WO2018143548A1 - 어피로부터 마린콜라겐의 추출방법 - Google Patents

어피로부터 마린콜라겐의 추출방법 Download PDF

Info

Publication number
WO2018143548A1
WO2018143548A1 PCT/KR2017/013122 KR2017013122W WO2018143548A1 WO 2018143548 A1 WO2018143548 A1 WO 2018143548A1 KR 2017013122 W KR2017013122 W KR 2017013122W WO 2018143548 A1 WO2018143548 A1 WO 2018143548A1
Authority
WO
WIPO (PCT)
Prior art keywords
collagen
fish
skin
purification
chromatography
Prior art date
Application number
PCT/KR2017/013122
Other languages
English (en)
French (fr)
Inventor
황재호
송근관
김홍인
Original Assignee
주식회사 마린테크노
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 마린테크노 filed Critical 주식회사 마린테크노
Publication of WO2018143548A1 publication Critical patent/WO2018143548A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/18Ion-exchange chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/20Partition-, reverse-phase or hydrophobic interaction chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/30Extraction; Separation; Purification by precipitation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/36Extraction; Separation; Purification by a combination of two or more processes of different types

Definitions

  • the present invention relates to a method for extracting marine collagen from fish, and more particularly, to an extraction method capable of effectively extracting high purity marine collagen from fish which is a fish byproduct discharged from a fish processing process.
  • Collagen is the most abundant protein in the animal body, accounting for more than 30% of body protein, and has been found to be at least 19 types (Type I-III) (Nakamura, YN et al., Relationship among collagen amount, distribution and architecture in the M. Longissimus thoracis and M. pectoralis profundus from pigs.Meat Science, 64, pp 43-50, 2003).
  • collagen is a major protein of animal connective tissue, and supports tissues and organs and surrounds the body surface and plays a role in maintaining body shape.
  • connective tissue such as a major component of connective tissue such as skin, cartilage and bone in the living body, 40% is widely distributed throughout the body, such as skin, 20% bone and cartilage, and other blood vessels and internal organs.
  • collagen has a triple helix structure, about 14-15 nm in diameter, 280-300 nm in length, and an average molecular weight of about 300 KDa (Lehninger, AL Biochemistry, 2nd ed., Pp. 145, 1975), covalently cross-linking within the tropocollagen molecule or the tropocollagen molecule, which has a regular amino acid sequence such as (Gly-XY) n and is the basic unit molecule of the fibrous protein.
  • Collagen has been applied as a raw material of leather or gelatin for a long time, and its field of application has become more diverse in recent years. In the food industry, it is used for meat packaging materials such as sausage and salami as an edible casing raw material. Collagen applied to medicines has been reported to have a healing effect on skin damaged by burns or wounds (Jeyanthi, R. et al., Solid tumour chemotherapy using implantable collagen-poly (HEMA) hydrogel containing 5-fluorouracil. of Pharmacy & Pharmacology, 43, pp. 60-62, 1991). As such, collagen is not only used as a functional material for foods and medicines, but also has a function of enhancing skin moisturizing, and thus is widely used in various fields such as basic materials of cosmetics.
  • HEMA implantable collagen-poly
  • peptides obtained from protein hydrolysates have been used as potential materials to improve wrinkles, improve moisturization, increase elasticity, and exhibit specific skin effects.
  • Collagen hydrolyzate refers to a low-molecular-weight molecule in the form of peptide by hydrolyzing it through post-treatment process such as enzyme digestion after extraction of polymer collagen from pork skin and fish scales. Collagen products that have been lowered are sold.
  • Republic of Korea Patent No. 101020312 manufacturing method of fish scale collagen peptide
  • an object of the present invention is to provide an extraction method that can effectively extract marine collagen from the fish by-products discharged from the fish processing process.
  • Marine collagen extraction method from the fish of the present invention for achieving the above object comprises a pretreatment step of removing scales and foreign matter from the fish skin by-products; A drying step of drying the skin pretreated in the pretreatment step; A grinding step of grinding the dried fish in the drying step to obtain a fish powder; A separation step of separating collagen from the skin powder using an alkali and an acid; A purification step of purifying the collagen separated in the separation step by chromatography; wherein the separation step comprises the steps of: a) adding an alkali hydroxide solution to the skin powder to obtain an alkali residue from which the non-collagenic protein has been removed.
  • the pretreatment step is to remove the foreign matter by washing the skin with water and then added to 0.1 to 0.2M sodium hydroxide solution and stirred for 6 to 24 hours to detach the scales attached to the skin.
  • the purification step is purified by ion exchange chromatography equipped with a column filled with cellulose phosphate.
  • the pepsin solubilized collagen was dialyzed at 20 mM Na 2 HPO 4 to inactivate pepsin and then dialyzed at 50 mM acetic acid containing 2M urea, and the fraction eluted by ion exchange chromatography was 0.5M acetic acid containing 2M NaCl. Recovered by dialysis with a solution, and then dialyzed with distilled water and lyophilized.
  • the purification step is purified step by step using a plurality of chromatography.
  • the purification step is desalting the pepsin solubilized collagen by gel filtration chromatography, followed by primary purification by ion exchange chromatography, secondary purification by hydrophobic interaction chromatography, and third purification by gel filtration chromatography.
  • the purification step is the first purification of the pepsin solubilized collagen by hydrophobic interaction chromatography, the second purification by ion exchange chromatography and then the third purification by gel filtration chromatography.
  • the present invention is to dry the skin separated from the fish at low temperature to remove the water and then processed into a powder state to extract marine collagen to prevent the deterioration of the skin and at the same time to prevent the heat denaturation of collagen and increase the extraction yield You can.
  • a high purity marine collagen may be effectively obtained by further performing a purification process using chromatography.
  • Marine collagen purified as described above may be useful in various applications because it maintains the collagen structure of the polymer rather than the low molecular weight collagen peptide, and has a gel forming ability and an excellent moisturizing effect.
  • ASC acid solubilized collagen
  • Figure 3 is the result of measuring the heat denaturation temperature of acid solubilized collagen (ASC) isolated from the flounder skin
  • 4 to 7 are analysis results of SDS-PAGE of RS-AL and ASC extracted from fish and fish of each fish species,
  • Extraction method of marine collagen from the fish is a pre-treatment step of removing scales and foreign matter from the fish by-products of the fish, the drying step of drying the pre-treated skin in the pre-treatment step, and the dried fish in the drying step
  • the pretreatment step removes scales and foreign material from the fish by-products of fish.
  • Fish is a shell of fish, but the shell of all fish can be applied, but preferably any one selected from flounder, rockfish, sea bass and red snapper.
  • the four types of fish consume a lot, so it is relatively easy to supply fish. You can also use salmon skin as a fish.
  • Fish skin is mainly generated in the fish processing process, so to remove various foreign matters and blood powder on the fish, wash with clean water 2 to 3 times.
  • a drying step which is the next process, but preferably removes scales attached to the skin before drying.
  • the pulverization process described below is performed without removing the scales, the pulverizer discharge port is clogged due to the scales, which takes a lot of time during the pulverization operation, and the pulverizer discharge parts are damaged due to the increase in the crushed material pressure due to the clogging phenomenon.
  • the present invention uses a sodium hydroxide solution to simply and effectively remove the scales attached to the skin.
  • a sodium hydroxide solution For example, the skin from which the foreign matter was removed by washing with water was added to 0.1-0.2 M sodium hydroxide solution, stirred for 6 to 24 hours, and the scales attached to the skin were detached.
  • the scales are different depending on the type of fish, but the scales are effectively removed.
  • 80 to 90% of the scales are removed and in the 0.2 M sodium hydroxide solution, 90 to 100% of the scales are removed. Remove scales and wash again with water.
  • the skin is added to the sodium hydroxide solution contained in the stirring bath to reduce the scale removal rate by applying ultrasonic waves during stirring.
  • an ultrasonic vibrator may be installed at the bottom of the stirring vessel, and the stirring may be performed while applying an ultrasonic wave of 40 to 60 kHz into the stirring vessel. Ultrasonic vibration is applied to the skin while the adhesion of the scales is weakened by the sodium hydroxide solution, thereby making it easier to remove the scales.
  • the present invention removes the scales very easily using sodium hydroxide solution, so that there is no clogging phenomenon of the discharge part of the grinder during the pulverization of the skin, and the breakage of the grinder parts due to the clogging phenomenon does not occur. And the manual work to remove scales can be omitted, reducing manufacturing time and reducing costs and manpower.
  • the pretreated skin is dried in the pretreatment step.
  • the extraction yield of collagen is increased and dried to prevent deterioration and grinding.
  • the skin is dried to a moisture content of 2 to 7% by weight.
  • Freeze drying and hot air drying may be applied as a drying method.
  • freeze drying (FD) is used to prevent denaturation of collagen.
  • the freeze-drying method rapidly freezes the skin for 10 to 20 hours at a temperature of -50 to -40 ° C, and then for 48 hours at about -40 ° C in a lyophilizer having a vacuum degree of 0.1 to 0.5torr.
  • a lyophilizer having a vacuum degree of 0.1 to 0.5torr.
  • the skin may be dried by hot air at 30 to 80 ° C.
  • the temperature of hot air is 65 ° C. or lower, preferably 40 to 60 ° C. Collagen contained in the skin has a higher denaturation temperature than the separated state.
  • the dried fish is ground to a suitable size using a grinder to obtain the fish powder.
  • a grinder to obtain the fish powder.
  • it can be ground to a size of 50 to 150 mesh particle size.
  • collagen is separated from the skin powder.
  • the separation step may include a) adding an alkali hydroxide solution to the skin powder to obtain an alkali residue from which the non-collagenic protein has been removed, and b) adding an acetic acid solution to the alkali residue, stirring and separating the supernatant with a centrifuge. Extracting the acid-solubilized collagen, and c) adding pepsin to the acid-solubilized collagen, stirring and separating the supernatant with a centrifugal separator, and then adding the sodium chloride solution to dialyzate the precipitate precipitated with distilled water to extract the pepsin solubilized collagen. Is made of.
  • the step of obtaining an alkali residue from which non-collagenic protein was removed by adding sodium hydroxide solution to skin powder is as follows.
  • the skin powder and sodium hydroxide solution were mixed at a weight ratio of 1: 5 to 10, and then stirred at room temperature (20 to 25 ° C.) for 12 to 24 hours to obtain an alkali residue from which non-collagenic protein was removed using a centrifuge. can do.
  • the step of extracting the acid-solubilized collagen by adding acetic acid solution to the alkali residues is as follows.
  • Alkaline residue is washed with distilled water and acetic acid is added to extract collagen.
  • Alkaline residue and acetic acid solution are mixed at a weight ratio of 1: 5 to 10, and then stirred at room temperature (20 to 25 ° C) for 12 to 24 hours, and the supernatant is separated using a centrifuge to obtain acid solubilized collagen.
  • the step of extracting pepsin solubilized collagen by adding pepsin to the acid solubilized collagen is as follows.
  • Pepsin is added to the acid-solubilized collagen, stirred for 10 to 20 hours, the supernatant is separated by centrifugation, and the precipitate precipitated by adding 2M sodium chloride solution is dialyzed with distilled water to obtain pepsin solubilized collagen.
  • Pepsin solubilized collagen isolated in the separation step may be purified using chromatography to obtain high purity marine collagen.
  • the purification step may be purified using ion exchange chromatography equipped with a column packed with cellulose phosphate.
  • Pepsin solubilized collagen was dialyzed in 20 mM Na 2 HPO 4 to inactivate pepsin, then dialyzed against 50 mM acetic acid solution (pH 4.8) containing 2M urea, and then fractions were eluted using ion-exchange chromatography. Let's do it. For example, purification was performed with a linear gradient (60 ml / h) of 0-600 mM NaCl in a column filled with cellulose phosphate (P11, Whatman, Maidstone, UK), and the fraction eluted at 230 nm was 0.5 M acetic acid containing 2.0 M NaCl. The solution is recovered by dialysis and then dialyzed with distilled water and lyophilized to obtain high purity marine collagen.
  • the purification process can be purified step by step using a plurality of chromatography.
  • the chromatography that can be used include ion-exchange chromatography, gel filtration chromatography, and hydrophobic interaction chromatography.
  • collagen may be purified by first purifying the pepsin solubilized collagen by hydrophobic interaction chromatography, secondarily purifying by ion exchange chromatography, and third purifying by gel filtration chromatography.
  • the scales were removed and then rapidly frozen at -45 ° C for 15 hours and then for 48 hours at -40 ° C in a freeze dryer with a vacuum of 0.5torr. After drying, it was ground to prepare a fish powder.
  • 0.1 M sodium hydroxide solution was added to the fish powder at a 10-fold weight ratio, and the mixture was stirred at room temperature (20 ° C.) for 16 hours, and then an alkali residue (RS-AL) from which the non-collagenic protein was removed was removed using a centrifuge. Obtained.
  • Pepsin solubilized collagen was dialyzed in 20mM Na 2 HPO 4 to inactivate pepsin and then dialyzed in 50mM acetic acid solution (pH 4.8) containing 2M urea, followed by ion chromatography (P11, Whatman, Maidstone, UK). Purification was carried out in a linear gradient (60ml / h) of 0 ⁇ 600mM NaCl in a column packed with, and the fraction eluted at 230nm was recovered by dialysis with 0.5M acetic acid solution containing 2.0M NaCl, and then dialyzed with distilled water and freeze-dried. The high purity marine collagen was obtained.
  • the ratio of ASC collagen in the skin was analyzed using Sircol TM Soluble Collagen Assay kit (Biocolor, UK).
  • the calibration curve of the standard solution was prepared, and the collagen content of the sample to be analyzed was obtained and shown in FIG. 2.
  • the collagen content in the skin was measured using the Collagen Assay kit, and the flounder was 9.73%, Uru 3.46%, perch 6.96%, and red snapper 11.83%.
  • the heat denaturation temperature was measured at a constant heating rate (0.5 ° C./1 min) for acid-solubilized collagen isolated from flounder skin using Micro DSC (Setaram, France). At this time, rat tail tendon ASC of land vertebrate was purchased. The heat denaturation temperature was measured by the same method and compared with the data of the fish, and the results are shown in FIG. 3.
  • Thermal denaturation temperature was measured at a constant heating rate (0.5 °C / 1 minute) using a Micro DSC (Setaram, France), and at the same time, the tail tendon ASC (Sigma Aldrich, USA) of terrestrial vertebrates was purchased as a control.
  • fish collagen Fig. 3: ⁇ , ⁇
  • rat collagen Fig. 3: ⁇
  • the low denaturation temperature suggested that fish collagen had a low degree of proline hydroxylation.
  • flounder skin ASC showed higher resistance to heat denaturation due to higher heat degeneration temperature of 3.9 ° C than rainbow trout muscle ASC.
  • the molecular characteristics of collagen were analyzed by constituent amino acid investigation and SDS-PAGE analysis.
  • the constituent amino acid was weighed 0.5g of acid-solubilized collagen into an 18ml test tube, 3ml of 6N HCl was added, and the test tube was sealed using a vacuum pump.
  • the sealed test tube was hydrolyzed at a heating block at 121 ° C. for 24 hours, and then, after removing the acid with a rotary evaporator at 50 ° C. and 40 psi, 10 ml of sodium loading buffer was added, followed by 1 ml was filtered off with a membrane filter (0.2 ⁇ l) and quantitated with an amino acid analyzer (S-433H, SYKAM GmbH, Germany).
  • a cation separation column (LCA K06 / Na) was used as the column, the column size was 4.6 ⁇ 150 mm, the column temperature was 57-74 ° C, the buffer flow rate was 0.45 ml / min, and the reagent flow rate was 0.25.
  • the pH range was 3.45 ⁇ 10.85 and the wavelength was 440nm and 570nm.
  • SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electorphoresis
  • sample buffer 50 mM Tris-HCL, pH 7.5; 50% glycerin, 1% SDS, 0.02% bromophenol blue, BPB
  • sample buffer 50 mM Tris-HCL, pH 7.5; 50% glycerin, 1% SDS, 0.02% bromophenol blue, BPB
  • Samples were prepared by cooling at room temperature for 10 minutes.
  • the prepared sample was prepared by using a 40% polyacrylamide composed of 3% stacking gel and 7.5% separate gel to prepare 7.5% gel.
  • the electrophoretic apparatus was 200V, using Bio-RAD Power Pac Basic (USA). It carried out on the conditions of 35 mA / gel.
  • Protein band staining was prepared according to Fairbanks et al., (1971) in four stages of dyeing solution of Coomassie brilliant blue (CBB), 2-propanol and acetic acid in stages. 2 hours each.
  • CBB Coomassie brilliant blue
  • the marker used to confirm the molecular weight of the sample was SDS-PAGE Molecular Weight Stadards (Bio-rad Laboratirories, High range, USA).
  • FIGS. 4 to 7 SDS-PAGE results for each fish species are shown in FIGS. 4 to 7, respectively.
  • Figure 4 is a SDS-PAGE pattern of RS-AL, ASC extracted from flounder and flatfish
  • Figure 5 is a SDS-PAGE pattern of RS-AL, ASC extracted from rock and rock
  • Figure 6 is a perch fish and SDS-PAGE patterns of RS-AL and ASC extracted from sea bass
  • FIG. 7 shows SDS-PAGE patterns of RS-AL and ASC extracted from red snapper and red snapper.
  • MP refers to a marker protein (maker protein).
  • Table 1 shows the constituent amino acid results of acid-soluble collagen (ASC) extracted from the fish of the flounder, rockfish, sea bass, red snapper.
  • ASC acid-soluble collagen
  • the total constituent amino acids of the flounder, urchin, perch and red snapper fish ASC were 70.15g / 100g, 70.67g / 100g, 74.02g / 100g and 67.41g / 100g.
  • Glycine which can identify the characteristics of the repeated Gly-XY amino acid sequence, accounted for about 25% (17.64g / 100g, 17.52g / 100g, 18.37g / 100g, 17.20g / 100g, respectively), and proline 10.86g / 100g 10.53g / 100g, 12.46g / 100g and 10.50g / 100g accounted for about 15%.
  • FIG. Collagen SDS-PAGE analysis of high purity marine collagen isolated from pepsin solubilized collagen is shown in FIG. Collagen was detected in high-purity marine collagen of four fish. Collagen was composed of ⁇ 1 (I) and ⁇ 2 (I) subunits such as ASC and ⁇ -chain as dimers, and two polymer bands were identified above ⁇ -chain.
  • MP marker protein in FIG. 11; A: flounder; B: uruk; C: perch; D: It means red snapper.
  • collagen contains hydroxylated amino acids, hydroxyproline and hydroxylysine, and consists of repeating amino acid sequence of Gly-XY in the triple helix region, where proline and hydroxyproline are located at X and Y positions. Frequently located, the presence of collagen can be determined by glycine, proline and hydroxyproline content.
  • Table 2 shows the results of analyzing the amino acid residues to determine the content of glycine, proline, hydroxyproline, and the like for high purity marine collagen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Peptides Or Proteins (AREA)
  • Cosmetics (AREA)

Abstract

본 발명은 어피로부터 마린콜라겐의 추출방법에 관한 것으로서, 더욱 상세하게는 생선 가공공정에서 배출되는 어류부산물인 어피로부터 고순도의 마린 콜라겐을 효과적으로 추출할 수 있는 추출방법에 관한 것이다. 본 발명의 어피로부터 마린콜라겐의 추출방법은 어류 부산물인 어피에서 비늘과 이물질을 제거하는 전처리단계와, 전처리단계에서 전처리된 어피를 건조시키는 건조단계와, 건조단계에서 건조된 어피를 분쇄하여 어피 분말을 수득하는 분쇄단계와, 알칼리와 산을 이용하여 상기 어피분말로부터 콜라겐을 분리하는 분리단계와, 분리단계에서 분리된 콜라겐을 크로마토그래피를 이용하여 정제하는 정제단계를 포함한다.

Description

어피로부터 마린콜라겐의 추출방법
본 발명은 어피로부터 마린콜라겐의 추출방법에 관한 것으로서, 더욱 상세하게는 생선 가공공정에서 배출되는 어류부산물인 어피로부터 고순도의 마린 콜라겐을 효과적으로 추출할 수 있는 추출방법에 관한 것이다.
콜라겐은 동물 체내에 가장 풍부하게 존재하는 단백질로서 체단백질의 약 30% 이상을 차지하며, 최소 19종류(TypeⅠ-ⅩⅨ) 이상인 것으로 밝혀져 있다(Nakamura, Y.N. et al., Relationship among collagen amount, distribution and architecture in the M. Longissimus thoracis and M. pectoralis profundus from pigs. Meat Science, 64, pp 43-50, 2003). 또한, 콜라겐은 동물의 결합조직의 주요 단백질이며, 조직이나 장기를 지탱하게 하고 체표를 둘러싸고 있어 체형을 유지시키는 역할을 한다. 특히 생체에서 피부, 연골, 뼈 등의 결합조직의 주요한 구성성분으로 40%는 피부, 20%는 뼈와 연골, 그 외 혈관과 내장 등 전신에 넓게 분포되어 있다.
콜라겐은 이중 나선구조를 하고 있는 근원섬유단백질과는 달리 삼중 나선구조로, 그 직경이 약 14~15nm, 길이는 280~300nm, 평균 분자량은 약 300KDa이며(Lehninger, A.L. Biochemistry, 2nd ed., pp.145, 1975), (Gly-X-Y)n과 같은 규칙적인 형태의 아미노산 배열을 가지며 섬유상 단백질의 기본단위 분자인 트로포콜라겐(tropocollagen) 분자 내 또는 트로포콜라겐(tropocollagen) 분자 간의 공유결합성 교차결합(crosslinking)에 의해 물리적, 생물학적으로 안정한 구조를 형성하고 있다(McClain, P.E. et al., Amino acid composition and cross-linking characteristics of collagen intramuscular connective tissue of striated muscle(Bos taurus). International Journal of Biochemistry, 2(7), pp 121-124, 1971).
콜라겐은 예전부터 피혁이나 젤라틴의 원료로서 응용되어 왔고 최근에는 그 응용분야가 더욱 다양해지고 있다. 식품 산업에서는 가식성 케이징(casing) 원료로 소세지(sausage), 살라미(salami) 등 육의 포장재에 이용되고 있다. 의약품에 응용되는 콜라겐은 화상이나 상처에 의해 손상된 피부에 대해 치유 효과가 있는 것으로 보고되고 있다(Jeyanthi, R. et al., Solid tumour chemotherapy using implantable collagen-poly (HEMA) hydrogel containing 5-fluorouracil. Journal of Pharmacy & Pharmacology, 43, pp.60-62, 1991). 이처럼 콜라겐은 식품, 의약품의 기능성 소재로 이용되고 있을 뿐만 아니라 피부의 보습성을 높이는 기능이 있어 화장품의 기초 재료 등 다양한 분야에 널리 이용되고 있다.
최근의 여러 논문을 통하여 단백질 가수분해물로부터 얻어진 펩타이드가 주름 개선, 보습 증진, 탄력 증가와 특정 피부 효능을 나타낼 수 있는 잠재적인 소재로 활용되고 있으며, 대표적인 것이 콜라겐 가수분해물이다.
콜라겐 펩타이드라는 명칭으로 불리는 콜라겐 가수분해물은 돈피, 어류의 비늘 등에서 고분자 콜라겐을 추출한 후, 효소 분해 등의 후처리 과정을 통해 가수분해시켜 펩타이드 형태로 저분자화시킨 것을 말하며 최근에는 분자량을 1,000~5,000 정도까지 낮춘 콜라겐 제품들이 판매되고 있다.
한편, 현재까지 어류부산물인 어피는 음식물쓰레기로 분류되어 일반음식물과 같이 퇴비로 대부분 활용되었다. 건조한 어피는 단백질 및 유용물질이 90% 이상이어서 활용도가 매우 높아 콜라겐 추출, 화장품, 건강보조식품, 접착제 등 다양하게 이용할 수 있다. 근래 콜라겐을 이용한 건강보조제, 화장품 등 다양한 상품이 상용화되고 있으나 많은 부분 수입에 의존하고 있다.
국내 1인당 수산물소비가 세계 1위인 일본과 앞뒤를 다투는 상황에서 점차 증가하는 어피 부산물의 활용은 수입대체 및 양질의 수산단백질, 콜라겐의 공급으로 경제적 상승효과 및 친환경적 산업개발에 매우 적합하다.
또한, 콜라겐, 알부민, 미오신, 엘라스틴 등 다양한 고분자 단백질을 다량으로 함유하고 있어, 고품질의 콜라겐으로 활용이 가능하며, 어피 부산물의 단백질원으로서 이용은 생선회의 소비가 높은 국내에서 수거가 용이하며, 국내 해산어 양식도 꾸준히 이루어지고 있는 만큼 안정된 수량 확보를 기대할 수 있어 어류부산물의 유효이용 가능성에 대한 평가가 절실한 상황이다.
(선행기술문헌)
(특허문헌)
1. 대한민국 등록특허 제101020312호: 어류비늘 콜라겐펩타이드의 제조방법
2. 대한민국 등록특허 제101451971호: 어류껍질 유래의 콜라겐 펩타이드 대량생산방법
본 발명은 상기의 문제점을 개선하고자 창출된 것으로서, 생선 가공공정에서 배출되는 어류부산물인 어피로부터 마린 콜라겐을 효과적으로 추출할 수 있는 추출방법을 제공하는 데 그 목적이 있다.
상기의 목적을 달성하기 위한 본 발명의 어피로부터 마린콜라겐의 추출방법은 어류 부산물인 어피에서 비늘과 이물질을 제거하는 전처리단계와; 상기 전처리단계에서 전처리된 어피를 건조시키는 건조단계와; 상기 건조단계에서 건조된 어피를 분쇄하여 어피 분말을 수득하는 분쇄단계와; 알칼리와 산을 이용하여 상기 어피분말로부터 콜라겐을 분리하는 분리단계와; 상기 분리단계에서 분리된 콜라겐을 크로마토그래피를 이용하여 정제하는 정제단계;를 포함하고, 상기 분리단계는 a)상기 어피분말에 수산화나트륨 용액을 가하여 비콜라겐성 단백질이 제거된 알칼리잔사를 수득하는 단계와, b)상기 알칼리잔사에 초산용액을 가하여 교반한 후 원심분리기로 상등액을 분리하여 산가용화 콜라겐을 추출하는 단계와, c)상기 산가용화 콜라겐에 펩신을 가하여 교반한 후 원심분리기로 상등액을 분리한 다음 염화나트륨 용액을 가하여 침전시킨 침전물을 증류수로 투석하여 펩신 가용화 콜라겐을 추출하는 단계를 포함한다.
상기 전처리단계는 상기 어피를 물로 세척하여 이물질을 제거한 다음 0.1 내지 0.2M 수산화나트륨 용액에 투입하여 6 내지 24시간 동안 교반하여 상기 어피에 부착된 비늘을 탈리시킨다.
상기 정제단계는 인산셀룰로오스를 충진한 컬럼이 장착된 이온교환 크로마토그래피를 이용하여 정제한다.
상기 정제단계는 상기 펩신가용화 콜라겐을 20mM Na2HPO4에서 투석하여 펩신을 불활성화시킨 다음 2M 요소를 포함한 50mM 초산에서 투석한 후 상기 이온교환 크로마토그래피로 용출시킨 분획을 2M NaCl을 포함한 0.5M 초산용액으로 투석하여 회수한 다음 증류수로 투석 후 동결건조시킨다.
상기 정제단계는 다수의 크로마토그래피를 이용하여 단계적으로 정제한다.
상기 정제단계는 겔 여과 크로마토그래피로 상기 펩신 가용화 콜라겐을 탈염시킨 후 이온교환 크로마토그래피로 1차 정제한 후 소수성 상호반응 크로마토그래피로 2차 정제한 다음 겔 여과 크로마토그래피로 3차 정제한다.
상기 정제단계는 소수성 상호반응 크로마토그래피로 상기 펩신 가용화 콜라겐을 1차 정제한 후 이온교환 크로마토그래피로 2차 정제한 다음 겔 여과 크로마토그래피로 3차 정제한다.
상술한 바와 같이 본 발명은 어류로부터 분리한 어피를 저온에서 건조시켜 수분을 제거한 후 분말상태로 가공하여 마린 콜라겐을 추출함으로써 어피의 변질을 방지함과 동시에 콜라겐의 열변성을 방지하고 추출수율을 증대시킬 수 있다.
또한, 본 발명은 크로마토그래피를 이용하여 정제하는 공정을 추가적으로 수행하여 고순도의 마린 콜라겐을 효과적으로 수득할 수 있다. 이와 같이 정제된 마린 콜라겐은 저분자화된 콜라겐 펩타이드가 아닌 고분자의 콜라겐 구조를 유지하고 있어서 겔 형성능이 있고 보습효과가 우수하여 다양한 용도로 유용하게 활용될 수 있다.
도 1 및 도 2는 어피 내 산가용화 콜라겐(ASC)의 비율을 측정한 결과이고,
도 3은 넙치 어피로부터 분리한 산가용화 콜라겐(ASC)의 열변성온도를 측정한 결과이고,
도 4 내지 도 7은 각 어종별 어피 및 어피로부터 추출한 RS-AL, ASC의 SDS-PAGE의 분석결과이고,
도 8은 펩신가용화 콜라겐으로부터 분리한 고순도 마린콜라겐의 SDS-PAGE 의 분석결과이다.
이하, 본 발명의 바람직한 실시 예에 따른 어피로부터 마린콜라겐의 추출방법에 대하여 구체적으로 설명한다.
본 발명의 일 예에 따른 어피로부터 마린콜라겐의 추출방법은 어류 부산물인 어피에서 비늘과 이물질을 제거하는 전처리단계와, 전처리단계에서 전처리된 어피를 건조시키는 건조단계와, 건조단계에서 건조된 어피를 분쇄하여 어피 분말을 수득하는 분쇄단계와, 알칼리와 산을 이용하여 상기 어피분말로부터 콜라겐을 분리하는 분리단계와, 분리단계에서 분리된 콜라겐을 크로마토그래피를 이용하여 정제하는 정제단계를 포함한다. 이하, 단계별로 살펴본다.
1. 전처리단계
전처리단계를 통해 어류 부산물인 어피에서 비늘과 이물질을 제거한다.
어피는 어류의 껍질로서, 모든 어류의 껍질이 적용될 수 있으나, 바람직하게는 넙치, 우럭, 농어, 참돔 중에서 선택된 어느 하나이다. 4종류의 어류는 소비가 많아 상대적으로 어피의 공급이 용이하다. 이외에도 어피로 연어 껍질을 이용할 수 있다.
어피는 주로 생선 가공공정에서 발생되므로 어피에 묻은 각종 이물질이나 혈분 등을 제거하기 위해 깨끗한 물로 2 내지 3회 정도 씻어낸다.
물로 세척 후 다음 공정인 건조단계를 수행할 수 있으나, 바람직하게 건조 전 어피에 붙은 비늘을 제거한다. 비늘을 제거하지 않고 후술하는 분쇄공정을 수행할 경우 비늘로 인하여 분쇄기 토출구가 막히는 현상이 발생하여 분쇄작업시 많은 시간이 소요될 뿐만 아니라 막힘 현상에 기인한 분쇄물 압력 증가로 분쇄기 토출부 부품이 파손된 현상이 일어나는 등 여러 가지 문제점이 발생한다. 따라서 어피에 붙은 비늘을 제거할 필요성이 있다. 도구를 이용하여 수작업으로 작업자가 일일이 비늘을 제거하면 공정상 어려움과 많은 시간이 소요된다.
따라서 본 발명은 어피에 부착된 비늘을 간단하게 효과적으로 제거할 수 있도록 수산화나트륨 용액을 이용한다. 예를 들어, 물로 세척하여 이물질을 제거한 어피를 0.1 내지 0.2M 수산화나트륨 용액에 투입하여 6 내지 24시간 동안 교반하여 어피에 부착된 비늘을 탈리시킨다. 수산화나트륨 용액에서 어피를 교반하게 되면 생선종류에 따라 다소 차이가 있으나 비늘이 효과적으로 제거된다. 0.1M 수산화나트륨 용액에서는 80 내지 90%의 비늘이 제거되고, 0.2M 수산화나트륨 용액에서는 90 내지 100%의 비늘이 제거된다. 비늘을 분리한 후 다시 물로 세척한다.
또한, 교반조에 담긴 수산화나트륨 용액에 어피를 투입하여 교반시 초음파를 가해 비늘 제거 속도를 단축시킬 수 있다. 가령, 교반조의 바닥에 초음파 진동자를 설치하여 교반조 내부로 40 내지 60kHz의 초음파를 가하면서 교반할 수 있다. 수산화나트륨 용액에 의해 비늘의 부착력이 약화된 상태에서 초음파 진동이 어피에 가해져 비늘의 제거가 더욱 용이해진다.
이와 같이 본 발명은 수산화나트륨 용액을 이용하여 비늘을 매우 용이하게 제거함으로써 어피 분쇄시 분쇄기 토출부의 막힘 현상이 없을 뿐만 아니라 막힘 현상에 의한 분쇄기 부품 파손 현상이 발생하지 않는다. 그리고 비늘을 제거하기 위한 수작업을 생략할 수 있어서 제조시간을 단축하고 비용 및 인력을 절감할 수 있다.
2. 건조단계
다음으로, 전처리단계에서 전처리된 어피를 건조시킨다. 콜라겐의 추출수율을 증대시키고 변질 방지 및 분쇄를 위해 건조시킨다. 건조단계에서 어피는 수분 함량 2 내지 7중량%로 건조시킨다. 건조방식으로 동결건조 및 열풍건조 방식 등을 적용할 수 있다. 바람직하게는 콜라겐의 변성을 방지하기 위해 동결건조(freeze drying, FD) 방식을 이용한다.
동결건조 방법으로 -50 내지 -40℃의 온도에서 10 내지 20시간 어피를 급속동결시킨 다음, 0.1 내지 0.5torr의 진공도를 가진 동결건조기에서 약 -40℃에서 48시간 동안 건조시킨다. 이외에도 식품을 제조하는 데 있어서 적용되는 통상적인 동결건조법을 적용할 수 있음은 물론이다.
어피를 동결건조시키는 경우 동결된 상태에서 승화에 의하여 수분이 제거되기 때문에 건조된 제품은 가벼운 다공성 구조를 가지며 모양과 크기도 원래의 상태를 유지하고, 열을 가하지 않고 저온에서 처리되기 때문에 고온의 열풍건조에서 일어나는 가용성 성분의 이동, 비효소적 갈변, 단백질의 변성 등이 거의 일어나지 않는다.
열풍건조의 경우 30 내지 80℃의 열풍으로 어피를 건조시킬 수 있다. 열풍건조시 콜라겐의 변성을 최대한 방지하기 위해서 열풍의 온도는 65℃ 이하, 바람직하게 40 내지 60℃이다. 어피에 함유된 콜라겐은 분리된 상태에 비해 변성온도가 높다.
3. 분쇄단계
건조된 어피는 분쇄기를 이용하여 적당한 크기로 분쇄하여 어피분말을 수득한다. 가령 50 내지 150메쉬 입도 크기로 분쇄할 수 있다.
4. 분리단계
어피분말의 수득 후 어피분말로부터 콜라겐을 분리한다.
분리단계는 일 예로 a)상기 어피분말에 수산화나트륨 용액을 가하여 비콜라겐성 단백질이 제거된 알칼리잔사를 수득하는 단계와, b)상기 알칼리잔사에 초산용액을 가하여 교반한 후 원심분리기로 상등액을 분리하여 산가용화 콜라겐을 추출하는 단계와, c)상기 산가용화 콜라겐에 펩신을 가하여 교반한 후 원심분리기로 상등액을 분리한 다음 염화나트륨 용액을 가하여 침전시킨 침전물을 증류수로 투석하여 펩신 가용화 콜라겐을 추출하는 단계로 이루어진다.
어피분말에 수산화나트륨 용액을 가하여 비콜라겐성 단백질이 제거된 알칼리잔사를 수득하는 단계는 구체적으로 다음과 같다.
어피분말과 수산화나트륨 용액을 1:5 내지 10의 중량비로 혼합한 다음 실온(20~25℃)에서 12 내지 24시간 동안 교반한 후 원심분리기를 이용하여 비콜라겐성 단백질이 제거된 알칼리잔사를 수득할 수 있다.
그리고, 알칼리잔사에 초산용액을 가하여 산가용화 콜라겐을 추출하는 단계는 구체적으로 다음과 같다.
알칼리잔사를 증류수로 세척한 다음 초산용액을 가해 콜라겐을 추출한다. 알칼리잔사와 초산용액을 1:5 내지 10의 중량비로 혼합한 다음 실온(20~25℃)에서 12 내지 24시간 동안 교반한 후 원심분리기를 이용하여 상등액을 분리하여 산 가용화 콜라겐을 수득한다.
그리고, 산가용화 콜라겐에 펩신을 가하여 펩신 가용화 콜라겐을 추출하는 단계는 구체적으로 다음과 같다.
산가용화 콜라겐에 펩신을 가하여 10 내지 20시간 동안 교반한 후 원심분리기로 상등액을 분리한 다음 2M의 염화나트륨 용액을 가하여 침전시킨 침전물을 증류수로 투석하여 펩신 가용화 콜라겐을 얻을 수 있다.
5. 정제단계
분리단계에서 분리된 펩신 가용화 콜라겐을 크로마토그래피를 이용하여 정제하여 고순도의 마린 콜라겐을 얻을 수 있다.
일 예로, 정제단계는 인산셀룰로오스를 충진한 컬럼이 장착된 이온교환 크로마토그래피를 이용하여 정제할 수 있다.
펩신가용화 콜라겐을 20mM Na2HPO4에서 투석하여 펩신을 불활성화시킨 다음 2M 요소를 포함한 50mM 초산용액(pH 4.8)에 대해 투석한 후 이온교환 크로마토그래피(ion-exchange chromatography)를 이용하여 분획을 용출시킨다. 가령, 인산셀룰로오스(P11, Whatman, Maidstone, UK)를 충진한 컬럼에서 0~600mM NaCl의 linear gradient(60ml/h)로 정제를 진행하고, 230nm에서 용출된 분획을 2.0M NaCl을 포함한 0.5M 초산용액으로 투석하여 회수한 다음 증류수로 투석, 동결건조하여 고순도 마린콜라겐을 얻을 수 있다.
한편, 정제과정의 다른 예로 다수의 크로마토그래피를 이용하여 단계적으로 정제할 수 있다. 사용 가능한 크로마토그래피로 이온교환 크로마토그래피(ion-exchange chromatography), 겔 여과 크로마토그래피(gel filtration chromatography), 소수성 상호반응 크로마토그래피(hydrophobic interaction chromatography)를 들 수 있다.
일 예로, 겔 여과 크로마토그래피로 펩신 가용화 콜라겐을 탈염시킨 후 이온교환 크로마토그래피로 1차 정제한 후 소수성 상호반응 크로마토그래피로 2차 정제한 다음 겔 여과 크로마토그래피로 3차 정제하는 방법을 통해 콜라겐을 정제할 있다.
그리고 다른 예로, 소수성 상호반응 크로마토그래피로 상기 펩신 가용화 콜라겐을 1차 정제한 후 이온교환 크로마토그래피로 2차 정제한 다음 겔여과 크로마토그래피로 3차 정제하는 방법을 통해 콜라겐을 정제할 있다.
이하, 본 발명의 내용을 하기 실험예를 통하여 구체적으로 설명한다. 이는 본 발명을 보다 상세하게 설명하기 위한 것으로, 본 발명의 권리 범위를 하기의 실험예로 한정하는 것은 아니다.
<실시예>
4종의 어류(우럭, 농어, 넙치, 참돔)의 어피를 세척한 후 비늘을 제거한 다음 -45℃에서 15시간 동안 급속동결시킨 다음 0.5torr의 진공도를 가진 동결건조기에서 -40℃로 48시간 동안 건조시킨 후 분쇄하여 어피 분말을 제조하였다. 그리고 어피 분말에 0.1M의 수산화나트륨 용액을 10배의 중량비로 가한 다음 실온(20℃)에서 16시간 동안 교반한 후 원심분리기를 이용하여 비콜라겐성 단백질이 제거된 알칼리잔사(RS-AL)를 수득하였다.
수득한 알칼리잔사를 증류수로 세척한 다음 0.5M의 초산용액을 10배의 중량비로 혼합한 다음 실온(20℃)에서 16시간 동안 교반한 후 원심분리기를 이용하여 상등액을 분리하여 산가용화 콜라겐(ASC)을 수득하였다. 그리고 산가용화 콜라겐에 펩신(EC 3.4.23.1;crystallized and lyophilized, Sigma, MO)을 가하여 14시간 동안 교반한 후 원심분리기로 상등액을 분리한 다음 2M의 염화나트륨 용액을 가하여 침전시킨 침전물을 증류수로 투석하여 펩신 가용화 콜라겐을 수득하였다.
펩신가용화 콜라겐은 20mM Na2HPO4에서 투석하여 펩신을 불활성화시킨 다음 2M 요소를 포함한 50mM 초산용액(pH 4.8)에서 투석한 후 이온크로마토그래피를 이용하여 인산셀룰로오스(P11, Whatman, Maidstone, UK)를 충진한 컬럼에서 0~600mM NaCl의 linear gradient(60ml/h)로 정제를 진행하고, 230nm에서 용출된 분획을 2.0M NaCl을 포함한 0.5M 초산용액으로 투석하여 회수한 다음 증류수로 투석, 동결건조하여 고순도의 마린콜라겐을 얻었다.
1. 어피내 산가용화 콜라겐(acid soluble collagen, ASC) 비율 조사
각 어종별 어피에서 확보된 ASC의 어피 내 비율을 조사하기 위하여, 투석이 완료된 ASC를 1.5㎖ tube에 1㎖ 넣어 동결건조시킨 후 무게를 측정하였고, 1.5㎖ tube 내 동결 건조 전후의 무게 측정과 투석된 ASC내 비율을 조사하여, 다음 식과 같이 어피 내에서 추출된 ASC의 비율을 산출하였다.
S={(Y1×Y2)/X}×100
S: 어피 내 ASC 비율(%)
Y1: 투석 전 염침전물의 중량(g)
Y2: 투석 동결건조한 겔에 대한 ASC 비율(%)
X: 최초 사용한 어피의 습중량(g)
실험결과를 도 1에 나타내었다.
도 1을 참조하면, 넙치, 우럭, 농어, 참돔의 산가용성 콜라겐(ASC)의 비율을 조사한 결과 어피 습중량에서는 참돔이 9.88%로 가장 높았고, 넙치가 8.01±0.19%, 농어가 5.75%이었으며 우럭이 2.69%가장 낮은 값을 나타내었다.
경골어류 4종의 콜라겐 함량을 비교하였을 때 어종별로 큰 차이를 나타내어 조직학적 관찰을 뒷받침해주는 경향을 나타내었으나 우럭이 상대적으로 매우 낮은 값을 나타내었다.
SircolTM Soluble Collagen Assay kit(Biocolor, UK)를 이용하여 어피 내 ASC 콜라겐 비율을 분석하였다. 스탠다드 용액의 검량선을 작성하여 분석하고자 하는 시료의 콜라겐 함량을 구하여 도 2에 나타내었다.
Collagen Assay kit를 이용하여 어피 내 콜라겐 함량을 측정한 결과 넙치 9.73%, 우럭 3.46%, 농어 6.96%, 참돔 11.83%로 나타났다.
2. 어피 콜라겐 열변성 안정성 조사
Micro DSC(Setaram, France)를 이용해 넙치 어피로부터 분리한 산가용화 콜라겐에 대한 일정가열비율(0.5℃/1분)로 열변성 온도를 측정하였으며, 이때, 육상척추동물인 쥐의 꼬리힘줄 ASC를 구입하여 동일한 방법으로 열변성 온도를 측정하고 어류의 data와 비교분석하여 도 3에 나타내었다.
Micro DSC(Setaram, France)를 이용해 일정가열비율(0.5℃/1분)로 열변성온도를 측정하였고, 동시에 대조구로서 육상척추동물인 쥐의 꼬리힘줄 ASC(Sigma Aldrich, USA)를 구입하여 동일한 방법으로 열변성 온도를 측정하고 어류의 데이터와 비교분석한 결과, 어류 콜라겐(도3: ○, ●)은 육상척추동물인 쥐 콜라겐(도3: ▲)보다 12℃가 낮았다.
낮은 변성온도는 어류 콜라겐의 프로린 히드록실화(proline hydroxylation) 정도가 낮기 때문이라는 것을 시사했다. 또한, 넙치 피부 ASC는 무지개송어 근육 ASC보다 열변성 온도가 3.9℃가 높아 열변성에 대한 저항이 높다는 것을 보여줬다.
3. 분자적 특성조사
구성 아미노산 조사와 SDS-PAGE 분석을 통한 콜라겐 분자적 특성을 분석하였다.
구성 아미노산은 산가용화 콜라겐 0.5g을 18㎖ test tube에 칭량하여 6N HCl 3㎖를 가한 다음 진공펌프를 이용하여 test tube를 밀봉하였다. 밀봉한 test tube는 121℃로 히팅블록(heating block)에서 24시간 동안 가수분해시킨 후, 50℃, 40psi의 회전식 증발기(rotary evaporator)로 산을 제거한 후 Sodium loading buffer로 10㎖ 정용한 다음, 이중 1㎖를 취하여 맴브레인 필터(0.2 ㎕)로 여과하여 아미노산분석기(S-433H, SYKAM GmbH, Germany)로 정량분석하였다. 분석 조건은 컬럼으로 cation separation column(LCA K06/Na)을 사용하였고, 컬럼 사이즈는 4.6 × 150㎜, 컬럼 온도는 57~74℃, 버퍼의 flow rate는 0.45㎖/min, reagent의 flow rate는 0.25㎖/min 이었으며, 이때 buffer pH range는 3.45~10.85이었고, wavelength는 440㎚과 570㎚이었다.
단백질 분자량을 확인하기 위하여 SDS-PAGE(Sodium dodecyl sulfate polyacrylamide gel electorphoresis)를 Laemmli(1970)의 방법에 따라 실시하였다.
각 시료를 Sample buffer(50mM Tris-HCL, pH 7.5; 50% glycerin, 1% SDS, 0.02% bromophenol blue, BPB)에 1㎎/㎖ 농도로 조제한 후, 95℃에서 5분간 가열하여 열 변성시킨 후 10분간 실온에서 방냉시켜 시료를 준비하였다. 준비된 시료는 3% stacking gel과 7.5% separate gel로 구성된 40% 폴리아크릴아마이드(polyacrylamide)를 이용하여 7.5% gel을 제조하였으며, 전기영동장치는 Bio-RAD Power Pac Basic(USA)을 사용하여 200V, 35mA/gel의 조건으로 실시하였다. 단백질 band의 염색은 Fairbanks et al.,(1971)에 따라 Coomassie brilliant blue(CBB)와 2-프로판올, 초산을 단계적으로 섞은 염색액을 총 4단계로 준비해, 1단계는 30분, 2~4단계는 각각 2시간씩 실시하였다. 이때 시료의 분자량을 확인하기 위해 사용된 Marker는 SDS-PAGE Molecular Weight Stadards(Bio-rad Laboratirories, High range, USA)를 이용하였다.
각 어종별 SDS-PAGE 결과를 도 4 내지 도 7에 각각 나타내었다. 도 4는 넙치어피 및 넙치어피로부터 추출한 RS-AL, ASC의 SDS-PAGE 패턴이고, 도 5는 우럭 어피 및 우럭 어피로부터 추출한 RS-AL, ASC의 SDS-PAGE 패턴이고, 도 6은 농어 어피 및 농어 어피로부터 추출한 RS-AL, ASC의 SDS-PAGE 패턴이고, 도 7은 참돔 어피 및 참돔어피로부터 추출한 RS-AL, ASC의 SDS-PAGE 패턴이다. 도 4 내지 도 7에서 MP는 마커단백질(maker protein)을 의미한다.
각 어종별 SDS-PAGE 결과 4종 모두가 subunit구조인 α1(I), α2(I)과 그 이량체인 β-chain으로 구성되어 있었고, β-chain 위로 2개의 고분자 밴드가 확인었다. 이것은 모두 전형적인 I형 콜라겐의 SDS-PAGE 패턴을 보였으며, 분자량은 어 피와 RS-AL, ASC 모두 116.2 k보다 약간 위쪽에 α1(I)과 α2(I)가 단백질 밴드가 형성되어 있음을 확인할 수 있었고, 200k부근에서는 β-chain 단백질 밴드가 주로 분포되어 있었다.
구성아미노산 분석결과는 하기 표 1과 같다.
구성아미노산(mg/100g) 넙 치 우 럭 농 어 참 돔
Asp 4.31 4.75 4.41 4.02
Thr 1.94 1.91 2.31 1.93
Ser 3.32 4.07 3.12 2.85
Glu 7.27 7.36 7.56 7.01
Pro 10.86 10.53 12.46 10.50
Gly 17.64 17.52 18.37 17.20
Ala 7.02 6.63 7.62 7.13
Cys 0.05 0.06 0.05 0.04
Met 1.74 1.90 1.68 1.52
Val 1.35 1.33 1.49 1.38
Ile 0.80 0.72 0.74 0.71
Leu 1.85 1.71 1.83 1.80
Tyr 0.27 0.15 0.33 0.37
Phe 1.69 1.71 1.64 1.42
His 0.76 0.80 0.78 0.70
Lys 2.68 2.58 2.61 2.45
Amo 1.21 1.36 1.07 1.02
Arg 5.38 5.58 5.93 5.37
Total 70.15 70.67 74.02 67.41
상기 표 1은 넙치, 우럭, 농어, 참돔의 어피에서 추출된 산가용성 콜라겐(ASC)의 구성아미노산 결과이다.
넙치와 우럭, 농어, 참돔 어피 ASC에서 총 구성아미노산은 70.15g/100g, 70.67g/100g, 74.02g/100g, 67.41g/100g으로 농어의 구성아미노산이 가장 높았으며, 이중 콜라겐의 삼중나선의 영역 내 반복적인 Gly-X-Y 아미노산배열의 특징을 확인할 수 있는 glycine이 각각 17.64g/100g, 17.52g/100g, 18.37g/100g, 17.20g/100g으로 약 25%를 차지하고 있었고, proline이 10.86g/100g, 10.53g/100g, 12.46 g/100g, 10.50g/100g으로 약 15%를 차지하고 있었다.
4. 고순도 마린콜라겐의 분석
펩신가용화 콜라겐으로부터 분리한 고순도 마린콜라겐의 SDS-PAGE 분석결과를 도 8에 나타내었다. 4종 어류의 고순도 마린 콜라겐에서 모두 콜라겐이 검출되었다. 콜라겐은 ASC와 같은 subunit구조인 α1(I), α2(I)과 그 이량체인 β-chain으로 구성되어 있었으며, β-chain 위로 2개의 고분자 밴드가 확인되었다. 도 11에서 MP: marker protein; A: 넙치; B: 우럭; C: 농어; D: 참돔을 의미한다.
콜라겐은 다른 단백질과는 달리 히드록실화(hydroxylation)된 아미노산인 hydroxyproline, hydroxylysine을 포함하고 있으며, 삼중나선영역 부위에는 Gly-X-Y의 반복 아미노산 배열로 구성되어 있는데 X와 Y의 위치에는 proline과 hydroxyproline이 자주 위치하며 glycine, proline, hydroxyproline 함량으로 콜라겐의 유무를 확인할 수 있다.
고순도 마린콜라겐에 대한 glycine, proline, hydroxyproline 등의 함량을 확인하기 위하여 아미노산잔기를 분석한 결과를 하기 표 2에 나타내었다.
구성아미노산(mg/100g) residues (%)
Hydroxyproline 75 8%
Asp 36 4%
Thr 36 4%
Ser 46 5%
Glu 77 8%
Pro 84 8%
Gly 353 35%
Ala 114 11%
Half-Cys 0 0%
Val 25 3%
Met 9 1%
Ile 17 2%
Leu 22 2%
Tyr 2 0%
Phe 12 1%
Hydroxylysine 9 1%
Lys 25 3%
Histidine 8 1%
Arg 50 5%
Total 1,000 100%
상기 표 2를 참조하며, 고순도 마린콜라겐에 대한 glycine, proline, hydroxyproline 등의 함량을 확인하기 위하여 아미노산잔기를 분석한 결과 1,000잔기당 glycine 353(35%), hydroxyproline 75(7%), proline 84(8%), hydroxylysine 9(1%) 등으로 조사되었다.
이상, 본 발명은 일 실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 실시 예가 가능하다는 점을 이해할 것이다

Claims (7)

  1. 어류 부산물인 어피에서 비늘과 이물질을 제거하는 전처리단계와;
    상기 전처리단계에서 전처리된 어피를 건조시키는 건조단계와;
    상기 건조단계에서 건조된 어피를 분쇄하여 어피 분말을 수득하는 분쇄단계와;
    알칼리와 산을 이용하여 상기 어피분말로부터 콜라겐을 분리하는 분리단계와;
    상기 분리단계에서 분리된 콜라겐을 크로마토그래피를 이용하여 정제하는 정제단계;를 포함하고,
    상기 분리단계는 a)상기 어피분말에 수산화나트륨 용액을 가하여 비콜라겐성 단백질이 제거된 알칼리잔사를 수득하는 단계와, b)상기 알칼리잔사에 초산용액을 가하여 교반한 후 원심분리기로 상등액을 분리하여 산가용화 콜라겐을 추출하는 단계와, c)상기 산가용화 콜라겐에 펩신을 가하여 교반한 후 원심분리기로 상등액을 분리한 다음 염화나트륨 용액을 가하여 침전시킨 침전물을 증류수로 투석하여 펩신 가용화 콜라겐을 추출하는 단계를 포함하는 것을 특징으로 하는 어피로부터 마린콜라겐의 추출방법.
  2. 제 1항에 있어서, 상기 전처리단계는 상기 어피를 물로 세척하여 이물질을 제거한 다음 0.1 내지 0.2M 수산화나트륨 용액에 투입하여 6 내지 24시간 동안 교반하여 상기 어피에 부착된 비늘을 탈리시키는 것을 특징으로 하는 어피로부터 마린콜라겐의 추출방법.
  3. 제 1항에 있어서, 상기 정제단계는 인산셀룰로오스를 충진한 컬럼이 장착된 이온교환 크로마토그래피를 이용하여 정제하는 것을 특징으로 하는 어피로부터 마린콜라겐의 추출방법.
  4. 제 3항에 있어서, 상기 정제단계는 상기 펩신가용화 콜라겐을 20mM Na2HPO4에서 투석하여 펩신을 불활성화시킨 다음 2M 요소를 포함한 50mM 초산에서 투석한 후 상기 이온교환 크로마토그래피로 용출시킨 분획을 2M NaCl을 포함한 0.5M 초산용액으로 투석하여 회수한 다음 증류수로 투석 후 동결건조시키는 것을 특징으로 하는 어피로부터 마린콜라겐의 추출방법.
  5. 제 1항에 있어서, 상기 정제단계는 다수의 크로마토그래피를 이용하여 단계적으로 정제하는 것을 특징으로 하는 어피로부터 마린콜라겐의 추출방법.
  6. 제 5항에 있어서, 상기 정제단계는 겔 여과 크로마토그래피로 상기 펩신 가용화 콜라겐을 탈염시킨 후 이온교환 크로마토그래피로 1차 정제한 후 소수성 상호반응 크로마토그래피로 2차 정제한 다음 겔 여과 크로마토그래피로 3차 정제하는 것을 특징으로 하는 어피로부터 마린콜라겐의 추출방법.
  7. 제 5항에 있어서, 상기 정제단계는 소수성 상호반응 크로마토그래피로 상기 펩신 가용화 콜라겐을 1차 정제한 후 이온교환 크로마토그래피로 2차 정제한 다음 겔 여과 크로마토그래피로 3차 정제하는 것을 특징으로 하는 어피로부터 마린콜라겐의 추출방법.
PCT/KR2017/013122 2017-01-31 2017-11-17 어피로부터 마린콜라겐의 추출방법 WO2018143548A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170013921A KR101864816B1 (ko) 2017-01-31 2017-01-31 어피로부터 마린콜라겐의 추출방법
KR10-2017-0013921 2017-01-31

Publications (1)

Publication Number Publication Date
WO2018143548A1 true WO2018143548A1 (ko) 2018-08-09

Family

ID=62635561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013122 WO2018143548A1 (ko) 2017-01-31 2017-11-17 어피로부터 마린콜라겐의 추출방법

Country Status (2)

Country Link
KR (1) KR101864816B1 (ko)
WO (1) WO2018143548A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109336966A (zh) * 2018-09-05 2019-02-15 江苏大学 金枪鱼皮胶原蛋白的脉冲超声辅助酶提制备方法
CN110272485A (zh) * 2019-06-20 2019-09-24 江苏大学 超声酸预处理辅助酸酶法提取白鲢鱼鱼皮胶原蛋白的方法
CN112790372A (zh) * 2021-02-03 2021-05-14 南昌大学 一种恒温高稳鱼蛋白胶冻的制备方法
CN112891609A (zh) * 2021-01-15 2021-06-04 蚌埠学院 一种以羊皮为原料的多孔材料及其制备方法、应用
CN113789360A (zh) * 2021-09-16 2021-12-14 海南三元星生物科技股份有限公司 胶原三肽的提取方法及制备的胶原三肽
CN113943770A (zh) * 2021-11-18 2022-01-18 中国海洋大学 一种鱼皮胶原蛋白及其提取方法
CN114292309A (zh) * 2021-12-24 2022-04-08 百洋产业投资集团股份有限公司 一种用鱼加工的副产物生产蛋白胨粉的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114032623B (zh) * 2022-01-10 2022-03-29 天新福(北京)医疗器材股份有限公司 一种高产率胶原海绵的制备工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090312524A1 (en) * 2003-11-28 2009-12-17 Alternative Sourced Collagen, Llc Compositions and methods comprising collagen
KR20110036411A (ko) * 2009-10-01 2011-04-07 부경대학교 산학협력단 실고기 유래 콜라겐 및 그 제조 방법
KR20130066342A (ko) * 2011-12-12 2013-06-20 황재호 어피 유래 콜라겐 함유 화장료 조성물 및 이의 제조방법
KR101341704B1 (ko) * 2013-05-02 2013-12-16 황재호 부산물을 이용한 콜라겐 제조 방법
KR20160087318A (ko) * 2015-04-09 2016-07-21 주식회사 마린테크노 고순도 마린콜라겐의 제조 방법
KR20170106887A (ko) * 2016-03-14 2017-09-22 전라남도 어류부산물을 이용한 의료용 마린콜라겐과 이의 제조방법
KR20170106886A (ko) * 2016-03-14 2017-09-22 전라남도 어류부산물로부터 마린 콜라겐의 추출방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100289692B1 (ko) * 1994-01-22 2001-05-15 성재갑 재조합 대장균으로부터 근세포 성장 인자를 정제하는 방법
KR101020312B1 (ko) 2008-04-07 2011-03-08 주식회사 키토라이프 어류비늘 콜라겐펩타이드의 제조방법
MY160866A (en) * 2008-12-23 2017-03-31 Univ Putra Malaysia Collagen extraction from aquatic animals
KR101451971B1 (ko) * 2012-07-26 2014-10-23 영산홍어(주) 어류껍질 유래의 콜라겐 펩타이드 대량생산방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090312524A1 (en) * 2003-11-28 2009-12-17 Alternative Sourced Collagen, Llc Compositions and methods comprising collagen
KR20110036411A (ko) * 2009-10-01 2011-04-07 부경대학교 산학협력단 실고기 유래 콜라겐 및 그 제조 방법
KR20130066342A (ko) * 2011-12-12 2013-06-20 황재호 어피 유래 콜라겐 함유 화장료 조성물 및 이의 제조방법
KR101341704B1 (ko) * 2013-05-02 2013-12-16 황재호 부산물을 이용한 콜라겐 제조 방법
KR20160087318A (ko) * 2015-04-09 2016-07-21 주식회사 마린테크노 고순도 마린콜라겐의 제조 방법
KR20170106887A (ko) * 2016-03-14 2017-09-22 전라남도 어류부산물을 이용한 의료용 마린콜라겐과 이의 제조방법
KR20170106886A (ko) * 2016-03-14 2017-09-22 전라남도 어류부산물로부터 마린 콜라겐의 추출방법

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109336966A (zh) * 2018-09-05 2019-02-15 江苏大学 金枪鱼皮胶原蛋白的脉冲超声辅助酶提制备方法
CN110272485A (zh) * 2019-06-20 2019-09-24 江苏大学 超声酸预处理辅助酸酶法提取白鲢鱼鱼皮胶原蛋白的方法
CN110272485B (zh) * 2019-06-20 2023-04-07 江苏大学 超声酸预处理辅助酸酶法提取白鲢鱼鱼皮胶原蛋白的方法
CN112891609A (zh) * 2021-01-15 2021-06-04 蚌埠学院 一种以羊皮为原料的多孔材料及其制备方法、应用
CN112790372A (zh) * 2021-02-03 2021-05-14 南昌大学 一种恒温高稳鱼蛋白胶冻的制备方法
CN112790372B (zh) * 2021-02-03 2022-04-19 南昌大学 一种恒温高稳鱼蛋白胶的制备方法
CN113789360A (zh) * 2021-09-16 2021-12-14 海南三元星生物科技股份有限公司 胶原三肽的提取方法及制备的胶原三肽
CN113943770A (zh) * 2021-11-18 2022-01-18 中国海洋大学 一种鱼皮胶原蛋白及其提取方法
CN114292309A (zh) * 2021-12-24 2022-04-08 百洋产业投资集团股份有限公司 一种用鱼加工的副产物生产蛋白胨粉的方法

Also Published As

Publication number Publication date
KR101864816B1 (ko) 2018-06-05

Similar Documents

Publication Publication Date Title
WO2018143548A1 (ko) 어피로부터 마린콜라겐의 추출방법
Liao et al. In-depth proteomic analysis of nacre, prism, and myostracum of Mytilus shell
Pal et al. Comparative assessment of physico-chemical characteristics and fibril formation capacity of thermostable carp scales collagen
Jeevithan et al. Isolation, purification and characterization of pepsin soluble collagen isolated from silvertip shark (Carcharhinus albimarginatus) skeletal and head bone
Huang et al. Separation of iron-binding peptides from shrimp processing by-products hydrolysates
Cancre et al. Secretagogues and growth factors in fish and crustacean protein hydrolysates
CN1151222C (zh) 骨胶原的制备方法
KR100264344B1 (ko) 혈액내 트리글리세라이드의 농도 증가를 저해하는 펩타이드 및 전기 펩타이드를 활성성분으로 함유하는 혈액내 트리글리세라이드 농도 증가 억제제
Schwartz et al. Characterization of Bovine Anterior‐Lens‐Capsule Basement‐Membrane Collagen: 1. Pepsin Susceptibility, Salt Precipitation and Thermal Gelation: a Property of Non‐collagen Component Integrity
RU2409291C1 (ru) Способ получения водорастворимого полипептидного комплекса из печени рыб лососевых пород
KR20130066342A (ko) 어피 유래 콜라겐 함유 화장료 조성물 및 이의 제조방법
KR101150425B1 (ko) 미더덕 유래의 혈압조절용 조성물
CN112501229B (zh) 一种牛骨胶原肽的生产工艺
KR20170106886A (ko) 어류부산물로부터 마린 콜라겐의 추출방법
KR102153079B1 (ko) 마린 콜라겐의 대량생산을 위한 고순도 정제방법
Cao et al. Molecular structure and physicochemical properties of pepsin-solubilized type II collagen from the chick sternal cartilage
Gharagheshlagh et al. Isolation and characterization of acid-soluble collagen from the skin of Scomberomorus guttatus of Persian Gulf
KR20010079286A (ko) 누에고치를 이용한 기능성 실크아미노산·펩타이드 소재의제조 방법 중 염산가수분해법에 의한 제조방법
US20230056848A1 (en) Turkey collagen hydrolysates and methods of making
KR20020023866A (ko) 누에고치 소재 단백가수분해법에 의한 실크 아미노산과 실크 펩타이드의 제조방법 및 이의 항암, 항유전독성 효과
Vittayanont et al. Production of crude chondroitin sulfate from duck trachea
Sivakumar et al. Purification and partial characterization of a type V like collagen from the muscle of marine prawn, Penaeus indicus
Silva et al. Gastrointestinal delivery of codfish Skin-Derived collagen Hydrolysates: Deep eutectic solvent extraction and bioactivity analysis
CN110551789A (zh) 一种具有成骨活性的贻贝肽冻干粉的制备方法
Bougatef et al. Protein Hydrolysis as a way to Valorise Squid-Processing byproducts: obtaining and identification of ACE, DPP-IV and PEP inhibitory peptides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895122

Country of ref document: EP

Kind code of ref document: A1