WO2018149309A1 - 4-苯基噻唑衍生物的晶型及其制备方法 - Google Patents

4-苯基噻唑衍生物的晶型及其制备方法 Download PDF

Info

Publication number
WO2018149309A1
WO2018149309A1 PCT/CN2018/075066 CN2018075066W WO2018149309A1 WO 2018149309 A1 WO2018149309 A1 WO 2018149309A1 CN 2018075066 W CN2018075066 W CN 2018075066W WO 2018149309 A1 WO2018149309 A1 WO 2018149309A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
compound
formula
peak
ray powder
Prior art date
Application number
PCT/CN2018/075066
Other languages
English (en)
French (fr)
Inventor
王天明
伍伟
陈鹏
李宏名
庹世川
王利春
王晶翼
Original Assignee
四川科伦药物研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川科伦药物研究院有限公司 filed Critical 四川科伦药物研究院有限公司
Priority to CN201880002130.5A priority Critical patent/CN109311831B/zh
Publication of WO2018149309A1 publication Critical patent/WO2018149309A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/4261,3-Thiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/32Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D277/38Nitrogen atoms
    • C07D277/44Acylated amino or imino radicals
    • C07D277/46Acylated amino or imino radicals by carboxylic acids, or sulfur or nitrogen analogues thereof

Definitions

  • TLD chronic liver disease-associated thrombocytopenia
  • Thrombopoietin is a polypeptide cytokine consisting of 332 amino acids. It stimulates the differentiation and proliferation of megakaryocytes by receptors, thereby promoting platelet production. Therefore, 4-phenylthiazole derivatives are expected to be used as a platelet for the treatment of thrombocytopenia. A pathological drug with an abnormal number of blood diseases.
  • the solid crystalline form of the compound can affect the physical properties of the compound in nature, including but not limited to: (1) packing properties such as molar volume, density and hygroscopicity; (2) thermodynamic properties such as melting temperature, vapor pressure and Solubility; (3) kinetic properties, for example, decomposition rate and stability (including under ambient conditions, especially under wet conditions and under storage conditions); (4) surface properties, for example, surface area, wettability , interfacial tension and shape; (5) mechanical properties such as hardness, tensile strength, compressibility, operability, flowability and miscibility; or (6) filtration properties.
  • packing properties such as molar volume, density and hygroscopicity
  • thermodynamic properties such as melting temperature, vapor pressure and Solubility
  • kinetic properties for example, decomposition rate and stability (including under ambient conditions, especially under wet conditions and under storage conditions)
  • surface properties for example, surface area, wettability , interfacial tension and shape
  • mechanical properties such as hardness, tensile strength
  • the invention relates to Form A of the compound of Formula I, characterized in that the X-ray powder diffraction (XRPD) pattern of Form A is comprised at about 3.3 ⁇ 0.2 °, 4.5 ⁇ 0.2 °, 5.7 ⁇ 0.2 ° a peak at a diffraction angle (2 ⁇ ) of 8.5 ⁇ 0.2 °, 14.1 ⁇ 0.2 °, and 23.1 ⁇ 0.2 °.
  • XRPD X-ray powder diffraction
  • the XRPD pattern of Form A is comprised at about 3.3 ⁇ 0.2 °, 4.5 ⁇ 0.2 °, 5.7 ⁇ 0.2 °, 6.5 ⁇ 0.2 °, 8.5 ⁇ 0.2 °, 11.5 ⁇ 0.2 °, 12.3 ⁇ Peaks at diffraction angles (2 ⁇ ) of 0.2°, 13.6 ⁇ 0.2°, 14.1 ⁇ 0.2°, 17.3 ⁇ 0.2°, 19.6 ⁇ 0.2°, 23.1 ⁇ 0.2°.
  • the XRPD pattern of Form A comprises a peak at substantially the same diffraction angle (2 ⁇ ) as shown in FIG.
  • the XRPD pattern of Form A is as shown in FIG.
  • the maximum peak temperature of the differential scanning calorimetry (DSC) endothermic peak of Form A is about 151-160 °C. In a specific embodiment, the peak temperature of the differential scanning calorimetry (DSC) endothermic peak of Form A is about 158.34 °C.
  • the XRPD pattern peak position of Form C is substantially the same as that shown in Figure 5.
  • the peak temperature of the differential scanning calorimetry (DSC) endothermic peak of Form C is about 80-90 ° C and 174.6-184.6 ° C.
  • the maximum peak temperature of the differential scanning calorimetry (DSC) endothermic peak of Form C is about 84.45 ° C and 179.66 ° C, respectively.
  • Another aspect of the invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising Form A, Form B or Form C of a compound of Formula I, or any combination thereof, and one or more pharmaceutically acceptable carriers.
  • Figure 4 is a DSC chart of Form B of the present invention.
  • crystal form or “crystal” refers to any solid material that exhibits a three-dimensional order, as opposed to an amorphous solid material, which produces a characteristic XRPD pattern with well-defined peaks.
  • T 1/2 refers to elimination half-life.
  • alcohol means an alcohol having from 1 to 10 carbon atoms including, but not limited to, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, secondary Butanol and tert-butanol are more preferably methanol.
  • halo refers to fluoro, chloro, bromo, iodo or halo.
  • the invention provides substantially pure Form A of a compound of Formula I, the XRPD pattern of Form A being comprised at about 3.3 ⁇ 0.2 °, 4.5 ⁇ 0.2 °, 5.7 ⁇ 0.2 °, 8.5 ⁇ A peak at a diffraction angle (2 ⁇ ) of 0.2°, 14.1 ⁇ 0.2°, and 23.1 ⁇ 0.2°.
  • the XRPD pattern of Form A is comprised at about 3.3 ⁇ 0.2°, 4.5 ⁇ 0.2°, 5.7 ⁇ 0.2°, 6.5 ⁇ 0.2°, 8.5 ⁇ 0.2°, 11.5 ⁇ 0.2°, 12.3 ⁇ 0.2. Peaks at diffraction angles (2 ⁇ ) of °, 13.6 ⁇ 0.2 °, 14.1 ⁇ 0.2 °, 17.3 ⁇ 0.2 °, 19.6 ⁇ 0.2 °, 23.1 ⁇ 0.2 °.
  • the XRPD pattern of Form A is comprised at about 3.3 ⁇ 0.2°, 4.0 ⁇ 0.2°, 4.5 ⁇ 0.2°, 5.7 ⁇ 0.2°, 6.5 ⁇ 0.2°, 6.8 ⁇ 0.2°, 8.5 ⁇ 0.2.
  • the XRPD pattern of Form A includes peaks at the following diffraction angles (2 ⁇ ) (Table 2):
  • the DSC profile of Form A includes characteristic peaks at substantially the same temperature as shown in FIG.
  • the characteristic peak position of the DSC pattern of Form A is substantially the same as that shown in FIG.
  • the peak temperature of the endothermic peak of differential scanning calorimetry (DSC) of Form A is about 151 to 160 °C. In a specific embodiment, the peak temperature of the endothermic peak of differential scanning calorimetry (DSC) of Form A is about 158.34 °C.
  • the invention also provides a process for the preparation of Form A of the compound of Formula I.
  • the present invention provides a process for the preparation of substantially pure Form A of a compound of Formula I above, which comprises dissolving a compound of Formula I in solid form in an alcoholic solvent or with an ester solvent. In the mixture, crystallization is carried out, followed by separation and drying.
  • a process for the preparation of substantially pure Form A of a compound of Formula I above which comprises dissolving a compound of Formula I in solid form in an alcoholic solvent, crystallization, followed by separation and drying .
  • a process for the preparation of substantially pure Form A of a compound of Formula I above which comprises dissolving a compound of Formula I in solid form in a mixture of an alcoholic solvent and an ester solvent, It was cooled to 0 to 20 ° C for crystallization, followed by separation and drying.
  • the crystallization solvent is a mixture of an alcohol solvent and an ester solvent in a volume ratio of 1:20 to 20:1.
  • a process for the preparation of substantially pure Form A of a compound of Formula I above which comprises reacting a compound of Formula I in solid form at about 40-90 ° C (preferably about 60-85 ° C, for example Dissolved in an ester solvent at about 80 ° C), adding 0.01 to 5 (w/v)% (preferably 0.03 to 2 (w/v)%, for example about 1 (w/v)%) of Form A Seed crystals, then separated and dried.
  • a process for the preparation of substantially pure Form A of a compound of Formula I above which comprises dissolving a compound of Formula I in solid form in a mixture of a halogenated hydrocarbon solvent and an ether solvent. Seed crystals of Form A are optionally added, crystallization, followed by separation and drying.
  • a process for the preparation of substantially pure Form A of a compound of Formula I above which comprises dissolving a compound of Formula I in solid form in a volume ratio of from 1:10 to 10:1.
  • a mixture of a hydrocarbon-based solvent and an ether solvent is provided.
  • a process for the preparation of substantially pure Form A of a compound of Formula I above which comprises dissolving a compound of Formula I in solid form in a volume ratio of from about 1:10 to about 10:1 (for example, a mixture of a halogenated hydrocarbon solvent and an ether solvent of about 1:2) is added in an amount of about 0.01 to 5 (w/v)% (preferably 0.03 to 2 (w/v)%, for example, about 0.1 (w). /v)%) seed crystal of crystal form A, crystallization, followed by separation and drying.
  • the halogenated hydrocarbon solvent may be dichloromethane, dibromomethane, dichloroethane, or a combination thereof, preferably dichloromethane.
  • the mixture of the alcohol solvent and the ester solvent is a mixture of methanol and ethyl acetate.
  • the mixture of the halogenated hydrocarbon solvent and the ether solvent is a mixture of dichloromethane and isopropyl ether.
  • heating in the preparation process is to promote crystal formation.
  • the temperature of the heating should be above the boiling point of the solvent.
  • the heating temperature is not particularly limited as long as it is not intended to remove the solvent, as long as it is lower than the boiling point of the solvent.
  • the preferred heating temperature is 30-90 ° C, more preferably 35-85 ° C, such as 40 ° C, 60 ° C, 80 ° C.
  • the speed and time of "stirring" in the preparation method are not particularly limited as long as the substances can be uniformly mixed.
  • crystallization can occur at any step in the preparation process, for example, simultaneously with agitation.
  • the "drying" in the present invention is preferably carried out under reduced pressure, more preferably under vacuum, at any temperature, preferably room temperature, until the residual solvent content is lowered to the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use ("ICH"). ) within the limits given by the guidelines.
  • the residual solvent content may vary depending on the type of solvent, but does not exceed about 5000 ppm, or preferably about 4000 ppm, or more preferably about 3000 ppm.
  • a seed crystal of a corresponding crystal form may optionally be added, and the seed crystal may be a single crystal form or mixture of the crystal form A, B or C of the compound of the formula I.
  • the content of each component in the mixture needs to be the highest in the proportion of the specific crystal form, such as a content of 25% or more, for example, the content of the crystal form A in the mixture is 25% or more.
  • the type and amount of seed crystals are such that they are capable of promoting the crystallization of the compound of formula I to the desired crystalline form, in an amount of from 0.01 to 5 (w/v)%, preferably from 0.03 to 2 (w/v)%. . Where w/v represents the volume ratio of the weight of the crystalline form to the solvent.
  • a seed crystal corresponding to Form B or C may optionally be added during the preparation of Form B or C.
  • the invention provides substantially pure Form B of a compound of Formula I, the XRPD pattern of Form B being comprised at about 4.6 ⁇ 0.2 °, 5.7 ⁇ 0.2 °, 13.7 ⁇ 0.2 °, 19.5 ⁇ A peak at a diffraction angle (2 ⁇ ) of 0.2°, 22.5 ⁇ 0.2°, and 24.0 ⁇ 0.2°.
  • the XRPD pattern of Form B is comprised at about 4.6 ⁇ 0.2°, 5.7 ⁇ 0.2°, 8.2 ⁇ 0.2°, 12.2 ⁇ 0.2°, 13.7 ⁇ 0.2°, 18.4 ⁇ 0.2°, 19.5 ⁇ 0.2. Peaks at diffraction angles (2 ⁇ ) of °, 20.9 ⁇ 0.2 °, 22.5 ⁇ 0.2 °, 24.0 ⁇ 0.2 °, and 27.3 ⁇ 0.2 °.
  • the XRPD pattern of Form B includes peaks at the following diffraction angles (2 ⁇ ) (Table 4):
  • the XRPD pattern of Form B includes peaks at the following diffraction angles (2 ⁇ ) (Table 5):
  • the XRPD pattern of Form B includes peaks at the following diffraction angles (2 ⁇ ) (Table 6):
  • the XRPD pattern of Form B comprises a peak at substantially the same diffraction angle (2[Theta]) as shown in FIG.
  • the XRPD peak position of Form B of the compound of Formula I is substantially the same as that shown in Figure 3.
  • the XRPD pattern of Form B of the compound of Formula I is shown in Figure 3.
  • the DSC profile of Form B includes characteristic peaks at substantially the same temperature as shown in FIG.
  • the characteristic peak position of the DSC pattern of Form B is substantially the same as that shown in FIG.
  • the peak temperature of the endothermic peak of differential scanning calorimetry (DSC) of Form B is about 131.5-141.5 °C. In a specific embodiment, the peak temperature of the endothermic peak of differential scanning calorimetry (DSC) of Form B is about 136.48 °C.
  • the invention provides a process for the preparation of substantially pure Form B of a compound of Formula I above, which comprises dissolving a compound of Formula I in solid form in a mixture of a halogenated hydrocarbon and an ether solvent,
  • the halogenated hydrocarbon solvent is preferably removed by heating, crystallization, followed by separation and drying.
  • the present invention provides a process for the preparation of substantially pure Form B of a compound of Formula I above, which comprises dissolving a compound of Formula I in solid form in a volume ratio of 1:50 to 50:1.
  • the mixture of the halogenated hydrocarbon and the ether solvent (for example, about 1:10) is heated to about 30-60 ° C (preferably about 30-50 ° C, for example, about 40 ° C). Crystallization, followed by separation and drying.
  • the halogenated hydrocarbon solvent may be dichloromethane, dibromomethane, dichloroethane, or a combination thereof, preferably dichloromethane.
  • the ether solvent may be diethyl ether, diisopropyl ether, tetrahydrofuran, or a combination thereof, preferably isopropyl ether.
  • the mixture of the halogenated hydrocarbon solvent and the ether solvent is a mixture of dichloromethane and isopropyl ether.
  • the invention provides a substantially pure Form C of a compound of Formula I, the XRPD pattern of Form C comprising at about 8.6 ⁇ 0.2 °, 14.7 ⁇ 0.2 °, 15.0 ⁇ 0.2 °, 15.5 ⁇ Peaks at diffraction angles (2 ⁇ ) of 0.2°, 19.7 ⁇ 0.2°, 22.3 ⁇ 0.2°, and 23.1 ⁇ 0.2°.
  • the XRPD pattern of Form C is comprised at about 4.5 ⁇ 0.2°, 7.4 ⁇ 0.2°, 8.6 ⁇ 0.2°, 9.6 ⁇ 0.2°, 13.8 ⁇ 0.2°, 14.7 ⁇ 0.2°, 15.0 ⁇ 0.2. Peaks at diffraction angles (2 ⁇ ) of °, 15.5 ⁇ 0.2 °, 17.6 ⁇ 0.2 °, 19.7 ⁇ 0.2 °, 21.7 ⁇ 0.2 °, 22.3 ⁇ 0.2 °, 23.1 ⁇ 0.2 °, 24.1 ⁇ 0.2 °.
  • the XRPD pattern of Form C is comprised at about 4.5 ⁇ 0.2°, 5.1 ⁇ 0.2°, 5.7 ⁇ 0.2°, 7.4 ⁇ 0.2°, 8.6 ⁇ 0.2°, 9.6 ⁇ 0.2°, 13.8 ⁇ 0.2. °, 14.7 ⁇ 0.2°, 15.0 ⁇ 0.2°, 15.5 ⁇ 0.2°, 16.6 ⁇ 0.2°, 17.6 ⁇ 0.2°, 19.0 ⁇ 0.2°, 19.7 ⁇ 0.2°, 21.0 ⁇ 0.2°, 21.7 ⁇ 0.2°, 22.3 ⁇ 0.2
  • the XRPD pattern of Form C includes peaks at the following diffraction angles (2 ⁇ ) (Table 7):
  • the XRPD pattern of Form C includes peaks at the following diffraction angles (2 ⁇ ) (Table 8):
  • the XRPD pattern of Form C includes peaks at the following diffraction angles (2 ⁇ ) (Table 9):
  • the XRPD pattern of Form C includes a peak at substantially the same diffraction angle (2 theta) as shown in FIG.
  • the XRPD peak position of Form C is substantially the same as that shown in Figure 5.
  • the XRPD pattern of Form C is as shown in FIG.
  • the DSC pattern of substantially pure Form C of the compound of Formula I includes characteristic peaks at substantially the same temperature as shown in FIG.
  • the characteristic peak position of the DSC pattern of Form C is substantially the same as that shown in FIG.
  • the peak temperature of the endothermic peak of differential scanning calorimetry (DSC) of Form C is about 80-90 ° C and 174.6-184.6 ° C, respectively. In a specific embodiment, the peak temperature of the endothermic peak of differential scanning calorimetry (DSC) of Form C is about 84.45 ° C and 179.66 ° C, respectively.
  • Form C is a solvate of a compound of Formula I.
  • the solvent molecules in the solvate may be selected from sulfoxide-based solvents such as thionyl chloride, dimethyl sulfoxide, diphenyl sulfoxide or any combination thereof.
  • a process for the preparation of substantially pure Form C of a compound of Formula I above which comprises dissolving a compound of Formula I in solid form, preferably under heating, in a sulfoxide solvent, optionally The anti-solvent is added, preferably cooled, and then separated and dried.
  • a process for the preparation of substantially pure Form C of a compound of Formula I above which comprises reacting a compound of Formula I in solid form at about 40-80 ° C (preferably about 50-70 ° C) For example, at about 60 ° C), it is dissolved in a sulfoxide-based solvent, optionally with the addition of an anti-solvent, and the crystals start to precipitate, and are cooled to, for example, room temperature, followed by separation and drying.
  • the sulfoxide solvent may be thionyl chloride, dimethyl sulfoxide, diphenyl sulfoxide or a combination thereof, and the anti-solvent is water.
  • the invention provides a pharmaceutical composition comprising Form A, Form B or Form C of a compound of Formula I, or any combination thereof, and one or more pharmaceutically acceptable Accepted carrier.
  • pharmaceutically acceptable carrier refers to a diluent, adjuvant, excipient or vehicle with which the therapeutic agent is administered, and which is suitable for contact within the scope of sound medical judgment. Tissues of humans and/or other animals without excessive toxicity, irritation, allergic reactions, or other problems or complications corresponding to reasonable benefits/risks.
  • Pharmaceutically acceptable carriers that can be used in the pharmaceutical compositions of the present invention include, but are not limited to, sterile liquids such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as soybean oil, peanut oil, minerals. Oil, etc. Water is an exemplary carrier when the pharmaceutical composition is administered intravenously. It is also possible to use physiological saline and an aqueous solution of glucose and glycerin as a liquid carrier, particularly for injection.
  • Suitable pharmaceutical excipients include glucose, starch, lactose, gelatin, maltose, sucrose, chalk, silica gel, glyceryl monostearate, sodium stearate, talc, sodium chloride, glycerin, propylene glycol, water, ethanol, and the like.
  • the composition may also contain minor amounts of wetting agents, emulsifying agents or pH buffering agents as needed.
  • Oral formulations may contain standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, cellulose, sodium saccharin, magnesium carbonate, and the like. Examples of suitable pharmaceutically acceptable carriers are as described in Remington's Pharmaceutical Sciences (1990).
  • compositions of the invention may act systemically and/or locally.
  • they may be administered in a suitable route, for example by injection, intraarterial, subcutaneous, intravenous, intraperitoneal, intramuscular or transdermal administration; or by oral, nasal, buccal, transmucosal, topical, It is administered in the form of an ophthalmic preparation or by inhalation.
  • compositions of the invention may be administered in a suitable dosage form.
  • dosage forms include, but are not limited to, tablets, capsules, troches, hard candies, powders, sprays, creams, ointments, suppositories, gels, aqueous suspensions, injections, elixirs, syrups.
  • compositions of the present invention can be prepared by any method well known in the art, for example by mixing, dissolving, granulating, sugar coating, milling, emulsifying, lyophilizing, and the like.
  • therapeutically effective amount refers to an amount of a compound that, to a certain extent, relieves one or more symptoms of the condition being treated after administration.
  • the dosing regimen can be adjusted to provide the optimal desired response. For example, a single bolus may be administered, several divided doses may be administered over time, or the dose may be proportionally reduced or increased as indicated by the urgent need for treatment. It is noted that the dose value can vary with the type and severity of the condition to be alleviated and can include single or multiple doses. It is to be further understood that for any particular individual, the particular dosage regimen will be adjusted over time according to the individual needs and the professional judgment of the person administering the composition or the composition of the supervised composition.
  • an effective dose will be from about 0.0001 to about 100 mg per kg body weight per day, for example from about 0.01 to about 10 mg/kg/day (single or divided doses).
  • the total is from about 0.007 mg/day to about 7000 mg/day, for example from about 0.7 mg/day to about 700 mg/day.
  • a dose level that is not higher than the lower limit of the aforementioned range may be sufficient, while in other cases, a larger dose may still be employed without causing any harmful side effects, provided that the larger The dose is divided into several smaller doses to be administered throughout the day.
  • the amount or amount of the compound of the present invention in the pharmaceutical composition may be from about 0.01 mg to about 1000 mg, suitably from 0.1 to 500 mg, preferably from 0.5 to 300 mg, more preferably from 1 to 150 mg, particularly preferably from 1 to 50 mg, for example, 1.5 mg, 2 mg, 4 mg, 10 mg, and 25 mg, and the like.
  • treating means reversing, alleviating, inhibiting the progression of a condition or condition to which such a term applies or one or more symptoms of such a condition or condition, or Prevention of such a condition or condition or one or more symptoms of such condition or condition.
  • “Individual” as used herein includes human or non-human animals.
  • Exemplary human individuals include a human individual (referred to as a patient) or a normal individual having a disease, such as the disease described herein.
  • “Non-human animals” in the present invention include all vertebrates, such as non-mammals (e.g., amphibians, reptiles, birds) and mammals, such as non-human primates, domestic animals, and/or domesticated animals (e.g., dogs, cats). , sheep, cows, pigs, etc.).
  • Advantages of the crystal forms A, B, and C of the present invention include, but are not limited to, higher solubility, better pharmacokinetic properties, and good stability, are suitable for preparing pharmaceutical preparations, and the preparation method of the crystal form is simple and effective. Easy to scale up production.
  • the crystal forms A, B, and C of the present invention have excellent physical properties including, but not limited to, solubility, dissolution rate, light resistance, low hygroscopicity, high temperature resistance, high humidity resistance, fluidity, and significant improvement. Viscosity and so on.
  • the crystal forms A, B, and C of the present invention can significantly reduce the filtration time, shorten the production cycle, and save costs during the preparation process.
  • the crystal forms A, B, and C of the present invention have good photostability, can ensure the reliability of the crystal form (for example, crystal form A) during storage and transportation, thereby ensuring the safety of the preparation, and the crystal form (eg Form A) does not require special packaging to prevent exposure to light, thereby reducing costs.
  • the crystal form (e.g., Form A) does not degrade due to the effects of light, improving the safety of the formulation and the effectiveness after long-term storage.
  • a patient taking the crystalline form (e.g., Form A) is not concerned that the formulation will produce a photosensitivity reaction due to exposure to sunlight.
  • Forms A, B, and C of the present invention are less or less degraded when stored or transported at ambient temperatures, which are shown to be molten or removed at greater than 50 ° C in differential scanning calorimetry (DSC) analysis.
  • Solvated has good thermal stability, can be stably maintained for a long time, and is suitable for standard preparation production process.
  • the crystalline forms A, B, and C of the present invention exhibit good chemical and physical stability, are easy to prepare, and are more suitable for use in the preparation of formulations.
  • the crystal forms A, B, and C of the present invention are ground into a fine powder and sieved through a 500 ⁇ m and 250 ⁇ m sieve.
  • the X-ray powder diffraction peaks of the crystal forms A, B, and C after milling were consistent with those before milling.
  • the crystal forms A, B, and C of the present invention have an excellent effect in preventing or treating blood diseases abnormal in platelets, for example, blood diseases in which thrombocytopenia is accompanied by an abnormal number of platelets. It maintains sufficient biological activity to provide a therapeutically effective dose of a compound of formula I in vivo.
  • the crystal forms A, B, and C of the present invention are suitable and convenient for mass preparation, and the preparation prepared by the above crystal form can reduce irritation and increase absorption, so that problems in metabolic speed can be solved, toxicity can be remarkably reduced, and safety can be improved. , effectively ensure the quality and efficacy of the preparation.
  • the XRPD pattern was acquired on a PANalytacal Empyrean and X'Pert 3 X-ray powder diffraction analyzer at room temperature and the transmission mode was preferably acquired on a PANalytacal Empyrean X-ray powder diffraction analyzer.
  • the instrument is illuminated with Cu-K ⁇ .
  • the scanning range is from 2° to 45° in the 2 ⁇ range and the scanning speed is 20°/min.
  • the DSC was collected on a TAQ200/2000 differential scanning calorimeter, and the heating rate of the DSC instrument was 10 K/min.
  • the obtained Form A was subjected to XRPD analysis, and the obtained XRPD pattern was as shown in Fig. 1, and the relevant data is shown in Table 10.
  • the crystal form A was subjected to DSC measurement, and the obtained DSC spectrum is shown in Fig. 2.
  • the onset temperature and the peak temperature (Peak) of the endothermic peak of the sample were 154.41 ° C and 158.34 ° C, respectively.
  • the sample had an Integral value of -76.34 mJ, a normalized value of -21.94 J/g, and an Endset of 161.24 °C.
  • the obtained Form B was subjected to XRPD analysis, and the obtained XRPD pattern was as shown in Fig. 3, and the relevant data is shown in Table 11.
  • the crystal form B was subjected to DSC measurement, and the obtained DSC spectrum is shown in Fig. 4.
  • the initial temperature and the highest peak temperature of the endothermic peak of the sample were 131.78 ° C and 136.48 ° C, respectively.
  • the calorific value of the sample was -43.31 mJ
  • the thermal enthalpy value was -21.88 J/g
  • the final melting temperature was 139.67 °C.
  • the obtained Form C was subjected to XRPD analysis, and the obtained XRPD pattern was as shown in Fig. 5, and the relevant data is shown in Table 12.
  • the crystal form C was subjected to DSC measurement, and the obtained DSC spectrum is shown in Fig. 6.
  • the highest peak temperatures of the endothermic peaks of the samples were 84.45 ° C and 179.66 ° C, respectively, and the calorific values of the corresponding samples were -89.31 mJ and -72.11 mJ, respectively, and the thermal enthalpy values were -21.73 J/g and -17.54 J, respectively. /g
  • the starting temperatures were 77.60 ° C and 170.11 ° C, respectively, and the final melting temperatures were 90.84 ° C and 185.51 ° C, respectively.
  • the pharmacokinetic profile of the test compound was examined by administering the crystalline form Y and the crystalline form A of the compound of the formula I to the male beagle dog (10 kg) by the intravenous (IV) route.
  • the dose of IV is 0.5 mg/head, and the solvent system is 5% DMSO: 5% polyethylene glycol-15-hydroxystearate ( HS 15): 90% physiological saline.
  • the IV blood collection time points were 0, 0.083, 0.25, 0.5, 1, 2, 4, 6, 8, 24, 48, 72 and 96 h.
  • Blood samples were taken from the extremities before and after IV administration to the heparin anticoagulation tube, and the plasma was separated and stored at -80 ° C for testing. Plasma samples were treated with methanol precipitation proteins for LC-MS/MS analysis.
  • LC-MS/MS The liquid phase was a Waters I-Class system and the mass spectrum was an AB Sciex 5500 triple quadrupole.
  • the column was a Thermo C 18 column; the mobile phase A phase was 5 mM ammonium formate (containing 0.01% aqueous ammonia) aqueous solution, the B phase was acetonitrile; the flow rate was 0.4 mL/min; and the column temperature was 40 °C.
  • the crystal form A of the compound of formula I is evenly distributed into an open petri dish, thickness ⁇ 5 mm, placed in a desiccator containing a saturated salt solution at room temperature (25 ⁇ 2 ° C), and the relative humidity of the moisture in the dryer is adjusted to 75 RH. % and 92.5%, the weight was manually measured at 30 days, and the hygroscopicity at different humidity was calculated.

Abstract

本发明提供了4-苯基噻唑衍生物的晶型、包含其的药物组合物、制备方法以及所述晶型在制备用于治疗慢性肝病相关的血小板减少(TLD)的药物中的用途。式I。

Description

4-苯基噻唑衍生物的晶型及其制备方法 技术领域
本发明涉及4-苯基噻唑衍生物的晶型及其制备方法。
背景技术
4-苯基噻唑衍生物(也称为式I的化合物)可用于治疗慢性肝病相关的血小板减少(TLD),其具有如下结构:
Figure PCTCN2018075066-appb-000001
血小板生成素是有332个氨基酸组成的多肽细胞因子,经受体刺激巨核细胞的分化、增殖,由此使血小板生成亢进,因此4-苯基噻唑衍生物有望作为用于治疗血小板减少症伴随血小板数量异常的血液疾病的病态的药物。
化合物的固态晶型可以在本质上影响化合物的物理性质,其包括但不限于:(1)填充性能,例如摩尔体积、密度和收湿性;(2)热力学性质,例如,熔融温度、蒸气压和溶解性;(3)动力学性质,例如,分解速率和稳定性(包括在环境条件下,尤其在潮湿和在储存条件下的稳定性);(4)表面性质,例如,表面积、润湿性、界面张力和外形;(5)机械性质,例如,硬度、拉伸强度、可压性、可操作性、流动性和混合性;或(6)过滤性质。固态晶型的选择和控制对于作为药学制剂的化合物特别重要。对固态晶型进行仔细选择并进行控制可以减少与该化合物相关的合成、加工、配制或给药难题。
CN 1419547 A和US2015/0148385 A1中公开了该化合物的合成方法。CN 101809008 A公开了式I的化合物的一种晶型(在本文中称为晶型Y),其主要峰的衍射角2θ为17.8,21.1,22.5,23.3,24.1,24.4°。
发明内容
本发明涉及式I的化合物4-苯基噻唑衍生物的三种新的晶型。
Figure PCTCN2018075066-appb-000002
一方面,本发明涉及式I的化合物的晶型A,其特征在于,所述晶型A的X射线粉末衍射(XRPD)图谱包括在约3.3±0.2°、4.5±0.2°、5.7±0.2°、8.5±0.2°、14.1±0.2°、23.1±0.2°的衍射角(2θ)处的峰。
在一优选实施方案中,所述晶型A的XRPD图谱包括在约3.3±0.2°、4.5±0.2°、5.7±0.2°、6.5±0.2°、8.5±0.2°、11.5±0.2°、12.3±0.2°、13.6±0.2°、14.1±0.2°、17.3±0.2°、19.6±0.2°、23.1±0.2°的衍射角(2θ)处的峰。
在另一优选实施方案中,所述晶型A的XRPD图谱包括在约3.3±0.2°、4.0±0.2°、4.5±0.2°、5.7±0.2°、6.5±0.2°、6.8±0.2°、8.5±0.2°、9.4±0.2°、11.2±0.2°、11.5±0.2°、12.0±0.2°、12.3±0.2°、13.6±0.2°、14.1±0.2°、15.0±0.2°、17.3±0.2°、17.9±0.2°、18.5±0.2°、19.1±0.2°、19.6±0.2°、23.1±0.2°的衍射角(2θ)处的峰。
在更优选的实施方案中,所述晶型A的XRPD图谱包括与图1所示基本上相同的衍射角(2θ)处的峰。
在进一步优选的实施方案中,所述晶型A的XRPD图谱峰位与图1所示基本上相同。
在更进一步优选的实施方案中,所述晶型A的XRPD图谱如图1所示。
在一实施方案中,晶型A的差示扫描量热法(DSC)吸热峰的最高峰温度约为151~160℃。在一具体实施方案中,晶型A的差示扫描量热法(DSC)吸热峰的最高峰温度约为158.34℃。
在一实施方案中,制备晶型A的方法包括将固体形式的式I的化合物溶解于结晶溶剂中,析晶,其中所述结晶溶剂选自以下组成的组:醇类溶剂或其与酯类溶剂的混合物、酯类溶剂、卤代烃类溶剂和醚类溶剂的混合物。
在一个优选的实施方案中,制备晶型A的方法包括将固体形式的式I的化合物溶解于结晶溶剂中,析晶,其中所述结晶溶剂为醇类溶剂和酯类溶剂的混合物,冷却至0~20℃析晶,随后分离并干燥;优选地,所述的结晶溶剂为体积比为1∶20-20∶1的醇类溶剂和酯类溶剂的混合物;或所述的结晶溶剂为卤代烃类溶剂和醚类溶剂的混合物,优选地,所述的结晶溶剂为体积比为1∶10-10∶1的卤代烃类溶剂和醚类溶剂的混合物。
另一方面,本发明涉及式I的化合物的晶型B,其特征在于,所述晶型B的XRPD图谱包括在约4.6±0.2°、5.7±0.2°、13.7±0.2°、19.5±0.2°、22.5±0.2°、24.0±0.2°的衍射角(2θ)处的峰。
在一优选的实施方案中,所述晶型B的XRPD图谱包括在约4.6±0.2°、5.7±0.2°、8.2±0.2°、12.2±0.2°、13.7±0.2°、18.4±0.2°、19.5±0.2°、20.9±0.2°、22.5±0.2°、24.0±0.2°、27.3±0.2°的衍射角(2θ)处的峰。
在更优选的实施方案中,所述晶型B的XRPD图谱包括与图3所示基本上相同的衍射角(2θ)处的峰。
在进一步优选的实施方案中,所述晶型B的XRPD图谱峰位与图3所示基本上相同。
在更进一步优选的实施方案中,所述晶型B的XRPD图谱如图3所示。
在一实施方案中,晶型B的差示扫描量热法(DSC)吸热峰的最高峰温度约为131.5-141.5℃。在一具体实施方案中,晶型B的差示扫描量热法(DSC)吸热峰的最高峰温度约为136.48℃。
在一实施方案中,制备晶型B的方法包括将固体形式的式I的化合物溶解于卤代烃类溶剂和醚类溶剂的混合物中,移除卤代烃类溶剂,析晶。
在另一实施方案中,制备晶型B的方法包括将固体形式的式I的化合物溶解于比例为1∶50-50∶1的卤代烃类和醚类溶剂的混合物中,加热至约30-60℃,优选约30-50℃,移除卤代烃类溶剂后,析晶,随后分离并干燥。
在优选的实施方案中,所述的卤代烃类和醚类溶剂的混合物为二氯甲烷和异丙醚的混合物。
又一方面,本发明涉及式I的化合物的晶型C,其特征在于,所述晶型C的XRPD图谱包括在约8.6±0.2°、14.7±0.2°、15.0±0.2°、15.5±0.2°、19.7±0.2°、22.3±0.2°、23.1±0.2°的衍射角(2θ)处的峰。
在一优选的实施方案中,所述晶型C的XRPD图谱包括在约4.5±0.2°、7.4±0.2°、8.6±0.2°、9.6±0.2°、13.8±0.2°、14.7±0.2°、15.0±0.2°、15.5±0.2°、17.6±0.2°、19.7±0.2°、21.7±0.2°、22.3±0.2°、23.1±0.2°、24.1±0.2°的衍射角(2θ)处的峰。
在一优选的实施方案中,所述晶型C的XRPD图谱包括在约4.5±0.2°、5.1±0.2°、5.7±0.2°、7.4±0.2°、8.6±0.2°、9.6±0.2°、13.8±0.2°、14.7±0.2°、15.0±0.2°、15.5±0.2°、16.6±0.2°、17.6±0.2°、19.0±0.2°、19.7±0.2°、21.0±0.2°、21.7±0.2°、22.3±0.2°、23.1±0.2°、 24.1±0.2°的衍射角(2θ)处的峰。
在更优选的实施方案中,所述晶型C的XRPD图谱包括与图5所示基本上相同的衍射角(2θ)处的峰。
在进一步优选的实施方案中,晶型C的XRPD图谱峰位与图5所示基本上相同。
在更进一步优选的实施方案中,晶型C的XRPD图谱如图5所示。
在一实施方案中,晶型C的差示扫描量热法(DSC)吸热峰的最高峰温度约为80-90℃和174.6-184.6℃。在一具体实施方案中,晶型C的差示扫描量热法(DSC)吸热峰的最高峰温度分别约为84.45℃和179.66℃。
在一实施方案中,晶型C为式I的化合物的溶剂化物。
在一实施方案中,制备晶型C的方法包括将固体形式的式I的化合物溶解于亚砜类溶剂中,任选地加入反溶剂,析晶。
在优选的实施方案中,制备晶型C的方法包括将固体形式的式I的化合物在约40-80℃下溶解于亚砜类溶剂中,任选地加入反溶剂,晶体开始析出,冷却至例如室温,随后分离并干燥。
本发明的另一方面涉及药物组合物,其包含式I的化合物的晶型A、晶型B或晶型C,或者其任意组合,以及一种或多种药学上可接受的载体。
本发明的又一方面涉及式I的化合物的晶型A、晶型B或晶型C,或者本发明的药物组合物,或者其任意组合,在制备用于预防或治疗慢性肝病相关的血小板减少(TLD)的药物中的用途。
本发明的又一方面还涉及用于预防或治疗慢性肝病相关的血小板减少(TLD)的疾病的式I的化合物的晶型A、晶型B或晶型C,或者本发明的药物组合物,或者其任意组合。
本发明的又一方面还提供预防或治疗慢性肝病相关的血小板减少(TLD)的方法,所述方法包括向有需要的个体给药有效量的式I的化合物的晶型A、晶型B或晶型C,或者本发明的药物组合物,或者其任意组合。
附图说明
图1为本发明的晶型A的XRPD图谱。
图2为本发明的晶型A的DSC图谱。
图3为本发明的晶型B的XRPD图谱。
图4为本发明的晶型B的DSC图谱。
图5为本发明的晶型C的XRPD图谱。
图6为本发明的晶型C的DSC图谱。
具体实施方式
以下将对本发明进一步详细说明,应理解,所述用语旨在描述目的,而非限制本发明。
一般定义及术语
除非另有说明,本文使用的所述技术和科学术语具有与本发明所属领域技术人员通常所理解的相同的含义。若存在矛盾,则以本申请提供的定义为准。当以范围、优选范围、或者优选的数值上限以及优选的数值下限的形式表述某个量、浓度或其他值或参数的时候,应当理解相当于具体揭示了通过将任意一对范围上限或优选数值与任意范围下限或优选数值结合起来的任何范围,而不考虑该范围是否具体揭示。除非另有说明,本文所列出的数值范围旨在包括范围的端点和该范围内的所有整数和分数(小数)。
术语“约”、“大约”当与数值变量并用时,通常指该变量的数值和该变量的所有数值在实验误差内(例如对于平均值95%的置信区间内)或在指定数值的±10%内,或更宽范围内。
表述“包含”或与其同义的类似表述“包括”、“含有”和“具有”等是开放性的,不排除额外的未列举的元素、步骤或成分。表述“由...组成”排除未指明的任何元素、步骤或成分。表述“基本上由...组成”指范围限制在指定的元素、步骤或成分,加上任选存在的不会实质上影响所要求保护的主题的基本和新的特征的元素、步骤或成分。应当理解,表述“包含”涵盖表述“基本上由...组成”和“由...组成”。
本文所使用的术语“任选”或“任选地”是指随后描述的事件或情况可能发生或可能不发生,该描述包括发生所述事件或情况和不发生所述事件或情况。
除非另有说明,本文的百分比、份数等都按重量计。
如本文中所使用,术语“式I的化合物”指化合物4-苯基噻唑衍生物,其由下述结构式表示:
Figure PCTCN2018075066-appb-000003
如本文中所使用,术语“固体形式”指式I的化合物的固态形式,例如,可以为晶体形式或无定形形式。
如本文中所使用,术语“无定形”是指三维上无排序的任意固体物质。在一些情况中,无定形固体可通过已知技术表征,所述技术包括XRPD晶体衍射分析、差示扫描量热(DSC)、固态核磁共振(ssNMR)波谱分析或这些技术的组合。如以下所说明,无定形固体产生的XRPD图谱无明显的衍射特征峰。
如本文中所使用,术语“晶型”或“晶体”是指呈现三维排序的任意固体物质,与无定形固体物质相反,其产生具有边界清楚的峰的特征性XRPD图谱。
如本文中所使用,术语“基本上纯的”指基于式I的化合物的总量,所述化合物中该结晶或无定形形式的含量为约95重量%以上,优选约98重量%以上,更优选约99重量%以上。
如本文中所使用,术语“X射线粉末衍射图谱(XRPD图谱)”是指实验观察的衍射图或源于其的参数、数据或值。XRPD图谱通常由峰位(横坐标)和/或峰强度(纵坐标)表征。
如本文中所使用,术语“2θ”是指基于X射线衍射实验中设置的以度数(°)表示的峰位,并且通常是在衍射图谱中的横坐标单位。如果入射束与某晶格面形成θ角时反射被衍射,则实验设置需要以2θ角记录反射束。应当理解,在本文中提到的特定晶型的特定2θ值意图表示使用本文所述的X射线衍射实验条件所测量的2θ值(以度数表示)。例如,如本文所述,使用Cu-Kα(Kα1
Figure PCTCN2018075066-appb-000004
1.540598和Kα2
Figure PCTCN2018075066-appb-000005
1.544426)作为辐射源。本文中的XRPD图谱优选在PANalytacal Empyrean和X’Pert3X射线粉末衍射分析仪上采集,透射模式优选在PANalytacal Empyrean X射线粉末衍射分析仪上采集。
如本文中所使用的,对于X射线衍射峰的术语“基本上相同”意指将代表性峰位和强度变化考虑在内。例如,本领域技术人员会理解峰位(2θ)会显示一些变化,通常多达0.1-0.2度,并且用于测量衍射的仪器也会导致一些变化。另外,本领域技术人员会理解相对峰强度会因仪器间的差异以及结晶性程度、择优取向、制备的样品表面以及本领域技术人员已知的其它因素而出现变化,并应将其看作仅为定性测量。
如本文中所使用,AUC last指药时曲线下面积。
如本文中所使用,MRT INF指平均滞留时间。
如本文中所使用,T 1/2指消除半衰期。
如本文中所使用,术语“酯类”意指为具有3-10个碳原子的酯,其包括但不限于乙酸乙酯、乙酸丙酯、乙酸异丙酯、乙酸丁酯、乙酸戊酯,更优选为乙酸乙酯、乙酸异丙酯。
如本文中所使用,术语“醇类”意指为具有1-10个碳原子的醇,其包括但不限于甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、仲丁醇和叔丁醇,更优选为甲醇。
如本文中所使用,术语“卤代烃类”意指为具有1-10个碳原子的卤代烃,其包括但不限于二氯甲烷、二溴甲烷、二氯乙烷,更优选为二氯甲烷。
如本文中所使用,术语“醚类”意指为具有2-6个碳原子的醚,其包括但不限于乙醚、异丙醚和四氢呋喃,优选为异丙醚。
如本文中所使用,术语“亚砜类”包括但不限于氯化亚砜、二甲基亚砜、二苯基亚砜,更优选为二甲基亚砜。
如本文中所使用,术语“卤”指氟、氯、溴、碘或卤代。
如本文中所使用,数值范围(如“1-10个”)及其子范围(如“2-10个”、“2-6个”、“3-10个”)等涵盖所述数值范围中的任意个(例如1个、2个、3个、4个、5个、6个、7个、8个、9个或10个)。
如本文中所使用,术语“反溶剂”指与溶解有待结晶的化合物的介质混合后降低所述化合物的溶解度的溶剂。在本文中,通过使用反溶剂,使得溶解的待结晶化合物更容易从介质中析出和结晶。通常,所用的反溶剂取决于所针对的介质和待结晶化合物。例如,在本文中,使式I的化合物从二甲基亚砜溶剂中析出和结晶而使用的反溶剂,包括但不限于水。
如本文中所使用,对于晶型的DSC图谱上“吸热峰的最高峰温度”意指代表DSC图谱的吸热峰曲线的Peak值。DSC测试的吸热峰的最高峰温度会因测试品纯度、重量、粒径大小、测试升温速率和仪器系统误差等而导致一些变化,所提供的数值不能作为绝对值(参考文献:郭永辉,杨宁,吕扬.差示扫描量热法在晶型药物研究中的应用[C]//中国晶型药物研发技术研讨会会议.2010.)。
应当理解用不同类型设备或用不同的测试条件可能会给出略有差异的DSC图谱。例如可以使用TAQ200/2000差示扫描量热仪测定DSC图谱。对于存在多晶型的固体样品来说,DSC测试的升温速率对DSC图谱的影响较大。在较快的升温速率下,仪器热滞后效应明显,高熔点固体晶型来不及重结晶,因此,DSC图谱往往仅仅出现低熔点 晶型的熔化吸热峰。在中等升温速率下,DSC图谱则显示两个峰:低熔点晶型熔化吸热峰和高熔点晶型熔化吸热峰;而只有在较低的升温速率下,仪器热滞后效应较弱的情况下,才会出现三个峰:低熔点晶型的熔化峰-重结晶放热峰-高熔点晶体的熔化吸热峰。本技术人员会理解,上述不同DSC图谱所对应的升温速率范围的确定,会因测试品的重量、形态、粒度大小及分布的不同而存在差异(参考文献Giron D.Thermal analysis and calorimetric methods in the characterisation of polymorphs and solvates[J].Thermochimica Acta,1995,248:1-59.)。
式I的化合物的晶型A及其制备方法
在一个实施方案中,本发明提供式I的化合物的基本上纯的晶型A,所述晶型A的XRPD图谱包括在约3.3±0.2°、4.5±0.2°、5.7±0.2°、8.5±0.2°、14.1±0.2°、23.1±0.2°的衍射角(2θ)处的峰。
在一具体的实施方案中,晶型A的XRPD图谱包括在约3.3±0.2°、4.5±0.2°、5.7±0.2°、6.5±0.2°、8.5±0.2°、11.5±0.2°、12.3±0.2°、13.6±0.2°、14.1±0.2°、17.3±0.2°、19.6±0.2°、23.1±0.2°的衍射角(2θ)处的峰。
在更具体的实施方案中,晶型A的XRPD图谱包括在约3.3±0.2°、4.0±0.2°、4.5±0.2°、5.7±0.2°、6.5±0.2°、6.8±0.2°、8.5±0.2°、9.4±0.2°、11.2±0.2°、11.5±0.2°、12.0±0.2°、12.3±0.2°、13.6±0.2°、14.1±0.2°、15.0±0.2°、17.3±0.2°、17.9±0.2°、18.5±0.2°、19.1±0.2°、19.6±0.2°、23.1±0.2°的衍射角(2θ)处的峰。
在进一步的实施方案中,晶型A的XRPD图谱包括在以下衍射角(2θ)处的峰(表1):
表1
Figure PCTCN2018075066-appb-000006
在进一步的实施方案中,晶型A的XRPD图谱包括在以下衍射角(2θ)处的峰(表2):
表2
Figure PCTCN2018075066-appb-000007
在进一步的实施方案中,晶型A的XRPD图谱包括在以下衍射角(2θ)处的峰(表3):
表3
2θ(°)±0.2° 晶面间距(d间隔) 峰强度%
3.3 26.9 53.3
4.0 22.2 6.8
4.5 19.4 100.0
5.7 15.4 50.5
6.5 13.4 12.2
6.8 12.9 8.4
8.5 10.4 23.5
9.4 9.5 8.0
11.2 7.9 3.6
11.5 7.7 14.5
12.0 7.4 6.4
12.3 7.2 18.8
13.6 6.5 21.7
14.1 6.3 23.0
15.0 5.9 4.5
15.8 5.6 3.1
16.0 5.5 3.1
17.3 5.1 10.8
17.9 5.0 2.9
18.5 4.8 4.3
19.1 4.6 4.6
19.6 4.5 17.2
20.1 4.4 4.7
20.4 4.4 3.6
20.8 4.3 3.9
21.4 4.2 3.0
21.6 4.1 6.1
21.9 4.1 4.4
22.4 4.0 4.9
22.7 3.9 5.2
23.1 3.8 24.6
23.5 3.8 3.0
23.8 3.7 3.7
24.2 3.7 3.5
24.5 3.6 2.0
24.9 3.6 3.4
25.8 3.5 7.2
26.3 3.4 3.7
26.7 3.3 4.4
27.6 3.2 3.8
28.3 3.2 4.2
在更进一步的实施方案中,晶型A的XRPD图谱包括与图1所示基本上相同的衍射角(2θ)处的峰。在甚至更进一步的实施方案中,晶型A的XRPD峰位与图1所示基本上相同。在甚至更进一步的实施方案中,晶型A的XRPD图谱如图1所示。
在优选的实施方案中,晶型A的DSC图谱包括与图2所示基本上相同的温度处的特征峰。在更优选的实施方案中,晶型A的DSC图谱的特征峰位与图2所示基本上相同。
在更优选的实施方案中,晶型A的差示扫描量热法(DSC)的吸热峰的最高峰温度约 为151~160℃。在一具体的实施方案中,晶型A的差示扫描量热法(DSC)的吸热峰的最高峰温度约为158.34℃。本发明还提供制备式I的化合物的晶型A的方法。
在一实施方案中,本发明提供制备上述式I的化合物的基本上纯的晶型A的方法,其包括将固体形式的式I的化合物溶解于结晶溶剂中,析晶,其中所述结晶溶剂选自以下组成的组:醇类溶剂或其与酯类溶剂的混合物、酯类溶剂、卤代烃类溶剂和醚类溶剂的混合物。
本发明的制备方法中,可以使用一种溶剂,也可以使用两种或更多种溶剂的混合物,例如醇类溶剂和酯类溶剂的混合物,卤代烃类溶剂和醚类溶剂的混合物。
在一优选的实施方案中,本发明提供制备上述式I的化合物的基本上纯的晶型A的方法,其包括将固体形式的式I的化合物溶解于醇类溶剂或其与酯类溶剂的混合物中,析晶,随后分离并干燥。
在更优选的实施方案中,提供制备上述式I的化合物的基本上纯的晶型A的方法,其包括将固体形式的式I的化合物溶解于醇类溶剂中,析晶,随后分离并干燥。
在另一更优选的实施方案中,提供制备上述式I的化合物的基本上纯的晶型A的方法,其包括将固体形式的式I的化合物溶解于醇类溶剂和酯类溶剂的混合物,冷却至0~20℃析晶,随后分离并干燥。优选地,所述的结晶溶剂为体积比为1∶20-20∶1的醇类溶剂和酯类溶剂的混合物。
在还一更优选的实施方案中,提供制备上述式I的化合物的基本上纯的晶型A的方法,其包括将固体形式的式I的化合物溶解于体积比例为约1∶20-20∶1(例如为约5∶1)的醇类溶剂和酯类溶剂的混合物中,冷却至约0℃-20℃(例如约10℃),析晶,随后分离并干燥。
在另一优选实施方案中,提供制备上述式I的化合物的基本上纯的晶型A的方法,其包括将固体形式的式I的化合物优选在加热条件下溶解于酯类溶剂中,任选地加入晶型A的晶种,随后分离并干燥。
在更优选的实施方案中,制备上述式I的化合物的基本上纯的晶型A的方法,其包括将固体形式的式I的化合物在约40-90℃(优选约60-85℃,例如约80℃)下溶解于酯类溶剂中,加入0.01~5(w/v)%(优选为0.03~2(w/v)%,例如约1(w/v)%)的晶型A的晶种,随后分离并干燥。
在又一优选实施方案中,提供制备上述式I的化合物的基本上纯的晶型A的方法,其包括将固体形式的式I的化合物溶解于卤代烃类溶剂和醚类溶剂的混合物中,任选地加 入晶型A的晶种,析晶,随后分离并干燥。
在更优选的实施方案中,提供制备上述式I的化合物的基本上纯的晶型A的方法,其包括将固体形式的式I的化合物溶解于体积比为1∶10-10∶1的卤代烃类溶剂和醚类溶剂的混合物。
在进一步优选的实施方案中,提供制备上述式I的化合物的基本上纯的晶型A的方法,其包括将固体形式的式I的化合物溶解于体积比例为约1∶10-10∶1(例如为约1∶2)的卤代烃类溶剂和醚类溶剂的混合物中,加入约0.01~5(w/v)%(优选为0.03~2(w/v)%,例如约0.1(w/v)%)的晶型A的晶种,析晶,随后分离并干燥。
在晶型A的制备方法中,所述醇类溶剂可以为甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、仲丁醇、叔丁醇,或其组合,优选为甲醇。
在晶型A的制备方法中,所述酯类溶剂可以为乙酸乙酯、乙酸丙酯、乙酸异丙酯、乙酸丁酯、乙酸戊酯,或其组合,优选为乙酸乙酯或乙酸异丙酯。
所述卤代烃类溶剂可以为二氯甲烷、二溴甲烷、二氯乙烷,或其组合,优选为二氯甲烷。
所述醚类溶剂可以为乙醚、异丙醚、四氢呋喃,或其组合,优选为异丙醚。
在进一步优选的实施方案中,所述醇类溶剂和酯类溶剂的混合物为甲醇和乙酸乙酯的混合物。
在进一步优选的实施方案中,所述卤代烃类溶剂和醚类溶剂的混合物为二氯甲烷和异丙醚的混合物。
除非特别指出,制备方法中“加热”是为了促进晶型形成。对于以除去溶剂为目的的加热,加热的温度应在溶剂的沸点以上。对于并非以除去溶剂为目的的加热,加热的温度没有特别的限制,只要低于溶剂的沸点即可。优选的加热温度为30-90℃,更优选35-85℃,例如40℃、60℃、80℃。
除非特别指出,制备方法中“搅拌”的速度和时间没有特别的限制,只要能将各物质均匀混合即可。
除非特别指出,析晶可以在制备过程中的任意步骤发生,例如可以与搅拌同时进行。
制备的晶型通过包括倾析、离心、蒸发、重力过滤、抽滤或者在加压下或在减压下的任何其它用于固体分离的技术在内的方法进行分离回收,优选为过滤分离。
对制备式I的化合物的新的晶型的方法中的“干燥”条件没有特别的限制。本发明中的“干燥”优选是在减压更优选真空条件下,于任意温度优选室温下进行直到残留溶剂 的含量降低至International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use(“ICH”)指南所给出的限度的范围内。取决于溶剂的类型,残留溶剂含量会有所差异,但不超过约5000ppm、或优选约4000ppm、或更优选约3000ppm。所述干燥可以在流化床干燥器、旋转式真空干燥器、旋转闪蒸干燥器、盘式干燥器、真空烘箱、空气烘箱、快速干燥器等中进行。所述干燥可以在约100℃以下、约80℃以下、约60℃以下、约50℃以下、约30℃以下的温度或任何其它合适的温度下,在大气压或减压(优选真空)下在能够实现期望的结果的任何期望的时间内(如约1、2、3、5、10、15、20、24小时或者过夜)进行。所述干燥可以进行任何期望的次数,直到实现所需品质的产物。
在本发明的制备方法中,可任选地加入对应晶型的晶种,所述晶种可以是式I的化合物的晶型A、B或C的单一晶型或混合物。混合物中各组分的含量需要使得特定的晶型的比例最高,如其含量为25%以上,例如,混合物中晶型A的含量为25%以上。晶种的类型和加入量需使得其能够促进式I的化合物结晶为所需晶型,量可以为溶剂量的0.01~5(w/v)%,优选为0.03~2(w/v)%。其中w/v表示所述晶型的重量与溶剂的体积比。
类似地,在晶型B或C的制备过程中也可以任选地加入晶型B或C对应的晶种。
式I的化合物的晶型B及其制备方法
在一实施方案中,本发明提供式I的化合物的基本上纯的晶型B,所述晶型B的XRPD图谱包括在约4.6±0.2°、5.7±0.2°、13.7±0.2°、19.5±0.2°、22.5±0.2°、24.0±0.2°的衍射角(2θ)处的峰。
在一具体的实施方案中,晶型B的XRPD图谱包括在约4.6±0.2°、5.7±0.2°、8.2±0.2°、12.2±0.2°、13.7±0.2°、18.4±0.2°、19.5±0.2°、20.9±0.2°、22.5±0.2°、24.0±0.2°、27.3±0.2°的衍射角(2θ)处的峰。
在更具体的实施方案中,晶型B的XRPD图谱包括在以下衍射角(2θ)处的峰(表4):
表4
2θ(°)±0.2°
4.6
5.7
8.2
12.2
13.7
18.4
19.5
20.9
22.5
24.0
27.3
在更具体的实施方案中,晶型B的XRPD图谱包括在以下衍射角(2θ)处的峰(表5):
表5
2θ(°)±0.2° 峰强度%
4.6 100.0
5.7 49.4
8.2 12.7
12.2 25.8
13.7 47.1
18.4 11.7
19.5 71.3
20.9 17.2
22.5 47.1
24.0 59.5
27.3 21.8
在更具体的实施方案中,晶型B的XRPD图谱包括在以下衍射角(2θ)处的峰(表6):
表6
2θ(°)±0.2° 晶面间距(d间隔) 峰强度%
4.6 19.4 100.0
5.7 15.6 49.4
8.2 10.8 12.7
12.2 7.2 25.8
13.7 6.5 47.1
18.4 4.8 11.7
19.5 4.5 71.3
20.9 4.2 17.2
22.5 3.9 47.1
24.0 3.7 59.5
27.3 3.3 21.8
在进一步的实施方案中,晶型B的XRPD图谱包括与图3所示基本上相同的衍射角(2θ)处的峰。在更进一步的实施方案中,所述式I的化合物的晶型B的XRPD峰位与 图3所示基本上相同。在更进一步的实施方案中,所述式I的化合物的晶型B的XRPD图谱如图3所示。
在优选的实施方案中,晶型B的DSC图谱包括与图4所示基本上相同的温度处的特征峰。在更优选的实施方案中,晶型B的DSC图谱的特征峰位与图4所示基本上相同。
在更优选的实施方案中,晶型B的差示扫描量热法(DSC)的吸热峰的最高峰温度约为131.5-141.5℃。在一具体的实施方案中,晶型B的差示扫描量热法(DSC)的吸热峰的最高峰温度约为136.48℃。
在一实施方案中,本发明提供制备上述式I的化合物的基本上纯的晶型B的方法,其包括将固体形式的式I的化合物溶解于卤代烃类和醚类溶剂的混合物中,优选地通过加热移除卤代烃类溶剂,析晶,随后分离并干燥。
在一优选的实施方案中,本发明提供制备上述式I的化合物的基本上纯的晶型B的方法,其包括将固体形式的式I的化合物溶解于体积比例为1∶50-50∶1(例如为约1∶10)的卤代烃类和醚类溶剂的混合物中,加热至约30-60℃(优选约30-50℃,例如约40℃)移除卤代烃类溶剂后,析晶,随后分离并干燥。
在晶型B的制备方法中,所述卤代烃类溶剂可以为二氯甲烷、二溴甲烷、二氯乙烷,或其组合,优选为二氯甲烷。
在晶型B的制备方法中,所述醚类溶剂可以为乙醚、异丙醚、四氢呋喃,或其组合,优选为异丙醚。
在进一步优选的实施方案中,所述卤代烃类溶剂和醚类溶剂的混合物为二氯甲烷和异丙醚的混合物。
关于加热、搅拌、分离和干燥等方式以及晶种的加入还可以参照晶型A的制备方法相关部分的描述。
式I的化合物的晶型C及其制备方法
在一实施方案中,本发明提供式I的化合物的基本上纯的晶型C,所述晶型C的XRPD图谱包括在约8.6±0.2°、14.7±0.2°、15.0±0.2°、15.5±0.2°、19.7±0.2°、22.3±0.2°、23.1±0.2°的衍射角(2θ)处的峰。
在一具体的实施方案中,晶型C的XRPD图谱包括在约4.5±0.2°、7.4±0.2°、8.6±0.2°、9.6±0.2°、13.8±0.2°、14.7±0.2°、15.0±0.2°、15.5±0.2°、17.6±0.2°、19.7±0.2°、21.7±0.2°、 22.3±0.2°、23.1±0.2°、24.1±0.2°的衍射角(2θ)处的峰。
在更具体的实施方案中,晶型C的XRPD图谱包括在约4.5±0.2°、5.1±0.2°、5.7±0.2°、7.4±0.2°、8.6±0.2°、9.6±0.2°、13.8±0.2°、14.7±0.2°、15.0±0.2°、15.5±0.2°、16.6±0.2°、17.6±0.2°、19.0±0.2°、19.7±0.2°、21.0±0.2°、21.7±0.2°、22.3±0.2°、23.1±0.2°、24.1±0.2°的衍射角(2θ)处的峰。
在进一步的实施方案中,晶型C的XRPD图谱包括在以下衍射角(2θ)处的峰(表7):
表7
Figure PCTCN2018075066-appb-000008
在进一步的实施方案中,晶型C的XRPD图谱包括在以下衍射角(2θ)处的峰(表8):
表8
Figure PCTCN2018075066-appb-000009
在进一步的实施方案中,晶型C的XRPD图谱包括在以下衍射角(2θ)处的峰(表9):
表9
2θ(°)±0.2° 晶面间距(d间隔) 峰强度%
4.5 19.7 29.8
5.1 17.3 9.2
5.7 15.6 11.9
7.4 11.9 37.7
8.6 10.3 41.1
9.6 9.2 21.9
10.4 8.5 5.6
11.4 7.7 8.6
12.2 7.3 9.7
12.7 7.0 7.8
13.8 6.4 30.7
14.7 6.0 54.5
15.0 5.9 100.0
15.5 5.7 73.9
16.6 5.3 8.3
17.6 5.0 18.0
19.0 4.7 12.8
19.7 4.5 58.2
21.0 4.2 12.1
21.7 4.1 20.5
22.3 4.0 92.4
23.1 3.9 54.3
24.1 3.7 27.8
24.5 3.6 22.0
25.1 3.5 13.8
26.0 3.4 11.8
27.7 3.2 17.5
28.2 3.2 10.2
29.7 3.0 17.5
在更进一步的实施方案中,晶型C的XRPD图谱包括与图5所示基本上相同的衍射角(2θ)处的峰。在甚至更进一步的实施方案中,晶型C的XRPD峰位与图5所示基本 上相同。在甚至更进一步的实施方案中,晶型C的XRPD图谱如图5所示。
在优选的实施方案中,式I的化合物的基本上纯的晶型C的DSC图谱包括与图6所示基本上相同的温度处的特征峰。在更优选的实施方案中,晶型C的DSC图谱的特征峰位与图6所示基本上相同。
在更优选的实施方案中,晶型C的差示扫描量热法(DSC)的吸热峰的最高峰温度分别约为80-90℃和174.6-184.6℃。在一具体的实施方案中,晶型C的差示扫描量热法(DSC)的吸热峰的最高峰温度分别约为84.45℃和179.66℃。
在一实施方案中,晶型C为式I的化合物的溶剂化物。溶剂化物中的溶剂分子可以选自亚砜类溶剂,例如氯化亚砜、二甲基亚砜、二苯基亚砜或其任意组合。
在一实施方案中,提供制备上述式I的化合物的基本上纯的晶型C的方法,其包括将固体形式的式I的化合物优选地在加热条件下溶解于亚砜类溶剂中,任选地加入反溶剂,优选地冷却析晶,随后分离并干燥。
在一优选的实施方案中,提供制备上述式I的化合物的基本上纯的晶型C的方法,其包括将固体形式的式I的化合物在约40-80℃(优选为约50-70℃,例如约60℃)下溶解于亚砜类溶剂中,任选地加入反溶剂,晶体开始析出,冷却至例如室温,随后分离并干燥。
在晶型C的制备方法中,所述亚砜类溶剂可以为氯化亚砜、二甲基亚砜、二苯基亚砜或其组合,所述反溶剂为水。
关于加热、搅拌、分离和干燥等方式以及晶种的加入还可以参照晶型A的制备方法相关部分的描述。
药物组合物和给药
在一实施方案中,本发明提供一种药物组合物,该组合物包含式I的化合物的晶型A、晶型B或晶型C,或者其任意组合,以及一种或多种药学上可接受的载体。
如本文中所使用的术语“药学上可接受的载体”是指与治疗剂一同给药的稀释剂、辅剂、赋形剂或媒介物,并且其在合理的医学判断的范围内适于接触人类和/或其它动物的组织而没有过度的毒性、刺激、过敏反应或与合理的益处/风险相比相应的其它问题或并发症。
在本发明的药物组合物中可使用的药学上可接受的载体包括但不限于无菌液体,例如水和油,包括那些石油、动物、植物或合成来源的油,例如大豆油、花生油、矿物油 等。当所述药物组合物通过静脉内给药时,水是示例性载体。还可以使用生理盐水和葡萄糖及甘油水溶液作为液体载体,特别是用于注射液。适合的药物赋形剂包括葡萄糖、淀粉、乳糖、明胶、麦芽糖、蔗糖、白垩、硅胶、单硬脂酸甘油酯、硬脂酸钠、滑石、氯化钠、甘油、丙二醇、水、乙醇等。所述组合物还可以视需要包含少量的湿润剂、乳化剂或pH缓冲剂。口服制剂可以包含标准载体,如药物级的甘露醇、乳糖、淀粉、硬脂酸镁、纤维素、糖精钠、碳酸镁等。适合的药学上可接受的载体的实例如在Remington’s Pharmaceutical Sciences(1990)中所述。
本发明的组合物可以系统地作用和/或局部地作用。为此目的,它们可以适合的途径给药,例如通过注射、动脉内、皮下、静脉内、腹膜内、肌内或经皮给药;或通过口服、经鼻、含服、透粘膜、局部、以眼用制剂的形式或通过吸入给药。
对于这些给药途径,可以适合的剂型给药本发明的组合物。所述剂型包括但不限于片剂、胶囊剂、锭剂、硬糖剂、散剂、喷雾剂、乳膏剂、软膏剂、栓剂、凝胶剂、水性混悬剂、注射剂、酏剂、糖浆剂。
本发明所述的药物组合物可以通过本领域熟知的任何方法来制备,例如通过混合、溶解、制粒、糖包衣、碾磨、乳化、冻干等处理来制备。如本文中所使用的术语“治疗有效量”指被给药后会在一定程度上缓解所治疗病症的一或多种症状的化合物的量。
可调整给药方案以提供最佳所需响应。例如,可给药单次推注,可随时间给药数个分剂量,或可如治疗情况的急需所表明而按比例减少或增加剂量。要注意,剂量值可随要减轻的病况的类型及严重性而变化,且可包括单次或多次剂量。要进一步理解,对于任何特定个体,具体的给药方案应根据个体需要及给药组合物或监督组合物的给药的人员的专业判断来随时间调整。
所给药的本发明的化合物的量会取决于所治疗的个体、病症或病况的严重性、给药的速率、化合物的处置及处方医师的判断。一般而言,有效剂量在每日每kg体重约0.0001至约100mg,例如约0.01至约10mg/kg/日(单次或分次给药)。对70kg的人而言,合计为约0.007mg/日至约7000mg/日,例如约0.7mg/日至约700mg/日。在一些情况下,不高于前述范围的下限的剂量水平可以是足够的,而在其它情况下,仍可在不引起任何有害副作用的情况下采用较大剂量,条件是首先将所述较大剂量分成数个较小剂量以在一整天中给药。
本发明的化合物在药物组合物中的含量或用量可以是约0.01mg至约1000mg,适合地是0.1-500mg,优选0.5-300mg,更优选1-150mg,特别优选1-50mg,例如1.5mg、 2mg、4mg、10mg和25mg等。
除非另外说明,否则如本文中所使用,术语“治疗(treating)”意指逆转、减轻、抑制这样的术语所应用的病症或病况或者这样的病症或病况的一或多种症状的进展,或预防这样的病症或病况或者这样的病症或病况的一或多种症状。
如本文所使用的“个体”包括人或非人动物。示例性人个体包括患有疾病(例如本文所述的疾病)的人个体(称为患者)或正常个体。本发明中“非人动物”包括所有脊椎动物,例如非哺乳动物(例如两栖动物、爬行动物、鸟类)和哺乳动物,例如非人灵长类、家畜和/或驯化动物(例如犬、猫、绵羊、奶牛、猪等)。
有益效果
本发明的晶型A、B、C的优点包括但不限于较高的溶解度、较好的药代动力学特性和良好的稳定性,适合制备药物制剂,并且所述晶型的制备方法简单有效,易于放大生产。
具体地,本发明的晶型A、B、C具有优良的物理性质,其包括但不限于溶解度、溶出率、耐光照性、低吸湿性、耐高温性、耐高湿性、流动性和明显改善的粘黏性等。例如,本发明的晶型A、B、C在制剂过程中可明显降低过滤时间,缩短生产周期,节约成本。本发明的晶型A、B、C具有良好的光稳定性,可保证所述晶型(例如晶型A)在储存和运输时的可靠性,从而保证制剂的安全性,并且所述晶型(例如晶型A)不需要为防止受光照影响而采取特殊包装处理,从而降低了成本。所述晶型(例如晶型A)不会因光照影响产生降解,提高了制剂的安全性和长期贮藏后的有效性。服用所述晶型(例如晶型A)的患者不会担忧制剂因暴露于日光下产生光敏反应。
本发明的晶型A、B、C在环境温度下储存或运输时极少或较少降解,所述晶型在差示扫描量热(DSC)分析中显示均在大于50℃时熔融或去溶剂化,具有较好的热稳定性,可长时间稳定保持,且适用于标准的制剂生产过程。
本发明的晶型A、B、C表现出良好的化学稳定性和物理稳定性,易于制备并且更适合用于制剂的制备。例如,将本发明的晶型A、B、C碾磨成精细粉末,用500μm和250μm的滤筛过筛。碾磨过筛后晶型A、B、C的X射线粉末衍射峰与碾磨过筛前一致。
本发明的晶型A、B、C在预防或治疗血小板异常的血液疾病,例如血小板减少症伴随血小板数量异常的血液疾病中具有优异的效果。其能保持足够的生物活性,可在体 内提供式I的化合物的有效治疗剂量。
本发明的晶型A、B、C适合和便于大量制备,用上述晶型制备得到的制剂可减少刺激性并提高吸收,使得代谢速度方面的问题得以解决,毒性得以显著降低,安全性得以提高,有效地保证了制剂的质量和效能。
实施例
下面通过实施例对本发明做进一步阐述,其目的仅在于更好地理解本发明的内容。
式I的化合物的晶型A、B、C的制备及表征
测试仪器信息和方法
X-射线粉末衍射(XRPD)
XRPD图谱在PANalytacal Empyrean和X’Pert3X射线粉末衍射分析仪上于室温下采集,透射模式优选在PANalytacal EmpyreanX射线粉末衍射分析仪上采集。该仪器采用Cu-Kα照射。扫描范围在2θ区间自2°至45°,扫描速度为20°/分钟。
差示扫描量热法(DSC)
DSC在TAQ200/2000差示扫描量热仪上采集,DSC仪器的加热速度为10K/分钟。
实施例1
称取1g本发明的式I的化合物于容器中,加入15ml乙酸异丙酯加热至80℃,溶解,加入1(w/v)%的式I的化合物的晶型A的晶种,析晶,过滤干燥得本发明所述的晶型A。
对所获得晶型A进行XRPD分析,所得XRPD图谱如图1中所示,相关数据如表10中所示。
表10
2θ(°)±0.2° 晶面间距(d间隔) 峰强度%
3.3 26.9 53.3
4.0 22.2 6.8
4.5 19.4 100.0
5.7 15.4 50.5
6.5 13.4 12.2
6.8 12.9 8.4
8.5 10.4 23.5
9.4 9.5 8.0
11.2 7.9 3.6
11.5 7.7 14.5
12.0 7.4 6.4
12.3 7.2 18.8
13.6 6.5 21.7
14.1 6.3 23.0
15.0 5.9 4.5
15.8 5.6 3.1
16.0 5.5 3.1
17.3 5.1 10.8
17.9 5.0 2.9
18.5 4.8 4.3
19.1 4.6 4.6
19.6 4.5 17.2
20.1 4.4 4.7
20.4 4.4 3.6
20.8 4.3 3.9
21.4 4.2 3.0
21.6 4.1 6.1
21.9 4.1 4.4
22.4 4.0 4.9
22.7 3.9 5.2
23.1 3.8 24.6
23.5 3.8 3.0
23.8 3.7 3.7
24.2 3.7 3.5
24.5 3.6 2.0
24.9 3.6 3.4
25.8 3.5 7.2
26.3 3.4 3.7
26.7 3.3 4.4
27.6 3.2 3.8
28.3 3.2 4.2
对晶型A进行DSC测定,所得DSC图谱如图2所示。该图谱中,样品吸热峰的起始温度(Onset)和最高峰温度(Peak)分别为154.41℃和158.34℃。样品的热量值 (Integral)为-76.34mJ,热焓值(normalized)为-21.94J/g,终熔温度(Endset)为161.24℃。
实施例2
称取1g的式I的化合物于容器中,加入15ml甲醇溶解,析晶,过滤干燥,所得晶型的XRPD图谱和DSC图谱与实施例1中的XRPD图谱和DSC图谱基本上相同,表明得到了晶型A。
实施例3
称取1g的本发明式I的化合物于容器中,加入10mL甲醇和2mL乙酸乙酯的混合物溶解,于10℃析晶,过滤、干燥,所得晶型的XRPD图谱和DSC图谱与实施例1中的XRPD图谱和DSC图谱基本上相同,表明得到了晶型A。
实施例4
称取1g的本发明式I的化合物于容器中,加入10mL二氯甲烷和20ml异丙醚,再加入0.1(w/v)%晶型A的晶种,析晶,过滤、干燥,所得晶型的XRPD图谱和DSC图谱与实施例1中的XRPD图谱和DSC图谱基本上相同,表明得到了晶型A。
实施例5
称取1g的本发明式I的化合物于容器中,加入10ml二氯甲烷和200ml异丙醚的混合物中溶解,加热至40℃,缓慢蒸发去除二氯甲烷,析晶,过滤、干燥,得本发明所述的晶型B。
对所获得晶型B进行XRPD分析,所得XRPD图谱如图3中所示,相关数据如表11中所示。
表11
2θ(°)±0.2° 晶面间距(d间隔) 峰强度%
4.6 19.4 100.0
5.7 15.6 49.4
8.2 10.8 12.7
12.2 7.2 25.8
13.7 6.5 47.1
18.4 4.8 11.7
19.5 4.5 71.3
20.9 4.2 17.2
22.5 3.9 47.1
24.0 3.7 59.5
27.3 3.3 21.8
对晶型B进行DSC测定,所得DSC图谱如图4所示。该图谱中,样品吸热峰的起始温度和最高峰温度分别为131.78℃和136.48℃。样品的热量值为-43.31mJ,热焓值为-21.88J/g,终熔温度为139.67℃。
实施例6
称取1g的本发明式I的化合物于容器中,于60℃下溶解于5ml二甲基亚砜后滴加10mL水,有大量固体析出,冷却至室温,过滤、干燥,得本发明所述的晶型C。
对所获得晶型C进行XRPD分析,所得XRPD图谱如图5中所示,相关数据如表12中所示。
表12
2θ(°)±0.2° 晶面间距(d间隔) 峰强度%
4.5 19.7 29.8
5.1 17.3 9.2
5.7 15.6 11.9
7.4 11.9 37.7
8.6 10.3 41.1
9.6 9.2 21.9
10.4 8.5 5.6
11.4 7.7 8.6
12.2 7.3 9.7
12.7 7.0 7.8
13.8 6.4 30.7
14.7 6.0 54.5
15.0 5.9 100.0
15.5 5.7 73.9
16.6 5.3 8.3
17.6 5.0 18.0
19.0 4.7 12.8
19.7 4.5 58.2
21.0 4.2 12.1
21.7 4.1 20.5
22.3 4.0 92.4
23.1 3.9 54.3
24.1 3.7 27.8
24.5 3.6 22.0
25.1 3.5 13.8
26.0 3.4 11.8
27.7 3.2 17.5
28.2 3.2 10.2
29.7 3.0 17.5
对晶型C进行DSC测定,所得DSC图谱如图6所示。该图谱中,样品吸热峰的最高峰温度分别为84.45℃和179.66℃,对应的样品的热量值分别为-89.31mJ和-72.11mJ,热焓值分别为-21.73J/g和-17.54J/g,起始温度分别为77.60℃和170.11℃,终熔温度分别为90.84℃和185.51℃。
实验例
实验例1溶解度
分别配制表13所示溶液,向其中分别加入适量式I化合物的晶型Y和本发明晶型A,溶解至式I化合物在该溶液中形成饱和溶液(即存在不溶物)。将各溶液放入37℃恒温水浴中振摇24h,期间若溶液澄清,则继续加入式I化合物的相应晶型,直至出现不溶物质。
表13两种晶型的溶解度
溶剂 乙酸乙酯 甲基叔丁基醚 乙醇 异丙醇 丙酮
晶型Y <0.002g/5ml <0.002g/5ml <0.002g/5ml <0.002g/5ml <0.005g/5ml
晶型A 0.163g/5ml 0.1g/5ml 0.07g/5ml 0.05g/5ml 0.15g/5ml
如表13所示,在5ml乙酸乙酯、甲基叔丁基醚、乙醇或异丙醇溶剂中,当添加晶型Y的质量为0.002g时已出现不溶物;在5ml丙酮溶剂中,当添加晶型Y的质量为0.005g时已出现不溶物。在5ml乙酸乙酯、甲基叔丁基醚、乙醇、异丙醇或丙酮中,当添加表13中所述的相应质量的晶型A时,可溶解,但若继续添加晶型A则会出现不溶物。根据表13所示,本发明的晶型A的溶解度显著优于现有技术的晶型Y。
实验例2比格犬药代谢动力学研究
通过静脉(IV)途径向雄性比格犬(10kg)给药待测式I的化合物的晶型Y和晶型A,考察待测化合物的药物代谢动力学特点。IV的给药剂量为0.5mg/只,溶媒系统为5%DMSO∶5%聚乙二醇-15羟基硬脂酸酯(
Figure PCTCN2018075066-appb-000010
HS 15)∶90%生理盐水。IV采血时间点为0、0.083、0.25、0.5、1、2、4、6、8、24、48、72和96h。在IV给药前和给药后的不同时间点经四肢静脉采血,至肝素抗凝管中,分离血浆,-80℃保存待测。将血浆样品经甲醇沉淀蛋白处理后进行LC-MS/MS分析。
LC-MS/MS:液相为Waters I-Class系统,质谱为AB Sciex 5500三重四级杆。色谱柱为Thermo C 18柱;流动相A相为5mM甲酸铵(含0.01%氨水)水溶液,B相为乙腈;流速为0.4mL/min;柱温为40℃。
应用WinNonlin 6.3软件,采用非房室模型计算药代动力学参数,结果见表14。
表14比格犬体内的药代动力学参数
Figure PCTCN2018075066-appb-000011
如表14所示,相比于晶型Y,式I的化合物的晶型A在药时曲线下面积中,明显优于现有晶型Y。此外,本发明化合物的晶型相较于现有晶型Y还具有较长的平均滞留时间。上述数据可证明本发明晶型A显示出优良的暴露量和具有相对较高的生物利用度。
通过对本发明晶型A和现有晶型Y的半衰期数据的比较发现,相比于现有晶型Y,本发明晶型A具有更长的药物半衰期,在保证血药浓度的同时还适当延长了给药间隔,可证明本发明晶型A在药代动力学性质上更佳。
实验例3稳定性试验
测试方法:采用高效液相色谱法(中国药典2015年版四部通则0512)测定。
色谱柱:用十八烷基硅烷键合硅胶为填充剂;
流动相A:0.02mol/L磷酸盐缓冲液(pH 3.0)-甲醇-乙腈;
流动相B:甲醇-乙腈-水;
检测波长:215nm。
洗脱条件:梯度洗脱。
3-1光照稳定性试验
将式I的化合物晶型A和晶型Y分别均匀的分摊至敞口培养皿中,厚度≤5mm,调节距离,使光照强度为4500±500Lx,分别在10天/30天取样检测杂质含量。其中杂质峰个数为色谱图中示出的晶型A或晶型Y以外的峰的个数,其用于表示杂质的量。试验结果如下:
表15:两种晶型的光照稳定性数据
Figure PCTCN2018075066-appb-000012
注:光照试验过程中,温度范围为25±2℃
从表15中可以得出,相比于晶型Y,晶型A具有更少的杂质个数和杂质百分含量,即更优的耐光照性。
3-2高温稳定性试验
将式I的化合物晶型A和晶型Y放置于密封洁净的玻璃瓶中,然后分别置于40℃/60℃恒温干燥箱中,10天/30天取样检测杂质含量。试验结果如下:
表16:两种晶型的高温稳定性数据
Figure PCTCN2018075066-appb-000013
注:“\”标示未检出
从表16中可以得出,相比于晶型Y,晶型A在高温条件下未检出杂质,即具有更优的耐高温性。
3-3高湿稳定性试验
将式I化合物晶型A和晶型Y分别均摊至敞口培养皿中,厚度≤5mm,置于室温下(25℃左右),相对湿度RH为75%和92.5%的恒温培养箱中,分别于10天/30天取样检测杂质含量。试验结果如下:
表17:两种晶型的高湿稳定性数据
Figure PCTCN2018075066-appb-000014
注:“\”标示未检出;验过程中,温度范围为25±2℃
从表17中可以得出,相比于晶型Y,晶型A在高湿条件下未检出杂质,即具有更优的耐高湿性。
实验例4吸湿性试验
将式I的化合物晶型A均摊至敞口培养皿中,厚度≤5mm,置于室温下(25±2℃)盛有饱和盐溶液的干燥器中,调节干燥器中水分相对湿度RH为75%和92.5%,在30天取样手工测定重量,计算其在不同湿度下的吸湿性。
表18:晶型A的吸湿性试验数据
Figure PCTCN2018075066-appb-000015
上述吸湿性试验表明,式I的化合物晶型A在常温高湿下,无明显的吸湿性。

Claims (19)

  1. 式I的化合物的晶型A,其特征在于所述晶型A的X射线粉末衍射图谱包括在约3.3±0.2°、4.5±0.2°、5.7±0.2°、8.5±0.2°、14.1±0.2°、23.1±0.2°的衍射角(2θ)处的峰,
    Figure PCTCN2018075066-appb-100001
  2. 权利要求1的晶型,其特征在于所述晶型A的X射线粉末衍射图谱包括在约3.3±0.2°、4.5±0.2°、5.7±0.2°、6.5±0.2°、8.5±0.2°、11.5±0.2°、12.3±0.2°、13.6±0.2°、14.1±0.2°、17.3±0.2°、19.6±0.2°、23.1±0.2°的衍射角(2θ)处的峰;
    优选地,X射线粉末衍射图谱包括在约3.3±0.2°、4.0±0.2°、4.5±0.2°、5.7±0.2°、6.5±0.2°、6.8±0.2°、8.5±0.2°、9.4±0.2°、11.2±0.2°、11.5±0.2°、12.0±0.2°、12.3±0.2°、13.6±0.2°、14.1±0.2°、15.0±0.2°、17.3±0.2°、17.9±0.2°、18.5±0.2°、19.1±0.2°、19.6±0.2°、23.1±0.2°的衍射角(2θ)处的峰。
  3. 权利要求1或2的晶型,其特征在于所述晶型A的X射线粉末衍射图谱包括与图1所示基本上相同的衍射角(2θ)处的峰;
    优选地,晶型A的X射线粉末衍射图谱峰位与图1所示基本上相同;
    更优选,晶型A的X射线粉末衍射图谱如图1所示。
  4. 制备权利要求1-3中任一项的晶型A的方法,其包括将固体形式的式I的化合物溶解于结晶溶剂中,析晶,其中所述结晶溶剂选自以下组成的组:醇类溶剂或其与酯类溶剂的混合物、酯类溶剂、卤代烃类溶剂和醚类溶剂的混合物;
    优选地,所述醇类溶剂为甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、仲丁醇、叔丁醇,或其组合,
    所述酯类溶剂为乙酸乙酯、乙酸丙酯、乙酸异丙酯、乙酸丁酯、乙酸戊酯,或其组合,
    所述卤代烃类溶剂为二氯甲烷、二溴甲烷、二氯乙烷,或其组合,
    所述醚类溶剂为乙醚、异丙醚、四氢呋喃,或其组合。
  5. 权利要求4制备晶型A的方法,其包括将固体形式的式I的化合物溶解于结晶溶剂中,析晶,
    其中所述结晶溶剂为醇类溶剂和酯类溶剂的混合物,冷却至0~20℃析晶,随后分离并干燥;优选地,所述的结晶溶剂为体积比为1∶20-20∶1的醇类溶剂和酯类溶剂的混合物;或
    所述的结晶溶剂为卤代烃类溶剂和醚类溶剂的混合物,优选地,所述的结晶溶剂为体积比为1∶10-10∶1的卤代烃类溶剂和醚类溶剂的混合物。
  6. 式I的化合物的晶型B,其特征在于所述晶型B的X射线粉末衍射图谱包括在约4.6±0.2°、5.7±0.2°、13.7±0.2°、19.5±0.2°、22.5±0.2°、24.0±0.2°的衍射角(2θ)处的峰
    Figure PCTCN2018075066-appb-100002
  7. 权利要求6的晶型,其特征在于所述晶型B的X射线粉末衍射图谱包括在约4.6±0.2°、5.7±0.2°、8.2±0.2°、12.2±0.2°、13.7±0.2°、18.4±0.2°、19.5±0.2°、20.9±0.2°、22.5±0.2°、24.0±0.2°、27.3±0.2°的衍射角(2θ)处的峰。
  8. 权利要求7或8的晶型,其特征在于所述晶型B的X射线粉末衍射图谱包括与图3所示基本上相同的衍射角(2θ)处的峰;
    优选地,晶型B的X射线粉末衍射图谱峰位与图3所示基本上相同;
    更优选,晶型B的X射线粉末衍射图谱如图3所示。
  9. 制备权利要求6-8中任一项的晶型B的方法,其包括将固体形式的式I的化合物溶解于卤代烃类溶剂和醚类溶剂的混合物中,移除卤代烃类溶剂,析晶;
    优选地,所述卤代烃类溶剂为二氯甲烷、二溴甲烷、二氯乙烷或其组合,
    所述醚类溶剂为乙醚、异丙醚、四氢呋喃或其组合。
  10. 权利要求9制备晶型B的方法,其包括将固体形式的式I的化合物溶解于比例为1∶50-50∶1的卤代烃类和醚类溶剂的混合物中,加热至约30-60℃,优选约30-50℃,移除卤代烃类溶剂后,析晶,随后分离并干燥;
    优选地,所述的卤代烃类和醚类溶剂的混合物为二氯甲烷和异丙醚的混合物。
  11. 式I的化合物的晶型C,其特征在于所述晶型C的X射线粉末衍射图谱包括在约8.6±0.2°、14.7±0.2°、15.0±0.2°、15.5±0.2°、19.7±0.2°、22.3±0.2°、23.1±0.2°的衍射角(2θ)处的峰
    Figure PCTCN2018075066-appb-100003
  12. 权利要求11的晶型,其特征在于所述晶型C的X射线粉末衍射图谱包括在约4.5±0.2°、7.4±0.2°、8.6±0.2°、9.6±0.2°、13.8±0.2°、14.7±0.2°、15.0±0.2°、15.5±0.2°、17.6±0.2°、19.7±0.2°、21.7±0.2°、22.3±0.2°、23.1±0.2°、24.1±0.2°的衍射角(2θ)处的峰;
    优选地,X射线粉末衍射图谱包括在约4.5±0.2°、5.1±0.2°、5.7±0.2°、7.4±0.2°、8.6±0.2°、9.6±0.2°、13.8±0.2°、14.7±0.2°、15.0±0.2°、15.5±0.2°、16.6±0.2°、17.6±0.2°、19.0±0.2°、19.7±0.2°、21.0±0.2°、21.7±0.2°、22.3±0.2°、23.1±0.2°、24.1±0.2°的衍射角(2θ)处的峰。
  13. 权利要求11或12的晶型,其特征在于所述晶型C的X射线粉末衍射图谱包括与图5所示基本上相同的衍射角(2θ)处的峰;
    优选地,晶型C的X射线粉末衍射图谱峰位与图5所示基本上相同;
    优选地,晶型C的X射线粉末衍射图谱如图5所示。
  14. 制备权利要求11-13任一项的晶型C的方法,其包括将固体形式的式I的化合物溶解于亚砜类溶剂中,任选地加入反溶剂,析晶;
    优选地,所述亚砜类溶剂为氯化亚砜、二甲基亚砜、二苯基亚砜或其组合,所述反溶剂为水。
  15. 权利要求14制备晶型C的方法,其包括将固体形式的式I的化合物在约40-80℃下溶解于亚砜类溶剂中,任选地加入反溶剂,晶体开始析出,冷却至例如室温,随后分离并干燥。
  16. 药物组合物,其包含权利要求1-3中任一项的晶型A、权利要求6-8中任一项的晶型B或者权利要求11-13中任一项的晶型C,或者其任意组合,以及一种或多种药学上可接受的载体。
  17. 权利要求1-3中任一项的晶型A、权利要求6-8中任一项的晶型B或者权利要求11-13中任一项的晶型C,或者权利要求16的药物组合物,或者其任意组合,在制备用于预防或治疗慢性肝病相关的血小板减少的药物中的用途。
  18. 权利要求1-3中任一项的晶型A、权利要求6-8中任一项的晶型B或者权利要求11-13中任一项的晶型C,或者权利要求16的药物组合物,或者其任意组合,其用于预防或治疗慢性肝病相关的血小板减少。
  19. 一种预防或治疗慢性肝病相关的血小板减少的方法,其包括向有需要的个体给药有效量的权利要求1-3中任一项的晶型A、权利要求6-8中任一项的晶型B或者权利要求11-13中任一项的晶型C,或者权利要求16的药物组合物,或者其任意组合。
PCT/CN2018/075066 2017-02-14 2018-02-02 4-苯基噻唑衍生物的晶型及其制备方法 WO2018149309A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880002130.5A CN109311831B (zh) 2017-02-14 2018-02-02 4-苯基噻唑衍生物的晶型及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710078118.X 2017-02-14
CN201710078118 2017-02-14

Publications (1)

Publication Number Publication Date
WO2018149309A1 true WO2018149309A1 (zh) 2018-08-23

Family

ID=63169705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075066 WO2018149309A1 (zh) 2017-02-14 2018-02-02 4-苯基噻唑衍生物的晶型及其制备方法

Country Status (2)

Country Link
CN (1) CN109311831B (zh)
WO (1) WO2018149309A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019233328A1 (zh) * 2018-06-08 2019-12-12 四川科伦药物研究院有限公司 4-苯基噻唑衍生物的晶型及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109970678B (zh) * 2017-12-28 2024-03-08 四川科伦药物研究院有限公司 4-苯基噻唑衍生物无定形及其制备方法和用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1419547A (zh) * 2000-01-24 2003-05-21 盐野义制药株式会社 具有血小板生成素受体激动作用的化合物
CN1863783A (zh) * 2003-08-12 2006-11-15 盐野义制药株式会社 具有血小板生成素受体激动作用的化合物
CN101809008A (zh) * 2007-07-31 2010-08-18 盐野义制药株式会社 含有具血小板生成素受体激动作用的光学活性化合物的药物组合物及其中间体
CN105992761A (zh) * 2013-12-20 2016-10-05 盐野义制药株式会社 具有血小板生成素受体激动作用的光学活性的化合物及其中间体的制备方法
CN106083759A (zh) * 2016-06-15 2016-11-09 上海丸全化学科技有限公司 一种芦曲泊帕的全新合成工艺
CN106565625A (zh) * 2016-11-04 2017-04-19 杭州励德生物科技有限公司 一种抗血小板减少症新药Lusutrombopag中间体的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1419547A (zh) * 2000-01-24 2003-05-21 盐野义制药株式会社 具有血小板生成素受体激动作用的化合物
CN1863783A (zh) * 2003-08-12 2006-11-15 盐野义制药株式会社 具有血小板生成素受体激动作用的化合物
CN101809008A (zh) * 2007-07-31 2010-08-18 盐野义制药株式会社 含有具血小板生成素受体激动作用的光学活性化合物的药物组合物及其中间体
CN105992761A (zh) * 2013-12-20 2016-10-05 盐野义制药株式会社 具有血小板生成素受体激动作用的光学活性的化合物及其中间体的制备方法
CN106083759A (zh) * 2016-06-15 2016-11-09 上海丸全化学科技有限公司 一种芦曲泊帕的全新合成工艺
CN106565625A (zh) * 2016-11-04 2017-04-19 杭州励德生物科技有限公司 一种抗血小板减少症新药Lusutrombopag中间体的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019233328A1 (zh) * 2018-06-08 2019-12-12 四川科伦药物研究院有限公司 4-苯基噻唑衍生物的晶型及其制备方法
US11174234B2 (en) 2018-06-08 2021-11-16 Sichuan Kelan Pharmaceutical Research Institute Co., Ltd. Crystal form of 4-phenylthiazole derivative and preparation method thereof

Also Published As

Publication number Publication date
CN109311831A (zh) 2019-02-05
CN109311831B (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
RU2414470C2 (ru) Кристаллические формы соединения тиазолидиндиона и способ его получения
US20090247532A1 (en) Crystalline polymorph of sitagliptin phosphate and its preparation
CN110577541B (zh) 苯甲酰氨基吡啶衍生物的盐及其在药物中的应用
TW200944508A (en) Novel solid forms of bendamustine hydrochloride
JP2021530456A (ja) 2−(3,5−ジクロロ−4−((5−イソプロピル−6−オキソ−1,6−ジヒドロピリダジン−3−イル)オキシ)フェニル)−3,5−ジオキソ−2,3,4,5−テトラヒドロ−1,2,4−トリアジン−6−カルボニトリルの固体形態
WO2019201194A1 (zh) 取代的吡咯并三嗪类化合物及其药物组合物及其用途
KR20180015259A (ko) S1p1 수용체-관련 장애에서의 사용을 위한 (r)-2-(7-(4-시클로펜틸-3-(트리플루오로메틸)벤질옥시)-1,2,3,4-테트라히드로시클로-펜타[b]인돌-3-일)아세트산 (화합물 1)의 결정성 l-아르기닌 염
BR112019021447A2 (pt) sal fumarato, forma cristalina i do referido sal, métodos para preparação dos mesmos, composição farmacêutica compreendendo o sal e a forma cristalina i e uso do sal fumarato, da forma cristalina i e da composição farmacêutica
WO2018149309A1 (zh) 4-苯基噻唑衍生物的晶型及其制备方法
CN114206878B (zh) 乌帕替尼的晶型及其制备方法和用途
WO2017063572A1 (zh) 细胞凋亡诱导剂的新晶型及其制备方法
TW201920160A (zh) 2-(5-(4-(2-嗎啉乙氧基)苯基)吡啶-2-基)-n-芐乙醯胺之固態形式
US20120165260A2 (en) Crystalline ezatiostat hydrochloride ansolvate
CN113966332A (zh) Cdk9抑制剂的多晶型物及其制法和用途
WO2019134455A1 (zh) Acalabrutinib的新晶型及其制备方法和用途
WO2018113592A1 (zh) 4'-硫代-2'-氟代核苷磷酰胺化合物的固体形式及其制备方法和用途
WO2018036557A1 (zh) 来那度胺的晶型及其制备方法和用途
CN113631542B (zh) 一种芳香族化合物的固体形式及其制备方法
US11174234B2 (en) Crystal form of 4-phenylthiazole derivative and preparation method thereof
CN112105622B (zh) 丙戊酸磷脂衍生物的晶型及其制备方法
US10561667B2 (en) Orbit azine-fumarate, hydrate, crystal form and preparation method therefor
TWI685492B (zh) 腎外髓質分泌鉀通道抑制劑的晶型及其製備方法
WO2023061372A1 (zh) 占诺美林衍生物的苹果酸盐、a晶型及其制备方法和用途
RU2802964C2 (ru) Твердые формы 2-(5-(4-(2-морфолиноэтокси)фенил)пиридин-2-ил)-n-бензилацетамида
TWI707851B (zh) 哌嗪化合物的新穎結晶

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18753894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18753894

Country of ref document: EP

Kind code of ref document: A1