WO2018143626A1 - Mtor 유전자 및 stat3 유전자의 발현을 동시에 억제하는 핵산 - Google Patents

Mtor 유전자 및 stat3 유전자의 발현을 동시에 억제하는 핵산 Download PDF

Info

Publication number
WO2018143626A1
WO2018143626A1 PCT/KR2018/001231 KR2018001231W WO2018143626A1 WO 2018143626 A1 WO2018143626 A1 WO 2018143626A1 KR 2018001231 W KR2018001231 W KR 2018001231W WO 2018143626 A1 WO2018143626 A1 WO 2018143626A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
nucleic acid
gene
nos
acid molecule
Prior art date
Application number
PCT/KR2018/001231
Other languages
English (en)
French (fr)
Inventor
최진우
Original Assignee
㈜큐리진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170013661A external-priority patent/KR101865025B1/ko
Priority claimed from KR1020180005860A external-priority patent/KR102034764B1/ko
Application filed by ㈜큐리진 filed Critical ㈜큐리진
Priority to CA3052038A priority Critical patent/CA3052038C/en
Priority to US16/482,565 priority patent/US11149272B2/en
Priority to AU2018216509A priority patent/AU2018216509B2/en
Priority to CN201880009393.9A priority patent/CN110234764B/zh
Priority to EP18747648.6A priority patent/EP3578655B1/en
Priority to JP2019562531A priority patent/JP6962600B2/ja
Publication of WO2018143626A1 publication Critical patent/WO2018143626A1/ko
Priority to US17/002,621 priority patent/US11634712B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/28Compounds containing heavy metals
    • A61K31/282Platinum compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/243Platinum; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/51Physical structure in polymeric form, e.g. multimers, concatemers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed
    • C12N2310/531Stem-loop; Hairpin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/31Combination therapy

Definitions

  • the present invention relates to a nucleic acid molecule that simultaneously inhibits the expression of the mTOR gene and the STAT3 gene, and an anticancer pharmaceutical composition comprising the same.
  • Cancer is one of the world's most fatalities, and the development of innovative cancer treatments can reduce the cost of treatment and create high added value.
  • molecular therapies that can overcome existing anticancer drug resistance accounted for $ 17.5 billion in seven major countries (US, Japan, France, Germany, Italy, Spain, UK) and about 2018 It has a market size of about $ 45 billion and is expected to grow 9.5% over 2008.
  • the treatment of cancer is divided into surgery, radiation therapy, chemotherapy, and biological therapy.
  • chemotherapy is a chemical substance that inhibits or kills the proliferation of cancer cells.
  • the anticancer drug is effective, the resistance is lost after a certain period of time, but the development of an anticancer drug that selectively acts on cancer cells and does not develop is urgently needed. 2004. 6 (19).
  • RNA interference interference RNA
  • mRNA transcript a transcript with complementary sequences of small interfering ribonucleic acid short interfering RNA (siRNA) with a double-stranded structure of 21-25 nucleotides in size. It is a phenomenon that suppresses expression of a specific protein by decomposing a transcript.
  • RNA double strand is processed by an endonuclease called Dicer and converted into 21-23 base pair (bp) siRNAs, which bind to an RNA-induced silencing complex (RISC).
  • RISC RNA-induced silencing complex
  • siRNA against the same target gene is superior to antisense oligonucleotides (ASOs) in inhibiting mRNA expression in vitro and in vivo, and the effect lasts for a long time.
  • ASOs antisense oligonucleotides
  • the market for therapeutic drugs based on RNAi technology, including siRNA, is estimated to form more than 12 trillion won in the global market by 2020. It is evaluated as the next generation gene therapy technology that can cure diseases that are difficult to treat.
  • siRNA binds complementarily with the target mRNA and regulates the expression of the target gene in a sequence-specific manner, allowing long time for conventional antibody-based drugs or small molecule drugs to be optimized for specific protein targets.
  • the applicable target can be significantly expanded and the development period can be shortened, so that lead compounds optimized for all protein targets including non-pharmaceutical target substances can be developed.
  • siRNA therapeutics have the advantage of having a clear target and predictable side effects.However, in the case of tumors, which are caused by problems of various genes, these target specificities do not have high therapeutic effects. It can also be a cause.
  • mTOR (mammalian Target of rapamycin) is a cytokine-stimulated cell proliferation, translation of mRNA for several important proteins that regulate G1 phase of the cell cycle, and interleukin-2 (IL-2) ) Is an important enzyme in a variety of signal transduction pathways, including induced transcription. Inhibition of mTOR causes inhibition of progression from G1 to S in the cell cycle. Since mTOR inhibitors exhibit immunosuppressive, antiproliferative and anticancer activity, mTOR is targeted for the treatment of these diseases (Current Opinion in Lipidology, 16: 317-323, 2005).
  • mTOR is an important factor in regulating autophage, and targets mTOR that regulates the autophagy pathway, thereby targeting various diseases such as cancer, neurodegenerative diseases, heart disease, aging, immune diseases, infectious diseases, and Crohn's disease. Diseases and the like can be treated (Immunology, 7: 767-777; Nature 451: 1069-1075, 2008).
  • STAT3 signal transducer and activator of transcription 3 is a transcription factor that promotes transcription by transmitting signals of various growth factors and cytokines outside the cell to the nucleus. Phosphorylated tyrosine residues in the transactivation domain are activated and introduced into the nucleus (STAT3 inhibitors for cancer therapy: Have all roads been explored Jak-Stat. 2013; 1; 2 (1): e22882). Phosphorylated STAT3 (p-STAT3) binds to the DNA of the nucleus and induces the expression of a broad range of target genes involved in tumorigenesis, such as proliferation and differentiation of cells. It is constantly active in about 70% (Role of STAT3 in cancer metastasis and translational advances. BioMed research international.
  • Stat3 and mTOR are the major cancer-related genes whose prognosis is determined in lung cancer, prostate cancer, head and neck cancer, etc. according to the expression level, but they are targeted for the development of anticancer drugs. This is impossible, and cystemic side effects are expected to deliver the drug, it is difficult to develop a new drug to suppress them.
  • An object of the present invention to provide a nucleic acid that inhibits the expression of mTOR gene and STAT3 gene at the same time, in order to overcome the disadvantage that the therapeutic effect due to the target specificity of siRNA in the present invention, mTOR gene and STAT3 gene associated with cancer SiRNA and shRNA were produced to inhibit the expression of the same, and its anticancer activity and synergistic anticancer activity with anticancer drugs to confirm the purpose of using it as a pharmaceutical composition for preventing or treating cancer.
  • the present invention provides a nucleic acid molecule that simultaneously inhibits the expression of mTOR and STAT3 genes.
  • the present invention also provides a recombinant expression vector comprising the nucleic acid molecule.
  • the present invention also provides a recombinant microorganism incorporating the recombinant expression vector.
  • the present invention provides a pharmaceutical composition for anticancer, comprising the nucleic acid molecule as an active ingredient.
  • the present invention also provides a method for preventing and treating cancer, comprising administering to a subject a pharmaceutically effective amount of the nucleic acid molecule of claim 1.
  • the double-stranded siRNA or shRNA of the present invention inhibits the expression of the mTOR gene and the antisense strand inhibits the expression of the STAT3 gene, thereby simultaneously inhibiting the two genes without treating each siRNA or shRNA separately.
  • FIG. 1 is a diagram showing a map of a vector for expressing shRNAs in a cell comprising a double strand siRNA sequence of the present invention together with a loop sequence in one strand.
  • Figure 2 is a diagram confirming the inhibitory effect of mTOR or STAT3 gene expression by double-stranded siRNA of the double target of the present invention.
  • siRNA for the mTOR gene or STAT3 gene (nc2 is a control siRNA; simTOR is siRNA targeting only mTOR; siSTAT3 is siRNA targeting only STAT3; simTOR & STAT3 is mTOR targeting siRNA and STAT3 targeting siRNA in combination).
  • Figure 4 is a diagram confirming the cell survival rate of human lung cancer cell line A549 cells when the dual target siRNA of the present invention simultaneously inhibited mTOR and STAT3.
  • FIG. 5 is a diagram confirming the cell survival rate of human lung cancer cell line A549 cells when mTOR and STAT3 are simultaneously suppressed by the double target siRNA of the present invention after cisplatin treatment.
  • Figure 7 is a diagram confirming the cell survival rate of human lung cancer cell line A549 cells when 5-FU (5-fluorouracil) treatment, when mTOR and STAT3 are simultaneously suppressed by the dual target siRNA of the present invention.
  • FIG. 8 is a diagram showing the expression amount of mTOR and STAT3 by the vector containing the TTGGATCCAA loop shRNA sequence of SEQ ID NO: 20 or the TTCAAGAGAG loop shRNA of SEQ ID NO: 21 according to the DNA amount of shRNA.
  • the present invention provides nucleic acid molecules that simultaneously inhibit the expression of mTOR and STAT3 genes.
  • the nucleic acid molecules include SEQ ID NOs: 1 and 2; SEQ ID NOs: 3 and 4; SEQ ID NOs: 5 and 6; SEQ ID NOs: 7 and 8; SEQ ID NOs: 9 and 10; SEQ ID NOs: 11 and 12; SEQ ID NOs: 13 and 14; SEQ ID NOs: 15 and 16; Or the nucleotide sequences of SEQ ID NOs: 17 and 18;
  • the nucleotide sequence represented by SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15 and 17 inhibits mTOR gene expression by RNA interference
  • SEQ ID NO: 2, 4 The base sequences represented by 6, 8, 10, 12, 14, 16, and 18 can inhibit the expression of the STAT3 gene by RNA interference, and the nucleic acid molecule of the present invention simultaneously inhibits the expression of the mTOR gene and the STAT3 gene. can do.
  • SEQ ID NO: 1 is SEQ ID NO: 2
  • SEQ ID NO: 3 is SEQ ID NO: 4
  • SEQ ID NO: 5 is SEQ ID NO: 6
  • SEQ ID NO: 7 is SEQ ID NO: 8
  • SEQ ID NO: 9 is SEQ ID NO: 10
  • SEQ ID NO: 11 is SEQ ID NO: 12
  • SEQ ID NO: 13 is SEQ ID NO: 14
  • SEQ ID NO: 15 is SEQ ID NO: 16
  • SEQ ID NO: 17 is partially complementary to the strand strand (double strand) ) siRNAs were constructed, and double stranded siRNAs were identified as double target siRNA sets by targeting mTOR and STAT3 genes to inhibit expression.
  • siRNA targeting mTOR or STAT3 has a sequence 100% complementary to a part of the mTOR gene or STAT3 gene of human ( Homo sapiens ), and can degrade mRNA or inhibit translation of mTOR gene or STAT3 gene. have.
  • the term “inhibition of expression” means to cause the expression or translational degradation of the target gene, preferably by means that the target gene expression becomes undetectable or present at an insignificant level.
  • siRNA small interfering RNA
  • siRNA refers to a short double-chain RNA that can induce RNA interference (RNAi) phenomenon through cleavage of a specific mRNA.
  • siRNA is composed of a sense RNA strand having a sequence homologous to the mRNA of the target gene and an antisense RNA strand having a sequence complementary thereto
  • the double-stranded siRNA of the present invention is the sense RNA strand SEQ ID NO: 1, 3, 5, SiRNA (antisense strand to mTOR gene) represented by the nucleotide sequences of 7, 9, 11, 13, 15 and 17, and the antisense RNA strand is SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16,
  • the double-stranded siRNA can suppress the expression of mTOR and STAT3 gene at the same time, respectively, as an efficient gene knock-down method or gene It is provided by
  • the siRNA of SEQ ID NOS: 1 and 2 of set 1 is 17mer of 21mer
  • the siRNA of SEQ ID NOs: 3 and 4 of set 2 16mer of 20mer
  • the siRNA of SEQ ID NOs: 5 and 6 of set 3 is 19mer 15mer of the pairs
  • siRNAs of SEQ ID NOs: 7 and 8 of set 4 14mer of 18mers
  • 16mers of the 17mers of SEQ ID NOs: 9 and 10 of Set 5 bind complementarily.
  • siRNAs of SEQ ID NOs: 11 and 12 of Set 6 were 17mers in 20mers
  • the siRNAs of SEQ ID NOs: 13 and 14 of Set 7 were 16mers of 19mers
  • the siRNAs of SEQ ID NOs: 15 and 16 of Set 8 were 15mers of 18mers
  • the siRNA of SEQ ID NOs: 17 and 18 in set 9 is complementary to 15mer of 17mer.
  • nucleic acid molecules that simultaneously inhibit the expression of mTOR and STAT3 genes of the present invention may have deletion, substitution or insertion of functional equivalents of the nucleic acid molecules constituting them, for example, some of the nucleotide sequences of the nucleic acid molecules.
  • the gene is a base having sequence homology of at least 70%, more preferably at least 80%, even more preferably at least 90%, most preferably at least 95% with each of the base sequences of SEQ ID NOs: 1-18. Sequences may be included.
  • the "% sequence homology" for a nucleic acid molecule is identified by comparing two optimally arranged sequences with a comparison region, wherein part of the nucleic acid molecule sequence in the comparison region is the reference sequence (addition or deletion) for the optimal alignment of the two sequences. It may include the addition or deletion (ie, gap) compared to).
  • the present invention also provides a recombinant expression vector comprising the nucleic acid molecule.
  • shRNA comprising the same, in particular, the nucleotide sequence of SEQ ID NOS: 1 to 18, may be capable of at least activating at least a promoter. It is preferred to be connected.
  • the promoter may be any promoter capable of functioning in eukaryotic cells. Additional regulatory sequences, including leader sequences, polyadenylation sequences, promoters, enhancers, upstream activation sequences, signal peptide sequences, and transcription terminators, as needed, for efficient transcription of double stranded siRNAs or shRNAs targeting mTOR and STAT3 It may also include.
  • the shRNA may be represented by the nucleotide sequence of SEQ ID NO: 20 or SEQ ID NO: 21.
  • shRNA short hairpin RNA
  • shRNA short hairpin RNA
  • the length of the double-stranded structure is not particularly limited, but is preferably 10 nucleotides or more, more preferably. Is at least 20 nucleotides.
  • the shRNA may be included in a vector.
  • vector refers to a plasmid vector as a means for expressing a gene of interest in a host cell; Phagemid vector; Cosmid vector; And viral vectors such as bacteriophage vectors, adenovirus vectors, retroviral vectors and adeno-associated virus vectors, and the like.
  • the genes in the vectors of the invention are operatively linked with the promoter.
  • operably linked means a functional binding between a gene expression control sequence (eg, a promoter, signal sequence, or array of transcriptional regulator binding sites) and another gene sequence, thereby The regulatory sequence will control transcription and / or translation of the other gene sequence.
  • a gene expression control sequence eg, a promoter, signal sequence, or array of transcriptional regulator binding sites
  • the vector system of the present invention may be constructed through various methods known in the art, and specific methods thereof are disclosed in Sambrook et al. (2001), Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, This document is incorporated herein by reference.
  • Vectors of the present invention can typically be constructed as vectors for cloning or vectors for expression.
  • the vector of the present invention can be constructed using prokaryotic or eukaryotic cells as hosts.
  • powerful promoters capable of promoting transcription e.g., tac promoter, lac promoter, lacUV5 promoter, lpp promoter, pL ⁇ promoter, pR ⁇ promoter, rac5 promoter, amp promoters, recA promoters, SP6 promoters, trp promoters and T7 promoters, etc.
  • ribosome binding sites for initiation of translation e.g., ribosome binding sites for initiation of translation
  • transcription / detox termination sequences e.g., ribosome binding sites for initiation of translation, and transcription / detox termination sequences.
  • coli eg, HB101, BL21, DH5 ⁇ , etc.
  • E. coli tryptophan biosynthesis pathway Yanofsky, C. (1984), J. Bacteriol., 158: 1018-). 1024
  • a phage ⁇ left promoter pL ⁇ promoter, Herskowitz, I. and Hagen, D. (1980), Ann. Rev. Genet., 14: 399-445) can be used as regulatory sites.
  • vectors that can be used in the present invention are plasmids often used in the art (eg, pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8 / 9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pHV14).
  • plasmids often used in the art (eg, pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8 / 9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pHV14).
  • pGEX series, pET series and pUC19, etc.) phagemids (eg pComb3X), phage or virus (eg SV40, etc.) can be engineered.
  • the vector of the present invention may be fused with other sequences as needed to facilitate purification of the protein, and the sequences to be fused include, for example, glutathione S-transferase (Pharmacia, USA), maltose binding protein (NEB, USA). ), FLAG (IBI, USA) and 6x His (hexahistidine; Quiagen, USA) and the like can be used, but are not limited thereto.
  • the expression vector of the present invention may include an antibiotic resistance gene commonly used in the art as a selectable label, for example, ampicillin, gentamicin, carbenicillin, chloramphenicol, streptomycin, kanamycin, geneticin Resistance genes to neomycin and tetracycline.
  • the present invention also provides a recombinant microorganism incorporating the recombinant expression vector.
  • Host cells capable of stably and continuously cloning and expressing the vectors of the present invention can use any host cell known in the art, such as Escherichia coli, Bacillus subtilis and Bacillus thuringin Bacillus strains such as cis, Streptomyces, Pseudomonas (e.g. Pseudomonas putida), Proteus mirabilis or Staphylococcus (e.g.
  • prokaryotic host cells such as, but not limited to, Staphylocus carnosus.
  • the host cell is preferably E. coli and more preferably E. coli ER2537, E. coli ER2738, E. coli XL-1 Blue, E. coli BL21 (DE3), E. coli JM109, E. coli DH Series, E. coli TOP10, E. coli TG1 and E. coli HB101.
  • the method of carrying the vector of the present invention into a host cell is performed by CaCl 2 method (Cohen, SN et al. (1973), Proc. Natl. Acac. Sci. USA, 9: 2110-2114), one method (Cohen, SN et al. (1973), Proc. Natl. Acac. Sci. USA, 9: 2110-2114; and Hanahan, D. (1983), J. Mol. Biol., 166: 557-580) and electroporation methods (Dower, WJ et al. (1988), Nucleic. Acids Res., 16: 6127-6145) and the like.
  • the present invention also provides an anticancer pharmaceutical composition comprising the nucleic acid molecule as an active ingredient.
  • the nucleic acid molecule may further comprise an anticancer agent, for example, acibaicin, aclarubicin, acodazole, acronycin, adozelesin, alanosine, aldesleukin, allopurinol sodium, altre Tamine, Aminoglutetimide, Amonaphide, Ampligen, Amsacrine, Androgens, Anguidine, Apidicholine glycinate, Asari, Asparaginase, 5-Azacytidine, Azathioprine, Bacillus Calmette-Guerin (BCG), Bakers Antipol, Beta-2-Dioxythioguanosine, Bisanthrene HCl, Bleomycin Sulfate, Bullspanine, Butionine Suloximine, BWA 773U82, BW 502U83 / HCl, BW 7U85 mesylate, cerasemide, carbetimer, carboplatin, carmustine, chlor
  • the cancer is colon cancer, breast cancer, uterine cancer, cervical cancer, ovarian cancer, prostate cancer, brain tumor, head and neck carcinoma, melanoma, myeloma, leukemia, lymphoma, gastric cancer, lung cancer, pancreatic cancer, non-small cell lung cancer, liver cancer, esophageal cancer, small intestine cancer , Anal muscle cancer, fallopian tube carcinoma, endometrial carcinoma, vaginal carcinoma, vulvar carcinoma, Hodgkin's disease, bladder cancer, kidney cancer, ureter cancer, renal cell carcinoma, renal pelvic carcinoma, bone cancer, skin cancer, head cancer, cervical cancer, skin melanoma , Intraocular melanoma, endocrine cancer, thyroid cancer, parathyroid cancer, adrenal cancer, soft tissue sarcoma, urethral cancer, penile cancer, central nervous system (CNS) tumor, primary CNS lymphoma, spinal cord tumor, glioblastoma multiforme and pituitary gland It may be any one
  • the pharmaceutical composition of the present invention may further comprise an adjuvant in addition to the single domain antibody.
  • the adjuvant may be used without any limitation as long as it is known in the art, but may further include the Freund's complete adjuvant or incomplete adjuvant to increase its effect.
  • compositions according to the present invention may be prepared in a form in which the active ingredient is incorporated into a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable carriers include carriers, excipients and diluents commonly used in the pharmaceutical art.
  • Pharmaceutically acceptable carriers that can be used in the pharmaceutical compositions of the present invention include, but are not limited to, lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, Calcium phosphate, calcium silicate, cellulose, methyl cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil.
  • compositions of the present invention may be used in the form of powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols and the like, oral formulations, external preparations, suppositories, or sterile injectable solutions, respectively, according to conventional methods. .
  • Solid preparations for oral administration include tablets, pills, powders, granules, capsules, and the like, and such solid preparations contain at least one excipient in the active ingredient, for example starch, calcium carbonate, sucrose, lactose, gelatin It can be prepared by mixing.
  • lubricants such as magnesium stearate, talc can also be used.
  • Liquid preparations for oral administration include suspensions, solvents, emulsions, and syrups.In addition to commonly used diluents such as water and liquid paraffin, various excipients such as wetting agents, sweeteners, fragrances, and preservatives may be included. Can be.
  • Formulations for parenteral administration include sterile aqueous solutions, water-insoluble solvents, suspensions, emulsions, lyophilized formulations and suppositories.
  • the non-aqueous solvent and suspending agent propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate and the like can be used.
  • As the base of the suppository witepsol, tween 61, cacao butter, laurin butter, glycerogelatin and the like can be used.
  • composition according to the present invention can be administered to a subject by various routes. All modes of administration can be expected, for example by oral, intravenous, intramuscular, subcutaneous, intraperitoneal injection.
  • the dosage of the pharmaceutical composition according to the present invention is selected in consideration of the age, weight, sex, physical condition, etc. of the individual. It is apparent that the concentration of a single domain antibody included in the pharmaceutical composition can be variously selected according to a subject, and preferably, the pharmaceutical composition is included in a concentration of 0.01 to 5,000 ⁇ g / ml. If the concentration is less than 0.01 ⁇ g / ml, the pharmaceutical activity may not appear, and when the concentration exceeds 5,000 ⁇ g / ml, the human body may be toxic.
  • the pharmaceutical composition of the present invention may be used for the prevention or treatment of cancer and its complications, and may also be used as an anticancer adjuvant.
  • the present invention also provides a method for preventing and treating cancer, comprising administering to a subject a pharmaceutically effective amount of the nucleic acid molecule of claim 1.
  • the pharmaceutical composition of the present invention is administered in a therapeutically effective amount or in a pharmaceutically effective amount.
  • pharmaceutically effective amount means an amount sufficient to treat a disease at a reasonable benefit / risk ratio applicable to medical treatment, and an effective dose level is determined by the type and severity of the subject, age, sex, activity of the drug, drug Sensitivity, time of administration, route of administration and rate of release, duration of treatment, factors including concurrent use of drugs, and other factors well known in the medical arts.
  • a double target siRNA (double strand) capable of simultaneously inhibiting STAT3 (signal transducer and activator of transcription 3) and mTOR (mammalian target of rapamycin) was prepared in the sequence of Table 1 below (Bioneer, Daejeon, Korea).
  • the siRNA of SEQ ID NO: 1 and 2 of the set 1 is 17mer of 21mer
  • the siRNA of SEQ ID NO: 3 and 4 of the set 2 is 16mer of 20mer
  • the siRNA of SEQ ID NO: 5 and 6 of set 3 is 15mer of 19mer
  • the siRNAs of SEQ ID NOs: 7 and 8 of 4 bind 14mer in 18mer
  • the siRNAs of SEQ ID NOs: 9 and 10 of Set 5 bind complementarily of 16mers in 17mer.
  • siRNAs of SEQ ID NOs: 11 and 12 of Set 6 were 17mers in 20mers
  • the siRNAs of SEQ ID NOs: 13 and 14 of Set 7 were 16mers of 19mers
  • the siRNAs of SEQ ID NOs: 15 and 16 of Set 8 were 15mers of 18mers
  • the siRNAs of SEQ ID NOs: 17 and 18 in set 9 are complementary to 14mers of 17mers.
  • the siRNA of the antisense_mTOR of each set of mTOR mRNA (gi
  • each set of antisense_STAT3 siRNAs targets STAT mRNA (gi
  • the shRNA comprising the sequence of the siRNA double strand and the loop sequence (TTGGATCCAA loop shRNA and TTCAAGAGAGAG) Loop shRNA) was constructed (Table 2).
  • the prepared shRNAs were placed to be after the U7 promoter (SEQ ID NO: 19) at the restriction enzymes Pst I and Eco RV cleavage positions of the pE3.1 vector (FIG. 1), respectively, to include a dual target siRNA targeting mTOR and STAT3.
  • Recombinant expression vectors were constructed that can express two species of shRNA in cells.
  • the cells were incubated at 37 ° C. and 5% CO 2 in RPMI medium (Hyclone) to which 10% FBS (Hyclone) was added until the cell confluent became 50%. Thereafter, the cells were transfected with lipofectamine3000 (Invitrogen, Carlsbad, Calif., USA) using the dual target siRNA prepared in Example 1 to simultaneously drop down Bcl1, BI1, AR, mTOR and STAT3. 48 hours after transfection, cells were disrupted and total RNA was extracted with GeneJET RNA Purification Kit (Invitrogen).
  • Reverse transcription reaction was performed with RevoScriptTM RT PreMix (iNtRON BIOTECHNOLOGY) using the extracted total RNA as a template.
  • RevoScriptTM RT PreMix iNtRON BIOTECHNOLOGY
  • mTOR Hs00234522_m1
  • STAT3 Hs01047580_m1
  • GAPDH Hs02758991_g1
  • the reaction was performed using a PRISM 7700 Sequence Detection System and QS3 Real-time PCR (Biosystems).
  • Real-time PCR reaction conditions were performed in a total of 40 cycles [two step cycles of 2 minutes at 50 ° C., 10 minutes at 95 ° C., and 15 seconds at 95 ° C. and 60 seconds at 60 ° C.]. All reactions were repeated three times and averaged. The results obtained were normalized to the mRNA value of GAPDH, a housekeeping gene.
  • mTOR and STAT3 were found to have a residual expression of about 20 to 40% compared to the control by the dual target siRNAs of sets 1-9, indicating that the dual target siRNAs inhibited expression of both genes simultaneously. (FIG. 2).
  • human lung cancer cell line A549 cells were dispensed at 5 ⁇ 10 3 cells / well in 96-well plates, and then double-targeted with lipofectamine 3000.
  • siRNA current knockdown of mTOR and STAT3
  • cells were treated with 5 mg / mL MTT (Promega, Ltd.) for an additional 24 hours and incubated for 4 hours.
  • the medium was then removed, treated with 150 ⁇ l of solubilization solution and stop solution and incubated at 37 ° C. for 4 hours.
  • the absorbance of the reaction solution was measured at 570 nm and cell viability was calculated using the following equation.
  • Human lung cancer cell line A549 cells were dispensed in 96-well plates at 5 ⁇ 10 3 cells / well, followed by transfection of cells with lipofectamine3000 to double target siRNA (mTOR and STAT3 simultaneous knockdown), respectively. 48 hours after transfection, 5 ⁇ M cisplatin was treated and incubated for 10 hours. Thereafter, MTT reaction was performed as in Experimental Example 3, and its absorbance was measured at 570 nm to calculate cell viability.
  • Human lung cancer cell line A549 cells were dispensed in 96-well plates at 5 ⁇ 10 3 cells / well and then transfected with lipofectamine3000 to double target siRNA (mTOR and STAT3 simultaneous knockdown), respectively. After 48 hours of transfection, 1 ⁇ M of 5-fluorouracil was treated and incubated for 10 hours. Thereafter, MTT reaction was performed as in Experimental Example 3, and its absorbance was measured at 570 nm to calculate cell viability.
  • Vectors containing the TTGGATCCAA loop shRNA sequence of SEQ ID NO: 20 or the TTCAAGAGAG loop shRNA of SEQ ID NO: 21 prepared in Example 2 were transfected 0, 1 and 2 ⁇ g into A549 cells using lipofectamine3000, respectively. After 48 hours of transfection, the degree of gene expression reduction of mTOR and STAT3 was confirmed using the Real time PCR analysis method described in Experimental Example 1.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Inorganic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 mTOR 유전자 및 STAT3 유전자의 발현을 동시에 억제하는 핵산 분자와, 이를 포함하는 항암용 약학적 조성물에 관한 것으로, 구체적으로, siRNA 또는 shRNA의 표적 특이성으로 인한 치료 효과가 높지 않은 단점을 극복하기 위하여, 암과 관련된 mTOR 유전자 및 STAT3 유전자의 발현을 동시에 억제하도록 설계된 본원발명의 이중 가닥 siRNA 또는 shRNA는 암세포의 사멸을 촉진하는 효과가 있다. 또한, 항암제와의 병용 처리에서 암세포 사멸을 시너지적으로 향상시키는 효과가 있으므로, 다양한 암종에 항암용 조성물 또는 항암보조제로서 유용하게 이용될 수 있다.

Description

MTOR 유전자 및 STAT3 유전자의 발현을 동시에 억제하는 핵산
본 발명은 mTOR 유전자 및 STAT3 유전자의 발현을 동시에 억제하는 핵산 분자와, 이를 포함하는 항암용 약학적 조성물에 관한 것이다.
암은 전세계적으로 가장 많은 사망자를 내는 질병 중 하나로, 혁신적인 암 치료제의 개발은 이에 대한 치료시 발생되는 의료비를 절감할 수 있음과 동시에 고부가가치를 창출할 수 있다. 또한, 2008년의 통계에 따르면, 기존항암제 내성을 극복 할 수 있는 분자 치료제는 주요 7개국(US, Japan, France, Germany, Italy, Spain, UK)에서 $17.5 billion을 차지했고, 2018년의 경우 약 $45 billion 정도의 market size를 차지하여, 2008년 대비 9.5%의 성장률을 보일 것이라 예측되고 있다. 암의 치료는 수술, 방사선치료, 화학요법, 생물학적 치료로 구분되는데, 이 중에 화학요법은 화학물질로서 암 세포의 증식을 억제하거나 죽이는 치료법으로 항암제에 의하여 나타나는 독성은 상당부분 정상세포에서도 나타나기 때문에 일정 정도의 독성을 나타내며, 항암제가 효과를 나타내다가도 일정 기간의 사용 후에는 효과가 상실되는 내성이 발생하기 때문에 암세포에 선택적으로 작용하고 내성이 생기지 않는 항암제의 개발이 절실하다 (암 정복의 현주소 Biowave 2004. 6(19)). 최근 암에 대한 분자유전정보의 확보를 통해 암의 분자적 특성을 표적으로 한 새로운 항암제의 개발이 진행되고 있으며, 암세포만이 가지고 있는 특징적인 분자적 표적(molecular target)을 겨냥하는 항암제들은 약제 내성이 생기지 않는다는 보고도 있다.
유전자의 발현을 억제하는 기술은 질병치료를 위한 치료제 개발 및 표적 검증에서 중요한 도구이다. 간섭 RNA(RNA interference, 이하 RNAi라고 한다)는 그 역할이 발견된 이후로, 다양한 종류의 포유동물세포(mammalian cell)에서 서열 특이적 mRNA에 작용한다는 사실이 밝혀졌다 (Silence of the transcripts: RNA interference in medicine. J Mol Med (2005) 83: 764773). RNAi는 21-25개의 뉴클레오타이드 크기의 이중나선 구조를 가진 작은 간섭 리보핵산 짧은 간섭 RNA (small interfering RNA, 이하 siRNA라고 한다)이 상보적인 서열을 가지는 전사체(mRNA transcript)에 특이적으로 결합하여 해당 전사체를 분해함으로써 특정 단백질의 발현을 억제하는 현상이다. 세포 내에서는 RNA 이중가닥이 Dicer라는 엔도뉴클라아제(endonuclease)에 의해 프로세싱되어 21 내지 23개의 이중가닥(base pair,bp)의 siRNA로 변환되며, siRNA 는 RISC(RNA-induced silencing complex)에 결합하여 가이드(안티센스) 가닥이 타겟 mRNA를 인식하여 분해하는 과정을 통해 타겟 유전자의 발현을 서열 특이적으로 저해한다 (NUCLEIC-ACID THERAPEUTICS: BASIC PRINCIPLES AND RECENT APPLICATIONS. Nature Reviews Drug Discovery. 2002. 1, 503-514). 베르트랑(Bertrand) 연구진에 따르면 동일한 타겟 유전자에 대한 siRNA가 안티센스 올리고뉴클레오티드(Antisense oligonucleotide, ASO)에 비하여 생체 내/외(in vitro 및 in vivo)에서 mRNA 발현의 저해효과가 뛰어나고, 해당 효과가 오랫동안 지속되는 효과를 포함하는 것으로 밝혀졌다 (Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem. Biophys. Res.Commun. 2002. 296: 1000-1004). siRNA를 포함하는 RNAi 기술 기반 치료제 시장은 향후 세계 시장규모가 2020년경에 총 12조원 이상을 형성하는 것으로 분석되었으며, 해당 기술을 적용할 수 있는 대상이 획기적으로 확대되어 기존의 항체, 화합물 기반 의약품으로 치료하기 어려운 질병을 치료할 수 있는 차세대 유전자 치료기술로 평가되고 있다. 또한 siRNA의 작용 기작은 타겟 mRNA와 상보적으로 결합하여 서열 특이적으로 타겟 유전자의 발현을 조절하기 때문에, 기존의 항체 기반 의약품이나 화학물질(small molecule drug)이 특정한 단백질 표적에 최적화되기까지 오랜 동안의 개발 기간 및 개발 비용이 소요되는 것에 비하여, 적용할 수 있는 대상이 획기적으로 확대될 수 있고, 개발 기간이 단축되면서, 의약화가 불가능한 표적 물질을 포함한 모든 단백질 표적에 대하여 최적화된 리드 화합물을 개발할 수 있다는 장점을 가진다 (Progress Towards in Vivo Use of siRNAs. MOLECULAR THERAPY. 2006 13(4):664-670). 이에, 최근 이 리보핵산 매개 간섭현상이 기존의 화학 합성 의약 개발에서 발생되는 문제의 해결책을 제시하면서 전사체 수준에서 특정 단백질의 발현을 선택적으로 억제하여 각종 질병 치료제, 특히 종양 치료제 개발에 이용하려는 연구가 진행되고 있다. 또한, siRNA 치료제는 기존 항암제와 달리 표적이 명확하여 부작용이 예측 가능하다는 장점이 있으나, 이러한 표적 특이성은 다양한 유전자의 문제에 의해 발생하는 질병인 종양의 경우, 오히려 이러한 표적 특이성은 치료 효과가 높지 않은 원인이 되기도 한다.
mTOR(포유동물의 라파마이신 표적; mammalian Target of rapamycin)은 사이토카인-자극 세포 증식, 세포주기의 G1 위상을 조절하는 몇몇 중요 단백질을 위한 mRNA의 번역(translation), 및 인터루킨-2(IL-2) 유도 전사(transcription)를 포함하는, 다양한 신호 전환 경로에 있어서 중요한 효소이다. mTOR의 억제는 세포주기의 G1으로부터 S까지의 진행의 억제를 야기한다. mTOR 억제제는 면역억제, 항증식 및 항암 활성을 나타내므로, 이러한 질환의 치료를 위하여 mTOR이 표적으로 되고 있다 (Current Opinion in Lipidology, 16: 317-323, 2005). 또한, mTOR은 자가소화(autophage) 조절에 중요한 인자로서, 자가소화 경로를 조절하는 mTOR을 표적으로 하여 다양한 질환 예를들어, 암, 신경변성 질환, 심장질환, 노화, 면역질환, 감염 질환 및 크론병 등을 치료할 수 있다(Immunology, 7:767-777; Nature 451: 1069-1075, 2008).
STAT3 (signal transducer and activator of transcription 3)는 세포 외부의 다양한 성장인자(growth factor)와 사이토카인(cytokine)의 신호를 핵에 전달하여 전사를 촉진하는 전사조절인자(transcription factor)로, 세포질 내 비활성 상태에서 전사활성 도메인(transactivation domain)의 타이로신 잔기가 인산화되어 활성화되면 핵 안으로 유입된다 (STAT3 inhibitors for cancer therapy: Have all roads been explored Jak-Stat. 2013;1;2(1):e22882). 인산화된 STAT3(p-STAT3)는 핵의 DNA와 결합하여 세포의 성장(proliferation)과 분화(differentiation) 등의 종양형성(tumorigenesis)에 관련된 광범위한 표적유전자의 발현을 유도하며, 고형암 및 혈액암 환자의 약 70%에서 상시 활성화 되어있다 (Role of STAT3 in cancer metastasis and translational advances. BioMed research international. 2013; 2013:421821). 하지만 STAT3와 같은 전사인자들은 단백의 3차 구조상, 활성을 저해할 수 있는 표적을 찾기 힘들기 때문에 전통적인 합성 신약 개발 분야에서 난개발(undruggable)로 여겨져 왔다 (Transcription Factor STAT3 as a Novel Molecular Target for Cancer Prevention. Cancers. 2014; 16;6(2):926-57). 따라서 STAT3의 발현을 저해할 수 있는 siRNA 치료제 및 이의 전달기술에 대한 시장의 수요는 매우 높은 상황이다.
즉, Stat3 및 mTOR 는 발현 정도에 따라 폐암, 전립선암, 두경부 암 등에서 예후가 결정되는 주요한 암 관련 유전자로, 항암제 개발에 타겟이 되고 있지만, 세포질에 존재하므로 기존에 많이 사용되는 항체치료제로는 접근이 불가하고, 또한 약물로 전달하기에는 시스테믹한 부작용이 예상되어 이들을 억제하기 위한 신약 개발이 어려운 실정이다.
본 발명의 목적은 mTOR 유전자 및 STAT3 유전자의 발현을 동시에 억제하는 핵산을 제공하는 것으로, 본 발명에서는 siRNA의 표적 특이성으로 인한 치료 효과가 높지 않은 단점을 극복하기 위하여, 암과 관련된 mTOR 유전자 및 STAT3 유전자의 발현을 동시에 억제하는 siRNA 및 shRNA를 제작하였으며, 이의 항암 활성 및 항암제와의 시너지적 항암 활성을 확인함으로써 이를 암 예방 또는 치료용 약학 조성물로 사용하는 것을 목적으로 한다.
상기 목적의 달성을 위해, 본 발명은 mTOR 및 STAT3 유전자의 발현을 동시에 억제하는 핵산 분자를 제공한다.
또한, 본 발명은 상기 핵산 분자를 포함하는 재조합 발현 벡터를 제공한다.
또한, 본 발명은 상기 재조합 발현 벡터를 도입한 재조합 미생물을 제공한다.
또한, 본 발명은 상기 핵산 분자를 유효성분으로 포함하는, 항암용 약학적 조성물을 제공한다.
또한, 본 발명은 약학적으로 유효한 양의 제1항의 핵산분자를 개체에 투여하는 단계를 포함하는 암의 예방 및 치료방법을 제공한다.
본 발명에 따르면, 본원발명의 이중 가닥 siRNA 또는 shRNA는 센스 가닥은 mTOR 유전자의 발현을 억제하고 안티센스 가닥은 STAT3 유전자의 발현 억제하여, 각각의 siRNA 또는 shRNA를 따로 처리하지 않아도 두 유전자를 동시에 억제할 수 있다. 이를 통해 암세포의 사멸을 촉진하고, 항암제와의 병용 처리에서 암세포 사멸을 시너지적으로 향상시키는 효과가 있으며, 국소 전달이 가능하고, 선택성이 뛰어나므로, 다양한 암종에 항암용 조성물 또는 항암보조제로서 유용하게 이용될 수 있다.
도 1은 본 발명의 이중 가닥의 siRNA 서열을 루프 서열과 함께 한 가닥에 포함하는 shRNA들을 세포 내에서 발현하기 위한 벡터의 맵을 나타낸 도이다.
도 2는 본 발명의 이중 표적의 이중 가닥 siRNA에 의한 mTOR 또는 STAT3 유전자 발현 억제 효과를 확인한 도이다.
도 3은 mTOR 유전자 및 STAT3 유전자의 발현이 상호간에 영향을 미치는지 확인하기 위하여, mTOR 유전자 또는 STAT3 유전자에 대한 siRNA를 각각 또는 함께 처리하여 mTOR와 STAT2의 발현량을 확인한 도이다(nc2는 대조군 siRNA; simTOR는 mTOR만을 표적화하는 siRNA; siSTAT3는 STAT3만을 표적화하는 siRNA; simTOR&STAT3는 mTOR 표적화 siRNA 및 STAT3 표적화 siRNA 병용 처리).
도 4는 본 발명의 이중 표적 siRNA로 mTOR 및 STAT3를 동시에 억제하였을 때의 인간 폐암세포주 A549 세포의 세포 생존율을 확인한 도이다.
도 5는 시스플라틴 처리 후, 본 발명의 이중 표적 siRNA로 mTOR 및 STAT3를 동시에 억제하였을 때의 인간 폐암세포주 A549 세포의 세포 생존율을 확인한 도이다.
도 6은 파클리탁셀 처리 후, 본 발명의 이중 표적 siRNA로 mTOR 및 STAT3를 동시에 억제하였을 때의 인간 폐암세포주 A549 세포의 세포 생존율을 확인한 도이다.
도 7은 5-FU(5-fluorouracil) 처리 후, 본 발명의 이중 표적 siRNA로 mTOR 및 STAT3를 동시에 억제하였을 때의 인간 폐암세포주 A549 세포의 세포 생존율을 확인한 도이다.
도 8은 서열번호 20의 TTGGATCCAA 루프 shRNA 서열 또는 서열번호 21의 TTCAAGAGAG 루프 shRNA를 포함하는 벡터에 의한 mTOR 및 STAT3의 발현량을 shRNA의 DNA 양에 따라 확인한 도이다.
본 발명은 mTOR 및 STAT3 유전자의 발현을 동시에 억제하는 핵산 분자를 제공한다.
상기 핵산 분자는 서열번호 1 및 2; 서열번호 3 및 4; 서열번호 5 및 6; 서열번호 7 및 8; 서열번호 9 및 10; 서열번호 11 및 12; 서열번호 13 및 14; 서열번호 15 및 16; 또는 서열번호 17 및 18;의 염기서열을 포함할 수 있다.
일 실시예에 있어서, 상기 서열번호 1, 3, 5, 7, 9, 11, 13, 15 및 17로 표시되는 염기서열은 RNA 간섭에 의해 mTOR유전자 발현을 억제하고, 상기 서열번호 2, 4, 6, 8, 10, 12, 14, 16, 및 18로 표시되는 염기서열은 RNA 간섭에 의해 STAT3 유전자의 발현을 억제할 수 있어, 본 발명의 핵산 분자는 mTOR 유전자와 STAT3 유전자의 발현을 동시에 억제할 수 있다.
일 실시예에 있어서, 상기 서열번호 1은 서열번호 2와, 서열번호 3은 서열번호 4와, 서열번호 5는 서열번호 6과, 서열번호 7은 서열번호 8과, 서열번호 9는 서열번호 10과, 서열번호 11은 서열번호 12와, 서열번호 13은 서열번호 14와, 서열번호 15는 서열번호 16과, 서열번호 17은 서열번호 18과 부분적으로 상보적 결합을 이루고 있는 이중 가닥(double strand) siRNA를 이루도록 제작하였고, 이중 가닥의 siRNA가 각각 mTOR 및 STAT3 유전자를 표적화하여 발현을 억제함을 확인함으로써 이중 표적 siRNA 세트임을 확인하였다.
본 발명에서 mTOR 또는 STAT3를 표적으로 하는 siRNA는 인간(Homo sapiens)의 mTOR 유전자 또는 STAT3 유전자의 일부와 100% 상보적인 서열을 가지고, mTOR 유전자 또는 STAT3 유전자의 mRNA를 분해하거나, 번역을 억제할 수 있다.
본 발명에서 사용되는 용어, "발현 억제"란 표적 유전자의 발현 또는 번역 저하를 야기하는 것을 의미하며, 바람직하게는 이에 의해 표적 유전자 발현이 탐지 불가능해지거나 무의미한 수준으로 존재하게 되는 것을 의미한다.
본 발명에서 사용되는 용어, "siRNA(small interfering RNA)"란 특정 mRNA의 절단(cleavage)을 통하여 RNAi(RNA interference) 현상을 유도할 수 있는 짧은 이중사슬 RNA를 의미한다. 일반적으로 siRNA는 타겟 유전자의 mRNA와 상동인 서열을 가지는 센스 RNA 가닥과 이와 상보적인 서열을 가지는 안티센스 RNA 가닥으로 구성되나, 본 발명의 이중 가닥 siRNA는 센스 RNA 가닥이 서열번호 1, 3, 5, 7, 9, 11, 13, 15 및 17의 염기서열로 표시되는 siRNA (mTOR 유전자에 대한 안티센스 가닥)이고, 안티센스 RNA 가닥이 서열번호 2, 4, 6, 8, 10, 12, 14, 16, 및 18의 염기서열로 이루어진 siRNA(STAT3 유전자에 대한 안티센스 가닥)이므로, 이중 가닥의 siRNA가 각각 동시에 mTOR 및 STAT3 유전자의 발현을 억제할 수 있기 때문에 효율적인 유전자 넉다운(knock-down) 방법으로서 또는, 유전자치료(gene therapy)의 방법으로 제공된다.
일실시예에 있어서, 세트 1의 서열번호 1 및 2의 siRNA는 21mer 중 17mer가, 세트 2의 서열번호 3 및 4의 siRNA는 20mer 중 16mer가, 세트 3의 서열번호 5 및 6의 siRNA는 19mer 중 15mer가, 세트 4의 서열번호 7 및 8의 siRNA는 18mer 중 14mer가, 세트 5의 서열번호 9 및 10의 siRNA는 17mer 중 16mer가 상보적으로 결합한다. 또한, 세트 6의 서열번호 11 및 12의 siRNA는 20mer 중 17mer가, 세트 7의 서열번호 13 및 14의 siRNA는 19mer 중 16mer가, 세트 8의 서열번호 15 및 16의 siRNA는 18mer 중 15mer가, 세트 9의 서열번호 17 및 18의 siRNA는 17mer 중 15mer가 상보적 결합한다.
상기 염기 서열의 변이체가 본 발명의 범위 내에 포함된다. 본 발명의 mTOR 및 STAT3 유전자 발현을 동시에 억제하는 핵산분자는 이를 구성하는 핵산 분자의 작용성 등가물, 예를 들어, 핵산 분자의 일부 염기서열이 결실(deletion), 치환(substitution) 또는 삽입(insertion)에 의해 변형되었지만, 핵산 분자와 기능적으로 동일한 작용을 할 수 있는 변이체(variants)를 포함하는 개념이다. 구체적으로, 상기 유전자는 서열번호 1 내지 18의 염기 서열과 각각 70% 이상, 더욱 바람직하게는 80% 이상, 더 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 염기 서열을 포함할 수 있다. 핵산 분자에 대한 "서열 상동성의 %"는 두 개의 최적으로 배열된 서열과 비교 영역을 비교함으로써 확인되며, 비교 영역에서의 핵산 분자 서열의 일부는 두 서열의 최적 배열에 대한 참고 서열(추가 또는 삭제를 포함하지 않음)에 비해 추가 또는 삭제(즉, 갭)를 포함할 수 있다.
또한, 본 발명은 상기 핵산 분자를 포함하는 재조합 발현 벡터를 제공한다.
본 발명에서 mTOR 및 STAT3를 표적으로 하는 이중 가닥 siRNA가 전달된 세포에서 적절히 전사되게 하기 위해서는 이를 포함하는 shRNA, 특히, 서열번호 1 내지 18의 염기서열이 일부 변형된 shRNA를 적어도 프로모터에 작동가능하게 연결되는 것이 바람직하다. 상기 프로모터는 진핵세포에서 기능할 수 있는 프로모터라면 어떤 것이든지 무방하다. mTOR 및 STAT3를 표적으로 하는 이중 가닥 siRNA 또는 shRNA의 효율적인 전사를 위하여 필요에 따라 리더 서열, 폴리아데닐화 서열, 프로모터, 인핸서, 업스트림 활성화 서열, 신호펩타이드 서열 및 전사 종결인자를 비롯한 조절서열을 추가로 포함할 수도 있다. 상기 shRNA는 서열번호 20 또는 서열번호 21의 염기서열로 표시될 수 있다.
본 발명의 용어 "shRNA(short hairpin RNA)"란, 단일가닥 RNA에서 부분적으로 회문상의 염기서열을 포함함으로써, 3´영역에 이중가닥 구조를 가지고 헤어핀과 같은 구조를 형성하고, 세포내에서 발현된 후에 세포내에 존재하는 RNase의 일종인 dicer에 의하여 절단되어 siRNA로 변환될 수 있는 RNA를 의미하는데, 상기 이중가닥 구조의 길이는 특별히 한정되지는 않으나, 바람직하게는 10 뉴클레오티드 이상이고, 보다 바람직하게는 20 뉴클레오티드 이상이다. 본 발명에 있어서, 상기 shRNA는 벡터에 포함될 수 있다.
본 명세서에서 용어 "벡터"는 숙주 세포에서 목적 유전자를 발현시키기 위한 수단으로 플라스미드 벡터; 파지미드 벡터; 코즈미드 벡터; 그리고 박테리오파아지 벡터, 아데노바이러스 벡터, 레트로바이러스 벡터 및 아데노-연관 바이러스 벡터 같은 바이러스 벡터 등을 포함될 수 있다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 벡터에서 유전자는 프로모터와 작동적으로 결합(operatively linked)되어 있다.
본 발명에 있어서, 용어 "작동적으로 결합된"은 유전자 발현 조절 서열(예: 프로모터, 시그널 서열, 또는 전사조절 인자 결합 위치의 어레이)과 다른 유전자 서열 사이의 기능적인 결합을 의미하며, 이에 의해 상기 조절 서열은 상기 다른 유전자 서열의 전사 및/또는 해독을 조절하게 된다.
본 발명의 벡터 시스템은 당업계에 공지된 다양한 방법을 통해 구축될 수 있으며, 이에 대한 구체적인 방법은 Sambrook et al.(2001), Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press에 개시되어 있으며, 이 문헌은 본 명세서에 참조로서 삽입된다.
본 발명의 벡터는 전형적으로 클로닝을 위한 벡터 또는 발현을 위한 벡터로서 구축될 수 있다. 또한, 본 발명의 벡터는 원핵 세포 또는 진핵 세포를 숙주로 하여 구축될 수 있다. 본 발명의 벡터가 발현 벡터이고, 원핵 세포를 숙주로 하는 경우에는, 전사를 진행시킬 수 있는 강력한 프로모터(예컨대, tac 프로모터, lac 프로모터, lacUV5 프로모터, lpp 프로모터, pLλ 프로모터, pRλ 프로모터, rac5 프로모터, amp 프로모터, recA 프로모터, SP6 프로모터, trp 프로모터 및 T7 프로모터 등), 해독의 개시를 위한 라이보좀 결합 자리 및 전사/해독 종결 서열을 포함하는 것이 일반적이다. 숙주 세포로서 E. coli(예컨대, HB101, BL21, DH5α 등)가 이용되는 경우, E. coli 트립토판 생합성 경로의 프로모터 및 오퍼레이터 부위(Yanofsky, C.(1984), J. Bacteriol., 158:1018-1024) 그리고 파아지 λ의 좌향 프로모터(pLλ 프로모터, Herskowitz, I. and Hagen, D.(1980), Ann. Rev. Genet., 14:399-445)가 조절 부위로서 이용될 수 있다.
한편, 본 발명에 이용될 수 있는 벡터는 당업계에서 종종 사용되는 플라스미드 (예: pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pHV14, pGEX 시리즈, pET 시리즈 및 pUC19 등), 파아지미드(예: pComb3X), 파아지 또는 바이러스 (예: SV40 등)를 조작하여 제작될 수 있다.
한편, 본 발명의 벡터가 발현 벡터이고, 진핵 세포를 숙주로 하는 경우에는, 포유동물 세포의 유전체로부터 유래된 프로모터(예: 메탈로티오닌 프로모터) 또는 포유동물 바이러스로부터 유래된 프로모터(예: 아데노바이러스 후기 프로모터, 백시니아 바이러스 7.5K 프로모터, SV40 프로모터, 사이토메갈로바이러스 프로모터 및 HSV의 사 프로모터)가 이용될 수 있으며, 전사 종결 서열로서 폴리아데닐화 서열을 일반적으로 갖는다.
본 발명의 벡터는 단백질의 정제를 용이하게 하기 위하여, 필요에 따라 다른 서열과 융합될 수도 있으며, 융합되는 서열은 예컨대, 글루타티온 S-트랜스퍼라제(Pharmacia, USA), 말토스 결합 단백질(NEB, USA), FLAG (IBI, USA) 및 6x His(hexahistidine; Quiagen, USA) 등이 이용될 수 있으나, 이에 제한되지는 않는다. 또한, 본 발명의 발현 벡터는 선택표지로서, 당업계에서 통상적으로 이용되는 항생제 내성 유전자를 포함할 수 있으며, 예를 들어 암피실린, 겐타마이신, 카베니실린, 클로람페니콜, 스트렙토마이신, 카나마이신, 게네티신, 네오마이신 및 테트라사이클린에 대한 내성 유전자가 있다.
또한, 본 발명은 상기 재조합 발현 벡터를 도입한 재조합 미생물을 제공한다.
본 발명의 벡터를 안정되면서 연속적으로 클로닝 및 발현시킬 수 있는 숙주 세포는 당업계에 공지된 어떠한 숙주 세포도 이용할 수 있으며, 예컨대, 에스케리치아 콜라이(Escherichia coli), 바실러스 서브틸리스 및 바실러스 츄린겐시스와 같은 바실러스 속 균주, 스트렙토마이세스(Streptomyces), 슈도모나스(Pseudomonas)(예를 들면, 슈도모나스 푸티다(Pseudomonas putida)), 프로테우스 미라빌리스(Proteus mirabilis) 또는 스타필로코쿠스(Staphylococcus)(예를 들면, 스타필로코쿠스 카르노수스(Staphylocus carnosus))와 같은 원핵 숙주 세포를 포함하나 이로 제한되는 것은 아니다. 상기 숙주세포는 바람직하게는 E. coli이고 보다 바람직하게는 E.coli ER2537, E. coli ER2738, E. coli XL-1 Blue, E. coli BL21(DE3), E. coli JM109, E. coli DH 시리즈, E. coli TOP10, E. coli TG1 및 E. coli HB101이다.
본 발명의 벡터를 숙주 세포 내로 운반하는 방법은, CaCl2 방법(Cohen, S.N. et al.(1973), Proc. Natl. Acac. Sci. USA, 9:2110-2114), 하나한 방법(Cohen, S.N. et al.(1973), Proc. Natl. Acac. Sci. USA, 9:2110-2114; 및 Hanahan, D.(1983), J. Mol. Biol., 166:557-580) 및 전기 천공 방법(Dower, W.J. et al.(1988), Nucleic. Acids Res., 16:6127-6145) 등에 의해 실시될 수 있다.
또한, 본 발명은 상기 핵산 분자를 유효성분으로 포함하는, 항암용 약학 조성물을 제공한다.
상기 핵산 분자는 항암제를 추가로 포함할 수 있고, 예를 들어, 아시바이신, 아클라루비신, 아코다졸, 아크로나이신, 아도젤레신, 알라노신, 알데스루킨, 알로푸리놀 소듐, 알트레타민, 아미노글루테티미드, 아모나파이드, 암플리겐, 암사크린, 안드로겐스, 안구이딘, 아피디콜린 글리시네이트, 아사레이, 아스파라기나아제, 5-아자시티딘, 아자티오프린, 바실러스 칼메테-구에린(BCG), 베이커스 안티폴, 베타-2-디옥시티오구아노신, 비스안트렌 HCl, 블레오마이신 설페이트, 불서판, 부티오닌 설폭시민, BWA 773U82, BW 502U83/HCl, BW 7U85 메실레이트, 세라세미드, 카르베티머, 카르보플라틴, 카르무스틴, 클로람부실, 클로로퀴녹살린-설포나미드, 클로로조토신, 크로모마이신 A3, 시스플라틴, 클라드리빈, 코르티코스테로이드, 코리너박테리움 파르붐, CPT-11, 크리스나톨, 사이클로사이티딘, 사이클로포스파미드, 사이타라빈, 사이템베나, 다비스 말리에이트, 데카르바진, 닥티노마이신, 다우노루바이신 HCl, 디아자유리딘, 덱스라족산, 디언하이드로 갈락티톨, 디아지쿠온, 디브로모둘시톨, 디데민 B, 디에틸디티오카르바메이트, 디클라이코알데하이드, 다이하이드로-5-아자사이틴, 독소루비신, 에치노마이신, 데다트렉세이트, 에델포신, 에플롤니틴, 엘리옷스 용액, 엘사미트루신, 에피루비신, 에소루비신, 에스트라머스틴 포스페이트, 에스트로겐, 에타니다졸, 에티오포스, 에토포사이드, 파드라졸, 파자라빈, 펜레티나이드, 필그라스팀, 피나스테라이드, 플라본 아세트산, 플록스유리딘, 플루다라빈 포스페이트, 5'-플루오로우라실, Fluosol™, 플루타미드, 갈륨 나이트레이트, 겜사이타빈, 고세레린 아세테이트, 헤프설팜, 헥사메틸렌 비스아세트아미드, 호모하링토닌, 하이드라진 설페이트, 4-하이드록시안드로스테네디온, 하이드로지우레아, 이다루비신 HCl, 이포스파미드, 4-이포메아놀, 이프로플라틴, 이소트레티노인, 류코보린 칼슘, 류프로라이드 아세테이트, 레바미솔, 리포좀 다우노루비신, 리포좀 포집 독소루비신, 로머스틴, 로니다민, 마이탄신, 메클로레타민 하이드로클로라이드, 멜팔란, 메노가릴, 메르바론, 6-머캅토푸린, 메스나, 바실러스 칼레테-구에린의 메탄올 추출물, 메토트렉세이트, N-메틸포름아미드, 미페프리스톤, 미토구아존, 마이토마이신-C, 미토탄, 미톡산트론 하이드로클로라이드, 모노사이트/마크로파아지 콜로니-자극 인자, 나빌론, 나폭시딘, 네오카르지노스타틴, 옥트레오타이드 아세테이트, 오르마플라틴, 옥살리플라틴, 파크리탁셀, 팔라, 펜토스타틴, 피페라진디온, 피포브로만, 피라루비신, 피리트렉심, 피록산트론 하이드로클로라이드, PIXY-321, 플리카마이신, 포르피머 소듐, 프레드니무스틴, 프로카르바진, 프로게스틴스, 파이라조푸린, 라족산, 사르그라모스팀, 세무스틴, 스피로게르마늄, 스피로무스틴, 스트렙토나이그린, 스트렙토조신, 술로페너르, 수라민 소듐, 타목시펜, 탁소레레, 테가푸르, 테니포사이드, 테레프탈아미딘, 테록시론, 티오구아닌, 티오테파, 티미딘 인젝션, 티아조푸린, 토포테칸, 토레미펜, 트레티노인, 트리플루오페라진 하이드로클로라이드, 트리플루리딘, 트리메트렉세이트, TNF(tumor necrosis factor), 우라실 머스타드, 빈블라스틴 설페이트, 빈크리스틴 설페이트, 빈데신, 비노렐빈, 빈졸리딘, Yoshi 864, 조루비신, 사이토신아라비노시드, 에토포시드, 멜파란, 탁솔 및 이들의 혼합물을 포함할 수 있다. 바람직하게는 시스플라틴, 파클리탁셀, 5-FU(5-fluorouracil), 메토트렉세이트, 독소루비신, 다우노루비신, 사이토신아라비노시드, 에토포시드, 멜파란, 클로람부실, 사이클로포스파마이드, 빈데신, 마이토마이신, 블레오마이신, 타목시펜 및 탁솔이고, 더욱 바람직하게는, 시스플라틴, 파클리탁셀 또는 5-FU(5-fluorouracil)이나, 본 발명의 핵산분자와 병용 처리하여 항암 효과에 시너지 효과를 나타낼 수 있는 목적을 달성하기 위해서라면, 이에 제한되지 않는다.
상기 암은 대장암, 유방암, 자궁암, 자궁경부암, 난소암, 전립선암, 뇌종양, 두경부암종, 흑색종, 골수종, 백혈병, 림프종, 위암, 폐암, 췌장암, 비소세포성폐암, 간암, 식도암, 소장암, 항문부근암, 나팔관암종, 자궁내막암종, 질암종, 음문암종, 호지킨병, 방광암, 신장암, 수뇨관암, 신장세포암종, 신장골반암종, 골암, 피부암, 두부암, 경부암, 피부흑색종, 안구내흑색종, 내분비선암, 갑상선암, 부갑상선암, 부신암, 연조직육종, 요도암, 음경암, 중추신경계(central nervous system; CNS) 종양, 1차 CNS 림프종, 척수종양, 다형성교모세포종 및 뇌하수체선종으로 구성된 군으로부터 선택되는 어느 하나일 수 있다.
본 발명의 약학 조성물에는 단일 도메인 항체 이외에 보조제(adjuvant)를 추가로 포함할 수 있다. 상기 보조제는 당해 기술분야에 알려진 것이라면 어느 것이나 제한 없이 사용할 수 있으나, 예를 들어 프로인트(Freund)의 완전 보조제 또는 불완전 보조제를 더 포함하여 그 효과를 증가시킬 수 있다.
본 발명에 따른 약학 조성물은 유효성분을 약학적으로 허용된 담체에 혼입시킨 형태로 제조될 수 있다. 여기서, 약학적으로 허용된 담체는 제약 분야에서 통상 사용되는 담체, 부형제 및 희석제를 포함한다. 본 발명의 약학 조성물에 이용할 수 있는 약학적으로 허용된 담체는 이들로 제한되는 것은 아니지만, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로스, 메틸 셀룰로스, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다.
본 발명의 약학 조성물은 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀전, 시럽, 에어로졸 등의 경구형 제형, 외용제, 좌제 또는 멸균 주사용액의 형태로 제형화하여 사용될 수 있다.
제제화할 경우에는 통상 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제될 수 있다. 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 그러한 고형 제제는 유효성분에 적어도 하나 이상의 부형제, 예를 들면 전분, 칼슘 카르보네이트, 수크로스, 락토오스, 젤라틴 등을 섞어 조제될 수 있다. 또한, 단순한 부형제 이외에 마그네슘 스테아레이트, 탈크 같은 윤활제들도 사용될 수 있다. 경구투여를 위한 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데, 일반적으로 사용되는 희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수용성용제, 현탁제, 유제, 동결건조 제제 및 좌제가 포함된다. 비수용성용제, 현탁제로는 프로필렌 글리콜, 폴리에틸렌 글리콜, 올리브유와 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 트윈(tween) 61, 카카오지, 라우린지, 글리세로젤라틴 등이 사용될 수 있다.
본 발명에 따른 약학 조성물은 개체에 다양한 경로로 투여될 수 있다. 투여의 모든 방식이 예상될 수 있는데, 예를 들면 경구, 정맥, 근육, 피하, 복강내 주사에 의해 투여될 수 있다.
본 발명에 따른 약학 조성물의 투여량은 개체의 연령, 체중, 성별, 신체 상태 등을 고려하여 선택된다. 상기 약학 조성물 중 포함되는 단일 도메인 항체 의 농도는 대상에 따라 다양하게 선택할 수 있음은 자명하며, 바람직하게는 약학 조성물에 0.01 ~ 5,000 ㎍/ml의 농도로 포함되는 것이다. 그 농도가 0.01 ㎍/ml 미만일 경우에는 약학 활성이 나타나지 않을 수 있고, 5,000 ㎍/ml를 초과할 경우에는 인체에 독성을 나타낼 수 있다.
본 발명의 약학 조성물은 암 및 이의 합병증의 예방 또는 치료에 이용될 수 있으며, 항암보조제로도 사용될 수 있다.
또한 본 발명은 약학적으로 유효한 양의 제1항의 핵산분자를 개체에 투여하는 단계를 포함하는 암의 예방 및 치료방법을 제공한다.
본 발명의 약학 조성물은 치료적 유효량 또는 약학으로 유효한 양으로 투여한다. 용어 "약학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효 용량 수준은 개체 종류 및 중증도, 연령, 성별, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다.
하기의 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나 하기 실시예는 본 발명의 내용을 구체화하기 위한 것일 뿐 이에 의해 본 발명이 한정되는 것은 아니다.
실시예 1. 이중 표적 siRNA 제작
STAT3(signal transducer and activator of transcription 3) 및 mTOR(mammalian target of rapamycin)를 동시에 억제할 수 있는 이중 표적 siRNA (double strand)를 하기의 표 1의 서열로 제작하였다 (Bioneer, Daejeon, Korea).
[표 1]
Figure PCTKR2018001231-appb-I000001
상기 세트 1의 서열번호 1 및 2의 siRNA는 21mer 중 17mer가, 세트 2의 서열번호 3 및 4의 siRNA는 20mer 중 16mer가, 세트 3의 서열번호 5 및 6의 siRNA는 19mer 중 15mer가, 세트 4의 서열번호 7 및 8의 siRNA는 18mer 중 14mer가, 세트 5의 서열번호 9 및 10의 siRNA는 17mer 중 16mer가 상보적으로 결합한다. 또한, 세트 6의 서열번호 11 및 12의 siRNA는 20mer 중 17mer가, 세트 7의 서열번호 13 및 14의 siRNA는 19mer 중 16mer가, 세트 8의 서열번호 15 및 16의 siRNA는 18mer 중 15mer가, 세트 9의 서열번호 17 및 18의 siRNA는 17mer 중 14mer가 상보적 결합한다.
구체적으로, 각 세트의 두 서열이 double strand 형태로 세포 내로 들어간 뒤, 각 세트의 antisense_mTOR의 siRNA가 mTOR mRNA(gi|206725550|ref|NM_004958.3| Homo sapiens mechanistic target of rapamycin (serine/threonine kinase) (MTOR), mRNA)의 표적 부위에 상보적으로 결합한다.
또한, 각 세트의 antisense_STAT3의 siRNA가 STAT mRNA(gi|47080104|ref|NM_139276.2| Homo sapiens signal transducer and activator of transcription 3 (acute-phase response factor)(STAT3), transcript variant 1, mRNA)의 표적 부위에 상보적으로 결합하여 mTOR 및 STAT3 유전자 발현을 감소시킨다.
실시예 2. 이중 표적 siRNA를 포함하는 shRNA 제작
상기 실시예 1에서 제작한 세트 1의 서열번호 1 및 2의 이중 표적 siRNA를 세포 내에서 발현할 수 있게 하기 위하여, 상기 siRNA 이중 가닥의 서열과 루프 서열을 포함하는 shRNA들 (TTGGATCCAA 루프 shRNA 및 TTCAAGAGAG 루프 shRNA)을 제작하였다 (표 2). 제작한 shRNA들을 각각 pE3.1 벡터 (도 1)의 제한효소 PstⅠ 및 EcoRⅤ 절단 위치에 U7 프로모터 (서열번호 19) 이후에 오도록 배치하여, mTOR 및 STAT3를 표적으로 하는 이중 표적 siRNA를 포함하는 두 종의 shRNA를 세포 내에서 발현할 수 있는 재조합 발현 벡터를 제작하였다.
[표 2]
Figure PCTKR2018001231-appb-I000002
실험예 1. 이중 표적 siRNA의 mTOR 및 STAT3 유전자 발현 억제 효과 확인
12-웰 플레이트에 Hela 세포를 분주한 뒤, 세포 confluent가 50%가 될 때까지 10% FBS (Hyclone 사)가 첨가된 RPMI 배지 (Hyclone 사)에서 37℃, 5% CO2 조건으로 배양하였다. 그 후, 상기 세포에 상기 실시예 1에서 제작한 이중 표적 siRNA를 lipofectamine3000 (Invitrogen, Carlsbad, CA, USA)으로 트랜스펙션하여 Bcl1, BI1, AR, mTOR 및 STAT3를 동시에 낙다운하였다. 트랜스펙션 48시간 후, 세포를 파쇄하여 GeneJET RNA Purification Kit (Invitrogen)로 총 RNA를 추출하였다. 추출한 총 RNA를 주형으로 사용하여 RevoScriptTM RT PreMix(iNtRON BIOTECHNOLOGY)로 역전사 반응을 수행하였다. 역전사된 cDNA를 25 내지 200ng 함유한 시료 20㎕와 AmpONE taq DNA polymerase (GeneAll) 및 TaqMan Gene Expression assays (Applied Biosystems)를 이용하여 mTOR (Hs00234522_m1), STAT3 (Hs01047580_m1) 및 GAPDH (Hs02758991_g1)에 대하여, ABI PRISM 7700 Sequence Detection System 및 QS3 Real-time PCR(Biosystems)을 이용하여 반응을 수행하였다. Real-time PCR 반응 조건은 [50℃에서 2분, 95℃에서 10분, 및 95℃에서 15초 및 60℃에서 60초의 두 단계 사이클]을 총 40 사이클로 수행하였다. 모든 반응은 3회씩 반복수행되고 이들의 평균값을 구하였다. 이렇게 얻은 결과들은 하우스키핑 유전자인 GAPDH의 mRNA 값에 대해 정규화하였다.
그 결과, 세트 1-9의 이중 표적 siRNA에 의해 mTOR 및 STAT3는 대조군과 비교하여, 잔여 발현이 약 20 내지 40%인 것으로 확인되어, 이중 표적 siRNA가 두 유전자 모두 동시에 발현 억제하는 것을 알 수 있었다 (도 2).
실험예 2. mTOR 및 STAT3의 유전자 상호 발현 영향성 확인
인간 폐암세포주 A549에 상기 실험예 1에서와 같이, lipofectamine3000을 이용하여 하기 표 3의 mTOR siRNA (bioneer, 1058906) (서열번호 22 및 23), STAT3 siRNA (bioneer, 1145658)(서열번호 24 및 25) 또는 mTOR siRNA와 STAT3 siRNA를 동시에 트랜스펙션하였다. 트랜스펙션 48시간 후 상기 실험예 1에서와 같이 Real time PCR (Taqman)을 이용하여 mTOR 및 STAT3 유전자의 발현 감소 비율을 확인하였다.
[표 3]
Figure PCTKR2018001231-appb-I000003
[표 4]
Figure PCTKR2018001231-appb-I000004
그 결과, 각각의 siRNA에 의해 mTOR 및 STAT3의 발현이 감소하였으며, 이 결과를 두 siRNA를 동시에 처리한 경우와 비교한 결과, mTOR 유전자 및 STAT3 유전자의 발현은 상호간에 영향을 주지 않았다 (도 3 및 표 4).
실험예 3. 이중 표적 siRNA에 의한 암세포 사멸 효과 확인
본 발명의 세트1-9의 이중 표적 siRNA에 의한 암세포에 대한 사멸 효과를 확인하기 위하여, 인간 폐암세포주 A549 세포를 96-웰 플레이트에 5×103cell/웰로 분주한 뒤, lipofectamine 3000으로 이중 표적 siRNA (mTOR 및 STAT3 동시 낙다운)을 각각 세포에 트랜스펙션하였다. 트랜스펙션 48시간 후, 추가로 24시간 뒤에 5mg/mL MTT (Promega, Ltd.)를 세포에 처리하고 4시간 동안 인큐베이션하였다. 그 후, 배지를 제거하고 가용화 용액(solubilization solution) 및 정지 용액(stop solution) 150㎕을 처리하고 37℃에서 4시간 동안 인큐베이션 하였다. 반응 용액의 흡광도를 570nm에서 측정하고 하기 수학식을 이용하여 세포 생존율을 계산하였다.
Figure PCTKR2018001231-appb-M000001
그 결과, 본 발명의 세트 1-9의 이중 표적 siRNA로 mTOR 및 STAT3를 동시에 억제하였을 때, 세포 생존율이 대조군과 비교하여 유의적으로 감소됨을 확인하였다. 따라서, 본 발명의 세트 1-9의 이중 표적 siRNA는 효과적으로 암세포를 사멸함을 확인하였다(도 4).
실험예 4. 이중 표적 siRNA와 항암제 병용 처리에 의한 암세포 사멸 효과 확인
4-1. 시스플라틴(cisplatin)과의 병용 처리
인간 폐암세포주 A549 세포를 96-웰 플레이트에 5×103cell/웰로 분주한 뒤, lipofectamine3000으로 이중 표적 siRNA(mTOR 및 STAT3 동시 낙다운)을 각각 세포에 트랜스펙션하였다. 트랜스펙션 48시간 후, 시스플라틴 5μM을 처리하고 10시간 동안 인큐베이션하였다. 그 후, 상기 실험예 3에서와 같이 MTT 반응을 수행하고, 이의 흡광도를 570nm에서 측정하여 세포 생존율을 계산하였다.
그 결과, 시스플라틴과의 병용 처리하고, 본 발명의 세트 1-9의 이중 표적 siRNA로 mTOR 및 STAT3를 동시에 억제하였을 때, 세포 생존율이 약 50-70%까지 감소하고, 대조군과 비교하여 유의적인 차이를 보임을 확인하였다. 따라서, 항암제와의 병용 처리에서도 두 유전자를 동시에 억제할 때 세포사멸효과가 현저히 향상됨을 확인하였다(도 5).
4-2. 파클리탁셀(paclitaxel)과의 병용 처리
인간 폐암세포주 A549 세포를 96-웰 플레이트에 5×103cell/웰로 분주한 뒤, lipofectamine3000으로 이중 표적 siRNA (mTOR 및 STAT3 동시 낙다운)을 각각 세포에 트랜스펙션하였다. 트랜스펙션 48시간 후, 파클리탁셀 5μM을 처리하고 10시간 동안 인큐베이션하였다. 그 후, 상기 실험예 3에서와 같이 MTT 반응을 수행하고, 이의 흡광도를 570nm에서 측정하여 세포 생존율을 계산하였다.
그 결과, 파클리탁셀과의 병용 처리하고, 본 발명의 세트 1-9의 이중 표적 siRNA로 mTOR 및 STAT3를 동시에 억제하였을 때, 세포 생존율이 약 30-50%까지 감소하고, 대조군과 비교하여 유의적인 차이를 보임을 확인하였다. 따라서, 항암제와의 병용 처리에서도 두 유전자를 동시에 억제할 때 세포사멸효과가 현저히 향상됨을 확인하였다(도 6).
4-3. 5-플루오로우라실(5-FU, 5-fluorouracil)과의 병용 처리
인간 폐암세포주 A549 세포를 96-웰 플레이트에 5×103cell/웰로 분주한 뒤, lipofectamine3000으로 이중 표적 siRNA (mTOR 및 STAT3 동시 낙다운)을 각각 세포에 트랜스펙션하였다. 트랜스펙션 48시간 후, 5-플루오로우라실 1μM을 처리하고 10시간 동안 인큐베이션하였다. 그 후, 상기 실험예 3에서와 같이 MTT 반응을 수행하고, 이의 흡광도를 570nm에서 측정하여 세포 생존율을 계산하였다.
그 결과, 5-플루오로우라실과 병용 처리하고, 본 발명의 세트 1-9의 이중 표적 siRNA로 mTOR 및 STAT3를 동시에 억제하였을 때, 세포 생존율이 약 30%까지 감소하고, 대조군과 비교하여 유의적인 차이를 보임을 확인하였다. 따라서, 항암제와의 병용 처리에서도 두 유전자를 동시에 억제할 때 세포사멸효과가 현저히 향상됨을 확인하였다(도 7).
실험예 5. 이중 표적 siRNA를 포함하는 shRNA의 mTOR 및 STAT3 억제 효과
상기 실시예 2에서 제작한 서열번호 20의 TTGGATCCAA 루프 shRNA 서열 또는 서열번호 21의 TTCAAGAGAG 루프 shRNA를 포함하는 벡터를 lipofectamine3000을 이용하여 A549 세포에 각각 0, 1 및 2㎍씩 트랜스펙션하였다. 트랜스펙션 48시간 후, 실험예 1에 기재된 Real time PCR 분석 방법을 이용하여 mTOR와 STAT3의 유전자 발현 감소 정도를 확인하였다.
그 결과, mTOR 및 STAT3의 발현은 본원발명의 이중 표적 siRNA를 포함하는 두 종의 shRNA 모두에서 감소하였으며, shRNA의 DNA 양에 비례하여 20% 정도까지 감소하는 경향을 나타냈다 (도 8).

Claims (13)

  1. mTOR(mammalian target of rapamycin) 유전자 및 STAT3(signal transducer and activator of transcription 3) 유전자의 발현을 동시에 억제하는 핵산 분자.
  2. 제1항에 있어서, 상기 핵산 분자는 서열번호 1 및 2; 서열번호 3 및 4; 서열번호 5 및 6; 서열번호 7 및 8; 서열번호 9 및 10; 서열번호 11 및 12; 서열번호 13 및 14; 서열번호 15 및 16; 또는 서열번호 17 및 18;의 염기서열을 포함하는 핵산 분자.
  3. 제2항에 있어서, 상기 서열번호 1, 3, 5, 7, 9, 11, 13, 15 및 17로 표시되는 염기서열은 RNA 간섭에 의해 mTOR유전자 발현을 억제하는 것을 특징으로 하는, 핵산 분자.
  4. 제2항에 있어서, 상기 서열번호 2, 4, 6, 8, 10, 12, 14, 16, 및 18로 표시되는 염기서열은 RNA 간섭에 의해 STAT3 유전자의 발현을 억제하는 것을 특징으로 하는, 핵산 분자.
  5. 제2항에 있어서, 상기 서열번호 1은 서열번호 2와, 서열번호 3은 서열번호 4와, 서열번호 5는 서열번호 6과, 서열번호 7은 서열번호 8과, 서열번호 9는 서열번호 10과, 서열번호 11은 서열번호 12와, 서열번호 13은 서열번호 14와, 서열번호 15는 서열번호 16과, 서열번호 17은 서열번호 18과 부분적으로 상보적 결합을 이루고 있는 이중 가닥(double strand) siRNA인 것을 특징으로 하는, 핵산 분자.
  6. 제1항에 있어서, 상기 핵산 분자는 shRNA(short hairpin RNA)를 더 포함하는 것을 특징으로 하는, 핵산 분자.
  7. 제 6항에 있어서, 상기 shRNA는 서열번호 20 또는 서열번호 21의 염기서열로 표시되는 것을 특징으로 하는, 핵산 분자.
  8. 제1항의 핵산 분자를 포함하는 재조합 발현 벡터.
  9. 제8항의 재조합 발현 벡터를 도입한 재조합 미생물.
  10. 제1항의 핵산 분자를 유효성분으로 포함하는, 항암용 약학적 조성물.
  11. 제10항에 있어서, 상기 핵산 분자는 항암제를 추가로 포함하는 것을 특징으로 하는, 항암용 약학적 조성물.
  12. 제11항에 있어서, 상기 항암제는 시스플라틴, 파클리탁셀, 5-FU(5-fluorouracil), 메토트렉세이트, 독소루비신, 다우노루비신, 사이토신아라비노시드, 에토포시드, 멜파란, 클로람부실, 사이클로포스파마이드, 빈데신, 마이토마이신, 블레오마이신, 타목시펜 및 탁솔로 구성된 군에서 선택된 1종 이상의 항암제인 것을 특징으로 하는, 항암용 약학적 조성물.
  13. 약학적으로 유효한 양의 제1항의 핵산분자를 개체에 투여하는 단계를 포함하는 암의 예방 및 치료방법.
PCT/KR2018/001231 2017-01-31 2018-01-29 Mtor 유전자 및 stat3 유전자의 발현을 동시에 억제하는 핵산 WO2018143626A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA3052038A CA3052038C (en) 2017-01-31 2018-01-29 Nucleic acid simultaneously inhibiting expression of mtor gene and stat3 gene
US16/482,565 US11149272B2 (en) 2017-01-31 2018-01-29 Nucleic acid simultaneously inhibiting expression of mTOR gene and STAT3 gene
AU2018216509A AU2018216509B2 (en) 2017-01-31 2018-01-29 Nucleic acid simultaneously inhibiting expression of mTOR gene and STAT3 gene
CN201880009393.9A CN110234764B (zh) 2017-01-31 2018-01-29 同时抑制mTOR基因及STAT3基因表达的核酸
EP18747648.6A EP3578655B1 (en) 2017-01-31 2018-01-29 Nucleic acid simultaneously inhibiting expression of mtor gene and stat3 gene
JP2019562531A JP6962600B2 (ja) 2017-01-31 2018-01-29 Mtor遺伝子およびstat3遺伝子の発現を同時に抑制する核酸
US17/002,621 US11634712B2 (en) 2017-01-31 2020-08-25 Nucleic acid simultaneously inhibiting expression of mTOR gene and STAT3 gene

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020170013661A KR101865025B1 (ko) 2017-01-31 2017-01-31 mTOR 유전자 및 STAT3 유전자의 발현을 동시에 억제하는 핵산
KR10-2017-0013661 2017-01-31
KR1020180005860A KR102034764B1 (ko) 2018-01-17 2018-01-17 mTOR 유전자 및 STAT3 유전자의 발현을 동시에 억제하는 핵산
KR10-2018-0005860 2018-01-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/482,565 A-371-Of-International US11149272B2 (en) 2017-01-31 2018-01-29 Nucleic acid simultaneously inhibiting expression of mTOR gene and STAT3 gene
US17/002,621 Division US11634712B2 (en) 2017-01-31 2020-08-25 Nucleic acid simultaneously inhibiting expression of mTOR gene and STAT3 gene

Publications (1)

Publication Number Publication Date
WO2018143626A1 true WO2018143626A1 (ko) 2018-08-09

Family

ID=63039931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001231 WO2018143626A1 (ko) 2017-01-31 2018-01-29 Mtor 유전자 및 stat3 유전자의 발현을 동시에 억제하는 핵산

Country Status (7)

Country Link
US (2) US11149272B2 (ko)
EP (1) EP3578655B1 (ko)
JP (1) JP6962600B2 (ko)
CN (1) CN110234764B (ko)
AU (1) AU2018216509B2 (ko)
CA (1) CA3052038C (ko)
WO (1) WO2018143626A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021194179A1 (ko) * 2020-03-23 2021-09-30 ㈜큐리진 Stat3 및 mtor를 이중 특이적으로 표적하는 핵산서열을 포함한 항암 바이러스
EP4123021A4 (en) * 2020-03-23 2024-05-15 Curigin Co Ltd STRUCTURE OF AN ONCOLYTIC VIRUS WITH BISPECIFIC NUCLEIC ACID MOLECULE

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230346762A1 (en) * 2020-02-21 2023-11-02 Korea Advanced Institute Of Science And Technology Pharmaceutical composition for preventing or treating cancer, containing mtor-signaling inhibitor as active ingredient
WO2023086927A1 (en) * 2021-11-11 2023-05-19 Vanderbilt University Combined targeting of stat3 and ulk1 to treat glioblastoma
WO2023116607A1 (zh) * 2021-12-21 2023-06-29 苏州瑞博生物技术股份有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150138554A (ko) * 2014-05-29 2015-12-10 연세대학교 산학협력단 Daxx의 발현을 억제하는 핵산 분자, TRAIL 유전자 및 Bcl-xL 의 발현을 억제하는 핵산 분자를 포함하는 재조합 발현 벡터
KR20160106507A (ko) * 2015-03-02 2016-09-12 성균관대학교산학협력단 신규 dna-rna 하이브리드 정사면체 구조물 또는 rna 정사면체 구조물
KR101696704B1 (ko) * 2013-12-17 2017-01-16 주식회사 인코드젠 오프-타겟을 막기 위해 변형된 rna 간섭 유도 핵산 및 그 용도

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2526831C (en) * 2001-05-18 2012-07-31 Sirna Therapeutics, Inc. Rna interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (sina)
WO2008094516A2 (en) * 2007-01-29 2008-08-07 City Of Hope Multi-targeting short interfering rnas
US9328345B2 (en) * 2007-08-27 2016-05-03 1 Globe Health Institute Llc Compositions of asymmetric interfering RNA and uses thereof
WO2010056735A1 (en) * 2008-11-11 2010-05-20 The Trustees Of The University Of Pennsylvania Compositions and methods for inhibiting an oncogenic protein to enhance immunogenicity
AU2012308320C1 (en) * 2011-09-14 2018-08-23 Translate Bio Ma, Inc. Multimeric oligonucleotide compounds
ES2718082T3 (es) * 2012-10-31 2019-06-27 Ionis Pharmaceuticals Inc Tratamiento contra el cáncer
EP2921855A1 (en) * 2014-03-20 2015-09-23 Centre National de la Recherche Scientifique (CNRS) Use of compounds inhibiting apelin / apj / gp130 signaling for treating cancer
ES2843829T3 (es) * 2014-09-26 2021-07-20 Hi Stem Ggmbh Im Deutschen Krebsforschungszentrum Dkfz Nuevos métodos para la subtipificación y el tratamiento del cáncer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101696704B1 (ko) * 2013-12-17 2017-01-16 주식회사 인코드젠 오프-타겟을 막기 위해 변형된 rna 간섭 유도 핵산 및 그 용도
KR20150138554A (ko) * 2014-05-29 2015-12-10 연세대학교 산학협력단 Daxx의 발현을 억제하는 핵산 분자, TRAIL 유전자 및 Bcl-xL 의 발현을 억제하는 핵산 분자를 포함하는 재조합 발현 벡터
KR20160106507A (ko) * 2015-03-02 2016-09-12 성균관대학교산학협력단 신규 dna-rna 하이브리드 정사면체 구조물 또는 rna 정사면체 구조물

Non-Patent Citations (20)

* Cited by examiner, † Cited by third party
Title
"Comparison of Antisense Oligonucleotides and siRNAs in Cell Culture and in Vivo", BIOCHEM. BIOPHYS. RES. COMMUN., vol. 296, 2002, pages 1000 - 1004
"NUCLEIC-ACID THERAPEUTICS: BASIC PRINCIPLES AND RECENT APPLICATIONS", NATURE REVIEWS DRUG DISCOVERY, vol. 1, 2002, pages 503 - 514
"Progress Towards in Vivo Use of siRNAs", MOLECULAR THERAPY, vol. 13, no. 4, 2006, pages 664 - 670
"Role of STAT3 in cancer metastasis and translational advances", BIOMED RESEARCH INTERNATIONAL, vol. 2013, 2013, pages 421821
"Silence of the transcripts: RNA interference in medicine", J MOL MED, vol. 83, 2005, pages 764773
"Transcription Factor STAT3 as a Novel Molecular Target for Cancer Prevention", CANCERS, vol. 6, no. 2, 2014, pages 926 - 57
COHEN, S.N. ET AL., PROC. NATL. ACAC. SCI., vol. 9, 1973, pages 2110 - 2114
COHEN, SN ET AL., PROC. NATL. ACAC. SCI, vol. 9, 1973, pages 2110 - 2114
CURRENT OPINION IN LIPIDOLOGY, vol. 16, 2005, pages 317 - 323
DOWER, W.J. ET AL., NUCLEIC ACIDS RES., vol. 16, 1988, pages 6127 - 6145
HANAHAN, D., J. MOL. BIOL., vol. 166, 1983, pages 557 - 580
HERSKOWITZ, IHAGEN, D, ANN. REV. GENET., vol. 14, 1980, pages 399 - 445
IMMUNOLOGY, vol. 7, pages 767 - 777
NATURE, vol. 451, 2008, pages 1069 - 1075
PU, XIA %: "Effects of mTOR-STAT3 on the migration and invasion abilities of hepatoma cell and mTOR-STAT3 expression in liver cancer", ASIAN PACIFIC JOURNAL OF TROPICAL MEDICINE, vol. 7, no. 5, 5 July 2014 (2014-07-05), pages 368 - 372, XP055529511 *
SAMBROOK ET AL.: "Molecular Cloning, A Laboratory Manual", 2001, COLD SPRING HARBOR LABORATORY PRESS
See also references of EP3578655A4
STAT3 INHIBITORS FOR CANCER THERAPY: HAVE ALL ROADS BEEN EXPLORED JAK-STAT, vol. 2, no. 1, 2013, pages e22882
YANOFSKY, C, J. BACTERIOL., vol. 158, 1984, pages 1018 - 1024
ZHANG, YI: "Effects of STAT3 Gene Silencing and Rapamycin on Apoptosis in Hepato-carcinoma Cells", INTERNATIONAL JOURNAL OF MEDICAL SCIENCES, vol. 9, no. 3, 3 September 2012 (2012-09-03), pages 216 - 224, XP055529508 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021194179A1 (ko) * 2020-03-23 2021-09-30 ㈜큐리진 Stat3 및 mtor를 이중 특이적으로 표적하는 핵산서열을 포함한 항암 바이러스
EP4123021A4 (en) * 2020-03-23 2024-05-15 Curigin Co Ltd STRUCTURE OF AN ONCOLYTIC VIRUS WITH BISPECIFIC NUCLEIC ACID MOLECULE

Also Published As

Publication number Publication date
US20190345497A1 (en) 2019-11-14
JP6962600B2 (ja) 2021-11-05
CN110234764B (zh) 2023-06-09
EP3578655A4 (en) 2020-12-23
CN110234764A (zh) 2019-09-13
US11634712B2 (en) 2023-04-25
AU2018216509B2 (en) 2024-02-29
JP2020509782A (ja) 2020-04-02
AU2018216509A1 (en) 2019-08-15
US20210054378A1 (en) 2021-02-25
US11149272B2 (en) 2021-10-19
CA3052038A1 (en) 2018-08-09
CA3052038C (en) 2023-08-01
EP3578655A1 (en) 2019-12-11
EP3578655B1 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
WO2018143626A1 (ko) Mtor 유전자 및 stat3 유전자의 발현을 동시에 억제하는 핵산
AU2012308320C1 (en) Multimeric oligonucleotide compounds
KR20180104692A (ko) Angpt2 및 pdgfb를 표적화하는 rna 복합체를 사용하는 혈관신생 관련 질환의 치료
KR102034764B1 (ko) mTOR 유전자 및 STAT3 유전자의 발현을 동시에 억제하는 핵산
KR102145664B1 (ko) AR 유전자 및 mTOR 유전자의 발현을 동시에 억제하는 핵산
WO2021194179A1 (ko) Stat3 및 mtor를 이중 특이적으로 표적하는 핵산서열을 포함한 항암 바이러스
KR101993377B1 (ko) Bcl2 유전자 및 bi-1 유전자의 발현을 동시에 억제하는 핵산
CN107709561B (zh) 修饰的siRNA及含有该修饰的siRNA的药物组合物
US10947542B2 (en) Nucleic acid simultaneously inhibiting expression of AR gene and mTOR gene
KR102145665B1 (ko) Bcl2 유전자 및 bi-1 유전자의 발현을 동시에 억제하는 핵산
KR101865025B1 (ko) mTOR 유전자 및 STAT3 유전자의 발현을 동시에 억제하는 핵산
WO2022191661A1 (ko) C-met 유전자 및 pd-l1 유전자의 발현을 동시에 억제하는 핵산
WO2021194181A1 (ko) Ar 및 mtor를 이중 특이적으로 표적하는 핵산분자를 포함하는 항암바이러스
WO2019017714A9 (ko) Bcl2 유전자 및 bi-1 유전자의 발현을 동시에 억제하는 핵산
WO2023121178A1 (ko) Mtor 유전자 및 stat3 유전자의 발현을 동시에 억제하는 핵산
CN112218950A (zh) 心肌损伤治疗药
Gutierrez Aguirregabiria Using synthetic oligonucleotides to modify cellular IRES structures and control gene expression
WO2024013752A1 (en) A combination of antimir oligonucleotides for treating a disease
TW201102073A (en) RNA antagonists targeting GLI2 for the treatment of leukemia

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3052038

Country of ref document: CA

Ref document number: 2019562531

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018216509

Country of ref document: AU

Date of ref document: 20180129

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018747648

Country of ref document: EP

Effective date: 20190902