31 of the converter 3 toward the ladle 4 from a substantially horizontal direction, and an image connected to the image pickup means 1. And processing means 2.
  • the imaging means 1 for example, a thermal image camera (thermography) having a main sensitivity in the infrared light region or a CCD camera having a main sensitivity in the visible light region can be used.
  • thermal image cameras (thermography) and the CCD camera for example, commercially available ones can be used.
  • a thermal image camera having main sensitivity in the infrared light region is used as the imaging means 1. Note that when a thermal image camera (thermography) is used as in the present embodiment, it is possible to calculate the value of the temperature or density (density before conversion into temperature) of the pixel region in the captured image. On the other hand, when a CCD camera is used, the density value of the pixel region can be calculated.
  • the image processing means 2 is composed of, for example, a general-purpose personal computer in which a predetermined program for executing a histogram creation step ST2 described later is installed.
  • the image processing means 2 has a monitor for displaying the captured image obtained by the imaging means 1.
  • the slag detection method according to the present embodiment is executed using the slag detection device 100.
  • the slag detection method according to the present embodiment will be described.
  • FIG. 2 is a flowchart showing a schematic procedure of the slag detection method according to the present embodiment.
  • the slag detection method according to the present embodiment is based on a captured image obtained by imaging the molten steel flow F including the molten steel M and the slag S flowing out from the converter 3 toward the ladle 4 by the imaging means 1.
  • an imaging step ST1 a histogram creation step ST2, a maximum peak point detection step ST3, an intermediate peak point detection step ST4, and an intermediate peak It has a point counting step ST5, a maximum peak point type determining step ST6, a first determining step ST7, and a second determining step ST8.
  • Imaging process ST1 In the imaging step ST1, the imaging means 1 images the molten steel flow F flowing out from the converter 3 toward the ladle 4 to obtain a captured image (see FIG. 1).
  • a thermal image camera is used as the imaging unit 1, and the captured image acquired in the imaging step ST1 is obtained by converting the density of each pixel constituting the captured image into a temperature using a predetermined conversion formula. . That is, the captured image acquired in the imaging step ST1 has a temperature value detected for each pixel.
  • the visual field of the imaging means 1 is set to a wide visual field including not only the molten steel flow F but also the background so as not to be affected by fluctuations in the outflow position and spread of the molten steel flow F. Even if the field of view of the imaging means 1 is set so that the background is included, the temperature of the background is lower than the temperature of the molten steel flow F. Therefore, the pixel region corresponding to the molten steel flow F in the maximum peak point detection step ST3 described later. And a pixel region corresponding to the background can be identified. In addition, you may adjust the visual field of the imaging means 1 narrowly beforehand so that only the molten steel flow F may be imaged.
  • the outflow position and spread of the molten steel flow F generally vary to some extent according to the tilt angle of the converter 3 (according to the position of the steel outlet 31, etc.). For this reason, it is time-consuming to adjust the field of view of the imaging means 1 so that only the molten steel flow F is imaged in any of the initial stage, the middle stage, and the last stage of steelmaking. Therefore, it is preferable to set the field of view of the imaging unit 1 to a wide field of view including the background.
  • the imaging timing of the imaging unit 1 is not particularly limited. However, in order to increase the time resolution for detecting the slag S, it is continuously set for each scanning period (reciprocal of the frame rate) set in the imaging unit 1. It is preferable to take an image.
  • the captured image obtained by the imaging unit 1 is stored in the image processing unit 2.
  • the image processing means 2 performs image processing on the captured image acquired in the imaging step ST1, and the density parameter corresponding to the density of each pixel constituting the captured image is set on the horizontal axis.
  • a histogram is created with the number of pixels being the total number of pixels having the vertical axis.
  • the concentration parameter include temperature as well as the concentration itself.
  • the imaging unit 1 is a thermal image camera as in the present embodiment, it is possible to create a histogram whose horizontal axis is temperature or density (density before conversion to temperature).
  • the imaging means 1 is a CCD camera, a histogram whose horizontal axis is density can be created.
  • density in the present specification refers to, for example, the brightness of an image having 256 gradations (that is, the luminance on the image). And the relationship between this density
  • the imaging unit 1 since a thermal image camera is used as the imaging unit 1 in the present embodiment, temperature is used as the above density parameter (that is, in the present embodiment, the horizontal axis of the histogram is temperature).
  • the field of view of the imaging unit 1 is set so as to include not only the molten steel flow F but also the background. Therefore, when creating the histogram, the image processing means 2 determines that the pixel area having a temperature equal to or higher than a predetermined threshold (for example, 1000 ° C.) in the captured image is a pixel area corresponding to the molten steel flow F.
  • a predetermined threshold for example, 1000 ° C.
  • a histogram is created for this pixel region (that is, a pixel region whose temperature on the horizontal axis is lower than the predetermined threshold value is not subject to histogram creation). Thereby, it is possible to avoid the influence of the background on the histogram (the number of pixels corresponding to the background does not become the maximum value).
  • the image processing means 2 creates a histogram for the entire captured image including the pixel area corresponding to the background, and determines a predetermined threshold value (for example, from the maximum peak point detection range in the maximum peak point detection step ST3 described later). The influence of the background may be avoided by excluding temperatures below 1000 ° C.).
  • FIG. 3A is a diagram illustrating an example of a captured image acquired in the imaging step ST1.
  • FIG. 3A is an example of an average image obtained by averaging five captured images obtained continuously for each scanning period of the imaging unit 1 (the resolution of the captured image is about 3 cm / pixel). ).
  • the pixel region corresponding to the molten steel flow F in the captured image (average image) and the pixel region corresponding to the background located in the vicinity thereof are cut out and displayed. That is, the actually acquired captured image has a wider pixel area in the horizontal direction of the paper than the captured images shown in FIGS. 3A and 5A.
  • the monitor provided in the image processing means 2 displays a different color depending on the temperature of each pixel. Is done. That is, since the temperature of the pixel region corresponding to the molten steel flow F is higher than the temperature of the pixel region corresponding to the background, the color corresponding to the high temperature is colored in the actual captured image obtained in the imaging step ST1. Yes. In addition, among the pixel areas corresponding to the molten steel flow F, the pixel area surrounded by the thick broken line in FIG. 3A and considered to contain the slag S (specifically, corresponding to the slag S in the first determination step ST7 described later).
  • the temperature (apparent temperature) of the determined pixel region is higher than the temperature (apparent temperature) of the other pixel region (the pixel region where only the molten steel M is present). Colors corresponding to high temperatures are colored.
  • the actual temperature (actual temperature) is considered to be an equivalent value.
  • the emissivity of the slag S is higher than the emissivity of the molten steel M (the emissivity of the slag is approximately 1.5 times that of the molten steel).
  • FIG. 3B is a diagram showing a histogram created for the captured image (average image) shown in FIG. 3A.
  • the temperature range on the horizontal axis is set to a predetermined threshold (1000 ° C.) or more (however, 1400 ° C. in which no feature was seen in the distribution of the number of pixels)
  • the horizontal axis is divided at a pitch of 10 ° C., and the vertical axis is the number of pixels having the temperature of each division.
  • Maximum peak point detection step ST3 In the maximum peak point detection step ST3, the image processing means 2 detects the maximum peak point having the maximum number of pixels in the histogram created in the histogram creation step ST2. In the histogram shown in FIG. 3B, the point indicated by reference sign P1 is the maximum peak point.
  • Intermediate peak point detection step ST4 In the intermediate peak point detection step ST4, the image processing means 2 has a maximum value that is less than the number of pixels of the maximum peak point P1 and greater than or equal to a predetermined pixel number threshold Th for the histogram created in the histogram creation step ST2. An intermediate peak point is detected. As shown in FIG. 3B, the pixel number threshold Th is set to 50% of the number of pixels at the maximum peak point P1. In the histogram shown in FIG. 3B, the point indicated by reference sign P2 is the intermediate peak point.
  • the predetermined pixel number threshold Th is not particularly limited, but for example, the maximum number of pixels at the maximum peak point P1 is set so as not to capture a peak in a temperature range such as 1200 ° C. to 1300 ° C. 50% is preferably Th.
  • First determination step ST7 In the maximum peak point type determination step ST6, when it is determined that the maximum peak point P1 corresponds to the slag S present in the molten steel flow F, the image processing means 2 executes the first determination step ST7. That is, for the histogram of FIG. 3B, the first determination step ST7 is executed. In the first determination step ST7, among the pixels constituting the captured image, the pixel having a temperature lower than the first threshold value determined based on the maximum peak point P1 is present in the molten steel flow F in the first determination step ST7. It is determined that a pixel corresponding to the molten steel M and having a temperature equal to or higher than the first threshold corresponds to the slag S present in the molten steel flow F.
  • FIG. 4 more specific description will be given with reference to FIG. 4 as appropriate.
  • FIG. 4 is a diagram for explaining the first threshold value determined in the first determination step ST7.
  • the histogram shown in FIG. 4 is the same as the histogram shown in FIG. 3B.
  • the first threshold value is represented by a first straight line L1 passing through the maximum peak point P1 and having a positive slope in the histogram created in the histogram creation step ST2.
  • the first straight line L1 is a straight line passing through the point P3 and the maximum peak point P1 shown in FIG.
  • the point P3 is a peak having the highest temperature among the points having the number of pixels less than the pixel number threshold Th and having a temperature lower than the temperature of the maximum peak point P1 by a predetermined value TD (for example, 50 ° C.).
  • TD for example, 50 ° C.
  • the point P3 is a point that has a number of pixels less than the predetermined pixel number threshold Th and has a temperature that is lower than the temperature of the maximum peak point P1 by a predetermined value TD and has a maximum value. The point with the highest temperature).
  • the point and a point adjacent to the low temperature side of the point are Paying attention to the gradient of the connecting line, if the line is a positive gradient (the line is a line that rises to the right), the point to be determined is regarded as a point P3.
  • the slag detection method according to the present embodiment is particularly preferably applied to a molten steel flow having many peaks exceeding a predetermined pixel count threshold Th in a histogram. Further, the present invention is particularly preferably applied to a molten steel flow in which 50% or more of the number of pixels of the maximum peak point P1 is, for example, 3 or more regardless of whether or not the predetermined pixel number threshold Th is set. The characteristics of such a peak are determined by the state of mixing of molten steel and slag during refining.
  • the predetermined value TD is not particularly limited, but is 50 ° C., for example. From experience, the range within ⁇ 50 ° C. of the maximum peak temperature often does not become the base. Therefore, for example, by setting the predetermined value TD to 50 ° C., it is preferable that the first threshold value can be determined by a peak excluding the base.
  • the image processing unit 2 determines that the pixel having a temperature lower than the first threshold corresponds to the molten steel M present in the molten steel flow F. That is, it is determined that a pixel satisfying Y> aX + b corresponds to the molten steel M existing in the molten steel flow F.
  • the image processing means 2 determines that a pixel having a temperature equal to or higher than the first threshold corresponds to the slag S present in the molten steel flow F. That is, it is determined that a pixel satisfying Y ⁇ aX + b (a pixel in the hatched region in FIG. 4) corresponds to the slag S present in the molten steel flow F.
  • FIG. 5A is an example of a captured image acquired in the imaging step ST1, and is a diagram illustrating another example different from FIG. 3A. Specifically, FIG. 5A shows another example of an average image obtained by averaging five captured images obtained continuously for each scanning period of the imaging unit 1.
  • FIG. 5B is a diagram showing a histogram created for the captured image (average image) shown in FIG. 5A.
  • the image processing means 2 makes the molten steel flow F the pixel which has the temperature below the 2nd threshold value determined on the basis of the maximum peak point P1 among each pixel which comprises a captured image. It is determined that a pixel corresponding to the existing molten steel M and having a temperature higher than the second threshold corresponds to the slag S present in the molten steel flow F.
  • a more specific description will be given with reference to FIG. 6 as appropriate.
  • FIG. 6 is a diagram for explaining the second threshold value determined in the second determination step ST8. Note that the histogram shown in FIG. 6 is the same as the histogram shown in FIG. 5B.
  • the second threshold value is represented by a second straight line L2 that passes through the maximum peak point P1 and has a negative slope.
  • the absolute value of the slope of the second straight line L2 is larger than the absolute value of the slope of the first straight line L1 (preferably, the absolute value of the slope of the second straight line L2 is the slope of the first straight line L1. Is 1.5 to 2.5 times the absolute value).
  • the first straight line L1 is a straight line passing through the point P3 and the maximum peak point P1 shown in FIG.
  • the temperature of the maximum peak point P1 has the number of pixels less than the pixel number threshold Th as in FIG. Among the points having a temperature lower than a predetermined value TD (for example, 50 ° C.), the peak point having the highest temperature.
  • TD for example, 50 ° C.
  • the image processing unit 2 determines that a pixel having a temperature equal to or lower than the second threshold corresponds to the molten steel M present in the molten steel flow F. That is, for example, in the histogram shown in FIG. 6, it is determined that the pixel satisfying Y ⁇ ⁇ 2aX + c corresponds to the molten steel M existing in the molten steel flow F.
  • the image processing means 2 determines that a pixel having a temperature higher than the second threshold corresponds to the slag S present in the molten steel flow F. That is, for example, in the histogram shown in FIG. 6, it is determined that a pixel satisfying Y> ⁇ 2aX + c (a pixel in the hatched region in FIG. 6) corresponds to the slag S present in the molten steel flow F.
  • the type of the maximum peak point of the histogram is determined based on the magnitude relationship between the number of intermediate peak points Nh and Nl in the acquired captured image histogram. That is, since the type of the maximum peak point is determined without using a fixed threshold value, the maximum peak point P1 corresponds to either the molten steel M or the slag S even when the temperature of the molten steel flow F changes. Can be accurately determined.
  • the temperature when the maximum peak point P1 corresponds to the molten steel M and the temperature when the maximum peak point P1 corresponds to the slag S are respectively estimated and determined.
  • the type of the maximum peak point is determined depending on which of the temperatures the maximum peak point P1 of the target histogram is close to.
  • the amount of slag and the amount of molten steel in the converter 3 can be estimated, and how much the converter 3 can be tilted can be geometrically estimated if the molten steel flow F mainly composed of the molten steel M flows out. Therefore, it is determined from the outflow time of the molten steel flow F whether the maximum peak point P1 corresponds to the molten steel M or the slag S.
  • the number (area) of pixels corresponding to the slag S present in the molten steel flow F and the molten steel flow F The number (area) of pixels corresponding to the molten steel M present can be calculated. For this reason, for example, the area ratio of the slag S in the molten steel flow F and the volume ratio of the slag S in the molten steel flow F can be obtained.
  • the mass ratio of the slag S in the molten steel flow F can be calculated, and the flow rate of the molten steel flow F can be estimated from the tilt angle of the converter 3 at the time of steel output. .
  • the outflow amount or the like of the slag S (outflow amount, number of pixels, area, volume, etc.) becomes greater than zero
  • the outflow amount of slag S becomes larger than a predetermined value
  • the steel-out operation is finished, or the ratio of the outflow amount of slag S to the outflow amount of molten steel M becomes larger than a predetermined value. It is possible to perform control such as finishing the steel output operation.
  • the captured image shown in FIG. 3A was used as an evaluation target, and the slag detection method according to the present embodiment was compared with the slag detection method described in Patent Document 1.
  • the maximum peak point P1 is the slag S existing in the molten steel flow F. It is determined that it corresponds.
  • the pixels in the hatched area correspond to the slag S by the first straight line L ⁇ b> 1 represented by Expression (1).
  • the maximum peak point P1 in the histogram shown in FIG. 3B corresponds to the molten steel M present in the molten steel flow F.
  • a pixel having a density value N1 or more in consideration of the horizontal axis variation ⁇ of the maximum peak point P1 is determined as molten steel M, and the bias value B is set to the density value N1.
  • a pixel having a density value N2 or more obtained by adding the above is determined as the slag S.
  • a pixel having a temperature N1 or higher considering the variation ⁇ in the horizontal axis direction of the maximum peak point P1 is determined as the molten steel M, and the bias value is set to the temperature N1.
  • a pixel having a temperature N2 or higher obtained by adding B is determined as the slag S.
  • the bias value B for distinguishing the pixel corresponding to the molten steel M and the pixel corresponding to the slag S is set.
  • FIG. 7A and 7B are diagrams for explaining the slag detection method described in Patent Document 1.
  • FIG. FIG. 7A shows a histogram
  • FIG. 7B shows a captured image (average image).
  • the histogram shown in FIG. 7A is the same as the histogram shown in FIG. 3B or FIG.
  • the captured image shown in FIG. 7B is the same as the captured image shown in FIG. 3A.
  • the slag detection method described in Patent Document 1 it is determined that the pixels in the hatched area in FIG. 7A correspond to the slag S. Specifically, it was determined that 18 pixels in the pixel region surrounded by the thick broken line in FIG. 7B correspond to the slag S.
  • FIG. 8 is a diagram illustrating a result of extracting a pixel region in which the slag S is considered to exist in the captured image illustrated in FIG. 3A by difference processing.
  • 8A shows the same imaged image as FIG. 3A
  • FIG. 8B shows the imaged image of the molten steel flow in which only the molten steel M exists substantially in the initial stage of steelmaking
  • FIG. 8C shows the imaged image.
  • 9 shows a difference image between the captured image shown in FIG. 8A and the captured image shown in FIG.
  • FIG. 8 is monochrome display for the convenience of illustration, in the difference image shown in FIG. 8C, the pixel region having a higher temperature than the pixel region corresponding to the background (the color of the pixel region corresponding to the background).
  • the pixel region (colored yellow and red) different from (green) has a temperature decreasing from the center toward the periphery, and is elongated in the longitudinal direction as the molten steel flow F falls. This is a pixel region in which the slag S is considered to exist in view of the form in which it is present.
  • the number of pixels in the pixel region with high temperature (pixel region with yellow and red) was counted, it was 111.
  • the slag S detected by the slag detection method according to the present embodiment is converted into mass, it becomes 22 kg (137.5% of the true value), and the slag S detected by the slag detection method described in Patent Document 1 is mass. 1 kg (6.3% of the true value).
  • the error is + 37.5% in mass, and the slag in the molten steel flow F is compared with the method described in Patent Document 1 in which an error of ⁇ 93.7% occurs. It can be said that S can be detected with high accuracy.
  • the first threshold value is represented by the first straight line L1 passing through the maximum peak point P1 and having a positive slope.
  • the method of determining the threshold value from the viewpoint of detecting the slag with higher accuracy, it is preferable to determine the peak of the molten steel and the slag by fitting with a Gaussian distribution or the like.
  • such a method requires a long calculation time and is not industrially preferable. Therefore, by representing the first threshold value with a straight line, the threshold value can be determined more easily.
  • first threshold value and the second threshold value are not limited to the case represented by the first straight line L1 and the second straight line L2.
  • the first threshold value and the second threshold value may be represented by a straight line (straight line having an infinite inclination) perpendicular to the horizontal axis in consideration of variations in the horizontal axis direction of the maximum peak point.
  • Imaging means 2 Image processing means 3: Converter 4: Ladle 100: Slag detection device ST1: Imaging process ST2: Histogram creation process ST3: Maximum peak point detection process ST4: Intermediate peak point detection process ST5: Intermediate peak point Counting step ST6: Maximum peak point type determining step ST7: First determining step ST8: Second determining step F: Molten steel flow M: Molten steel S: Slag

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Analysis (AREA)

Abstract

この溶鋼流中のスラグ検出方法は、溶鋼およびスラグを含む溶鋼流の撮像画像についてヒストグラムを作成するヒストグラム作成工程と;前記ヒストグラムの最大ピーク点を検出する最大ピーク点検出工程と;前記ヒストグラムの中間ピーク点を検出する中間ピーク点検出工程と;前記最大ピーク点の濃度パラメータよりも大きな濃度パラメータを有する前記中間ピーク点の個数Nhと、前記最大ピーク点の前記濃度パラメータよりも小さな濃度パラメータを有する前記中間ピーク点の個数Nlとを計数する中間ピーク点計数工程と;前記個数Nlと前記個数Nhとの大小関係により、前記最大ピーク点の種別を判定する最大ピーク点種別判定工程と;を有する。

Description

溶鋼流中のスラグ検出方法
 本発明は、溶鋼流中のスラグ検出方法に関する。
 本願は、2017年2月14日に日本に出願された特願2017-025440号に基づき優先権を主張し、その内容をここに援用する。
 転炉から取鍋への出鋼の際には、転炉を傾動させて転炉から取鍋に向かって溶鋼流を流出させるのが一般的である。この際、スラグを転炉内に残留させ、転炉から溶鋼のみを取鍋に流出させることが理想的である。しかしながら、転炉から取鍋に向かって流出する溶鋼流中には、出鋼初期においては実質的に溶鋼のみが存在するものの、出鋼中期から出鋼末期においては溶鋼とスラグとが混在するのが一般的である。このため、スラグの流出を防止しようとすると、溶鋼が転炉内に残留して歩留まりが低くなるおそれがある。
 一方、転炉内の溶鋼の残留量を低減しようとすると、溶鋼と共にスラグが取鍋に向かって流出するため、取鍋内にスラグが多く存在することとなる。その結果、取鍋からのスラグの吹きこぼれが発生したり、後工程である2次精錬工程において溶鋼の成分外れが発生する等の問題が生じるおそれがある。
 そこで、転炉から取鍋に向かって流出する溶鋼流中のスラグを検出すると共にスラグの流出量を定量化して、このスラグ流出量を転炉の出鋼操業において要求される範囲に制御することが望まれている。
 スラグの放射率は溶鋼の放射率よりも高いため、溶鋼流を撮像すると、スラグが存在する部位では、スラグが存在しない溶鋼のみの部位に比べて明るく撮像されることになる。換言すれば、溶鋼流を撮像して得られた撮像画像におけるスラグに対応する画素領域の濃度(グレイレベル)は、溶鋼に対応する画素領域の濃度に比べて大きくなる。この原理を用いてスラグを検出する技術として、例えば特許文献1に記載の方法がある。
 特許文献1は、溶鋼流を撮像して得られた撮像画像について、濃度(輝度)を横軸とし、画素数を縦軸とする濃度(輝度)ヒストグラムを作成し、この濃度ヒストグラムを用いてスラグを検出する方法を開示している。具体的には、特許文献1の上記方法では、濃度ヒストグラムにおける、画素数が最大である最大ピーク点(最大ピーク位置)が溶鋼に対応するとみなし、最大ピーク点の横軸方向のバラツキσを考慮した濃度値(輝度値)N1以上の画素を溶鋼と判定すると共に、濃度値N1にバイアス値Bを加算した濃度値(輝度値)N2以上の画素をスラグと判定している。
 しかしながら、本発明者らが検討したところ、濃度ヒストグラムにおける最大ピーク点が必ずしも溶鋼に対応するとは限らず、スラグに対応する場合もあることが分かった。そのため、最大ピーク点が常に溶鋼に対応するとみなして、濃度値N2を決定する特許文献1の上記方法では、精度良くスラグを検出することが難しい。
 ここで、濃度ヒストグラムにおけるピークが一つの場合、スラグの放射率と溶鋼の放射率とが異なる(スラグの放射率は溶鋼の放射率よりも高い)ことを利用して、このピークが溶鋼に対応するかスラグに対応するかを判定できると考えられる。また、濃度ヒストグラムに滑らかな曲線でピークが二つ存在するような場合も、スラグの放射率と溶鋼の放射率とが異なることを利用して、例えば低温側のピークが溶鋼に対応し、高温側のピークがスラグに対応すると判定できると考えられる。
 しかしながら、溶鋼とスラグとが混在した溶鋼流を撮像して得られた撮像画像のヒストグラムにおいて複数のサブピークが観測される場合、上述の方法を用いることは難しく、スラグの検出精度が低下する虞がある。
 また、溶鋼流の温度は、例えば鋼種または出鋼操業の条件に応じて100℃以上も変化する。そのため、固定のしきい値を用いて判定しようとすると、溶鋼流の温度が変化した場合に、スラグの検出精度が低下する虞がある。
日本国特開2006-213965号公報
 本発明は、上記事情に鑑みてなされたものであり、溶鋼流の温度が変化した場合であっても、溶鋼流中のスラグを精度良く検出可能な、溶鋼流中のスラグ検出方法の提供を目的とする。
 前記課題を解決するため、本発明者らは鋭意検討を行った。まず、本発明者らは、赤外光域に主感度を有する熱画像カメラ(サーモグラフィ)を撮像手段として用い、出鋼初期、出鋼中期、および出鋼末期に亘る各種の溶鋼流を撮像し、多数の撮像画像を得た。そして、これらの撮像画像の各々について、温度を横軸とし、画素数を縦軸としたヒストグラムを作成したところ、例えば1000~2000℃の横軸の温度域において、縦軸の画素数が最大値である最大ピーク点が存在する場合があり、当該最大ピーク点が低温側に位置する場合もあれば、当該最大ピーク点が高温側に位置する場合もあることを見出した。
 次いで、本発明者らは、溶鋼流中にスラグが存在しない場合または極めて少量しか存在しない場合には、ヒストグラムにおける最大ピーク点は溶鋼に対応してかつ低温側に位置することを見出すと共に、溶鋼流中にスラグが多量に存在する場合には、ヒストグラムにおける最大ピーク点はスラグに対応してかつ高温側に位置することを見出した。しかしながら、前述のように、溶鋼流の温度は変化するため、温度に関する固定のしきい値を用いて、最大ピーク点が当該固定のしきい値の低温側および高温側のどちらに位置するかを判定することで、最大ピーク点が溶鋼およびスラグのどちらに対応するかを判定した場合、精度良くスラグを検出することは難しい。
 そこで、本発明者は更に鋭意検討を行った。本発明者らは、溶鋼およびスラグを含む溶鋼流の撮像画像でのヒストグラムにおいて、最大ピーク点以外にも、画素数が最大ピーク点の画素数未満で且つ所定の画素数しきい値(例えば、最大ピーク点の画素数の50%)以上の極大値であるピーク点(以下、「中間ピーク点」と称する)が存在する場合があることに着目した。かかる場合において、本発明者らは、例えば鋼種または出鋼操業の条件に応じて溶鋼流の温度が変化したとしても、最大ピーク点が溶鋼に対応する場合には、最大ピーク点の温度よりも高い温度を有する中間ピーク点の個数が、最大ピーク点の温度よりも低い温度を有する中間ピーク点の個数よりも多くなることを見出した。
 また、本発明者らは、鋼種または出鋼操業の条件に応じて溶鋼流の温度が変化したとしても、最大ピーク点がスラグに対応する場合には、最大ピーク点の温度よりも低い温度を有する中間ピーク点の個数が、最大ピーク点の温度よりも高い温度を有する中間ピーク点の個数よりも多くなることを見出した。
 なお、上記では温度を例に挙げて述べたが、温度に換算する前の濃度を横軸とするヒストグラムについても同様のことがいえることが分かった。また、可視光域に主感度を有するCCDカメラを用いて溶鋼流を撮像して得られる撮像画像について、濃度を横軸とし、画素数を縦軸として作成したヒストグラムについても同様のことがいえることが分かった。
 上記の知見に基づき、本発明は、上記課題を解決するために以下を採用する。
 (1)本発明の一態様に係る溶鋼流中のスラグ検出方法は、転炉から取鍋に向かって流出する、溶鋼およびスラグを含む溶鋼流を撮像して撮像画像を取得する撮像工程と;前記撮像画像に画像処理を施すことで、前記撮像画像を構成する各画素の濃度に対応する濃度パラメータを横軸として且つ、前記濃度パラメータを持つ前記画素の合計数である画素数を縦軸とするヒストグラムを作成するヒストグラム作成工程と;前記ヒストグラムについて、前記画素数が最大値である最大ピーク点を検出する最大ピーク点検出工程と;前記ヒストグラムについて、前記画素数が前記最大ピーク点の画素数未満で且つ所定の画素数しきい値以上の極大値である中間ピーク点を検出する中間ピーク点検出工程と;前記最大ピーク点の前記濃度パラメータよりも大きな濃度パラメータを有する前記中間ピーク点の個数Nhと、前記最大ピーク点の前記濃度パラメータよりも小さな濃度パラメータを有する前記中間ピーク点の個数Nlとを計数する中間ピーク点計数工程と; 前記個数Nlが前記個数Nhよりも大きい場合、前記最大ピーク点は前記スラグに対応すると判定する一方、前記個数Nhが前記個数Nlよりも大きい場合、前記最大ピーク点は前記溶鋼に対応すると判定する最大ピーク点種別判定工程と;を有する。
 (2)上記(1)に記載の態様において、以下のように構成してもよい:前記最大ピーク点種別判定工程において、前記最大ピーク点が前記スラグに対応すると判定した場合、前記最大ピーク点を基準にして決定した第1しきい値未満の濃度パラメータを有する画素は前記溶鋼に対応し、前記第1しきい値以上の濃度パラメータを有する画素は前記スラグに対応すると判定する第1判定工程と;前記最大ピーク点種別判定工程において、前記最大ピーク点が前記溶鋼に対応すると判定した場合、前記最大ピーク点を基準にして決定した第2しきい値以下の濃度パラメータを有する画素は前記溶鋼に対応し、前記第2しきい値よりも大きな濃度パラメータを有する画素は前記スラグに対応すると判定する第2判定工程と;
をさらに有する。
 (3)上記(2)に記載の態様において、以下のように構成してもよい:前記第1しきい値は、前記ヒストグラムにおいて、前記最大ピーク点を通り且つ正の傾きを有する第1直線で表わされ;前記第2しきい値は、前記ヒストグラムにおいて、前記最大ピーク点を通り且つ負の傾きを有する第2直線で表わされ;前記第2直線の傾きの絶対値は、前記第1直線の傾きの絶対値よりも大きい。
 (4)上記(3)に記載の態様において、以下のように構成してもよい:前記第1直線は、前記画素数しきい値未満の前記画素数を有し且つ前記最大ピーク点の前記濃度パラメータに対して所定値以上小さい濃度パラメータを有する点のうち、前記濃度パラメータが最大のピーク点と、前記最大ピーク点とを通る直線であり;前記第2直線の傾きの絶対値は、前記第1直線の傾きの絶対値の1.5~2.5倍である。
 本発明の上記各態様によれば、溶鋼流の温度が変化した場合であっても、溶鋼流中のスラグを精度良く検出できる。
本発明の一実施形態に係るスラグ検出方法に用いられるスラグ検出装置の概略構成を示す模式図である。 上記スラグ検出方法の概略手順を示すフロー図である。 図2に示す撮像工程ST1において取得される撮像画像の一例を示す図である。 図2に示すヒストグラム作成工程ST2において、図3Aの撮像画像に基づいて作成されたヒストグラムを示す図である。 図2に示す第1判定工程ST7において決定される第1しきい値を説明するための図である。 図2に示す撮像工程ST1において取得される撮像画像の一例であって、図3Aと異なる例を示す図である。 図2に示すヒストグラム作成工程ST2において、図5Aの撮像画像に基づいて作成されたヒストグラムを示す図である。 図2に示す第2判定工程ST8において決定される第2しきい値を説明するための図である。 特許文献1に記載のスラグ検出方法を説明するための図である。 図7Aのヒストグラムの作成に用いられた撮像画像を示す図である。 図3Aに示す撮像画像においてスラグSが存在する画素領域を差分処理によって抽出した結果を示す図である。
 以下、図面を参照しながら、本発明の一実施形態に係る溶鋼流中のスラグ検出方法(以下、単に「スラグ検出方法」とも言う)について説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については同一符号を付すことにより、それらの重複説明を省略する。
 まず、本実施形態に係るスラグ検出方法に用いられるスラグ検出装置100の構成について説明する。
 <本実施形態に係るスラグ検出装置100の構成>
 図1は、スラグ検出装置100の概略構成を示す模式図である。なお、図1において、溶鋼M及びスラグSを収容する転炉3は断面で示している。
 図1に示すように、スラグ検出装置100は、転炉3から取鍋4への出鋼の際、傾動させた転炉3の出鋼口31から取鍋4に向かって流出する溶鋼流F中のスラグSを検出するために用いられる。スラグ検出装置100は、転炉3の出鋼口31から取鍋4に向かって略鉛直に流出する溶鋼流Fを略水平方向から撮像する撮像手段1と、この撮像手段1に接続された画像処理手段2とを備えている。
 撮像手段1としては、例えば、赤外光域に主感度を有する熱画像カメラ(サーモグラフィ)、または可視光域に主感度を有するCCDカメラなどを用いることができる。これら熱画像カメラ(サーモグラフィ)および上記CCDカメラとしては、例えば市販のものを用いることができる。
 本実施形態では、撮像手段1として、赤外光域に主感度を有する熱画像カメラを用いている。なお、本実施形態のように熱画像カメラ(サーモグラフィ)を用いる場合、撮像画像における画素領域の温度又は濃度(温度に換算する前の濃度)の値を算出可能である。一方、CCDカメラを用いる場合、当該画素領域の濃度の値を算出可能である。
 画像処理手段2は、例えば、後述のヒストグラム作成工程ST2等を実行するための所定のプログラムがインストールされた汎用のパーソナルコンピュータから構成される。なお、画像処理手段2は、撮像手段1で得られた撮像画像を表示するためのモニターを有している。
 本実施形態に係るスラグ検出方法はスラグ検出装置100を用いて実行される。以下、本実施形態に係るスラグ検出方法について説明する。
 <本実施形態に係るスラグ検出方法>
 図2は、本実施形態に係るスラグ検出方法の概略手順を示すフロー図である。
 本実施形態に係るスラグ検出方法は、転炉3から取鍋4に向けって流出する、溶鋼M及びスラグSを含む溶鋼流Fを撮像手段1によって撮像して得られる撮像画像に基づき、溶鋼流F中のスラグSを検出する方法であって、図2に示すように、撮像工程ST1と、ヒストグラム作成工程ST2と、最大ピーク点検出工程ST3と、中間ピーク点検出工程ST4と、中間ピーク点計数工程ST5と、最大ピーク点種別判定工程ST6と、第1判定工程ST7と、第2判定工程ST8とを有している。
 以下、各工程の内容について、順次説明する。
 (撮像工程ST1)
 撮像工程ST1においては、撮像手段1によって、転炉3から取鍋4に向かって流出する溶鋼流Fを撮像して撮像画像を取得する(図1参照)。
 本実施形態では、撮像手段1として熱画像カメラを用いており、撮像工程ST1で取得される撮像画像は、撮像画像を構成する各画素の濃度を所定の換算式で温度に換算したものになる。すなわち、撮像工程ST1で取得される撮像画像は、画素毎に検出した温度の値を有する。
 撮像手段1の視野は、溶鋼流Fの流出位置および広がりの変動の影響を受けないように、溶鋼流Fのみならず背景も含む広い視野に設定されている。背景が含まれるように撮像手段1の視野が設定されていても、背景の温度は溶鋼流Fの温度よりも低いため、後述の最大ピーク点検出工程ST3において、溶鋼流Fに対応する画素領域と背景に対応する画素領域とを識別可能である。なお、撮像手段1の視野は、溶鋼流Fのみが撮像されるように予め狭く調整してもよい。しかしながら、溶鋼流Fの流出位置および広がりは、転炉3の傾動角度等に応じて(出鋼口31の位置等に応じて)、ある程度変動するのが一般的である。このため、出鋼初期、出鋼中期、および出鋼末期のいずれにおいても溶鋼流Fのみが撮像されるように撮像手段1の視野を調整することは作業の手間を要する。したがって、撮像手段1の視野は、背景も含む広い視野に設定することが好ましい。
 撮像手段1の撮像タイミングは、特に限定されるものではないが、スラグSを検出する時間分解能を高める上では、撮像手段1に設定されている走査周期(フレームレートの逆数)毎に連続的に撮像することが好ましい。
 撮像手段1によって得られた撮像画像は、画像処理手段2に記憶される。
 (ヒストグラム作成工程ST2)
 ヒストグラム作成工程ST2では、画像処理手段2が、撮像工程ST1で取得した撮像画像に画像処理を施すことで、撮像画像を構成する各画素の濃度に対応する濃度パラメータを横軸とし、この濃度パラメータを持つ画素の合計数である画素数を縦軸とするヒストグラムを作成する。ヒストグラムは1枚の撮像画像毎に作成しても良いし、連続する複数枚の撮像画像を平均化した平均画像について作成しても良い。なお、当該平均画像を用いる場合、撮像手段1の視野内の溶鋼流Fに対応する画素領域の長さLを溶鋼流Fの速度Vで除算して得られた時間(=L/V)内で連続する複数枚の撮像画像を平均化することが望ましい。
 上記の濃度パラメータとしては、濃度そのものの他、温度を例示できる。本実施形態のように撮像手段1が熱画像カメラである場合、横軸が温度又は濃度(温度に換算する前の濃度)であるヒストグラムを作成可能である。一方、撮像手段1がCCDカメラである場合、横軸が濃度であるヒストグラムを作成可能である。
 ここで、本明細書における「濃度」とは、例えば256階調の画像の明暗(すなわち、画像上の輝度)のことを指す。そして、この濃度と、溶鋼流における熱放射輝度との関係は、リニアな関係にある。
 上述のように本実施形態では撮像手段1として熱画像カメラを用いているため、上記の濃度パラメータとして温度を用いる(すなわち、本実施形態では、ヒストグラムの横軸は温度である)。
 本実施形態では、前述のように、撮像手段1の視野が、溶鋼流Fのみならず背景も含むように設定されている。このため、ヒストグラムの作成に際して、画像処理手段2は、撮像画像における、所定のしきい値(例えば、1000℃)以上の温度を有する画素領域が溶鋼流Fに対応する画素領域であると判定し、この画素領域を対象としてヒストグラムを作成する(すなわち、横軸である温度が前記所定のしきい値未満の画素領域についてはヒストグラム作成の対象としない)。これにより、ヒストグラムに及ぼす背景の影響を回避することが可能である(背景に対応する画素数が最大値にならない)。
 なお、画像処理手段2は、背景に対応する画素領域も含んだ撮像画像全体についてヒストグラムを作成し、後述の最大ピーク点検出工程ST3における最大ピーク点の検出範囲から、所定のしきい値(例えば、1000℃)未満の温度を除外することで、背景の影響を回避しても良い。
 図3Aは、撮像工程ST1において取得される撮像画像の一例を示す図である。具体的には、図3Aは、撮像手段1の走査周期毎に連続的に取得した5枚の撮像画像を平均化した平均画像の一例である(撮像画像の分解能は、約3cm/画素である)。図3Aでは、撮像画像(平均画像)における溶鋼流Fに対応する画素領域とその近傍に位置する背景に対応する画素領域についてのみ部分的に切り出して表示している。すなわち、実際に取得される撮像画像は、図3A及び図5Aに示す撮像画像よりも、紙面左右方向の画素領域が広くなっている。
 また、図3Aに示す撮像画像は図示の都合上、モノクロ表示となっているが、実際には、画像処理手段2が具備するモニターにおいて、各画素の温度に応じて異なる色が付されて表示される。すなわち、溶鋼流Fに対応する画素領域の温度は、背景に対応する画素領域の温度よりも高いため、撮像工程ST1で得られる実際の撮像画像では、その高い温度に対応する色が色付けされている。
 また、溶鋼流Fに対応する画素領域のうち、図3Aにおいて太破線で囲まれた、スラグSが存在すると考えられる画素領域(具体的には、後述の第1判定工程ST7でスラグSに対応すると判定された画素の領域)の温度(見かけの温度)は、その他の画素領域(実質的に溶鋼Mのみが存在する画素の領域)の温度(見かけの温度)よりも高くなっており、その高い温度に対応する色が色付けされている。
 なお、転炉3から排出される溶鋼流Fにおいて、スラグSが存在する画素領域に対応する部位の実際の温度(実温度)と、実質的に溶鋼Mのみが存在する画素領域に対応する部位の実際の温度(実温度)とは、同等の値であると考えられる。しかしながら、スラグSの放射率が溶鋼Mの放射率よりも高く(溶鋼の放射率に比べてスラグの放射率は概ね1.5倍程度である)、撮像手段1における放射率の設定を何れの画素についても同じにするのが一般的であるため、前述のように、取得された撮像画像においては、スラグSが存在する画素領域の温度は、実質的に溶鋼Mのみが存在する画素領域の温度よりも高く測定される。後述の図5Aについても同様である。
 図3Bは、図3Aに示す撮像画像(平均画像)について作成したヒストグラムを示す図である。図3Bのヒストグラムの作成に際しては、背景の影響を回避するため、横軸の温度範囲を所定のしきい値(1000℃)以上とし(ただし、画素数の分布に特徴が見られなかった1400℃未満については図示省略)、横軸を10℃ピッチで区分し、縦軸を各区分の温度を有する画素の数としている。
 (最大ピーク点検出工程ST3)
 最大ピーク点検出工程ST3では、画像処理手段2が、ヒストグラム作成工程ST2で作成したヒストグラムについて、画素数が最大値である最大ピーク点を検出する。図3Bに示すヒストグラムでは、符号P1で示す点が最大ピーク点となる。
 (中間ピーク点検出工程ST4)
 中間ピーク点検出工程ST4では、画像処理手段2が、ヒストグラム作成工程ST2で作成したヒストグラムについて、画素数が最大ピーク点P1の画素数未満で且つ所定の画素数しきい値Th以上の極大値である中間ピーク点を検出する。画素数しきい値Thは、図3Bに示すように、最大ピーク点P1の画素数の50%に設定されている。図3Bに示すヒストグラムでは、符号P2で示す点が中間ピーク点となる。
 なお、所定の画素数しきい値Thは、特に限定されるものではないが、1200℃~1300℃といった背景と思われる温度領域のピークをとらえないように、例えば最大ピーク点P1の画素数の50%をThとすることが好ましい。
 (中間ピーク点計数工程ST5)
 中間ピーク点計数工程ST5では、画像処理手段2が、検出した中間ピーク点P2のうち、最大ピーク点P1の温度よりも高い温度を有する中間ピーク点P2の個数Nhと、最大ピーク点P1の温度よりも低い温度を有する中間ピーク点P2の個数Nlとをそれぞれ計数する。図3Bでは、Nh=1、Nl=6となる。
 (最大ピーク点種別判定工程ST6)
 最大ピーク点種別判定工程ST6では、画像処理手段2が、個数Nh<個数Nlの場合(個数Nlが個数Nhよりも大きい場合)、最大ピーク点P1は溶鋼流Fに存在するスラグSに対応すると判定し、一方、個数Nh>個数Nlの場合(個数Nhが個数Nlよりも大きい場合)、最大ピーク点P1は溶鋼流Fに存在する溶鋼Mに対応すると判定する。図3Bでは、Nh=1、Nl=6であるから、Nh<Nlとなり、最大ピーク点P1は溶鋼流Fに存在するスラグSに対応すると判定されることになる。
 (第1判定工程ST7)
 最大ピーク点種別判定工程ST6において、最大ピーク点P1が溶鋼流Fに存在するスラグSに対応すると判定した場合、画像処理手段2は第1判定工程ST7を実行する。すなわち、図3Bのヒストグラムについては、第1判定工程ST7が実行されることになる。
 第1判定工程ST7では、画像処理手段2が、撮像画像を構成する各画素のうち、最大ピーク点P1を基準にして決定した第1しきい値未満の温度を有する画素は溶鋼流Fに存在する溶鋼Mに対応し、第1しきい値以上の温度を有する画素は溶鋼流Fに存在するスラグSに対応すると判定する。以下、図4を適宜参照しつつ、より具体的に説明する。
 図4は、第1判定工程ST7において決定される第1しきい値を説明するための図である。なお、図4に示すヒストグラムは、図3Bに示すヒストグラムと同一である。
 図4に示すように、第1しきい値は、ヒストグラム作成工程ST2で作成したヒストグラムにおいて、最大ピーク点P1を通り且つ正の傾きを有する第1直線L1で表わされる。具体的には、第1直線L1は、図4に示す点P3と最大ピーク点P1とを通る直線である。点P3は、画素数しきい値Th未満の画素数を有し且つ最大ピーク点P1の温度よりも所定値TD(例えば、50℃)以上低い温度を有する点のうち、最も高い温度を有するピーク点である。(すなわち、点P3は、所定の画素数しきい値Th未満の画素数を有し且つ最大ピーク点P1の温度よりも所定値TD以上低い温度を有する点であって極大値となる点のうち、最も高い温度を有する点である)。
 ここで、所定値TD以上低い温度を有する点のうち、最も高い温度を有する点を判断対象としてピーク点か否かを判断する場合は、当該点と当該点の低温側に隣接する点とを結ぶ線の勾配に注目し、当該線が正の傾き(当該線が右上がりの線)であれば当該判断対象の点を点P3とみなす。
 なお、本実施形態に係るスラグ検出方法は、ヒストグラムにおいて所定の画素数しきい値Thを超えるピークが多い溶鋼流に対して特に好適に適用される。また、所定の画素数しきい値Thの設定有無に関わらず、最大ピーク点P1の画素数の50%以上のピークが例えば3点以上となる溶鋼流に対しても特に好適に適用される。このようなピークの特徴は、精練における溶鋼とスラグの混合状況によって決定される。
 上記の、第1しきい値(第1直線L1)は、横軸の温度をXとし、縦軸の画素数をYとすると、以下の式(1)で表わされることになる。
 Y=aX+b ・・・(1)
 ただし、aは正の定数であり、bは定数である。これらの定数は第1直線L1が点P3と最大ピーク点P1とを通ることから決定される。
 所定値TDは、特に限定されるものではないが、例えば50℃である。経験上、最大ピーク温度の±50℃以内の範囲は、裾野にならない場合が多い。そのため、例えば所定値TDを50℃に設定することにより、裾野を除いたピークで第1しきい値を決定することができ好ましい。
 前述のように、画像処理手段2は、第1しきい値未満の温度を有する画素は溶鋼流Fに存在する溶鋼Mに対応すると判定する。すなわち、Y>aX+bを満足する画素は溶鋼流Fに存在する溶鋼Mに対応すると判定することになる。
 一方、画像処理手段2は、第1しきい値以上の温度を有する画素は溶鋼流Fに存在するスラグSに対応すると判定する。すなわち、Y≦aX+bを満足する画素(図4でハッチングを施した領域にある画素)は溶鋼流Fに存在するスラグSに対応すると判定する。
 (第2判定工程ST8)
 最大ピーク点種別判定工程ST6において、最大ピーク点P1が溶鋼流Fに存在する溶鋼Mに対応すると判定した場合、画像処理手段2は第2判定工程ST8を実行する。
 図5Aは、撮像工程ST1において取得される撮像画像の一例であって、図3Aと異なる他の例を示す図である。具体的には、図5Aは、撮像手段1の走査周期毎に連続的に取得した5枚の撮像画像を平均化した平均画像の他の例を示す。
 図5Bは、図5Aに示す撮像画像(平均画像)について作成したヒストグラムを示す図である。図5Bのヒストグラムについては、中間ピーク点計数工程ST5において、画像処理手段2が、最大ピーク点P1の温度よりも高い温度を有する中間ピーク点P2の個数Nh=5、最大ピーク点P1の温度よりも低い温度を有する中間ピーク点P2の個数Nl=0と計数する。したがって、その後の最大ピーク点種別判定工程ST6において、画像処理手段2は、個数Nh>個数Nlであるため、最大ピーク点P1が溶鋼流Fに存在する溶鋼Mに対応すると判定する。
 最大ピーク点種別判定工程ST6で当該判定がなされたことにより、画像処理手段2は第2判定工程ST8を実行する。第2判定工程ST8においては、画像処理手段2が、撮像画像を構成する各画素のうち、最大ピーク点P1を基準にして決定した第2しきい値以下の温度を有する画素は溶鋼流Fに存在する溶鋼Mに対応し、第2しきい値よりも高い温度を有する画素は溶鋼流Fに存在するスラグSに対応すると判定する。以下、図6を適宜参照しつつ、より具体的に説明する。
 図6は、第2判定工程ST8において決定される第2しきい値を説明するための図である。なお、図6に示すヒストグラムは、図5Bに示すヒストグラムと同一である。
 図6に示すように、第2しきい値は、最大ピーク点P1を通り且つ負の傾きを有する第2直線L2で表わされる。そして、第1直線L1の傾きの絶対値よりも第2直線L2の傾きの絶対値の方が大きくなっている(好ましくは、第2直線L2の傾きの絶対値は、第1直線L1の傾きの絶対値の1.5~2.5倍である)。第1直線L1は、図6に示す点P3と最大ピーク点P1とを通る直線である。なお、点P3は低温側に隣接する点との間の線の勾配が正であるため、図4と同様に、画素数しきい値Th未満の画素数を有し且つ最大ピーク点P1の温度よりも所定値TD(例えば、50℃)以上低い温度を有する点のうち、最も高い温度を有するピーク点である。
 前述のように、第1直線L1は、横軸の温度をXとし、縦軸の画素数をYとすると、以下の式(1)で表わされることになる。
 Y=aX+b ・・・(1)
 ただし、aは正の定数、bは定数である。これらの定数は第1直線L1が点P3と最大ピーク点P1とを通ることから決定される。
 一方、例えば第2直線のL2の傾きの絶対値が第1直線L1の傾きaの絶対値の2倍に設定されるとすると、第2直線L2は、以下の式(2)で表わされることになる。
 Y=-2aX+c ・・・(2)
 ただし、aは正の定数、cは定数である。そして、aは第1直線L1から決定され、cは第2直線が最大ピーク点P1を通ることから決定される。
 前述のように、画像処理手段2は、第2しきい値以下の温度を有する画素は溶鋼流Fに存在する溶鋼Mに対応すると判定する。すなわち、例えば、図6に示すヒストグラムにおいて、Y≦-2aX+cを満足する画素は溶鋼流Fに存在する溶鋼Mに対応すると判定することになる。
 一方、画像処理手段2は、第2しきい値よりも高い温度を有する画素は溶鋼流Fに存在するスラグSに対応すると判定する。すなわち、例えば、図6に示すヒストグラムにおいて、Y>-2aX+cを満足する画素(図6でハッチングを施した領域にある画素)は溶鋼流Fに存在するスラグSに対応すると判定することになる。
 以上に説明した本実施形態に係るスラグ検出方法によれば、取得した撮像画像のヒストグラムにおける中間ピーク点の個数NhおよびNlの大小関係に基づいて、当該ヒストグラムの最大ピーク点の種別を判定する。すなわち、固定のしきい値を用いずに最大ピーク点の種別を判定するため、溶鋼流Fの温度が変化した場合であっても、最大ピーク点P1が溶鋼MまたはスラグSのいずれに対応するかを精度良く判定することができる。
 なお、本実施形態に係るスラグ検出方法は、個数Nhおよび個数Nlが互いに異なる場合(Nh≠Nl)を前提としている。すなわち、個数Nhおよび個数Nlが互いに等しい場合(Nh=Nl)、上述の方法によっては、最大ピーク点の種別を判定することができない。
 そこで、中間ピーク点計数工程ST5において計数した個数Nhおよび個数Nlが互いに等しい場合、例えば以下に示す方法(i)または(ii)で最大ピーク点P1が溶鋼MまたはスラグSのいずれに対応するかを判定する。
 (i)溶鋼流の実温度および放射率に基づいて、最大ピーク点P1が溶鋼Mに対応する場合の温度及び最大ピーク点P1がスラグSに対応する場合の温度をそれぞれ推定しておき、判定対象とするヒストグラムの最大ピーク点P1の温度がこれらの温度のいずれに近いかによって、最大ピーク点の種別を判定する。
 (ii)転炉3内のスラグ量及び溶鋼量は推定可能でありかつ、転炉3をどの程度傾動させれば溶鋼Mを主体とした溶鋼流Fが流出するかを幾何学的に推定可能であることに基づき、溶鋼流Fの流出時間から最大ピーク点P1が溶鋼MまたはスラグSのいずれに対応するかを判定する。
 また、本実施形態に係るスラグ検出方法によれば、第1判定工程ST7又は第2判定工程ST8において、溶鋼流Fに存在するスラグSに対応する画素の数(面積)と、溶鋼流Fに存在する溶鋼Mに対応する画素の数(面積)とを算出可能である。このため、例えば、溶鋼流F中のスラグSの面積割合、および溶鋼流F中のスラグSの体積割合を求めることができる。更に溶鋼M及びスラグSの比重を用いれば、溶鋼流F中のスラグSの質量割合を算出可能であり、溶鋼流Fの流量は出鋼の際の転炉3の傾動角度から推定可能である。このため、スラグSの質量割合と溶鋼流Fの流量とを用いて、スラグSの流出量(流量)を推定することが可能であり、このスラグSの流出量を転炉3の出鋼操業において要求される範囲に制御することも可能になる。
 具体的には、本実施形態に係るスラグ検出方法によれば、スラグSの流出量等(流出量、画素数、面積、体積など)がゼロより大きくなった場合に出鋼操業を終了したり、スラグSの流出量等が予め定めた所定値より大きくなった場合に出鋼操業を終了したり、溶鋼Mの流出量等に対するスラグSの流出量等の割合が所定値より大きくなった場合に出鋼操業を終了する等の制御を行うことが可能である。 
 次に、本発明の作用効果を確認するために行った実施例について説明する。
 図3Aに示す撮像画像を評価対象として用い、本実施形態に係るスラグ検出方法と、特許文献1に記載のスラグ検出方法とを比較した。
 具体的には、本実施形態に係るスラグ検出方法では、前述のように、図3Aに示す撮像画像について作成した図3Bに示すヒストグラムについて、最大ピーク点P1が溶鋼流Fに存在するスラグSに対応すると判定される。そして、図4に示すように、式(1)で表わされる第1直線L1によって、ハッチングを施した領域にある画素がスラグSに対応すると判定されることになる。
 図4に示す例では、139個の画素がスラグSに対応すると判定された。
 一方、特許文献1に記載のスラグ検出方法を用いると、図3Bに示すヒストグラムにおける最大ピーク点P1が溶鋼流Fに存在する溶鋼Mに対応するとみなされる。前述のように、特許文献1に記載のスラグ検出方法では、最大ピーク点P1の横軸方向のバラツキσも考慮した濃度値N1以上の画素を溶鋼Mと判定し、濃度値N1にバイアス値Bを加算した濃度値N2以上の画素をスラグSと判定している。濃度値を温度に置き換えると、特許文献1に記載のスラグ検出方法では、最大ピーク点P1の横軸方向のバラツキσも考慮した温度N1以上の画素を溶鋼Mと判定し、温度N1にバイアス値Bを加算した温度N2以上の画素をスラグSと判定することになる。ここで、特許文献1に記載のスラグ検出方法では、最大ピーク点P1が溶鋼Mに対応するとみなすため、溶鋼Mに対応する画素とスラグSに対応する画素とを区別するためのバイアス値Bを2σ以上に設定する(すなわち、温度N2を最大ピーク点P1の温度+σ以上に設定する)のが妥当である。本評価では、最もスラグSの検出誤差が小さくなる最小値2σをバイアス値Bとして用いた。また、図3Bに示すヒストグラムにおいて、最大ピーク点P1の温度以上の画素数分布が正規分布であると仮定し、最大ピーク点P1の温度から温度N2(最大ピーク点P1の温度+σ)までの画素数の和を、最大ピーク点P1の温度以上の画素数の和で除算した値が約68%となるようにσを設定した。
 図7A及び図7Bは、特許文献1に記載のスラグ検出方法を説明するための図である。図7Aはヒストグラムを、図7Bは撮像画像(平均画像)を示す。図7Aに示すヒストグラムは、図3Bまたは図4に示すヒストグラムと同一である。図7Bに示す撮像画像は、図3Aに示す撮像画像と同一である。特許文献1に記載のスラグ検出方法によれば、図7Aにおいてハッチングを施した領域にある画素がスラグSに対応すると判定されることになる。具体的には、図7Bにおいて太破線で囲まれた画素領域にある18個の画素がスラグSに対応すると判定された。
 図8は、図3Aに示す撮像画像においてスラグSが存在すると考えられる画素領域を差分処理によって抽出した結果を示す図である。なお、図8(a)は図3Aと同一の撮像画像を、図8(b)は出鋼初期において実質的に溶鋼Mのみが存在する溶鋼流の撮像画像を、図8(c)は図8(a)に示す撮像画像と図8(b)に示す撮像画像との差分画像を示す。
 図8は図示の都合上、モノクロ表示となっているが、図8(c)に示す差分画像において、背景に対応する画素領域に比べて温度の高い画素領域(背景に対応する画素領域の色(緑色)とは異なる色(黄色、赤色)が付された画素領域)は、その中心から周辺に向けて温度が低下しており、且つ、溶鋼流Fの落下に伴って縦長に延ばされている形態から考えて、スラグSが存在すると考えられる画素領域である。この温度の高い画素領域(黄色、赤色が付された画素領域)の画素数を計数すると、111個であった。
 したがって、上記の差分画像で評価した111個をスラグSに対応する画素数の真値とすると、本実施形態に係るスラグ検出方法では、真値の+25.2%((139-111)/111×100=25.2)の誤差であるのに対し、特許文献1に記載のスラグ検出方法では、真値の-83.8%((18-111)/111×100=-83.8)の誤差であった。よって、本実施形態に係るスラグ検出方法によれば、特許文献1に記載のスラグ検出方法に比べて、溶鋼流F中のスラグSを精度良く検出可能であるといえる。これは、図3Aに示す太破線の方が、図7Bに示す太破線に比べて、図8(c)に示すスラグSが存在すると考えられる画素領域の輪郭に近い点で、視感的にも明らかである。
 なお、差分画像で評価したスラグSに対応する画素の数を面積(実寸)に換算すると、1画素の面積が約9cmであるため、9×111=999cmとなる。これを単純に体積に換算(スラグSの撮像手段1の視軸方向の寸法が撮像手段1の視野面における寸法と同じであると仮定して換算)すると、(999)3/2=31575cm=31575×10-6となる。したがい、スラグSの比重を2×10-3/kgとすると、スラグSの質量は、(31575×10-6)/(2×10-3)=16kgとなる。
 同様にして、本実施形態に係るスラグ検出方法で検出したスラグSを質量に換算すると22kg(真値の137.5%)となり、特許文献1に記載のスラグ検出方法で検出したスラグSを質量に換算すると1kg(真値の6.3%)となる。すなわち、本実施形態に係るスラグ検出方法によれば、質量で+37.5%の誤差となり、-93.7%の誤差が生じる特許文献1に記載の方法に比べて、溶鋼流F中のスラグSを精度良く検出可能であるといえる。
 以上、本発明の実施形態を説明したが、上記実施形態は、例として提示したものであり、本発明の範囲が上記実施形態のみに限定されるものではない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。上記実施形態やその変形は、発明の範囲や要旨に含まれると同様に、請求の範囲に記載された発明とその均等の範囲に含まれる。
 例えば、上記実施形態では、第1しきい値が最大ピーク点P1を通り且つ正の傾きを有する第1直線L1で表される場合を示した。しきい値の決め方に関し、より高精度にスラグを検出する観点からは、溶鋼およびスラグのピークについてそれぞれガウス分布などでフィッティングを行って決定することが好ましい。しかしながら、このような方法では、計算時間が長くなり、工業的には好ましくない。そこで、第1しきい値を直線で表すことにより、より簡易に閾値を決定できる。
 また、第1しきい値および第2しきい値は、第1直線L1および第2直線L2で表される場合に限定されない。例えば、第1しきい値および第2しきい値が、最大ピーク点の横軸方向のバラツキを考慮した、横軸に直交する直線(傾きが無限大の直線)で表されてもよい。
1: 撮像手段
2: 画像処理手段
3: 転炉
4: 取鍋
100: スラグ検出装置
ST1: 撮像工程
ST2: ヒストグラム作成工程
ST3: 最大ピーク点検出工程
ST4: 中間ピーク点検出工程
ST5: 中間ピーク点計数工程
ST6: 最大ピーク点種別判定工程
ST7: 第1判定工程
ST8: 第2判定工程
F: 溶鋼流
M: 溶鋼
S: スラグ 

Claims (4)

  1.  転炉から取鍋に向かって流出する、溶鋼およびスラグを含む溶鋼流を撮像して撮像画像を取得する撮像工程と;
     前記撮像画像に画像処理を施すことで、前記撮像画像を構成する各画素の濃度に対応する濃度パラメータを横軸として且つ、前記濃度パラメータを持つ前記画素の合計数である画素数を縦軸とするヒストグラムを作成するヒストグラム作成工程と;
     前記ヒストグラムについて、前記画素数が最大値である最大ピーク点を検出する最大ピーク点検出工程と;
     前記ヒストグラムについて、前記画素数が前記最大ピーク点の画素数未満で且つ所定の画素数しきい値以上の極大値である中間ピーク点を検出する中間ピーク点検出工程と;
     前記最大ピーク点の前記濃度パラメータよりも大きな濃度パラメータを有する前記中間ピーク点の個数Nhと、前記最大ピーク点の前記濃度パラメータよりも小さな濃度パラメータを有する前記中間ピーク点の個数Nlとを計数する中間ピーク点計数工程と;
     前記個数Nlが前記個数Nhよりも大きい場合、前記最大ピーク点は前記スラグに対応すると判定する一方、前記個数Nhが前記個数Nlよりも大きい場合、前記最大ピーク点は前記溶鋼に対応すると判定する最大ピーク点種別判定工程と;
    を有することを特徴とする溶鋼流中のスラグ検出方法。
  2.  前記最大ピーク点種別判定工程において、前記最大ピーク点が前記スラグに対応すると判定した場合、前記最大ピーク点を基準にして決定した第1しきい値未満の濃度パラメータを有する画素は前記溶鋼に対応し、前記第1しきい値以上の濃度パラメータを有する画素は前記スラグに対応すると判定する第1判定工程と;
     前記最大ピーク点種別判定工程において、前記最大ピーク点が前記溶鋼に対応すると判定した場合、前記最大ピーク点を基準にして決定した第2しきい値以下の濃度パラメータを有する画素は前記溶鋼に対応し、前記第2しきい値よりも大きな濃度パラメータを有する画素は前記スラグに対応すると判定する第2判定工程と;
    をさらに有することを特徴とする請求項1に記載の溶鋼流中のスラグ検出方法。
  3.  前記第1しきい値は、前記ヒストグラムにおいて、前記最大ピーク点を通り且つ正の傾きを有する第1直線で表わされ、
     前記第2しきい値は、前記ヒストグラムにおいて、前記最大ピーク点を通り且つ負の傾きを有する第2直線で表わされ、
     前記第2直線の傾きの絶対値は、前記第1直線の傾きの絶対値よりも大きい
    ことを特徴とする請求項2に記載の溶鋼流中のスラグ検出方法。
  4.  前記第1直線は、前記画素数しきい値未満の前記画素数を有し且つ前記最大ピーク点の前記濃度パラメータに対して所定値以上小さい濃度パラメータを有する点のうち、前記濃度パラメータが最大のピーク点と、前記最大ピーク点とを通る直線であり、
     前記第2直線の傾きの絶対値は、前記第1直線の傾きの絶対値の1.5~2.5倍である
    ことを特徴とする請求項3に記載の溶鋼流中のスラグ検出方法。
PCT/JP2018/004831 2017-02-14 2018-02-13 溶鋼流中のスラグ検出方法 WO2018151078A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US16/483,898 US20190390290A1 (en) 2017-02-14 2018-02-13 Method of detecting slag in molten steel flow
BR112019015441-8A BR112019015441A2 (pt) 2017-02-14 2018-02-13 Método de detecção de escória em fluxo de aço fundido
JP2018568522A JP6795046B2 (ja) 2017-02-14 2018-02-13 溶鋼流中のスラグ検出のためのヒストグラム作成方法
KR1020197022268A KR20190102240A (ko) 2017-02-14 2018-02-13 용강류 속의 슬래그 검출 방법
CA3052696A CA3052696A1 (en) 2017-02-14 2018-02-13 Method for detecting slag in molten steel flow
EP18754117.2A EP3584328A1 (en) 2017-02-14 2018-02-13 Method for detecting slag in molten steel flow
CN201880010711.3A CN110268073A (zh) 2017-02-14 2018-02-13 钢液流中的渣检测方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-025440 2017-02-14
JP2017025440 2017-02-14

Publications (1)

Publication Number Publication Date
WO2018151078A1 true WO2018151078A1 (ja) 2018-08-23

Family

ID=63169387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004831 WO2018151078A1 (ja) 2017-02-14 2018-02-13 溶鋼流中のスラグ検出方法

Country Status (9)

Country Link
US (1) US20190390290A1 (ja)
EP (1) EP3584328A1 (ja)
JP (1) JP6795046B2 (ja)
KR (1) KR20190102240A (ja)
CN (1) CN110268073A (ja)
BR (1) BR112019015441A2 (ja)
CA (1) CA3052696A1 (ja)
TW (1) TWI638137B (ja)
WO (1) WO2018151078A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113504725B (zh) * 2021-07-09 2022-09-02 衡阳镭目科技有限责任公司 转炉的实时炉渣状态监测装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003019553A (ja) * 2001-07-03 2003-01-21 Nkk Corp スラグ検知方法、スラグ検知装置及び除滓装置
JP2006213965A (ja) 2005-02-03 2006-08-17 Jfe Steel Kk 転炉出鋼時のスラグ検出方法及び装置
JP2007246959A (ja) * 2006-03-14 2007-09-27 Nippon Steel Corp 高炉出銑流測定システム、高炉出銑流測定方法、及びコンピュータプログラム
JP2017025440A (ja) 2015-07-23 2017-02-02 日華化学株式会社 非フッ素系ポリマー、撥水剤組成物、撥水性繊維製品及び撥水性繊維製品の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5301621A (en) * 1993-05-17 1994-04-12 Rollins Environmental Services, Inc. Slag viscosity detection through image analysis of dripping slag within rotary incineration kilns
US5694480A (en) * 1995-08-30 1997-12-02 Tsukishima Kikai Co., Ltd. Molten slag flow rate measuring device and furnace facilities using the same
US5650117A (en) * 1995-09-27 1997-07-22 Vesuvius Crucible Company Slag detecting apparatus and method
EP0890839B1 (en) * 1997-07-11 2006-09-13 Sanyo Special Steel Co., Ltd. Method for analytically determining oxygen for each form of oxide
US6197086B1 (en) * 1997-11-13 2001-03-06 Bethlehem Steel Corporation System and method for minimizing slag carryover during the production of steel
US5968227A (en) * 1997-11-13 1999-10-19 Bethlehem Steel Corporation System and method for minimizing slag carryover during the tapping of a BOF converter in the production of steel
US6562285B1 (en) * 2000-11-15 2003-05-13 Metallurgical Sensors, Inc. Method and apparatus for detecting slag carryover
JP4638084B2 (ja) * 2001-06-25 2011-02-23 株式会社栗本鐵工所 溶融スラグ用の流路形成用部材
US7468090B2 (en) * 2005-11-28 2008-12-23 Nupro Corporation Method for tapping a steel making furnace
CN101306466B (zh) * 2008-06-02 2011-03-30 田志恒 检测和控制钢水中的熔渣的装置和方法
JP5444692B2 (ja) * 2008-11-07 2014-03-19 Jfeスチール株式会社 スラグの流出検知方法
JP5448669B2 (ja) * 2009-09-17 2014-03-19 三菱重工業株式会社 石炭ガス化炉のスラグ監視装置及び石炭ガス化炉
CN101818228B (zh) * 2010-03-22 2011-12-21 马鞍山钢铁股份有限公司 转炉出钢下渣的控制系统及其控制方法
CN102181598B (zh) * 2011-03-04 2013-02-06 浙江大学 基于热图像的转炉出钢下渣预判及控制方法
CN102392098A (zh) * 2011-11-04 2012-03-28 衡阳镭目科技有限责任公司 一种炼钢炉下渣检测系统
CN202350922U (zh) * 2011-11-04 2012-07-25 衡阳镭目科技有限责任公司 炼钢炉下渣检测装置
CN105392904B (zh) * 2013-07-29 2017-06-13 杰富意钢铁株式会社 异常检测方法以及高炉操作方法
CN104749445B (zh) * 2013-12-25 2017-12-26 晟通科技集团有限公司 熔盐、熔渣电导率检测设备及检测方法
CN204679109U (zh) * 2015-05-11 2015-09-30 昆明理工大学 一种电热前床电极状态与熔渣密度测量装置
CN105562630A (zh) * 2016-02-29 2016-05-11 宝钢工程技术集团有限公司 结晶器保护渣熔融状况检测装置和检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003019553A (ja) * 2001-07-03 2003-01-21 Nkk Corp スラグ検知方法、スラグ検知装置及び除滓装置
JP2006213965A (ja) 2005-02-03 2006-08-17 Jfe Steel Kk 転炉出鋼時のスラグ検出方法及び装置
JP2007246959A (ja) * 2006-03-14 2007-09-27 Nippon Steel Corp 高炉出銑流測定システム、高炉出銑流測定方法、及びコンピュータプログラム
JP2017025440A (ja) 2015-07-23 2017-02-02 日華化学株式会社 非フッ素系ポリマー、撥水剤組成物、撥水性繊維製品及び撥水性繊維製品の製造方法

Also Published As

Publication number Publication date
TW201835528A (zh) 2018-10-01
CN110268073A (zh) 2019-09-20
US20190390290A1 (en) 2019-12-26
KR20190102240A (ko) 2019-09-03
CA3052696A1 (en) 2018-08-23
JPWO2018151078A1 (ja) 2019-12-19
EP3584328A1 (en) 2019-12-25
TWI638137B (zh) 2018-10-11
JP6795046B2 (ja) 2020-12-02
BR112019015441A2 (pt) 2020-03-24

Similar Documents

Publication Publication Date Title
JP6795045B2 (ja) 溶鋼流中のスラグ検出のためのヒストグラム作成方法
US10091422B2 (en) Image processing device and recording medium
JP7394952B2 (ja) 溶滓量測定装置および溶滓量測定方法
JP6477369B2 (ja) 情報埋め込み装置、情報埋め込み方法、及び情報埋め込みプログラム
JP2011076198A (ja) 画像処理装置、画像処理用プログラムおよび画像処理方法
KR101715489B1 (ko) 화상 생성 장치 및 화상 생성 방법
JP6876802B2 (ja) 高炉出銑口温度測定装置
WO2018151078A1 (ja) 溶鋼流中のスラグ検出方法
JP2007096437A (ja) 画像生成者の意図の判定
JP4818285B2 (ja) 混雑滞留検知システム
JP2010008159A (ja) 外観検査処理方法
JP2012008058A (ja) 温度測定装置
JP7143649B2 (ja) 画像処理装置、画像処理システム、画像処理方法、及びプログラム
US9430959B2 (en) Character region pixel identification device and method thereof
JP7167744B2 (ja) 制御方法及び制御装置
JP2019009506A (ja) フォーカス補助システム装置
JP6804022B2 (ja) 変化度合い導出装置、変化度合い導出方法及びプログラム
JP2022188921A (ja) 監視装置、監視システムおよび監視方法
JP2008083267A (ja) ラインセンサカメラの焦点合わせ装置
JP2019054471A (ja) 顕微鏡画像処理装置、顕微鏡画像処理方法および顕微鏡画像処理プログラム
JP2017224923A (ja) オートフォーカス装置及びオートフォーカス用プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754117

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568522

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197022268

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3052696

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018754117

Country of ref document: EP

Effective date: 20190916

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019015441

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112019015441

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190726