WO2018143000A1 - 排ガス処理システムおよび排ガス処理方法 - Google Patents

排ガス処理システムおよび排ガス処理方法 Download PDF

Info

Publication number
WO2018143000A1
WO2018143000A1 PCT/JP2018/001898 JP2018001898W WO2018143000A1 WO 2018143000 A1 WO2018143000 A1 WO 2018143000A1 JP 2018001898 W JP2018001898 W JP 2018001898W WO 2018143000 A1 WO2018143000 A1 WO 2018143000A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
denitration
exhaust
bag filter
gas treatment
Prior art date
Application number
PCT/JP2018/001898
Other languages
English (en)
French (fr)
Inventor
将利 勝木
鈴木 匠
百目木 礼子
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2018143000A1 publication Critical patent/WO2018143000A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/82Solid phase processes with stationary reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/83Solid phase processes with moving reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes

Definitions

  • the present invention relates to an exhaust gas treatment system and an exhaust gas treatment method for removing harmful substances in exhaust gas discharged from a combustion furnace.
  • FIG. 6 illustrates a waste incineration plant to which a conventional exhaust gas treatment system is connected.
  • the waste incineration plant incinerates waste in the combustion furnace 52.
  • the exhaust gas generated in the combustion furnace 52 is processed by an exhaust gas treatment system 51 connected to the flue of the combustion furnace 52.
  • a conventional exhaust gas treatment system 51 includes a boiler 53 that recovers heat from exhaust gas, an air heater (not shown) and a heat exchanger (not shown), a temperature reducing tower 54 that cools the exhaust gas, a dust remover 55 that removes dust from the exhaust gas, an exhaust gas A reheater 56 for reheating the catalyst, a catalytic reaction tower 57 in which a denitration catalyst is installed, and a chimney 58 are provided.
  • exhaust gas is heat-recovered with the boiler 53, an air heater, and a heat exchanger. Thereafter, the temperature is reduced from 150 ° C. to 180 ° C. by water spraying in the temperature reducing tower 54.
  • dust is removed from the exhaust gas by the dust remover 55, and HCl removal and SO x removal are performed by slaked lime supplied into the exhaust gas upstream of the dust remover 55 as necessary.
  • the dust remover 55 removes dioxins and mercury.
  • the denitration catalyst in the catalytic reaction tower 57 at the rear stage of the dust remover 55 exhibits high catalytic activity at about 200 ° C. to 300 ° C.
  • the exhaust gas emitted from the dust remover 55 needs to be reheated by the reheater 56. There is.
  • NO x in the reheated exhaust gas is reduced and removed by the reducing agent supplied on the upstream side in the presence of the denitration catalyst in the catalytic reaction tower 57.
  • the reducing agent include urea and ammonia.
  • a reducing agent is sprayed into a combustion furnace, and NO x generated by combustion is subjected to a non-catalytic denitration reaction in the furnace with the reducing agent, and an unreacted reducing agent and NO x are provided with a denitration catalyst. Reduced and removed by a denitration reaction tower.
  • the catalytic reaction tower is a tower having a height of about 5 stories, and the construction cost is high.
  • a system in which a catalyst bag filter carrying a denitration catalyst is applied to a dust remover has been proposed.
  • NO x in the exhaust gas, together with a reducing agent, when passing through the catalyst bag filter carrying the denitration catalyst to be reduced and removed, even without re-heater and catalytic reactor can denitrification.
  • the catalyst bag filter carrying the denitration catalyst is subject to acidic ammonium sulfate poisoning at a low temperature and cannot be used stably for a long time.
  • the dust remover needs to be operated at 200 ° C. or lower in order to treat dioxins, but at a low temperature of 200 ° C. or lower, the catalyst is susceptible to acidic ammonium sulfate poisoning.
  • Acid ammonium sulfate poisoning can be slowed by increasing the temperature (for example, about 230 ° C.).
  • the catalytic reaction tower in order to avoid acid ammonium sulfate poisoning, the catalytic reaction tower is arranged behind the catalytic bag filter, and the exhaust gas temperature is raised to 220 ° C.-250 ° C. with a reheater, and then the catalytic reaction tower. Leading to. Although it is very energy efficient to raise the exhaust gas temperature once and then raise it again, the present situation is that the reheater and the catalytic reaction tower cannot be omitted for the above reasons.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a downsized exhaust gas treatment system and an exhaust gas treatment method while reducing the performance deterioration of the denitration catalyst.
  • the exhaust gas treatment system and the exhaust gas treatment method of the present invention employ the following means.
  • the present invention relates to an exhaust gas treatment system for treating exhaust gas containing SO x , NO x and dioxins, a temperature reducing tower having a spray section for spraying water into the exhaust gas, and a sulfur adsorbent on one side of the filter cloth
  • a desulfurization layer in which the denitration catalyst is supported a bag filter having a denitration layer in which a denitration catalyst is supported on the other side of the filter cloth, and a chimney connected downstream of the bag filter without passing through a reheater and a catalytic reaction tower
  • An alkaline powder supply unit that supplies alkaline powder into the exhaust gas on the upper side of the bag filter; an activated carbon supply unit that supplies activated carbon into the exhaust gas on the upper side of the bag filter; and
  • a reducing agent supply unit for supplying a reducing agent into the exhaust gas on the upper stage side, and the bag filter includes the desulfurization layer as the exhaust gas inlet and the denitration layer as the exhaust gas between the temperature reducing tower and the
  • the present invention reduces the temperature of exhaust gas containing SO x , NO x and dioxins to 200 ° C. or lower, supplies alkaline powder, activated carbon and a reducing agent into the exhaust gas, and then arranges sulfur on one side of the filter cloth.
  • the exhaust gas is sequentially passed through a desulfurization layer carrying an adsorbent and a denitration layer carrying a denitration catalyst disposed on the other side of the filter cloth, and from a chimney without passing through a reheater and a catalytic reaction tower.
  • An exhaust gas treatment method for discharging is provided.
  • the alkaline powder supplied in the exhaust gas and neutralize acidic noxious substances (SO x, HCl, etc.), the reaction product is produced. Thus, most of the SO x is removed.
  • the activated carbon supplied in the exhaust gas adsorbs dioxins and mercury. Soot, reaction products and activated carbon are removed from the exhaust gas without passing through the filter cloth when the exhaust gas passes through the bag filter.
  • the filter cloth has a desulfurization layer and a denitration layer.
  • the exhaust gas passes through the bag filter, it enters from the desulfurization layer and exits from the denitration layer.
  • the sulfur component remaining in the exhaust gas is adsorbed by the sulfur adsorbent in the desulfurization layer. Thereby, the exhaust gas after removing the sulfur component can flow to the denitration layer.
  • NO x contained in the exhaust gas is reduced and removed by the reducing agent supplied on the upper stage under the denitration catalyst.
  • Dioxins mainly in gaseous form that have passed through the filter cloth are decomposed and removed by the denitration catalyst.
  • the sulfur component is removed from the exhaust gas before coming into contact with the denitration catalyst to avoid acid ammonium sulfate poisoning of the catalyst, and the denitration treatment with the bag filter with the denitration catalyst that was impossible to realize at low temperature. Is possible. Even when the SO 2 concentration in the exhaust gas is rapidly increased, the performance deterioration of the denitration catalyst can be reduced.
  • desulfurization, denitration, dust removal, dioxins and mercury treatment can be carried out together with a bag filter. Since the bag filter can be denitrated at 200 ° C. or lower, a reheater and a catalytic reaction tower are not required. Thereby, since the exhaust gas processed with the bag filter can be discharged from the chimney without going through the reheater and the catalytic reaction tower, the exhaust gas processing system can be downsized. By omitting the reheater and the catalytic reaction tower, the installation area of about 10% of the entire plant can be reduced as compared with the prior art.
  • a steam heater that uses steam generated in the boiler as a heat source is often used, but since the reheater is not necessary, the steam required for denitration treatment is used for power generation. Available. Thereby, the energy efficiency of the whole plant can be improved.
  • the exhaust gas treatment system according to the present invention can be applied to a coal fired boiler exhaust gas treatment device, an oil fired boiler exhaust gas treatment device, a general waste incineration plant exhaust gas treatment device, an industrial waste incineration plant exhaust gas treatment device, and the like.
  • FIG. 1 is an overall configuration diagram of an exhaust gas treatment system according to the present embodiment.
  • the exhaust gas treatment system 1 in FIG. 1 is connected to a general waste incineration plant (combustion furnace 2).
  • the exhaust gas treatment system 1 includes a boiler 3, a temperature reducing tower 4, a dust remover (bag filter) 5, and a chimney 6.
  • the exhaust gas outlet of the combustion furnace 2 and the lower part of the boiler are connected by a first pipe 7.
  • the upper part of the boiler and the lower part of the temperature reduction tower are connected by a second pipe 8.
  • the upper part of the temperature reducing tower and the lower part of the dust remover are connected by a third pipe 9.
  • an alkaline powder supply unit 10 and a reducing agent supply unit 11 are connected in order from the upstream side.
  • the upper part of the dust remover and the chimney are connected by a fourth pipe 12.
  • the exhaust gas treatment system 1 does not include a reheater and a catalytic reaction tower in the subsequent stage of the dust remover 5.
  • the boiler 3 receives the high-temperature exhaust gas discharged from the combustion furnace 2 through the first pipe 7, and recovers heat from the exhaust gas.
  • the exhaust gas whose heat has been recovered by the boiler 3 is sent to the temperature reducing tower 4 via the second pipe 8.
  • the temperature reducing tower 4 is a device that can reduce the temperature of the exhaust gas to 200 ° C. or lower.
  • the temperature-decreasing tower 4 is provided with a spraying section composed of a water tank 13 in which water is stored and a pump 14.
  • the water tank 13 is connected to the lower part of the temperature reducing tower 4 via a pump 14.
  • the water in the water tank 13 can be sprayed into the temperature reducing tower 4 by the pump 14.
  • the exhaust gas sent from the boiler 3 is cooled to 200 ° C. or less, preferably about 150 ° C. to 200 ° C. by contacting with water.
  • the exhaust gas cooled by the temperature reducing tower 4 is sent to the dust remover 5 through the third pipe 9.
  • the alkaline powder supply unit 10 includes a powder tank (not shown) for storing alkaline powder and a powder supply unit (not shown).
  • the alkaline powder stored in the powder tank can be supplied into the third pipe 9 by the powder supply unit.
  • the powder supply unit includes, for example, a powder cutting device, a blower, and a powder supply nozzle.
  • the powder supply unit cuts out a predetermined amount of powder with a powder cutting device.
  • the cut out powder is supplied to the third pipe 9 by a blower.
  • the exhaust gas passing through the third pipe 9 is brought into contact with the alkaline powder, thereby neutralizing acidic gases such as HCl and SO x contained in the exhaust gas.
  • the reaction product (fly ash) obtained by the neutralization reaction can be collected by filtration with the dust remover 5 at the subsequent stage.
  • Alkaline powder is an alkaline agent such as slaked lime or caustic soda.
  • the supply amount of the alkaline powder can be set by the concentration of acidic gas contained in the exhaust gas.
  • the equivalent ratio is set to about 1 to 3.
  • the equivalent ratio is the ratio of the slaked lime supply amount actually supplied to the theoretical total amount of slaked lime required for the reactions of the following formulas (A) and (B).
  • the equivalent ratio is 1, and when the supply amount is 1/2 of the theoretical required amount, the equivalent ratio is 0.5.
  • the dust remover 5 is a filtration type dust collector (bug filter).
  • the bag filter includes a dust collection container (not shown) and a plurality of filter cloths 15 installed in the dust collection container.
  • the bag filter is a device that collects the dust in the exhaust gas by collecting the dust particles in the particle layer deposited on the surface of the filter cloth 15 when the exhaust gas passes through the filter cloth 15.
  • the bag filter has a desulfurization layer 17 on one surface side of the filter cloth 15 and a denitration layer 18 on the other surface side of the filter cloth 15.
  • the filter cloth 15 is arranged in such a direction that the desulfurization layer 17 serves as an exhaust gas inlet and the denitration layer 18 serves as an exhaust gas outlet.
  • a denitration catalyst 20 is supported on the denitration layer 18.
  • the denitration catalyst 20 is supported on the surface of the filter cloth 15 on the exhaust gas outlet side at 10 g / m 2 or more and 500 g / m 2 or less, preferably 50 g / m 2 or more and 300 g / m 2 or less.
  • the denitration catalyst activity ratio is determined by measuring the denitration rate under exhaust gas conditions that do not contain SO 2 , making this the initial denitration performance, and measuring the denitration rate after elapse of a predetermined time under exhaust gas conditions that contain SO 2. The denitration performance was measured after the elapsed time, and the latter was calculated as the former divided by the former.
  • FIG. 5 shows the results of the catalyst performance evaluation test.
  • the vertical axis represents the (denitrification) catalyst activity ratio
  • the horizontal axis represents the elapsed time (minutes) in which the gas was passed.
  • the catalyst activity ratio is displayed as a standard value based on the catalyst activity at an elapsed time of 0 hour as a reference (1.0).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

脱硝触媒の性能劣化を軽減しつつ、小型化された排ガス処理システムおよび排ガス処理方法を提供することを目的とする。本発明の排ガス処理システム(1)は、SO、NOおよびダイオキシン類を含む排ガス中に水を噴霧する噴霧部を有する減温塔(4)と、ろ布の一面側に硫黄吸着剤が担持された脱硫層、他面側に脱硝触媒が担持された脱硝層を有するバグフィルタ(5)と、再加熱器および触媒反応塔を介さず、バグフィルタ(5)の下流に接続された煙突(6)と、排ガス中にアルカリ性粉体を供給するアルカリ性粉体供給部(10)と、排ガス中に活性炭を供給する活性炭供給部(10)と、排ガス中に還元剤を供給する還元剤供給部(11)と、を備え、減温塔(4)と煙突(6)との間において、バグフィルタ(5)は、脱硫層が排ガス入口、脱硝層が排ガス出口となる向きに配置されている。

Description

排ガス処理システムおよび排ガス処理方法
 本発明は、燃焼炉から排出された排ガス中の有害物質を除去する排ガス処理システムおよび排ガス処理方法に関するものである。
 廃棄物焼却プラント等の燃焼炉から排出される排ガス中には、SO、NO、ダイオキシン類およびHClなどの有害物質が含まれている。排ガス中から有害物質を除去するため、燃焼炉からの排ガスは、排ガス処理システムで処理される。
 図6に、従来の排ガス処理システムが接続された廃棄物焼却プラントを例示する。廃棄物焼却プラントは、燃焼炉52で廃棄物を焼却処理する。燃焼炉52で発生した排ガスは燃焼炉52の煙道に接続された排ガス処理システム51で処理される。従来の排ガス処理システム51は、排ガスから熱を回収するボイラ53、エアヒータ(不図示)および熱交換器(不図示)、排ガスを冷却する減温塔54、排ガスの除塵を行う除塵器55、排ガスを再加熱する再加熱器56、脱硝触媒が設置された触媒反応塔57および煙突58を備えている。
 図6において、排ガスは、ボイラ53、エアヒータおよび熱交換器で熱回収される。その後、減温塔54で水噴霧により150℃から180℃程度に冷却される。次いで除塵器55にて排ガスの除塵が行われるとともに、必要に応じて除塵器55の上流側で排ガス中に供給された消石灰によりHCl除去、SO除去が行われる。消石灰とともに活性炭を供給すると除塵器55でダイオキシン類、及び水銀の除去が行われる。
 除塵器55の後段にある触媒反応塔57内にある脱硝触媒は200℃から300℃程度で高い触媒活性を示すため、除塵器55から出た排ガスは、再加熱器56にて再加熱する必要がある。
 再加熱された排ガス中のNOは、触媒反応塔57において脱硝触媒の存在下、上流側で供給された還元剤により還元除去される。還元剤は、尿素およびアンモニア等である。特許文献1では、還元剤を燃焼炉内に噴霧し、燃焼により生成したNOを還元剤により炉内で無触媒脱硝反応させるとともに、未反応の還元剤およびNOを、脱硝触媒を備えた脱硝反応塔で還元除去している。
特開平6-269634号公報
 従来の排ガス処理システムでは、脱硝、除塵および脱硫処理を個別に実施している。そのため、プラント全体における排ガス処理システムが占める設置面積は非常に大きいという課題がある。
 例えば、触媒反応塔は、5階建て程度の高さの塔であり、建設コストも高い。脱硝のための他の手段として、除塵器に、脱硝触媒を担持した触媒バグフィルタを適用するシステムが提案されている。当該システムでは、排ガス中のNOが、還元剤とともに、脱硝触媒を担持した触媒バグフィルタを通過する際に、還元除去されるため、再加熱器および触媒反応塔がなくても脱硝できる。
 しかしながら、脱硝触媒を担持した触媒バグフィルタは、以下に説明するように、低温では酸性硫安被毒を受け、長期安定的に使用することができないという課題がある。
 排ガス中のSOは、その一部が触媒上でSOになる。SOは、式(1)、式(2)に示すように、除塵器の上流側で吹いたアンモニアと反応して硫安となる。
  2NH+SO+HO→(NHSO・・・(1)
  NH+SO+HO→NHHSO・・・(2)
 除塵器は、ダイオキシン類を処理するために、200℃以下で運転する必要があるが、200℃以下の低温では、触媒が酸性硫安被毒を受けやすい。
 酸性硫安被毒は、温度を高く(例えば230℃程度に)すると、速度を遅らせることができる。従来の排ガス処理システムでは、酸性硫安被毒を回避するために、触媒反応塔を触媒バグフィルタの後ろに配置し、再加熱器にて排ガス温度を220℃-250℃まであげてから触媒反応塔に導いている。排ガス温度を一旦下げた後、再度上昇させるのは非常にエネルギー効率が悪いが、以上のような理由により、再加熱器および触媒反応塔を省略できないのが現状である。
 酸性硫安被毒を回避するために、煙道中の排ガスのSO濃度を計測し、SO濃度に応じて消石灰(中和剤)の量を調整する高度な脱硫制御を実施する方式が提案されている。しかしながら、排ガス中のSO濃度は常に変動しているため、短時間で急激な濃度上昇をする場合には、上記方式では脱硫処理が間に合わず、触媒フィルタが被毒されてしまう。また、非常に低い濃度まで脱硫するには非常に多くの脱硫剤が必要となり、脱硫剤費用や除塵装置での灰処理費用が増加してしまう。
 本発明は、このような事情に鑑みてなされたものであって、脱硝触媒の性能劣化を軽減しつつ、小型化された排ガス処理システムおよび排ガス処理方法を提供することを目的とする。
 上記課題を解決するために、本発明の排ガス処理システムおよび排ガス処理方法は以下の手段を採用する。
 本発明は、SO、NOおよびダイオキシン類を含む排ガスを処理する排ガス処理システムであって、排ガス中に水を噴霧する噴霧部を有する減温塔と、ろ布の一面側に硫黄吸着剤が担持された脱硫層、前記ろ布の他面側に脱硝触媒が担持された脱硝層を有するバグフィルタと、再加熱器および触媒反応塔を介さず、前記バグフィルタの下流に接続された煙突と、前記バグフィルタの上段側で前記排ガス中にアルカリ性粉体を供給するアルカリ性粉体供給部と、前記バグフィルタの上段側で前記排ガス中に活性炭を供給する活性炭供給部と、前記バグフィルタの上段側で前記排ガス中に還元剤を供給する還元剤供給部と、を備え、前記減温塔と前記煙突との間において、前記バグフィルタは、前記脱硫層が排ガス入口、前記脱硝層が排ガス出口となる向きに配置されている排ガス処理システムを提供する。
 本発明は、SO、NOおよびダイオキシン類を含む排ガスを200℃以下に減温し、前記排ガス中にアルカリ性粉体、活性炭および還元剤を供給した後、ろ布の一面側に配置した硫黄吸着剤が担持された脱硫層、および前記ろ布の他面側に配置した脱硝触媒が担持された脱硝層に、前記排ガスを順次通過させ、再加熱器および触媒反応塔を介さず、煙突から排出する排ガス処理方法を提供する。
 上記発明において、排ガス中に供給されたアルカリ性粉体が、酸性有害物質(SO、HCl等)を中和し、反応生成物が生成される。これにより、大部分のSOが除かれる。
 排ガス中に供給された活性炭は、ダイオキシン類や水銀を吸着する。ばいじん、反応生成物および活性炭は、排ガスがバグフィルタを通過する際に、ろ布を通過できずに排ガス中から除去される。
 ろ布は脱硫層および脱硝層を備えている。排ガスは、バグフィルタを通過する際、脱硫層から入り、脱硝層から抜け出る。排ガスにはアルカリ性粉体と反応しなかったSOが数10ppm程度残留している場合がある。上記発明において、排ガスに残留していた硫黄成分は、脱硫層において硫黄吸着剤に吸着される。これにより、硫黄成分を取り切った後の排ガスを脱硝層へと流すことができる。
 脱硝層では、脱硝触媒下、排ガスに含まれるNOが上段側で供給された還元剤により還元除去される。ろ布を通過したガス状が主となるダイオキシン類は、脱硝触媒により分解除去される。
 上記発明によれば、脱硝触媒に接触する前に排ガスから硫黄成分を除去することで、触媒の酸性硫安被毒を回避し、低温では実現不可能であった脱硝触媒付きバグフィルタでの脱硝処理が可能となる。排ガス中のSO濃度が急激に上昇した場合であっても、脱硝触媒の性能劣化を軽減できる。
 上記発明によれば、脱硫、脱硝、除塵およびダイオキシン類、水銀処理をバグフィルタで一緒に実施できる。バグフィルタでは200℃以下で脱硝処理が可能なため、再加熱器および触媒反応塔が不要となる。これにより、バグフィルタで処理した排ガスを再加熱器および触媒反応塔を介さずに煙突から排出できるため、排ガス処理システムを小型化できる。再加熱器および触媒反応塔を省略することで、従来よりも、プラント全体の1割程度の設置面積を減らせる。
 排ガスの再加熱には、ボイラで生成した蒸気を熱源とした蒸気式加熱器が用いられることが多いが、再加熱器が不要となることで、脱硝処理するために必要としていた蒸気を発電に利用できる。これにより、プラント全体のエネルギー効率を向上させられる。
 本発明は、脱硝層の上流側に脱硫層を設けたバグフィルタを用いることで、脱硝触媒の性能劣化を軽減しつつ、小型化された排ガス処理システムおよび排ガス処理方法を実現できる。
本発明の一実施形態に係る排ガス処理システムの全体構成図である。 ろ布の概略縦断面図である。 図2のA部分の拡大図である。 脱硝触媒の性能評価試験条件を示す図である。 触媒性能評価試験の結果を示すグラフである。 従来の排ガス処理システムの全体構成図である。
 本発明に係る排ガス処理システムは、石炭焚ボイラ排ガス処理装置、油焚ボイラ排ガス処理装置、一般廃棄物焼却プラント排ガス処理装置、および産業廃棄物焼却プラント排ガス処理装置等に適用されうる。
 図1は、本実施形態に係る排ガス処理システムの全体構成図である。図1の排ガス処理システム1は、一般廃棄物焼却プラント(燃焼炉2)に接続されている。排ガス処理システム1は、ボイラ3、減温塔4、除塵器(バグフィルタ)5および煙突6を備えている。
 燃焼炉2の排ガス出口とボイラ下部とは第1配管7で接続されている。ボイラ上部と減温塔下部とは第2配管8で接続されている。減温塔上部と除塵器下部とは第3配管9で接続されている。第3配管9の途中には、上流側から順にアルカリ性粉体供給部10および還元剤供給部11が接続されている。除塵器上部と煙突とは第4配管12で接続されている。排ガス処理システム1は、除塵器5の後段に再加熱器および触媒反応塔を備えていない。
 燃焼炉2は、種々のものを燃焼させる装置である。燃焼炉2は、例えばバーナ2aを有し、炉内での燃焼反応により高温の排ガスを発生する。燃焼炉2から排出される排ガスは、ダイオキシン類(DXNs)、窒素酸化物(NO)、硫黄酸化物(SO)、塩化水素(HCl)等を含む。
 ボイラ3は、燃焼炉2から排出された高温の排ガスを、第1配管7を介して受け入れ、該排ガスから熱を回収する。ボイラ3で熱を回収された排ガスは、第2配管8を介して減温塔4に送られる。
 減温塔4は、排ガス温度を200℃以下に減温できる装置である。減温塔4は、水が貯留された水タンク13およびポンプ14で構成された噴霧部を備えている。水タンク13は、減温塔4の下部にポンプ14を介して接続されている。水タンク13の水は、ポンプ14により減温塔4内に噴霧されうる。ボイラ3から送られた排ガスは水と接触することで、200℃以下、好ましくは150℃~200℃程度に冷却される。減温塔4で冷却された排ガスは、第3配管9を介して除塵器5に送られる。
 アルカリ性粉体供給部10は、アルカリ性粉体を貯留する粉体タンク(不図示)および粉体供給部(不図示)を備えている。粉体タンクに貯留されたアルカリ性粉体は、粉体供給部により第3配管9内に供給されうる。
 粉体供給部は、例えば、粉体切り出し装置、ブロワ、粉体供給ノズルで構成される。紛体供給部は、粉体切り出し装置で所定量の粉体を切出す。切り出した粉体はブロワにより第3配管9に供給される。第3配管9内を通る排ガスはアルカリ性粉体と接触することで、排ガス中に含まれるHClおよびSO等の酸性ガスを中和する。中和反応により得られた反応生成物(飛灰)は、後段の除塵器5でろ過作用により集塵されうる。
 アルカリ性粉体は、消石灰、苛性ソーダ等のアルカリ性薬剤である。アルカリ性粉体の供給量は、排ガスに含まれる酸性ガス濃度により設定されうる。例えば、アルカリ性粉体として消石灰を使用した場合には、当量比は1~3程度に設定される。ここで当量比とは、下記の(A)式と(B)式の反応に必要である消石灰の理論的な合計量に対する実際に供給する消石灰供給量の比である。供給量が理論的な必要量と等しい場合には当量比が1であり、供給量が理論的な必要量の1/2の場合には当量比が0.5である。
 排ガス中の塩化水素(HCl)に対して消石灰(Ca(OH))を吹き込んで反応させ除去する際の反応は、次のとおりである。
  HCl+1/2Ca(OH)→1/2CaCl+HO・・・(A)
 1モルのHClと反応するのに理論的に必要な消石灰は0.5モルである。
 排ガス中の二酸化硫黄(SO)に対して消石灰(Ca(OH))を吹き込んで反応させ除去する際の反応は、次のとおりである。
  SO+Ca(OH)+1/2O→CaSO+HO・・・(B)
 1モルのSOと反応するのに理論的に必要な消石灰は1モルである。
 本実施形態においてアルカリ性粉体供給部10は、活性炭供給部を兼ねるものとする。すなわち、アルカリ性粉体供給部10は、アルカリ性粉体とともに活性炭を第3配管9内に供給する。活性炭は、排ガスと接触することで、排ガス中のダイオキシンおよび水銀を吸着除去できる。さらに、アルカリ性粉体供給部10は、珪藻土等の目詰まり防止剤を第3配管9内に噴霧するものであってもよい。これにより後段の除塵器5のろ布15の目詰まりを抑制できる。
 還元剤供給部11は、還元剤を貯留する還元剤タンク(不図示)およびポンプ(不図示)を備えている。還元剤タンクに貯留された還元剤は、ポンプを介して第3配管9内に噴霧されうる。還元剤は、尿素水、アンモニア水、アンモニアガス等である。尿素水は、排ガス中に供給されると分解され、アンモニアガスを発生する。アンモニア水は、排ガス中に供給されると分解されアンモニアガスを発生する。
 還元剤は、脱硝触媒下で排ガスに含まれるNOと反応し、Nに還元させる。脱硝反応を式(3)~(5)に示す。
  4NO+4NH+O→4N+6HO・・・(3)
  2NO+4NH+O→3N+6HO・・・(4)
  NO+NO+2NH→2N+3HO・・・(5)
 除塵器5は、ろ過式集塵器(バグフィルタ)である。バグフィルタは、集塵容器(不図示)および集塵容器内に設置された複数のろ布15を備えている。バグフィルタは、排ガスがろ布15を通過する際、ろ布15の表面に堆積した粒子層で排ガス中のばいじんを捕集し、払落しにより回収する装置である。
 図2は、本実施形態に係るろ布の概略縦断面図である。図3は、図2のA部分の拡大図である。本実施形態において、ろ布15は筒状体である。筒状体は、一端bが閉じられており、他端には開口部16を有する。除塵器5は、排ガスGが、筒状体の外表面側dから内表面側cへと流れるよう配置されている。すなわち、筒状体の外表面側d(ダーティサイド)が排ガス入口、筒状体の内表面側c(クリーンサイド)が排ガス出口となる。ろ布15を通過した排ガスGは、筒状体他端の開口部16を通り、再加熱器および触媒反応塔を介さず、第4配管12により煙突へと排出される。
 図3に示すように、バグフィルタは、ろ布15の一面側に脱硫層17、ろ布15の他面側に脱硝層18を有する。集塵容器内において、ろ布15は、脱硫層17が排ガス入口、脱硝層18が排ガス出口となる向きに配置されている。
 脱硫層17には、硫黄吸着剤19が担持されている。硫黄吸着剤19は、ろ布15の排ガス入口側の面に、10g/m以上300g/m以下、好ましくは、50g/m以上200g/m以下で担持させる。
 硫黄吸着剤19は、Fe系、Ni系、Zn系、およびCu系の脱硫剤である。Fe系は、例えばFeO、Fe等である。Ni系、Zn系、およびCu系とは、それぞれNi、Zn、Cu元素からなる単体または化合物を含む脱硫剤のことである。Ni系脱硫剤は、例えば、Ni、NiOまたはそれらをAl、Si、Ti、Mg、Ca、Zr、Ce、Laのうち少なくとも一種を含む金属または酸化物に担持および含有させたもの等である。Zn系は、例えばZnOである。Cu系は、例えば、CuまたはCuO等である。Zn系およびCu系は、必要に応じて上記金属および酸化物にZn、Al、Si、Ni、Fe、Cr等の少なくとも一種を含有させてもよい。一例として、Cu、Si、Alを含む硫黄吸着剤とした場合には、質量比でCu:Si:Al=1~10:0~50:0~95となる。
 脱硝層18には、脱硝触媒20が担持されている。脱硝触媒20は、ろ布15の排ガス出口側の面に、10g/m以上500g/m以下、好ましくは、50g/m以上300g/m以下で担持させる。
 脱硝触媒20は、チタン(Ti)、シリコン(Si)、アルミニウム(Al)から選ばれる少なくとも一種以上の元素を含む単一又は複合酸化物からなる担体と、バナジウム(V)、タングステン(W)、モリブデン(Mo)の酸化物のうち少なくとも一種類の酸化物からなる活性成分とからなる触媒である。
 担体としては、少なくとも酸化チタンを用いることが好ましい。
 活性成分としては、少なくともバナジウム酸化物(V、x=4~5)を用いることが好ましい。上記活性成分はいずれも酸化能力を有し、ダイオキシンを酸化分解でき、還元剤存在下で窒素酸化物を還元できる。バナジウム酸化物はそれらの能力が特に優れる。
 排ガス浄化用触媒の組成は特に制限されない。少なくとも、担体として酸化チタン、活性成分としてバナジウム酸化物を含み、必要に応じて、タングステン酸化物(WO、x=2~3)を含む場合には、質量比で、酸化チタン:バナジウム酸化物:タングステン酸化物=99~90:1~10:0~5であることが好ましい。
 硫黄吸着剤19および脱硝触媒20は、スプレーノズルによって、ろ布表面に担持(塗布)されうる。例えば、筒状体をつりさげた状態で、1つのスプレーノズルを外表面側に向け、別のスプレーノズルを内表面側に向けて、それぞれ配置し、各スプレーノズルを筒状体の軸方向に移動させて硫黄吸着剤19および脱硝触媒20を噴霧するとよい。噴霧前に、硫黄吸着剤19および脱硝触媒20の各濃度が一定になるよう濃度調整することで、より均一にろ布15に塗布できる。
(触媒性能評価試験)
 上記実施形態に記載されたバグフィルタのろ布を用いて、脱硝触媒の性能評価試験を実施した。ろ布(直径約60mm)は、外表面側に硫黄吸着剤(130g/m)、内表面側に脱硝触媒(137g/m)を担持させたものを用いた(実施例)。上記ろ布に、温度200℃、ろ過速度0.8m/minで、所定時間、図4に記載の排ガスを通過させた。
 脱硝触媒活性比は、SOを含まない排ガス条件で脱硝率を計測して、これを初期脱硝性能とし、SOを含む排ガス条件で所定時間経過後の脱硝率を計測して、これを所定経過時間後脱硝性能とし、後者を前者で割ったものとして算出した。
 比較例として、脱硝触媒のみを担持したろ布(直径約60mm)を用いて、同様に脱硝触媒の性能を評価した。脱硝触媒は、(260g/m)とした。
 図5に、触媒性能評価試験の結果を示す。同図において、縦軸は(脱硝)触媒活性比、横軸はガスを流した経過時間(分)である。触媒活性比は、経過時間0時間の触媒活性を基準(1.0)とした規格値で表示する。
 図5によれば、脱硝触媒のみを担持させたろ布の脱硝触媒活性比は、1000時間経過した時点で、初期値の6割程度まで低下し、2000時間経過後には5割以下となった。一方、外表面側に脱硫層、内表面側に脱硝層を担持させたろ布の脱硝触媒活性は、1000時間経過した時点で、初期値の7割を維持し、2000時間経過した後も6割以上であった。これにより、脱硝層のガス流れ上流側に脱硫層を設けることで、脱硝触媒の性能低下を軽減できることが確認された。
1 排ガス処理システム
2 燃焼炉
3 ボイラ
4 減温塔
5 除塵器(バグフィルタ)
6 煙突
7 第1配管
8 第2配管
9 第3配管
10 アルカリ性粉体供給部
11 還元剤供給部
12 第4配管
13 水タンク
14 ポンプ
15 ろ布
16 開口部
17 脱硫層
18 脱硝層
19 硫黄吸着剤
20 脱硝触媒

Claims (2)

  1.  SO、NOおよびダイオキシン類を含む排ガスを処理する排ガス処理システムであって、
     前記排ガス中に水を噴霧する噴霧部を有する減温塔と、
     ろ布の一面側に硫黄吸着剤が担持された脱硫層、および、前記ろ布の他面側に脱硝触媒が担持された脱硝層を有するバグフィルタと、
     再加熱器および触媒反応塔を介さず、前記バグフィルタの下流に接続された煙突と、
     前記バグフィルタの上段側で前記排ガス中にアルカリ性粉体を供給するアルカリ性粉体供給部と、
     前記バグフィルタの上段側で前記排ガス中に活性炭を供給する活性炭供給部と、
     前記バグフィルタの上段側で前記排ガス中に還元剤を供給する還元剤供給部と、
    を備え、前記減温塔と前記煙突との間において、前記バグフィルタは、前記脱硫層が排ガス入口、前記脱硝層が排ガス出口となる向きに配置されている排ガス処理システム。
  2.  SO、NOおよびダイオキシン類を含む排ガスを200℃以下に減温し、
     前記排ガス中にアルカリ性粉体、活性炭および還元剤を供給した後、
     ろ布の一面側に配置した硫黄吸着剤が担持された脱硫層、および前記ろ布の他面側に配置した脱硝触媒が担持された脱硝層に、前記排ガスを順次通過させ、再加熱器および触媒反応塔を介さず、煙突から排出する排ガス処理方法。
     
PCT/JP2018/001898 2017-02-06 2018-01-23 排ガス処理システムおよび排ガス処理方法 WO2018143000A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017019489A JP2018126674A (ja) 2017-02-06 2017-02-06 排ガス処理システムおよび排ガス処理方法
JP2017-019489 2017-02-06

Publications (1)

Publication Number Publication Date
WO2018143000A1 true WO2018143000A1 (ja) 2018-08-09

Family

ID=63040599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001898 WO2018143000A1 (ja) 2017-02-06 2018-01-23 排ガス処理システムおよび排ガス処理方法

Country Status (2)

Country Link
JP (1) JP2018126674A (ja)
WO (1) WO2018143000A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110003958A (zh) * 2019-04-03 2019-07-12 佛山市莫森环境工程有限公司 一种工业多污染物协同治理超净排放设备
CN111603924A (zh) * 2020-06-20 2020-09-01 辽宁冶金设计研究院有限公司 一种用于不冷凝可燃气体燃烧烟气的净化系统及工艺
CN114618297A (zh) * 2022-04-15 2022-06-14 深圳市凯盛科技工程有限公司 一种烟气处理装置的制造方法、装置及系统
CN116809236A (zh) * 2023-05-23 2023-09-29 国能南京电力试验研究有限公司 电除尘装置安全运行判断方法、装置、系统及锅炉系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109908741A (zh) * 2019-03-21 2019-06-21 上海环保工程成套有限公司 抑制焚烧烟道气中二噁英生成设备及其使用方法
CN110975556A (zh) * 2019-12-16 2020-04-10 东华大学 铝单板涂装废气干湿耦合高级氧化处理方法
JP2023168092A (ja) * 2022-05-13 2023-11-24 三菱重工業株式会社 排ガス処理システム、これを備えている発電設備、および排ガス処理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319488A (ja) * 1998-05-12 1999-11-24 Unitika Ltd 排ガス処理方法および排ガス処理装置
JP2005239905A (ja) * 2004-02-26 2005-09-08 Mitsubishi Heavy Ind Ltd ガス浄化装置及び方法、ガス化システム、ガス化発電システム
JP2008045017A (ja) * 2006-08-14 2008-02-28 Mitsubishi Heavy Ind Ltd ガス浄化装置及び方法、ガス化システム、ガス化発電システム
JP2011062553A (ja) * 2010-12-27 2011-03-31 Takeya Co Ltd パチンコ機
JP2012130854A (ja) * 2010-12-21 2012-07-12 Mitsubishi Heavy Ind Ltd 排ガス処理装置
JP2012130853A (ja) * 2010-12-21 2012-07-12 Mitsubishi Heavy Ind Ltd バグフィルタ及び排ガス処理装置
CN106110850A (zh) * 2016-08-12 2016-11-16 浙江富春江环保热电股份有限公司 一种烟气污染物超低排放系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319488A (ja) * 1998-05-12 1999-11-24 Unitika Ltd 排ガス処理方法および排ガス処理装置
JP2005239905A (ja) * 2004-02-26 2005-09-08 Mitsubishi Heavy Ind Ltd ガス浄化装置及び方法、ガス化システム、ガス化発電システム
JP2008045017A (ja) * 2006-08-14 2008-02-28 Mitsubishi Heavy Ind Ltd ガス浄化装置及び方法、ガス化システム、ガス化発電システム
JP2012130854A (ja) * 2010-12-21 2012-07-12 Mitsubishi Heavy Ind Ltd 排ガス処理装置
JP2012130853A (ja) * 2010-12-21 2012-07-12 Mitsubishi Heavy Ind Ltd バグフィルタ及び排ガス処理装置
JP2011062553A (ja) * 2010-12-27 2011-03-31 Takeya Co Ltd パチンコ機
CN106110850A (zh) * 2016-08-12 2016-11-16 浙江富春江环保热电股份有限公司 一种烟气污染物超低排放系统及方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110003958A (zh) * 2019-04-03 2019-07-12 佛山市莫森环境工程有限公司 一种工业多污染物协同治理超净排放设备
CN110003958B (zh) * 2019-04-03 2021-06-01 佛山市莫森环境工程有限公司 一种工业多污染物协同治理超净排放设备
CN111603924A (zh) * 2020-06-20 2020-09-01 辽宁冶金设计研究院有限公司 一种用于不冷凝可燃气体燃烧烟气的净化系统及工艺
CN114618297A (zh) * 2022-04-15 2022-06-14 深圳市凯盛科技工程有限公司 一种烟气处理装置的制造方法、装置及系统
CN114618297B (zh) * 2022-04-15 2023-11-17 深圳凯盛科技工程有限公司 一种烟气处理装置的制造方法、装置及系统
CN116809236A (zh) * 2023-05-23 2023-09-29 国能南京电力试验研究有限公司 电除尘装置安全运行判断方法、装置、系统及锅炉系统

Also Published As

Publication number Publication date
JP2018126674A (ja) 2018-08-16

Similar Documents

Publication Publication Date Title
WO2018143000A1 (ja) 排ガス処理システムおよび排ガス処理方法
JP6665011B2 (ja) 排ガス処理方法およびシステム
CN101932376B (zh) 废气的处理方法和装置
JP5051977B2 (ja) 排ガス中微量有害物質の除去装置及びその運転方法
US7572420B2 (en) Method for removing mercury in exhaust gas and system therefor
KR101298305B1 (ko) 배기가스 중 미량 유해물질의 제거장치 및 그 운전방법
CN102459833B (zh) 燃烧烟道气nox处理
JP3935547B2 (ja) 排ガス処理方法及び排ガス処理装置
TWI529353B (zh) 保護scr觸媒之系統和方法
JP5961514B2 (ja) 飛灰循環型排ガス処理方法
WO2013088863A1 (ja) 飛灰循環型排ガス処理方法
JP2012130853A (ja) バグフィルタ及び排ガス処理装置
CN102119051A (zh) 废气处理装置及废气处理系统
JP4898751B2 (ja) 排ガス処理装置及び排ガス処理システム
CN102099096B (zh) 废气处理装置及废气处理系统
CN1788827A (zh) 降低烟气脱硝装置出口氨逃逸率的方法
JP2008030017A (ja) 排ガス中微量有害物質の除去装置及びその運転方法
JP6400379B2 (ja) 燃焼排ガスの脱硝方法
JP3491141B2 (ja) 排ガス処理方法および装置
JP2008253877A (ja) 排ガス処理装置及び方法
JP2017018906A (ja) 水銀除去装置および排ガス処理システム
KR100406510B1 (ko) 산화촉매를 이용한 질소산화물 제거장치 및 그 제거방법
JPH11165043A (ja) 廃棄物焼却炉の排ガス処理方法
KR200234632Y1 (ko) 산화촉매를 이용한 질소산화물 제거장치
JP5419400B2 (ja) 排ガス処理装置及び排ガス処理システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18748235

Country of ref document: EP

Kind code of ref document: A1