WO2018146819A1 - レーザ発振装置 - Google Patents

レーザ発振装置 Download PDF

Info

Publication number
WO2018146819A1
WO2018146819A1 PCT/JP2017/005191 JP2017005191W WO2018146819A1 WO 2018146819 A1 WO2018146819 A1 WO 2018146819A1 JP 2017005191 W JP2017005191 W JP 2017005191W WO 2018146819 A1 WO2018146819 A1 WO 2018146819A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
prism
media
laser beams
diffraction grating
Prior art date
Application number
PCT/JP2017/005191
Other languages
English (en)
French (fr)
Inventor
西前 順一
智毅 桂
大嗣 森田
裕章 黒川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/336,473 priority Critical patent/US10840670B2/en
Priority to CN201780074525.1A priority patent/CN110036543A/zh
Priority to JP2017540671A priority patent/JP6223650B1/ja
Priority to DE112017005416.8T priority patent/DE112017005416B4/de
Priority to PCT/JP2017/005191 priority patent/WO2018146819A1/ja
Publication of WO2018146819A1 publication Critical patent/WO2018146819A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • H01S3/08009Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection using a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08086Multiple-wavelength emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/082Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression
    • H01S3/0823Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression incorporating a dispersive element, e.g. a prism for wavelength selection
    • H01S3/0826Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression incorporating a dispersive element, e.g. a prism for wavelength selection using a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08086Multiple-wavelength emission
    • H01S3/0809Two-wavelenghth emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/082Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression
    • H01S3/0823Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression incorporating a dispersive element, e.g. a prism for wavelength selection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4062Edge-emitting structures with an external cavity or using internal filters, e.g. Talbot filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4068Edge-emitting structures with lateral coupling by axially offset or by merging waveguides, e.g. Y-couplers

Definitions

  • the present invention relates to a laser oscillation apparatus that outputs a plurality of laser beams having different wavelengths emitted from a plurality of laser media by wavelength coupling.
  • wavelength coupling means that a plurality of laser beams having different wavelengths are emitted at the same emission angle, that is, a plurality of laser beams having different wavelengths are overlapped together.
  • another wavelength dispersion element is installed outside the external resonator by determining the wavelength of the laser beam from the plurality of laser media to a specific value using an external resonator including a plurality of laser media and a wavelength dispersion element. Discloses a technique for combining laser beams from a plurality of laser media.
  • the beam diameter and the divergence angle of the laser beam after passing through the wavelength dispersion element differ depending on the laser medium due to the action of the wavelength dispersion element. Accordingly, since a plurality of laser beams having different beam diameters and divergence angles are resonated by the external resonator, the condensing property of the laser beam output from the external resonator is reduced, and the output of the external resonator is reduced. There was a problem.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a laser oscillation device that improves the condensing property of a laser beam output from an external resonator.
  • the present invention transmits a plurality of laser media having different wavelengths of emitted laser beams and a part of the laser beams and reflects the rest to the laser medium side.
  • An external resonator composed of a partially reflecting element to be returned is provided.
  • a plurality of laser beams having different wavelengths emitted from a plurality of laser media are superposed on each other, wavelength-coupled and output to the partial reflection element by wavelength coupling, a plurality of laser media and wavelengths
  • the laser oscillation apparatus has an effect of improving the condensing property of the laser beam output from the external resonator.
  • FIG. 1 Schematic diagram showing the configuration of the laser oscillation apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 The figure which shows the structure of the laser oscillation apparatus which concerns on Embodiment 2 of this invention.
  • FIG. 1 is a schematic diagram showing a configuration of a laser oscillation apparatus according to Embodiment 1 of the present invention.
  • the laser oscillation apparatus 100 includes a control unit 90, drive circuits 71 and 72, drive power supplies 81 and 82, and an external resonator 10.
  • the external resonator 10 is a partial reflection element that is a partial reflection element that transmits laser beams 11 and 12 having different wavelengths of emitted laser beams and a part of the laser beams and reflects the rest to the laser media 11 and 12 side. It consists of a mirror 14.
  • a plurality of laser beams having different wavelengths emitted from the laser media 11, 12 are overlapped and wavelength-coupled, and are emitted to the partial reflection mirror 14.
  • the diffraction grating 13 is a wavelength dispersion element that exhibits wavelength dependency in which the relationship between the incident angle and the outgoing angle of light changes depending on the wavelength.
  • the prism 15 is installed such that one of the two surfaces forming the apex angle ⁇ is an incident surface and the other surface is an output surface.
  • the drive circuits 71 and 72 have on / off control of the laser media 11 and 12 and a protection function for cutting off power supply to the laser media 11 and 12 when a short circuit occurs.
  • the drive power supplies 81 and 82 are power supplies that supply power to the drive circuits 71 and 72.
  • the control unit 90 controls the drive circuits 71 and 72 based on a command input from the numerical control device.
  • the laser media 11 and 12 generate laser light by applying energy such as light or electricity.
  • Examples of the laser media 11 and 12 include an active layer of a semiconductor laser and a core of a fiber laser, but are not limited thereto.
  • Reflective coatings 111 and 121 having high reflectivity are formed on the rear end faces of the laser media 11 and 12 to reflect most of the light. Therefore, the light generated in the laser media 11 and 12 is emitted forward from the front ends 112 and 122.
  • the laser beam from the laser medium 11 and the laser beam from the laser medium 12 are incident on the diffraction grating 13 at different incident angles and are emitted at the same diffraction angle.
  • the laser beam from the laser medium 11 and the laser beam from the laser medium 12 form an angle ⁇ 1 when entering the diffraction grating 13.
  • a part of the laser beam diffracted by the diffraction grating 13 is reflected by the partial reflection mirror 14, and the remaining laser beam passes through the partial reflection mirror 14 and is output to the outside of the external resonator 10.
  • the laser beam output to the outside of the external resonator 10 is used for various applications including laser processing.
  • the laser beam reflected by the partial reflection mirror 14 returns to the laser medium 11 and 12 through the diffraction grating 13 and the prism 15 along the optical path described above.
  • the laser beams that have returned to the laser media 11 and 12 are amplified in the laser media 11 and 12, reflected by the reflective coatings 111 and 121 on the rear side of the laser media 11 and 12, and emitted from the laser media 11 and 12 again. .
  • the optical path is determined for each of the laser media 11 and 12 depending on the positional relationship between the partial reflection mirror 14, the diffraction grating 13, the prism 15, and the laser media 11 and 12.
  • the beam and the laser beam from the laser medium 12 are superimposed on the diffraction grating 13.
  • a unique wavelength that satisfies the above formula (1) is determined.
  • the laser oscillation apparatus 100 according to Embodiment 1 can improve the luminance of the laser beam by superimposing the laser beams from the laser media 11 and 12 having different wavelengths so as to become one laser beam. It is.
  • the prism 15 suppresses the difference in the beam diameter and divergence angle of the laser beam after wavelength coupling between the laser beam from the laser medium 11 and the laser beam from the laser medium 12 by the beam diameter conversion action of the diffraction grating 13. , Arranged to improve the efficiency of the external resonator 10 and improve the converging power of the output beam.
  • FIG. 2 is a diagram for explaining the beam diameter converting action in the diffraction grating of the laser oscillation apparatus according to the first embodiment.
  • ⁇ d (cos ⁇ / cos ⁇ ) ⁇ i (2)
  • the beam diameter before and after the diffraction grating 13 is (cos ⁇ / cos ⁇ ) times. That is, when the incident angle ⁇ or the diffraction angle ⁇ is different, the beam diameter after passing through the diffraction grating 13 has a different value. Since there is a relationship that the product of the beam diameter and the divergence angle is preserved before and after the diffraction grating 13, the beam divergence angle is (cos ⁇ / cos ⁇ ). Therefore, the ray matrix of the diffraction grating 13 is expressed by the following formula (3). A, B, C, and D in equation (3) are components of the light matrix.
  • the prism 15 also has a beam diameter converting action.
  • the influence of the beam diameter conversion action of the diffraction grating 13 is reduced by the beam diameter conversion action of the prism 15.
  • FIG. 3 is a diagram for explaining the operation of the prism of the laser oscillation apparatus according to the first embodiment.
  • the refractive index of the prism 15 is wavelength-dependent, but since the influence is small if the range of the wavelength of the laser beam generated from the laser media 11 and 12 is narrow, the refractive index is regarded as a constant value.
  • the difference between the refractive index at a wavelength of 950 nm and the refractive index at a wavelength of 1000 nm is 0.04%. Therefore, if the laser beam has a wavelength of 950 nm and the laser beam has a wavelength of 1000 nm, the refractive index of the prism 15 is regarded as a constant value. There is no problem.
  • the ray matrix of the prism 15 is represented by the following formula (4).
  • n in the formula (6) is the refractive index of the material constituting the prism 15.
  • the apex angle ⁇ of the prism 15 and the incident angle ⁇ to the prism 15 so that the difference between the ray matrix from the laser medium 11 to the exit of the diffraction grating 13 and the ray matrix from the laser medium 12 to the exit of the diffraction grating 13 becomes small.
  • a parameter such as 1 may be determined.
  • an optical element and a cylindrical lens for collimating the laser beam may be installed between the laser media 11 and 12 and the diffraction grating 13. When an optical element and a cylindrical lens for collimating a laser beam are installed, it is possible to perform the same optimization using a ray matrix of the optical element and the cylindrical lens.
  • the beam diameter conversion action of the diffraction grating 13 may not be completely canceled by the beam diameter conversion action of the prism 15.
  • each laser on the diffraction grating 13 is adjusted by adjusting the distance from the laser medium to the prism 15 for each laser medium.
  • the beam diameters from the medium can be made more uniform. Specifically, in a plurality of laser media, the beam diameter of the laser beam diffracted by the diffraction grating 13 and directed to the partial reflection mirror 14 becomes larger than laser beams from other laser media. Is included, the laser medium can be made closer to the prism 15 to reduce the beam diameter of the laser beam that is diffracted by the diffraction grating 13 and travels toward the partial reflection mirror 14 to make the beam diameter of the laser beam uniform. . On the other hand, a laser beam diameter that is diffracted by the diffraction grating 13 and travels toward the partial reflection mirror 14 is smaller than the laser beams from other laser media. In this case, by moving the laser medium away from the prism 15, the beam diameter of the laser beam diffracted by the diffraction grating 13 and directed to the partial reflection mirror 14 can be expanded to make the beam diameter of the laser beam uniform.
  • the angle formed by the laser beam from the laser medium 11 and the laser beam from the laser medium 12 when the prism 15 is not installed in the external resonator 10 is represented by ⁇ 1 in FIG.
  • the angle formed by the laser beam from the laser medium 11 and the laser beam from the laser medium 12 is ⁇ 2. That is, in the laser oscillation device 100 according to Embodiment 1, the prism 15 reduces the angle formed by the laser beams from the plurality of laser media 11 and 12 on the diffraction grating 13 side. As shown in FIG. 1, if ⁇ 2> ⁇ 1, the number of laser media that can be installed in the external resonator 10 can be increased.
  • the laser medium has an actual size
  • the angle ⁇ 1 formed by the laser media at both ends viewed from the diffraction grating is increased, or the laser medium and the diffraction grating Need to increase distance.
  • the former leads to an increase in the wavelength region
  • the latter leads to an increase in the external resonator size.
  • the wavelength region is enlarged, it is necessary to use even a region where the diffraction efficiency of the diffraction grating is lowered, and the efficiency is lowered.
  • the wavelength width of the gain of the laser medium is also finite, the efficiency is lowered even in the laser medium.
  • the size of the external resonator increases, the size of the laser oscillation device increases and the cost increases, and the stability of the external resonator also decreases.
  • the external resonator 10 can be reduced in size by increasing the angle formed by the prism 15 between the laser beams 11 and 12 on the diffraction grating 13 side.
  • the prism 15 is arranged so that the beam diameter and the divergence angle of the laser beam after wavelength coupling from the diffraction grating 13 toward the partial reflection mirror 14 coincide with each other, but the beam after wavelength coupling is performed.
  • the difference in diameter and the difference in divergence angle are made smaller than the case where a plurality of laser beams are directly incident on the diffraction grating 13, the beam diameter and the divergence angle do not necessarily have to match.
  • FIG. FIG. 4 is a diagram showing the configuration of the laser oscillation apparatus according to Embodiment 2 of the present invention.
  • the laser oscillation device 101 according to the second embodiment is different from the first embodiment in the configuration of the external resonator 10.
  • the partial reflection mirror 14 is provided for the first-order diffracted light of the laser beam in the diffraction grating 13.
  • the second-order diffracted light of the laser beam in the diffraction grating 23 is used as the laser medium.
  • the external resonator 10 is configured by the laser media 11 and 12 and the diffraction grating 23.
  • the first-order diffracted light is diffracted at a diffraction angle of zero degrees. That is, the first-order diffracted light is emitted perpendicular to the diffraction grating 23.
  • the first-order diffracted light is used for the output beam of the laser oscillation device 101.
  • the laser oscillation device 101 includes a plurality of laser media 1 and 2, since the first-order diffracted light is emitted perpendicular to the diffraction grating 23, a plurality of laser beams from the plurality of laser media 11 and 12 are superimposed on one. Is possible.
  • the prism 15 by installing the prism 15 so that the beam diameter of the laser beam after diffraction by the diffraction grating 23 is the same between the laser medium 11 and the laser medium 12, The beam diameter of each laser beam after diffracting by the diffraction grating 23 can be matched to improve the beam quality.
  • the laser oscillation device 101 does not use a partial reflection mirror, the device can be simplified and miniaturized, and the loss inside the external resonator 10 can be reduced to increase the efficiency of laser oscillation. .
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)

Abstract

レーザ発振装置(100)は、発するレーザビームの波長が異なるレーザ媒質(11,12)と、レーザビームの一部を透過させるとともに、残りを反射してレーザ媒質(11,12)側に戻す部分反射ミラー(14)とで構成された外部共振器(10)を備え、外部共振器(10)の内部には、レーザ媒質(11,12)から発せられた波長の異なる複数のレーザビームを一つに重ね、波長結合させて部分反射ミラー(14)へ出射する回折格子(13)と、レーザ媒質(11,12)と回折格子(13)との間に配置され、複数のレーザビームを回折格子(13)上で一つに重畳するとともに、頂角をなす二つの面の一方が入射面であり、他方の面が出射面であるプリズム(15)とが配置されている。

Description

レーザ発振装置
 本発明は、複数のレーザ媒質から発せられる波長の異なる複数のレーザビームを波長結合して出力するレーザ発振装置に関する。
 レーザビームの輝度を高めるために、複数のレーザ媒質から発せられる波長の異なる複数のレーザビームを波長分散素子で波長結合させることが試みられている。なお、本明細書において「波長結合」とは、波長の異なる複数のレーザビームを同じ出射角で出射させること、すなわち、波長の異なる複数のレーザビームを一つに重ねることを意味する。
 特許文献1には、複数のレーザ媒質及び波長分散素子を含む外部共振器により、複数のレーザ媒質からレーザビームの波長を固有の値に決定し、外部共振器外に設置した別の波長分散素子で複数のレーザ媒質からのレーザビームを結合する技術が開示されている。
特表2013-521666号公報
 しかしながら、上記特許文献1に開示される発明では、波長分散素子の作用により、波長分散素子を通過後のレーザビームのビーム径及び発散角は、レーザ媒質ごとに異なることになる。したがって、ビーム径及び発散角が異なる複数のレーザビームを外部共振器で共振させることになるため、外部共振器から出力されるレーザビームの集光性が低下し、外部共振器の出力が低下するという課題があった。
 本発明は、上記に鑑みてなされたものであって、外部共振器から出力されるレーザビームの集光性を高めたレーザ発振装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、発するレーザビームの波長が異なる複数のレーザ媒質と、レーザビームの一部を透過させるとともに、残りを反射してレーザ媒質側に戻す部分反射素子とで構成された外部共振器を備える。外部共振器の内部には、複数のレーザ媒質から発せられた波長の異なる複数のレーザビームを一つに重ね、波長結合させて部分反射素子へ出射する波長分散素子と、複数のレーザ媒質と波長分散素子との間に配置され、複数のレーザビームを波長分散素子上で一つに重畳するとともに、頂角をなす二つの面の一方が入射面であり、他方の面が出射面であるプリズムとが配置されている。
 本発明に係るレーザ発振装置は、外部共振器から出力されるレーザビームの集光性を高められるという効果を奏する。
本発明の実施の形態1に係るレーザ発振装置の構成を示す模式図 実施の形態1に係るレーザ発振装置の回折格子でのビーム径変換作用を説明するための図 実施の形態1に係るレーザ発振装置のプリズムの動作を説明するための図 本発明の実施の形態2に係るレーザ発振装置の構成を示す図
 以下に、本発明の実施の形態に係るレーザ発振装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1に係るレーザ発振装置の構成を示す模式図である。実施の形態1に係るレーザ発振装置100は、制御部90と、駆動回路71,72と、駆動電源81,82と、外部共振器10とを備えている。外部共振器10は、発するレーザビームの波長が異なるレーザ媒質11,12と、レーザビームの一部を透過させるとともに、残りを反射してレーザ媒質11,12側に戻す部分反射素子である部分反射ミラー14とで構成されている。外部共振器10の内部には、レーザ媒質11,12から発せられた波長の異なる複数のレーザビームを一つに重ねて波長結合させ、部分反射ミラー14へ出射する回折格子13と、レーザ媒質11,12と回折格子13との間に配置され、複数のレーザビームを回折格子13上で一つに重畳するプリズム15とが配置されている。回折格子13は、光の入射角と出射角との関係が波長によって変化する波長依存性を示す波長分散素子である。プリズム15は、頂角φをなす二つの面の一方が入射面となり、他方の面が出射面となるように設置されている。駆動回路71,72は、レーザ媒質11,12のオンオフの制御及び短絡発生時にレーザ媒質11,12への電力供給を遮断する保護機能を有する。駆動電源81,82は、駆動回路71,72に電力を供給する電源である。制御部90は、数値制御装置から入力される指令に基づいて駆動回路71,72を制御する。
 レーザ媒質11,12は、光又は電気といったエネルギーを与えることで、レーザ光を発生する。レーザ媒質11,12には、半導体レーザの活性層及びファイバレーザのコアを例示できるが、これらに限定されない。レーザ媒質11,12の後側の端面には、高反射率の反射コーティング111,121が形成され、光の大部分を反射する。したがって、レーザ媒質11,12で生じた光は、前端112,122から前方に出射される。
 レーザ媒質11,12で発生した光は、プリズム15を経由して回折格子13に到達し、回折格子13上で一つに重畳される。回折格子13への入射角αと回折格子13における出射角である回折角βとの関係は、回折格子13の溝間隔d、波長λを用いて下記式(1)のように表わされる。mは、回折の次数と呼ばれる自然数である。
 d(sinα+sinβ)=mλ ・・・(1)
 図1に示すように、レーザ媒質11からのレーザビーム及びレーザ媒質12からのレーザビームは、異なる入射角で回折格子13に入射し、同じ回折角で出射される。レーザ媒質11からのレーザビームとレーザ媒質12からのレーザビームとは、回折格子13に入射する際に角度δ1をなしている。
 回折格子13において回折されたレーザビームの一部は部分反射ミラー14で反射され、残りのレーザビームは部分反射ミラー14を透過して外部共振器10の外に出力される。外部共振器10の外に出力されるレーザビームは、レーザ加工を始めとする各種の用途に使用される。
 部分反射ミラー14で反射されたレーザビームは、上述した光路を逆にたどって、回折格子13及びプリズム15を経て、レーザ媒質11,12に戻る。レーザ媒質11,12まで戻ったレーザビームは、レーザ媒質11,12中で増幅され、レーザ媒質11,12の後側の反射コーティング111,121で反射され、再びレーザ媒質11,12から出射される。
 外部共振器10が成立している時には、部分反射ミラー14、回折格子13、プリズム15及びレーザ媒質11,12の位置関係により、レーザ媒質11,12ごとに光路が決まり、レーザ媒質11からのレーザビーム及びレーザ媒質12からのレーザビームが回折格子13上で一つに重畳される。そして、光路が決まることにより上記式(1)を満たす固有の波長が決定される。実施の形態1に係るレーザ発振装置100は、異なる波長を持つレーザ媒質11,12からのレーザビームが一本のレーザビームになるように重ね合わせることにより、レーザビームの輝度を向上させることが可能である。
 続いて、プリズム15の作用について説明する。プリズム15は、回折格子13のビーム径変換作用によってレーザ媒質11からのレーザビームとレーザ媒質12からのレーザビームとで波長結合後のレーザビームのビーム径及び発散角が相違することを抑制して、外部共振器10の効率を向上させ、出力ビームの集光性を向上するために配置される。
 図2は、実施の形態1に係るレーザ発振装置の回折格子でのビーム径変換作用を説明するための図である。図2において、回折格子13上のビーム幅xは、入射ビーム径2ω及び回折ビーム径2ωを用いて、x=2ω/cosα=2ω/cosβで表わされるため、入射ビーム径2ωと回折ビーム径2ωとの間には、下記式(2)が成立する。
 ω=(cosβ/cosα)ω ・・・(2)
 すなわち、回折格子13の前後でビーム径は、(cosβ/cosα)倍になる。つまり、入射角α又は回折角βが異なると、回折格子13を通過後のビーム径は異なる値となる。回折格子13の前後でビーム径と発散角との積は保存されるという関係があることから、ビーム発散角は(cosα/cosβ)となる。よって、回折格子13の光線行列は、下記式(3)で表わされる。式(3)中のA,B,C,Dは、光線行列の成分である。
Figure JPOXMLDOC01-appb-M000001
 一方で、プリズム15にもビーム径変換作用がある。実施の形態1に係るレーザ発振装置100は、プリズム15のビーム径変換作用により、回折格子13のビーム径変換作用の影響を低減させている。
 図3は、実施の形態1に係るレーザ発振装置のプリズムの動作を説明するための図である。厳密には、プリズム15の屈折率には波長依存性があるが、レーザ媒質11,12から発生するレーザビームの波長の範囲が狭ければ影響は小さいため、屈折率は一定値であると見なしても問題ない。例えば、合成石英の屈折率は、波長950nmではn=1.45115であり、波長1000nmでは1.45047である。波長950nmでの屈折率と波長1000nmでの屈折率との違いは0.04%であるため、波長950nmのレーザビーム及び波長1000nmのレーザビームであれば、プリズム15の屈折率は一定値と見なしても問題ない。
 図3に示すように、プリズム15中の光路長がlである場合、プリズム15の光線行列は、下記式(4)で表わされる。
Figure JPOXMLDOC01-appb-M000002
 また、スネルの法則及び三角形の内角の関係から、下記式(5)、式(6)及び式(7)が成立する。なお、式(6)中のnは、プリズム15を構成する材料の屈折率である。
 sinθ=nsinθ ・・・(5)
 nsinθ=sinθ ・・・(6)
 θ+θ=φ ・・・(7)
 式(1)、式(3)、式(4)、式(5)、式(6)及び式(7)と、レーザ媒質11,12からプリズム15までの光線行列と、プリズム15から回折格子13までの自由伝搬の光線行列とを用いることで、レーザ媒質11,12から回折格子13の出口までの光線行列をレーザ媒質11,12ごとに求めることができる。
 レーザ媒質11から回折格子13の出口までの光線行列とレーザ媒質12から回折格子13の出口までの光線行列との差が小さくなるように、プリズム15の頂角φ及びプリズム15への入射角θといったパラメータを決定すれば良い。なお、レーザ媒質11,12から回折格子13の間には、プリズム15の他にも、レーザビームをコリメートするための光学素子及び円柱レンズを設置することもあり得る。レーザビームをコリメートするための光学素子及び円柱レンズを設置する場合は、光学素子及び円柱レンズの光線行列を用いて、同様の最適化を実施することが可能である。
 回折格子13の作用とプリズム15の作用とは原理が異なるために、入射角と出射角との関係、すなわち入射ビーム径と出射ビーム径との関係の角度依存性は完全には一致しない。したがって、レーザ媒質を三つ以上用いて外部共振器10を形成する際には、回折格子13のビーム径変換作用をプリズム15のビーム径変換作用で、キャンセルしきれないことがあり得る。回折格子13のビーム径変換作用をプリズム15のビーム径変換作用で、キャンセルしきれない場合、レーザ媒質からプリズム15までの距離を、レーザ媒質ごとに調整することで、回折格子13上の各レーザ媒質からのビーム径がより揃った状態にすることができる。具体的には、複数のレーザ媒質の中に、回折格子13で回折されて部分反射ミラー14へ向かうレーザビームのビーム径が、他のレーザ媒質からのレーザビームと比較して大きくなってしまうものが含まれる場合には、そのレーザ媒質をプリズム15に近づけることで、回折格子13で回折されて部分反射ミラー14へ向かうレーザビームのビーム径を縮小してレーザビームのビーム径を揃えることができる。逆に、複数のレーザ媒質の中に、回折格子13で回折されて部分反射ミラー14へ向かうレーザビームのビーム径が、他のレーザ媒質からのレーザビームと比較して小さくなってしまうものが含まれる場合には、そのレーザ媒質をプリズム15から遠ざけることで、回折格子13で回折されて部分反射ミラー14へ向かうレーザビームのビーム径を拡大してレーザビームのビーム径を揃えることができる。
 なお、プリズム15の頂角φ及びプリズム15の配置方法によっては、効率、装置サイズ及び安定性を犠牲にせずに、外部共振器10中に設置できるレーザ媒質の数を増やすことが可能である。
 プリズム15を外部共振器10中に設置しない場合にレーザ媒質11からのレーザビームとレーザ媒質12からのレーザビームとがなす角度は、図1中のδ1で表わされる。一方、プリズム15を設置する場合にレーザ媒質11からのレーザビームとレーザ媒質12からのレーザビームとがなす角度はδ2となる。すなわち、実施の形態1に係るレーザ発振装置100では、プリズム15は、複数のレーザ媒質11,12からのレーザビーム同士がなす角度を、回折格子13側で小さくする。図1に示すように、δ2>δ1であれば、外部共振器10中に設置可能なレーザ媒質の数を増大させることができる。
 レーザ媒質は実寸法を有するため、外部共振器内に設置するレーザ媒質の数を増やそうとすると、回折格子から見た両端のレーザ媒質がなす角度δ1を大きくするか、レーザ媒質と回折格子との距離を増加させる必要がある。前者は波長領域の拡大につながり、後者は外部共振器サイズの増大につながる。波長領域が拡大すると、回折格子の回折効率が低下する領域まで使用しなくてはならず、効率が低下する。また、レーザ媒質のゲインの波長幅も有限であるから、レーザ媒質においても効率が低下する要素となる。一方、外部共振器サイズが増大すると、レーザ発振装置のサイズが大きくなりコストが増大することに加え、外部共振器の安定性も低下する。
 実施の形態1に係るレーザ発振装置100は、回折格子13から見たレーザ媒質11,12間の角度を拡大するようにプリズム15を配置した場合には、外部共振器10中に設置できるレーザ媒質の数を増やし、レーザ発振装置100の出力及びレーザビーム輝度を向上させることができる。
 一方、プリズム15を設置しないとレーザ媒質11,12間の角度が大きくなって外部共振器10内にデッドスペースが生じる場合には、δ1>δ2となるようにすることで、外部共振器10の小型化を図ることができる。すなわち、プリズム15が、複数のレーザ媒質11,12からのレーザビーム同士がなす角度を、回折格子13側で大きくすることで、外部共振器10の小型化を図ることができる。
 上記の説明では、回折格子13から部分反射ミラー14へ向かう波長結合後のレーザビームのビーム径及び発散角が一致するようにプリズム15を配置しているが、波長結合がなされた後でのビーム径の差及び発散角の差を、複数のレーザビームが回折格子13へ直接入射する場合よりも小さくするのであれば、必ずしもビーム径及び発散角が一致しなくても良い。
実施の形態2.
 図4は、本発明の実施の形態2に係るレーザ発振装置の構成を示す図である。実施の形態2に係るレーザ発振装置101は、外部共振器10の構成が実施の形態1と相違する。
 実施の形態1において、回折格子13におけるレーザビームの一次回折光に対して部分反射ミラー14を設置していたが、実施の形態2においては、回折格子23におけるレーザビームの二次回折光をレーザ媒質11,12に戻す。すなわち、実施の形態2に係るレーザ発振装置101においては、レーザ媒質11,12と回折格子23とで外部共振器10が構成されている。このとき、一次回折光は、回折角ゼロ度で回折される。すなわち、一次回折光は、回折格子23に対して垂直に出射される。レーザ発振装置101の出力ビームに使用されるのは、一次回折光である。レーザ発振装置101は、複数のレーザ媒質1,2を有するが、一次回折光は回折格子23と垂直に出射されるため、複数のレーザ媒質11,12からの複数のレーザビームを一本に重畳することが可能である。
 実施の形態2に係るレーザ発振装置101においても、回折格子23での回折後のレーザビームのビーム径がレーザ媒質11とレーザ媒質12とで同じになるように、プリズム15を設置することにより、回折格子23での回折後の各レーザビームのビーム径を一致させ、ビーム品質を向上させることができる。
 実施の形態2に係るレーザ発振装置101は、部分反射ミラーを使用しないため装置を簡略化及び小型化できることに加え、外部共振器10内部の損失を低減させてレーザ発振の効率を高めることができる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 10 外部共振器、11,12 レーザ媒質、13 回折格子、14 部分反射ミラー、15 プリズム、71,72 駆動回路、81,82 駆動電源、90 制御部、100 レーザ発振装置、111,121 反射コーティング、112,122 前端。

Claims (5)

  1.  発するレーザビームの波長が異なる複数のレーザ媒質と、前記レーザビームの一部を透過させるとともに、残りを反射して前記レーザ媒質側に戻す部分反射素子とで構成された外部共振器を備え、
     前記外部共振器の内部には、
     複数の前記レーザ媒質から発せられた波長の異なる複数の前記レーザビームを一つに重ね、波長結合させて前記部分反射素子へ出射する波長分散素子と、
     複数の前記レーザ媒質と前記波長分散素子との間に配置され、複数の前記レーザビームを前記波長分散素子上で一つに重畳するとともに、頂角をなす二つの面の一方が入射面であり、他方の面が出射面であるプリズムとが配置されていることを特徴とするレーザ発振装置。
  2.  前記プリズムは、複数の前記レーザビームの前記波長結合がなされた後でのビーム径の差及び発散角の差を、複数の前記レーザビームが前記波長分散素子へ直接入射する場合よりも小さくすることを特徴とする請求項1に記載のレーザ発振装置。
  3.  前記プリズムは、複数の前記レーザ媒質からのレーザビーム同士がなす角度を、前記波長分散素子側で小さくすることを特徴とする請求項2に記載のレーザ発振装置。
  4.  前記プリズムは、複数の前記レーザ媒質からのレーザビーム同士がなす角度を、前記波長分散素子側で大きくすることを特徴とする請求項2に記載のレーザ発振装置。
  5.  発するレーザビームの波長が異なる複数のレーザ媒質と、
     複数の前記レーザ媒質から入射した複数の前記レーザビームの一部を反射して前記レーザ媒質に戻し、残りの複数の前記レーザビーム波長結合させて重ねて出射する波長分散素子とで構成された外部共振器を備え、
     前記外部共振器の内部には、
     複数の前記レーザ媒質と前記波長分散素子との間に配置され、複数の前記レーザビームを前記波長分散素子上で一つに重畳するとともに、頂角をなす二つの面の一方が入射面であり、他方の面が出射面であるプリズムとが配置されていることを特徴とするレーザ発振装置。
PCT/JP2017/005191 2017-02-13 2017-02-13 レーザ発振装置 WO2018146819A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/336,473 US10840670B2 (en) 2017-02-13 2017-02-13 Laser oscillator
CN201780074525.1A CN110036543A (zh) 2017-02-13 2017-02-13 激光振荡装置
JP2017540671A JP6223650B1 (ja) 2017-02-13 2017-02-13 レーザ発振装置
DE112017005416.8T DE112017005416B4 (de) 2017-02-13 2017-02-13 Laseroszillator
PCT/JP2017/005191 WO2018146819A1 (ja) 2017-02-13 2017-02-13 レーザ発振装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/005191 WO2018146819A1 (ja) 2017-02-13 2017-02-13 レーザ発振装置

Publications (1)

Publication Number Publication Date
WO2018146819A1 true WO2018146819A1 (ja) 2018-08-16

Family

ID=60205984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005191 WO2018146819A1 (ja) 2017-02-13 2017-02-13 レーザ発振装置

Country Status (5)

Country Link
US (1) US10840670B2 (ja)
JP (1) JP6223650B1 (ja)
CN (1) CN110036543A (ja)
DE (1) DE112017005416B4 (ja)
WO (1) WO2018146819A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017005700B4 (de) 2017-03-01 2021-12-30 Mitsubishi Electric Corporation Laseroszillator
US10958043B2 (en) 2018-04-02 2021-03-23 Mitsubishi Electric Corporation Laser device
CN113659416B (zh) * 2021-08-11 2022-08-16 中国科学院长春光学精密机械与物理研究所 双波长激光共轴输出系统与方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198881A (ja) * 1991-07-30 1993-08-06 Hewlett Packard Co <Hp> 格子同調式レーザ装置
JP2003347627A (ja) * 2002-05-29 2003-12-05 Gigaphoton Inc 紫外線レーザ装置
US20060092995A1 (en) * 2004-11-01 2006-05-04 Chromaplex, Inc. High-power mode-locked laser system
JP2008071798A (ja) * 2006-09-12 2008-03-27 Sharp Corp レーザ光源装置
WO2008045653A2 (en) * 2006-10-05 2008-04-17 Northrop Grumman Corporation Method and system for coherent beam combining using an integrated diffractive beam combiner and sampler
JP2011205061A (ja) * 2010-03-04 2011-10-13 Komatsu Ltd レーザ装置、レーザシステムおよび極端紫外光生成装置
JP2016054295A (ja) * 2014-09-01 2016-04-14 三菱電機株式会社 波長結合外部共振器型レーザ装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3728104A1 (de) * 1987-08-22 1989-03-02 Adalbert Dipl Ing Bandemer Anordnung zur optischen strahlfuehrung mit prismen
JPH06138322A (ja) * 1992-10-23 1994-05-20 Nec Corp 光モジュール
SE501495C2 (sv) * 1993-07-02 1995-02-27 Ericsson Telefon Ab L M Avstämbar optisk anordning
US6084695A (en) 1997-02-14 2000-07-04 Photonetics Optical fiber wavelength multiplexer and demutiplexer
FR2786937B1 (fr) 1998-12-04 2001-02-16 Photonetics Source multi-longueur d'onde
US6603788B1 (en) * 1999-11-23 2003-08-05 Lambda Physik Ag Resonator for single line selection
US6611642B1 (en) * 2000-02-17 2003-08-26 Jds Uniphase Inc. Optical coupling arrangement
US6728488B1 (en) * 2001-01-26 2004-04-27 Avanex Corporation Optical systems employing anamorphic beams and diffraction gratings
US6952510B1 (en) 2001-08-31 2005-10-04 Nlight Photonics Corporation Optically corrected intracavity fiber coupled multigain element laser
US7630425B2 (en) * 2003-02-25 2009-12-08 Finisar Corporation Optical beam steering for tunable laser applications
US8792531B2 (en) * 2003-02-25 2014-07-29 Finisar Corporation Optical beam steering for tunable laser applications
US7209499B2 (en) * 2004-09-22 2007-04-24 Corning Incorporated Mode-selective frequency tuning system
US20060092993A1 (en) 2004-11-01 2006-05-04 Chromaplex, Inc. High-power mode-locked laser device
US20060092994A1 (en) 2004-11-01 2006-05-04 Chromaplex, Inc. High-power amplified spectrally combined mode-locked laser
US7817272B2 (en) * 2008-06-09 2010-10-19 Aegis Lightwave, Inc. High-resolution spectrally adjustable filter
CN103081261B (zh) 2010-03-05 2016-03-09 泰拉二极管公司 波长光束组合系统与方法
JP5705887B2 (ja) * 2013-01-17 2015-04-22 古河電気工業株式会社 光操作装置
US9690107B2 (en) 2013-03-15 2017-06-27 Trumpf Laser Gmbh Device for wavelength combining of laser beams
JP6395357B2 (ja) * 2013-04-05 2018-09-26 住友電工デバイス・イノベーション株式会社 光モジュール
DE112014006160T5 (de) * 2014-01-14 2016-11-10 Mitsubishi Electric Corporation Halbleiterlaservorrichtung
DE112017000432B4 (de) 2016-01-20 2022-07-21 TeraDiode, Inc. Prismen zur verbesserung der strahlqualität und bandbreitenverminderung nutzende wellenlängenstrahlkombinationslasersysteme
CN105811245A (zh) 2016-05-18 2016-07-27 上海高意激光技术有限公司 一种激光阵列合束装置
CN106338836B (zh) 2016-10-25 2019-04-12 湖北航天技术研究院总体设计所 光纤激光非对称补偿光谱合成装置
DE112017005700B4 (de) 2017-03-01 2021-12-30 Mitsubishi Electric Corporation Laseroszillator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198881A (ja) * 1991-07-30 1993-08-06 Hewlett Packard Co <Hp> 格子同調式レーザ装置
JP2003347627A (ja) * 2002-05-29 2003-12-05 Gigaphoton Inc 紫外線レーザ装置
US20060092995A1 (en) * 2004-11-01 2006-05-04 Chromaplex, Inc. High-power mode-locked laser system
JP2008071798A (ja) * 2006-09-12 2008-03-27 Sharp Corp レーザ光源装置
WO2008045653A2 (en) * 2006-10-05 2008-04-17 Northrop Grumman Corporation Method and system for coherent beam combining using an integrated diffractive beam combiner and sampler
JP2011205061A (ja) * 2010-03-04 2011-10-13 Komatsu Ltd レーザ装置、レーザシステムおよび極端紫外光生成装置
JP2016054295A (ja) * 2014-09-01 2016-04-14 三菱電機株式会社 波長結合外部共振器型レーザ装置

Also Published As

Publication number Publication date
CN110036543A (zh) 2019-07-19
JPWO2018146819A1 (ja) 2019-02-14
DE112017005416B4 (de) 2022-02-24
DE112017005416T5 (de) 2019-08-22
US10840670B2 (en) 2020-11-17
US20190252844A1 (en) 2019-08-15
JP6223650B1 (ja) 2017-11-01

Similar Documents

Publication Publication Date Title
US9905993B2 (en) Wavelength selective external resonator and beam combining system for dense wavelength beam combining laser
WO2017197883A1 (zh) 一种激光阵列合束装置
US9596034B2 (en) High brightness dense wavelength multiplexing laser
JP6157194B2 (ja) レーザ装置および光ビームの波長結合方法
WO2017022142A1 (ja) 半導体レーザ装置
JP6293385B1 (ja) レーザ発振装置
US10666015B2 (en) Laser array beam combination device
JP6223650B1 (ja) レーザ発振装置
JP2017204530A (ja) 外部共振半導体レーザ装置
JP4947367B2 (ja) 外部共振器型の波長可変光源
EP3761463A1 (en) Light resonator and laser processing machine
JPWO2018163598A1 (ja) 波長結合レーザ装置
JP6227212B1 (ja) レーザ発振装置
JP4260851B2 (ja) 照明用光源装置および画像表示装置
JP6227216B1 (ja) レーザ加工装置
JP5228616B2 (ja) 波長可変光源
JP7390600B2 (ja) 光共振器およびレーザ加工装置
KR20150092720A (ko) 단일-이미터 라인 빔 시스템
WO2022163245A1 (ja) 光共振器及びレーザ加工装置
JP2010225932A (ja) 波長可変光源
JP6763121B2 (ja) レーザ装置
WO2023017644A1 (ja) 光学系及びレーザ装置、コリメータレンズ
JP2004241773A (ja) 共振器内で周波数変換を行うレーザー光学系
JP2006269990A (ja) 外部共振型半導体レーザ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017540671

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896044

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17896044

Country of ref document: EP

Kind code of ref document: A1