WO2018147107A1 - 耐炎化炉の洗浄方法および耐炎化繊維、炭素繊維、黒鉛化繊維の製造方法 - Google Patents

耐炎化炉の洗浄方法および耐炎化繊維、炭素繊維、黒鉛化繊維の製造方法 Download PDF

Info

Publication number
WO2018147107A1
WO2018147107A1 PCT/JP2018/002666 JP2018002666W WO2018147107A1 WO 2018147107 A1 WO2018147107 A1 WO 2018147107A1 JP 2018002666 W JP2018002666 W JP 2018002666W WO 2018147107 A1 WO2018147107 A1 WO 2018147107A1
Authority
WO
WIPO (PCT)
Prior art keywords
flameproofing furnace
furnace
flameproofing
fiber
carbon fiber
Prior art date
Application number
PCT/JP2018/002666
Other languages
English (en)
French (fr)
Inventor
久慈祐介
山本航
内山真臣
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2018505495A priority Critical patent/JP6354926B1/ja
Priority to US16/468,135 priority patent/US10612164B2/en
Priority to CN201880006948.4A priority patent/CN110168154B/zh
Priority to KR1020197014589A priority patent/KR102090917B1/ko
Priority to MX2019008263A priority patent/MX2019008263A/es
Priority to EP18751597.8A priority patent/EP3540101B1/en
Publication of WO2018147107A1 publication Critical patent/WO2018147107A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/32Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • C11D2111/20

Definitions

  • the present invention relates to a flameproofing furnace cleaning method for producing a flameproofed fiber by making a carbon fiber precursor fiber flameproof with an oxidizing gas.
  • carbon fiber Since carbon fiber is excellent in specific strength, specific elastic modulus, heat resistance, and chemical resistance, it is useful as a reinforcing material for various materials and used in a wide range of fields such as aerospace applications, leisure applications, and general industrial applications. Has been. Since carbon fibers are often used in places where strength is required, it is necessary to uniformly and stably have extremely high characteristics, that is, excellent and high quality is required.
  • a fiber obtained by bundling thousands to tens of thousands of single fibers of a polyacrylonitrile polymer (hereinafter abbreviated as carbon fiber precursor fiber) is made flame resistant. It is sent to a furnace, exposed to hot air in an oxidizing atmosphere such as air heated to 200-300 ° C, and then subjected to heat treatment (flame resistance treatment), and the resulting flame resistant fiber is sent to a carbonization furnace.
  • heat treatment carbonization treatment
  • pre-carbonization treatment pre-carbonization treatment
  • the flame-resistant fiber which is an intermediate material, is widely used as a material for flame-retardant woven fabrics by taking advantage of its incombustible performance.
  • silicone oil is often used for the carbon fiber precursor fiber in order to avoid the fusion of the flameproof fiber.
  • the hot air circulation type flameproofing furnace constitutes a hot air circulation system including a heat treatment chamber for performing a flameproofing treatment on the carbon fiber precursor fiber and a hot air circulation path for heating and circulating the hot air. Since the hot air can be repeatedly used by the hot air circulation system, the hot air circulation type flameproof furnace has an advantage that the loss of heat energy can be reduced.
  • the hot air circulation type flameproofing furnace has a disadvantage that impurities such as dust are likely to stay in the hot air in the flameproofing furnace for a long time because impurities staying in the hot air are not easily discharged outside the hot air circulation system. is there.
  • dust generated from the silicone-based oil applied to the carbon fiber precursor fiber accumulates in the flameproofing furnace and adheres to the carbon fiber precursor fiber during the flameproofing treatment.
  • the adhesion point of the dust adhering to the precursor fiber becomes a starting point of fuzz generation and single yarn breakage in the subsequent carbonization treatment, and significantly deteriorates the quality of the obtained carbon fiber.
  • Dust that accumulates in the flameproofing furnace includes dust derived from the silicone-based oils described above, aggregates of oily agent components other than silicone oils, and dust that comes from outside the flameproofing furnace and adheres to the carbon fiber precursor fibers. Moreover, the dust etc. which are contained in the external air which flows in in a flame-proofing furnace, those consisting of those composites, etc. are mentioned.
  • Patent Document 1 proposes a flameproofing furnace in which a watering nozzle and a drain port are provided above the flameproofing furnace rectifying plate to clean and remove dust adhering to the rectifying plate. According to this flameproofing furnace, it is not necessary to manually perform the operation of water spraying toward the rectifying plate that is blocked by dust adhering thereto, and cleaning is facilitated.
  • Patent Document 2 proposes a flameproof furnace having an agglomeration mechanism that takes in hot air from a hot air circulation path, aggregates impurities, and returns hot air to the hot air circulation path again. According to this flameproofing furnace, dust can be efficiently removed from hot air, and operability can be improved.
  • Patent Document 3 proposes a flameproofing furnace that discharges the oxidizing gas that has passed through the carbon fiber precursor fiber traveling region in the initial stage of flameproofing where dust is generated most, without circulating it. According to this flameproofing furnace, dust adhering to the furnace can be greatly reduced, and continuous operation for a long time is possible.
  • Patent Document 4 proposes a flameproof furnace in which an exhaust port is provided in a hot air circulation path. According to this flameproofing furnace, the hot air in the hot air circulation system is exhausted from the exhaust port to the outside of the hot air circulation system before restarting after cleaning the inside of the furnace, so that dust remaining in the flameproofing furnace can be reduced. Thus, it is possible to prevent deterioration in the quality of the flame-resistant fiber that occurs in the initial stage after re-operation.
  • Patent Document 1 has an effect of removing a fixed amount of adhering dust, but the cleaning / removal effect is insufficient only by watering.
  • the present invention has been made in view of the above circumstances, and can obtain high-quality carbon fibers immediately after reactivation of the flameproofing furnace, and can easily clean the flameproofing furnace and stop production.
  • An object of the present invention is to provide a method for cleaning a flameproofing furnace capable of shortening the period during which the flameproofing is performed, a method for manufacturing a flameproofing fiber having a step of cleaning the flameproofing furnace using the cleaning method, and a method for manufacturing a carbon fiber. To do.
  • the present invention for solving the above problems employs any of the following configurations.
  • a method for cleaning a flameproofing furnace in which the dust separated from the outside is discharged out of the flameproofing furnace and an oxidizing gas having a temperature of 40 ° C. or higher is circulated in the flameproofing furnace.
  • the polyacrylonitrile-based carbon fiber precursor fiber is placed in an oxidizing atmosphere in the flameproofing furnace.
  • a method for producing flame-resistant fibers which is flame-resistant at a maximum temperature of 200 to 300 ° C.
  • the flame-resistant fibers are pre-carbonized by precarbonization at a maximum temperature of 300 to 1000 ° C. in an inert atmosphere.
  • a method for producing carbon fiber comprising producing a fiber and carbonizing the pre-carbonized fiber at a maximum temperature of 1000 to 2000 ° C. in an inert atmosphere.
  • a method for producing graphitized fiber comprising producing carbon fiber by the method for producing carbon fiber as described in (6) above, and then graphitizing the carbon fiber at a maximum temperature of 2000 to 3000 ° C. in an inert atmosphere.
  • the method for cleaning a flameproofing furnace of the present invention high-quality flameproofing fibers can be stably obtained, and the flameproofing furnace can be continuously operated for a long time.
  • the time and labor required for cleaning can be reduced, and the period during which production is stopped can be shortened.
  • the present invention is a flameproofing furnace cleaning method for flameproofing a polyacrylonitrile-based carbon fiber precursor fiber in an oxidizing atmosphere, and is performed in a flameproofing furnace having a mechanism in which an oxidizing gas circulates inside.
  • the flameproofing furnace 1 has a hot air circulation system and discharge means. As shown in FIGS. 1 and 2, the hot air circulation system includes a heat treatment chamber 3 in which hot air is blown to the carbon fiber precursor fiber 2 that travels while turning back and forth in a multistage traveling region, and a hot air is applied to the heat treatment chamber 3. It has a hot air circulation path 4 for circulating hot air in the hot air circulation system by blowing into the heat treatment chamber 3 and discharging it out of the heat treatment chamber 3.
  • a hot air outlet 5 for blowing hot air into the traveling region of the carbon fiber precursor fiber 2 and a hot air outlet for discharging hot air from the traveling region of the carbon fiber precursor fiber 2 to the outside of the heat treatment chamber 3. 6 is provided. Further, a heater 7 for heating the hot air and a blower 8 for controlling the wind speed of the hot air are provided in the middle of the hot air circulation path 4. Further, as shown in FIG. 5, in order to keep the concentration of gas such as HCN generated from the carbon fiber precursor fiber 2 below a certain value, the hot air containing these gases is discharged out of the hot air circulation system. An exhaust fan 16 and an exhaust gas combustion device 17 for processing gas may be provided.
  • the carbon fiber precursor fiber 2 is fed into the heat treatment chamber 3 from the slit 9 provided on the side wall of the heat treatment chamber 3 of the flameproofing furnace 1 and travels linearly in the heat treatment chamber 3 and then from the slit on the opposite side wall. It is once sent out of the heat treatment chamber 3. Thereafter, the sheet is folded back by the guide roll 10 provided on the side wall outside the heat treatment chamber 3 and is fed into the heat treatment chamber 3 again.
  • the carbon fiber precursor fiber 2 is repeatedly diffracted in the traveling direction by the plurality of guide rolls 10, so that the feeding and sending into the heat treatment chamber 3 is repeated a plurality of times, and the inside of the heat treatment chamber 3 is multi-staged. As shown in FIG.
  • the moving direction may be from bottom to top, and the number of turns of the carbon fiber precursor fiber 2 in the heat treatment chamber 3 is not particularly limited, and is appropriately designed depending on the scale of the flameproofing furnace 1 and the like.
  • the guide roll 10 may be provided inside the heat treatment chamber 3.
  • the carbon fiber precursor fiber 2 is flameproofed by hot air blown from the hot air outlet 5 while traveling inside the heat treatment chamber 3 while being turned back into a flameproof fiber.
  • the carbon fiber precursor fibers 2 have a wide sheet-like form that is aligned so as to be parallel to a plurality of carbon fiber precursor fibers 2 in a direction perpendicular to the paper surface.
  • the hot air outlet 5 is provided with a pressure loss by arranging a resistor such as a perforated plate and a rectifying member such as a honeycomb (both not shown) on the blowing surface.
  • a resistor such as a perforated plate
  • a rectifying member such as a honeycomb (both not shown)
  • the flow of hot air blown into the heat treatment chamber 3 can be rectified by the flow regulating member, and hot air having a uniform wind speed can be blown into the heat treatment chamber 3.
  • the hot air outlet 6 may be provided with a resistor such as a perforated plate on the suction surface to have a pressure loss, which is determined as necessary.
  • Hot air blown into the heat treatment chamber 3 by the hot air outlet 5 heats the carbon fiber precursor fiber 2 while flowing in the heat treatment chamber 3 from above to below, that is, toward the discharge port 6 side.
  • the hot air that has reached the downstream is discharged out of the heat treatment chamber 3 through the hot air discharge port 6 and guided to the hot air circulation path 4. And it heats to desired temperature with the heater 7 provided in the middle of the hot-air circulation path 4, and after the air speed is controlled by the air blower 8, it blows in the heat processing chamber 3 again from the hot air blower outlet 5.
  • FIG. In this manner, the flameproofing furnace 1 can flow hot air having a predetermined temperature and wind speed into the heat treatment chamber 3 by the hot air circulation system including the heat treatment chamber 3 and the hot air circulation path 4.
  • the direction of the hot air is not limited to the direction from the top to the bottom of the heat treatment chamber 3, and it may flow from the bottom to the top or in a direction parallel to the traveling yarn.
  • the heater 7 used in the flameproofing furnace 1 is not particularly limited as long as it has a desired function.
  • a known heater such as an electric heater may be used.
  • the blower 8 is not particularly limited as long as it has a desired function.
  • a known blower such as an axial fan may be used.
  • the volatiles of the silicone-based oil agent from the carbon fiber precursor fiber 2 are generated immediately after the carbon fiber precursor fiber 2 is fed into the heat treatment chamber 3. Since the generated volatile matter is difficult to be discharged from the circulation system including the heat treatment chamber 3 and the hot air circulation path 4, dust generated from the volatile matter adheres to the circulation system. When the amount of dust adhering to the wall of the flameproofing furnace exceeds a certain level, it is separated by vibration and impact, and is carried to a place where the pressure loss such as the hot air outlet 5 is large by the circulating hot air to cause blockage. In addition, when floating dust touches the running yarn, it becomes the starting point of single yarn breakage, and as a result, the quality of the carbon fiber is significantly reduced.
  • the cleaning method of the present invention is a cleaning method of the flameproofing furnace 1 in which the polyacrylonitrile-based carbon fiber precursor fiber is flameproofed in an oxidizing atmosphere as described above.
  • the pressure in the direction perpendicular to the wall surface with respect to the dust adhering to the wall surface of the flameproofing furnace 1 becomes 2 MPa or more.
  • the liquid is discharged to the outside of the flameproofing furnace 1 to discharge the dust separated from the wall surface to the outside of the flameproofing furnace 1, and further, oxidation at a temperature of 40 ° C. or higher in the flameproofing furnace.
  • a characteristic gas is circulated.
  • the pressure of the liquid in contact is 2 MPa or more in the direction perpendicular to the wall surface, preferably 3 MPa or more, and more preferably 3.5 MPa or more.
  • the saturation of the effect on pressure it is also preferably 10 MPa or less.
  • the time for bringing the liquid into contact with the wall surface is appropriately determined depending on the degree of dust adhesion, but is preferably 1 second or longer and more preferably 3 seconds or longer for the same location. On the other hand, considering the saturation of the effect on time, it is also preferably 1 minute or less.
  • the method for measuring the pressure of the liquid in contact with the wall surface is not particularly limited, but a pressure-sensitive film (for example, Fujifilm Prescale LWPS or LLWPS) may be used.
  • a pressure-sensitive film for example, Fujifilm Prescale LWPS or LLWPS
  • the liquid used for cleaning is not particularly limited, but water is preferable from the viewpoint of economy.
  • the water may contain an additive such as a surfactant, and may be ion-exchanged water or pure water.
  • the dust used for cleaning can be discharged out of the flameproofing furnace 1 by discharging the liquid used for cleaning out of the flameproofing furnace 1. Therefore, it is preferable to provide an outlet (not shown) at the bottom of the flameproofing furnace 1 for discharging the liquid used for cleaning out of the flameproofing furnace in a short time.
  • the cleaning method may be carried out by an operator directly entering the furnace.
  • a cleaning device 12 including at least one cleaning nozzle 11 that can be operated from the outside is provided. Remote control may be used.
  • the cleaning device 12 may be installed anywhere in the flameproofing furnace 1, but it is more preferable that the cleaning device 12 is installed in a flow path having a short side of 600 mm or less, which is difficult for an operator to enter directly into the cleaning.
  • the oxidizing gas is circulated in the flameproofing furnace using the blower 8 or the like and the inside of the furnace is dried, the volume of the dust that cannot be removed and remains attached to the wall surface changes, and the dust is By peeling, a further sufficient cleaning effect can be obtained.
  • the oxidizing gas is hot air, a difference in thermal expansion coefficient between the flameproofing furnace 1 and the adhering dust occurs, and the volume change when the moisture between the adhering dust and the flameproofing furnace wall evaporates. The accompanying impact removes the dust.
  • the temperature of the hot air measured by a thermometer installed in the heat treatment chamber 3 and the hot air circulation path 4 is 40 ° C. or higher, 60 ° C. or higher, and further 80 ° C. or higher. Is preferred.
  • the upper limit is preferably 200 ° C. or lower, and more preferably 150 ° C. or lower. It is preferable to heat the inside of the furnace to be in such a temperature range.
  • the temperature measurement method is not particularly limited as long as it has a desired function. For example, a known thermometer such as a thermocouple may be used.
  • the method for heating and supplying hot air is not particularly limited, but it is preferable to circulate the hot air in the flameproofing furnace 1 after heating with a known heater or the like in order to reduce loss of heat energy.
  • the circulated gas contains separated dust, it is preferable to discharge the entire amount outside the flameproofing furnace after circulation. By discharging the circulated oxidizing gas outside the flameproofing furnace, the dust separated from the wall surface can be further discharged outside the flameproofing furnace.
  • the impact force applied to the adhering dust due to the change in the wind speed of the oxidizing gas to circulate is effective in removing the dust adhering to the wall of the flameproofing furnace. Therefore, as shown in FIGS. 5 and 6, on the discharge side of the blower 8 that circulates the hot air in the flameproofing furnace 1, an opening and closing that can discharge 13 to 100% of the suction air amount of the blower 8 is possible. It is more preferable to provide an exhaust port 13 having a mechanism and a switching valve 14 that can block communication between the exhaust port and the circulation duct. In order to give an impact force to the adhering dust, the wind direction may be changed instead of changing the wind speed. The same effect can be achieved by changing the wind direction.
  • the air supply port 15 having an opening / closing mechanism is provided on the downstream side of the exhaust port 13, and the air supply port 15 and the exhaust port are provided. It is more preferable to provide a switching valve 14 that can block communication between the circulation ducts 13.
  • a method of changing the wind direction / velocity of the gas a method of intermittently changing the rotation speed of the blower 8 using a programming controller, or a gas ejection device is installed in the heat treatment chamber 3 or the hot air circulation path 4 in advance.
  • a method of ejecting gas may be used.
  • the contact with a fluid of 2 MPa or more in the direction perpendicular to the surface to be cleaned, drying the inside of the furnace after cleaning, and circulating the gas and switching the wind direction to discharge out of the flameproofing furnace are performed multiple times.
  • the number of times is not limited.
  • a hot air circulation system is used while using a hot air circulation type flameproof furnace with a low loss of thermal energy. It is easy to remove dust adhering to the flameproofing furnace. Therefore, since the time and labor required for cleaning the inside of the flameproofing furnace can be reduced, the maintenance cost can be greatly reduced as compared with the conventional flameproofing furnace cleaning. Further, since the amount of adhering dust remaining without being cleaned is reduced, the flameproofing furnace can be operated continuously for a long period of time, thereby improving the productivity of the flameproofing fiber. In addition, it is possible to suppress the deterioration of the quality of carbon fibers and flame-resistant fibers due to the re-scattering of the adhering dust that could not be cleaned immediately after restarting. And can be manufactured stably.
  • the cleaning method of the present invention may be carried out in each of the carbon fiber production methods using a plurality of flameproofing furnaces, but the volatiles derived from the silicone oil are mostly flameproofed. Therefore, it is preferable to use the flameproofing furnace cleaning method of the present invention for cleaning at least the flameproofing furnace that performs the first flameproofing treatment. Thereby, the dust generated by the volatile matter from the carbon fiber precursor fiber 1 and adhered to the flameproofing furnace 1 can be efficiently removed from the flameproofing furnace 1, and the quality of the carbon fiber immediately after the production apparatus is restarted. Reduction can be suppressed. Therefore, when the cleaning method of the present invention is used, even when a plurality of flameproofing furnaces are used, a long-term continuous operation of the plurality of flameproofing furnaces becomes possible.
  • polyacrylonitrile fiber As the carbon fiber precursor fiber used in the carbon fiber production method of the present invention, polyacrylonitrile fiber is used.
  • Polyacrylonitrile fibers are prepared by dissolving an acrylonitrile polymer in an organic solvent or an inorganic solvent and spinning by a commonly used method, but the spinning method and spinning conditions are not particularly limited.
  • the silicone oil applied to the polyacrylonitrile fiber used in the present invention must contain amino-modified silicone at least in part.
  • the amount of silicone oil applied to the polyacrylonitrile fiber is preferably 0.05 to 3% by mass, more preferably 0.3 to 1.5% by mass.
  • Such silicone oil may further contain a surfactant, a heat stabilizer and the like.
  • dimethyl siloxane and those modified with functional groups are preferably used, including amino-modified dimethyl siloxane modified with amino groups as essential components, polyethylene oxide-modified dimethyl siloxane, epoxy It is more preferable to use a mixture with modified dimethylsiloxane to increase the thermal stability.
  • the flame resistance treatment is performed by heat-treating the polyacrylonitrile fiber thus obtained at a maximum temperature of 200 to 300 ° C.
  • fine particles such as dust generated by heating and oxidation of silicone oil, fine particles containing metal elements from outside air and equipment around the heat treatment furnace and fine particles such as dust
  • the fine particles Due to continuous production of carbon fiber, it accumulates in the furnace, which causes quality degradation.
  • fine particles having a particle size of 0.3 ⁇ m or more adhere to the carbon fiber surface.
  • the fine particles cause a reduction in the tensile strength of the carbon fiber by forming a scratch of 0.3 ⁇ m or more on the surface of the flame-resistant fiber.
  • the total number of fine particles having a particle diameter of 0.3 ⁇ m or more and scratches having a diameter of 0.3 ⁇ m or more on the surface of the flame-resistant fiber should be within 20 / 0.1 mm 2 . It is preferable that the number is 15 / 0.1 mm 2 or less.
  • the cleaning may be performed at the elapse of a predetermined period set in advance based on the time when the number of fine particles and scratches on the surface of the flame resistant fiber is considered to exceed a predetermined number.
  • An oxidizing gas such as air is used for the hot air circulating in the flameproofing furnace. It is better to have less fine particles such as dust in the oxidizing gas. However, because such fine particles are constantly generated and adhered in the oxidizing gas for the above reasons, it is industrially difficult to make the concentration zero. is there. Therefore, it is preferable to filter when taking in the outside air to be supplied into the flameproofing furnace, or to make the material of the metal part used in the apparatus to be a rust-resistant material such as stainless steel. In addition, the amount of silicone oil used is kept low within the range where desired physical properties are expressed, or silicone oil containing amino-modified silicone with good heat resistance is used to decompose the silicone oil in a flameproof furnace.
  • the fine particle concentration at 2500 particles / L or less, for example, by suppressing it.
  • the tensile strength level of the carbon fiber obtained can be kept at a high level.
  • a light scattering particle counter (for example, RION KC-01E) can be used to measure the fine particle concentration. That is, gas is sucked for 34 seconds at a sample gas flow rate of 0.5 L / min, and 0.5 ⁇ m to less than 1.0 ⁇ m, 1.0 ⁇ m to less than 2.0 ⁇ m, 2.0 ⁇ m to less than 5.0 ⁇ m contained in 0.283 L
  • the number of four-stage particles of 5.0 ⁇ m or more is simultaneously measured, and the values are set as D 0.5 , D 1.0 , D 2.0 , and D 5.0 (pieces / 0.283 L), respectively.
  • grain into the particle number of 5.0 micrometers by the following conversion formulas is made into fine particle concentration.
  • the flame resistance of the carbon fiber precursor fiber 2 is performed in an oxidizing atmosphere, specifically, as hot air at a maximum temperature of 200 to 300 ° C. under tension or stretching conditions.
  • an oxidizing atmosphere specifically, as hot air at a maximum temperature of 200 to 300 ° C. under tension or stretching conditions.
  • treated flame-resistant to a density of oxidized fiber after flame treatment is 1.30g / cm 3 ⁇ 1.40g / cm 3. If it is less than 1.30 g / cm 3 , the degree of progress of flame resistance is insufficient, and the carbon fiber obtained is likely to cause fusion between single yarns during pre-carbonization treatment and carbonization treatment performed after the flame resistance treatment. The quality of the product tends to deteriorate.
  • the density of the flame-resistant fiber used for the fiber may exceed 1.40 g / cm 3 .
  • it exceeds 1.50 g / cm 3 the time for firing the flameproof fiber becomes longer, which is not economically preferable. Therefore, it is preferred to treat oxidization to be in the range of 1.30g / cm 3 ⁇ 1.50g / cm 3.
  • the hot air (oxidizing atmosphere) that fills the heat treatment chamber 3 of the flameproofing furnace 1 for performing the cleaning method of the present invention is not particularly limited as long as it is a gas containing oxygen, but air is used in terms of industrial production. Is particularly excellent in terms of economy and safety. Further, the oxygen concentration in the hot air can be changed for the purpose of adjusting the oxidation ability.
  • Flame-resistant fibers obtained by flame-proofing are pre-carbonized at a maximum temperature of 300 to 1000 ° C in an inert atmosphere to produce pre-carbonized fibers, and carbonized at a maximum temperature of 1000 to 2000 ° C in an inert atmosphere. Carbon fiber is produced by processing. Further, after the carbon fiber is produced, it can be graphitized at a maximum temperature of 2000 to 3000 ° C. in an inert atmosphere to produce a graphitized fiber.
  • the maximum temperature of the inert atmosphere in the pre-carbonization treatment is preferably 550 to 800 ° C.
  • a known inert atmosphere such as nitrogen, argon, or helium can be adopted, but nitrogen is preferable from the viewpoint of economy.
  • the pre-carbonized fiber obtained by the pre-carbonization process is then fed into a carbonization furnace and carbonized.
  • a carbonization furnace In order to improve the mechanical properties of the carbon fiber, it is preferable to perform carbonization treatment at a maximum temperature of 1200 to 2000 ° C. in an inert atmosphere.
  • the inert atmosphere filling the carbonization furnace a known inert atmosphere such as nitrogen, argon or helium can be adopted, but nitrogen is preferable from the viewpoint of economy.
  • the carbon fiber thus obtained may be graphitized at a maximum temperature of 2000 to 3000 ° C. in an inert atmosphere, if necessary.
  • a sizing agent may be added.
  • the type of the sizing agent is not particularly limited as long as desired characteristics can be obtained, and examples thereof include a sizing agent mainly composed of an epoxy resin, a polyether resin, an epoxy-modified polyurethane resin, and a polyester resin. A known method can be used to apply the sizing agent.
  • the carbon fiber may be subjected to electrolytic oxidation treatment or oxidation treatment for the purpose of improving the affinity and adhesion with the fiber reinforced composite material matrix resin, if necessary.
  • the oxidizing gas having a temperature of 40 ° C. or higher is circulated in the flameproofing furnace and separated from the wall surface.
  • the dust adhering to the inside of the flameproofing furnace can be efficiently removed.
  • the productivity of flameproof fibers can be improved and the maintenance cost can also be reduced.
  • the accumulation of dust in the flameproofing furnace is reduced, flameproof fiber without yarn breakage can be obtained, and as a result, high-quality carbon fiber can be produced from the early stage of restarting the flameproofing furnace 1. .
  • the flame-resistant fiber was cut into a length of about 3 cm and fixed to a sample stage for an electron microscope so as not to move using a carbon tape. At this time, the yarn was spread thinly and uniformly, and was fixed so that the sample stage was not observed and the single yarns were not overlapped as much as possible.
  • the particle size of the particle is represented by the length of the short diameter when the particle is approximated to an ellipse based on the least square method
  • the size of the scratch is also the value when the scratch is approximated to an ellipse based on the least square method Expressed as the length of the minor axis. This observation was repeated over 1000 observation points, and the number of observed dust was divided by the total observation area and converted to the number of fine particles per 0.1 mm 2 .
  • Example 1 A spinning stock solution was obtained by solution polymerization of a copolymer obtained by copolymerizing 99 mol% of acrylonitrile and 1 mol% of itaconic acid. This spinning dope was once discharged into the air using a spinneret and coagulated by a dry and wet spinning method introduced into a coagulation bath. The obtained coagulated yarn is washed with water, drawn and oiled, and then dried and steam drawn to obtain a polyacrylonitrile-based carbon fiber precursor fiber having a single yarn fineness of 1.1 dtex and a single yarn number of 10,000. It was.
  • Oils include amino-modified dimethylsiloxane oil components that are water-dispersed using nonionic surfactants, and oil agents that are water-soluble by modifying dimethylpolysiloxane with polyethylene glycol, etc. A mixed amount was used.
  • the carbon fiber precursor fiber was continuously fed into the flameproofing furnace 1 shown in FIGS. 1 and 6 and subjected to a flameproofing treatment.
  • the temperature in the heat treatment chamber 3 was set to 250 ° C., and the carbon fiber precursor fiber 2 was subjected to flame resistance treatment under tension.
  • the hot air outlet 5 in the flameproofing furnace 1 for flameproofing the polyacrylonitrile-based carbon fiber precursor fiber 2 to which the silicone-based oil is adhered under the above-mentioned flameproofing conditions has a large number of holes of ⁇ 10 mm made of SUS304 as a current plate.
  • a perforated plate having a thickness of 2 mm was provided and subjected to flameproofing treatment continuously for one week.
  • the obtained flame-resistant fiber was then fired at a maximum temperature of 700 ° C. in a pre-carbonization furnace, then fired at a maximum temperature of 1400 ° C. in a carbonization furnace, and subjected to sizing after electrolytic surface treatment to obtain a carbon fiber. .
  • the flameproofing furnace 1 was stopped, and using the high pressure washer TRY-5NX2 manufactured by Ariko Kogyo Co., Ltd., the wall surface inside the flameproofing furnace was perpendicular to the surface to be cleaned. Washing was performed by supplying high-pressure water uniformly from a position 5.2 m away and bringing the high-pressure water into contact therewith. At this time, the pressure of the cleaning water contacting the wall surface to be cleaned was 2 MPa in the direction perpendicular to the wall surface. A prescale LWPS manufactured by FUJIFILM Corporation was used for pressure measurement. It took 10 hours to clean the entire flameproofing furnace, and the cleaning water was discharged out of the flameproofing furnace. Then, 80 degreeC hot air was circulated in the flameproofing furnace 1 using the air blower 8, and the inside of the flameproofing furnace was dried.
  • TRY-5NX2 manufactured by Ariko Kogyo Co., Ltd.
  • the flameproofing furnace 1 was restarted and the carbon fiber precursor fiber 2 was flameproofed. After the continuous treatment for 6 weeks, the inside of the flameproofing furnace was confirmed, and the perforated plate installed in the hot air outlet 5 was not clogged.
  • the measurement result of the number of fine particles and scratches adhered to the flameproof fiber obtained one week after the start of operation was 18 / 0.1 mm 2 .
  • Example 2 After one week of continuous flameproofing treatment, the flameproofing furnace 1 was stopped, and after performing high pressure washing, washing water discharge and drying as in Example 1, the circulation system of the flameproofing furnace as shown in FIG. A part of the duct was shut off by the switching valve 14, the exhaust port 13 and the air supply port 15 were opened, and the dust in the furnace was discharged by wind power from the blower 8. At this time, 90% of the suction air volume of the blower was exhausted, and the same amount of fresh air was introduced. By this operation, the wind speed in the flameproofing furnace changed instantaneously. Thereafter, the flameproofing furnace 1 was restarted, and the carbon fiber precursor fiber 2 was flameproofed. After the continuous treatment for 8 weeks, the inside of the flameproofing furnace was confirmed, and the perforated plate installed at the hot air outlet 5 was not clogged.
  • the measurement result of the number of fine particles and scratches attached to the flameproof fiber obtained one week after the start of operation was 14 / 0.1 mm 2 .
  • Example 3 After one week of continuous flameproofing treatment, the flameproofing furnace 1 was stopped, and cleaning was performed by supplying high-pressure water to the wall surface inside the flameproofing furnace from a position 4.3 m vertically away from the surface to be cleaned. Except for this, the procedure was the same as in Example 2. At this time, the pressure of the cleaning water contacting the wall surface to be cleaned was 3 MPa in the vertical direction. A prescale LLWPS manufactured by Fuji Film Co., Ltd. was used for pressure measurement. It took 8 hours to clean the entire flameproofing furnace. The flameproofing furnace 1 was restarted, and the carbon fiber precursor fiber 2 was flameproofed. After the continuous treatment for 9 weeks, the inside of the flameproofing furnace was confirmed, and the perforated plate installed at the hot air outlet 5 was not clogged.
  • the measurement result of the number of fine particles and scratches attached to the flameproof fiber obtained one week after the start of operation was 12 / 0.1 mm 2 .
  • Example 4 After the continuous flameproofing treatment for one week, the flameproofing furnace 1 was stopped and the temperature of the hot air circulated in the flameproofing furnace 1 was changed to 100 ° C., and was the same as in Example 3. Thereafter, the flameproofing furnace 1 was restarted, and the carbon fiber precursor fiber 2 was flameproofed. After the continuous treatment for 10 weeks, the inside of the flameproofing furnace was confirmed, and the perforated plate installed at the hot air outlet 5 was not clogged.
  • the measurement result of the number of fine particles and scratches adhered to the flameproof fiber obtained one week after the start of operation was 10 / 0.1 mm 2 .
  • Example 5 After one week of continuous flameproofing treatment, the flameproofing furnace 1 is stopped, and the same high pressure washing as in Example 3, discharge of washing water, drying in the furnace by circulating hot air, exhaust (discharge of dust), intake of fresh air After performing the above, before restarting the flameproofing furnace 1, the same high pressure washing as in Example 3, washing water discharge, drying in the furnace by circulating hot air, exhaust (dust discharge), and intake of fresh air are performed. It was. Thereafter, the flameproofing furnace 1 was restarted, and the carbon fiber precursor fiber 2 was flameproofed. After 11 weeks of continuous treatment, the inside of the flameproofing furnace was confirmed, and the perforated plate installed at the hot air outlet 5 was not clogged.
  • the measurement result of the number of fine particles and scratches adhered to the flameproof fiber obtained one week after the start of operation was 10 / 0.1 mm 2 .
  • Example 6 After one week of continuous flameproofing treatment, the flameproofing furnace 1 is stopped, and the same high pressure washing as in Example 4, washing water discharge, drying in the furnace by circulating hot air, exhaust (dust discharge), intake of fresh air Then, before restarting the flameproofing furnace 1, the same high pressure washing as in Example 4, washing water discharge, drying in the furnace by circulating hot air, exhaust (dust discharge), and intake of fresh air are performed. It was. Thereafter, the flameproofing furnace 1 was restarted, and the carbon fiber precursor fiber 2 was flameproofed. After the continuous treatment for 12 weeks, the inside of the flameproofing furnace was confirmed, and the perforated plate installed in the hot air outlet 5 was not clogged.
  • the measurement result of the number of fine particles and scratches attached to the flameproof fiber obtained one week after the start of operation was 8 / 0.1 mm 2 .
  • Example 1 the measurement result of the number of fine particles and scratches attached to the flameproof fiber obtained one week after the start of operation was 43 / 0.1 mm 2 .
  • the flameproofing furnace 1 was restarted again, and the carbon fiber precursor fiber 2 was flameproofed. However, after continuous operation for 2 weeks, yarn breakage occurred in the flameproofing furnace, so the operation was stopped. When the operation was stopped and entered into the flameproofing furnace 1, it was confirmed that a plurality of portions clogged in the porous plate installed in the hot air outlet 5 were confirmed.
  • Example 1 the measurement result of the number of fine particles and scratches attached to the flameproof fiber obtained one week after the start of operation was 33 / 0.1 mm 2 .
  • the flameproofing furnace 1 was restarted again, and the carbon fiber precursor fiber 2 was flameproofed. However, after continuous operation for 3 weeks, yarn breakage occurred in the flameproofing furnace, so the operation was stopped. When the operation was stopped and entered into the flameproofing furnace 1, it was confirmed that a plurality of portions clogged in the porous plate installed in the hot air outlet 5 were confirmed.
  • Example 1 the measurement result of the number of fine particles and scratches attached to the flameproof fiber obtained one week after the start of operation was 25 / 0.1 mm 2 .
  • the flameproofing furnace 1 was restarted again, and the carbon fiber precursor fiber 2 was flameproofed. However, after continuous operation for 2 weeks, yarn breakage occurred in the flameproofing furnace, so the operation was stopped. When the operation was stopped and entered into the flameproofing furnace 1, it was confirmed that a plurality of portions clogged in the porous plate installed in the hot air outlet 5 were confirmed.
  • Example 1 the measurement result of the number of fine particles and scratches attached to the flameproof fiber obtained one week after the start of operation was 40 / 0.1 mm 2 .
  • the cleaning method of the present invention can remove the dust generated in the flameproofing treatment of the carbon fiber precursor fiber and adhered to the flameproofing furnace. As compared with the conventional cleaning method, it was evaluated that the flameproofing furnace can be operated continuously for a long time.
  • the cleaning method for a flameproofing furnace of the present invention can be suitably used for the production of flameproofed fibers and carbon fibers.

Abstract

【課題】 耐炎化炉の再稼働直後から高品質な炭素繊維を得ることができ、かつ耐炎化炉内の洗浄が容易にでき、生産を停止している期間を短縮可能な耐炎化炉の洗浄方法、および本洗浄方法を用いて耐炎化炉を洗浄する工程を有する耐炎化繊維の製造方法ならびに炭素繊維の製造方法を提供する。 【解決手段】 ポリアクリロニトリル系炭素繊維前駆体繊維を酸化性雰囲気中で耐炎化処理する耐炎化炉の洗浄方法であって、前記耐炎化炉は、酸化性気体が内部を循環する機構を有する耐炎化炉であり、該耐炎化炉の壁面に付着した粉塵に対し壁面に垂直な方向の圧力が2MPa以上となるように液体を接触させた後、該液体を耐炎化炉外に排出することで壁面から剥離した粉塵を耐炎化炉外に排出し、さらに、耐炎化炉内に温度40℃以上の酸化性気体を循環させる、耐炎化炉の洗浄方法。

Description

耐炎化炉の洗浄方法および耐炎化繊維、炭素繊維、黒鉛化繊維の製造方法
 本発明は、炭素繊維前駆体繊維を酸化性気体によって耐炎化して耐炎化繊維を製造するための耐炎化炉の洗浄方法に関する。
 炭素繊維は比強度、比弾性率、耐熱性、および耐薬品性に優れていることから、各種素材の強化材として有用であり、航空宇宙用途、レジャー用途、一般産業用途等の幅広い分野で使用されている。炭素繊維は、強度を要求される箇所に用いられることが多いため、極めて高い特性を均一かつ安定的に備えている必要があり、すなわち優れて高品質であることが要求されている。
 一般に、ポリアクリロニトリル系繊維から炭素繊維を製造する方法としては、ポリアクリロニトリル系重合体の単繊維を数千から数万本束ねた繊維(以下、炭素繊維前駆体繊維と略する。)を耐炎化炉に送入し、200~300℃に熱せられた空気等の酸化性雰囲気の熱風に晒すことにより加熱処理(耐炎化処理)した後、得られた耐炎化繊維を炭素化炉に送入し、300~1000℃の不活性ガス雰囲気中で加熱処理(前炭素化処理)した後に、さらに1000℃以上の不活性ガス雰囲気で満たされた炭素化炉で加熱処理(炭素化処理)する方法が知られている。また、中間材料である耐炎化繊維は、その燃え難い性能を活かして、難燃性織布向けの素材としても広く用いられている。
 炭素繊維の製造工程の中でも、耐炎化繊維の融着を回避するため炭素繊維前駆体繊維にはシリコーン系油剤がよく用いられている。
 ところで、工業生産規模の耐炎化処理には、熱風循環方式の耐炎化炉が広く用いられている。熱風循環方式の耐炎化炉は、炭素繊維前駆体繊維に耐炎化処理を行う熱処理室と、熱風を加熱し循環させるための熱風循環路とによる熱風循環系を構成している。熱風循環系によって熱風を何度も繰り返し利用できるため、熱風循環方式の耐炎化炉は、熱エネルギーの損失を少なくできるという利点がある。
 しかしながら、熱風循環方式の耐炎化炉は、熱風中に滞留する不純物が熱風循環系の外に排出されにくいため、粉塵等の不純物が耐炎化炉内の熱風中に長期にわたり滞留しやすいという欠点がある。特に、炭素繊維前駆体繊維に付与されたシリコーン系油剤から発生する粉塵は耐炎化炉内に蓄積し、耐炎化処理中の炭素繊維前駆体繊維にも付着する。前駆体繊維に付着した粉塵の付着点は、その後の炭素化処理における毛羽の発生や単糸切れの発生起点となり、得られる炭素繊維の品質を著しく低下させてしまう。
 耐炎化炉内に滞留する粉塵としては、前述したシリコーン系油剤由来の粉塵の他、シリコーン油剤以外の油剤成分の凝集物、炭素繊維前駆体繊維に付着して耐炎化炉の外から持ち込まれる粉塵、耐炎化炉内に流入する外気に含まれる粉塵、及びそれらの複合物からなる粉塵等も挙げられる。
 これらの粉塵が耐炎化炉内に滞留すると、前述のとおり得られる炭素繊維の著しい品質低下を招き安定した炭素繊維の生産ができなくなる。さらに、熱風吹出口の吹出し面に風速整流用の多孔板が設けられる場合、多孔板が目詰まりを起こして閉塞し、熱風の循環を滞らせてしまう原因となる。熱処理室内の熱風の循環が滞ると、炭素繊維前駆体繊維の除熱が円滑に行われず、炭素繊維前駆体繊維の糸切れを誘発してしまう。糸切れした炭素繊維前駆体繊維は、さらに他の炭素繊維前駆体繊維に絡む等して、他の走行域を走行する炭素繊維前駆体繊維の糸切れを誘発し、最悪の場合は火災に至る等、耐炎化炉の安定運転を妨げる原因にもなる。
 従って、従来の耐炎化炉では、長期間の連続稼動が困難であり、頻繁に稼動を停止して耐炎化炉内の清掃を行う必要があり、耐炎化繊維の生産効率向上の足枷になっていた。また、耐炎化炉の清掃に要するメンテナンス費用は多大である。加えて近年では生産量の拡大に伴い耐炎化炉が大型化する一方で、高品質な耐炎化繊維および炭素繊維の生産を目的に耐炎化炉内の風速斑低減のため耐炎化炉内の構造は複雑化しており、熱風が循環する流路全てを作業者が直接入って完全に洗浄することが難しくなっている。
 熱風循環方式の耐炎化炉において、生産効率の向上、及びメンテナンス費用の低減を図るには、耐炎化炉内の粉塵を如何に低減するかにかかっている。粉塵を低減するには、粉塵の生成要因を取り除く、或いは生成された粉塵を熱風循環系から排出する等に加え、耐炎化炉内に付着した粉塵の効率的な除去が考えられる。
 この課題に対し、例えば特許文献1では、耐炎化炉整流板上部に散水ノズルと排水口を設け、整流板に付着した粉塵を洗浄除去する耐炎化炉が提案されている。この耐炎化炉によれば、粉塵が付着して閉塞した整流板に向けて散水する作業を人手で実施する必要が無くなり清掃が容易になるとしている。また、特許文献2では熱風循環路から熱風を取り込んで不純物を凝集させ、再び熱風を熱風循環路に戻す凝集機構を有する耐炎化炉が提案されている。この耐炎化炉によれば、粉塵を効率的に熱風から除去することができ、操業性の向上ができるとしている。さらに、特許文献3では、最も粉塵が発生する耐炎化初期の炭素繊維前駆体繊維走行域を通過した酸化性気体を、循環させずに炉外に排出する耐炎化炉が提案されている。この耐炎化炉によれば、炉内に付着する粉塵を大幅に低減することができ、長時間の連続運転が可能になるとしている。また、特許文献4では熱風循環路に排気口を設けた耐炎化炉が提案されている。この耐炎化炉によれば、炉内清掃後の再稼動前に、熱風循環系の熱風を排気口から熱風循環系の外に排気するので、耐炎化炉内に残留する粉塵を低減でき、以って再稼動後の初期に生じる耐炎化繊維の品質低下を防ぐことができるとしている。
特開2001-316946公報 特開2012-201997公報 特開2008-231611公報 特開平8-311723公報
 しかしながら、特許文献1記載の耐炎化炉では、付着した粉塵を一定量除去する効果はあるものの、ただ散水しただけでは洗浄・除去効果は不十分であった。
 特許文献2記載の耐炎化炉でも、耐炎化炉内に付着する粉塵を低減する効果はあるものの、熱風を全て凝集装置で処理することは設備の大型化につながり、熱エネルギー損失の観点からも好ましくない。そのため、結局熱風の一部のみを処理する構造が現実的となり、炉内の粉塵付着を完全に防げるわけではない。また、一定期間ごとに作業者が炉内に入り洗浄する必要があることから、依然として効率的な洗浄方法が求められていた。
 特許文献3記載の耐炎化炉では、粉塵を最も多く発生する領域を通過した熱風を耐炎化炉外に排出するため耐炎化炉内に付着する粉塵を低減する効果はあるものの、熱風を排出する分、熱エネルギー損失の観点から好ましくない。また付着を完全に防げるわけではないため、一定期間ごとに作業者が炉内に入り洗浄する必要があることから、依然として効率的な洗浄方法が求められていた。
 特許文献4記載の耐炎化炉においても、耐炎化炉の再稼動後の初期に生じる耐炎化繊維の品質低下を防ぐことはできるものの、耐炎化炉内の粉塵を完全に除去できるわけではない。そのため、依然として耐炎化炉内の清掃が必要であり、また効率的な洗浄方法も求められていた。
 本発明は、前記事情に鑑みてなされたものであって、耐炎化炉の再稼働直後から高品質な炭素繊維を得ることができ、かつ耐炎化炉内の洗浄が容易にでき、生産を停止している期間を短縮可能な耐炎化炉の洗浄方法、および本洗浄方法を用いて耐炎化炉を洗浄する工程を有する耐炎化繊維の製造方法ならびに炭素繊維の製造方法を提供することを目的とする。
 上記課題を解決するための本発明は、以下のいずれかの構成を採用するものである。
(1) ポリアクリロニトリル系炭素繊維前駆体繊維を酸化性雰囲気中で耐炎化処理する耐炎化炉の洗浄方法であって、前記耐炎化炉は、酸化性気体が内部を循環する機構を有する耐炎化炉であり、該耐炎化炉の壁面に付着した粉塵に対し壁面に垂直な方向の圧力が2MPa以上となるように液体を接触させた後、該液体を耐炎化炉外に排出することで壁面から剥離した粉塵を耐炎化炉外に排出し、さらに、耐炎化炉内に温度40℃以上の酸化性気体を循環させる、耐炎化炉の洗浄方法。
(2) 酸化性気体を循環させた後、該酸化性気体を耐炎化炉外に排出することで壁面から剥離した粉塵をさらに耐炎化炉外に排出する、前記(1)に記載の耐炎化炉の洗浄方法
(3)耐炎化炉内に酸化性気体を循環させた後、次いで耐炎化炉内の酸化性気体の風向または風速を切り替え、その後に壁面から剥離した粉塵を耐炎化炉外に排出する、前記(2)に記載の耐炎化炉の洗浄方法。
(4) 耐炎化炉内に循環させる前記酸化性気体の温度が80℃以上である、前記(1)~(3)のいずれかに記載の耐炎化炉の洗浄方法。
(5) 前記(1)~(4)のいずれかに記載の耐炎化炉の洗浄方法により耐炎化炉を洗浄した後、ポリアクリロニトリル系炭素繊維前駆体繊維を耐炎化炉内で酸化性雰囲気中最高温度200~300℃で耐炎化処理する耐炎化繊維の製造方法。
(6) 前記(5)に記載の耐炎化繊維の製造方法により耐炎化繊維を製造した後、該耐炎化繊維を不活性雰囲気中最高温度300~1000℃で前炭素化処理して前炭素化繊維を製造し、該前炭素化繊維を不活性雰囲気中最高温度1000~2000℃で炭素化処理する炭素繊維の製造方法。
(7) 前記(6)に記載の炭素繊維の製造方法により炭素繊維を製造した後、該炭素繊維を不活性雰囲気中最高温度2000~3000℃で黒鉛化処理する黒鉛化繊維の製造方法。
 本発明の耐炎化炉の洗浄方法によれば、高品質な耐炎化繊維を安定的に得ることができ、かつ耐炎化炉の長期的な連続稼動が可能となる。また、耐炎化炉を停止して行う炉内の洗浄を容易にすることで洗浄に要する時間と手間を低減でき、生産を停止している期間を短くすることができる。
耐炎化炉を示す概略側面図である。 耐炎化炉を示す別の概略側面図である。 洗浄装置を備えた耐炎化炉を示す概略側面図である。 洗浄装置を備えた耐炎化炉を示す別の概略側面図である。 付着した粉塵を耐炎化炉外に排出する排気経路を示す概略図である。 給気口を供えた耐炎化炉を示す概略図である。
 本発明は、ポリアクリロニトリル系炭素繊維前駆体繊維を酸化性雰囲気中で耐炎化処理する耐炎化炉の洗浄方法であって、酸化性気体が内部を循環する機構を有する耐炎化炉において実施される。耐炎化炉1は、熱風循環系と、排出手段とを有する。熱風循系は、図1および図2に示すように、多段の走行域を折り返しながら走行する炭素繊維前駆体繊維2に熱風を吹きつけて耐炎化処理する熱処理室3と、熱風を熱処理室3内に吹き込むとともに熱処理室3外に排出することにより、熱風を熱風循環系内で循環させる熱風循環路4とを有する。
 熱処理室3内には、炭素繊維前駆体繊維2の走行域に熱風を吹き込むための熱風吹出口5と、炭素繊維前駆体繊維2の走行域から熱風を熱処理室3外に排出する熱風排出口6とを備えている。また、熱風循環路4の経路途中には、熱風を加熱する加熱器7と、熱風の風速を制御する送風器8とが設けられている。また、図5に示すように、炭素繊維前駆体繊維2から発生するHCN等のガスの濃度を一定値以下に抑えるため、これらのガスを含んだ熱風を熱風循環系の外に排出するための排気ファン16、及びガスを処理するための排ガス燃焼装置17を設けていてもよい。
 炭素繊維前駆体繊維2は、耐炎化炉1の熱処理室3側壁に設けたスリット9から熱処理室3内に送入され、熱処理室3内を直線的に走行した後、対面の側壁のスリットから熱処理室3外に一旦送出される。その後、熱処理室3外の側壁に設けられたガイドロール10によって折り返され、再び熱処理室3内に送入される。このように、炭素繊維前駆体繊維2は複数のガイドロール10によって走行方向を複数回折り返すことで、熱処理室3内への送入送出を複数回繰り返して、熱処理室3内を多段で、全体として図1の上から下に向けて移動する。なお、移動方向は下から上でもよく、熱処理室3内での炭素繊維前駆体繊維2の折り返し回数は特に限定されず、耐炎化炉1の規模等によって適宜設計される。なおガイドロール10は、熱処理室3の内部に設けてもよい。
 炭素繊維前駆体繊維2は、折り返しながら熱処理室3内を走行している間に、熱風吹出口5から吹き付けられる熱風によって耐炎化処理されて、耐炎化繊維となる。なお、図示しないが、炭素繊維前駆体繊維2は紙面に対して垂直な方向に複数本並行するように引き揃えられた幅広のシート状の形態を有している。
 熱風吹出口5には、その吹き出し面に多孔板等の抵抗体及びハニカム等の整流部材(ともに不図示)を配して圧力損失を持たせるのが好ましい。整流部材により、熱処理室3内に吹き込む熱風を整流し、熱処理室3内により均一な風速の熱風を吹き込むことができる。
 熱風排出口6には、熱風吹出口5と同様に、その吸い込み面に多孔板等の抵抗体を配して圧力損失を持たせてもよく、必要に応じて適宜決定される。
 熱風吹出口5によって熱処理室3内に吹き込まれた熱風は、熱処理室3内を上方から下方へ、すなわち排出口6側に向かって流れながら炭素繊維前駆体繊維2を加熱する。下流に達した熱風は、熱風排出口6によって熱処理室3外に排出され、熱風循環路4に導かれる。そして、熱風循環路4の途中に設けられた加熱器7によって所望の温度に加熱され、送風器8によって風速が制御された上で、再び熱風吹出口5から熱処理室3内に吹き込まれる。このようにして、耐炎化炉1は、熱処理室3と熱風循環路4からなる熱風循環系によって、熱処理室3内に所定の温度と風速の熱風を流すことができるようになっている。熱風の風向は熱処理室3の上から下の方向に限定されず、下から上の方向に流すことや、走行糸する糸と平行する方向に流しても良い。
 なお、耐炎化炉1に用いられる加熱器7としては、所望の機能を有していれば特に限定されず、例えば電気ヒーター等の公知の加熱器を用いればよい。送風器8に関しても、所望の機能を有していれば特に限定されず、例えば軸流ファン等の公知の送風器を用いればよい。
 炭素繊維前駆体繊維2からのシリコーン系油剤の揮発物は、該炭素繊維前駆体繊維2を熱処理室3内へ送入した直後から発生する。発生した揮発物は熱処理室3と熱風循環路4からなる循環系から排出されにくいため、該揮発物から発生する粉塵が循環系内に付着する。耐炎化炉の壁面に付着した粉塵は一定以上の量になると振動や衝撃によって剥離し、循環熱風によって熱風吹出口5等の圧力損失が大きい場所に運ばれ閉塞をもたらす。また、浮遊する粉塵が走行する糸に触れると単糸切れの起点となり、ひいては炭素繊維の著しい品質低下をもたらす。ゆえに、高品質な炭素繊維を安定的に生産し、かつ多孔板の閉塞を長期にわたって防ぐには、閉塞した熱風吹出口5のみでなく、循環系全体を洗浄することが効果的であり、循環気体に接する全ての壁面を洗浄することが好ましい。
 本発明の洗浄方法は、上述のような、ポリアクリロニトリル系炭素繊維前駆体繊維を酸化性雰囲気中で耐炎化処理する耐炎化炉1の洗浄方法である。具体的には、酸化性気体が内部を循環する機構を有する耐炎化炉1を洗浄する方法において、耐炎化炉1の壁面に付着した粉塵に対し壁面に垂直な方向の圧力が2MPa以上となるように液体を接触させた後、該液体を耐炎化炉1外に排出することで壁面から剥離した粉塵を耐炎化炉1外に排出し、さらに、耐炎化炉内に温度40℃以上の酸化性気体を循環させることを特徴とするものである。液体洗浄する際、壁面に垂直な方向の液体の圧力が2MPa未満では、流体の接触による衝撃力が耐炎化炉の壁面に付着した粉塵の除去に不十分で洗浄に時間を要するだけでなく、長時間洗浄しても除去効果が乏しい。そのため、接触する液体の圧力は壁面に垂直な方向に2MPa以上であることが必須であり、3MPa以上であることが好ましく、3.5MPa以上であることがより好ましい。一方、圧力に対する効果の飽和を考慮すると、10MPa以下であることも好ましい。なお、壁面に付着した粉塵に対して作用する壁面に垂直な方向の圧力は、壁面に接触する流体の圧力を測定すればよい。
 壁面に液体を接触させる時間は粉塵の付着具合によって適宜決定されるが、同一箇所につき1秒以上が好ましく、3秒以上がより好ましい。一方、時間に対する効果の飽和を考慮すると、1分以下であることも好ましい。
 壁面に接触する液体の圧力の測定方法は特に限定されないが、感圧フィルム(例えば、富士フイルム社 プレスケールLWPS または LLWPS)を用いればよい。
 洗浄に使用する液体は特に限定されないが経済性の面から水が好ましい。水は界面活性剤などの添加剤を含んでいてもよく、イオン交換水でもよく、純水でもよい。
 本発明の洗浄方法においては、洗浄に用いた液体を耐炎化炉1外に排出することで、壁面から剥離した粉塵も耐炎化炉1外に排出することができる。そのため耐炎化炉1の底部には、洗浄に用いた液体を短時間で耐炎化炉外へ排出するための抜出口(不図示)を設けることが好ましい。
 また、本洗浄方法は作業者が直接炉内に入って実施しても良いが、図3および図4に示すように、外部から操作可能な洗浄ノズル11を少なくとも1つ含む洗浄装置12を設け、遠隔操作してもよい。洗浄装置12は耐炎化炉1内のどこに設置されても良いが、作業者が直接内部に入って洗浄することが難しい、短辺が600mm以下の流路内に設置することがより好ましい。
 上記の方法で洗浄した後、送風機8などを用いて酸化性気体を耐炎化炉内に循環させて炉内を乾燥させると、除去しきれず壁面に付着したままの粉塵の体積が変化し粉塵が剥離することにより、さらに十分な洗浄効果が得られる。とくにこの酸化性気体が熱風であることによって、耐炎化炉1と付着粉塵の熱膨張率の差が生じること、および付着粉塵と耐炎化炉壁面との間の水分が気化する時の体積変化に伴う衝撃によって、粉塵が除去される。
 熱風を導入する際、熱処理室3および熱風循環路4に設置された温度計で測定した熱風の温度が40℃以上であることが必須であり、60℃以上、さらには80℃以上であることが好ましい。一方上限としては、200℃以下、さらには150℃以下が好ましい。このような温度範囲になるよう炉内を加熱することが好ましい。温度測定の方法は所望の機能を有していれば特に限定されず、例えば熱伝対等の公知の温度計を用いればよい。
 熱風の加熱・供給方法は特に限定されないが、熱エネルギーの損失を少なくするため公知のヒーター等で加熱した後、耐炎化炉1内に熱風を循環させることが好ましい。
 循環させた気体は、剥離した粉塵を含むことから循環後に全量を耐炎化炉外に排出することが好ましい。循環させた酸化性気体を耐炎化炉外に排出することで、壁面から剥離した粉塵をさらに耐炎化炉外に排出できる。
 また、循環させる酸化性気体の風速が変わることによる付着粉塵に加わる衝撃力が、耐炎化炉の壁面に付着した粉塵の除去に効果的である。そのため、図5および図6に示すように、熱風を耐炎化炉1内に循環させる送風器8の排出側に、該送風器8の吸引風量の13~100%の風量を排出可能である開閉機構を備えた排気口13と、該排気口と循環ダクトの連通を遮断可能とする切り替え弁14とを設けることがより好ましい。なお、付着粉塵に衝撃力を与えるには、風速を変えるのではなく、風向を変えることによってもよい。風向をかえることによっても同様の効果が奏することができる。
 さらに、新鮮な給気を効率的に実施するため、図7に示すように排気口13の下流側に開閉機構を備えた給気口15を有し、かつ該給気口15と前記排気口13の間の循環ダクトの連通を遮断可能とする切り替え弁14を設ける構成がより好ましい。
 なお、気体の風向・風速を変更する方法としては、送風器8の回転数をプログラミングコントローラを用いて断続的に変動させる方法や、熱処理室3または熱風循環路4内に気体噴出装置をあらかじめ設置し、気体を噴出させる方法を用いてもよい。
 洗浄したい面に垂直な方向に2MPa以上の流体を接触させること、洗浄後に炉内を乾燥させること、および、気体を循環させ風向を切替えて耐炎化炉外に排出させることは、複数回実施してもよく、それぞれの回数は限定されない。
 このように、炭素繊維生産後に炉内に付着している粉塵を効率的に除去する洗浄方法を行うことにより、熱エネルギーの損失が少ない熱風循環方式の耐炎化炉を使用しながら、熱風循環方式の欠点である耐炎化炉内に付着した粉塵の除去が容易になる。ゆえに、耐炎化炉内の清掃に要する時間と労力を低減できるため、従来の耐炎化炉洗浄に比べてメンテナンス費用を大幅に軽減できる。また、清掃しきれず残っていた付着粉塵量が減ることにより耐炎化炉の長期的な連続稼動が可能となることで、耐炎化繊維の生産性が向上できる。さらには、再稼働直後に清掃しきれず残っていた付着粉塵の再飛散による炭素繊維および耐炎化繊維の品質低下を抑えることができるので、高品質な炭素繊維および耐炎化繊維を運転開始直後から均一かつ安定して製造できる。
 前記においては、いわゆる横型耐炎化炉について説明したが、本発明の洗浄方法は熱処理室3が上下方向に延びる縦型耐炎化炉においても全く同様に実施することができる。
 また、本発明の洗浄方法は、複数の耐炎化炉を用いた炭素繊維の製造方法において、それぞれの炉で実施してもよいが、シリコーン油剤由来の揮発物は、その大部分が耐炎化処理の初期において発生するため、少なくとも最初の耐炎化処理を行う耐炎化炉の洗浄に、本発明の耐炎化炉の洗浄方法を用いることが好ましい。これにより、炭素繊維前駆体繊維1からの揮発物によって発生し耐炎化炉1内に付着した粉塵を、耐炎化炉1内から効率よく取り除くことができ、製造装置再稼働直後の炭素繊維の品質低下を抑制できる。よって、本発明の洗浄方法を用いれば、複数の耐炎化炉を使用した場合においても、複数の耐炎化炉の長期的な連続運転が可能となる。
 次に、本発明の洗浄方法を用いて洗浄された耐炎化炉1を用いた炭素繊維の製造方法について説明する。
 本発明の炭素繊維の製造方法に用いられる炭素繊維前駆体繊維としては、ポリアクリロニトリル系繊維が用いられる。ポリアクリロニトリル系繊維は、アクリルニトリル系重合体を有機溶剤あるいは無機溶剤に溶解し、通常用いられる方法にて紡糸されるが、特にその紡糸方法、及び紡糸条件に制限はない。
 本発明で使用されるポリアクリロニトリル系繊維に付与されるシリコーン系油剤には、少なくともその一部にアミノ変性シリコーンを含む必要がある。ポリアクリロニトリル系繊維に付与するシリコーン系油剤の付着量は、好ましくは0.05~3質量%、より好ましくは0.3~1.5質量%である。かかるシリコーン系油剤には、さらに界面活性剤、熱安定剤などが加えられていてもよい。また、シリコーン系油剤の種類としては、ジメチルシロキサンならびにそれらを官能基で変性したものが好ましく用いられ、必須成分としてアミノ基で変性したアミノ変性ジメチルシロキサンを含むほか、ポリエチレンオキシド変性ジメチルシロキサンや、エポキシ変性ジメチルシロキサンと混合して用い、熱安定性を増加したものがより好ましい。
 このようにして得られたポリアクリロニトリル系繊維を、最高温度が200~300℃で熱処理することで耐炎化処理を行う。
 耐炎化処理のための熱処理炉内では、シリコーン系油剤が加熱・酸化されて生成される粉塵などの微粒子や、熱処理炉の周辺外気や装置からの金属元素を含む微粒子や粉塵などの微粒子が、炭素繊維の連続生産により炉内に溜まり、これが品質低下の原因となる。より詳細には、高引張強度の炭素繊維を得るのに好適な耐炎化繊維、およびその耐炎化繊維を用いた炭素繊維の製造に際し、粒径0.3μm以上の微粒子が炭素繊維表面に付着したり、微粒子によって耐炎化繊維表面に0.3μm以上の傷が形成されることで、炭素繊維の引張強度の低下をもたらすことが知られている。高引張強度の炭素繊維を安定的に生産するには耐炎化繊維表面の粒径が0.3μm以上の微粒子と0.3μm以上の傷の個数の合計を20個/0.1mm以内にすることが好ましく、15個/0.1mm以内がより好ましい。
 なお、耐炎化繊維表面の微粒子および傷の個数が上記個数を上回った時点で耐炎化炉の洗浄を行うのが好ましいが、必ずしも毎度上記個数を測定する必要は無い。たとえば耐炎化繊維表面の微粒子および傷の個数が所定の個数を上回ると考えらえる時間などに基づいてあらかじめ設定した一定期間経過ごとに洗浄を行ってもよい。
 耐炎化炉を循環する熱風には空気などの酸化性気体が用いられる。酸化性気体に存在する上記粉塵などの微粒子は少ないほうが良いが、かかる微粒子は上記の理由により酸化性気体中に絶えず発生、付着するため、その濃度をゼロにすることは工業的には困難である。そこで、耐炎化炉内に供給する外気を取り入れる時に濾過することや、装置に使用する金属部分の材質をステンレスなどのさびにくい材質とすることが好ましい。また、シリコーン系油剤の使用量を所望の物性が発現する範囲で低く抑えたり、耐熱性が良好なアミノ変性シリコーンを含有するシリコーン系油剤を使用して耐炎化炉でのシリコーン系油剤の分解を抑制したりすることなどにより、上記微粒子濃度を2500個/L以下に保つことも好ましい。これらによって、得られる炭素繊維の引張強度レベルを高い水準に保つことができる。微粒子濃度をできる限り小さくするためには、循環する酸化性気体の大部分を集塵処理することでも可能となるが、設備ないし運転コストを考慮すると、停機して行う炉内の洗浄を効率的に実施することで炉内の粉塵量を低減することが好ましい。
 微粒子濃度の測定には、光散乱式パーティクルカウンタ(例えば、RION社 KC-01E)を用いることができる。すなわち、試料気体流量0.5L/分で34秒間気体を吸引し、0.283Lに含まれる0.5μm以上1.0μm未満、1.0μm以上2.0μm未満、2.0μm以上5.0μm未満、5.0μm以上の4段階粒子数を同時に計測し、その値をそれぞれD0.5、D1.0、D2.0、D5.0(個/0.283L)とする。そして、以下の換算式によって各粒子の濃度を5.0μmの粒子数に換算した値を微粒子濃度とする。
 5.0μmの粒子数への換算式=[{D0.5/(5.0/0.5)}+{D1.0/(5.0/1.0)}+{D2.0/(5.0/2.0)}+D5.0]/0.283(個/L)。
 炭素繊維前駆体繊維2の耐炎化は、酸化性雰囲気中、具体的にその条件としては、最高温度200~300℃の熱風中、緊張あるいは延伸条件下で行われる。ここで、基本的には、耐炎化処理後の耐炎化繊維の密度が1.30g/cm~1.40g/cmになるまで耐炎化処理するのが好ましい。1.30g/cm未満では耐炎化の進行度が不充分であり、耐炎化処理後に行われる前炭素化処理及び炭素化処理の際に単糸間の融着を生じやすく、得られる炭素繊維の品質が低下しやすい。また、耐炎化繊維の密度が1.40g/cmを超えると、前炭素化処理及び炭素化処理の際に、耐炎化繊維に酸素が過度に導入され、最終的な炭素繊維の内部構造が緻密にならず、得られる炭素繊維の品質が低下しやすい。
 一方、耐炎化繊維を焼成加工して難燃性織布等の耐熱製品を製造する場合は、それに用いる耐炎化繊維の密度は1.40g/cmを超えていても構わない。ただし、1.50g/cmを超えると、耐炎化繊維を焼成加工する時間が長くなるため、経済的に好ましくない。そのため、1.30g/cm~1.50g/cmの範囲になるように耐炎化処理することが好ましい。
 本発明の洗浄方法を実施する耐炎化炉1の熱処理室3内を満たす熱風(酸化性雰囲気)としては、酸素を含む気体であれば特に制限されないが、工業生産の面からすると、空気を用いるのが経済面、安全面で特に優れている。また、酸化能力を調整する目的で、熱風中の酸素濃度を変更することもできる。
 耐炎化処理によって得られた耐炎化繊維は、不活性雰囲気中最高温度300~1000℃で前炭素化処理して前炭素化繊維を製造し、不活性雰囲気中最高温度1000~2000℃で炭素化処理して炭素繊維が製造される。さらに、炭素繊維を製造した後、不活性雰囲気中最高温度2000~3000℃で黒鉛化処理して黒鉛化繊維を製造することもできる。
 前炭素化処理における不活性雰囲気の最高温度は550~800℃が好ましい。前炭素化炉内を満たす不活性雰囲気としては、窒素、アルゴン、ヘリウム等の公知の不活性雰囲気を採用できるが、経済性の面から窒素が好ましい。
 前炭素化処理によって得られた前炭素化繊維は、次いで炭素化炉に送入されて炭素化処理される。炭素繊維の機械的特性を向上させるためには、不活性雰囲気中最高温度1200~2000℃で、炭素化処理するのが好ましい。
 炭素化炉内を満たす不活性雰囲気については、窒素、アルゴン、ヘリウム等の公知の不活性雰囲気を採用できるが、経済性の面から窒素が好ましい。
 このようにして得られた炭素繊維には、必要に応じて、不活性雰囲気中最高温度2000~3000℃で黒鉛化処理してもよい。また、炭素繊維の取り扱い性や、マトリックス樹脂との親和性を向上させるため、サイジング剤を付与してもよい。サイジング剤の種類としては、所望の特性を得ることができれば特に限定されないが、例えば、エポキシ樹脂、ポリエーテル樹脂、エポキシ変性ポリウレタン樹脂、ポリエステル樹脂を主成分としたサイジング剤が挙げられる。サイジング剤の付与は公知の方法を用いることができる。
 さらに炭素繊維には、必要に応じて、繊維強化複合材料マトリックス樹脂との親和性及び接着性の向上を目的とした電解酸化処理や酸化処理を行ってもよい。
 以上のように、本発明によれば、耐炎化炉内に付着した粉塵を2MPa以上の流体を接触させた後、耐炎化炉内に温度40℃以上の酸化性気体を循環させ、壁面から剥離した粉塵を耐炎化炉外に排出することにより、耐炎化炉内に付着する粉塵を効率的に除去することが可能になる。これにより、耐炎化繊維生産を停止して行う粉塵除去に要する作業時間が低減できるので、耐炎化繊維の生産性が向上でき、メンテナンス費用も低減できる。また、耐炎化炉内の粉塵の滞留が低減されるため、糸切れのない耐炎化繊維を得ることができ、ひいては耐炎化炉1の再稼働初期から高品質な炭素繊維を製造が可能となる。
 以下に、実施例によって本発明をさらに具体的に説明するが、本発明はこれらによって限定されない。なお、各特性の評価方法・測定方法は下記に記載の方法によった。
 <壁面に接触する流体の圧力測定>
 壁面に接触する流体の壁面に垂直な方向の圧力測定は、富士フイルム株式会社製プレスケールLWPSおよびLLWPSを壁面に固定し、防水シートをかぶせた上で壁面に垂直に流体を万遍なく接触させた。その後、該プレスケールLWPSおよびLLWPSを取り外し、エプソン製スキャナーGT-F740 GT-X830を用いて該プレスケールLWPSおよびLLWPSの色の濃淡を読み取り、富士フイルム製プレスケール圧力画像解析システムFPD-8010Jを用いて壁面の接触圧力を測定した。なお、5カ所でこの圧力測定を行ったが、得られた圧力値のうちの最大値を壁面に対する垂直方向の接触圧力として採用した。
 <耐炎化繊維に付着した微粒子と傷の個数の測定>
 耐炎化繊維を約3cmの長さに切り出し、カーボンテープを用いて動かないように電子顕微鏡用サンプル台に固定した。この際、糸条は薄く均一に拡げ、サンプル台が観察されないように、また、なるべく単糸の重なりがないように固定した。イオンスパッタ(例えば、日立ハイテクノロジーズ社製E-1030)を用いて白金パラジウム合金により30秒間蒸着を行った後、走査型電子顕微鏡(SEM;例えば、日立ハイテクノロジーズ社製S4800)で加速電圧5.0kV、3000倍の倍率で単糸表面を観察し(1視野は42μm×32μm)、粒径0.3μm以上の微粒子の個数と、0.3μm以上の傷の個数をカウントした。ここで粒子の粒径とは、粒子を最小二乗法に基づき楕円形と近似したときの短径の長さで表し、傷の大きさも、傷を最小二乗法に基づき楕円状に近似したときの短径の長さで表した。本観察を観察点数1000点にわたり繰り返し行い、観察された粉塵の個数を観察総面積で割り、0.1mmあたりの微粒子個数に換算した。
 (実施例1)
 アクリロニトリル99モル%とイタコン酸1モル%が共重合してなる共重合体を、溶液重合法により紡糸原液を得た。この紡糸原液を、紡糸口金を用いて一旦空気中に吐出し、凝固浴に導入する乾湿式紡糸法により凝固させた。得られた凝固糸を、水洗、延伸、油剤付与した後、乾燥させ、スチーム延伸することで、単糸繊度1.1dtex、単糸本数10,000本のポリアクリロニトリル系炭素繊維前駆体繊維を得た。油剤は、アミノ変性されたジメチルシロキサン油剤成分を、ノニオン系界面活性剤を用いて、水分散系としたものと、ジメチルポリシロキサンをポリエチレングリコールで変性して水溶性にした油剤を純分で等量混合したものを用いた。
 上記炭素繊維前駆体繊維を、図1、図6に示す耐炎化炉1に連続して送入し、耐炎化処理を行った。
 熱処理室3内の温度は250℃に設定し、炭素繊維前駆体繊維2を緊張下にて耐炎化処理した。
 シリコーン系油剤の付着したポリアクリロニトリル系炭素繊維前駆体繊維2を前述の耐炎化条件で耐炎化処理する耐炎化炉1内の熱風吹出口5に、整流板としてSUS304製のφ10mmの孔が多数空いた厚み2mmの多孔板を設け、1週間にわたり連続して耐炎化処理を行った。得られた耐炎化繊維を、その後、前炭素化炉において最高温度700℃で焼成した後、炭素化炉において最高温度1400℃で焼成し、電解表面処理後サイジングを施して、炭素繊維を得た。
 1週間の連続耐炎化処理の後、耐炎化炉1を停止し、有光工業株式会社製の高圧洗浄機TRY-5NX2を用いて、耐炎化炉内の壁面に、洗浄する面から垂直方向に5.2m離れた位置から満遍なく高圧水を供給して、該高圧水を接触させ、洗浄を行った。この時洗浄する壁面に接触する洗浄水の圧力は、壁面に垂直な方向に2MPaであった。圧力の測定には富士フイルム株式会社製プレスケールLWPSを用いた。耐炎化炉全体の洗浄には10時間を要し、洗浄水は耐炎化炉外へ排出した。その後、耐炎化炉1内に80℃の熱風を送風器8を用いて循環させ、耐炎化炉内を乾燥させた。
 本洗浄により多孔板に付着していた粉塵が除去されていることを確認し再度耐炎化炉1を再稼働し、炭素繊維前駆体繊維2の耐炎化処理を行った。6週間にわたる連続処理後、耐炎化炉内を確認したところ、熱風吹出口5に設置された多孔板に目詰まりはなかった。
 上記連続生産期間中、炭素繊維製造工程通過性は良好であった。
 運転開始から1週間後に得られた耐炎化繊維に付着した微粒子と傷の個数の測定結果は18個/0.1mmであった。
 (実施例2)
 1週間の連続耐炎化処理の後、耐炎化炉1を停止し、実施例1と同様に高圧洗浄、洗浄水排出、および乾燥を行った後、図5に示すように耐炎化炉の循環系ダクトの一部を切り替え弁14で遮断し、かつ排気口13、給気口15を開放して、送風器8による風力で炉内の粉塵を排出した。このとき送風器の吸引風量の90%の風量を排気し、同量の新鮮な空気を取り入れた。この操作により、耐炎化炉内の風速が瞬間的に変化した。その後耐炎化炉1を再稼働し、炭素繊維前駆体繊維2の耐炎化処理を行った。8週間にわたる連続処理後、耐炎化炉内を確認したところ、熱風吹出口5に設置された多孔板に目詰まりはなかった。
 上記連続生産期間中、炭素繊維製造工程通過性は良好であった。
 運転開始から1週間後に得られた耐炎化繊維に付着した微粒子と傷の個数の測定結果は14個/0.1mmであった。
 (実施例3)
 1週間の連続耐炎化処理の後、耐炎化炉1を停止し、耐炎化炉内の壁面に、洗浄する面から垂直方向に4.3m離れた位置から高圧水を供給して洗浄を実施した以外は実施例2と同様とした。この時、洗浄する壁面に接触する洗浄水の圧力は垂直方向に3MPaであった。圧力の測定には富士フイルム株式会社製プレスケールLLWPSを用いた。耐炎化炉全体の洗浄には8時間を要した。耐炎化炉1を再稼働し、炭素繊維前駆体繊維2の耐炎化処理を行った。9週間にわたる連続処理後、耐炎化炉内を確認したところ、熱風吹出口5に設置された多孔板に目詰まりはなかった。
 上記連続生産期間中、炭素繊維製造工程通過性は良好であった。
 運転開始から1週間後に得られた耐炎化繊維に付着した微粒子と傷の個数の測定結果は12個/0.1mmであった。
 (実施例4)
 1週間の連続耐炎化処理の後、耐炎化炉1を停止し、耐炎化炉1内に循環させた熱風の温度を100℃にした以外は実施例3と同様とした。その後耐炎化炉1を再稼働し、炭素繊維前駆体繊維2の耐炎化処理を行った。10週間にわたる連続処理後、耐炎化炉内を確認したところ、熱風吹出口5に設置された多孔板に目詰まりはなかった。
 上記連続生産期間中、炭素繊維製造工程通過性は良好であった。
 運転開始から1週間後に得られた耐炎化繊維に付着した微粒子と傷の個数の測定結果は10個/0.1mmであった。
 (実施例5)
 1週間の連続耐炎化処理の後、耐炎化炉1を停止し、実施例3と同様の高圧洗浄、洗浄水排出、熱風循環による炉内乾燥、排気(粉塵の排出)、新鮮な空気の取り入れを行った後、耐炎化炉1を再稼動前に再度、実施例3と同様の高圧洗浄、洗浄水排出、熱風循環による炉内乾燥、排気(粉塵の排出)、新鮮な空気の取り入れを行った。その後耐炎化炉1を再稼働し、炭素繊維前駆体繊維2の耐炎化処理を行った。11週間にわたる連続処理後、耐炎化炉内を確認したところ、熱風吹出口5に設置された多孔板に目詰まりはなかった。
 上記連続生産期間中、炭素繊維製造工程通過性は良好であった。
 運転開始から1週間後に得られた耐炎化繊維に付着した微粒子と傷の個数の測定結果は10個/0.1mmであった。
 (実施例6)
 1週間の連続耐炎化処理の後、耐炎化炉1を停止し、実施例4と同様の高圧洗浄、洗浄水排出、熱風循環による炉内乾燥、排気(粉塵の排出)、新鮮な空気の取り入れを行った後、耐炎化炉1を再稼動前に再度、実施例4と同様の高圧洗浄、洗浄水排出、熱風循環による炉内乾燥、排気(粉塵の排出)、新鮮な空気の取り入れを行った。その後耐炎化炉1を再稼働し、炭素繊維前駆体繊維2の耐炎化処理を行った。12週間にわたる連続処理後、耐炎化炉内を確認したところ、熱風吹出口5に設置された多孔板に目詰まりはなかった。
 上記連続生産期間中、炭素繊維製造工程通過性は良好であった。
 運転開始から1週間後に得られた耐炎化繊維に付着した微粒子と傷の個数の測定結果は8個/0.1mmであった。 
 (比較例1)
 1週間の連続耐炎化処理の後、耐炎化炉1を停止した後、耐炎化炉1の再稼働前に耐炎化炉1内に20℃の熱風を送風器8を用いて循環させた後、図5に示すように、耐炎化炉の循環系ダクトの一部を切り替え弁14で遮断し、かつ排気口13、給気口15を開放して、送風器8による風力で炉内の粉塵を排出した。このとき送風器8の吸引風量の90%の風量を排気し、同量の新鮮な空気を取り入れた。その後耐炎化炉1を再稼働し、炭素繊維前駆体繊維2の耐炎化処理を行った。
 しかし、2週間連続運転させたところで、耐炎化炉内で糸切れが発生したため、運転を停止した。運転停止後、耐炎化炉1内に入り確認したところ、熱風吹出口5に設置された多孔板に目詰まりしている部分が複数確認された。
 実施例1と同様に運転開始から1週間後に得られた耐炎化繊維に付着した微粒子と傷の個数の測定結果は43個/0.1mmであった。
 (比較例2)
 1週間の連続耐炎化処理の後、耐炎化炉1を停止し、耐炎化炉内の壁面に、洗浄する面から垂直方向に6.2m離れた位置から高圧水を供給して洗浄を実施した以外は実施例2と同様とした。この時洗浄する壁面に接触する洗浄水の圧力は垂直方向に1MPaであった。圧力の測定には富士フイルム株式会社製プレスケールLLWPSを用いた。24時間にわたり炉内を洗浄したが耐炎化炉内の壁面には洗浄しきれなかった粉塵が残存していた。
 再度耐炎化炉1を再稼働し、炭素繊維前駆体繊維2の耐炎化処理を行った。しかし、2週間連続運転させたところで、耐炎化炉内で糸切れが発生したため、運転を停止した。運転停止後、耐炎化炉1内に入り確認したところ、熱風吹出口5に設置された多孔板に目詰まりしている部分が複数確認された。
 実施例1と同様に運転開始から1週間後に得られた耐炎化繊維に付着した微粒子と傷の個数の測定結果は33個/0.1mmであった。
 (比較例3)
 1週間の連続耐炎化処理の後、耐炎化炉1を停止し、耐炎化炉1内に循環させた熱風の温度を20℃にした以外は実施例3と同様とした。その後耐炎化炉1を再稼働し、炭素繊維前駆体繊維2の耐炎化処理を行った。耐炎化炉内の壁面には洗浄しきれなかった粉塵が残存していた。
 再度耐炎化炉1を再稼働し、炭素繊維前駆体繊維2の耐炎化処理を行った。しかし、3週間連続運転させたところで、耐炎化炉内で糸切れが発生したため、運転を停止した。運転停止後、耐炎化炉1内に入り確認したところ、熱風吹出口5に設置された多孔板に目詰まりしている部分が複数確認された。
 実施例1と同様に運転開始から1週間後に得られた耐炎化繊維に付着した微粒子と傷の個数の測定結果は25個/0.1mmであった。
 (比較例4)
 1週間の連続耐炎化処理の後、耐炎化炉1を停止した後、耐炎化炉1内に循環させた熱風の温度を80℃にした以外は比較例1と同様とした。その後耐炎化炉1を再稼働し、炭素繊維前駆体繊維2の耐炎化処理を行った。耐炎化炉内の壁面には洗浄しきれなかった粉塵が残存していた。
 再度耐炎化炉1を再稼働し、炭素繊維前駆体繊維2の耐炎化処理を行った。しかし、2週間連続運転させたところで、耐炎化炉内で糸切れが発生したため、運転を停止した。運転停止後、耐炎化炉1内に入り確認したところ、熱風吹出口5に設置された多孔板に目詰まりしている部分が複数確認された。
 実施例1と同様に運転開始から1週間後に得られた耐炎化繊維に付着した微粒子と傷の個数の測定結果は40個/0.1mmであった。
Figure JPOXMLDOC01-appb-T000001
 前記の実施例及び比較例の対比によって、本発明の洗浄方法は、炭素繊維前駆体繊維の耐炎化処理において生成され耐炎化炉内に付着した粉塵を除去できるため、多孔板の閉塞までの時間が従来の洗浄方法に比して長くなり、これにより、耐炎化炉の長期的な連続稼動が可能である、と評価された。
 本発明の耐炎化炉の洗浄方法は、耐炎化繊維の製造および炭素繊維の製造に好適に用いることができる。
1 耐炎化炉
2 炭素繊維前駆体繊維
3 熱処理室
4 熱風循環路
5 熱風吹出口
6 熱風排出口
7 加熱器
8 送風器
9 スリット
10 ガイドロール
11 洗浄ノズル
12 洗浄装置
13 排気口
14 切り替え弁
15 給気口
16 排気ファン
17 排ガス燃焼装置

Claims (7)

  1.  ポリアクリロニトリル系炭素繊維前駆体繊維を酸化性雰囲気中で耐炎化処理する耐炎化炉の洗浄方法であって、前記耐炎化炉は、酸化性気体が内部を循環する機構を有する耐炎化炉であり、該耐炎化炉の壁面に付着した粉塵に対し壁面に垂直な方向の圧力が2MPa以上となるように液体を接触させた後、該液体を耐炎化炉外に排出することで壁面から剥離した粉塵を耐炎化炉外に排出し、さらに、耐炎化炉内に温度40℃以上の酸化性気体を循環させる、耐炎化炉の洗浄方法。
  2.  酸化性気体を循環させた後、該酸化性気体を耐炎化炉外に排出することで壁面から剥離した粉塵をさらに耐炎化炉外に排出する、請求項1に記載の耐炎化炉の洗浄方法
  3.  耐炎化炉内に酸化性気体を循環させた後、次いで耐炎化炉内の酸化性気体の風向または風速を切り替え、その後に壁面から剥離した粉塵を耐炎化炉外に排出する、請求項2に記載の耐炎化炉の洗浄方法。
  4.  耐炎化炉内に循環させる前記酸化性気体の温度が80℃以上である、請求項1~3のいずれかに記載の耐炎化炉の洗浄方法。
  5.  請求項1~4のいずれかに記載の耐炎化炉の洗浄方法により耐炎化炉を洗浄した後、ポリアクリロニトリル系炭素繊維前駆体繊維を耐炎化炉内で酸化性雰囲気中最高温度200~300℃で耐炎化処理する耐炎化繊維の製造方法。
  6.  請求項5に記載の耐炎化繊維の製造方法により耐炎化繊維を製造した後、該耐炎化繊維を不活性雰囲気中最高温度300~1000℃で前炭素化処理して前炭素化繊維を製造し、該前炭素化繊維を不活性雰囲気中最高温度1000~2000℃で炭素化処理する炭素繊維の製造方法。
  7.  請求項6に記載の炭素繊維の製造方法により炭素繊維を製造した後、該炭素繊維を不活性雰囲気中最高温度2000~3000℃で黒鉛化処理する黒鉛化繊維の製造方法。
PCT/JP2018/002666 2017-02-08 2018-01-29 耐炎化炉の洗浄方法および耐炎化繊維、炭素繊維、黒鉛化繊維の製造方法 WO2018147107A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018505495A JP6354926B1 (ja) 2017-02-08 2018-01-29 耐炎化炉の洗浄方法および耐炎化繊維、炭素繊維、黒鉛化繊維の製造方法
US16/468,135 US10612164B2 (en) 2017-02-08 2018-01-29 Method of cleaning oxidation oven and method of producing oxidized fiber, carbon fiber, and graphitized fiber
CN201880006948.4A CN110168154B (zh) 2017-02-08 2018-01-29 耐火化炉的清洗方法和耐火化纤维、碳纤维、石墨化纤维的制造方法
KR1020197014589A KR102090917B1 (ko) 2017-02-08 2018-01-29 내염화로의 세정 방법 및 내염화 섬유, 탄소 섬유, 흑연화 섬유의 제조 방법
MX2019008263A MX2019008263A (es) 2017-02-08 2018-01-29 Metodo para limpiar hornos de oxidacion y metodo para producir fibras oxidadas, fibras de carbono, y fibras grafitadas.
EP18751597.8A EP3540101B1 (en) 2017-02-08 2018-01-29 Method for cleaning flameproofing furnace, method for manufacturing flameproof fiber, carbon fiber, and graphitized fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-020962 2017-02-08
JP2017020962 2017-02-08

Publications (1)

Publication Number Publication Date
WO2018147107A1 true WO2018147107A1 (ja) 2018-08-16

Family

ID=63107455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002666 WO2018147107A1 (ja) 2017-02-08 2018-01-29 耐炎化炉の洗浄方法および耐炎化繊維、炭素繊維、黒鉛化繊維の製造方法

Country Status (8)

Country Link
US (1) US10612164B2 (ja)
EP (1) EP3540101B1 (ja)
KR (1) KR102090917B1 (ja)
CN (1) CN110168154B (ja)
HU (1) HUE052463T2 (ja)
MX (1) MX2019008263A (ja)
TW (1) TW201842250A (ja)
WO (1) WO2018147107A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112730A (ja) * 2017-12-21 2019-07-11 東レ株式会社 炭素繊維束およびその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116180275B (zh) * 2023-03-03 2023-10-20 元峻机械设备(浙江)有限公司 一种碳纤维制备工艺及氧化炉

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311723A (ja) 1995-03-13 1996-11-26 Toray Ind Inc 酸化処理炉および炭素繊維の製造方法
JPH11188302A (ja) * 1997-12-26 1999-07-13 Trinity Ind Corp 乾燥炉
JP2001316946A (ja) 2000-05-10 2001-11-16 Mitsubishi Rayon Co Ltd 耐炎化装置
JP2008231611A (ja) 2007-03-20 2008-10-02 Mitsubishi Rayon Co Ltd 耐炎化炉及び炭素繊維の製造方法
JP2009196882A (ja) * 2008-01-25 2009-09-03 Mitsubishi Materials Corp 反応炉洗浄装置
JP2012201997A (ja) 2011-03-25 2012-10-22 Mitsubishi Rayon Co Ltd 耐炎化炉装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4796467B2 (ja) * 2006-09-26 2011-10-19 三菱レイヨン株式会社 横型耐炎化炉および耐炎化処理方法
US9061328B2 (en) * 2012-08-03 2015-06-23 William R. Detyens, JR. Method for cleaning the interior surface of hollow articles
JP6119168B2 (ja) * 2012-10-03 2017-04-26 三菱ケミカル株式会社 耐炎化繊維束の製造方法、及び、炭素繊維束の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311723A (ja) 1995-03-13 1996-11-26 Toray Ind Inc 酸化処理炉および炭素繊維の製造方法
JPH11188302A (ja) * 1997-12-26 1999-07-13 Trinity Ind Corp 乾燥炉
JP2001316946A (ja) 2000-05-10 2001-11-16 Mitsubishi Rayon Co Ltd 耐炎化装置
JP2008231611A (ja) 2007-03-20 2008-10-02 Mitsubishi Rayon Co Ltd 耐炎化炉及び炭素繊維の製造方法
JP2009196882A (ja) * 2008-01-25 2009-09-03 Mitsubishi Materials Corp 反応炉洗浄装置
JP2012201997A (ja) 2011-03-25 2012-10-22 Mitsubishi Rayon Co Ltd 耐炎化炉装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3540101A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112730A (ja) * 2017-12-21 2019-07-11 東レ株式会社 炭素繊維束およびその製造方法

Also Published As

Publication number Publication date
KR20190059994A (ko) 2019-05-31
MX2019008263A (es) 2019-09-19
CN110168154A (zh) 2019-08-23
CN110168154B (zh) 2020-09-15
EP3540101A4 (en) 2019-12-18
US20200071856A1 (en) 2020-03-05
EP3540101A1 (en) 2019-09-18
US10612164B2 (en) 2020-04-07
HUE052463T2 (hu) 2021-04-28
KR102090917B1 (ko) 2020-03-18
TW201842250A (zh) 2018-12-01
EP3540101B1 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
JP6424932B2 (ja) 酸化繊維束の製造方法、および炭素繊維束の製造方法
WO2018147107A1 (ja) 耐炎化炉の洗浄方法および耐炎化繊維、炭素繊維、黒鉛化繊維の製造方法
JP5682714B2 (ja) 炭素繊維束の製造方法
JP2010222731A (ja) ポリアクリロニトリル重合体凝固糸の洗浄装置及びポリアクリロニトリル系繊維の製造方法
JP2010223471A (ja) 熱処理炉ならびに耐炎化繊維束および炭素繊維の製造方法
JP2010133059A (ja) 耐炎化炉及びこれを用いた炭素繊維の製造方法
JP6354926B1 (ja) 耐炎化炉の洗浄方法および耐炎化繊維、炭素繊維、黒鉛化繊維の製造方法
JP5022073B2 (ja) 耐炎化炉及び炭素繊維の製造方法
JP4809757B2 (ja) 耐炎化熱処理装置および耐炎化繊維束の製造方法
JP4745932B2 (ja) 加圧スチームによる繊維の延伸装置および炭素繊維用アクリル系前駆体繊維束の製造方法
JP6852405B2 (ja) 炭素繊維束の製造方法
JP2012201997A (ja) 耐炎化炉装置
JP6064409B2 (ja) 耐炎化繊維束の製造方法および炭素繊維束の製造方法
CN116202307A (zh) 一种碳纤维上浆后的干燥装置及其控制方法
JPH08311723A (ja) 酸化処理炉および炭素繊維の製造方法
CN115279958B (zh) 耐燃化纤维束及碳纤维束的制造方法以及耐燃化炉
JP7272347B2 (ja) 耐炎化熱処理炉、耐炎化繊維束および炭素繊維束の製造方法
JP2004124310A (ja) 耐炎化炉
JP2008202158A (ja) 熱処理炉及び熱処理方法
JP2007284842A (ja) 熱処理炉ならびに耐炎化繊維束および炭素繊維の製造方法
JP2010222753A (ja) スチーム延伸装置
JP4212297B2 (ja) 炭素繊維の製造方法
JPWO2016114385A1 (ja) アクリル繊維束の製造方法及び加圧スチーム延伸装置
JP2004052128A (ja) 横型熱処理炉
JP2005206956A (ja) 酸化繊維シートの熱処理方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018505495

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751597

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197014589

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018751597

Country of ref document: EP

Effective date: 20190612

NENP Non-entry into the national phase

Ref country code: DE