WO2018142702A1 - 培養支援装置、観察装置、及びプログラム - Google Patents

培養支援装置、観察装置、及びプログラム Download PDF

Info

Publication number
WO2018142702A1
WO2018142702A1 PCT/JP2017/040066 JP2017040066W WO2018142702A1 WO 2018142702 A1 WO2018142702 A1 WO 2018142702A1 JP 2017040066 W JP2017040066 W JP 2017040066W WO 2018142702 A1 WO2018142702 A1 WO 2018142702A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
event
unit
image
learning
Prior art date
Application number
PCT/JP2017/040066
Other languages
English (en)
French (fr)
Inventor
哲也 小池
聡志 高橋
泰次郎 清田
俊二 渡辺
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to EP17895201.6A priority Critical patent/EP3578633A4/en
Priority to JP2018565941A priority patent/JP7501993B2/ja
Publication of WO2018142702A1 publication Critical patent/WO2018142702A1/ja
Priority to US16/519,560 priority patent/US11640664B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M37/00Means for sterilizing, maintaining sterile conditions or avoiding chemical or biological contamination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/46Means for regulation, monitoring, measurement or control, e.g. flow regulation of cellular or enzymatic activity or functionality, e.g. cell viability
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/24Indexing scheme for image data processing or generation, in general involving graphical user interfaces [GUIs]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30024Cell structures in vitro; Tissue sections in vitro

Definitions

  • the present invention relates to a culture support device, an observation device, and a program.
  • This application claims priority based on Japanese Patent Application No. 2017-015376 filed on January 31, 2017, the contents of which are incorporated herein by reference.
  • techniques for evaluating the culture state of cells are fundamental techniques in a wide range of fields including advanced medical fields such as regenerative medicine and drug screening.
  • advanced medical fields such as regenerative medicine and drug screening.
  • regenerative medicine there is a process for growing and differentiating cells in vitro.
  • it is required to accurately evaluate the culture state of the cells, such as the success or failure of the differentiation of the cells, the presence or absence of canceration or infection of the cells.
  • a method for determining a culture state of a cell by performing image processing on an image obtained by imaging the cell see Patent Document 1.
  • One aspect of the present invention is an image acquisition unit that acquires captured images of cells in culture every predetermined time, the captured image that the image acquisition unit acquires, and event information that indicates an event related to the culture of the cells,
  • a culture support device comprising: a storage control unit that stores information; and a learning unit that learns the relationship between the stored captured image and the event information.
  • One embodiment of the present invention stores a culture container for culturing cells, and maintains a constant temperature chamber capable of maintaining the interior at a predetermined environmental condition, and images the cells contained in the culture container in the constant temperature chamber at predetermined time intervals.
  • An observation device including the imaging device that performs the above-described culture support device.
  • an image acquisition step of acquiring captured images of cells in culture every predetermined time, a captured image acquired in the image acquisition step, and an event related to the culture of the cells are stored in a computer.
  • This is a program for executing a storage control step for storing event information to be shown, and a learning step for learning the relationship between the stored captured image and the event information.
  • FIG. 1 is a block diagram illustrating an overview of an incubator 11 including a culture support apparatus according to an embodiment. Moreover, FIG.2 and FIG.3 is the front view and top view of the incubator 11 of this embodiment. This incubator 11 is an example of an observation apparatus.
  • the incubator 11 includes an upper casing 12 and a lower casing 13. In the assembled state of the incubator 11, the upper casing 12 is placed on the lower casing 13. Note that the internal space between the upper casing 12 and the lower casing 13 is vertically divided by a base plate 14.
  • the temperature-controlled room 15 includes a temperature adjusting device 15a and a humidity adjusting device 15b, and the temperature-controlled room 15 is maintained in an environment suitable for cell culture (for example, an atmosphere having a temperature of 37 ° C. and a humidity of 90%) ( Note that illustration of the temperature adjusting device 15a and the humidity adjusting device 15b in FIGS. 2 and 3 is omitted).
  • a large door 16, a middle door 17, and a small door 18 are arranged in front of the temperature-controlled room 15.
  • the large door 16 covers the front surfaces of the upper casing 12 and the lower casing 13.
  • the middle door 17 covers the front surface of the upper casing 12 and isolates the environment between the temperature-controlled room 15 and the outside when the large door 16 is opened.
  • the small door 18 is a door for carrying in and out a culture vessel 19 for culturing cells, and is attached to the middle door 17. It is possible to suppress environmental changes in the temperature-controlled room 15 by carrying the culture container 19 in and out of the small door 18.
  • the large door 16, the middle door 17, and the small door 18 are kept airtight by the packing SL1, the packing SL2, and the packing SL3, respectively.
  • Examples of operations for opening these doors include “medium replacement”, “passage”, and “cleaning”.
  • the type of these operations is selected according to the culture state of the cells. In the following description, these operations are collectively referred to as “events”.
  • the “event” includes work performed without opening the door, nothing to be done, and cell culture suspension.
  • medium exchange refers to exchanging all or part of the medium in the culture container with a new medium.
  • passaging refers to collecting the proliferated cells and reseeding them in another culture vessel.
  • “Cleaning” means cleaning the inside of the incubator. Cleaning includes disinfection of the incubator surface and sterilization of water necessary for maintaining the humidity in the incubator.
  • a stocker 21, an observation unit 22, a container transport device 23, and a transport base 24 are arranged in the temperature-controlled room 15, a stocker 21, an observation unit 22, a container transport device 23, and a transport base 24 are arranged.
  • the conveyance stand 24 is disposed in front of the small door 18, and carries the culture container 19 in and out of the small door 18.
  • the stocker 21 is arranged on the left side of the temperature-controlled room 15 when viewed from the front surface of the upper casing 12 (the lower side in FIG. 3).
  • the stocker 21 has a plurality of shelves, and each shelf of the stocker 21 can store a plurality of culture vessels 19.
  • Each culture container 19 contains cells to be cultured together with a medium.
  • the observation unit 22 is arranged on the right side of the temperature-controlled room 15 when viewed from the front of the upper casing 12.
  • the observation unit 22 can execute time-lapse observation of cells in the culture vessel 19.
  • the time-lapse observation is a technique for observing a change in a time series of a sample by imaging the sample at a predetermined time based on a preset imaging schedule.
  • the imaging of the sample may be performed at regular time intervals or at different time intervals.
  • the observation unit 22 is fitted into the opening of the base plate 14 of the upper casing 12 and arranged.
  • the observation unit 22 includes a sample stage 31, a stand arm 32 projecting above the sample stage 31, and a main body portion 33 containing a microscopic optical system for phase difference observation and an imaging device 34.
  • the sample stage 31 and the stand arm 32 are disposed in the temperature-controlled room 15, while the main body portion 33 is accommodated in the lower casing 13.
  • the sample stage 31 is made of a translucent material, and the culture vessel 19 can be placed thereon.
  • the sample stage 31 is configured to be movable in the horizontal direction, and the position of the culture vessel 19 placed on the upper surface can be adjusted.
  • the stand arm 32 includes an LED light source 35.
  • the imaging device 34 can acquire the microscope image of a cell by imaging the cell of the culture container 19 permeate
  • the container transport device 23 is disposed in the center of the temperature-controlled room 15 when viewed from the front surface of the upper casing 12.
  • the container transport device 23 delivers the culture container 19 between the stocker 21, the sample table 31 of the observation unit 22, and the transport table 24.
  • the container transport device 23 includes a vertical robot 38 having an articulated arm, a rotary stage 39, a mini stage 36, and an arm unit 37.
  • the rotary stage 39 is attached to the tip of the vertical robot 38 through a rotary shaft 39a so as to be capable of rotating 180 ° in the horizontal direction. Therefore, the rotary stage 39 can make the arm portion 37 face the stocker 21, the sample table 31, and the transport table 24.
  • the mini stage 36 is attached to the rotary stage 39 so as to be slidable in the horizontal direction.
  • An arm part 37 that holds the culture vessel 19 is attached to the mini stage 36.
  • the control device 41 is connected to the temperature adjustment device 15a, the humidity adjustment device 15b, the observation unit 22 and the container transport device 23, respectively.
  • the control device 41 includes a calculation unit 42 and a storage unit 43, and comprehensively controls each unit of the incubator 11 according to a predetermined program.
  • the control device 41 is an example of a culture support device.
  • control device 41 controls the temperature adjustment device 15a and the humidity adjustment device 15b, respectively, to maintain the inside of the temperature-controlled room 15 at a predetermined environmental condition.
  • the control device 41 controls the observation unit 22 and the container transport device 23 based on a predetermined observation schedule, and automatically executes the observation sequence of the culture vessel 19. Furthermore, the control device 41 executes a culture state evaluation process for evaluating the culture state of the cells based on the image acquired in the observation sequence.
  • FIG. 4 is a diagram illustrating an example of an observation operation in the incubator 11 according to the present embodiment.
  • FIG. 4 shows an operation example in which the culture vessel 19 carried into the temperature-controlled room 15 is time-lapse observed according to a registered observation schedule.
  • Step S101 The calculation unit 42 compares the observation schedule of the management data in the storage unit 43 with the current date and time, and determines whether or not the observation start time of the culture vessel 19 has come. When the observation start time is reached (YES side), the calculation unit 42 shifts the process to S102. On the other hand, when it is not the observation time of the culture vessel 19 (NO side), the calculation unit 42 waits until the time of the next observation schedule.
  • Step S102 The computing unit 42 instructs the container transport device 23 to transport the culture container 19 corresponding to the observation schedule. Then, the container transport device 23 carries the instructed culture container 19 out of the stocker 21 and places it on the sample stage 31 of the observation unit 22. Note that, when the culture vessel 19 is placed on the sample stage 31, an entire observation image of the culture vessel 19 is captured by a bird view camera (not shown) built in the stand arm 32.
  • Step S103 The computing unit 42 instructs the observation unit 22 to take a microscopic image of a cell.
  • the observation unit 22 turns on the LED light source 35 to illuminate the culture vessel 19 and drives the imaging device 34 to take a microscopic image of the cells in the culture vessel 19.
  • the imaging device 34 captures a microscope image based on the imaging conditions (magnification of the objective lens, observation point in the container) designated by the user. For example, when observing a plurality of points in the culture container 19, the observation unit 22 sequentially adjusts the position of the culture container 19 by driving the sample stage 31 and picks up a microscope image at each point.
  • the microscopic image data acquired in S103 is read by the control device 41 and recorded in the storage unit 43 under the control of the calculation unit 42.
  • Step S104 The computing unit 42 instructs the container transport device 23 to transport the culture container 19 after the observation schedule is completed. Then, the container transport device 23 transports the designated culture container 19 from the sample stage 31 of the observation unit 22 to a predetermined storage position of the stocker 21. Thereafter, the calculation unit 42 ends the observation sequence and returns the process to S101.
  • the time-series image data observed by the incubator 11 is stored in the storage unit 43 by the procedure described above.
  • obtaining time-series image data by the incubator 11 is also referred to as time-lapse imaging.
  • FIG. 5 is a diagram illustrating an example of a functional configuration of the control device 41 according to the present embodiment.
  • the control device 41 includes the calculation unit 42 and the storage unit 43.
  • the calculation unit 42 includes an image acquisition unit 421, a display control unit 422, an operation detection unit 423, a storage control unit 424, and a learning unit 425 as functional units.
  • the storage unit 43 includes an image storage unit 431, an implementation event storage unit 432, a culture result storage unit 433, and a learning result storage unit 434.
  • the image acquisition unit 421 acquires the image P from the imaging device 34.
  • the image P is an image in which cells in culture are imaged, for example, every predetermined time based on an imaging schedule.
  • the image acquisition unit 421 adds the imaging date / time information DT indicating the imaging date / time to be stored in the image storage unit 431.
  • FIG. 6 is a diagram illustrating an example of the image P stored in the image storage unit 431 according to the present embodiment.
  • the imaging device 34 captures an image at each time of time t0, time t1, time t2, ... time tn.
  • the image P0 is an image captured at time t0.
  • the image acquisition unit 421 acquires the image P0 from the imaging device 34 at time t0, the image acquisition unit 421 adds the imaging date / time information DT indicating the time t0 and stores the image P0 in the image storage unit 431.
  • the image acquisition unit 421 adds the imaging date / time information DT to each image P and stores it in the image storage unit 431.
  • the display control unit 422 controls the screen display of the display unit 44. Specifically, the display control unit 422 displays the image P stored in the image storage unit 431 and event candidates related to the image P on the display unit 44. An example of a screen displayed on the display unit 44 will be described with reference to FIG.
  • FIG. 7 is a diagram illustrating an example of a screen displayed on the display unit 44 of the present embodiment.
  • the display unit 44 displays the image P and event candidates related to the image P.
  • image P1 at time t1 is displayed on the display unit 44 as the image P.
  • the display unit 44 displays “medium replacement”, “passage”, and “cleaning” as candidates for events related to the image P1.
  • the culture vessel 19 is removed from the incubator 11 and the culture medium is removed. Perform replacement work.
  • the observer selects “medium exchange” as the implementation event.
  • the selection of the event to be performed may be before the event is actually performed or after the event is actually performed. Note that the number of events selected is not limited to one, and may be two or more.
  • the operation unit 45 includes a touch panel, a mouse, a keyboard, or the like.
  • the observer operates the operation unit 45 to select an implementation event.
  • the observer operates the operation unit 45 to select “medium replacement” as an execution event.
  • the mode in which the event to be selected is stored in advance has been described.
  • the present invention is not limited to this.
  • the observer may add a new event to the candidate using the operation unit 45 or the like. If there are unnecessary events among the displayed event candidates, the observer may delete the unnecessary events from the candidates using the operation unit 45 or the like.
  • the operation detection unit 423 detects an operation on the operation unit 45. When detecting an operation, the operation detection unit 423 generates event information EV corresponding to the operation. In the above example, when the observer performs an operation of selecting “medium replacement” on the operation unit 45, the operation detection unit 423 detects that “medium replacement” is selected as the execution event. The operation detection unit 423 generates event information EV indicating “medium replacement”.
  • the storage control unit 424 controls the writing of information to the storage unit 43. Specifically, the storage control unit 424 associates the image acquired by the image acquisition unit 421 with event information EV indicating an event related to cell culture at the timing when the image is captured, and stores the event in the execution event storage unit 432.
  • event information EV indicating an event related to cell culture at the timing when the image is captured
  • An image P1 is displayed on the display unit 44.
  • This image P1 is an image captured at time t1.
  • “timing when the image P1 is captured” is time t1.
  • Imaging date / time information DT indicating the time t1 is attached to the image P1.
  • the operation detection unit 423 When the observer looks at the image P1 and selects “medium replacement” from the event candidates, the operation detection unit 423 generates event information EV indicating “medium replacement”.
  • the timing at which the image is taken that is, the event related to cell culture at time t1, is “medium exchange”.
  • the operation detection unit 423 generates event information EV indicating “medium exchange” as an event related to cell culture at the timing when an image is captured.
  • the storage control unit 424 attaches the shooting date / time information DT attached to the image P1 to the event information EV generated by the operation detection unit 423 and causes the execution event storage unit 432 to store the information.
  • the storage control unit 424 may store the event information EV by adding information regarding the date and time when the event was performed.
  • the event information EV includes information related to the date and time when the event was performed.
  • the storage control unit 424 stores an image acquired by the image acquisition unit 421 in association with event information EV indicating an event related to cell culture at the timing when the image is captured. If “do nothing” is selected as the event, the storage control unit 424 may store event information indicating “do nothing” in association with the image, or select a specific event. It may be considered that the event information indicating “do nothing” is not stored.
  • the storage control unit 424 may add imaging date / time information DT to the image P. That is, the storage control unit 424 may further store information regarding the date and time when the image P is captured.
  • the storage control unit 424 may store the imaging date / time information DT and the event information EV in association with each other when storing the imaging date / time information DT.
  • the learning unit 425 learns the relationship between the image stored in the image storage unit 431 and the event information EV associated with the image.
  • the learning unit 425 learns the relevance between these pieces of information using various known methods.
  • the learning unit 425 learns the relationship between the image P1 and the event information EV indicating “medium change”. For example, the learning unit 425 learns that “medium replacement” has been performed in the cell state indicated by the image P1. That is, the learning unit 425 learns in what kind of cell state “medium exchange” is performed.
  • the learning result is stored in the learning result storage unit 434.
  • the learning unit 425 accumulates learning to obtain, as a learning result, for example, whether or not it is appropriate to perform “medium exchange” in the state of the image P1 and whether or not the timing of “medium exchange” is appropriate. .
  • the learning unit 425 may learn in consideration of the amount of change between the state of the cell of the image P0 imaged at time t0 and the state of the cell of the image P1 imaged at time t1. That is, you may learn using the image imaged at the time before the time when the image P1 was imaged. Further, the learning is not limited to this, and learning may be performed in consideration of the amount of change between the cell state of the image P2 imaged at time t2 and the cell state of the image P1 imaged at time t1.
  • the learning unit 425 causes the learning result storage unit 434 to store the obtained learning result.
  • candidate events to be performed in the cell state indicated by the image P1 are also obtained as learning results.
  • the learning unit 425 generates candidate event information EVC indicating event candidates to be executed.
  • the learning unit 425 stores the generated candidate event information EVC in the learning result storage unit 434.
  • the learning unit 425 learns “medium replacement”, “passage”, or “cleaning” as a candidate event to be performed in the cell state indicated by the image P1. Note that the learning unit 425 may learn using deep learning.
  • Deep learning is machine learning using a neural knit work having an input layer, an intermediate layer, and an output layer in which the intermediate layer is a multilayer (deep neural network).
  • deep learning it may be possible to extract feature quantities that cannot be recognized by human observation, which is suitable for evaluating the state of cells in culture.
  • the candidate presentation unit 426 presents the “candidate event” shown in FIG.
  • the candidate presentation unit 426 may present the candidate event based on the learning result by the learning unit 425, or may present the candidate event without being based on the learning result by the learning unit 425.
  • the presentation is described as being displayed on the display unit 44 as illustrated in FIG. 7, but is not limited thereto, and may be output to another device, for example.
  • the candidate presenting unit 426 acquires “candidate event” from the storage unit 43.
  • candidate event information EVC stored in the storage unit 43 will be described with reference to FIG.
  • FIG. 8 is a diagram illustrating an example of candidate event information EVC according to the present embodiment.
  • the candidate event information EVC events are divided into hierarchies. In this example, the events are divided into three layers. As an example shown in FIG. 8, the event (level 1) includes “medium replacement”, “passaging”, “cleaning”,. Events (layer 2) for “medium replacement” include “Immediate execution”, “Perform after a predetermined time”, and so on.
  • the information of the observer who performs each event may also be displayed as event information.
  • the candidate presentation unit 426 outputs the acquired candidate event information EVC to the display control unit 422. As a result, as shown in FIG. 7, the display unit 44 displays that “medium replacement”, “passage”, or “cleaning” is a candidate event in the cell state indicated by the image P1.
  • the candidate presenting unit 426 acquires the image P that the display control unit 422 displays on the display unit 44. In the example illustrated in FIG. 7, the display control unit 422 displays the image P ⁇ b> 1 on the display unit 44. In this case, the candidate presentation unit 426 acquires the image P1.
  • the candidate presentation unit 426 matches the acquired image P1 with the candidate event information EVC stored in the learning result storage unit 434 using an existing method.
  • the candidate presentation unit 426 acquires candidate event information EVC that matches the image P1 from the learning result storage unit 434. This candidate event information EVC is a part of the learning result by the learning unit 425.
  • the learning unit 425 learns “medium replacement”, “passage”, or “cleaning” as a candidate event to be performed in the cell state indicated by the image P1.
  • the candidate presentation unit 426 acquires “medium replacement”, “passage”, or “cleaning” as candidate event information EVC corresponding to the image P1.
  • the candidate presentation unit 426 presents a candidate event to be performed based on the learning result by the learning unit 425 and the image acquired by the image acquisition unit 421.
  • the candidate presentation unit 426 presents event candidates to be implemented at the timing when the image acquired by the image acquisition unit 421 is captured among a plurality of event candidates.
  • the candidate presentation unit 426 may present a candidate event to be executed based on the latest image among the plurality of images P stored in the image storage unit 431.
  • the image storage unit 431 stores a plurality of images P captured at predetermined times and having different imaging dates and times.
  • the image acquisition unit 421 acquires the latest image among the plurality of images P stored in the image storage unit 431.
  • the candidate presentation unit 426 presents a candidate event to be executed based on the learning result by the learning unit 425 and the latest image acquired by the image acquisition unit 421.
  • These candidate event information EVC functions as a guide when the observer selects an implementation event when the image P is displayed on the display unit 44.
  • the control device 41 functions as a cell culture support device.
  • the control device 41 can assist the cell culture by reducing the trouble of the observer's event recording when culturing the cells.
  • the learning unit 425 may learn not only the cell culture progress but also the culture result. In this case, the learning unit 425 learns the relationship between the culture result information RT, the image P, and the event information EV. This modification will be described with reference to FIG.
  • FIG. 9 is an example of information stored in the storage unit 43 of the present embodiment.
  • the storage unit 43 stores culture progress and culture results in the culture sequence seq1.
  • images P are captured at time t1, time t2, and time t3.
  • these images P are stored in time series in the image storage unit 431 in association with the imaging date / time information DT.
  • event information EV is associated with each of these images P.
  • “culture medium exchange”, “immediate execution”, and “half quantity exchange” are associated as event information EV with the image P1.
  • the event information EV is stored in the implementation event storage unit 432.
  • information indicating whether the culture is successful or unsuccessful is stored in the culture result storage unit 433 as the culture result information RT.
  • the state of success or failure depends on the purpose of cell culture.
  • An example of the relationship between the purpose of culturing cells and the culture results will be described.
  • (1) In the case of culturing to increase the number of cells The culturing is to increase the number of certain types of cells. In this case, it is successful if the number of cells exceeds a predetermined threshold at the end of the culture sequence.
  • (2) In the case of culture for differentiation induction It is a culture for differentiating from a certain type of cell to a desired type of cell. In this case, if the ratio of the desired number of cells to the total number of cells exceeds a predetermined threshold at the end of the culture sequence, the operation is successful.
  • FIG. 9 shows the state of the culture result storage unit 433 when the culture result in the culture sequence seq1 is “success”.
  • the learning unit 425 learns the relationship between the culture result information RT stored by the storage control unit 424, the image P, and the event information EV.
  • the learning unit 425 can not only set the culture progress as the learning target but also set the culture result as the learning target. For example, when the culture is successful, the learning unit 425 learns the event stored in the execution event storage unit 432 as “appropriate work” for successful culture, and when the culture fails. The event is learned as “inappropriate work”. Alternatively, the time when the event is implemented is learned as “inappropriate time”. Thereby, the candidate presentation unit 426 can present an appropriate event as a candidate event for successful culture. In addition, it is possible to present an appropriate time for implementing the candidate event.
  • “execution after a predetermined time (after 3 hours)” is inappropriate regarding medium replacement
  • “execute after a predetermined time (after 6 hours)” may be presented as an appropriate event. If the success rate of cell culture is expected to be low, the suspension of cell culture can be presented as a candidate event. If the cell culture is stopped at a relatively early stage, unnecessary costs for the culture can be reduced.
  • the candidate presentation unit 426 may present each candidate event with a priority order to be implemented.
  • the learning unit 425 ranks the candidate events based on the culture progress or the culture result.
  • the learning unit 425 stores the ranking result in the learning result storage unit 434 in association with the candidate event information EVC as the evaluation criterion CR.
  • the priority is given to each candidate event according to, for example, the success rate of cell culture, the cell growth rate, and the like.
  • the candidate presenting unit 426 presents the rank among the plurality of candidates based on the evaluation criterion CR associated with the candidate event.
  • the candidate events are ranked and displayed on the display unit 44. That is, the control device 41 can support cell culture by reducing the time and effort of an observer to select an event when culturing cells. It is not necessary to present all of the plurality of candidate events. For example, only candidate events having a predetermined success rate or higher may be presented, and candidate events having a predetermined success rate or less may not be presented. Alternatively, the priority order may not be presented, and for example, only the culture success rate may be presented.
  • the program for performing each process of the observation apparatus 1 or the culture assistance apparatus 10 in embodiment of this invention is recorded on a computer-readable recording medium, and the program recorded on the said recording medium is read into a computer system.
  • the above-described various processes may be performed by executing the process.
  • the “computer system” referred to here may include an OS and hardware such as peripheral devices. Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
  • the “computer-readable recording medium” means a flexible disk, a magneto-optical disk, a ROM, a writable nonvolatile memory such as a flash memory, a portable medium such as a CD-ROM, a hard disk built in a computer system, etc. This is a storage device.
  • the “computer-readable recording medium” means a volatile memory (for example, DRAM (Dynamic DRAM) in a computer system that becomes a server or a client when a program is transmitted through a network such as the Internet or a communication line such as a telephone line. Random Access Memory)), etc., which hold programs for a certain period of time.
  • the program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium.
  • the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the program may be for realizing a part of the functions described above. Furthermore, what can implement

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Computer Hardware Design (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Image Analysis (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

培養支援装置は、培養中の細胞の、所定時間毎の撮像画像を取得する画像取得部と、画像取得部が取得する撮像画像と、細胞の培養に関するイベントを示すイベント情報とを記憶させる記憶制御部と、記憶された撮像画像とイベント情報との関連性を学習する学習部とを備える。

Description

培養支援装置、観察装置、及びプログラム
 本発明は、培養支援装置、観察装置、及びプログラムに関する。
 本願は、2017年1月31日に出願された日本国特願2017-015376号に基づき優先権を主張し、その内容をここに援用する。
 一般的に、細胞の培養状態を評価する技術は、再生医療などの先端医療分野や医薬品のスクリーニングを含む幅広い分野での基盤技術となっている。例えば、再生医療分野では、in vitroで細胞を増殖、分化させるプロセスが存在する。そして、上述のプロセスでは、細胞の分化の成否、細胞の癌化や感染の有無などの、細胞の培養状態を的確に評価することが求められる。一例として、細胞が撮像された画像を画像処理することによって、細胞の培養状態を判定する方法が開示されている(特許文献1参照)。
特開2004-229619号公報
 本発明の一態様は、培養中の細胞の、所定時間毎の撮像画像を取得する画像取得部と、前記画像取得部が取得する前記撮像画像と、前記細胞の培養に関するイベントを示すイベント情報とを記憶させる記憶制御部と、記憶された前記撮像画像と前記イベント情報との関連性を学習する学習部と、を備える培養支援装置である。
 本発明の一態様は、細胞を培養する培養容器を収納するとともに、内部を所定の環境条件に維持可能な恒温室と、前記恒温室内で前記培養容器に含まれる前記細胞を所定時間毎に撮像する撮像装置と、上述の培養支援装置とを備える観察装置である。
 本発明の一態様は、コンピュータに、培養中の細胞の、所定時間毎の撮像画像を取得する画像取得ステップと、前記画像取得ステップにおいて取得される前記撮像画像と、前記細胞の培養に関するイベントを示すイベント情報とを記憶させる記憶制御ステップと、記憶された前記撮像画像と前記イベント情報との関連性を学習する学習ステップとを実行させるためのプログラムである。
実施形態による培養支援装置を含むインキュベータの概要を示すブロック図である。 本実施形態のインキュベータの正面図である。 本実施形態のインキュベータの平面図である。 本実施形態のインキュベータでの観察動作の一例を示す図である。 本実施形態の制御装置の機能構成の一例を示す図である。 本実施形態の画像記憶部に記憶される画像の一例を示す図である。 本実施形態の表示部に表示される画面の一例を示す図である。 本実施形態の候補イベント情報の一例を示す図である。 本実施形態の記憶部に記憶される情報の一例である。
 [実施形態]
 以下、図面を参照して、本発明の実施の形態について説明する。図1は、実施形態による培養支援装置を含むインキュベータ11の概要を示すブロック図である。また、図2及び図3は、本実施形態のインキュベータ11の正面図および平面図である。
 このインキュベータ11とは、観察装置の一例である。
 実施形態のインキュベータ11は、上部ケーシング12と下部ケーシング13とを有している。インキュベータ11の組立状態において、上部ケーシング12は下部ケーシング13の上に載置される。なお、上部ケーシング12と下部ケーシング13との内部空間は、ベースプレート14によって上下に仕切られている。
 まず、上部ケーシング12の構成の概要を説明する。上部ケーシング12の内部には、細胞の培養を行う恒温室15が形成されている。この恒温室15は温度調整装置15aおよび湿度調整装置15bを有しており、恒温室15内は細胞の培養に適した環境(例えば温度37℃、湿度90%の雰囲気)に維持されている(なお、図2、図3での温度調整装置15a、湿度調整装置15bの図示は省略する)。
 恒温室15の前面には、大扉16、中扉17、小扉18が配置されている。大扉16は、上部ケーシング12および下部ケーシング13の前面を覆っている。中扉17は、上部ケーシング12の前面を覆っており、大扉16の開放時に恒温室15と外部との環境を隔離する。小扉18は、細胞を培養する培養容器19を搬出入するための扉であって、中扉17に取り付けられている。この小扉18から培養容器19を搬出入することで、恒温室15の環境変化を抑制することが可能となる。なお、大扉16、中扉17、小扉18は、パッキンSL1、パッキンSL2、パッキンSL3によりそれぞれ気密性が維持されている。
 これらの扉を開ける作業としては、「培地交換」「継代」及び「掃除」などがある。これらの作業は、細胞の培養状態に応じてその種類が選択される。以下の説明においては、これらの作業を総称して「イベント」とも記載する。なお、「イベント」には、扉を開けずに行われる作業や、何もしないこと、細胞の培養の中止等も含まれる。
 なお、「培地交換」とは、培養容器内の培地の全部又は一部を新しい培地に交換することである。また、「継代」とは、増殖した細胞を採取して別の培養容器に再播種することである。また、「掃除」とは、インキュベータ内を掃除することである。掃除には、インキュベータ表面の消毒や、インキュベータ内の湿度の維持に必要な水の殺菌等が含まれる。
 また、恒温室15には、ストッカー21、観察ユニット22、容器搬送装置23、搬送台24が配置されている。ここで、搬送台24は、小扉18の手前に配置されており、培養容器19を小扉18から搬出入する。
 ストッカー21は、上部ケーシング12の前面(図3の下側)からみて恒温室15の左側に配置される。ストッカー21は複数の棚を有しており、ストッカー21の各々の棚には培養容器19を複数収納することができる。なお、各々の培養容器19には、培養の対象となる細胞が培地とともに収容されている。
 観察ユニット22は、上部ケーシング12の前面からみて恒温室15の右側に配置される。この観察ユニット22は、培養容器19内の細胞のタイムラプス観察を実行することができる。ここで、タイムラプス観察とは、予め設定されている撮像スケジュールに基づいて、所定の時間毎にサンプルを撮像することにより、サンプルの時系列の変化を観察する手法のことである。サンプルの撮像は一定の時間間隔で行われてよいし、異なる時間間隔で行われてもよい。
 ここで、観察ユニット22は、上部ケーシング12のベースプレート14の開口部に嵌め込まれて配置される。観察ユニット22は、試料台31と、試料台31の上方に張り出したスタンドアーム32と、位相差観察用の顕微光学系および撮像装置34を内蔵した本体部分33とを有している。そして、試料台31およびスタンドアーム32は恒温室15に配置される一方で、本体部分33は下部ケーシング13内に収納される。
 試料台31は透光性の材質で構成されており、その上に培養容器19を載置することができる。この試料台31は水平方向に移動可能に構成されており、上面に載置した培養容器19の位置を調整できる。また、スタンドアーム32にはLED光源35が内蔵されている。そして、撮像装置34は、スタンドアーム32によって試料台31の上側から透過照明された培養容器19の細胞を、顕微光学系を介して撮像することで細胞の顕微鏡画像を取得できる。
 容器搬送装置23は、上部ケーシング12の前面からみて恒温室15の中央に配置される。この容器搬送装置23は、ストッカー21、観察ユニット22の試料台31および搬送台24との間で培養容器19の受け渡しを行う。
 図3に示すように、容器搬送装置23は、多関節アームを有する垂直ロボット38と、回転ステージ39と、ミニステージ36と、アーム部37とを有している。回転ステージ39は、垂直ロボット38の先端部に回転軸39aを介して水平方向に180°回転可能に取り付けられている。そのため、回転ステージ39は、ストッカー21、試料台31および搬送台24に対して、アーム部37をそれぞれ対向させることができる。
 また、ミニステージ36は、回転ステージ39に対して水平方向に摺動可能に取り付けられている。ミニステージ36には培養容器19を把持するアーム部37が取り付けられている。
 次に、下部ケーシング13の構成の概要を説明する。下部ケーシング13の内部には、観察ユニット22の本体部分33や、インキュベータ11の制御装置41が収納されている。
 制御装置41は、温度調整装置15a、湿度調整装置15b、観察ユニット22および容器搬送装置23とそれぞれ接続されている。この制御装置41は、演算部42と、記憶部43とを備えており、所定のプログラムに従ってインキュベータ11の各部を統括的に制御する。この制御装置41とは、培養支援装置の一例である。
 一例として、制御装置41は、温度調整装置15aおよび湿度調整装置15bをそれぞれ制御して恒温室15内を所定の環境条件に維持する。また、制御装置41は、所定の観察スケジュールに基づいて、観察ユニット22および容器搬送装置23を制御して、培養容器19の観察シーケンスを自動的に実行する。さらに、制御装置41は、観察シーケンスで取得した画像に基づいて、細胞の培養状態の評価を行う培養状態評価処理を実行する。
 [観察動作の例]
 次に、図4の流れ図を参照しつつ、インキュベータ11での観察動作の一例を説明する。
 図4は、本実施形態のインキュベータ11での観察動作の一例を示す図である。図4は、恒温室15内に搬入された培養容器19を、登録された観察スケジュールに従ってタイムラプス観察する動作例を示している。
 (ステップS101)演算部42は、記憶部43の管理データの観察スケジュールと現在日時とを比較して、培養容器19の観察開始時間が到来したか否かを判定する。観察開始時間となった場合(YES側)、演算部42はS102に処理を移行させる。一方、培養容器19の観察時間ではない場合(NO側)には、演算部42は次の観察スケジュールの時刻まで待機する。
 (ステップS102)演算部42は、観察スケジュールに対応する培養容器19の搬送を容器搬送装置23に指示する。そして、容器搬送装置23は、指示された培養容器19をストッカー21から搬出して観察ユニット22の試料台31に載置する。なお、培養容器19が試料台31に載置された段階で、スタンドアーム32に内蔵されたバードビューカメラ(不図示)によって培養容器19の全体観察画像が撮像される。
 (ステップS103)演算部42は、観察ユニット22に対して細胞の顕微鏡画像の撮像を指示する。観察ユニット22は、LED光源35を点灯させて培養容器19を照明するとともに、撮像装置34を駆動させて培養容器19内の細胞の顕微鏡画像を撮像する。
 このとき、撮像装置34は、記憶部43に記憶されている管理データに基づいて、ユーザーの指定した撮像条件(対物レンズの倍率、容器内の観察地点)に基づいて顕微鏡画像を撮像する。例えば、培養容器19内の複数のポイントを観察する場合、観察ユニット22は、試料台31の駆動によって培養容器19の位置を逐次調整し、各々のポイントでそれぞれ顕微鏡画像を撮像する。なお、S103で取得された顕微鏡画像のデータは、制御装置41に読み込まれるとともに、演算部42の制御によって記憶部43に記録される。
 (ステップS104)演算部42は、観察スケジュールの終了後に培養容器19の搬送を容器搬送装置23に指示する。そして、容器搬送装置23は、指示された培養容器19を観察ユニット22の試料台31からストッカー21の所定の収納位置に搬送する。その後、演算部42は、観察シーケンスを終了してS101に処理を戻す。
 上述した手順により、インキュベータ11によって観察された時系列の画像データが、記憶部43に記憶される。以下の説明において、インキュベータ11によって時系列の画像データを得ることをタイムラプス撮像ともいう。
 [タイムラプス撮像された画像とイベントとの対応付け機能]
 次に図5から図9を参照して、画像とイベントとの対応付け機能について説明する。
 図5は、本実施形態の制御装置41の機能構成の一例を示す図である。上述したように、制御装置41は、演算部42と記憶部43とを備える。
 演算部42は、画像取得部421と、表示制御部422と、操作検出部423と、記憶制御部424と、学習部425とを、その機能部として備える。
 記憶部43は、画像記憶部431と、実施イベント記憶部432と、培養結果記憶部433と、学習結果記憶部434とを備える。
 画像取得部421は、撮像装置34から、画像Pを取得する。この画像Pとは、培養中の細胞が、撮像スケジュールに基づいて、例えば所定時間毎に、撮像された画像である。
 画像取得部421は、撮像装置34から画像Pを取得すると、撮像日時を示す撮像日時情報DTを付加して、画像記憶部431に記憶させる。
 図6は、本実施形態の画像記憶部431に記憶される画像Pの一例を示す図である。この一例において、撮像装置34は、時刻t0、時刻t1、時刻t2…時刻tnの各時刻において画像を撮像する。例えば、画像P0とは、時刻t0において撮像された画像である。画像取得部421は、時刻t0において画像P0を撮像装置34から取得すると、時刻t0を示す撮像日時情報DTを付加して画像P0を画像記憶部431に記憶させる。画像P1~画像Pnについても同様に、画像取得部421は、それぞれの画像Pに撮像日時情報DTを付加して画像記憶部431に記憶させる。
 図5に戻り、表示制御部422は、表示部44の画面表示を制御する。具体的には、表示制御部422は、画像記憶部431に記憶されている画像Pと、この画像Pに関連するイベントの候補を、表示部44に表示する。表示部44に表示される画面の一例について図7を参照して説明する。
 図7は、本実施形態の表示部44に表示される画面の一例を示す図である。表示部44には、画像Pと、この画像Pに関連するイベントの候補とが表示される。この一例では、表示部44には、画像Pとして「時刻t1における画像P1」が表示される。また、表示部44には、画像P1に関連するイベントの候補として「培地交換」「継代」及び「掃除」が表示される。
 表示部44に表示される画像P1を見た観察者が、画像P1の状態の場合には「培地交換」を行う時期になったと判断した場合には、培養容器19をインキュベータ11から取り出して培地交換作業を行う。この場合、観察者は、実施イベントとして「培地交換」を選択する。実施イベントの選択は、実際にイベントを実施する前であってもよいし、実際にイベントを実施した後でもよい。なお、選択されるイベントは1つに限られず、2つ以上であってもよい。
 操作部45は、タッチパネル、マウス、又はキーボードなどを備えている。観察者は、この操作部45を操作することにより、実施イベントを選択する。上述の一例では、培地交換作業を行った場合、観察者は、操作部45を操作して「培地交換」を実施イベントとして選択する。
 なお、上述の例では、選択されるイベントが予め記憶されている態様について説明したが、これに限られない。表示されるイベントの候補に実施すべきイベントが含まれていない場合は、観察者が、操作部45等を用いて、新たなイベントを候補に追加してもよい。
 また、表示されるイベントの候補に不要なイベントがあれば、観察者が、操作部45等を用いて、不要なイベントを候補から削除してもよい。
 操作検出部423は、操作部45に対する操作を検出する。操作検出部423は、操作を検出すると、この操作に応じたイベント情報EVを生成する。上述の一例において、観察者が操作部45に対して「培地交換」を選択する操作を行った場合、操作検出部423は、「培地交換」を実施イベントとして選択されたことを検出する。操作検出部423は、「培地交換」を示すイベント情報EVを生成する。
 記憶制御部424は、記憶部43に対する情報の書込みを制御する。具体的には、記憶制御部424は、画像取得部421が取得する画像と、画像が撮像されたタイミングにおける細胞の培養に関するイベントを示すイベント情報EVとを対応付けて、実施イベント記憶部432に記憶させる。
 上述の一例において、実施イベント記憶部432に記憶される情報の具体例について説明する。表示部44には画像P1が表示されている。この画像P1とは、時刻t1において撮像された画像である。この場合「画像P1が撮像されたタイミング」とは、時刻t1である。画像P1には、時刻t1を示す撮像日時情報DTが付されている。
 観察者が画像P1を見て、イベントの候補の中から「培地交換」を選択すると、操作検出部423は、「培地交換」を示すイベント情報EVを生成する。この場合、画像が撮像されたタイミング、すなわち時刻t1における細胞の培養に関するイベントとは、「培地交換」である。つまり、操作検出部423は、画像が撮像されたタイミングにおける細胞の培養に関するイベントとして、「培地交換」を示すイベント情報EVを生成する。
 記憶制御部424は、画像P1に付されている撮像日時情報DTを、操作検出部423が生成するイベント情報EVに付して、実施イベント記憶部432に記憶させる。
 また、記憶制御部424は、イベント情報EVに対して、イベントが実施された日時に関する情報を付加して記憶させてもよい。この場合、イベント情報EVには、イベントが実施された日時に関する情報が含まれる。
 すなわち、記憶制御部424は、画像取得部421が取得する画像と、画像が撮像されたタイミングにおける細胞の培養に関するイベントを示すイベント情報EVとを対応付けて記憶させる。
 なお、イベントとして「何もしない」ことが選択された場合、記憶制御部424は、「何もしない」ことを示すイベント情報を画像に対応付けて記憶させてもよいし、特定のイベントが選択されなかったとみなして、「何もしない」ことを示すイベント情報を記憶させないようにしてもよい。
 なお、上述において、画像取得部421が画像Pに対して撮像日時情報DTを付加すると説明したが、これに限られない。記憶制御部424が、画像Pに対して撮像日時情報DTを付加してもよい。つまり、記憶制御部424は、画像Pが撮像された日時に関する情報をさらに記憶させてもよい。また、記憶制御部424は、撮像日時情報DTを記憶させる際に、撮像日時情報DTとイベント情報EVとを対応付けて記憶させてもよい。
 学習部425は、画像記憶部431に記憶されている画像と、この画像に対応付けられているイベント情報EVとの関連性を学習する。学習部425は、種々の既知の手法によって、これらの情報どうしの関連性を学習する。
 上述の一例では、学習部425は、画像P1と、「培地交換」を示すイベント情報EVとの関連性を学習する。例えば、学習部425は、画像P1が示す細胞の状態において「培地交換」が行われたことを学習する。つまり、学習部425は、細胞の状態がどのような場合において「培地交換」がなされているのかを学習する。この学習結果は学習結果記憶部434に記憶される。学習部425は、学習を積み重ねることにより、例えば、画像P1の状態において「培地交換」をすることが適切であったか否か、「培地交換」のタイミングが適切であったか否かなどを学習結果として得る。このとき、学習部425は、時刻t0に撮像された画像P0の細胞の状態と、時刻t1に撮像された画像P1の細胞の状態との変化量も考慮して学習してもよい。つまり、画像P1が撮像された時刻よりも前の時刻に撮像された画像を用いて学習してもよい。また、これに限られず、時刻t2に撮像された画像P2の細胞の状態と、時刻t1に撮像された画像P1の細胞の状態との変化量も考慮して学習してもよい。つまり、画像P1が撮像された時刻よりも後の時刻に撮像された画像を用いて学習してもよい。時系列で得られた画像を用いて学習することにより学習結果の精度をより向上させることができる。学習部425は、得られた学習結果を、学習結果記憶部434に記憶させる。
 この学習部425によって、画像P1が示す細胞の状態において実施すべきイベントの候補も、学習結果として得られる。この場合、学習部425は、実施すべきイベント候補を示す候補イベント情報EVCを生成する。学習部425は、生成した候補イベント情報EVCを学習結果記憶部434に記憶させる。
 例えば、学習部425は、「培地交換」「継代」又は「掃除」を、画像P1が示す細胞の状態において実施すべきイベントの候補として学習する。
 なお、学習部425は、深層学習(ディープラーニング)を用いて学習してもよい。深層学習とは、入力層、中間層、出力層を有するニューラルニットワークにおいて、中間層が多層になったもの(ディープニューラルネットワーク)で機械学習することである。深層学習を用いると、人間による観察では認識できない特徴量をも抽出できる場合があり、培養中の細胞の状態を評価するのに好適である。
 候補提示部426は、図7に示した「候補イベント」を提示する。候補提示部426は、学習部425による学習結果に基づいて候補イベントを提示してもよく、学習部425による学習結果に基づかずに候補イベントを提示してもよい。まず、候補提示部426が学習部425による学習結果に基づかずに候補イベントを提示する場合について説明する。なお、提示とは、図7に示すように表示部44に表示することとして説明するが、これに限られず、例えば、他の装置に出力することであってもよい。
 [学習結果に基づかずに候補イベントを提示する場合]
 候補提示部426は、「候補イベント」を記憶部43から取得する。ここで、記憶部43に記憶される候補イベント情報EVCの一例について図8を参照して説明する。
 図8は、本実施形態の候補イベント情報EVCの一例を示す図である。候補イベント情報EVCにおいては、イベントが階層分けされている。この一例では、イベントは3階層に階層分けされている。
 図8に示す一例として、イベント(階層1)には、「培地交換」「継代」「掃除」…がある。「培地交換」についてのイベント(階層2)には、「すぐ実施」「所定時間後実施」…がある。なお、図示していないが、各イベントを行う観察者の情報もイベント情報として表示されてよい。
 候補提示部426は、取得した候補イベント情報EVCを表示制御部422に出力する。この結果、図7に示すように、表示部44には、画像P1が示す細胞の状態においては「培地交換」「継代」又は「掃除」が候補イベントであることが表示される。
 [学習結果に基づいて候補イベントを提示する場合]
 候補提示部426は、表示制御部422が表示部44に表示する画像Pを取得する。図7に示す一例では、表示制御部422は、画像P1を表示部44に表示する。この場合、候補提示部426は、画像P1を取得する。
 候補提示部426は、取得した画像P1と、学習結果記憶部434に記憶されている候補イベント情報EVCとを、既存の手法によってマッチングさせる。候補提示部426は、画像P1にマッチングした候補イベント情報EVCを、学習結果記憶部434から取得する。この候補イベント情報EVCとは、学習部425による学習結果の一部である。上述した一例では、学習部425は、「培地交換」「継代」又は「掃除」を、画像P1が示す細胞の状態において実施すべきイベントの候補として学習している。候補提示部426は、画像P1に対応する候補イベント情報EVCとして、「培地交換」「継代」又は「掃除」を取得する。
 すなわち、候補提示部426は、学習部425による学習結果と、画像取得部421が取得する画像とに基づいて、実施するイベントの候補を提示する。例えば、候補提示部426は、複数のイベント候補のうち、画像取得部421が取得する画像が撮像されたタイミングにおいて実施すべきイベントの候補を提示する。
 なお、候補提示部426は、画像記憶部431に記憶されている複数の画像Pのうち、最新の画像に基づいて、実施するイベントの候補を提示してもよい。この場合、画像記憶部431には、所定時間毎に撮像された、互いに撮像日時の異なる複数の画像Pが記憶されている。画像取得部421は、画像記憶部431に記憶されている複数の画像Pのうち、最新の画像を取得する。候補提示部426は、学習部425による学習結果と、画像取得部421が取得した最新の画像とに基づいて、実施するイベントの候補を提示する。
 これらの候補イベント情報EVCは、画像Pが表示部44に表示された場合に、観察者が実施イベントを選択する際のガイドとして機能する。候補イベントが表示部44に表示されることにより、ある細胞が画像Pに示される状態である場合においてどのようなイベントを実施すればよいのかが、観察者に対して示される。つまり、制御装置41は、細胞培養の支援装置として機能する。制御装置41は、細胞を培養する際の観察者のイベント記録の手間を低減することにより、細胞培養の支援を行うことができる。
[変形例(1)]
 学習部425は、細胞の培養経過を学習するだけでなく、培養結果の学習を行ってもよい。この場合、学習部425は、培養結果情報RTと、画像P及びイベント情報EVとの関連性を学習する。この変形例について、図9を参照して説明する。
 図9は、本実施形態の記憶部43に記憶される情報の一例である。図9に示す一例では、記憶部43には、培養シーケンスseq1における培養経過及び培養結果が記憶される。この培養シーケンスseq1においては、時刻t1、時刻t2…時刻t3においてそれぞれ画像Pが撮像されている。上述したように、これらの画像Pは、撮像日時情報DTと対応付けられて、画像記憶部431に時系列に記憶されている。
 また、これらの画像Pには、それぞれイベント情報EVが対応付けられている。この一例では、画像P1には、「培地交換」「すぐ実施」「半量交換」がイベント情報EVとして対応付けられている。上述したように、これらのイベント情報EVは、実施イベント記憶部432に記憶されている。
 この培養シーケンスseq1が終了した場合に、培養が成功したのか失敗したのかを示す情報が、培養結果情報RTとして培養結果記憶部433に記憶される。
 どのような状態になれば成功なのか失敗なのか、つまり培養結果は、細胞の培養目的によって決まる。細胞の培養目的と培養結果との関係の一例について説明する。
(1)細胞数を増加させるための培養の場合
 ある種類の細胞の数を増加させるための培養である。この場合には、培養シーケンスの終了時において細胞数が所定のしきい値を超えれば成功である。
(2)分化誘導のための培養の場合
 ある種類の細胞から所望の種類の細胞に分化させるための培養である。この場合には、培養シーケンスの終了時において、全細胞数に対する所望の種類の細胞数の割合が所定のしきい値を超えれば成功である。
 培養が成功又は失敗した場合、観察者は操作部45を操作して、培養結果を示す操作を行う。操作検出部423は、この操作を検出することにより、培養結果情報RTを生成する。
 記憶制御部424は、操作検出部423が生成した培養結果情報RTを培養結果記憶部433に記憶させる。培養シーケンスseq1における培養結果が「成功」であった場合の培養結果記憶部433の状態を図9に示す。
 学習部425は、記憶制御部424が記憶させた培養結果情報RTと、画像P及びイベント情報EVとの関連性を学習する。
 上述のように構成することにより、学習部425は、培養経過を学習対象にするだけでなく培養結果を学習対象にすることができる。例えば、学習部425は、培養が成功した場合には、実施イベント記憶部432に記憶されているイベントを、培養を成功させるための「適切な作業」として学習し、培養が失敗した場合には当該イベントを「不適切な作業」として学習する。または、当該イベントが実施された時刻を「不適切な時刻」として学習する。これにより、候補提示部426は、培養を成功させるために適切なイベントを、候補イベントとして提示することができる。また、候補イベントを実施する適切な時刻を提示することができる。例えば、培地交換に関して「所定時間後(3時間後)実施」が不適切であっと学習した場合に、適切なイベントとして「所定時間後(6時間後)実施」が提示されてよい。
 なお、細胞培養の成功率が低いと見込まれる場合には、細胞の培養の中止を候補イベントとして提示することもできる。比較的初期の段階で細胞の培養を中止すれば、培養にかかる不要なコストを低減することができる。
[変形例(2)]
 候補提示部426は、候補イベントが複数ある場合、各候補イベントについて、実施すべき優先順位を付けて提示してもよい。この場合、学習部425は、培養経過又は培養結果に基づいて候補イベントを順位付けする。学習部425は、順位付けした結果を評価基準CRとして候補イベント情報EVCに対応付けて、学習結果記憶部434に記憶させる。優先順位は、例えば、細胞培養の成功率や、細胞の増殖速度等に応じて各候補イベントに付与される。
 候補提示部426は、学習結果記憶部434に記憶された候補イベントが複数ある場合には、当該候補イベントに対応付けられている評価基準CRに基づいて、複数の候補間の順位を提示する。
 上述のように構成することにより、表示部44には、候補イベントが順位づけされて表示される。つまり、制御装置41は、細胞を培養する際の観察者のイベント選択の手間を低減することにより、細胞培養の支援を行うことができる。なお、複数の候補イベントの全てを提示しなくともよく、例えば、所定の成功率以上の候補イベントのみを提示し、所定の成功率未満の候補イベントは提示しないように構成してもよい。また、優先順位を提示せず、例えば、培養の成功率のみを提示するように構成してもよい。
 なお、本発明の実施形態における観察装置1又は培養支援装置10の各処理を実行するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、当該記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより、上述した種々の処理を行ってもよい。
 なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものであってもよい。また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、フラッシュメモリ等の書き込み可能な不揮発性メモリ、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(例えばDRAM(Dynamic Random Access Memory))のように、一定時間プログラムを保持しているものも含むものとする。また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 11…インキュベータ(観察装置)、41…制御装置(培養支援装置)、43…記憶部、44…表示部、45…操作部、421…画像取得部、422…表示制御部、423…操作検出部、424…記憶制御部、425…学習部、426…候補提示部

Claims (15)

  1.  細胞の、所定時間毎の撮像画像を取得する画像取得部と、
     前記画像取得部が取得する前記撮像画像と、前記細胞の培養に関するイベントを示すイベント情報とを記憶させる記憶制御部と、
     記憶された前記撮像画像と前記イベント情報との関連性を学習する学習部と、
     を備える培養支援装置。
  2.  前記イベントとして、前記細胞を培養するための培地の交換が含まれる
     請求項1に記載の培養支援装置。
  3.  前記イベントとして、前記細胞の継代が含まれる
     請求項1又は請求項2に記載の培養支援装置。
  4.  前記イベントとして、前記細胞の培養が行われる装置内の掃除が含まれる
     請求項1から請求項3のいずれか一項に記載の培養支援装置。
  5.  前記記憶制御部は、前記撮像画像が撮像された日時に関する情報をさらに記憶させる
     請求項1から請求項4のいずれか一項に記載の培養支援装置。
  6.  前記記憶制御部は、前記撮像画像が撮像された日時に関する情報と、前記イベント情報とを対応付けて記憶させる
     請求項5に記載の培養支援装置。
  7.  前記イベント情報は、前記イベントが実施された日時に関する情報を含む
     請求項1から請求項6のいずれか一項に記載の培養支援装置。
  8.  前記記憶制御部は、
     前記細胞の培養結果を示す培養結果情報をさらに記憶させ、
     前記学習部は、
     前記記憶制御部が記憶させた前記培養結果情報と、前記撮像画像及び前記イベント情報との関連性を学習する
     請求項1から請求項7のいずれか一項に記載の培養支援装置。
  9.  前記学習部による学習結果と、前記画像取得部が取得する画像とに基づいて、実施するイベントの候補を提示する候補提示部
     をさらに備える請求項1から請求項8のいずれか一項に記載の培養支援装置。
  10.  前記候補提示部は、前記学習部による学習結果と、前記画像取得部が取得した最新の画像とに基づいて、実施するイベントの候補を提示する
     請求項9に記載の培養支援装置。
  11.  前記候補提示部は、
     実施するイベントの候補が複数ある場合、前記学習部による学習結果に基づいて、前記実施するイベントの候補に、実施する優先順位を付与して提示する
     請求項9又は請求項10に記載の培養支援装置。
  12.  前記優先順位は、細胞培養の成功率に応じて付与される
     請求項11に記載の培養支援装置。
  13.  前記候補提示部が提示した前記実施するイベントの候補の中から、実施するイベントを選択する選択操作を検出する操作検出部
     をさらに備え、
     前記記憶制御部は、
     前記画像と、前記操作検出部が検出した前記選択操作が示す前記イベント情報とを記憶させ、
     前記学習部は、
     前記選択操作が示す前記イベント情報に基づいて、前記画像と前記イベント情報との関連性をさらに学習する
     請求項9から請求項12のいずれか一項に記載の培養支援装置。
  14.  細胞を培養する培養容器を収納するとともに、内部を所定の環境条件に維持可能な恒温室と、
     前記恒温室内で前記培養容器に含まれる前記細胞を所定時間毎に撮像する撮像装置と、
     請求項1から請求項13のいずれか一項に記載の培養支援装置と、
     を備える観察装置。
  15.  コンピュータに、
     培養中の細胞の、所定時間毎の撮像画像を取得する画像取得ステップと、
     前記画像取得ステップにおいて取得される前記撮像画像と、前記細胞の培養に関するイベントを示すイベント情報とを記憶させる記憶制御ステップと、
     記憶された前記撮像画像と前記イベント情報との関連性を学習する学習ステップと、
     を実行させるためのプログラム。
PCT/JP2017/040066 2017-01-31 2017-11-07 培養支援装置、観察装置、及びプログラム WO2018142702A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17895201.6A EP3578633A4 (en) 2017-01-31 2017-11-07 CULTURE AID DEVICE, OBSERVATION DEVICE, AND PROGRAM
JP2018565941A JP7501993B2 (ja) 2017-01-31 2017-11-07 培養支援方法、培養支援装置、観察装置、及びプログラム
US16/519,560 US11640664B2 (en) 2017-01-31 2019-07-23 Culturing assistance device, observation device and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-015376 2017-01-31
JP2017015376 2017-01-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/519,560 Continuation US11640664B2 (en) 2017-01-31 2019-07-23 Culturing assistance device, observation device and program

Publications (1)

Publication Number Publication Date
WO2018142702A1 true WO2018142702A1 (ja) 2018-08-09

Family

ID=63039452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040066 WO2018142702A1 (ja) 2017-01-31 2017-11-07 培養支援装置、観察装置、及びプログラム

Country Status (4)

Country Link
US (1) US11640664B2 (ja)
EP (1) EP3578633A4 (ja)
JP (1) JP7501993B2 (ja)
WO (1) WO2018142702A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163304A1 (ja) * 2018-02-22 2019-08-29 株式会社ニコン 培養支援装置、観察装置、及びプログラム
WO2020039683A1 (ja) * 2018-08-22 2020-02-27 富士フイルム株式会社 細胞培養支援装置の作動プログラム、細胞培養支援装置、細胞培養支援装置の作動方法
WO2020148964A1 (ja) * 2019-01-18 2020-07-23 富士フイルム株式会社 細胞生成支援装置、方法、及びプログラム
WO2020148956A1 (ja) * 2019-01-18 2020-07-23 富士フイルム株式会社 細胞生成支援装置、方法、及びプログラム
WO2021059577A1 (ja) * 2019-09-24 2021-04-01 富士フイルム株式会社 情報処理装置、情報処理方法、及び情報処理プログラム
WO2021059488A1 (ja) * 2019-09-27 2021-04-01 株式会社ニコン 情報処理装置、情報処理方法、情報処理プログラム、及び情報処理システム
WO2022181049A1 (ja) 2021-02-24 2022-09-01 ソニーグループ株式会社 細胞処理システム、細胞処理方法、学習データ作成方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7501993B2 (ja) 2017-01-31 2024-06-18 株式会社ニコン 培養支援方法、培養支援装置、観察装置、及びプログラム
US10877259B2 (en) * 2017-07-21 2020-12-29 Olympus Corporation Microscope system, culture-cell analysis system, and method of managing microscopic image

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03259078A (ja) * 1990-03-06 1991-11-19 Tokimec Inc 最適培養条件自動検出装置及び培養装置
JP2002360242A (ja) * 2001-06-04 2002-12-17 Japan Tissue Engineering:Kk 培養組織の移植適性判定方法、培養組織の品質管理方法及び培養組織の製造方法
JP2004229619A (ja) 2003-02-03 2004-08-19 Hitachi Ltd 培養装置
JP2011130682A (ja) * 2009-12-22 2011-07-07 Nikon Corp 培養装置
JP2012194691A (ja) * 2011-03-15 2012-10-11 Olympus Corp 識別器の再学習方法、再学習のためのプログラム、及び画像認識装置
US20150087240A1 (en) * 2013-09-26 2015-03-26 Cellogy, Inc. Method and system for characterizing cell populations
JP2016143354A (ja) * 2015-02-04 2016-08-08 エヌ・ティ・ティ・コムウェア株式会社 学習装置、学習方法、およびプログラム
JP2017015376A (ja) 2015-07-07 2017-01-19 日立アプライアンス株式会社 冷蔵庫

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7546210B2 (en) * 2000-06-08 2009-06-09 The Regents Of The University Of California Visual-servoing optical microscopy
JP4549806B2 (ja) * 2004-10-25 2010-09-22 川崎重工業株式会社 オートクレーブ滅菌を利用した自動細胞培養装置及びその使用方法
JP5459817B2 (ja) * 2004-11-29 2014-04-02 川崎重工業株式会社 多関節型ロボットを備えた自動細胞培養装置
JP4774835B2 (ja) * 2005-07-04 2011-09-14 株式会社ニコン 顕微鏡
WO2007052716A1 (ja) * 2005-11-01 2007-05-10 Medinet Co., Ltd. 細胞培養装置、細胞培養方法、細胞培養プログラム、及び細胞培養システム
EP2202291B1 (en) * 2007-09-03 2019-02-27 Nikon Corporation Culture apparatus, culture information management method, and program
JP4953092B2 (ja) * 2008-03-04 2012-06-13 株式会社ニコン 細胞観察における生細胞の判別手法、細胞観察の画像処理プログラム及び画像処理装置
JP4968595B2 (ja) * 2008-07-23 2012-07-04 株式会社ニコン 細胞の状態判別手法及び細胞観察の画像処理装置
US9567560B2 (en) * 2009-02-26 2017-02-14 National University Corporation Nagoya University Incubated state evaluating device, incubated state evaluating method, incubator, and program
EP3065105B1 (en) * 2009-06-12 2020-04-29 Nikon Corporation Technique for determining the state of a cell aggregation, image processing program and image processing device using the technique, and method for producing a cell aggregation
EP2453005B1 (en) * 2009-07-08 2019-09-04 Nikon Corporation Cell picking-assisting device
CN103210338A (zh) * 2010-08-30 2013-07-17 三洋电机株式会社 观察装置、观察程序及观察系统
JP2014018186A (ja) * 2012-07-23 2014-02-03 Tokyo Electron Ltd 多能性幹細胞の評価方法
WO2015193951A1 (ja) * 2014-06-16 2015-12-23 株式会社ニコン 観察装置、観察方法、観察システム、そのプログラム、および細胞の製造方法
CN108140240B (zh) * 2015-08-12 2022-05-31 分子装置有限公司 用于自动分析细胞的表型反应的系统和方法
JP2018046773A (ja) * 2016-09-21 2018-03-29 オリンパス株式会社 観察装置、眼鏡型端末装置、観察システム、観察方法、試料位置取得方法、観察プログラム及び試料位置取得プログラム
JP7501993B2 (ja) 2017-01-31 2024-06-18 株式会社ニコン 培養支援方法、培養支援装置、観察装置、及びプログラム
JP2019161606A (ja) * 2018-03-16 2019-09-19 オリンパス株式会社 移動撮像システム、学習方法、移動撮像装置、情報取得制御装置、情報取得制御方法及び情報取得制御プログラム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03259078A (ja) * 1990-03-06 1991-11-19 Tokimec Inc 最適培養条件自動検出装置及び培養装置
JP2002360242A (ja) * 2001-06-04 2002-12-17 Japan Tissue Engineering:Kk 培養組織の移植適性判定方法、培養組織の品質管理方法及び培養組織の製造方法
JP2004229619A (ja) 2003-02-03 2004-08-19 Hitachi Ltd 培養装置
JP2011130682A (ja) * 2009-12-22 2011-07-07 Nikon Corp 培養装置
JP2012194691A (ja) * 2011-03-15 2012-10-11 Olympus Corp 識別器の再学習方法、再学習のためのプログラム、及び画像認識装置
US20150087240A1 (en) * 2013-09-26 2015-03-26 Cellogy, Inc. Method and system for characterizing cell populations
JP2016143354A (ja) * 2015-02-04 2016-08-08 エヌ・ティ・ティ・コムウェア株式会社 学習装置、学習方法、およびプログラム
JP2017015376A (ja) 2015-07-07 2017-01-19 日立アプライアンス株式会社 冷蔵庫

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Guidelines for design of the human cell culture system (revision), R&D guidelines 2015 (Guidance", MINISTRY OF ECONOMY, TRADE AND INDUSTRY; JAPAN AGENCY FOR MEDICAL RESEARCH AND DEVELOPMENT, 20 December 2015 (2015-12-20), XP009515880, Retrieved from the Internet <URL:http://md-guidelines.pj.aist.go.jp/?page_id=3581> [retrieved on 20171129] *
KATO, RYUJI ET AL.: "Seibutsu-Kogaku Kaishi, non-official translation", CELL QUALITY ASSESSMENT METHOD BY CELL IMAGE INFORMATICS, vol. 88, no. 12, 2010, pages 646 - 648, XP9515702 *
MATSUOKA, F. ET AL.: "Characterization of time-course morphological features for efficient prediction of osteogenic potential in human mesenchymal stem cells", BIOTECHNOLOGY AND BIOENGINEERING, vol. 111, no. 7, 2014, pages 1430 - 1439, XP055431564 *
MATSUOKA, F. ET AL.: "Morphology-based prediction of osteogenic differentiation potential of human mesenchymal stem cells", PLOS ONE, vol. 8, no. 2, 21 February 2013 (2013-02-21), pages 1 - 12, XP055431610 *
PERESTRELO, T. ET AL.: "Pluri-IQ : quantification of embryonic stem cell pluripotency through an image-based analysis software", STEM CELL REPORTS, vol. 9, no. 2, August 2017 (2017-08-01), pages 697 - 709, XP055529564 *
SASAKI, HIROTO ET AL.: "Comparison and effectiveness of cell quality deterioration detection technique by subculture", ABSTRACTS OF PAPERS PRESENTED AT THE RESEARCH MEETING. ANNUAL MEETING. SOCIETY OF CHEMICAL ENGINEERS ; 75 (KAGOSHIMA) : 2010.03.18-20, vol. 2010, 2010, pages 75 - 199, XP055616903 *
SASAKI, HIROTO ET AL.: "Quantitative evaluation of cell damage levels in subculture using cell image analysis", ABSTRACTS OF THE LECTURES IN THE MEETING OF THE SOCIETY FOR BIOTECHNOLOGY, vol. 63, 2011, Japan, pages 50, XP009515697 *
SASAKI, HIROTO ET AL.: "Quantitative prediction of cell damage levels in subculture using cell image analysis, extra issue", REGENERATIVE MEDICINE, vol. 10, 2011, Japan, pages 157, XP009515806, ISSN: 1347-7919 *
See also references of EP3578633A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7375886B2 (ja) 2018-02-22 2023-11-08 株式会社ニコン 培養支援装置、観察装置、及びプログラム
JP2022185038A (ja) * 2018-02-22 2022-12-13 株式会社ニコン 培養支援装置
JPWO2019163304A1 (ja) * 2018-02-22 2021-02-04 株式会社ニコン 培養支援装置、観察装置、及びプログラム
WO2019163304A1 (ja) * 2018-02-22 2019-08-29 株式会社ニコン 培養支援装置、観察装置、及びプログラム
JPWO2020039683A1 (ja) * 2018-08-22 2021-04-30 富士フイルム株式会社 細胞培養支援装置の作動プログラム、細胞培養支援装置、細胞培養支援装置の作動方法
WO2020039683A1 (ja) * 2018-08-22 2020-02-27 富士フイルム株式会社 細胞培養支援装置の作動プログラム、細胞培養支援装置、細胞培養支援装置の作動方法
JPWO2020148956A1 (ja) * 2019-01-18 2021-09-27 富士フイルム株式会社 細胞生成支援装置、方法、及びプログラム
WO2020148956A1 (ja) * 2019-01-18 2020-07-23 富士フイルム株式会社 細胞生成支援装置、方法、及びプログラム
JP7282809B2 (ja) 2019-01-18 2023-05-29 富士フイルム株式会社 細胞生成支援装置、方法、及びプログラム
WO2020148964A1 (ja) * 2019-01-18 2020-07-23 富士フイルム株式会社 細胞生成支援装置、方法、及びプログラム
JPWO2021059577A1 (ja) * 2019-09-24 2021-04-01
WO2021059577A1 (ja) * 2019-09-24 2021-04-01 富士フイルム株式会社 情報処理装置、情報処理方法、及び情報処理プログラム
WO2021059488A1 (ja) * 2019-09-27 2021-04-01 株式会社ニコン 情報処理装置、情報処理方法、情報処理プログラム、及び情報処理システム
WO2022181049A1 (ja) 2021-02-24 2022-09-01 ソニーグループ株式会社 細胞処理システム、細胞処理方法、学習データ作成方法

Also Published As

Publication number Publication date
US20190347798A1 (en) 2019-11-14
US11640664B2 (en) 2023-05-02
EP3578633A4 (en) 2020-09-02
EP3578633A1 (en) 2019-12-11
JPWO2018142702A1 (ja) 2019-11-14
JP7501993B2 (ja) 2024-06-18

Similar Documents

Publication Publication Date Title
WO2018142702A1 (ja) 培養支援装置、観察装置、及びプログラム
WO2019163304A1 (ja) 培養支援装置、観察装置、及びプログラム
CN109564680B (zh) 信息处理方法和系统
US11035845B2 (en) Observation apparatus, observation method, observation system, program, and cell manufacturing method
JP5677441B2 (ja) 観察装置、観察プログラム及び観察システム
US10704072B2 (en) Cell culture evaluation system and method
US8606809B2 (en) Program recording medium, computer, and culture state analyzing method
JP5849498B2 (ja) 培養状態評価装置、細胞培養方法およびプログラム
CN102471744A (zh) 图像处理装置、培养观察装置及图像处理方法
JP2010152829A (ja) 細胞培養管理システム
JP2014217353A (ja) 観察装置、観察方法、観察システム、そのプログラム、および細胞の製造方法
JP6234138B2 (ja) 細胞観察情報処理システム、細胞観察情報処理方法、細胞観察情報処理プログラム、細胞観察情報処理システムに備わる記録部、細胞観察情報処理システムに備わる装置
US20170177789A1 (en) Cell observation information processing system, cell observation information processing method, and cell observation information processing program
WO2021045214A1 (ja) 画像解析装置、細胞培養観察装置、画像解析方法、プログラム、及び情報処理システム
JP6642751B2 (ja) 細胞の成熟度を判定する方法、観察装置、プログラム、制御装置、および細胞の製造方法
JP6265199B2 (ja) 培養状態評価装置、プログラム及び培養状態評価方法
US20170103191A1 (en) Cell observation information processing system, cell observation information processing method, cell observation information processing program, archive section provided for cell observation information processing system, and apparatuses provided for cell observation information processing system
JP6544426B2 (ja) 培養状態の評価を行う装置、プログラム及び方法
JP2012048193A (ja) 観察システム及び観察プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895201

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565941

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017895201

Country of ref document: EP

Effective date: 20190902