WO2018145345A1 - 一种氯化氢高效转化制氯气的催化剂 - Google Patents

一种氯化氢高效转化制氯气的催化剂 Download PDF

Info

Publication number
WO2018145345A1
WO2018145345A1 PCT/CN2017/076452 CN2017076452W WO2018145345A1 WO 2018145345 A1 WO2018145345 A1 WO 2018145345A1 CN 2017076452 W CN2017076452 W CN 2017076452W WO 2018145345 A1 WO2018145345 A1 WO 2018145345A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
catalyst
aqueous solution
chlorine gas
hydrogen chloride
Prior art date
Application number
PCT/CN2017/076452
Other languages
English (en)
French (fr)
Inventor
杨建明
袁俊
吕剑
温晓燕
李江伟
惠丰
赵锋伟
余秦伟
梅苏宁
王为强
李亚妮
张前
Original Assignee
西安近代化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安近代化学研究所 filed Critical 西安近代化学研究所
Publication of WO2018145345A1 publication Critical patent/WO2018145345A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/26Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • B01J29/24Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself

Definitions

  • the invention belongs to the field of catalysts, and particularly relates to a catalyst for efficiently converting hydrogen chloride into chlorine gas.
  • Chlorine is an important chemical raw material widely used in new materials industries such as polyurethane, silicone, chlorinated hydrocarbon, epoxy resin, chlorinated rubber and chlorinated high polymer. It is used in new energy industries such as polysilicon manufacturing. In the fine chemical industry, such as disinfectants, detergents, food additives, cosmetic auxiliaries, etc., it is used in the synthesis of glycerol, chlorobenzene series, chloroacetic acid, benzyl chloride, PCl 3 and other pesticides/pharmaceutical industries, as well as in papermaking, textile, Metallurgical and petrochemical industries.
  • the active component mainly uses a metal element such as copper, chromium or ruthenium.
  • Chinese patent CN101125297 discloses a phosphoric acid-treated catalyst containing copper chloride, potassium chloride and cesium chloride supported on silica, the catalyst having a molar ratio of hydrogen chloride to oxygen of 1:1 and a fixed bed reactor temperature of 400. °C, the reaction pressure was 0.1 Mpa, the hydrogen chloride feed space velocity was 0.8 hr -1 , and the yield of the product chlorine gas was 80.1%.
  • Chinese patent CN101559374 discloses a catalyst for supporting copper chloride, potassium chloride, manganese nitrate and cerium nitrate by using silica gel and ReY molecular sieve as a carrier.
  • the flow rate of hydrogen chloride and oxygen is 200 m1/min
  • the amount of catalyst is 25 g
  • the reaction temperature is 380.
  • the conversion of hydrogen chloride was 83.6%.
  • All of the above copper-based catalysts have a problem that the reaction temperature is high, the activity is low, and the active component is easily deactivated.
  • Chinese patent CN87101999 discloses the use of SiO 2 as a carrier, and the content of amorphous Cr 2 O 3 in the catalyst is 20% to 90%.
  • the process was carried out using a fluidized bed reactor at 370 to 420 ° C with an O 2 /HCl ratio of 0.3 to 0.75 and a conversion of 75 to 80%.
  • the chromium-based catalyst also has the problems of high reaction temperature and low activity, and is easy to produce iron (or a small amount of nickel and titanium) poisoning.
  • the material for the reactor is extremely high, and an iron content of 1 is required.
  • a material of % by weight or less is used as a reactor material, and equipment manufacturing costs are too high.
  • the literature Zhang Wei, Technical Progress in Hydrogen Chloride Catalytic Oxidation to Chlorine Gas, Chinese Chloroalkali [J], 2013 (5): 6-10) indicates that Sumitomo Chemical Industries Co., Ltd.
  • a catalyst containing RuO 2 as a main component The catalyst is supported by titanium oxide, zirconium oxide, aluminum oxide or zeolite.
  • the catalyzed TiO 2 is used as a carrier, and the catalytic efficiency is the highest, and the mass ratio of cerium to the carrier is 2% to 6%.
  • the third component such as palladium, copper compounds, chromium compounds, vanadium compounds, rare earth compounds, and alkali metal compounds.
  • the reaction was carried out in a fixed bed reactor at a reaction temperature of 200 to 380 ° C and a reaction pressure of 101.33 to 5,5066.5 kPa.
  • the molar feed ratio of hydrogen chloride to oxygen is from 0.05 to 1.25.
  • the conversion of hydrogen chloride can reach 95.9%, and the service life of the catalyst can exceed 16000h.
  • the catalyst contains a precious metal component, and the catalytic activity of the catalyst gradually decreases with the extension of the running time, and is also easily deactivated due to irreversible poisoning caused by impurities in the hydrogen chloride raw material and errors in the process operation.
  • the problems of the above catalysts have seriously hindered the industrialization of the efficient conversion of hydrogen chloride to chlorine.
  • the present invention provides a catalyst for efficiently converting chlorine gas into chlorine gas with high low temperature activity, good toxicity resistance, low cost and long life.
  • the invention is modified on the basis of the copper-based active component by adding an alkali metal and a noble metal, and reacts with SiO 2 to form a gas SiF 4 , and at the same time generates a large amount of low-temperature active sites in the catalyst, thereby improving the performance of the catalyst.
  • a catalyst for efficiently converting hydrogen chloride into chlorine gas is prepared.
  • a catalyst for efficiently converting chlorine chloride into chlorine gas wherein the precursor mass percentage composition is: component A: 70% to 80%; component B: 5% to 10%; component C: 1% to 2%; D: 0.1% to 0.3%; the balance is SiO 2 ; wherein component A is Na-type mordenite; component B is Cu 2+ ; component C is Fr + or Cs + ; component D is Re 3+ Or Ir 3+ ; prepared as follows:
  • step b) The component A obtained in the step a) is added to the aqueous solution containing Cu 2+ , the mass ratio of the component A to the Cu 2+ aqueous solution is 1:10, and stirred for 15 min;
  • step d) the material obtained in step d) is uniformly mixed with SiO 2 , granulated, the particle size is adjusted to 12 to 18.5 mesh, and the catalyst precursor is calcined at a temperature of 400 ° C for 8 h;
  • step f) The material obtained in step e) is reacted with hydrogen fluoride under a nitrogen atmosphere, the molar ratio of nitrogen to hydrogen fluoride is 20:1, the mass ratio of hydrogen fluoride to the material obtained in step e) is 1:20, the reaction pressure is 1 atm, and the reaction temperature is 330 ° C. At a time of 2 h, a high conversion rate of hydrogen chloride to chlorine catalyst was obtained.
  • the catalyst for efficiently converting chlorine chloride into chlorine gas according to the present invention is used in various types of reactors, such as a fixed bed, a fluidized bed reactor, a trickle bed or a slurry bed, etc., preferably a fixed bed.
  • the catalyst for efficiently converting chlorine chloride into chlorine gas according to the present invention is used for the catalytic oxidation of hydrogen chloride to chlorine gas, and the reaction is carried out at 80 ° C to 600 ° C, preferably at 200 to 250 ° C.
  • the high-performance conversion of the hydrogen chloride catalyst of the present invention to chlorine gas has a high low-temperature activity, and the conversion rate at 220 ° C can reach 99.1%.
  • the reduction in temperature reduces equipment investment, and the increase in conversion rate reduces operating costs, resulting in significant economic benefits.
  • the high-efficiency conversion of the hydrogen chloride to the chlorine gas catalyst of the present invention uses a base metal such as copper, and the cost is low.
  • the hydrogen chloride catalyst of the present invention has a long service life of up to 25,000 hours.
  • the chlorine gas catalyst activity evaluation device for hydrogen chloride oxidation is a common fixed bed tubular reactor, and the reactor size is Material carbon steel.
  • the catalyst is charged into the reactor, heated to the reaction temperature, and the gas is fed through a pressure reducing valve and a flow meter, and the sample is analyzed after the reaction is stabilized.
  • reaction temperature 220 ° C reaction temperature 220 ° C, molar ratio of hydrogen chloride to oxygen / volume ratio of 4:1, hydrogen chloride feed amount of 200 mL / min, catalyst 2g, reaction pressure and pressure.
  • the oxidation reactor outlet is mainly a mixture of chlorine gas, oxygen gas, hydrogen chloride and water vapor.
  • the amount of oxidizing chlorine is measured based on the principle that chlorine gas is easily absorbed by the potassium iodide solution, or by the reducing property of iodide ions.
  • the gas sample is passed through the potassium iodide solution, the chlorine gas is absorbed, the iodine is replaced, and the precipitated iodine is titrated with the sodium thiosulfate standard solution, which is the iodometric method (or the indirect iodometric method, the titration iodine method).
  • the titration process uses starch as an indicator. Since HCl is extremely soluble in water, HCl is also absorbed while Cl 2 is absorbed by the KI solution. After completion of the titration with the sodium thiosulfate solution, the amount of HCl can be titrated with a sodium hydroxide standard solution using phenolphthalein as an indicator.
  • the specific operation steps are as follows: After the system operation is stable, prepare a 100% KI solution 100ml at regular intervals, switch the oxidation reactor outlet three-way valve, and pass the mixed gas after the reaction into a constant volume (100ml) potassium iodide solution. After absorbing for 3 minutes, after absorption, the absorption liquid was transferred into an Erlenmeyer flask, titrated with a 0.1 mol/l sodium thiosulfate standard solution, and starch was used as an indicator; then, phenolphthalein was used as an indicator, and 0.1 mol/l was used. The unreacted HCl was titrated with a sodium hydroxide standard solution.
  • d indicates the number of milliliters of NaOH solution used for titration, ml
  • the weight percentage of the catalyst precursor of Example 1 is as follows:
  • the balance is SiO 2 Na-type mordenite treated with aqueous solution of NaOH having a component A of 0.6 mol/L; component B is Cu 2+ ; component C is Fr + ; component D is Re 3+
  • the catalyst of this example was prepared by the following method.
  • step b) The component A obtained in the step a) is added to the aqueous solution containing Cu 2+ , the mass ratio of the component A to the Cu 2+ aqueous solution is 1:10, and stirred for 15 min;
  • step d) the material obtained in step d) is uniformly mixed with SiO 2 , granulated, the particle size is adjusted to 12 to 18.5 mesh, and the catalyst precursor is calcined at a temperature of 400 ° C for 8 h;
  • step f) The material obtained in step e) is reacted with hydrogen fluoride under a nitrogen atmosphere, the molar ratio of nitrogen to hydrogen fluoride is 20:1, the mass ratio of hydrogen fluoride to the material obtained in step e) is 1:20, the reaction pressure is 1 atm, and the reaction temperature is 330 ° C.
  • CatA a high conversion conversion hydrogen chloride to chlorine catalyst was labeled CatA.
  • the weight percentage of the catalyst precursor of Example 1 was the same as that of Example 1, and the preparation method was the same as that of Example 1, except that Comparative Example 1 did not have the step f, and the obtained catalyst was labeled CatA0.
  • the weight percentage of the catalyst precursor of Example 2 is as follows:
  • the catalyst of this example was prepared in the same manner as in Example 1, except that component C was Cs + ; component D was Ir 3+ , and the obtained catalyst was labeled CatB.
  • the weight percentage of the catalyst precursor of Example 3 is as follows:
  • the catalyst of this example was prepared in the same manner as in Example 1, except that component C was Cs + ; component D was Ir 3+ , and the obtained catalyst was labeled CatC.
  • the weight percentage of the catalyst precursor of Example 4 is as follows:
  • the catalyst of this example was prepared in the same manner as in Example 1, except that component C was Fr + ; component D was Ir 3+ , and the obtained catalyst was labeled CatD.
  • the weight percentage of the catalyst precursor of Example 5 is as follows:
  • the catalyst of this example was prepared in the same manner as in Example 1, except that component C was Fr + ; component D was Re 3+ , and the obtained catalyst was labeled CatE.
  • the weight percentage of the catalyst precursor of Example 6 is as follows:
  • the catalyst of this example was prepared in the same manner as in Example 1, except that component C was Cs + ; component D was Re 3+ , and the obtained catalyst was labeled CatF.
  • the weight percentage of the catalyst precursor of Example 7 is as follows:
  • the catalyst of this example was prepared in the same manner as in Example 1, except that component C was Cs + ; component D was Re 3+ , and the obtained catalyst was labeled CatG.
  • the high-efficiency conversion of hydrogen chloride to chlorine gas catalyst of the invention has high low-temperature activity, and the conversion rate at 220 ° C can reach 99.1%.
  • the reduction in temperature reduces equipment investment, and the increase in conversion rate reduces operating costs, resulting in significant economic benefits.
  • the high-efficiency conversion of hydrogen chloride to chlorine gas catalyst of the invention is highly resistant to toxicity and does not cause iron poisoning.
  • the catalyst for efficiently converting chlorine chloride into chlorine gas of the invention adopts a base metal such as copper, and the cost is low.
  • the high-efficiency conversion of hydrogen chloride to chlorine gas catalyst of the invention has a long service life of up to 25,000 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种氯化氢高效转化制氯气的催化剂,其特征在于催化剂前驱体质量百分组成为:组分A:70%~80%;组分B:5%~10%;组分C:1%~2%;组分D:0.1%~0.3%;余量为SiO2;其中组分A为Na‑型丝光沸石;组分B为Cu2+;组分C为Fr+或Cs+;组分D为Re3+或Ir3+。该催化剂适用于氯化氢高转化率生成氯气。

Description

一种氯化氢高效转化制氯气的催化剂 技术领域
本发明属于催化剂领域,具体涉及一种氯化氢高效转化制氯气的催化剂。
背景技术
氯气是一种重要的化工基础原料,广泛应用于聚氨酯、有机硅、氯化烃、环氧树脂、氯化橡胶、氯化高聚物等新材料行业,应用于多晶硅制造等新能源行业,应用于消毒剂、洗涤剂、食品添加剂、化妆品助剂等生活精细化工行业,应用于合成甘油、氯苯系列、氯乙酸、氯化苄、PCl3等农药/医药行业,以及应用于造纸、纺织、冶金和石油化工等行业。
在已报道的氯化氢氧化催化剂中,活性组分主要采用铜、铬、钌等金属元素。中国专利CN101125297公开了以二氧化硅为载体,磷酸处理的含氯化铜、氯化钾和氯化铈的催化剂,该催化剂在氯化氢和氧气摩尔比为1:1,固定床反应器温度为400℃,反应压力为0.1Mpa,氯化氢进料空速为0.8hr-1,产物氯气的收率为80.1%。中国专利CN101559374公开了以硅胶、ReY分子筛为载体,负载氯化铜、氯化钾、硝酸锰和硝酸铈的催化剂,在氯化氢与氧气流量均为200m1/min,催化剂用量为25g,反应温度为380℃下,氯化氢的转化率为83.6%。上述铜系催化剂都存在反应温度高,活性低且活性组分易挥发失活的问题。中国专利CN87101999公开了使用SiO2为载体,催化剂中无定形的Cr2O3的含量为20%~90%。过程使用流化床反应器,在370~420℃操作,O2/HCl为0.3~0.75,转化率为75~80%。铬系催化剂也存在反应温度高和活性低的问题,而且容易产生铁(或少量镍和钛)中毒,在实际应用中对反应器的制作材料要求极高,需要采用一种含铁量在1%(重量)或更低的材料作为反应器材料,设备制造费用过高。文献(张钧钧,氯化氢催化氧化制氯气技术进展,中国氯碱[J],2013(5):6-10)中指出日本住友化学工业株式会社公开了一种以RuO2为主组分的催化剂。该催化剂以氧化钛、氧化锆、氧化铝或沸石等为负载,其中,以金红石型TiO2做载体时催化效率最高,钌相对于载体的质量比率为2%~6%,也可以添加钌以外的第三种成分,如钯、铜化合物、铬化合物、 钒化合物、稀土化合物及碱金属化合物等。反应采用固定床反应器,反应温度为200~380℃,反应压力为101.33~55066.5kPa。氯化氢和氧的摩尔进料比为0.05~1.25。在大气压及20~1000/h空速条件下,氯化氢的转化率可达95.9%,该催化剂使用寿命可超过16000h。该催化剂含有贵金属组分,并且催化剂的催化活性会随着运转时间的延长逐渐降低,也容易因氯化氢原料中的杂质和工艺操作过程中的失误造成不可逆性的中毒而失活。上述催化剂存在的问题,严重得阻碍了氯化氢高效转化制氯气的工业化进程。
发明内容
针对背景技术存在的缺陷或不足,本发明提供一种低温活性高、抗毒性好、成本低和寿命长的氯化氢高效转化制氯气的催化剂。
本发明在铜基活性组分的基础上,通过添加碱金属和贵金属进行改性,并通过氟化氢与SiO2反应生成气体SiF4,同时在催化剂中产生大量低温活性位,从而提高了催化剂性能,从而制备得到氯化氢高效转化制氯气的催化剂。
一种氯化氢高效转化制氯气的催化剂,其前驱体质量百分组成为:组分A:70%~80%;组分B:5%~10%;组分C:1%~2%;组分D:0.1%~0.3%;余量为SiO2;其中组分A为Na-型丝光沸石;组分B为Cu2+;组分C为Fr+或Cs+;组分D为Re3+或Ir3+;按照下述方法制备:
a)将市售的Na-型丝光沸石,加入0.6mol/L的NaOH水溶液中,Na-型丝光沸石与NaOH水溶液的质量比为1:4,加热至回流、搅拌反应2h,过滤,洗涤至PH=7,烘干,350℃焙烧处理6h,获得组分A;
b)将步骤a)所得的组分A加入到含有Cu2+的水溶液中,组分A与Cu2+水溶液的质量比为1:10,搅拌15min;
c)将含有Fr+或Cs+的水溶液加入上述步骤b)所得的水溶液中,组分A与Fr+或Cs+水溶液的质量比为1:1,搅拌15min;
d)将含有Re3+或Ir3+的水溶液加入上述步骤c)所得的水溶液中,组分A与Re3+或Ir3+水溶液的质量比为1:0.5,80℃浸渍8h,过滤,洗涤,烘干;
e)步骤d)所得的物料与SiO2混合均匀,造粒,将粒径调整到12~18.5目,该催化剂前驱体在温度400℃条件下,焙烧处理8h;
f)将步骤e)所得物料在氮气气氛下,与氟化氢发生反应,氮气与氟化氢摩尔比20:1,氟化氢与步骤e)所得物料质量比1:20,反应压力1atm,反应温度330℃,反应时间2h,得高转化率的氯化氢制氯气催化剂。
本发明所述的氯化氢高效转化制氯气的催化剂用在各种类型的反应器中,如固定床,流化床反器、滴流床或浆态床等,优选固定床。
本发明所述的氯化氢高效转化制氯气的催化剂用于氯化氢催化氧化制氯气反应,在80℃~600℃下进行反应,优选200~250℃下反应。
本发明的优点如下:
(1)本发明的氯化氢高效转化制氯气催化剂低温活性高,在220℃转化率就可以达到99.1%。温度的降低减少设备投资,转化率提高降低了操作费用,使得经济效益显著提高。
(2)本发明的氯化氢高效转化制氯气催化剂抗毒性强,不会铁中毒。
(4)本发明的氯化氢高效转化制氯气催化剂采用铜等贱金属,成本低廉。
(5)本发明的氯化氢高效转化制氯气催化剂寿命长,可达25000小时。
具体实施方式
按照本发明中的技术方案,氯化氢氧化制氯气催化剂活性评价装置为普通固定床管式反应器,反应器尺寸为
Figure PCTCN2017076452-appb-000001
材质碳钢。将催化剂装填进反应器,加热至反应温度,气体通过减压阀和流量计后进料,稳定反应后取样分析。
催化剂活性评价实验条件:反应温度220℃,氯化氢与氧气的摩尔比/体积比为4:1,氯化氢的进料量为200mL/min,催化剂为2g,反应压力常压。氧化反应器出口主要为氯气、氧气、氯化氢和水蒸汽的混合物,分析其中的氯气含量并计算一定时间间隔内氯气的生成量,就可以计算氧化反应的转化率,以考察催化剂的活性和氧化反应条件的影响规律。
根据氯气易被碘化钾溶液吸收的原理,或者说利用碘离子的还原性,测定具有氧化性的氯的量。当气体试样通入碘化钾溶液时,氯气被吸收,置换出碘,析出的碘再用硫代硫酸钠标准溶液滴定,此即为碘量法(或间接碘量法、滴定碘法)。滴定过程采用淀粉作为指示剂。由于HCl极易溶于水,所以在Cl2被KI溶液吸收的同时,HCl也被同时吸收。用硫代硫酸钠溶液滴定结束后,可用氢氧化钠标准溶液滴定HCl的量,该滴定分析用酚酞作指示剂。
具体操作步骤如下:体系操作稳定后,每隔一定时间配制一份20%的KI溶液100ml,切换氧化反应器出口三通阀,将反应后混合气体通入到定容的(100ml)碘化钾溶液中,吸收3分钟,吸收后将吸收液移入锥形瓶中,用0.1mol/l的硫代硫酸钠标准溶液滴定,以淀粉作指示剂;之后接着,以酚酞作指示剂,用0.1mol/l氢氧化钠标准溶液滴定未反应的HC1。
HCl转化率:
Conv%=b/(b+d)*100%
b表示滴定耗用Na2S2O3溶液毫升数,ml
d表示滴定耗用NaOH溶液毫升数,ml
下面结合实施例对本发明做进一步详细说明,但不用来限制本发明范围。实施例1
实施例1的催化剂前驱体重量百分比如下:
Figure PCTCN2017076452-appb-000002
余量为SiO2其中组分A为0.6mol/L的NaOH水溶液处理的Na-型丝光沸石;组分B为Cu2+;组分C为Fr+;组分D为Re3+
本实施例的催化剂通过下述方法制备得到。
a)将市售的Na-型丝光沸石,加入0.6mol/L的NaOH水溶液中,Na-型丝光沸石与NaOH水溶液的质量比为1:4,加热至回流、搅拌反应2h,过滤,洗涤至PH=7,烘干,350℃焙烧处理6h,获得组分A;
b)将步骤a)所得的组分A加入到含有Cu2+的水溶液中,组分A与Cu2+水溶液的质量比为1:10,搅拌15min;
c)将含有Fr+的水溶液加入上述步骤b)所得的水溶液中,组分A与Fr+水溶液的质量比为1:1,搅拌15min;
d)将含有Re3+的水溶液加入上述步骤c)所得的水溶液中,组分A与Re3+水溶液的质量比为1:0.5,80℃浸渍8h,过滤,洗涤,烘干;
e)步骤d)所得的物料与SiO2混合均匀,造粒,将粒径调整到12~18.5目,该催化剂前驱体在温度400℃条件下,焙烧处理8h;
f)将步骤e)所得物料在氮气气氛下,与氟化氢发生反应,氮气与氟化氢摩尔比20:1,氟化氢与步骤e)所得物料质量比1:20,反应压力1atm,反应温度330℃,反应时间2h,得高转化率的氯化氢制氯气催化剂标记为CatA。
对比例1
实施例1的催化剂前驱体重量百分比同实施例1,制备方法同实施例1,所不同的是对比例1没有步骤f,制得的催化剂标记为CatA0。
实施例2
实施例2的催化剂前驱体重量百分比如下:
Figure PCTCN2017076452-appb-000003
其中组分A为0.6mol/L的NaOH水溶液处理的Na-型丝光沸石;组分B为Cu2+;组分C为Cs+;组分D为Ir3+
本实施例的催化剂的制备方法同实施例1,所不同的是组分C为Cs+;组分D为Ir3+,制得的催化剂标记为CatB。
实施例3
实施例3的催化剂前驱体重量百分比如下:
Figure PCTCN2017076452-appb-000004
其中组分A为0.6mol/L的NaOH水溶液处理的Na-型丝光沸石;组分B 为Cu2+;组分C为Cs+;组分D为Ir3+
本实施例的催化剂的制备方法同实施例1,所不同的是组分C为Cs+;组分D为Ir3+,制得的催化剂标记为CatC。
实施例4
实施例4的催化剂前驱体重量百分比如下:
Figure PCTCN2017076452-appb-000005
其中组分A为0.6mol/L的NaOH水溶液处理的Na-型丝光沸石;组分B为Cu2+;组分C为Fr+;组分D为Ir3+
本实施例的催化剂的制备方法同实施例1,所不同的是组分C为Fr+;组分D为Ir3+,制得的催化剂标记为CatD。
实施例5
实施例5的催化剂前驱体重量百分比如下:
Figure PCTCN2017076452-appb-000006
其中组分A为0.6mol/L的NaOH水溶液处理的Na-型丝光沸石;组分B 为Cu2+;组分C为Fr+;组分D为Re3+
本实施例的催化剂的制备方法同实施例1,所不同的是组分C为Fr+;组分D为Re3+,制得的催化剂标记为CatE。
实施例6
实施例6的催化剂前驱体重量百分比如下:
Figure PCTCN2017076452-appb-000007
其中组分A为0.6mol/L的NaOH水溶液处理的Na-型丝光沸石;组分B为Cu2+;组分C为Cs+;组分D为Re3+
本实施例的催化剂的制备方法同实施例1,所不同的是组分C为Cs+;组分D为Re3+,制得的催化剂标记为CatF。
实施例7
实施例7的催化剂前驱体重量百分比如下:
Figure PCTCN2017076452-appb-000008
其中组分A为0.6mol/L的NaOH水溶液处理的Na-型丝光沸石;组分B 为Cu2+;组分C为Cs+;组分D为Re3+
本实施例的催化剂的制备方法同实施例1,所不同的是组分C为Cs+;组分D为Re3+,制得的催化剂标记为CatG。
本发明的氯化氢高效转化制氯气的催化剂的应用:
将实施例1~7所制备的高转化率的氯化氢转化催化剂CatA、CatB、CatC、CatD、CatE、CatF、CatG装填进固定床管式反应器,进行反应,反应结果见表1所示。
表1催化剂反应结果
Figure PCTCN2017076452-appb-000009
工业实用性
本发明的氯化氢高效转化制氯气催化剂低温活性高,在220℃转化率就可以达到99.1%。温度的降低减少设备投资,转化率提高降低了操作费用,使得经济效益显著提高。本发明的氯化氢高效转化制氯气催化剂抗毒性强,不会铁中毒。本发明的氯化氢高效转化制氯气催化剂采用铜等贱金属,成本低廉。本发明的氯化氢高效转化制氯气催化剂寿命长,可达25000小时。

Claims (2)

  1. 一种氯化氢高效转化制氯气的催化剂,其前驱体质量百分组成为:组分A:70%~80%;组分B:5%~10%;组分C:1%~2%;组分D:0.1%~0.3%;余量为SiO2;其中组分A为Na-型丝光沸石;组分B为Cu2+;组分C为Fr+或Cs+;组分D为Re3+或Ir3+;其特征在于按照下述方法制备:
    a)将市售的Na-型丝光沸石,加入0.6mol/L的NaOH水溶液中,Na-型丝光沸石与NaOH水溶液的质量比为1:4,加热至回流、搅拌反应2h,过滤,洗涤至PH=7,烘干,350℃焙烧处理6h,获得组分A;
    b)将步骤a)所得的组分A加入到含有Cu2+的水溶液中,组分A与Cu2+水溶液的质量比为1:10,搅拌15min;
    c)将含有Fr+或Cs+的水溶液加入上述步骤b)所得的水溶液中,组分A与Fr+或Cs+水溶液的质量比为1:1,搅拌15min;
    d)将含有Re3+或Ir3+的水溶液加入上述步骤c)所得的水溶液中,组分A与Re3+或Ir3+水溶液的质量比为1:0.5,80℃浸渍8h,过滤,洗涤,烘干;
    e)步骤d)所得的物料与SiO2混合均匀,造粒,将粒径调整到12~18.5目,该催化剂前驱体在温度400℃条件下,焙烧处理8h;
    f)将步骤e)所得物料在氮气气氛下,与氟化氢发生反应,氮气与氟化氢摩尔比20:1,氟化氢与步骤e)所得物料质量比1:20,反应压力1atm,反应温度330℃,反应时间2h,得高转化率的氯化氢制氯气催化剂。
  2. 一种如权利要求1所述氯化氢高效转化制氯气的催化剂的应用,其特征在于,用于氯化氢催化氧化制氯气反应。
PCT/CN2017/076452 2017-02-09 2017-03-13 一种氯化氢高效转化制氯气的催化剂 WO2018145345A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710071523.9 2017-02-09
CN201710071523.9A CN106890666B (zh) 2017-02-09 2017-02-09 一种氯化氢高效转化制氯气的催化剂

Publications (1)

Publication Number Publication Date
WO2018145345A1 true WO2018145345A1 (zh) 2018-08-16

Family

ID=59199255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076452 WO2018145345A1 (zh) 2017-02-09 2017-03-13 一种氯化氢高效转化制氯气的催化剂

Country Status (2)

Country Link
CN (1) CN106890666B (zh)
WO (1) WO2018145345A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA823197A (en) * 1969-09-16 Norton Company Oxidation of hydrogen chloride on copper exchanged zeolite
CN101357337A (zh) * 2008-09-09 2009-02-04 南京工业大学 一种氯化氢氧化催化剂及其制备方法
CN103285882A (zh) * 2012-02-27 2013-09-11 清华大学 失活催化剂的再生方法
CN103920507A (zh) * 2013-01-15 2014-07-16 南京工业大学 一种氯化氢氧化制氯气的催化剂及其应用
CN104785271A (zh) * 2014-01-21 2015-07-22 万华化学集团股份有限公司 制氯气用催化剂的制法、该催化剂及制氯气的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL112095C (zh) * 1960-01-20
DE102005040286A1 (de) * 2005-08-25 2007-03-01 Basf Ag Mechanisch stabiler Katalysator auf Basis von alpha-Aluminiumoxid
US20110268649A1 (en) * 2008-12-30 2011-11-03 Basf Se Catalyst comprising ruthenium and nickel for the oxidation of hydrogen chloride
CN102000583B (zh) * 2010-11-18 2012-08-15 烟台万华聚氨酯股份有限公司 一种氯化氢氧化制氯气的催化剂及其制备方法
CN103816927B (zh) * 2013-12-18 2015-12-30 西安近代化学研究所 一种用于合成乙撑亚胺的催化剂、制备方法及应用
CN104549360B (zh) * 2014-04-01 2017-05-24 上海方纶新材料科技有限公司 一种用于催化氧化氯化氢生产氯气的催化剂
CN105457673B (zh) * 2016-01-12 2018-07-31 西安近代化学研究所 一种胺化催化剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA823197A (en) * 1969-09-16 Norton Company Oxidation of hydrogen chloride on copper exchanged zeolite
CN101357337A (zh) * 2008-09-09 2009-02-04 南京工业大学 一种氯化氢氧化催化剂及其制备方法
CN103285882A (zh) * 2012-02-27 2013-09-11 清华大学 失活催化剂的再生方法
CN103920507A (zh) * 2013-01-15 2014-07-16 南京工业大学 一种氯化氢氧化制氯气的催化剂及其应用
CN104785271A (zh) * 2014-01-21 2015-07-22 万华化学集团股份有限公司 制氯气用催化剂的制法、该催化剂及制氯气的方法

Also Published As

Publication number Publication date
CN106890666B (zh) 2019-06-28
CN106890666A (zh) 2017-06-27

Similar Documents

Publication Publication Date Title
RU2486006C2 (ru) Устойчивый к воздействию температуры катализатор для окисления хлороводорода в газовой фазе
KR101493293B1 (ko) 염화수소의 산화반응에 의한 염소 제조용 촉매 및 그의 제조방법
RU2486008C2 (ru) Способ регенерации содержащего рутений или соединения рутения катализатора, отравленного серой в виде сернистых соединений
KR101871176B1 (ko) 기체상 산화에 의한 염소 제조를 위한 촉매 및 방법
US20070292336A1 (en) Processes for the preparation of chlorine by gas phase oxidation
KR20140086977A (ko) 촉매 및 기체상 산화에 의한 염소의 제조 방법
JP6017386B2 (ja) 水熱合成法により調製した金属添加SiO2−MgO触媒によるエタノールからのブタジエン合成法
EP2937326A1 (en) 1, 3, 3, 3-tetrafluoropropene preparation process
CN110614093A (zh) 一种乙炔氢氯化反应低含量金钌双金属催化剂制备方法
CN106861714B (zh) 一种氯化氢转化制氯气的催化剂
KR20150082466A (ko) 과산화수소의 직접 합성법
US20100098616A1 (en) Catalyst and process for preparing chlorine by gas phase oxidation
CN109678817B (zh) 一种并流型滴流固定床中线性烯烃与过氧化氢的环氧化催化方法
WO2018145345A1 (zh) 一种氯化氢高效转化制氯气的催化剂
JPH11179204A (ja) 一酸化炭素及び二酸化炭素を含有するガスのメタン化触媒及びその製造方法
CN115999607A (zh) 一种氯化氢催化氧化催化剂的制备方法及应用
US20080003173A1 (en) Processes for the preparation of chlorine by gas phase oxidation, catalysts therefor, and methods of making such catalysts
CN112774701B (zh) 一种酸根插层水滑石衍生复合氧化物及其制备方法与应用
CN104741126B (zh) 一种钙钛矿型复合氯化物催化剂及应用
US11286219B2 (en) Method for producing indene
CN103467243B (zh) H-l型分子筛催化甲苯选择性氯化的方法
CN108144632B (zh) 一种甲烷氧氯化的二氧化钌催化剂及其制备方法
CN102875316B (zh) 干气与苯烷基化制乙苯的方法
JP2019195783A (ja) 水蒸気改質触媒、及び水蒸気改質方法
CN109675582B (zh) 一种氯化氢氧化制氯气催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895632

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17895632

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/05/2020).

122 Ep: pct application non-entry in european phase

Ref document number: 17895632

Country of ref document: EP

Kind code of ref document: A1