WO2018143136A1 - 熱可塑性樹脂繊維及びその製造方法並びに布帛 - Google Patents

熱可塑性樹脂繊維及びその製造方法並びに布帛 Download PDF

Info

Publication number
WO2018143136A1
WO2018143136A1 PCT/JP2018/002800 JP2018002800W WO2018143136A1 WO 2018143136 A1 WO2018143136 A1 WO 2018143136A1 JP 2018002800 W JP2018002800 W JP 2018002800W WO 2018143136 A1 WO2018143136 A1 WO 2018143136A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
thermoplastic resin
resin
polyamide
less
Prior art date
Application number
PCT/JP2018/002800
Other languages
English (en)
French (fr)
Inventor
雅征 鬼頭
吾朗 高橋
慎貴 酒向
祐子 牧野
Original Assignee
トヨタ紡織株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ紡織株式会社 filed Critical トヨタ紡織株式会社
Priority to RU2019126028A priority Critical patent/RU2719984C1/ru
Priority to CN201880008845.1A priority patent/CN110226000B/zh
Priority to BR112019012147-1A priority patent/BR112019012147A2/pt
Priority to US16/481,118 priority patent/US20190382922A1/en
Priority to KR1020197023943A priority patent/KR102137159B1/ko
Priority to SG11201906421XA priority patent/SG11201906421XA/en
Priority to EP18747941.5A priority patent/EP3578699A4/en
Publication of WO2018143136A1 publication Critical patent/WO2018143136A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/80Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides

Definitions

  • the present invention relates to a thermoplastic resin fiber, a method for producing the same, and a fabric. More specifically, the present invention relates to a thermoplastic resin fiber having excellent extensibility, a method for producing the same, and a fabric.
  • polyester fibers and nylon fibers have been widely used as fibers.
  • these general-purpose fibers are not recognized as fibers having excellent extensibility.
  • polyurethane-based elastic fibers are known as fibers capable of exhibiting high elongation characteristics, fibers having high elongation characteristics in other fiber materials are not widely used.
  • highly extensible fibers that can be used in a wider range of materials and can be used in general.
  • Patent Documents 1 to 4 below an attempt is made to obtain a highly extensible fiber.
  • JP 2004-107818 A JP 2012-036519 A JP2013-0667920A JP 2014-037642 A
  • Patent Document 1 discloses a polyamide fiber obtained by heating and softening a polyamide yarn composed of an aliphatic diamine structural unit and a dicarboxylic acid structural unit by irradiation with an infrared light beam for the purpose of obtaining high extensibility. .
  • the elongation remains around 20%.
  • Patent Document 2 discloses a polyamide resin fiber using a thermoplastic polyamide-based elastomer, its elongation remains at around 20%.
  • Patent Document 3 discloses a polyimide fiber having a predetermined structure and exhibiting extensibility reaching 35 to 40%. However, there is a further need for a more versatile material with excellent elongation.
  • Patent Document 4 listed below discloses a polyether polyamide fiber containing a polyether polyamide having a predetermined structure whose elongation at break reaches 341 to 434%.
  • this material is difficult to use as a general-purpose material, and there is a problem that the range of use is limited.
  • the present invention has been made in view of the above circumstances, and uses thermoplastic resin fibers exhibiting high elongation properties that have not been known so far, while using materials having excellent versatility such as polyamide resin, polyolefin resin, and modified elastomer.
  • the purpose is to provide.
  • the present invention is as follows.
  • the thermoplastic resin fiber according to claim 1 includes a polyolefin resin, a polyamide resin, and a compatibilizer.
  • the compatibilizer comprises a thermoplastic resin that is a modified elastomer having a reactive group for the polyamide resin, The gist is that the elongation at break is 50% or more.
  • the thermoplastic resin fiber according to claim 2 is characterized in that, in the thermoplastic resin fiber according to claim 1, the breaking strength is 0.5 cN / dtex or more and 3.0 cN / dtex or less.
  • thermoplastic resin fiber according to claim 3 is the thermoplastic resin fiber according to claim 1 or 2, wherein the breaking strength before stretching is S 0 (cN / dtex), and the breaking strength after stretching is S 1 ( When cN / dtex), the gist of these ratios (S 0 / S 1 ) is 0.3 or more and 1.15 or less.
  • the thermoplastic resin fiber according to claim 4 is the thermoplastic resin fiber according to any one of claims 1 to 3, wherein the fiber diameter before stretching is D 0 (mm), and the fiber diameter after stretching is the fiber diameter after stretching. In the case of D 1 (mm), the gist is that D 0 is larger than D 1 .
  • thermoplastic resin fiber according to claim 5 is the thermoplastic resin fiber according to any one of claims 1 to 4, wherein the polyolefin resin forms a continuous phase (A),
  • the summary is that the polyamide resin and the modified elastomer form a dispersed phase (B) dispersed in the continuous phase (A).
  • the thermoplastic resin fiber according to claim 6 is the thermoplastic resin fiber according to claim 5, wherein the dispersed phase (B) is a finely dispersed phase (B 2 ) dispersed in the dispersed phase (B). It is summarized as having.
  • the gist of the fabric according to claim 7 is that the thermoplastic resin fiber according to any one of claims 1 to 6 is used.
  • the method for producing a thermoplastic resin fiber according to claim 8 includes a spinning step of spinning a thermoplastic resin composition obtained by melt-kneading the polyamide resin and the modified elastomer, and the polyolefin resin.
  • the gist is to provide.
  • thermoplastic resin fiber of the present invention it is possible to obtain a thermoplastic resin fiber exhibiting a high elongation characteristic that has not been known so far, while using materials having excellent versatility such as a polyamide resin, a polyolefin resin, and a modified elastomer. .
  • the high elongation characteristic of the thermoplastic resin fiber of the present invention can be effectively utilized.
  • the method for producing a thermoplastic resin fiber of the present invention a thermoplastic resin fiber exhibiting a high elongation characteristic that has not been conventionally known is obtained while using materials having excellent versatility such as a polyamide resin, a polyolefin resin, and a modified elastomer. be able to.
  • thermoplastic resin fiber of this invention is a chart showing the correlation between strength and elongation according to Examples 1 to 3 and Comparative Examples 1 and 2.
  • FIG. 3 is a chart showing the correlation between strength and elongation according to Examples 1 to 3.
  • thermoplastic resin fiber of the present invention (hereinafter also simply referred to as “main fiber”) includes a polyolefin resin, a polyamide resin, and a compatibilizer, and the compatibilizer is a polyamide resin. It is made of a thermoplastic resin that is a modified elastomer having a reactive group with respect to the above, and has a breaking elongation of 50% or more.
  • thermoplastic resin fiber exhibiting high elongation properties has not been known at all.
  • disclosure of thermoplastic resins and the like by the present inventors Japanese Patent Laid-Open Nos.
  • the lower limit of the elongation at break of the present fiber is not limited, but can be further 55% or more, 60% or more, 65% or more, 70% or more. It can be made 75% or more.
  • the upper limit of the elongation at break is not limited, but is usually 200% or less, can be 180% or less, can be 160% or less, can be 140% or less, and can be 120%. It can be:
  • the elongation at break in the present invention is based on “8.5 Tensile Strength and Elongation” described in JIS L1013 (2010) “Testing Method for Chemical Fiber Filament Yarn”. It is assumed that the elongation is the maximum value obtained by measurement using a constant-speed tension type tester under the conditions of a grip interval of 50 cm and a tensile speed of 30 ⁇ 2 cm / min.
  • the breaking strength of the present fiber is not particularly limited, but can be 0.5 cN / dtex or more and 3.0 cN / dtex or less. Further, the breaking strength can be 0.6 cN / dtex or more and 2.8 cN / dtex or less, 0.7 cN / dtex or more and 2.6 cN / dtex or less, and 0.8 cN / dtex or more and 2 .4 cN / dtex or less, and 1.0 cN / dtex or more and 2.2 cN / dtex or less.
  • the breaking strength in the present invention is constant for 10 measured fibers in accordance with “8.5 Tensile Strength and Elongation” described in JIS L1013 (2010) “Testing Method for Chemical Fiber Filament Yarn”.
  • the maximum value of the tensile strength obtained by measuring using a fast tension type tester under the conditions of a grip interval of 50 cm and a tensile speed of 30 ⁇ 2 cm / min was divided by the average value of the fineness of the test fiber used for the measurement. Suppose it is a value.
  • this fiber has these ratios (S 0 / S 1 ) when the breaking strength before stretching is S 0 (cN / dtex) and the breaking strength after stretching is S 1 (cN / dtex). It can be 0.3 or more and 1.15 or less. That is, a fiber having a unique property that the difference in breaking strength before and after stretching is very small can be obtained.
  • This ratio (S 0 / S 1 ) can be further set to 0.31 ⁇ S 0 / S 1 ⁇ 1.00 and 0.32 ⁇ S 0 / S 1 ⁇ 0.90. 0.33 ⁇ S 0 / S 1 ⁇ 0.80, 0.34 ⁇ S 0 / S 1 ⁇ 0.70, and 0.35 ⁇ S 0 / S 1 ⁇ 0. .60.
  • the present fibers the fiber diameter prior to stretching D 0 and (mm), when the fiber diameter after stretched and D 1 and (mm), D 0 can be D 1 greater than the fiber. That is, the fiber thickness can be reduced by stretching. Therefore, as described above, when the ratio (S 0 / S 1 ) has a characteristic of 0.85 or more and 1.15 or less, a unique property that a thin and high elongation fiber can be produced by drawing. Can be shown.
  • the ratio of D 0 to D 1 (D 1 / D 0 ) is not specifically limited.
  • the polyolefin resin constituting the fiber is an olefin homopolymer and / or an olefin copolymer.
  • the phase structure of the present fiber is not particularly limited, as described later, when the phase structure having the continuous phase (A) and the dispersed phase (B) is formed, the polyolefin resin is included in the continuous phase (A). It is preferable.
  • the olefin constituting the polyolefin is not particularly limited, but ethylene, propylene, 1-butene, 3-methyl-1-butene, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene 1-octene and the like. These may use only 1 type and may use 2 or more types together.
  • examples of the polyolefin resin include polyethylene resin, polypropylene resin, poly 1-butene, poly 1-hexene, poly 4-methyl-1-pentene, and the like. These polymers may be used alone or in combination of two or more. That is, the polyolefin resin may be a mixture of the above polymers.
  • polyethylene resin examples include ethylene homopolymers and copolymers of ethylene and other olefins. Examples of the latter include ethylene / 1-butene copolymer, ethylene / 1-hexene copolymer, ethylene / 1-octene copolymer, ethylene / 4-methyl-1-pentene copolymer, etc. 50% or more of the total number of structural units is a unit derived from ethylene).
  • polypropylene resin examples include propylene homopolymers and copolymers of propylene and other olefins.
  • the other olefins constituting the copolymer of propylene and other olefins the aforementioned various olefins (however, excluding propylene) can be mentioned.
  • ethylene and 1-butene are preferred. That is, a propylene / ethylene copolymer and a propylene / 1-butene copolymer are preferable.
  • the copolymer of propylene and other olefins may be a random copolymer or a block copolymer.
  • a block copolymer is preferable from the viewpoint of obtaining a fiber excellent in extensibility.
  • a propylene / ethylene block copolymer in which the other olefin is ethylene is preferable.
  • This propylene / ethylene block copolymer is also referred to as, for example, an impact copolymer, a polypropylene impact copolymer, a heterophasic polypropylene, a heterophasic block polypropylene, or the like.
  • This block copolymerized polypropylene is preferable from the viewpoint of obtaining fibers excellent in extensibility.
  • the copolymer of propylene and other olefins is a unit in which 50% or more of the total number of structural units is derived from propylene.
  • the weight average molecular weight (polystyrene conversion) by the gel permeation chromatography (GPC) of polyolefin resin is also not specifically limited, For example, it can be 10,000 or more and 500,000 or less, and 100,000 or more and 450,000 or less are preferable. 200,000 or more and 400,000 or less are more preferable.
  • the polyolefin resin is a polyolefin that does not have an affinity for a polyamide resin, which will be described later, and does not have a reactive group that can react with the polyamide resin. In this respect, it differs from the olefinic component as the modified elastomer described later.
  • the polyamide resin constituting this fiber is a polymer having a chain skeleton obtained by polymerizing a plurality of monomers via amide bonds (—NH—CO—).
  • the phase structure of the present fiber is not particularly limited. As will be described later, when a phase structure having a continuous phase (A) and a dispersed phase (B) is formed, the polyamide resin is a modified elastomer in the dispersed phase (B). It is preferable to be included together.
  • Monomers constituting the polyamide resin include amino acids such as 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, paraaminomethylbenzoic acid, and lactams such as ⁇ -caprolactam, undecane lactam, and ⁇ -lauryllactam. Etc. These may use only 1 type and may use 2 or more types together.
  • the polyamide resin can also be obtained by copolymerization of a diamine and a dicarboxylic acid.
  • the diamine as a monomer includes ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, , 9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane, 1,13-diaminotridecane, 1,14-diaminotetradecane, 1,15-diaminopentadecane, 1, 16-diaminohexadecane, 1,17-diaminoheptadecane, 1,18-diaminooctadecane, 1,19-dia
  • dicarboxylic acids as monomers include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, brassic acid, Aliphatic dicarboxylic acids such as tetradecanedioic acid, pentadecanedioic acid, octadecanedioic acid, alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid, aromatic dicarboxylic acids such as phthalic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid Etc. These may use only 1 type and may use 2 or more types together.
  • polyamide resin polyamide 6, polyamide 66, polyamide 11, polyamide 610, polyamide 612, polyamide 614, polyamide 12, polyamide 6T, polyamide 6I, polyamide 9T, polyamide M5T, polyamide 1010, polyamide 1012, polyamide 10T, polyamide MXD6, polyamide 6T / 66, polyamide 6T / 6I, polyamide 6T / 6I / 66, polyamide 6T / 2M-5T, polyamide 9T / 2M-8T, and the like.
  • These polyamides may be used alone or in combination of two or more.
  • a plant-derived polyamide resin can be used among the above-mentioned various polyamide resins.
  • the plant-derived polyamide resin is a resin that uses a monomer obtained from a plant-derived component such as vegetable oil, and is therefore desirable from the viewpoint of environmental protection (particularly from the viewpoint of carbon neutral).
  • Examples of plant-derived polyamide resins include polyamide 11 (hereinafter also simply referred to as “PA11”), polyamide 610 (hereinafter also simply referred to as “PA610”), polyamide 612 (hereinafter also simply referred to as “PA612”), polyamide 614 (hereinafter referred to as “PA612”).
  • PA614 Polyamide 1010
  • PA1012 polyamide 1012
  • PA10T polyamide 10T
  • PA11 has a structure in which a monomer having 11 carbon atoms is bonded through an amide bond.
  • aminoundecanoic acid made from castor oil can be used as a monomer.
  • the structural unit derived from a monomer having 11 carbon atoms is preferably 50% or more of all structural units in PA11, and may be 100%.
  • PA 610 has a structure in which a monomer having 6 carbon atoms and a monomer having 10 carbon atoms are bonded through an amide bond.
  • sebacic acid derived from castor oil can be used as a monomer.
  • the structural unit derived from the monomer having 6 carbon atoms and the structural unit derived from the monomer having 10 carbon atoms are 50% or more of the total structural units in PA610. It is preferable that it may be 100%.
  • PA 1010 has a structure in which a diamine having 10 carbon atoms and a dicarboxylic acid having 10 carbon atoms are copolymerized.
  • 1,10-decanediamine (decamethylenediamine) and sebacic acid made from castor oil can be used as monomers.
  • the total of the structural unit derived from the diamine having 10 carbon atoms and the structural unit derived from the dicarboxylic acid having 10 carbon atoms is 50% or more of all the structural units in the PA 1010. Preferably, it may be 100%.
  • PA 614 has a structure in which a monomer having 6 carbon atoms and a monomer having 14 carbon atoms are bonded via an amide bond.
  • a plant-derived dicarboxylic acid having 14 carbon atoms can be used as a monomer.
  • the structural unit derived from the monomer having 6 carbon atoms and the structural unit derived from the monomer having 14 carbon atoms have a total of 50% of all the structural units in PA614. The above is preferable, and may be 100%.
  • PA10T has a structure in which a diamine having 10 carbon atoms and terephthalic acid are bonded via an amide bond.
  • 1,10-decanediamine (decamethylenediamine) using castor oil as a raw material can be used as a monomer.
  • These structural units derived from diamine having 10 carbon atoms and structural units derived from terephthalic acid preferably have a total of 50% or more of all structural units in PA10T, 100% It may be.
  • PA11 is superior to the other four plant-derived polyamide resins in terms of low water absorption, low specific gravity, and high planting degree.
  • Polyamide 610 is inferior to PA11 in terms of water absorption, chemical resistance, and impact strength, but is superior in terms of heat resistance (melting point) and strength. Furthermore, since it has low water absorption and good dimensional stability compared to polyamide 6 and polyamide 66, it can be used as an alternative to polyamide 6 and polyamide 66.
  • Polyamide 1010 is superior to PA11 in terms of heat resistance and strength. Furthermore, the degree of planting is equivalent to that of PA11, and can be used for parts that require more durability. Since polyamide 10T includes an aromatic ring in the molecular skeleton, it has a higher melting point and higher strength than polyamide 1010. Therefore, it can be used in a harsher environment.
  • the modified elastomer constituting the present fiber is an elastomer having a reactive group for the polyamide resin.
  • the phase structure of the present fiber is not particularly limited. However, as will be described later, when the phase structure having the continuous phase (A) and the dispersed phase (B) is formed, the modified elastomer is a polyamide resin in the dispersed phase (B). It is preferable to be included together.
  • this modified elastomer is preferably a component having affinity for the polyolefin resin. That is, it is preferably a component having a compatibilizing effect on the polyamide resin and the polyolefin resin. In other words, it is preferably a compatibilizer between a polyamide resin and a polyolefin resin.
  • This reactive group includes an acid anhydride group (—CO—O—OC—), a carboxyl group (—COOH), and an epoxy group ⁇ —C 2 O (a three-membered group consisting of two carbon atoms and one oxygen atom). Ring structure) ⁇ , oxazoline group (—C 3 H 4 NO), isocyanate group (—NCO) and the like. These may use only 1 type and may use 2 or more types together.
  • the amount of modification of the modified elastomer is not limited, and the modified elastomer may have one or more reactive groups in one molecule. Further, the modified elastomer preferably has 1 or more and 50 or less reactive groups in one molecule, more preferably 3 or more and 30 or less, and particularly preferably 5 or more and 20 or less.
  • modified elastomers polymers using various monomers capable of introducing reactive groups (modified elastomers obtained by polymerization using monomers capable of introducing reactive groups), and oxidative degradation products of various polymers (oxidation)
  • Modified elastomers in which reactive groups have been formed by decomposition) and graft polymers of organic acids to various polymers Modified elastomers in which reactive groups have been introduced by graft polymerization of organic acids.
  • These may use only 1 type and may use 2 or more types together. These may use only 1 type and may use 2 or more types together.
  • Examples of the monomer capable of introducing a reactive group include a monomer having a polymerizable unsaturated bond and an acid anhydride group, a monomer having a polymerizable unsaturated bond and a carboxyl group, and a polymerizable unsaturated bond.
  • Examples thereof include monomers having an epoxy group.
  • acid anhydrides such as maleic anhydride, itaconic anhydride, succinic anhydride, glutaric anhydride, adipic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, butenyl succinic anhydride, and maleic acid, itaconic acid And carboxylic acids such as fumaric acid, acrylic acid and methacrylic acid. These may be used alone or in combination of two or more. Of these compounds, acid anhydrides are preferred, maleic anhydride and itaconic anhydride are more preferred, and maleic anhydride is particularly preferred.
  • skeleton resin the type of resin constituting the skeleton of the modified elastomer
  • various thermoplastic resins can be used.
  • this skeleton resin one kind or two or more kinds of various resins exemplified above as the polyolefin resin can be used.
  • an olefin-based thermoplastic elastomer and a styrene-based thermoplastic elastomer can be used as the skeleton resin. These may use only 1 type and may use 2 or more types together.
  • examples of the olefin thermoplastic elastomer include those obtained by copolymerizing two or more olefins.
  • examples of olefins include ethylene, propylene, and ⁇ -olefins having 4 to 8 carbon atoms.
  • ⁇ -olefins having 4 to 8 carbon atoms include 1-butene, 3-methyl-1-butene, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene and the like can be mentioned.
  • olefin-based thermoplastic elastomer a copolymer of ethylene and an ⁇ -olefin having 3 to 8 carbon atoms and a copolymer of propylene and an ⁇ -olefin having 4 to 8 carbon atoms are preferable. .
  • copolymers of ethylene and ⁇ -olefin having 3 to 8 carbon atoms include ethylene / propylene copolymer (EPR), ethylene / 1-butene copolymer (EBR), ethylene / 1-pentene copolymer. And ethylene / 1-octene copolymer (EOR).
  • EPR ethylene / propylene copolymer
  • EBR ethylene / 1-butene copolymer
  • EOR ethylene / 1-octene copolymer
  • Examples of the copolymer of propylene and ⁇ -olefin having 4 to 8 carbon atoms include propylene / 1-butene copolymer (PBR), propylene / 1-pentene copolymer, propylene / 1-octene copolymer. (POR). These may use only 1 type and may use 2 or more types together.
  • examples of the styrenic thermoplastic elastomer include a block copolymer of a styrene compound and a conjugated diene compound, and a hydrogenated product thereof.
  • examples of the styrene compound include styrene, ⁇ -methyl styrene, p-methyl styrene, alkyl styrene such as pt-butyl styrene, p-methoxy styrene, vinyl naphthalene, and the like. These may use only 1 type and may use 2 or more types together.
  • conjugated diene compound examples include butadiene, isoprene, piperylene, methylpentadiene, phenylbutadiene, 3,4-dimethyl-1,3-hexadiene, 4,5-diethyl-1,3-octadiene, and the like. These may use only 1 type and may use 2 or more types together.
  • styrene-based thermoplastic elastomers include styrene-butadiene-styrene copolymer (SBS), styrene-isoprene-styrene copolymer (SIS), styrene-ethylene / butylene-styrene copolymer (SEBS), styrene- And ethylene / propylene-styrene copolymer (SEPS). These may use only 1 type and may use 2 or more types together. Of these, SEBS is preferred.
  • the molecular weight of the modified elastomer is not particularly limited, but the weight average molecular weight is preferably from 10,000 to 500,000, more preferably from 35,000 to 500,000, more preferably from 35,000 to 300,000. 000 or less is particularly preferable.
  • the weight average molecular weight is measured by GPC method (standard polystyrene conversion).
  • polystyrene resins polyamide resins and modified elastomers
  • additives such as other thermoplastic resins, flame retardants, flame retardant aids, fillers, colorants, antibacterial agents, antistatic agents and the like can be blended with this fiber. . These may use only 1 type and may use 2 or more types together.
  • thermoplastic resins examples include polyester resins (polybutylene terephthalate, polyethylene terephthalate, polycarbonate, polybutylene succinate, polyethylene succinate, polylactic acid) and the like. These may use only 1 type and may use 2 or more types together.
  • flame retardants include halogen flame retardants (halogenated aromatic compounds), phosphorus flame retardants (nitrogen-containing phosphate compounds, phosphate esters, etc.), nitrogen flame retardants (guanidine, triazine, melamine, and derivatives thereof) Etc.), inorganic flame retardants (metal hydroxides, etc.), boron flame retardants, silicone flame retardants, sulfur flame retardants, red phosphorus flame retardants and the like.
  • flame retardant aid examples include various antimony compounds, metal compounds containing zinc, metal compounds containing bismuth, magnesium hydroxide, and clay silicates. These may use only 1 type and may use 2 or more types together.
  • Fillers include glass components (glass fibers, glass beads, glass flakes, etc.), silica, inorganic fibers (glass fibers, alumina fibers, carbon fibers), graphite, silicate compounds (calcium silicate, aluminum silicate, kaolin, talc, clay) Etc.), metal oxides (iron oxide, titanium oxide, zinc oxide, antimony oxide, alumina, etc.), carbonates and sulfates of metals such as calcium, magnesium, zinc, organic fibers (aromatic polyester fibers, aromatic polyamide fibers) , Fluororesin fiber, polyimide fiber, vegetable fiber, etc.). These may use only 1 type and may use 2 or more types together. Examples of the colorant include pigments and dyes. These may use only 1 type and may use 2 or more types together.
  • phase structure of this fiber is not limited, it is preferable that the polyolefin resin forms a continuous phase (A) and the polyamide resin and the modified elastomer form a dispersed phase (B) dispersed in the continuous phase (A) (FIG. 1). reference).
  • This phase structure can be obtained by melt-kneading a melt-kneaded product obtained by melt-kneading a polyamide resin and a modified elastomer and a polyolefin resin.
  • the dispersed phase (B) may be elongated in the longitudinal direction of the main fiber.
  • the polyamide resin forms a continuous phase (B 1 ) in the dispersed phase (B)
  • the polyamide resin and At least the modified elastomer among the modified elastomers can form a finely dispersed phase (B 2 ) in the dispersed phase (B). That is, the finely dispersed phase (B 2 ) dispersed in the continuous phase (B 1 ) in the dispersed phase can be formed (see FIG. 1).
  • the finely dispersed phase (B 2 ) dispersed in the continuous phase (B 1 ) in the dispersed phase can be formed (see FIG. 1).
  • the polyolefin resin when a block copolymer polyolefin resin having an ethylene block dispersed phase is used as the polyolefin resin, at least a part of the ethylene block constituting the block copolymer polyolefin resin is composed of the continuous phase (A) and the dispersed phase. It can be aggregated at the interface with (B) (see FIG. 1). That is, it can have an interfacial phase (C).
  • the interfacial phase (C) is a site where the interface between the continuous phase (A) and the dispersed phase (B) is formed thick, and can be formed by accumulating a compatibilizing agent or a reaction product thereof in the phase boundary.
  • the finely dispersed phase (B 2 ) and the interfacial phase (C) may have the same composition or different compositions. Thus, when it has an interface phase (C), it can be set as the fiber which has the outstanding extensibility.
  • size of the dispersed phase (B) contained in the continuous phase (A) of this fiber is not specifically limited.
  • the arrangement density of the dispersed phase (B) is not particularly limited, but it is preferably in a form having 50 to 450 dispersed phases (B) in a 10 ⁇ m square.
  • the number of dispersed phases (B) is preferably 80 or more and 400 or less, more preferably 100 or more and 350 or less, particularly preferably 150 or more and 300 or less, and particularly preferably 200 or more and 300 or less.
  • the size of the finely dispersed phase (B 2 ) contained in the dispersed phase (B) of the present fiber is not particularly limited, but the average diameter (average particle diameter) is preferably 5 nm or more and 1000 nm or less, More preferably, they are 5 nm or more and 600 nm or less, More preferably, they are 10 nm or more and 400 nm or less, Especially preferably, they are 15 nm or more and 350 nm or less.
  • phase structure of this fiber is that the cross section of the fiber (which may be a cross section parallel to the longitudinal direction or a vertical cross section) is subjected to an oxygen plasma etching treatment at 100 W for 1 minute, followed by an osmium coating treatment, and field emission scanning electron This is confirmed in an FE-SEM image obtained by a microscope.
  • the constituents of each phase can be specified by performing energy dispersive X-ray analysis (EDS) at the time of obtaining the FE-SEM image.
  • EDS energy dispersive X-ray analysis
  • B density of the dispersed phase
  • average particle diameter of the finely dispersed phase are also determined from the FE-SEM image.
  • the arrangement density of the dispersed phase (B) is an average value of the arrangement density actually measured in five 10 ⁇ m squares randomly selected from the FE-SEM image.
  • the content ratio of the polyamide resin is preferably 10% by mass or more and 80% by mass or less. In this range, it is easy to obtain a phase structure in which the polyolefin resin is the continuous phase (A) and the polyamide resin is the dispersed phase (B). Thereby, excellent extensibility can be obtained.
  • This ratio is preferably 12% by mass or more and 78% by mass or less, more preferably 14% by mass or more and 75% by mass or less, further preferably 25% by mass or more and 73% by mass or less, and further more preferably 30% by mass or more and 71% by mass or less.
  • the polyamide resin and the modified elastomer can be dispersed smaller in the continuous phase (A) as the dispersed phase (B), and more excellent extensibility can be obtained.
  • the content of the polyamide resin can be 0.5% by mass or more and 30% by mass or less. In this range, excellent extensibility can be obtained.
  • This ratio is preferably 1% by mass or more and 22% by mass or less, and more preferably 2% by mass or more and 15% by mass or less.
  • the content of the modified elastomer can be 0.5% by mass or more and 30% by mass or less. In this range, excellent extensibility can be obtained.
  • This ratio is preferably 1% by mass or more and 22% by mass or less, and more preferably 2% by mass or more and 15% by mass or less.
  • the specific gravity of the present fiber is not particularly limited, but can usually be 1.05 or less.
  • the specific gravity is such that the content of the polyamide resin in the fiber is 1% by mass to 40% by mass, the content of the polypropylene resin is 50% by mass to 75% by mass, and the content of the modified elastomer is 5% by mass to 30%.
  • mass% or less it can be set to 0.89 or more and 1.05 or less, more preferably 0.92 or more and 0.98 or less. That is, this fiber can realize a fiber having excellent extensibility while having a specific gravity equivalent to that of the olefin resin.
  • the fabric of the present invention is characterized by using the present fiber.
  • the fabric can have high stretchability due to the above-described fibers.
  • the fibers constituting the fabric may be unstretched fibers or stretched fibers.
  • the present fabric may be composed only of the present fibers, or may be used in combination with other fibers. In the case of combined use, the present fiber is preferably contained in an amount of 10% by mass with respect to 100% by mass of the entire fabric.
  • the type of other fibers when used in combination with other fibers is not limited.
  • the fabric may be cloth-like or cotton-like. Of these, examples of the fabric include nonwoven fabrics, woven fabrics, and knitted fabrics.
  • the non-woven fabric may be formed in any manner, such as a dry non-woven fabric, a wet non-woven fabric, a spunbond non-woven fabric, a melt blown non-woven fabric, an airlaid non-woven fabric, a chemical bond non-woven fabric (resin bond non-woven fabric), a thermal bond non-woven fabric, Needle punch nonwoven fabrics, spunlace nonwoven fabrics (hydroentangled nonwoven fabrics), steam jet nonwoven fabrics and the like can be mentioned.
  • the fabric can be subjected to post-treatments such as a flexibility imparting treatment, a water repellency imparting treatment, an antifouling imparting treatment, an antibacterial imparting treatment, and an antistatic property imparting treatment. Furthermore, moisture permeation waterproofing by coating, laminating, etc. can be performed.
  • the shape and size of the present fiber and the present fabric are not particularly limited, and the use thereof is not particularly limited.
  • This fiber can be used as a fiber in a wide variety of applications.
  • this fabric can be utilized as a fabric in a wide variety of applications.
  • this fiber and this fabric make use of excellent extensibility, such as automobiles, railway vehicles (vehicles in general), aircraft fuselage (general aircraft), ships / hulls (general boats), bicycles (general vehicles), etc. It can be used as various articles used for vehicles.
  • interior parts for automobiles it can be used as a skin material for interior parts. Specifically, a ceiling skin, a sheet skin, a back base fabric, an ornament skin, and the like can be given.
  • engine parts for automobiles include filter media, filter paper, and oil filters (elements).
  • the present fiber and the present fabric are used as various articles in non-vehicle applications other than the above-described vehicles. That is, for example, industrial and industrial materials such as ropes, non-woven fabrics, polishing brushes, industrial brushes, filters, and other general materials; Storage cases such as attache cases and suitcases, and their structural materials; Daily necessities, daily necessities; Entertainment such as toys; Sports goods such as sportswear manufacturing textiles, sportswear sewing textiles, tennis racket strings, badminton racket strings; Clothing-related products such as clothing, textiles for shoe production, and shoelaces; Bulletproof equipment such as bulletproof vests and bulletproof members; Agricultural equipment, agricultural materials such as various ropes, fishery materials such as fish nets; Furthermore, the pellet shape
  • the method for producing the thermoplastic resin fiber of the present invention comprises spinning a thermoplastic resin composition obtained by melt kneading a polyamide resin and a modified elastomer, and a polyolefin resin. And a spinning step.
  • the spinning method in this production is not limited, and a known method can be used as appropriate. Among them, melt spinning is preferable. Specifically, after a thermoplastic resin composition in a molten state is spun from a spinneret, undrawn fibers can be obtained by taking it up in a refrigerant bath or in the atmosphere.
  • the melt spinning temperature can be appropriately set depending on the thermoplastic resin composition to be used.
  • the melt spinning temperature can be 190 ° C. or higher and 250 ° C. or lower, and is preferably 200 ° C. or higher and 235 ° C. or lower.
  • the following is particularly preferable.
  • the cooling temperature in the case of performing the refrigerant after spinning can be appropriately set depending on the thermoplastic resin composition to be used, and can be set to, for example, 60 ° C. or higher and 85 ° C. or lower, and further 65 ° C. or higher and 80 ° C. or lower. It is particularly preferable that the temperature be 70 ° C. or higher and 80 ° C. or lower.
  • a stretching step for stretching the unstretched fiber can be provided.
  • the temperature may be maintained or further increased while an unstretched fiber is obtained, or may be performed after reheating in a separate step.
  • the stretching may be performed in one step, or may be performed in a plurality of times by changing the stretching ratio. In the case where the stretching is performed a plurality of times, the fiber strength can be increased as compared with the case where the stretching is performed in one step.
  • the stretching conditions are not limited, 65 ° C. or higher and 150 ° C. or lower is preferable.
  • the stretching temperature is preferably 70 ° C. or higher and 115 ° C. or lower, more preferably 75 ° C. or higher and 110 ° C. or lower, and particularly preferably 80 ° C. or higher and 105 ° C. or lower.
  • the obtained fibers can be further subjected to various heat treatments, entanglement treatments, twisting (crimping, etc.) post-processing as necessary.
  • the fineness (dtex) of the present fiber is not limited and can be appropriately selected within a range where spinning is possible.
  • the present fiber may be a monofilament composed of one filament or a multifilament composed of two or more filaments.
  • the fineness is preferably 10 dtex or more and 10000 dtex or less.
  • this fiber is a multifilament, it is preferable that the fineness is 1 dtex or more and 10000 dtex or less.
  • the number of filaments is not particularly limited, but may be, for example, 2 or more and 1000 or less.
  • this fiber can also be utilized as a microfiber having a fineness of 1 dtex or less.
  • the fineness of this fiber can be 0.001 dtex or more and 1 dtex or less, and further can be 0.005 dtex or more and 0.50 dtex or less.
  • the fineness is defined by JIS L0101.
  • the cross-sectional shape of this fiber is not specifically limited, Circular shape may be sufficient and irregular cross-sectional shape may be sufficient. Examples of the irregular cross-sectional shape include X shape, flat shape, polygonal shape (triangle shape, quadrilateral shape, pentagon shape, hexagon shape, etc.), star shape, multileaf shape (trilobal shape, four leaf shape, five leaf shape, etc.) and the like. It is done.
  • the thermoplastic resin composition that is the raw material of the fiber can be obtained by melt-kneading a melt-kneaded product of a polyamide resin and a modified elastomer and a polyolefin resin.
  • the melt kneading method at this time is not particularly limited.
  • kneading apparatuses such as an extruder (single screw extruder, twin screw kneading extruder, etc.), a kneader and a mixer (high-speed flow mixer, paddle mixer, ribbon mixer, etc.) Can be used. These apparatuses may use only 1 type and may use 2 or more types together.
  • the kneading temperature at this time is not particularly limited, and can be appropriately adjusted depending on the type of each component.
  • the kneading temperature is preferably 190 ° C. or higher and 350 ° C. or lower, more preferably 200 ° C. or higher and 330 ° C. or lower, and particularly preferably 205 ° C. or higher and 310 ° C. or lower. preferable.
  • melt-kneading the above-obtained melt-kneaded product of the polyamide resin and the modified elastomer and the polyolefin resin can be carried out with the same apparatus, operating method and kneading temperature as in the case of obtaining the aforementioned melt-kneaded product.
  • Polyamide resin Nylon 11 resin, manufactured by Arkema Co., Ltd., product name “Rilsan BMN O”, weight average molecular weight 18,000, melting point 190 ° C.
  • melt spinning (temperature: 210 ° C.) was performed using the pellet of the thermoplastic resin composition obtained in ⁇ 1> above as a raw material.
  • the spun fiber was immediately cooled to a temperature of 70 to 80 ° C. to obtain an unstretched fiber (Example 1).
  • the drawn fiber is subjected to a stretching treatment at a temperature of 90 ° C. or a temperature of 120 ° C. following the above cooling, and a drawn fiber (Example 2) drawn at a temperature of 90 ° C. and a drawn fiber drawn at a temperature of 120 ° C.
  • Example 3 was obtained.
  • Example 1 Unstretched fiber, fineness 3962 dtex
  • Example 2 drawn fiber (drawing temperature 90 ° C.), fineness 1500 dtex
  • Example 3 drawn fiber (drawing temperature 120 ° C.), fineness 1400 dtex
  • thermoplastic resin fibers of the present invention of Examples 1 and 2 have a unique high extensibility. That is, a general nylon fiber has a high breaking strength as in Comparative Example 1, but its elongation is about 20%. Similarly, a general PET fiber also has a high breaking strength as in Comparative Example 2, but its elongation is about 20%. In contrast, it can be seen that the thermoplastic resin fiber of the present invention exhibits extremely excellent extensibility of over 80% to over 450%.
  • Example 1 Unstretched fiber obtained by the above measurement was 0.57 cN / dtex.
  • Example 2 drawn fiber, stretching temperature 90 ° C.
  • Example 3 drawn fiber, stretching temperature 120 ° C.
  • the breaking strength of (S 1) is It was 1.46 cN / dtex.
  • the ratio of breaking strength (S 0 / S 1 ) between the thermoplastic resin fiber of Example 1 and the thermoplastic resin fiber of Example 2 was a large value of 0.39.
  • the ratio (S 0 / S 1 ) of the breaking strength between the thermoplastic resin fiber of Example 1 and the thermoplastic resin fiber of Example 3 was a large value of 0.40.
  • A continuous phase
  • B dispersed phase, B 1 ; continuous phase in dispersed phase, B 2 ; finely dispersed phase, C: Interfacial phase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Artificial Filaments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Woven Fabrics (AREA)

Abstract

汎用性に優れた樹脂原料を用いながら、従来知られていない高伸長な特性を示す熱可塑性樹脂繊維を提供する。この繊維の製造方法並びにこの繊維を用いた布帛を提供することを目的として、本熱可塑性樹脂繊維は、ポリオレフィン樹脂と、ポリアミド樹脂と、相容化剤と、含み、相容化剤が、ポリアミド樹脂に対する反応性基を有する変性エラストマーである熱可塑性樹脂からなり、破断伸度が50%以上である。本布帛は、本熱可塑性樹脂繊維を用いてなる。本方法は、ポリアミド樹脂及び変性エラストマーの溶融混練物、並びに、ポリオレフィン樹脂、を溶融混練してなる熱可塑性樹脂組成物を紡糸する工程を備える。

Description

熱可塑性樹脂繊維及びその製造方法並びに布帛
 本発明は、熱可塑性樹脂繊維及びその製造方法並びに布帛に関する。更に詳しくは、本発明は、優れた伸長性を有する熱可塑性樹脂繊維及びその製造方法並びに布帛に関する。
 従来、ポリエステル繊維及びナイロン繊維等は、繊維として幅広く活用されている。しかしながら、これらの汎用繊維は伸長性に優れた繊維としては認識されない。高伸長な特性を発揮し得る繊維としてポリウレタン系弾性繊維が知られているものの、それ以外の繊維材料において高伸長な特性を有する繊維は汎用されていないのが実情である。この点において、より広範な材料選択を可能にし、汎用可能な高伸長性の繊維が求められている。下記特許文献1~4では、高伸長性の繊維を得ようとする試みがなされている。
特開2004-107818号公報 特開2012-036519号公報 特開2013-067920号公報 特開2014-037642号公報
 上記特許文献1には、高伸長性の獲得を目的とし、脂肪族ジアミン構成単位とジカルボン酸構成単位とからなるポリアミド原糸を赤外線光束照射により加熱軟化させて延伸したポリアミド繊維が開示されている。しかしながら、その伸度は20%前後に留まるものである。
 上記特許文献2には、熱可塑性ポリアミド系エラストマーを利用したポリアミド樹脂繊維が開示されているものの、その伸度は20%前後に留まるものである。
 上記特許文献3には、35~40%に達する伸長性を示す、所定構造を有するポリイミド繊維が開示されている。しかしながら、更に、伸度に優れた、より汎用性の高い材質の繊維が求められる。
 下記特許文献4には、破断伸び率が341~434%に達する、所定構造のポリエーテルポリアミドを含有したポリエーテルポリアミド繊維が開示されている。しかしながら、この材料は汎用可能な材質とはいい難く、利用範囲は限られてしまうという問題がある。
 本発明は、上記実情に鑑みてなされたものであり、ポリアミド樹脂、ポリオレフィン樹脂及び変性エラストマーという汎用性に優れた原料を用いながら、従来知られていない高伸長な特性を示す熱可塑性樹脂繊維を提供することを目的とする。併せて、そのような熱可塑性樹脂繊維の製造方法、並びに、このような繊維を用いてなる布帛を提供することを目的とする。
 本発明は以下の通りである。
 請求項1に記載の熱可塑性樹脂繊維は、ポリオレフィン樹脂と、ポリアミド樹脂と、相容化剤と、含み、
 前記相容化剤が、前記ポリアミド樹脂に対する反応性基を有する変性エラストマーである熱可塑性樹脂からなり、
 破断伸度が50%以上であることを要旨とする。
 請求項2に記載の熱可塑性樹脂繊維は、請求項1に記載の熱可塑性樹脂繊維において、破断強度が0.5cN/dtex以上3.0cN/dtex以下であることを要旨とする。
 請求項3に記載の熱可塑性樹脂繊維は、請求項1又は2に記載の熱可塑性樹脂繊維において、延伸前の破断強度をS(cN/dtex)とし、延伸後の破断強度をS(cN/dtex)とした場合に、これらの比(S/S)が、0.3以上1.15以下であることを要旨とする。
 請求項4に記載の熱可塑性樹脂繊維は、請求項1乃至3のうちのいずれかに記載の熱可塑性樹脂繊維において、延伸前の繊維径をD(mm)とし、延伸後の繊維径をD(mm)とした場合に、DがDより大きいことを要旨とする。
 請求項5に記載の熱可塑性樹脂繊維は、請求項1乃至4のうちのいずれかに記載の熱可塑性樹脂繊維において、前記ポリオレフィン樹脂は、連続相(A)をなし、
 前記ポリアミド樹脂及び前記変性エラストマーは、前記連続相(A)中に分散された分散相(B)をなしていることを要旨とする。
 請求項6に記載の熱可塑性樹脂繊維は、請求項5に記載の熱可塑性樹脂繊維において、前記分散相(B)は、前記分散相(B)内に分散された微分散相(B)を有することを要旨とする。
 請求項7に記載の布帛は、請求項1乃至6のうちのいずれかに記載の熱可塑性樹脂繊維を用いたことを要旨とする。
 請求項8に記載の熱可塑性樹脂繊維の製造方法は、前記ポリアミド樹脂及び前記変性エラストマーの溶融混練物、並びに、前記ポリオレフィン樹脂、を溶融混練してなる熱可塑性樹脂組成物を紡糸する紡糸工程を備えることを要旨とする。
 本発明の熱可塑性樹脂繊維によれば、ポリアミド樹脂、ポリオレフィン樹脂及び変性エラストマーという汎用性に優れた原料を用いながら、従来知られていない高伸長な特性を示す熱可塑性樹脂繊維とすることができる。
 本発明の布帛によれば、本発明の熱可塑性樹脂繊維が有する高伸長な特性を有効に活用することができる。
 本発明の熱可塑性樹脂繊維の製造方法によれば、ポリアミド樹脂、ポリオレフィン樹脂及び変性エラストマーという汎用性に優れた原料を用いながら、従来知られていない高伸長な特性を示す熱可塑性樹脂繊維を得ることができる。
本発明の熱可塑性樹脂繊維の相構造を説明する説明図である。 実施例1~3及び比較例1~2に係る強度と伸度との相関を示すチャートである。 実施例1~3に係る強度と伸度との相関を示すチャートである。
 ここで示される事項は例示的なもの及び本発明の実施形態を例示的に説明するためのものであり、本発明の原理と概念的な特徴とを最も有効に且つ難なく理解できる説明であると思われるものを提供する目的で述べたものである。この点で、本発明の根本的な理解のために必要である程度以上に本発明の構造的な詳細を示すことを意図してはおらず、図面と合わせた説明によって本発明の幾つかの形態が実際にどのように具現化されるかを当業者に明らかにするものである。
[1]熱可塑性樹脂繊維
 本発明の熱可塑性樹脂繊維(以下、単に「本繊維」ともいう)は、ポリオレフィン樹脂と、ポリアミド樹脂と、相容化剤と、含み、相容化剤がポリアミド樹脂に対する反応性基を有する変性エラストマーである熱可塑性樹脂からなり、破断伸度が50%以上である。
 本繊維の破断伸度は50%以上である。このように、ポリオレフィン樹脂、ポリアミド樹脂及び相容化剤(これら3種の材料のみであってもよい)という汎用性に優れた材料を用いながら、破断伸度が50%以上にも達する顕著な高伸度特性を発揮する熱可塑性樹脂繊維は、従来、全く知られていない。また、本発明者らによる熱可塑性樹脂等(特開2013-129800、特開2013-147648、特開2013-147645、特開2013-147646、特開2013-147647、特開2014-025060)の開示があるものの、成形体とした場合に優れた耐衝撃性が得られることについての開示はあるが、繊維にした場合に、従来、知られていない程の顕著な高伸長特性を示すことについては記載及び示唆はない。
 本繊維の破断伸度の下限値は限定されるものではないが、更に、55%以上にすることができ、60%以上にすることができ、65%以上にすることができ、70%以上にすることができ、75%以上にすることができる。一方、破断伸度の上限値も限定されないが、通常、200%以下であり、180%以下にすることができ、160%以下にすることができ、140%以下にすることができ、120%以下にすることができる。
 尚、本発明における破断伸度は、JIS L1013(2010)「化学繊維フィラメント糸試験方法」に記載された「8.5 引張強さ及び伸び率」に準拠して、10本の測定繊維について、定速緊張形の試験機を用い、つかみ間隔50cm、引張速度30±2cm/分の条件で測定して得られる伸び率の最大値であるとする。
 また、本繊維の破断強度は、特に限定されないが、0.5cN/dtex以上3.0cN/dtex以下とすることができる。この破断強度は、更に、0.6cN/dtex以上2.8cN/dtex以下とすることができ、0.7cN/dtex以上2.6cN/dtex以下とすることができ、0.8cN/dtex以上2.4cN/dtex以下とすることができ、1.0cN/dtex以上2.2cN/dtex以下とすることができる。
 尚、本発明における破断強度は、JIS L1013(2010)「化学繊維フィラメント糸試験方法」に記載された「8.5 引張強さ及び伸び率」に準拠して、10本の測定繊維について、定速緊張形の試験機を用い、つかみ間隔50cm、引張速度30±2cm/分の条件で測定して得られる引張強さの最大値を、測定に利用した試験繊維の繊度の平均値で除した値であるとする。
 更に、本繊維は、延伸前の破断強度をS(cN/dtex)とし、延伸後の破断強度をS(cN/dtex)とした場合に、これらの比(S/S)を0.3以上1.15以下にすることができる。即ち、延伸前後での破断強度の差異が非常に少ないという特異な性質を有する繊維にすることができる。この比(S/S)は、更に、0.31≦S/S≦1.00とすることができ、0.32≦S/S≦0.90とすることができ、0.33≦S/S≦0.80とすることができ、0.34≦S/S≦0.70とすることができ、0.35≦S/S≦0.60とすることができる。
 また、本繊維は、延伸前の繊維径をD(mm)とし、延伸後の繊維径をD(mm)とした場合に、DがDより大きい繊維とすることができる。即ち、延伸により、繊維の太さを小さくすることができる。従って、上述のように、比(S/S)が0.85以上1.15以下という特性を有する場合には、細く伸度が大きい繊維を延伸によって製造することができるという特異な性質を示すことができる。
 このDとDとの比(D/D)は具体的には限定されないが、例えば、1.05≦D/D≦10とすることができ、1.1≦D/D≦8とすることができ、1.2≦D/D≦6とすることができ、1.3≦D/D≦4とすることができ、1.4≦D/D≦2とすることができる。
 尚、D及びDの各々測定は、マイクロメーターを用い、繊維上から無作為に選択した10点における各太さの実測値の平均値であるとする。
 本繊維を構成するポリオレフィン樹脂は、オレフィンの単独重合体、及び/又は、オレフィンの共重合体である。本繊維の相構造は特に限定されないが、後述のように、連続相(A)と分散相(B)とを有する相構造をなす場合には、ポリオレフィン樹脂は、連続相(A)に含まれることが好ましい。
 ポリオレフィンを構成するオレフィンは特に限定されないが、エチレン、プロピレン、1-ブテン、3-メチル-1-ブテン、1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 即ち、ポリオレフィン樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ1-ブテン、ポリ1-ヘキセン、ポリ4-メチル-1-ペンテン等が挙げられる。これら重合体は1種のみで用いてもよく、2種以上を併用してもよい。即ち、ポリオレフィン樹脂は上記重合体の混合物であっても良い。
 上記ポリエチレン樹脂としては、エチレン単独重合体、及び、エチレンと他のオレフィンとの共重合体が挙げられる。後者としては、エチレン・1-ブテン共重合体、エチレン・1-へキセン共重合体、エチレン・1-オクテン共重合体、エチレン・4-メチル-1-ペンテン共重合体等が挙げられる(但し、全構成単位数のうちの50%以上がエチレンに由来する単位である)。
 また、ポリプロピレン樹脂としては、プロピレン単独重合体、及び、プロピレンと他のオレフィンとの共重合体が挙げられる。
 一方、プロピレンと他のオレフィンとの共重合体を構成するは、他のオレフィンとしては、前述の各種オレフィン(但し、プロピレンを除く)が挙げられる。このうち、エチレン及び1-ブテン等が好ましい。即ち、プロピレン・エチレン共重合体、プロピレン・1-ブテン共重合体が好ましい。
 また、プロピレンと他のオレフィンとの共重合体は、ランダム共重合体であってもよく、ブロック共重合体であってもよい。これらのうちでは、伸長性に優れた繊維を得るという観点からブロック共重合体が好ましい。とりわけ、他のオレフィンがエチレンであるプロピレン・エチレンブロック共重合体であることが好ましい。このプロピレン・エチレンブロック共重合体は、例えば、インパクトコポリマー、ポリプロピレンインパクトコポリマー、ヘテロファジックポリプロピレン、ヘテロファジックブロックポリプロピレン等とも称される。このブロック共重合ポリプロピレンは、伸長性に優れた繊維を得るという観点において好ましい。
 尚、プロピレンと他のオレフィンとの共重合体は、全構成単位数のうちの50%以上がプロピレンに由来する単位である。
 ポリオレフィン樹脂のゲルパーミエーションクロマトグラフィ(GPC)による重量平均分子量(ポリスチレン換算)も特に限定されないが、例えば、10,000以上500,000以下とすることができ、100,000以上450,000以下が好ましく、200,000以上400,000以下がより好ましい。
 尚、ポリオレフィン樹脂は、後述するポリアミド樹脂に対して親和性を有さないポリオレフィンであり、且つ、ポリアミド樹脂に対して反応し得る反応性基も有さないポリオレフィンである。この点において、後述する変性エラストマーとしてのオレフィン系成分とは異なる。
 本繊維を構成するポリアミド樹脂は、アミド結合(-NH-CO-)を介して複数の単量体が重合されてなる鎖状骨格を有する重合体である。本繊維の相構造は特に限定されないが、後述のように、連続相(A)と分散相(B)とを有する相構造をなす場合には、ポリアミド樹脂は、分散相(B)に変性エラストマーとともに含まれることが好ましい。
 ポリアミド樹脂を構成する単量体としては、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸、パラアミノメチル安息香酸などのアミノ酸、ε-カプロラクタム、ウンデカンラクタム、ω-ラウリルラクタムなどのラクタムなどが挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 更に、ポリアミド樹脂は、ジアミンとジカルボン酸との共重合により得ることもできる。この場合、単量体としてのジアミンには、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカン、1,13-ジアミノトリデカン、1,14-ジアミノテトラデカン、1,15-ジアミノペンタデカン、1,16-ジアミノヘキサデカン、1,17-ジアミノヘプタデカン、1,18-ジアミノオクタデカン、1,19-ジアミノノナデカン、1,20-ジアミノエイコサン、2-メチル-1,5-ジアミノペンタン、2-メチル-1,8-ジアミノオクタン等の脂肪族ジアミン、シクロヘキサンジアミン、ビス-(4-アミノシクロヘキシル)メタン等の脂環式ジアミン、キシリレンジアミン(p-フェニレンジアミン及びm-フェニレンジアミンなど)等の芳香族ジアミンなどが挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 更に、単量体としてのジカルボン酸には、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、ブラシリン酸、テトラデカン二酸、ペンタデカン二酸、オクタデカン二酸のような脂肪族ジカルボン酸、シクロヘキサンジカルボン酸のような脂環式ジカルボン酸、フタル酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸のような芳香族ジカルボン酸などが挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 即ち、ポリアミド樹脂としては、ポリアミド6、ポリアミド66、ポリアミド11、ポリアミド610、ポリアミド612、ポリアミド614、ポリアミド12、ポリアミド6T、ポリアミド6I、ポリアミド9T、ポリアミドM5T、ポリアミド1010、ポリアミド1012、ポリアミド10T、ポリアミドMXD6、ポリアミド6T/66、ポリアミド6T/6I、ポリアミド6T/6I/66、ポリアミド6T/2M-5T、ポリアミド9T/2M-8T等が挙げられる。これらのポリアミドは、1種のみを用いてもよいし2種以上を併用してもよい。
 また、本発明では、上述の各種ポリアミド樹脂のうち、植物由来ポリアミド樹脂を用いることができる。植物由来ポリアミド樹脂は、植物油等の植物に由来する成分から得られた単量体を用いる樹脂であるため、環境保護の観点(特にカーボンニュートラルの観点)から望ましい。
 植物由来ポリアミド樹脂としては、ポリアミド11(以下、単に「PA11」ともいう)、ポリアミド610(以下、単に「PA610」ともいう)、ポリアミド612(以下、単に「PA612」ともいう)、ポリアミド614(以下、単に「PA614」ともいう)、ポリアミド1010(以下、単に「PA1010」ともいう)、ポリアミド1012(以下、単に「PA1012」ともいう)、ポリアミド10T(以下、単に「PA10T」ともいう)等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 上記のうち、PA11は、炭素原子数11である単量体がアミド結合を介して結合された構造を有する。PA11には、単量体として、ヒマシ油を原料とするアミノウンデカン酸を用いることができる。炭素原子数が11である単量体に由来する構成単位は、PA11内において全構成単位のうちの50%以上であることが好ましく、100%であってもよい。
 PA610は、炭素原子数6である単量体と、炭素原子数10である単量体と、がアミド結合を介して結合された構造を有する。PA610には、単量体として、ヒマシ油を原料とするセバシン酸を用いることができる。炭素原子数6である単量体に由来する構成単位と、炭素原子数10である単量体に由来する構成単位とは、PA610内においてその合計が、全構成単位のうちの50%以上であることが好ましく、100%であってもよい。
 PA1010は、炭素原子数10であるジアミンと、炭素原子数10であるジカルボン酸と、が共重合された構造を有する。PA1010には、単量体として、ヒマシ油を原料とする1,10-デカンジアミン(デカメチレンジアミン)及びセバシン酸を用いることができる。これらの炭素原子数10であるジアミンに由来する構成単位と、炭素原子数10であるジカルボン酸に由来する構成単位とは、PA1010内においてその合計が、全構成単位のうちの50%以上であることが好ましく、100%であってもよい。
 PA614は、炭素原子数6である単量体と、炭素原子数14である単量体と、がアミド結合を介して結合された構造を有する。PA614には、単量体として、植物由来であり炭素原子数14のジカルボン酸を用いることができる。これらの炭素原子数6である単量体に由来する構成単位と、炭素原子数14である単量体に由来する構成単位とは、PA614内においてその合計が、全構成単位のうちの50%以上であることが好ましく、100%であってもよい。
 PA10Tは、炭素原子数10であるジアミンと、テレフタル酸と、がアミド結合を介して結合された構造を有する。PA10Tには、単量体として、ヒマシ油を原料とする1,10-デカンジアミン(デカメチレンジアミン)を用いることができる。これらの炭素原子数10であるジアミンに由来する構成単位と、テレフタル酸に由来する構成単位とは、PA10T内においてその合計が、全構成単位のうちの50%以上であることが好ましく、100%であってもよい。
 上記5種の植物由来ポリアミド樹脂のなかでも、PA11は、他の4種の植物由来ポリアミド樹脂に対し、低吸水性、低比重及び植物化度の高さの観点においてより優れている。
 ポリアミド610は、吸水率、耐薬品性、及び衝撃強度の点ではPA11よりも劣るが、耐熱性(融点)及び強度の観点において優れている。更には、ポリアミド6やポリアミド66と比べ、低吸水性で寸法安定性が良いため、ポリアミド6やポリアミド66の代替材として使用することができる。
 ポリアミド1010は、PA11に比べて、耐熱性及び強度の観点において優れている。更には、植物化度もPA11と同等であり、より耐久性の必要な部位に使用することができる。
 ポリアミド10Tは、分子骨格に芳香環を含むため、ポリアミド1010に比べて、より融点が高く高強度である。そのため、より過酷な環境での使用を可能にすることができる。
 本繊維を構成する変性エラストマーは、ポリアミド樹脂に対する反応性基を有するエラストマーである。本繊維の相構造は特に限定されないが、後述のように、連続相(A)と分散相(B)とを有する相構造をなす場合には、変性エラストマーは、分散相(B)にポリアミド樹脂とともに含まれることが好ましい。
 更に、この変性エラストマーは、ポリオレフィン樹脂に対して親和性を有する成分であることが好ましい。即ち、ポリアミド樹脂とポリオレフィン樹脂とに対する相容化作用を有する成分であることが好ましい。更に換言すれば、ポリアミド樹脂とポリオレフィン樹脂との相容化剤であることが好ましい。
 この反応性基としては、酸無水物基(-CO-O-OC-)、カルボキシル基(-COOH)及びエポキシ基{-CO(2つの炭素原子と1つの酸素原子とからなる三員環構造)}、オキサゾリン基(-CNO)及びイソシアネート基(-NCO)等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 変性エラストマーの変性量は限定されず、変性エラストマーは1分子中に1以上の反応性基を有すればよい。更に、変性エラストマーは1分子中に1以上50以下の反応性基を有することが好ましく、3以上30以下がより好ましく、5以上20以下が特に好ましい。
 変性エラストマーとして、反応性基を導入できる各種単量体を用いた重合体(反応性基を導入できる単量体を用いた重合により得られた変性エラストマー)、各種重合体の酸化分解物(酸化分解により反応性基が形成された変性エラストマー)、各種重合体に対する有機酸のグラフト重合物(有機酸のグラフト重合により反応性基が導入された変性エラストマー)などが挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。これらは1種のみを用いてもよく2種以上を併用してもよい。
 反応性基を導入できる単量体としては、重合性不飽和結合と酸無水物基とを有する単量体、重合性不飽和結合とカルボキシル基とを有する単量体、重合性不飽和結合とエポキシ基とを有する単量体などが挙げられる。
 具体的には、無水マレイン酸、無水イタコン酸、無水コハク酸、無水グルタル酸、無水アジピン酸、無水シトラコン酸、テトラヒドロ無水フタル酸、ブテニル無水コハク酸等の酸無水物、及びマレイン酸、イタコン酸、フマル酸、アクリル酸、メタクリル酸等のカルボン酸が挙げられる。これらは1種のみ用いてもよく2種以上を併用してもよい。これらの化合物のうちでは、酸無水物が好ましく、無水マレイン酸及び無水イタコン酸がより好ましく、無水マレイン酸が特に好ましい。
 更に、変性エラストマーの骨格を構成する樹脂(以下、「骨格樹脂」という。)の種類は特に限定されず、種々の熱可塑性樹脂を用いることができる。この骨格樹脂としては、ポリオレフィン樹脂として先に例示した各種の樹脂の1種又は2種以上を用いることができる。
 加えて、骨格樹脂としては、オレフィン系熱可塑性エラストマー、及び、スチレン系熱可塑性エラストマーを用いることができる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 このうち、オレフィン系熱可塑性エラストマーとしては、2種以上のオレフィンを共重合してなるものが挙げられる。
 オレフィンとしては、エチレン、プロピレン、及び炭素数4~8のα-オレフィン等が挙げられる。このうち炭素数4~8のα-オレフィンとしては、1-ブテン、3-メチル-1-ブテン、1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン等が挙げられる。これらのなかでも、オレフィン系熱可塑性エラストマーとしては、エチレンと炭素数3~8のα-オレフィンとの共重合体、及び、プロピレンと炭素数4~8のα-オレフィンとの共重合体が好ましい。
 即ち、エチレンと炭素数3~8のα-オレフィンとの共重合体としては、エチレン・プロピレン共重合体(EPR)、エチレン・1-ブテン共重合体(EBR)、エチレン・1-ペンテン共重合体、エチレン・1-オクテン共重合体(EOR)が挙げられる。また、プロピレンと炭素数4~8のα-オレフィンとの共重合体としては、プロピレン・1-ブテン共重合体(PBR)、プロピレン・1-ペンテン共重合体、プロピレン・1-オクテン共重合体(POR)等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 一方、スチレン系熱可塑性エラストマーとしては、スチレン系化合物と共役ジエン化合物とのブロック共重合体、及びその水添体が挙げられる。
 上記スチレン系化合物としては、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、p-t-ブチルスチレン等のアルキルスチレン、p-メトキシスチレン、ビニルナフタレン等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 上記共役ジエン化合物としては、ブタジエン、イソプレン、ピペリレン、メチルペンタジエン、フェニルブタジエン、3,4-ジメチル-1,3-ヘキサジエン、4,5-ジエチル-1,3-オクタジエン等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 即ち、スチレン系熱可塑性エラストマーとしては、スチレン-ブタジエン-スチレン共重合体(SBS)、スチレン-イソプレン-スチレン共重合体(SIS)、スチレン-エチレン/ブチレン-スチレン共重合体(SEBS)、スチレン-エチレン/プロピレン-スチレン共重合体(SEPS)等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。これらのなかでも、SEBSが好ましい。
 変性エラストマーの分子量は特に限定されないが、重量平均分子量が、10,000以上500,000以下であることが好ましく、35,000以上500,000以下であることがより好ましく、35,000以上300,000以下であることが特に好ましい。尚、重量平均分子量はGPC法(標準ポリスチレン換算)により測定される。
 本繊維には、ポリオレフィン樹脂、ポリアミド樹脂及び変性エラストマー以外に、他の熱可塑性樹脂、難燃剤、難燃助剤、充填剤、着色剤、抗菌剤、帯電防止剤等の各種添加剤を配合できる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 他の熱可塑性樹脂としては、ポリエステル系樹脂(ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリカーボネート、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリ乳酸)等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 難燃剤としては、ハロゲン系難燃剤(ハロゲン化芳香族化合物)、リン系難燃剤(窒素含有リン酸塩化合物、リン酸エステル等)、窒素系難燃剤(グアニジン、トリアジン、メラミン、及びこれらの誘導体等)、無機系難燃剤(金属水酸化物等)、ホウ素系難燃剤、シリコーン系難燃剤、硫黄系難燃剤、赤リン系難燃剤等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 難燃助剤としては、各種アンチモン化合物、亜鉛を含む金属化合物、ビスマスを含む金属化合物、水酸化マグネシウム、粘土質珪酸塩等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 充填剤としては、ガラス成分(ガラス繊維、ガラスビーズ、ガラスフレーク等)、シリカ、無機繊維(ガラス繊維、アルミナ繊維、カーボン繊維)、黒鉛、珪酸化合物(珪酸カルシウム、珪酸アルミニウム、カオリン、タルク、クレー等)、金属酸化物(酸化鉄、酸化チタン、酸化亜鉛、酸化アンチモン、アルミナ等)、カルシウム、マグネシウム、亜鉛等の金属の炭酸塩及び硫酸塩、有機繊維(芳香族ポリエステル繊維、芳香族ポリアミド繊維、フッ素樹脂繊維、ポリイミド繊維、植物性繊維等)等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 着色剤としては、顔料及び染料等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 本繊維の相構造は限定されないが、ポリオレフィン樹脂が連続相(A)をなし、ポリアミド樹脂及び変性エラストマーが連続相(A)中に分散された分散相(B)をなすことが好ましい(図1参照)。この相構造は、ポリアミド樹脂及び変性エラストマーを溶融混練して得られた溶融混練物と、ポリオレフィン樹脂と、を溶融混練することによって得ることができる。また、分散相(B)は、本繊維の長手方向に向かって長粒化されていてもよい。
 更に、本繊維では、分散相(B)を構成しているポリアミド樹脂及び変性エラストマーのうち、ポリアミド樹脂が、分散相(B)内で連続相(B)を形成し、且つ、ポリアミド樹脂及び変性エラストマーのうちの少なくとも変性エラストマーが、分散相(B)内で微分散相(B)を形成することができる。即ち、分散相内連続相(B)内に分散された微分散相(B)を形成できる(図1参照)。このような微分散相(B)を有する多重の相構造を有する場合には、より優れた伸長性を有する繊維とすることができる。
 また、本繊維では、ポリオレフィン樹脂として、エチレンブロックの分散相を有するブロック共重合ポリオレフィン樹脂を用いる場合、ブロック共重合ポリオレフィン樹脂を構成するエチレンブロックの少なくとも一部は、連続相(A)と分散相(B)との界面に凝集させることができる(図1参照)。即ち、界面相(C)を有することができる。界面相(C)は、連続相(A)と分散相(B)との界面が厚く形成された部位であり、相容化剤又はその反応物が相界に集積されて形成され得る。微分散相(B)と界面相(C)とは、同じ組成であってもよく、異なる組成であってもよい。このように界面相(C)を有する場合には、より優れた伸長性を有する繊維とすることができる。
 本繊維の連続相(A)内に含まれた分散相(B)の大きさは特に限定されない。また、分散相(B)の配置密度も特に限定されないが、10μm四方に、分散相(B)を50個以上450個以下有する形態であることが好ましい。この分散相(B)数は、更に、80個以上400個以下が好ましく、100個以上350個以下がより好ましく、150個以上300個以下が特に好ましく、200個以上300個以下がとりわけ好ましい。
 更に、本繊維の分散相(B)内に含まれた微分散相(B)の大きさも特に限定されないが、その平均径(平均粒子径)は、5nm以上1000nm以下であることが好ましく、より好ましくは5nm以上600nm以下、更に好ましくは10nm以上400nm以下、特に好ましくは15nm以上350nm以下である。
 尚、本繊維の相構造は、繊維の断面(長手方向に平行な断面でも、垂直な断面でもよい)を100Wで1分間の酸素プラズマエッチング処理した後にオスミウムコート処理し、電界放出形走査型電子顕微鏡により得られるFE-SEM像において確認される。また、各相の構成成分は、上記FE-SEM像取得時にエネルギー分散型X線分析(EDS)を行って特定できる。
 同様に、上記の分散相(B)の密度、及び、微分散相の平均粒径も、上記FE-SEM像から求める。より具体的には、分散相(B)の配置密度は、上記FE-SEM像から無作為に選択した5ヶ所の10μm四方における実測した配置密度の平均値であるとする。
 また、微分散相(B)の平均径は、上記FE-SEM像内の異なる5ヶ所において、無作為に選択した20個の微分散相(B)の各々の最長径(長軸分散径)を測定し、得られた最長径の平均値を第1平均値とし、更に、5ヶ所の異なる領域において測定された第1平均値の更なる平均値を平均径とする。
 本繊維において、ポリオレフィン樹脂の含有量をWとし、ポリアミド樹脂と変性エラストマーとの合計含有量をWとし、WとWとの合計を100質量%とすると、Wの割合は70質量%以下であることが好ましい。即ち、本繊維が前述の相構造を有する場合、連続相(A)と分散相(B)との合計を100質量%とした場合に、分散相(B)は70質量%以下であることが好ましい。この範囲では、優れた伸長性を得ることができる。この割合は、0.5質量%以上50質量%以下が好ましく、2質量%以上48質量%以下がより好ましく、4質量%以上45質量%以下が特に好ましい。
 ポリアミド樹脂と変性エラストマーとの合計を100質量%とした場合、ポリアミド樹脂の含有割合は、10質量%以上80質量%以下とすることが好ましい。この範囲では、ポリオレフィン樹脂を連続相(A)とし、ポリアミド樹脂を分散相(B)とする相構造を得やすくできる。これにより、優れた伸長性を得ることができる。この割合は、12質量%以上78質量%以下が好ましく、14質量%以上75質量%以下がより好ましく、25質量%以上73質量%以下が更に好ましく、30質量%以上71質量%以下がより更に好ましく、34質量%以上68質量%以下が特に好ましく、40質量%以上64質量%以下がより特に好ましい。この好ましい範囲では、連続相(A)内に、ポリアミド樹脂及び変性エラストマーを、分散相(B)としてより小さく分散させることができ、より優れた伸長性を得ることができる。
 また、ポリオレフィン樹脂、ポリアミド樹脂、及び、変性エラストマーの合計を100質量%とした場合におけるポリアミド樹脂の含有量は、0.5質量%以上30質量%以下とすることができる。この範囲では優れた伸長性を得ることができる。この割合は、1質量%以上22質量%以下が好ましく、2質量%以上15質量%以下がより好ましい。
 更に、ポリオレフィン樹脂、ポリアミド樹脂、及び、変性エラストマーの合計を100質量%とした場合における変性エラストマーの含有量は、0.5質量%以上30質量%以下とすることができる。この範囲では優れた伸長性を得ることができる。この割合は、1質量%以上22質量%以下が好ましく、2質量%以上15質量%以下がより好ましい。
 本繊維の比重は特に限定されないが、通常、1.05以下とすることができる。この比重は、本繊維におけるポリアミド樹脂の含有量が1質量%以上40質量%以下、ポリプロピレン樹脂の含有量が50質量%以上75質量%以下、且つ、変性エラストマーの含有量が5質量%以上30質量%以下である場合に、特に0.89以上1.05以下とすることができ、更には0.92以上0.98以下とすることができる。即ち、本繊維は、オレフィン樹脂と同等の比重を有しながら、優れた伸長性を有する繊維を実現できる。
[2]布帛
 本発明の布帛は本繊維を用いたことを特徴とする。本布帛は、前述の本繊維に起因した高い伸縮性を有することができる。
 本布帛を構成する本繊維は、未延伸繊維であってもよく、延伸済みの繊維であってもよい。本布帛は本繊維のみからなってもよく、他繊維と併用されていてもよい。併用の場合、布帛全体100質量%に対して本繊維は10質量%含まれることが好ましい。他繊維と併用する場合の他繊維の種類は限定されない。
 本布帛は、布状であってもよく、綿状であってもよい。このうち布状である場合としては、不織布、織布及び編布等が挙げられる。また、例えば、不織布である場合、不織布は、どのように形成されてもよく、乾式不織布、湿式不織布、スパンボンド不織布、メルトブローン不織布、エアレイド不織布、ケミカルボンド不織布(レジンボンド不織布)、サーマルボンド不織布、ニードルパンチ不織布、スパンレース不織布(水流交絡不織布)、スチームジェット不織布等が挙げられる。
 また、本布帛には、柔軟性付与処理、撥水性付与処理、防汚性付与処理、抗菌性付与処理、制電性付与処理等の後処理を施すことができる。更に、コーティング、ラミネート等による透湿防水加工などを施すこともできる。
 本繊維及び本布帛の形状、大きさ等は特に限定されず、その用途も特に限定されない。本繊維は、広く様々な用途における繊維として利用できる。また、本布帛は、広く様々な用途における布帛として利用できる。
 なかでも、本繊維及び本布帛は、優れた伸長性を活用して、自動車、鉄道車両(車両全般)、航空機機体(機体全般)、船舶・船体(船体全般)、自転車(車体全般)等の乗物に利用される各種用品等として用いることができる。
 このうち自動車用の内装部品としては、内装部品の表皮材に利用できる。具体的には、天井表皮、シート表皮、裏基布及びオーナメント表皮等が挙げられる。
 また、自動車用のエンジン部品としては、濾材、濾紙及びオイルフィルタ(エレメント)等が挙げられる。
 更に、本繊維及び本布帛は、上述の乗物以外の非乗物用途においても各種用品等として用いられる。即ち、例えば、ロープ、不織布、研磨ブラシ、工業ブラシ、フィルター、その他一般資材等の工業・産業資材;
 アタッシュケース、スーツケース等の収納ケース、及び、それらの構造資材;
 日用品、生活用品;
 おもちゃ等の娯楽品;
 スポーツウエア製造用繊維、スポーツウエア縫製用繊維、テニスラケットストリング、バドミントンラケットストリング等のスポーツ用品;
 衣料品、靴製造用繊維、靴紐等の衣料関係用品;
 防弾チョッキ、防弾部材等の防弾用品;
 農機具、各種ロープ等の農業用資材、魚網等の漁業用資材;
 更に、各種ペレット形状に成形されたペレットも挙げられる。
[3]熱可塑性樹脂繊維の製造方法
 本発明の熱可塑性樹脂繊維の製造方法は、ポリアミド樹脂及び変性エラストマーの溶融混練物、並びに、ポリオレフィン樹脂、を溶融混練してなる熱可塑性樹脂組成物を紡糸する紡糸工程を備えることを特徴とする。
 本製造における紡糸方法は限定されず、適宜、公知の方法を用いることができるが、なかでも、溶融紡糸が好ましい。具体的には、溶融状態の熱可塑性樹脂組成物を紡糸口金から紡出した後、冷媒浴又は大気中で引き取って未延伸繊維を得ることができる。
 溶融紡糸温度は、用いる熱可塑性樹脂組成物によって適宜設定できるが、例えば、190℃以上250℃以下とすることができ、更に、200℃以上235℃以下とすることが好ましく、205℃以上220℃以下とすることが特に好ましい。
 また、紡出後に冷媒を行う場合の冷却温度も、用いる熱可塑性樹脂組成物によって適宜設定できるが、例えば、60℃以上85℃以下とすることができ、更に、65℃以上80℃以下とすることが好ましく、70℃以上80℃以下とすることが特に好ましい。
 また、本繊維を未延伸繊維として得た場合には、この未延伸繊維を延伸する延伸工程を設けることができる。延伸を行う場合、未延伸繊維が得られたまま、温度を維持又は更に上昇させて行ってもよく、別工程で再加熱後、行ってもよい。また、延伸は1回の工程で行ってもよいし、延伸倍率を変えて複数回で行ってもよい。複数回で延伸を行う場合には、1回の工程で行う場合に比べて繊維強度を上げることができる。また、複数回で行う場合には、延伸倍率は、後工程へ移るほど減少するように設定することが好ましい。
 更に、延伸条件は、限定されないものの、65℃以上150℃以下が好ましい。また、より伸長性に優れた繊維を得るという観点からは、延伸温度は70℃以上115℃以下とすることが好ましく、75℃以上110℃以下がより好ましく、80℃以上105℃以下が特に好ましい。
 また、得られた本繊維には、必要に応じて、更に、各種の熱処理、交絡処理、撚り加工(捲縮処理等)の後加工を施すことができる。
 本繊維の繊度(dtex)は限定されず、紡糸可能な範囲で適宜選択できる。また、本繊維は、1本のフィラメントからなるモノフィラメントとしてもよく、2本以上のフィラメントからなるマルチフィラメントとしてもよい。本繊維がモノフィラメントである場合、繊度は10dtex以上10000dtex以下であることが好ましい。
 また、本繊維がマルチフィラメントである場合、繊度は1dtex以上10000dtex以下であることが好ましい。本繊維がマルチフィラメントである場合、フィラメント数は特に限定されないが、例えば、2本以上1000本以下とすることができる。
 更に、本繊維は、繊度が1dtex以下のマイクロファイバーとして利用することもできる。この場合、本繊維の繊度は、0.001dtex以上1dtex以下とすることができ、更には、0.005dtex以上0.50dtex以下とすることができる。
 尚、繊度はJIS L0101により規定される。
 また、本繊維の断面形状は特に限定されず、円形状であってもよく、異形断面形状であってもよい。異形断面形状としては、X形状、扁平形状、多角形状(三角形状、四角形状、五角形状、六角形状等)、星形状、多葉形状(三葉形状、四葉形状、五葉形状等)などが挙げられる。
 繊維の原料となる熱可塑性樹脂組成物は、ポリアミド樹脂及び変性エラストマーの溶融混練物と、ポリオレフィン樹脂と、を溶融混練して得ることができる。この際の溶融混練方法は特に限定されないが、例えば、押出機(一軸スクリュー押出機及び二軸混練押出機等)、ニーダ及びミキサ(高速流動式ミキサ、バドルミキサ、リボンミキサ等)等の混練装置を用いて行うことができる。これらの装置は1種のみを用いてもよく2種以上を併用してもよい。また、2種以上を用いる場合には連続的に運転してもよく、回分的に(バッチ式で)運転してもよい。また、各成分は一括して混合してもよしい、複数回に分けて添加投入(多段配合)して混合してもよい。
 また、この際の混練温度は特に限定されず、各成分の種類により適宜調整することができる。特に、いずれもの樹脂が溶融された状態で混練されることが好ましいことから、混練温度は190℃以上350℃以下が好ましく、200℃以上330℃以下がより好ましく、205℃以上310℃以下が特に好ましい。
 更に、上述の得られたポリアミド樹脂及び変性エラストマーの溶融混練物と、ポリオレフィン樹脂と、を溶融混練する際も、同様に行うことができる。即ち、前述の溶融混練物を得る場合と同様の装置、運転方法、混練温度で行うことができる。
 以下、実施例により本発明を具体的に説明する。
[1]繊維の製造
 〈1〉原料組成物の調製
 得られる熱可塑性樹脂組成物全体を100質量%とした場合に、ポリオレフィンが55質量%、ポリアミド樹脂が25質量%、変性エラストマーが20質量%の割合で含まれる耐衝撃樹脂を以下の手順で調製した。
 下記ポリアミド樹脂のペレットと下記変性エラストマーのペレットとをドライブレンドした後、二軸溶融混練押出機(株式会社テクノベル製、スクリュー径15mm、L/D=59)に投入し、混練温度210℃、押出速度2.0kg/時間、スクリュー回転数200回転/分の条件で溶融混練を行い、ペレタイザーを介して、溶融混練物のペレットを得た。
 ・ポリアミド樹脂:ナイロン11樹脂、アルケマ株式会社製、品名「Rilsan BMN O」、重量平均分子量18,000、融点190℃
 ・変性エラストマー:無水マレイン酸変性エチレン・ブテン共重合体(変性EBR)、三井化学株式会社製、品名「タフマー MH7020」、MFR(230℃)=1.5g/10分
 上記で得られた溶融混合物のペレットと、下記ポリオレフィン樹脂のペレットと、をドライブレンドした後、二軸溶融混練押出機(株式会社テクノベル製、スクリュー径15mm、L/D=59)に投入し、混練温度210℃、押出速度2.0kg/時間、スクリュー回転数200回転/分の条件で混合を行い、ペレタイザーを介して、熱可塑性樹脂組成物のペレットを得た。
 ・ポリオレフィン樹脂:ポリプロピレン樹脂、ホモポリマー、日本ポリプロ株式会社製、品名「ノバテック MA1B」、重量平均分子量312,000、融点165℃
 〈2〉熱可塑性樹脂繊維の作製
 紡糸機を用いて、上記〈1〉で得られた熱可塑性樹脂組成物のペレットを原料として溶融紡糸(温度210℃)を行った。この際、紡出された繊維は、直後に、温度70~80℃に冷却を行い、未延伸繊維(実施例1)を得た。
 また、延伸繊維は、上述の冷却に引き続いて、温度90℃又は温度120℃で延伸処理を行い、温度90℃で延伸した延伸繊維(実施例2)と、温度120℃で延伸した延伸繊維(実施例3)と、を得た。尚、いずれの繊維も、182fのマルチフィラメントフィラメントである。
 ・実施例1:未延伸繊維、繊度3962dtex
 ・実施例2:延伸繊維(延伸温度90℃)、繊度1500dtex
 ・実施例3:延伸繊維(延伸温度120℃)、繊度1400dtex
[2]各繊維の評価
 JIS L1013(2010)「化学繊維フィラメント糸試験方法」に記載された「8.5 引張強さ及び伸び率」に準拠して、定速緊張形の試験機を用い、強度及び伸度の測定を行った。測定は、温度25℃、つかみ間隔50cm、引張速度30±2cm/分の条件で行った。また、各繊維(実施例1~3)10本について測定を行い、その平均値を算出した。更に、得られた強度及び伸度の最大値を各々、破断強度及び破断伸度とした。
 上記測定に際して、得られた強度と伸度との相関を示すチャートを図2及び図3に示した。
 また、併せて汎用繊維として下記のナイロン(ナイロン66、72fのマルチフィラメントフィラメント、株式会社暁星ジャパン製)及びPET(ポリエチレンテレフタレート、182fのマルチフィラメントフィラメント、株式会社暁星ジャパン製)からなる繊維による同様のデータを図2に併記した。
 ・比較例1:ナイロン繊維、繊度470dtex
 ・比較例2:PET繊維、繊度555dtex
[3]実施例の効果
 上記図2及び図3から、実施例1及び実施例2の本発明の熱可塑性樹脂繊維が、特異な高伸長性を有することが分かる。即ち、一般的なナイロン繊維は、比較例1のように高い破断強度を有するものの、伸度は20%程度である。同様に、一般的なPET繊維も、比較例2のように高い破断強度を有するものの、伸度は20%程度である。これに対して、本発明の熱可塑性樹脂繊維は、80%超~450%超という極めて優れた伸長性を示していることが分かる。
 更に、上記測定で得られた実施例1(未延伸繊維)の破断強度(S)は0.57cN/dtexであった。一方、実施例2(延伸繊維、延伸温度90℃)の破断強度(S)は1.47cN/dtexであり、実施例3(延伸繊維、延伸温度120℃)の破断強度(S)は1.46cN/dtexであった。これらのことから、実施例1の熱可塑性樹脂繊維と、実施例2の熱可塑性樹脂繊維と、の破断強度の比(S/S)は0.39と大きい値であった。また、実施例1の熱可塑性樹脂繊維と、実施例3の熱可塑性樹脂繊維と、の破断強度の比(S/S)も0.40と大きい値であった。
 尚、本発明においては、上記の具体的な実施例に記載されたものに限られず、目的、用途に応じて本発明の範囲内で種々変更した実施例とすることができる。
 前述の例は単に説明を目的とするものでしかなく、本発明を限定するものと解釈されるものではない。本発明を典型的な実施形態の例を挙げて説明したが、本発明の記述及び図示において使用された文言は、限定的な文言ではなく説明的及び例示的なものであると理解される。ここで詳述したように、その形態において本発明の範囲又は精神から逸脱することなく、添付の特許請求の範囲内で変更が可能である。ここでは、本発明の詳述に特定の構造、材料及び実施例を参照したが、本発明をここに掲げる開示事項に限定することを意図するものではなく、むしろ、本発明は添付の特許請求の範囲内における、機能的に同等の構造、方法、使用の全てに及ぶものとする。
 A;連続相、
 B;分散相、
 B;分散相内連続相、
 B;微分散相、
 C;界面相。

Claims (8)

  1.  ポリオレフィン樹脂と、ポリアミド樹脂と、相容化剤と、含み、
     前記相容化剤が、前記ポリアミド樹脂に対する反応性基を有する変性エラストマーである熱可塑性樹脂からなり、
     破断伸度が50%以上であることを特徴とする熱可塑性樹脂繊維。
  2.  破断強度が0.5cN/dtex以上3.0cN/dtex以下である請求項1に記載の熱可塑性樹脂繊維。
  3.  延伸前の破断強度をS(cN/dtex)とし、延伸後の破断強度をS(cN/dtex)とした場合に、これらの比(S/S)が、0.3以上1.15以下である請求項1又は2に記載の熱可塑性樹脂繊維。
  4.  延伸前の繊維径をD(mm)とし、延伸後の繊維径をD(mm)とした場合に、DがDより大きい請求項1乃至3のうちのいずれかに記載の熱可塑性樹脂繊維。
  5.  前記ポリオレフィン樹脂は、連続相(A)をなし、
     前記ポリアミド樹脂及び前記変性エラストマーは、前記連続相(A)中に分散された分散相(B)をなしている請求項1乃至4のうちのいずれかに記載の熱可塑性樹脂繊維。
  6.  前記分散相(B)は、前記分散相(B)内に分散された微分散相(B)を有する請求項5に記載の熱可塑性樹脂繊維。
  7.  請求項1乃至6のうちのいずれかに記載の熱可塑性樹脂繊維を用いたことを特徴とする布帛。
  8.  請求項1に記載の熱可塑性樹脂繊維の製造方法であって、
     前記ポリアミド樹脂及び前記変性エラストマーの溶融混練物、並びに、前記ポリオレフィン樹脂、を溶融混練してなる熱可塑性樹脂組成物を紡糸する紡糸工程を備えることを特徴とする熱可塑性樹脂繊維の製造方法。
PCT/JP2018/002800 2017-02-02 2018-01-29 熱可塑性樹脂繊維及びその製造方法並びに布帛 WO2018143136A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2019126028A RU2719984C1 (ru) 2017-02-02 2018-01-29 Волокно из термопластической смолы, способ его производства и ткань из этого волокна
CN201880008845.1A CN110226000B (zh) 2017-02-02 2018-01-29 热塑性树脂纤维和其制造方法以及布帛
BR112019012147-1A BR112019012147A2 (pt) 2017-02-02 2018-01-29 fibra de resina termoplástica, método de produção da mesma, e tecido usando a mesma
US16/481,118 US20190382922A1 (en) 2017-02-02 2018-01-29 Thermoplastic resin fiber, production method therefor, and fabric thereof
KR1020197023943A KR102137159B1 (ko) 2017-02-02 2018-01-29 열가소성 수지 섬유 및 그 제조방법 및 직물
SG11201906421XA SG11201906421XA (en) 2017-02-02 2018-01-29 Thermoplastic resin fiber, production method therefor, and fabric thereof
EP18747941.5A EP3578699A4 (en) 2017-02-02 2018-01-29 THERMOPLASTIC RESIN FIBER, MANUFACTURING METHOD FOR ITS AND FABRICS THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017017934A JP6455534B2 (ja) 2017-02-02 2017-02-02 熱可塑性樹脂繊維及びその製造方法並びに布帛
JP2017-017934 2017-02-02

Publications (1)

Publication Number Publication Date
WO2018143136A1 true WO2018143136A1 (ja) 2018-08-09

Family

ID=63040585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002800 WO2018143136A1 (ja) 2017-02-02 2018-01-29 熱可塑性樹脂繊維及びその製造方法並びに布帛

Country Status (9)

Country Link
US (1) US20190382922A1 (ja)
EP (1) EP3578699A4 (ja)
JP (1) JP6455534B2 (ja)
KR (1) KR102137159B1 (ja)
CN (1) CN110226000B (ja)
BR (1) BR112019012147A2 (ja)
RU (1) RU2719984C1 (ja)
SG (1) SG11201906421XA (ja)
WO (1) WO2018143136A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043137A1 (ja) * 2022-08-25 2024-02-29 株式会社ブリヂストン ハイブリッドコード、ゴム-繊維複合体、及びタイヤ

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020145013A1 (ja) 2019-01-09 2020-07-16 トヨタ紡織株式会社 振動吸収材
CN111732790B (zh) * 2020-08-03 2021-01-12 江苏金发科技新材料有限公司 一种熔喷聚丙烯复合材料及其制备方法和应用
CN113136629A (zh) * 2021-04-14 2021-07-20 中芳特纤股份有限公司 一种高强度、高伸长率对位芳纶纤维的制备工艺

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489853A (ja) * 1990-08-03 1992-03-24 Tonen Chem Corp ポリオレフィン組成物
JP2003013349A (ja) * 2001-03-02 2003-01-15 Kuraray Co Ltd ヒートシール性を有する不織布とその製造方法
JP2004107818A (ja) 2002-09-18 2004-04-08 Univ Shinshu ポリアミド繊維及びその製造法
JP2008214848A (ja) * 2007-03-07 2008-09-18 Teijin Monofilament Germany Gmbh 抗菌性ストランド、その製造およびその使用
JP2009108427A (ja) * 2007-10-26 2009-05-21 Mitsubishi Rayon Co Ltd 繊維製品
JP2012036519A (ja) 2010-08-05 2012-02-23 Unitika Ltd ポリアミド繊維
JP2012158842A (ja) * 2011-01-31 2012-08-23 Toray Ind Inc 繊維、その製造方法および撥水性布帛
JP2013067920A (ja) 2011-09-26 2013-04-18 Kuraray Co Ltd ポリイミド繊維およびそれを用いた繊維構造物
JP2013129800A (ja) 2011-12-22 2013-07-04 Toyota Boshoku Corp 熱可塑性樹脂組成物及びその製造方法
JP2013147646A (ja) 2011-12-22 2013-08-01 Toyota Boshoku Corp 植物由来ポリアミド樹脂を用いた熱可塑性樹脂組成物及び成形体
JP2013147645A (ja) 2011-12-22 2013-08-01 Toyota Boshoku Corp 熱可塑性樹脂組成物及びその製造方法
JP2013147647A (ja) 2011-12-22 2013-08-01 Toyota Boshoku Corp 熱可塑性樹脂組成物及びその製造方法
JP2013147648A (ja) 2011-12-22 2013-08-01 Toyota Boshoku Corp 熱可塑性樹脂組成物の製造方法
JP2014025060A (ja) 2012-06-22 2014-02-06 Toyota Central R&D Labs Inc 樹脂組成物
JP2014037642A (ja) 2012-08-14 2014-02-27 Mitsubishi Gas Chemical Co Inc ポリエーテルポリアミド繊維

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62299511A (ja) * 1986-06-11 1987-12-26 Ube Nitto Kasei Kk ポリアミド・ポリプロピレン系繊維
JPH05209311A (ja) * 1992-01-28 1993-08-20 Showa Denko Kk ポリプロピレン系繊維
CA2111172A1 (en) * 1993-09-23 1995-03-24 Dennis S. Everhart Nonwoven fabric formed from alloy fibers
JP4932472B2 (ja) 2003-01-30 2012-05-16 ダウ グローバル テクノロジーズ エルエルシー 不混和性ポリマーブレンドから形成された繊維
US20070122614A1 (en) * 2005-11-30 2007-05-31 The Dow Chemical Company Surface modified bi-component polymeric fiber
EP2796497A4 (en) * 2011-12-22 2015-07-01 Toyota Boshoku Kk THERMOPLASTIC RESIN COMPOSITION, METHOD FOR PRODUCING THE SAME, AND MOLDED BODY
JP6140263B2 (ja) 2015-12-25 2017-05-31 ダイワボウホールディングス株式会社 酸変性ポリオレフィン繊維、それを用いた繊維構造物及び繊維強化複合材

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489853A (ja) * 1990-08-03 1992-03-24 Tonen Chem Corp ポリオレフィン組成物
JP2003013349A (ja) * 2001-03-02 2003-01-15 Kuraray Co Ltd ヒートシール性を有する不織布とその製造方法
JP2004107818A (ja) 2002-09-18 2004-04-08 Univ Shinshu ポリアミド繊維及びその製造法
JP2008214848A (ja) * 2007-03-07 2008-09-18 Teijin Monofilament Germany Gmbh 抗菌性ストランド、その製造およびその使用
JP2009108427A (ja) * 2007-10-26 2009-05-21 Mitsubishi Rayon Co Ltd 繊維製品
JP2012036519A (ja) 2010-08-05 2012-02-23 Unitika Ltd ポリアミド繊維
JP2012158842A (ja) * 2011-01-31 2012-08-23 Toray Ind Inc 繊維、その製造方法および撥水性布帛
JP2013067920A (ja) 2011-09-26 2013-04-18 Kuraray Co Ltd ポリイミド繊維およびそれを用いた繊維構造物
JP2013129800A (ja) 2011-12-22 2013-07-04 Toyota Boshoku Corp 熱可塑性樹脂組成物及びその製造方法
JP2013147646A (ja) 2011-12-22 2013-08-01 Toyota Boshoku Corp 植物由来ポリアミド樹脂を用いた熱可塑性樹脂組成物及び成形体
JP2013147645A (ja) 2011-12-22 2013-08-01 Toyota Boshoku Corp 熱可塑性樹脂組成物及びその製造方法
JP2013147647A (ja) 2011-12-22 2013-08-01 Toyota Boshoku Corp 熱可塑性樹脂組成物及びその製造方法
JP2013147648A (ja) 2011-12-22 2013-08-01 Toyota Boshoku Corp 熱可塑性樹脂組成物の製造方法
JP2014025060A (ja) 2012-06-22 2014-02-06 Toyota Central R&D Labs Inc 樹脂組成物
JP2014037642A (ja) 2012-08-14 2014-02-27 Mitsubishi Gas Chemical Co Inc ポリエーテルポリアミド繊維

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3578699A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043137A1 (ja) * 2022-08-25 2024-02-29 株式会社ブリヂストン ハイブリッドコード、ゴム-繊維複合体、及びタイヤ

Also Published As

Publication number Publication date
EP3578699A4 (en) 2021-03-10
KR102137159B1 (ko) 2020-07-23
CN110226000B (zh) 2021-01-15
SG11201906421XA (en) 2019-08-27
JP2018123457A (ja) 2018-08-09
EP3578699A1 (en) 2019-12-11
CN110226000A (zh) 2019-09-10
JP6455534B2 (ja) 2019-01-23
RU2719984C1 (ru) 2020-04-23
US20190382922A1 (en) 2019-12-19
BR112019012147A2 (pt) 2019-11-05
KR20190102290A (ko) 2019-09-03

Similar Documents

Publication Publication Date Title
WO2018143136A1 (ja) 熱可塑性樹脂繊維及びその製造方法並びに布帛
US11046822B2 (en) Modifier, usage therefor, production method for modifier, and carrier for additive material
US10934424B2 (en) Molded body and production method therefor
US11326031B2 (en) Thermoplastic resin sheet, laminated sheet, and molded object
EP3438182B1 (en) Dispersion diameter adjustment method and thermoplastic resin composition
US11118049B2 (en) Modifier and use method thereof, modifier production method and carrier for additive
US11365295B2 (en) Fiber-reinforced resin composition and method of producing the same
US11091616B2 (en) Molded body and production method thereof
US20200283589A1 (en) Fiber-reinforced material and structure
CN111356798A (zh) 基于嵌段共聚物的可伸缩的且抗起球的柔性纺织材料
JP2023502856A (ja) ポリマー充填ポリオレフィン繊維
BR112019012903B1 (pt) Corpo moldado e seu método de produção
BR122022019463B1 (pt) Modificador de resistência de impacto de um corpo moldado, método para uso e produção do mesmo e veículo para um aditivo

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747941

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019012147

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197023943

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018747941

Country of ref document: EP

Effective date: 20190902

ENP Entry into the national phase

Ref document number: 112019012147

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190613